WorldWideScience

Sample records for dwarf binary sdss

  1. The (Double) White Dwarf Binary SDSS 1257+5428

    CERN Document Server

    Kulkarni, S R

    2010-01-01

    SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white-dwarf neutron-star mergers similar to that of the type Ia supernova rate. Here, we present high signal-to-noise spectra of SDSS 1257+5428, which confirm an independent finding that the system is in fact composed of two white dwarfs, one relatively cool and with low mass, and the other hotter and more massive. With this, the demographics and merger rate are no longer puzzling (various factors combine to lower the latter by more than two orders of magnitude). We show that the spectra are fit well with a combination of two hydrogen model atmospheres, as long as the lines of the higher-gravity component are broadened significantly relative to what is expected from just pressure broadening. Interpreting this additional broadening as due to rotation, the inferred spin period i...

  2. THE VERY SHORT PERIOD M DWARF BINARY SDSS J001641-000925

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Becker, Andrew C.; Hawley, Suzanne L.; Gunning, Heather C.; Munshi, Ferah A.; Albright, Meagan [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); West, Andrew A. [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Bochanski, John J. [Astronomy and Astrophysics Department, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, Las Cruces, NM 88003 (United States); Hilton, Eric J., E-mail: jrad@astro.washington.edu [Department of Geology and Geophysics and Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-02-10

    We present follow-up observations and analysis of the recently discovered short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital period of 0.19856 days, this system has one of the shortest known periods for an M dwarf binary system. Medium-resolution spectroscopy and multi-band photometry for the system are presented. Markov Chain Monte Carlo modeling of the light curves and radial velocities yields estimated masses for the stars of M {sub 1} = 0.54 {+-} 0.07 M {sub Sun} and M {sub 2} = 0.34 {+-} 0.04 M {sub Sun }, and radii of R {sub 1} = 0.68 {+-} 0.03 R {sub Sun} and R {sub 2} = 0.58 {+-} 0.03 R {sub Sun }, respectively. This solution places both components above the critical Roche overfill limit, providing strong evidence that SDSS J001641-000925 is the first verified M-dwarf contact binary system. Within the follow-up spectroscopy we find signatures of non-solid body rotation velocities, which we interpret as evidence for mass transfer or loss within the system. In addition, our photometry samples the system over nine years, and we find strong evidence for period decay at the rate of P-dot {approx} 8 s yr{sup -1}. Both of these signatures raise the intriguing possibility that the system is in over-contact, and actively losing angular momentum, likely through mass loss. This places SDSS J001641-000925 as not just the first M-dwarf over-contact binary, but one of the few systems of any spectral type known to be actively undergoing coalescence. Further study of SDSS J001641-000925 is ongoing to verify the nature of the system, which may prove to be a unique astrophysical laboratory.

  3. Component masses of young, wide, non-magnetic white dwarf binaries in the SDSS DR7

    CERN Document Server

    Baxter, R B; Parker, Q A; Casewell, S L; Lodieu, N; Burleigh, M R; Lawrie, K A; Kulebi, B; Koester, D; Holland, B R

    2014-01-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA+DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M~0.6 Msun. We identify an excess of ultra-massive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final sta...

  4. The population of white dwarf-main sequence binaries in the SDSS DR 12

    Science.gov (United States)

    Cojocaru, R.; Rebassa-Mansergas, A.; Torres, S.; García-Berro, E.

    2017-09-01

    We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disc aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release 12. Our simulations take into account all known observational biases and use the most up-to-date stellar evolutionary models. This allows us to perform a sound comparison between the simulations and the observational data. We find that the properties of the simulated and observed parameter distributions agree best when assuming low values of the common envelope efficiency (0.2-0.3), a result that is in agreement with previous findings obtained by observational and population synthesis studies of close SDSS WD+MS binaries. We also show that all synthetic populations that result from adopting an initial mass ratio distribution with a positive slope are excluded by observations. Finally, we confirm that the properties of the simulated WD+MS binary populations are nearly independent of the age adopted for the thin disc, on the contribution of WD+MS binaries from the thick disc (0-17 per cent of the total population) and on the assumed fraction of the internal energy that is used to eject the envelope during the common envelope phase (0.1-0.5).

  5. The SDSS spectroscopic catalogue of white dwarf-main sequence binaries: new identifications from DR9-12

    CERN Document Server

    Rebassa-Mansergas, A; Parsons, S G; Gaensicke, B T; Schreiber, M R; Garcia-Berro, E; Liu, X -W; Koester, D

    2016-01-01

    We present an updated version of the spectroscopic catalogue of white dwarf-main sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS). We identify 939 WDMS binaries within the data releases (DR) 9-12 of SDSS plus 40 objects from DR 1-8 that we missed in our previous works, 646 of which are new. The total number of spectroscopic SDSS WDMS binaries increases to 3294. This is by far the largest and most homogeneous sample of compact binaries currently available. We use a decomposition/fitting routine to derive the stellar parameters of all systems identified here (white dwarf effective temperatures, surface gravities and masses, and secondary star spectral types). The analysis of the corresponding stellar parameter distributions shows that the SDSS WDMS binary population is seriously affected by selection effects. We also measure the NaI 8183.27, 8194.81 absorption doublet and Halpha emission radial velocities (RV) from all SDSS WDMS binary spectra identified in this work. 98 objects are found to di...

  6. SDSS 1355+0856: a detached white dwarf + M star binary in the period gap discovered by the SWARMS survey

    Science.gov (United States)

    Badenes, Carles; van Kerkwijk, Marten H.; Kilic, Mukremin; Bickerton, Steven J.; Mazeh, Tsevi; Mullally, Fergal; Tal-Or, Lev; Thompson, Susan E.

    2013-03-01

    SDSS J135523.92 + 085645.4 (SDSS 1355+0856) was identified as a hot white dwarf with a companion from time-resolved Sloan Digital Sky Survey spectroscopy as part of the ongoing Sloan White Dwarf Radial velocity data Mining Survey survey. Follow-up observations with the Astrophysical Research Consortium 3.5 m telescope and the Multiple Mirror Telescope revealed weak emission lines in the central cores of the Balmer absorption lines during some phases of the orbit, but no line emission during other phases. This can be explained if SDSS 1355+0856 is a detached white dwarf + M dwarf binary similar to GD 448, where one of the hemispheres of the low-mass companion is irradiated by the proximity of the hot white dwarf. Based on the available data, we derive an orbital period of 0.114 38 ± 0.000 06 d, a primary mass of 0.46 ± 0.01 M⊙, a secondary mass between 0.083 and 0.097 M⊙, and an orbital inclination larger than 57°. This makes SDSS 1355+0856 one of the shortest period post-common envelope white dwarf + M dwarf binaries, and the record holder for the lowest mass stellar companion, which has interesting implications for our understanding of common envelope evolution and the phenomenology of cataclysmic variables. The short cooling time of the WD (25 Myr) implies that the system emerged from the common envelope phase with an orbital period very similar to what we observe today, and was born in the period gap of cataclysmic variables.

  7. The Orbit of the L Dwarf + T Dwarf Spectral Binary SDSS J080531.84+481233.0

    Science.gov (United States)

    Burgasser, Adam J.; Blake, Cullen H.; Gelino, Christopher R.; Sahlmann, Johannes; Bardalez Gagliuffi, Daniella

    2016-08-01

    SDSS J080531.84+481233.0 is a closely separated, very-low-mass (VLM) binary identified through combined-light spectroscopy and confirmed as an astrometric variable. Here we report four years of radial velocity monitoring observations of the system that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02 ± 0.03 years, a semimajor axis of 0.76{}-0.06+0.05 au, and an eccenticity of 0.46 ± 0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4 ± 0.7 and T5.5 ± 1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90° ± 19°), and deduce a large system mass ratio (M 2/M 1 = {0.86}-0.12+0.10), substellar components (M 1 = {0.057}-0.014+0.016 M ⊙, M 2 = {0.048}-0.010+0.008 M ⊙), and a relatively old system age (minimum age = {4.0}-1.2+1.9 Gyr). The measured projected rotational velocity of the primary ({V}{rot}\\sin i = 34.1 ± 0.7 km s-1) implies that this inactive source is a rapid rotator (period ≲ 3 hr) and a viable system for testing spin-orbit alignment in VLM multiples. Robust model-independent constraints on the component masses may be possible through measurement of the reflex motion of the secondary at wavelengths in which it contributes a greater proportion of the combined luminence, while the system may also be resolvable through sparse-aperature mask interferometry with adaptive optics. The combination of well-determined component atmospheric properties and masses near and/or below the hydrogen minimum mass make SDSS J0805+4812AB an important system for future tests of brown dwarf evolutionary models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  8. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    Science.gov (United States)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  9. The Orbit of the L dwarf + T dwarf Spectral Binary SDSS J080531.84+481233.0

    CERN Document Server

    Burgasser, Adam J; Gelino, Christopher R; Sahlmann, Johannes; Gagliuffi, Daniella Bardalez

    2016-01-01

    [abridged] We report four years of radial velocity monitoring observations of SDSS J080531.84+481233.0 that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02$\\pm$0.03 yr, a semi-major axis of 0.76$^{+0.05}_{-0.06}$ AU, and an eccentricity of 0.46$\\pm$0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4$\\pm$0.7 and T5.5$\\pm$1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90$^o\\pm$19$^o$), and deduce a large system mass ratio (M$_2$/M$_1$ = 0.86$^{+0.10}_{-0.12}$), substellar components (M$_1$ = 0.057$^{+0.016}_{-0.014}$ M$_{\\odot}$, M$_2$ = 0.048$^{+0.008}_{-0.010}$ M$_{\\odot}$), and a relatively old system age (minimum age = 4.0$^{+1.9}_{-1.2}$ Gyr). The measured projected rotational velocity of the p...

  10. A Double-line M-dwarf Eclipsing Binary from CSS x SDSS

    Science.gov (United States)

    Lee, Chien-Hsiu

    2017-03-01

    Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper, we present the discovery of a short-period (P = 0.313 day), double-lined M-dwarf eclipsing binary, CSSJ114804.3+255132/SDSSJ114804.35+255132.6, by cross-matching binary light curves from the Catalina Sky Survey and spectroscopically classified M dwarfs from the Sloan Digital Sky Survey. We obtain follow-up spectra using the Gemini telescope, enabling us to determine the mass, radius, and temperature of the primary and secondary component to be M 1 = 0.47 ± 0.03(statistic) ± 0.03(systematic) M ⊙, M 2 = 0.46 ± 0.03(statistic) ± 0.03(systematic) M ⊙, R 1 = 0.52 ± 0.08(statistic) ± 0.07(systematic) R ⊙, R 2 =0.60 ± 0.08(statistic) ± 0.08(systematic) R ⊙, T 1 = 3560 ± 100 K, and T 2 = 3040 ± 100 K, respectively. The systematic error was estimated using the difference between eccentric and non-eccentric fits. Our analysis also indicates that there is definitively third-light contamination (66%) in the CSS photometry. The secondary star seems inflated, probably due to tidal locking of the close secondary companion, which is common for very short-period binary systems. Future spectroscopic observations with high resolution will narrow down the uncertainties of stellar parameters for both components, rendering this system as a benchmark for studying fundamental properties of M dwarfs.

  11. Binaries discovered by the MUCHFUSS project SDSS J08205+0008 - An eclipsing subdwarf B binary with brown dwarf companion

    CERN Document Server

    Geier, S; Drechsel, H; Heber, U; Kupfer, T; Tillich, A; Oestensen, R H; Smolders, K; Degroote, P; Maxted, P F L; Barlow, B N; Gaensicke, B T; Marsh, T R; Napiwotzki, R

    2011-01-01

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object ($\\simeq0.068\\,M_{\\rm \\odot}$) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelo...

  12. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: comparison with the SDSS DR7 observed sample

    CERN Document Server

    Camacho, J; García-Berro, E; Zorotovic, M; Schreiber, M R; Rebassa-Mansergas, A; Gómez-Morán, A Nebot; Gänsicke, B T

    2014-01-01

    Detached white dwarf + main sequence (WD+MS) systems represent the simplest population of post-common envelope binaries (PCEBs). Since the ensemble properties of this population carries important information about the characteristics of the common-envelope (CE) phase, it deserves close scrutiny. However, most population synthesis studies do not fully take into account the effects of the observational selection biases of the samples used to compare with the theoretical simulations. Here we present the results of a set of detailed Monte Carlo simulations of the population of WD+MS binaries in the Sloan Digital Sky Survey (SDSS) Data Release 7. We used up-to-date stellar evolutionary models, a complete treatment of the Roche lobe overflow episode, and a full implementation of the orbital evolution of the binary systems. Moreover, in our treatment we took into account the selection criteria and all the known observational biases. Our population synthesis study allowed us to make a meaningful comparison with the a...

  13. Rapid Decreasing in the Orbital Period of the Detached White Dwarf-main Sequence Binary SDSS J143547.87+373338.5

    Science.gov (United States)

    Qian, S.-B.; Han, Z.-T.; Soonthornthum, B.; Zhu, L.-Y.; He, J.-J.; Rattanasoon, S.; Aukkaravittayapun, S.; Liao, W.-P.; Zhao, E.-G.; Zhang, J.; Fernández Lajús, E.

    2016-02-01

    SDSS J143547.87+373338.5 is a detached eclipsing binary that contains a white dwarf with a mass of 0.5 M⊙ and a fully convective star with a mass of 0.21 M⊙. The eclipsing binary was monitored photometrically from 2009 March 24 to 2015 April 10, by using two 2.4-m telescopes in China and in Thailand. The changes in the orbital period are analyzed based on eight newly determined eclipse times together with those compiled from the literature. It is found that the observed-calculated (O-C) diagram shows a downward parabolic change that reveals a continuous period decrease at a rate of \\dot{P}=-8.04× {10}-11 s s-1. According to the standard theory of cataclysmic variables, angular momentum loss (AML) via magnetic braking (MB) is stopped for fully convective stars. However, this period decrease is too large to be caused by AML via gravitational radiation (GR), indicating that there could be some extra source of AML beyond GR, but the predicted mass-loss rates from MB seem unrealistically large. The other possibility is that the O-C diagram may show a cyclic oscillation with a period of 7.72 years and a small amplitude of 0.ͩ000525. The cyclic change can be explained as the light-travel-time effect via the presence of a third body because the required energy for the magnetic activity cycle is much larger than that radiated from the secondary in a whole cycle. The mass of the potential third body is determined to be {M}3{sin}{i}\\prime =0.0189(+/- 0.0016) M⊙ when a total mass of 0.71 M⊙ for SDSS J143547.87+373338.5 is adopted. For orbital inclinations {i}\\prime ≥slant 15\\buildrel{\\circ}\\over{.} 9, it would be below the stable hydrogen-burning limit of M3 ˜ 0.072 M⊙, and thus the third body would be a brown dwarf.

  14. New Close Binary Systems from the SDSS-I (Data Release Five) and the Search for Magnetic White Dwarfs in Cataclysmic Variable Progenitor Systems

    CERN Document Server

    Silvestri, Nicole M; Hawley, Suzanne L; West, Andrew A; Schmidt, Gary D; Liebert, James; Szkody, Paula; Mannikko, Lee; Wolfe, Michael A; Barentine, J C; Brewington, Howard J; Harvanek, Michael; Krzesinski, Jurik; Long, Dan; Schneider, Donald P; Snedden, Stephanie A

    2007-01-01

    We present the latest catalog of more than 1200 spectroscopically-selected close binary systems observed with the Sloan Digital Sky Survey through Data Release Five. We use the catalog to search for magnetic white dwarfs in cataclysmic variable progenitor systems. Given that approximately 25% of cataclysmic variables contain a magnetic white dwarf, and that our large sample of close binary systems should contain many progenitors of cataclysmic variables, it is quite surprising that we find only two potential magnetic white dwarfs in this sample. The candidate magnetic white dwarfs, if confirmed, would possess relatively low magnetic field strengths (B_WD < 10 MG) that are similar to those of intermediate-Polars but are much less than the average field strength of the current Polar population. Additional observations of these systems are required to definitively cast the white dwarfs as magnetic. Even if these two systems prove to be the first evidence of detached magnetic white dwarf + M dwarf binaries, th...

  15. Magnetic White Dwarf Stars in the SDSS

    CERN Document Server

    Kepler, S O; Jordan, Stefan; Kleinman, Scot J; Kulebi, Baybars; Koester, Detlev; Peçanha, Viviane; Castanheira, Bárbara G; Nitta, Atsuko; Costa, José Eduardo da Silveira; Winget, Don Earl; Kanaan, Antonio; Fraga, Luciano

    2012-01-01

    To obtain a better statistics on the occurrence of magnetism among white dwarfs, we searched the spectra of the hydrogen atmosphere white dwarf stars (DAs) in the Data Release 7 of the Sloan Digital Sky Survey (SDSS) for Zeeman splittings and estimated the magnetic fields. We found 521 DAs with detectable Zeeman splittings, with fields in the range from around 1 MG to 733 MG, which amounts to 4% of all DAs observed. As the SDSS spectra have low signal-to-noise ratios, we carefully investigated by simulations with theoretical spectra how reliable our detection of magnetic field was.

  16. SDSS J1534+1615AB: A Novel T Dwarf Binary Found with Keck Laser Guide Star Adaptive Optics and the Potential Role of Binarity in the L/T Transition

    CERN Document Server

    Liu, M C; Chiu, K; Fan, X; Geballe, T R; Golimowski, D A; Leggett, S K; Schneider, D P; Chiu, Kuenley; Fan, Xiaohui; Golimowski, David A.; Liu, Michael C.; Schneider, Donald P.

    2006-01-01

    We have resolved the newly discovered T dwarf SDSS J1534+1615 into a 0.11'' binary using the Keck sodium laser guide star adaptive optics system. With an integrated-light spectral type of T3.5, this binary provides a new benchmark for studying the distinctive J-band brightening previously noted among early and mid-T dwarfs, using two brown dwarfs with different spectral types but having a common metallicity and age and very similar surface gravities. We estimate spectral types of T1.5+/-0.5 and T5.5+/-0.5 for the two components based on their near-IR colors, consistent with modeling the integrated-light spectrum as the blend of two components. The observed near-IR flux ratios are unique compared to all previously known substellar binaries: the component that is fainter at H and K' is brighter at J. This inversion of the near-IR fluxes is a manifestation of the J-band brightening within this individual binary system. Therefore, SDSS 1534+1615 demonstrates that the brightening can be intrinsic to ultracool phot...

  17. SDSS DR7 WHITE DWARF CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, S. J.; Nitta, A. [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Koester, D. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Kiel, D-24098 Kiel (Germany); Krzesinski, J. [Mt. Suhora Observatory, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Cracow (Poland); Dufour, P.; Lachapelle, F.-R.; Bergeron, P. [Departement de Physique, Universite de Montreal, C. P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7 (Canada); Yip, Ching-Wa [Department of Physics and Astronomy, The Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Harris, Hugh C. [United States Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Althaus, L.; Corsico, A., E-mail: hch@nofs.navy.mil [Facultad de Ciencias Astronomicas y Geofisicas, Paseo del Bosque S/N, (1900) La Plata (Argentina)

    2013-01-15

    We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.

  18. SDSS DR7 White Dwarf Catalog

    CERN Document Server

    Kleinman, S J; Koester, D; Pelisoli, Ingrid; Peçanha, Viviane; Nitta, A; Costa, J E S; Krzesinski, J; Dufour, P; Lachapelle, F -R; Bergeron, P; Yip, Ching-Wa; Harris, Hugh C; Eisenstein, Daniel J; Althaus, L; Córsico, A

    2012-01-01

    We present a new catalog of spectroscopically-confirmed white dwarf stars from the Sloan Digital Sky Survey Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent a more than factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalog based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log(g) if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for...

  19. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  20. Characterization of Dwarf Novae Using SDSS Colors

    CERN Document Server

    Kato, Taichi; Uemura, Makoto

    2011-01-01

    We have developed a method for estimating orbital periods of dwarf novae from SDSS colors in quiescence using an artificial neural network. For typical objects below the period gap with good photometric accuracy, we could estimate orbital periods to a 1-sigma error of 22%. The error of estimation is worse for systems with longer periods. We have also developed a neural network-based method for categorical classification. This method has been proven to be efficient in classifying objects into three categories (WZ Sge-type, SU UMa-type and SS Cyg/Z Cam-type) and works for very faint objects down to g=21. Using these methods, we have investigated the distribution of orbital periods of dwarf novae from a modern transient survey (Catalina Real-Time Survey). Using Bayesian analysis developed by Uemura et al. (2010, arXiv:1003.0945), the present sample tends to give a flatter distribution toward the shortest period and a shorter estimate of the period minimum, which may have been resulted from the uncertainties in t...

  1. Post common envelope binaries from SDSS. XII: The orbital period distribution

    CERN Document Server

    Gómez-Morán, A Nebot; Schreiber, M R; Rebassa-Mansergas, A; Schwope, A D; Southworth, J; Aungwerojwit, A; Bothe, M; Davis, P J; Kolb, U; Müller, M; Papadaki, C; Pyrzas, S; Rabitz, A; Rodríguez-Gil, P; Schmidtobreick, L; Schwarz, R; Tappert, C; Toloza, O; Vogel, J; Zorotovic, M

    2011-01-01

    The complexity of the common envelope phase and of magnetic stellar wind braking currently limits our understanding of close binary evolution. Because of their intrinsically simple structure, observational population studies of white dwarf plus main sequence (WDMS) binaries hold the potential to test theoretical models and constrain their parameters. The Sloan Digital Sky Survey (SDSS) has provided a large and homogeneously selected sample of WDMS binaries, which we are characterising in terms of orbital and stellar parameters. We have obtained radial velocity information for 385 WDMS binaries from follow-up spectroscopy, and for an additional 861 systems from the SDSS sub-spectra. Radial velocity variations identify 191 of these WDMS binaries as post common envelope binaries (PCEBs). Orbital periods of 58 PCEBs were subsequently measured, predominantly from time-resolved spectroscopy, bringing the total number of SDSS PCEBs with orbital parameters to 79. Observational biases inherent to this PCEB sample were...

  2. Statistical Time-Resolved Spectroscopy: A higher fraction of short-period binaries for metal-rich F-type dwarfs in SDSS

    CERN Document Server

    Hettinger, T; Strader, J; Bickerton, S J; Beers, T C

    2015-01-01

    Stellar multiplicity lies at the heart of many problems in modern astrophysics, including the physics of star formation, the observational properties of unresolved stellar populations, and the rates of interacting binaries such as cataclysmic variables, X-ray binaries, and Type Ia supernovae. However, little is known about the stellar multiplicity of field stars in the Milky Way, in particular about the differences in the multiplicity characteristics between metal-rich disk stars and metal-poor halo stars. In this study we perform a statistical analysis of ~15,000 F-type dwarf stars in the Milky Way through time-resolved spectroscopy with the sub-exposures archived in the Sloan Digital Sky Survey. We obtain absolute radial velocity measurements through template cross-correlation of individual sub-exposures with temporal baselines varying from minutes to years. These sparsely sampled radial velocity curves are analyzed using Markov chain Monte Carlo techniques to constrain the very short-period binary fraction...

  3. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  4. White dwarf-main sequence binaries from LAMOST: the DR1 catalogue

    CERN Document Server

    Ren, Juanjuan; Luo, Ali; Zhao, Yongheng; Xiang, Maosheng; Liu, Xiaowei; Zhao, Gang; Jin, Ge; Zhang, Yong

    2014-01-01

    Context. White dwarf-main sequence (WDMS) binaries are used to study several different important open problems in modern astrophysics. Aims. The Sloan Digital Sky Survey (SDSS) identified the largest catalogue of WDMS binaries currently known. However, this sample is seriously affected by selection effects and the population of systems containing cool white dwarfs and early-type companions is under-represented.Here we search for WDMS binaries within the spectroscopic data release 1 of the LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) survey. LAMOST and SDSS follow different target selection algorithms. Hence, LAMOST WDMS binaries may be drawn from a different parent population and thus help in overcoming the selection effects incorporated by SDSS on the current observed population. Methods. We develop a fast and efficient routine based on the wavelet transform to identify LAMOST WDMS binaries containing a DA white dwarf and a M dwarf companion, and apply a decomposition/fitting routine to...

  5. The WIRED Survey II: Infrared Excesses in the SDSS DR7 White Dwarf Catalog

    CERN Document Server

    Debes, J H; Wachter, S; Leisawitz, D T; Cohen, M

    2011-01-01

    With the launch of the {\\em Wide-field Infrared Survey Explorer} ({\\em WISE}), a new era of detecting planetary debris and brown dwarfs around white dwarfs (WDs) has begun with the {\\em WISE} InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD Catalog between the {\\em WISE}, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From $\\sim18,000$ input targets, there are {\\em WISE} detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+brown dwarf (BD) systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spect...

  6. SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dhital, Saurav [Department of Physical Sciences, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd., Daytona Beach, FL 32114 (United States); West, Andrew A.; Schluns, Kyle J.; Massey, Angela P. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Stassun, Keivan G., E-mail: dhitals@erau.edu [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235 (United States)

    2015-08-15

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  7. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing...... masses of the brown dwarf companions are 0.02 ± 0.01 M⊙ and 0.019 ± 0.002 M⊙ for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events...

  8. Microlensing Binaries with Candidate Brown Dwarf Companions

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Gould, A.;

    2012-01-01

    Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing ...

  9. Purple dwarfs: New L subdwarfs from UKIDSS and SDSS

    Directory of Open Access Journals (Sweden)

    Marocco F.

    2013-04-01

    Full Text Available The first L subdwarf was a discovered only ten years ago. Less than ten L subdwarfs been published in the literature to date. Metal-poor ultracool atmospheres has not been well understood. Halo mass function cross substellar limit has not been measured. We used UKIDSS and SDSS to search for L subdwarfs. We have confirmed some new L subdwarfs and are following up more candidates with ground based large telescopes. We discussed spectral features of L subdwarfs and halo brown dwarfs.

  10. A Radio Search For Pulsar Companions To SDSS Low-Mass White Dwarfs

    CERN Document Server

    Agueros, Marcel A; Silvestri, Nicole M; Kleinman, S J; Anderson, Scott F; Liebert, James W

    2009-01-01

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M < 0.4 M_Sun) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive WD or a neutron star as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs (e.g., Benvenuto & De Vito 2005), suggesting that the SDSS LMWDs may have neutron star companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al. (2007), who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as "...

  11. White Dwarfs in SDSS DR9 and DR10

    Science.gov (United States)

    Gentile Fusillo, Nicola Pietro; Gänsicke, Boris; Koester, Detlev

    2015-06-01

    Currently the largest catalogue of spectroscopically identified WDs is based on the 7th Data Release (DR) of the Sloan Digital Sky Survey and contains over 20000 WDs (Kleinman et al. 2013). However, only a fraction of all WDs in the photometric footprint of SDSS have been spectroscopically followed up. Using DR7 spectroscopy as a training sample, we developed a method to select high confidence photometric WD candidates. The novelty of our selection is that it allows us to assign to any object with multi-colour and proper motion data a well-defined "probability of being a white dwarf" (or a contaminant). Exploiting this selection method we compiled a catalogue (Gentile Fusillo et al. in prep) which currently covers the entire photometric footprint of SDSS, 14555sq deg, with a limiting magnitude of g ≤ 19. The catalogue contains over 20000 high-confidence WDs and WD candidates 11500 of which have not yet been followed up with Sloan spectroscopy. Even though, so far, our catalogue relies only SDSS we plan to extend the sky coverage as additional deep multi-colour large area surveys become available. DR10 includes over 1.4 million spectra taken with the new BOSS spectrograph, which improves over the original SDSS spectograph in both resolution and wavelength coverage, but has so far not been systematically mined for WD science. As part of this project, we also inspected over 8000 BOSS spectra of bright (g ≤ 19) colour selected sources and classified 1765 new WDs. We used this independent, spectroscopically confirmed sample to further validate our selection method. Finally we discuss possible application of our catalogue , focusing on the selection and follow up of 9 new DZs which show strong pollution from elements other than Ca and IR excess emission emission consistent with the presence of debris discs.

  12. The AM CVn binary SDSS J173047.59+554518.5

    CERN Document Server

    Carter, P J; Marsh, T R; Kupfer, T; Copperwheat, C M; Groot, P J; Nelemans, G

    2013-01-01

    The AM Canum Venaticorum (AM CVn) binaries are a rare group of hydrogen-deficient, ultra-short period, mass-transferring white dwarf binaries, and are possible progenitors of type Ia supernovae. We present time-resolved spectroscopy of the recently-discovered AM CVn binary SDSS J173047.59+554518.5. The average spectrum shows strong double-peaked helium emission lines, as well as a variety of metal lines, including neon; this is the second detection of neon in an AM CVn binary, after the much brighter system GP Com. We detect no calcium in the accretion disc, a puzzling feature that has been noted in many of the longer-period AM CVn binaries. We measure an orbital period, from the radial velocities of the emission lines, of 35.2 +/- 0.2 minutes, confirming the ultra-compact binary nature of the system. The emission lines seen in SDSS J1730 are very narrow, although double-peaked, implying a low inclination, face-on accretion disc; using the measured velocities of the line peaks, we estimate i < 11 degrees. ...

  13. A Statistical Survey of Peculiar L and T Dwarfs in SDSS, 2MASS, and WISE

    Science.gov (United States)

    Kellogg, Kendra; Metchev, Stanimir; Miles-Páez, Paulo A.; Tannock, Megan E.

    2017-09-01

    We present the final results from a targeted search for brown dwarfs with unusual near-infrared colors. From a positional cross-match of the Sloan Digital Sky Survey (SDSS), 2-Micron All-Sky Survey (2MASS), and Wide-Field Infrared Survey Explorer (WISE) catalogs, we have identified 144 candidate peculiar L and T dwarfs. Spectroscopy confirms that 20 of the objects are peculiar or are candidate binaries. Of the 420 objects in our full sample 9 are young (≲ 200 {Myr}; 2.1%) and another 8 (1.9%) are unusually red, with no signatures of youth. With a spectroscopic J-{K}s color of 2.58 ± 0.11 mag, one of the new objects, the L6 dwarf 2MASS J03530419+0418193, is among the reddest field dwarfs currently known and is one of the reddest objects with no signatures of youth known to date. We have also discovered another potentially very-low-gravity object, the L1 dwarf 2MASS J00133470+1109403, and independently identified the young L7 dwarf 2MASS J00440332+0228112, which was first reported by Schneider and collaborators. Our results confirm that signatures of low gravity are no longer discernible in low to moderate resolution spectra of objects older than ∼200 Myr. The 1.9% of unusually red L dwarfs that do not show other signatures of youth could be slightly older, up to ∼400 Myr. In this case a red J-{K}s color may be more diagnostic of moderate youth than individual spectral features. However, its is also possible that these objects are relatively metal-rich, and thus have enhanced atmospheric dust content.

  14. A Statistical Study of Brown Dwarf Companions from the SDSS-III MARVELS Survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; De Lee, Nathan M.; Lee, Brian L.; Fleming, Scott W.; Sithajan, Sirinrat; Varosi, Frank; Liu, Jian; Zhao, Bo; Li, Rui; Agol, Eric; MARVELS Team

    2016-01-01

    We present 23 new Brown Dwarf (BD) candidates from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). The BD candidates were selected from the processed MARVELS data using the latest University of Florida 2D pipeline, which shows significant improvement and reduction of systematic errors over the 1D pipeline results included in the SDSS Data Release 12. This sample is the largest BD yield from a single radial velocity survey. Of the 23 candidates, 18 are around main sequence stars and 5 are around giant stars. Given a giant contamination rate of ~24% for the MARVELS survey, we find a BD occurrence rate around main sequence stars of ~0.7%, which agrees with previous studies and confirms the BD desert, while the BD occurrence rate around the MARVELS giant stars is ~0.6%. Preliminary results show that our new candidates around solar type stars support a two population hypothesis, where BDs are divided at a mass of ~42.5 MJup. BDs less massive than 42.5 MJup have eccentricity distributions consistent with planet-planet scattering models, where BDs more massive than 42.5 MJup have both period and eccentricity distributions similar to that of stellar binaries. Special Brown Dwarf systems such as multiple BD systems and highly eccentric BDs will also be presented.

  15. The white dwarf in dwarf nova SDSS J080434.20+510349.2: Entering the instability strip?

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, E, E-mail: pavlenko@crao.crimea.u [Crimean astrophysical observatory, Crimea 98409 (Ukraine)

    2009-06-01

    SDSS J080434.20+510349.2 is a WZ Sge type binary that displayed a rare outburst in 2006 (Pavlenko et al. 2007). During the long-lasting tail of the late stage of the outburst, the binary showed a two-humped or four-humped profile of the orbital light modulation. The amplitude of the orbital light curve decreased while the mean brightness decreased; moreover, that occurred approx 10 times faster during the fast outburst decline with respect to the late quiet state of slow outburst fading. There were no white dwarf pulsations detected in this system, neither 1 - 1.5 months prior to the outburst, nor in 1.5 - 2 months after the 2006 outburst. However, strong non-radial pulsations with period 12.6 minutes and a mean amplitude of 0.05m were first detected in the V band with the 2.6-m Shajn mirror telescope of the Crimean astrophysical observatory, approx 8 months after the outburst. The evolution of pulsations over two years, in 2006 - 2008, is considered. It is supposed that pulsations first appeared when the cooling white dwarf (after the outburst) entered the instability strip, although the possibility of temporary lack of pulsations at some occasions could not be excluded.

  16. The WIRED Survey. 2; Infrared Excesses in the SDSS DR7 White Dwarf Catalog

    Science.gov (United States)

    Debes, John H.; Hoard, D. W.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2011-01-01

    With the launch of the Wide-field Infrar.ed Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From -18,000 input targets, there are WISE detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large (approx. 6") WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  17. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Debes, John H.; Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Wachter, Stefanie [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cohen, Martin [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  18. SDSS J102146.44+234926.3: New WZ Sge-type dwarf nova

    CERN Document Server

    Golovin, Alex; Pavlenko Elena P; Tom, Krajci; Yuliana, Kuznyetsova; Arne, Henden; Victoria, Krushevska; Shawn, Dvorak; Kirill, Sokolovsky; Sergeeva Tatyana P; Robert, James; Tim, Crawford; Laurent, Corp

    2007-01-01

    We report CCD photometry and spectroscopy during 2006 outburst of the dwarf nova SDSS J102146.44+234926.3 (SDSS J1021). The photographic plates from the MAO, SAI and CrAO plate archives, which cover the position of the SDSS J1021, were inspected for the presence of previous outbursts. We also present the BVRcIc photometric calibration of 52 stars in SDSS J1021 vicinity, which have V-magnitude in the range of 11.21-17.23m and can serve as comparison stars. The large amplitude of the SDSS J1021 outburst of 7m, superhumps with a period below the ''period gap'', rebrightening during the declining stage of superoutburst, rarity of outbursts and obtained spectrum allow to classify this object as a WZ Sge type dwarf nova.

  19. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  20. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2

    Science.gov (United States)

    Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin

    2017-10-01

    Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.

  1. No Neutron Star Companion To The Lowest Mass SDSS White Dwarf

    CERN Document Server

    Agueros, Marcel; Camilo, Fernando; Kilic, Mukremin; Anderson, Scott; Freire, Paulo; Kleinman, Scot; Liebert, James; Silvestri, Nicole

    2009-01-01

    SDSS J091709.55+463821.8 (hereafter J0917+4638) is the lowest surface gravity white dwarf (WD) currently known, with log g = 5.55 +/- 0.05 (M ~ 0.17 M_sun; Kilic et al. 2007a,b). Such low-mass white dwarfs (LMWDs) are believed to originate in binaries that evolve into WD/WD or WD/neutron star (NS) systems. An optical search for J0917+4638's companion showed that it must be a compact object with a mass >= 0.28 M_sun (Kilic 2007b). Here we report on Green Bank Telescope 820 MHz and XMM-Newton X-ray observations of J0917+4638 intended to uncover a potential NS companion to the LMWD. No convincing pulsar signal is detected in our radio data. Our X-ray observation also failed to detect X-ray emission from J0917+4638's companion, while we would have detected any of the millisecond radio pulsars in 47 Tuc. We conclude that the companion is almost certainly another WD.

  2. A large, long-lived structure near the trojan L5 point in the post common-envelope binary SDSS J1021+1744

    Science.gov (United States)

    Irawati, P.; Richichi, A.; Bours, M. C. P.; Marsh, T. R.; Sanguansak, N.; Chanthorn, K.; Hermes, J. J.; Hardy, L. K.; Parsons, S. G.; Dhillon, V. S.; Littlefair, S. P.

    2016-03-01

    SDSS J1021+1744 is a detached, eclipsing white dwarf/M dwarf binary discovered in the Sloan Digital Sky Survey (SDSS). Outside the primary eclipse, the light curves of such systems are usually smooth and characterized by low-level variations caused by tidal distortion and heating of the M star component. Early data on SDSS J1021+1744 obtained in 2012 June were unusual in showing a dip in flux of uncertain origin shortly after the white dwarf's eclipse. Here we present high-time resolution, multiwavelength observations of 35 more eclipses over 1.3 yr, showing that the dip has a lifetime extending over many orbits. Moreover the `dip' is in fact a series of dips that vary in depth, number and position, although they are always placed in the phase interval 1.06-1.26 after the white dwarf's eclipse, near the L5 point in this system. Since SDSS J1021+1744 is a detached binary, it follows that the dips are caused by the transit of the white dwarf by material around the Lagrangian L5 point. A possible interpretation is that they are the signatures of prominences, a phenomenon already known from H α observations of rapidly rotating single stars as well as binaries. What makes SDSS J1021+1744 peculiar is that the material is dense enough to block continuum light. The dips appear to have finally faded out around 2015 May after the first detection by Parsons et al. in 2012, suggesting a lifetime of years.

  3. A TARGETED SEARCH FOR PECULIARLY RED L AND T DWARFS IN SDSS, 2MASS, AND WISE: DISCOVERY OF A POSSIBLE L7 MEMBER OF THE TW HYDRAE ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Kendra; Metchev, Stanimir [Western University, Centre for Planetary and Space Exploration, 1151 Richmond St, London, ON N6A 3K7 (Canada); Geißler, Kerstin; Hicks, Shannon [Stony Brook University, Stony Brook, NY 11790 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Kurtev, Radostin, E-mail: kkellogg@uwo.ca, E-mail: smetchev@uwo.ca [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Ave. Gran Bretaña 1111, Playa Ancha, Casilla 53, Valparaíso (Chile)

    2015-12-15

    We present the first results from a targeted search for brown dwarfs with unusual red colors indicative of peculiar atmospheric characteristics. These include objects with low surface gravities or with unusual dust content or cloud properties. From a positional cross-match of SDSS, 2MASS, and WISE, we have identified 40 candidate peculiar early-L to early-T dwarfs that are either new objects or have not been identified as peculiar through prior spectroscopy. Using low-resolution spectra, we confirm that 10 of the candidates are either peculiar or potential L/T binaries. With a J − K{sub s} color of 2.62 ± 0.15 mag, one of the new objects—the L7 dwarf 2MASS J11193254–1137466—is among the reddest field dwarfs currently known. Its proper motion and photometric parallax indicate that it is a possible member of the TW Hydrae moving group. If confirmed, it would be the lowest-mass (5–6 M{sub Jup}) free-floating member. We also report a new T dwarf, 2MASS J22153705+2110554, that was previously overlooked in the SDSS footprint. These new discoveries demonstrate that despite the considerable scrutiny already devoted to the SDSS and 2MASS surveys, our exploration of these data sets is not yet complete.

  4. A large, long-lived structure near the trojan L5 point in the post common-envelope binary SDSS J1021+1744

    CERN Document Server

    Irawati, P; Bours, M C P; Marsh, T R; Sanguansak, N; Chanthorn, K; Hermes, J J; Hardy, L K; Parsons, S G; Dhillon, V S; Littlefair, S P

    2015-01-01

    SDSS J1021+1744 is a detached, eclipsing white dwarf / M dwarf binary discovered in the Sloan Digital Sky Survey. Outside the primary eclipse, the light curves of such systems are usually smooth and characterised by low-level variations caused by tidal distortion and heating of the M star component. Early data on SDSS J1021+1744 obtained in June 2012 was unusual in showing a dip in flux of uncertain origin shortly after the white dwarf's eclipse. Here we present high-time resolution, multi-wavelength observations of 35 more eclipses over 1.3 years, showing that the dip has a lifetime extending over many orbits. Moreover the "dip" is in fact a series of dips that vary in depth, number and position, although they are always placed in the phase interval 1.06 to 1.26 after the white dwarf's eclipse, near the L5 point in this system. Since SDSS J1021+1744 is a detached binary, it follows that the dips are caused by the transit of the white dwarf by material around the Lagrangian L5 point. A possible interpretation...

  5. M Dwarfs From The SDSS, 2MASS and WISE Surveys: Identification, Characterisation and Unresolved Ultracool Companionship

    Science.gov (United States)

    Cook, Neil James

    2016-08-01

    The aim of this thesis is to use a cross-match between WISE, 2MASS and SDSS to identify a large sample of M dwarfs. Through the careful characterisation and quality control of these M dwarfs I aim to identify rare systems (i.e. unresolved UCD companions, young M dwarfs, late M dwarfs and M dwarfs with common proper motion companions). Locating ultracool companions to M dwarfs is important for constraining low-mass formation models, the measurement of substellar dynamical masses and radii, and for testing ultracool evolutionary models. This is done by using an optimised method for identifying M dwarfs which may have unresolved ultracool companions. To do this I construct a catalogue of 440 694 M dwarf candidates, from WISE, 2MASS and SDSS, based on optical- and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints I isolate a sub-sample of 36 898 M dwarfs and search for possible mid-infrared M dwarf + ultracool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). I present 1 082 M dwarf + ultracool dwarf candidates for follow-up. Using simulated ultracool dwarf companions to M dwarfs, I estimate that the occurrence of unresolved ultracool companions amongst my M dwarf + ultracool dwarf candidates should be at least four times the average for my full M dwarf catalogue. I discuss yields of candidates based on my simulations. The possible contamination and bias from misidentified M dwarfs is then discussed, from chance alignments with other M dwarfs and UCDs, from chance alignments with giant stars, from chance alignments with galaxies, and from blended systems (via visual inspection). I then use optical spectra from LAMOST to spectral type a subset of my M dwarf + ultracool dwarf candidates. These candidates need confirming as true M dwarf + ultracool dwarf systems thus I present a new method I developed to

  6. Data Mining for Dwarf Novae in SDSS, GALEX and Astrometric Catalogues

    CERN Document Server

    Wils, Patrick; Drake, Andrew J; Southworth, John

    2009-01-01

    By cross matching blue objects from SDSS with GALEX and the astrometric catalogues USNO-B1.0, GSC2.3 and CMC14, 64 new dwarf nova candidates with one or more observed outbursts have been identified. 14 of these systems are confirmed as cataclysmic variables through existing and follow-up spectroscopy. A study of the amplitude distribution and an estimate of the outburst frequency of these new dwarf novae and those discovered by the Catalina Real-time Transient Survey (CRTS) indicates that besides systems that are faint because they are farther away, there also exists a population of intrinsically faint dwarf novae with rare outbursts.

  7. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  8. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Blake, C. H. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Carlberg, J. K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Zasowski, G.; Hearty, F. [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Crepp, J. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Rajpurohit, A. S.; Reylé, C. [Institut UTINAM, CNRS UMR 6213, Observatoire des Sciences de l' Univers THETA Franche-Comt é-Bourgogne, Université de Franche Comté, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Prieto, C. Allende; Hernández, J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Bizyaev, D. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Ebelke, G. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Frinchaboy, P. M. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Ge, J. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ∼2 km s{sup –1} and a measurement floor at vsin i = 4 km s{sup –1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ∼100-200 m s{sup –1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we

  9. Three carbon-enhanced metal-poor dwarf stars from the SDSS. Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres

    Science.gov (United States)

    Behara, N. T.; Bonifacio, P.; Ludwig, H.-G.; Sbordone, L.; González Hernández, J. I.; Caffau, E.

    2010-04-01

    Context. The origin of carbon-enhanced metal-poor stars enriched with both s and r elements is highly debated. Detailed abundances of these types of stars are crucial to understand the nature of their progenitors. Aims: The aim of this investigation is to study in detail the abundances of SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212, three dwarf CEMP stars, selected from the Sloan Digital Sky Survey. Methods: Using high resolution VLT/UVES spectra (R ~ 30 000) we determine abundances for Li, C, N, O, Na, Mg, Al, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni and 21 neutron-capture elements. We made use of CO5BOLD 3D hydrodynamical model atmospheres in the analysis of the carbon, nitrogen and oxygen abundances. NLTE corrections for Ci and Oi lines were computed using the Kiel code. Results: We classify SDSS J1349-0229 and SDSS J0912+0216 as CEMP-r+s stars. SDSS J1036+1212 belongs to the class CEMP-no/s, with enhanced Ba, but deficient Sr, of which it is the third member discovered to date. Radial-velocity variations have been observed in SDSS J1349-0229, providing evidence that it is a member of a binary system. Conclusions: The chemical composition of the three stars is generally compatible with mass transfer from an AGB companion. However, many details remain difficult to explain. Most notably of those are the abundance of Li at the level of the Spite plateau in SDSS J1036+1212 and the large over-abundance of the pure r-process element Eu in all three stars. Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (programmes 078.D-0217 and 383.D-0927).

  10. The M Dwarf Eclipsing Binary CU Cancri

    Science.gov (United States)

    Wilson, R. E.; Pilachowski, C. A.; Terrell, Dirk

    2017-02-01

    Spectral features, radial velocities, elemental abundance estimates, other spectral data, and BVIC light curves are reported for the double-M dwarf eclipsing binary CU Cancri—a good target for a radius check versus the Zero Age Main Sequence (ZAMS) due to the low component masses and corresponding very slow evolutionary expansion. The estimate of [Fe/H] is about 0.4, although continuum placement and other difficulties due to line crowding introduce the usual uncertainties for red dwarfs. Detection of the Li i λ6707 line was attempted, with an estimated upper limit of 50 mÅ. Spectral and photometric indicators of stellar activity are described and illustrated. Other objectives were to measure the stellar radii via simultaneous velocity and light-curve solutions of earlier and new data while also improving the ephemeris by filling gaps in timewise coverage with the new velocities and eclipse data from the new light curves. The radii from our solutions agree within about 2% with those from Ribas, being slightly larger than expected for most estimates of the ZAMS. Some aspects of the red dwarf radius anomaly are briefly discussed. Evolution tracks show only very slight age-related expansion for masses near those in CU Cnc. Such expansion could be significant if CU Cnc were similar in age to the Galaxy, but then its Galactic velocity components should be representative of Population II, and they are not.

  11. Follow-up Observations of SPY White Dwarf + M-Dwarf Binaries

    NARCIS (Netherlands)

    Maxted, P.F.L.; Napiwotzki, R.; Marsh, T.R.; Burleigh, M.R.; Dobbie, P.D.; Hogan, E.; Nelemans, G.A.

    2007-01-01

    We present the results of follow-up observations of white-dwarf + M-dwarf binaries identified using spectra obtained as part of the SPY survey. Spectra of the Halpha region were obtained with the SPIRAL spectrograph on the AAT telescope. Of the eleven stars observed, seven are binaries with periods

  12. A Cross-Match of 2MASS and SDSS: Newly-Found L and T Dwarfs and an Estimate of the Space Densitfy of T Dwarfs

    CERN Document Server

    Metchev, Stanimir; Berriman, G Bruce; Looper, Dagny

    2007-01-01

    We report new L and T dwarfs found in a cross-match of the SDSS Data Release 1 and 2MASS. Our simultaneous search of the two databases effectively allows us to relax the criteria for object detection in either survey and to explore the combined databases to a greater completeness level. We find two new T dwarfs in addition to the 13 already known in the SDSS DR1 footprint. We also identify 22 new candidate and bona-fide L dwarfs, including a new young L2 dwarf and a peculiar L2 dwarf with unusually blue near-IR colors: potentially the result of mildly sub-solar metallicity. These discoveries underscore the utility of simultaneous database cross-correlation in searching for rare objects. Our cross-match completes the census of T dwarfs within the joint SDSS and 2MASS flux limits to the 97% level. Hence, we are able to accurately infer the space density of T dwarfs. We employ Monte Carlo tools to simulate the observed population of SDSS DR1 T dwarfs with 2MASS counterparts and find that the space density of T0-...

  13. VizieR Online Data Catalog: New Dwarf novae in SDSS, GALEX and astrom. cat. (Wils+, 2010)

    Science.gov (United States)

    Wils, P.; Gansicke, B. T.; Drake, A. J.; Southworth, J.

    2015-07-01

    Here, we cross-match a number of large surveys to find faint outbursting dwarf novae, and make use of CRTS light curves to compare the properties of the previously known dwarf novae, those identified spectroscopically by SDSS, and the ones discovered in this paper. (3 data files).

  14. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  15. THE WIRED SURVEY. III. AN INFRARED EXCESS AROUND THE ECLIPSING POST-COMMON ENVELOPE BINARY SDSS J030308.35+005443.7

    Energy Technology Data Exchange (ETDEWEB)

    Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Farihi, Jay [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Wachter, Stefanie [IPAC, California Institute of Technology, Pasadena, CA (United States); Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cohen, Martin [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

    2012-11-01

    We present the discovery with WISE of a significant infrared excess associated with the eclipsing post-common envelope binary SDSS J030308.35+005443.7, the first excess discovered around a non-interacting white dwarf+main-sequence M dwarf binary. The spectral energy distribution of the white dwarf+M dwarf companion shows significant excess longward of 3 {mu}m. A T {sub eff} of 8940 K for the white dwarf is consistent with a cooling age >2 Gyr, implying that the excess may be due to a recently formed circumbinary dust disk of material that extends from the tidal truncation radius of the binary at 1.96 R {sub Sun} out to <0.8 AU, with a total mass of {approx}10{sup 20} g. We also construct WISE and follow-up ground-based near-infrared light curves of the system and find variability in the K band that appears to be in phase with ellipsoidal variations observed in the visible. The presence of dust might be due to (1) material being generated by the destruction of small rocky bodies that are being perturbed by an unseen planetary system or (2) dust condensing from the companion's wind. The high inclination of this system and the presence of dust make it an attractive target for M dwarf transit surveys and long-term photometric monitoring.

  16. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  17. Does a Differentiated, Carbonate-rich, Rocky Object Pollute the White Dwarf SDSS J104341.53+085558.2?

    Science.gov (United States)

    Melis, Carl; Dufour, P.

    2017-01-01

    We present spectroscopic observations of the dust- and gas-enshrouded, polluted, single white dwarf star SDSS J104341.53+085558.2 (hereafter SDSS J1043+0855). Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet spectra combined with deep Keck HIRES optical spectroscopy reveal the elements C, O, Mg, Al, Si, P, S, Ca, Fe, and Ni and enable useful limits for Sc, Ti, V, Cr, and Mn in the photosphere of SDSS J1043+0855. From this suite of elements we determine that the parent body being accreted by SDSS J1043+0855 is similar to the silicate Moon or the outer layers of Earth in that it is rocky and iron-poor. Combining this with comparison to other heavily polluted white dwarf stars, we are able to identify the material being accreted by SDSS J1043+0855 as likely to have come from the outermost layers of a differentiated object. Furthermore, we present evidence that some polluted white dwarfs (including SDSS J1043+0855) allow us to examine the structure of differentiated extrasolar rocky bodies. Enhanced levels of carbon in the body polluting SDSS J1043+0855 relative to the Earth–Moon system can be explained with a model where a significant amount of the accreted rocky minerals took the form of carbonates; specifically, through this model the accreted material could be up to 9% calcium-carbonate by mass.

  18. Most Double Degenerate Low Mass White Dwarf Binaries Merge

    CERN Document Server

    Brown, Warren R; Kenyon, Scott J; Gianninas, A

    2016-01-01

    We estimate the merger rate of double degenerate binaries containing extremely low mass (ELM) <0.3 Msun white dwarfs in the Galaxy. Such white dwarfs are detectable for timescales of 0.1 Gyr -- 1 Gyr in the ELM Survey; the binaries they reside in have gravitational wave merger times of 0.001 Gyr -- 100 Gyr. To explain the observed distribution requires that most ELM white dwarf binary progenitors detach from the common envelope phase with <1 hr orbital periods. We calculate the local space density of ELM white dwarf binaries and estimate a merger rate of 3e-3/yr over the entire disk of the Milky Way; the merger rate in the halo is 10 times smaller. The ELM white dwarf binary merger rate exceeds by a factor of 40 the formation rate of stable mass transfer AM CVn binaries, marginally exceeds the rate of underluminous supernovae, and is identical to the formation rate of R CrB stars. On this basis, we conclude that ELM white dwarf binaries can be the progenitors of all observed AM CVn and possibly underlum...

  19. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Law, Nicholas M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Street, Rachel; Fulton, Benjamin J.; Shporer, Avi; Lister, Tim [Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona Dr. Suite 102, Santa Barbara, CA 93117 (United States); Hillenbrand, Lynne A.; Baranec, Christoph; Bui, Khanh; Davis, Jack T. C.; Dekany, Richard G.; Kulkarni, S. R.; Ofek, Eran O. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Burse, Mahesh P.; Das, H. K. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune-411007 (India); Kasliwal, Mansi M. [Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  20. SDSS1133: An Unusually Persistent Transient in a Nearby Dwarf Galaxy

    CERN Document Server

    Koss, Michael; Mushotzky, Richard; Hung, Chao Ling; Veilleux, Sylvain; Trakhtenbrot, Benny; Schawinski, Kevin; Stern, Daniel; Smith, Nathan; Li, Yanxia; Man, Allison; Filippenko, Alexei V; Mauerhan, Jon C; Stanek, Kris; Sanders, David

    2014-01-01

    We have discovered an unusual source offset by 0.8 kpc from a nearby dwarf galaxy while performing a survey to detect recoiling black holes. The object, SDSS J113323.97+550415.8, exhibits broad emission lines and strong variability. While originally classified as a supernova (SN) because of its nondetection in 2005, we detect it in recent and past observations over 63 yr. Using high-resolution adaptive optics observations, we constrain the source emission region to be 10 yr), larger than that of unusually luminous supernovae such as SN 1988Z, suggesting one of the most extreme episodes of pre-SN mass loss ever discovered.

  1. Binary white dwarfs in the halo of the Milky Way

    CERN Document Server

    van Oirschot, Pim; Toonen, Silvia; Pols, Onno; Brown, Anthony G A; Helmi, Amina; Zwart, Simon Portegies

    2014-01-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~ 3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference w...

  2. Binary white dwarfs in the halo of the Milky Way

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-01-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolut

  3. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Science.gov (United States)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  4. Binary white dwarfs in the halo of the Milky Way

    Science.gov (United States)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  5. Shaping the Brown Dwarf Desert: Predicting the Primordial Brown Dwarf Binary Distributions from Turbulent Fragmentation

    CERN Document Server

    Jumper, Peter H

    2013-01-01

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ($\\leq 5$ AU) brown dwarf companions to solar-mass stars, known as the brown dwarf desert, as well as the tendency for low-mass binary systems to be more tightly-bound than stellar binaries, have been cited as evidence for distinct formation mechanisms for brown dwarfs and stars. In this paper, we explore the implications of the minimal hypothesis that brown dwarfs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the brown dwarf desert, as well as wide brown-dwarf binary systems. Further, we demonstrate analytically that the turbulent core fragmentation model also naturally predicts that very low-mass (VLM) binary and BD/BD systems are more tightly-bound than stellar systems. In addit...

  6. Investigating the Spectroscopic Variability and Magnetic Activity of Photometrically Variable M Dwarfs in SDSS

    Science.gov (United States)

    Ventura, Jean-Paul; Cid, Aurora; Schmidt, Sarah J.; Rice, Emily L.; Cruz, Kelle L.

    2017-01-01

    Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars, is currently not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the atmosphere, and produces emission line radiation (H-alpha) from collisional excitation. Using the Sloan Digital Sky Survey’s (SDSS) Time Domain Spectroscopic Survey (TDSS), we will compare the H-alpha emission line strengths for a sample of 12,000 known photometrically variable M dwarfs observed in the PAN-STARRS1 survey with those of a known non-variable sample. This will be done in order to test whether photometric variability of the sample correlate with chromospheric H-alpha emission features and if not, explore the alternate reasons for that photometric variability, like binarity.

  7. A wide binary trigger for white dwarf pollution

    CERN Document Server

    Bonsor, Amy

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals onto star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few percent of an observed sample of white dwarfs with wide binary compan...

  8. Color, Structure, and Star Formation History of Dwarf Galaxies over the last ~3 Gyr with GEMS and SDSS

    CERN Document Server

    Barazza, F D; Bell, E F; Caldwell, J A R; Jogee, S; McIntosh, D H; Meisenheimer, K; Peng, C Y; Rix, H W; Wolf, C; Barazza, Fabio D.; Barden, Marco; Bell, Eric F.; Caldwell, John A. R.; Intosh, Daniel H. Mc; Jogee, Shardha; Meisenheimer, Klaus; Peng, Chien Y.; Rix, Hans-Walter; Wolf, Christian

    2006-01-01

    We present a study of the colors, structural properties, and star formation histories for a sample of ~1600 dwarfs over look-back times of ~3 Gyr (z=0.002-0.25). The sample consists of 401 distant dwarfs drawn from the Galaxy Evolution from Morphologies and SEDs (GEMS) survey, which provides high resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images and accurate redshifts, and of 1291 dwarfs at 10-90 Mpc compiled from the Sloan Digitized Sky Survey (SDSS). The sample is complete down to an effective surface brightness of 22 mag arcsec^-2 in z and includes dwarfs with M_g=-18.5 to -14 mag. Rest-frame luminosities in Johnson UBV and SDSS ugr filters are provided by the COMBO-17 survey and structural parameters have been determined by S\\'ersic fits. We find that the GEMS dwarfs are bluer than the SDSS dwarfs by ~0.13 mag in g-r, which is consistent with the color evolution over ~2 Gyr of star formation histories involving moderate starbursts and long periods of continuous star formatio...

  9. What Simulations Tell Us About White Dwarf Evolution in AM CVn Close Binaries

    Science.gov (United States)

    Montgomery, M. M.

    2017-03-01

    In this work, we review the three most likely evolutionary channels that may result in AM CVn close binaries leading to white dwarf supernovae as evolutionary endpoints. To determine the likely evolutionary path for an AM CVn system, masses are needed. To find the secondary-to-primary mass ratio, a recent hypothesis suggests using the positive superhump period from Stage A of the superoutburst light curve rather than Stage B. To determine the most likely evolutionary track for this system, we compare observational data with values from three 3D SPH numerical simulations, one simulation for each of the potential evolutionary channels for AM CVn system SDSS J090221.35+38941.9. In this work, we explain why the white dwarf channel may be eliminated for this system. As for the other two channels, we find that the simulated parameters for the CV channel looks most promising for the primary white dwarf J0902 to reach supernova type Ia. However, a comparison of simulated and observed positive superhump period excess values suggests that the helium star channel is more likely, although the results do not support a supernova as the white dwarf primary's endpoint.

  10. The effects of close binaries on the magnetic activity of M dwarfs as probed using close white dwarf companions

    Science.gov (United States)

    Morgan, D. P.

    2017-01-01

    I present a study of close white dwarf (WD) and M dwarf (dM) binary systems (WD+dM) to examine the effects that close companions have on magnetic field generation in dMs. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 spectroscopic database, I constructed a sample of 1756 WD+dM high-quality pairs. I show that early-type dMs (M4), where stars become fully convective, the activity fraction and activity lifetimes of WD+dM binary systems become more comparable to those of the field dMs. The implications of having a close binary companion may include: increased stellar rotation through disk disruption, tidal effects, and/or angular momentum exchange. Thus, the similarity in activity between late-type field dMs and late-type dMs with close companions is likely due to the mechanism generating magnetic fields being less sensitive to the effects caused by a close companion; namely, increased stellar rotation. Using a subset of 181 close WD+dM pairs, matched to the time-domain SDSS Stripe 82 catalog, I show that enhanced magnetic activity extends to the flaring behavior of dMs in close binaries. Specifically, early spectral type dMs (M0-M4), in close WD+dM pairs, are two orders of magnitude more likely to flare than field dMs, whereas late-type dMs (M4-M6) in close WD+dM pairs flare as frequently or less than the late-type field dM sample. To test whether the presence of a close companion leads to star-star interactions, I searched for correlations between the WD occultations and flares from the dM member in KOI-256, an eclipsing WD+dM system. I find no correlations between the flaring activity of the dM and the WD occultations, indicating the there are no obvious signs of star-star interactions at work. In addition, the dM member of KOI-256 flares more than any other dM observed by Kepler and shows evidence for solar-like magnetic activity cycles, a feature not seen in many dMs to date.

  11. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  12. M-dwarf binaries as tracers of star and brown dwarf formation

    CERN Document Server

    Marks, Michael; Kroupa, Pavel; Leigh, Nathan; Thies, Ingo

    2015-01-01

    The separation distribution for M-dwarf binaries in the ASTRALUX survey is narrower and peaking at smaller separations than the distribution for solar-type binaries. This is often interpreted to mean that M-dwarfs constitute a continuous transition from brown dwarfs (BDs) to stars. Here a prediction for the M-dwarf separation distribution is presented, using a dynamical population synthesis (DPS) model in which "star-like" binaries with late-type primaries ($\\lesssim1.5 M_{\\rm sun}$) follow universal initial distribution functions and are dynamically processed in their birth embedded clusters. A separate "BD-like" population has both its own distribution functions for binaries and initial mass function (IMF), which overlaps in mass with the IMF for stars. Combining these two formation modes results in a peak on top of a wider separation distribution for late M-dwarfs consistent with the late ASTRALUX sample. The DPS separation distribution for early M-dwarfs shows no such peak and is in agreement with the M-d...

  13. A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk

    Science.gov (United States)

    Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha

    2017-02-01

    We discovered a debris disk around hot white dwarf (WD) SDSS J134430.11+032423.1 (SDSS J1344+0324). The effective temperature [{T}{eff} = 26,071(±163) K], surface gravity [{log}g=7.88(2)], and mass [M=0.58(1) {M}ȯ ] of this WD have been redetermined based on the analysis of its SDSS spectrum. We found that SDSS J1344+0324 is currently the hottest WD with a debris disk. Two spectra observed by SDSS at different times show that this object is similar to SDSS J1228+1040 with variable near-IR Ca ii triplet emissions from a gaseous disk. The parameters of the debris disk are derived from the IR excess analysis of SDSS J1344+0324. We found that the disk is the coolest of all debris disks around WDs, and that the inner and outer radii are very close to the tide radius of the WD. Thus, the debris disk is very narrow (about 0.22 {R}ȯ ). This implies that it might be a newly formed disk resulting from the tidal disruption of a rocky planetary body that has just entered the tide volume of the WD. This might provide strong observational evidence for the formation of debris disks around WDs.

  14. A radio-pulsing white dwarf binary star

    Science.gov (United States)

    Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T.; Parsons, S. G.; Toloza, O.; Schreiber, M. R.; Jonker, P. G.; van Roestel, J.; Kupfer, T.; Pala, A. F.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.; Aungwerojwit, A.; Arjyotha, S.; Koester, D.; Bochinski, J. J.; Haswell, C. A.; Frank, P.; Wheatley, P. J.

    2016-09-01

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco’s optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 107-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf’s spin, they mainly originate from the cool star. AR Sco’s broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf’s magnetosphere.

  15. SDSS J1152+0248: An eclipsing double white dwarf from the Kepler K2 campaign

    CERN Document Server

    Hallakoun, N; Kilic, M; Mazeh, T; Agol, E; Bell, K J; Bloemen, S; Brown, W R; Debes, J; Faigler, S; Gianninas, A; Kull, I; Kupfer, T; Loeb, A; Morris, B M; Mullally, F

    2015-01-01

    We report the discovery of the sixth known eclipsing double white dwarf (WD) system, SDSS J1152+0248, with a 2.39677 +/- 0.00001 h orbital period, in data from the Kepler Mission's K2 continuation. Analysing and modelling the K2 data together with ground-based fast photometry, spectroscopy, and radial-velocity measurements, we determine that the primary is a DA-type WD with mass M1 = 0.378 +/- 0.047 Msun, radius R1 = 0.0209 +/- 0.0021 Rsun, and cooling age t1 = 65 +/- 34 Myr. No lines are detected, to within our sensitivity, from the secondary WD, but it is likely also of type DA. Its central surface flux, as measured from the secondary eclipse, is 0.31 of the primary flux. Its mass, radius, and cooling age, respectively, are M2 = 0.226 +0.073 -0.052 Msun, R2 = 0.0235 +0.0055 -0.0044 Rsun, and 220 +/- 100 Myr. SDSS J1152+0248 is almost a twin of the double-lined eclipsing WD system CSS 41177.

  16. LISA Astronomy of Double White Dwarf Binary Systems

    NARCIS (Netherlands)

    Stroeer, A.; Vecchio, A.; Nelemans, G.A.

    2005-01-01

    The Laser Interferometer Space Antenna (LISA) will provide us with the largest observational sample of (interacting) double white dwarf binaries, whose evolution is driven by the radiation reaction and other effects, such as tides and mass transfer. We show that, depending on the actual physical par

  17. Elucidating the True Binary Fraction of VLM Stars and Brown Dwarfs with Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Gelino, Christopher R.; SAHLMANN, JOHANNES; Schmidt, Sarah J.; Gagne, Jonathan; Skrzypek, Nathalie

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs are found in abundance in nearly all Galactic environments, yet their formation mechanism(s) remain an open question. One means of testing current formation theories is to use multiplicity statistics. The majority of VLM binaries have been discovered through direct imaging, and current angular resolution limits (0.05”-0.1") are coincident with the 1-4 AU peak in the projected separation distribution of known systems, suggesting an observational bias. I have developed a separation-independent method to detect T dwarf companions to late-M/early-L dwarfs by identifying methane absorption in their unresolved, low-resolution, near-infrared spectra using spectral indices and template fitting. Over 60 spectral binary candidates have been identified with this and comparable methods. I discuss follow-up observations, including laser-guide star adaptive optics imaging with Keck/NIRC2, which have confirmed 9 systems; and radial velocity and astrometric monitoring observations that have confirmed 7 others. The direct imaging results indicate a resolved binary fraction of 18%, coincident with current estimates of the VLM binary fraction; however, our sample contained 5 previously confirmed binaries, raising its true binary fraction to 47%. To more accurately measure the true VLM binary fraction, I describe the construction of an unbiased, volume-limited, near-infrared spectral sample of M7-L5 dwarfs within 25 pc, of which 4 (1%) are found to be spectral binary candidates. I model the complex selection biases of this method through a population simulation, set constraints on the true binary fraction as traced by these systems, and compare to the predictions of current formation theories. I also describe how this method may be applied to conduct a separation-unbiased search for giant exoplanets orbiting young VLM stars and brown dwarfs.

  18. The influence of binary stars on dwarf spheroidal galaxy kinematics

    CERN Document Server

    Hargreaves, J C; Annan, J D

    1995-01-01

    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape...

  19. Brown Dwarf Binaries from Disintegrating Triple Systems

    CERN Document Server

    Reipurth, Bo

    2015-01-01

    We have carried out 200,000 N-body simulations of three identical stellar embryos with masses from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. To illustrate the simulations we introduce the 'triple diagnostic diagram', which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations. The separation distribution function is in good correspondence with...

  20. A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density

    CERN Document Server

    Marocco, F; Day-Jones, A C; Pinfield, D J; Lucas, P W; Burningham, B; Zhang, Z H; Smart, R L; Gomes, J I; Smith, L

    2015-01-01

    We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from UKIDSS. Using the YJHK photometry from ULAS and the red-optical photometry from SDSS we selected a sample of 262 brown dwarf candidates and we followed-up 196 of them using X-shooter on the VLT. The large wavelength coverage (0.30-2.48 $\\mu$m) and moderate resolution (R~5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low gravity M dwarfs. Using a spectral indices-based technique we identified 27 unresolved binary candidates, for which we determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity for our targets, and we determined the distribution of the sample, which is centred at -1.7$\\pm$1.2 km s$^{-1}$ ...

  1. The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals

    CERN Document Server

    Deshpande, R; Bender, C F; Mahadevan, S; Terrien, R C; Carlberg, J; Zasowski, G; Crepp, J; Rajpurohit, A S; Reyle, C; Nidever, D L; Schneider, D P; Prieto, C Allende; Bizyaev, D; Ebelke, G; Fleming, S W; Frinchaboy, P M; Ge, J; Hearty, F; Hernandez, J; Malanushenko, E; Malanushenko, V; Majewski, S R; Oravetz, D; Pan, K; Schiavon, R P; Shetrone, M; Simmons, A; Stassun, K G; Wilson, J C; Wisniewski, J

    2013-01-01

    We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to iden...

  2. The White Dwarf Binary Pathways Survey I: A sample of FGK stars with white dwarf companions

    CERN Document Server

    Parsons, S G; Schreiber, M R; Gansicke, B T; Zorotovic, M; Ren, J J

    2016-01-01

    The number of white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one ...

  3. The orbital and superhump periods of the dwarf nova SDSS J093249.57+472523.0

    CERN Document Server

    Shears, Jeremy; Dvorak, Shawn; de Miguel, Enrique; Morelle, Etienne; Oksanen, Arto; Sabo, Richard

    2012-01-01

    We report unfiltered CCD photometry of the eclipsing dwarf nova SDSS J093249.57+472523.0 obtained during its first confirmed outburst in 2011 March. The outburst amplitude was at least 3.0 magnitudes above mean quiescence and it lasted at least 11 days, although we missed the beginning of the outburst. Superhumps having peak-to-peak amplitude up to 0.3 magnitudes were present during the outburst, thereby establishing it to be a member of the SU UMa family. The mean superhump period was Psh = 0.06814(11) d. Analysis of our measurements of eclipse times of minimum, supplemented with data from other researchers, allowed us to measure the orbital period as Porb = 0.06630354(5) d. The superhump period excess was epsilon = 0.028(1) which is consistent with of SU UMa systems of similar Porb. The FWHM eclipse duration varied between 6 and 13 mins and the eclipse depth was up to 1.6 magnitudes.

  4. WISE/2MASS-SDSS Brown Dwarfs candidates using Virtual Observatory tools

    CERN Document Server

    Aberasturi, M; Martin, E L

    2011-01-01

    Massive imaging surveys in different passbands are the main contributors to the discovery of brown dwarfs (BDs). The Virtual Observatory (VO) represents an adequate framework to efficiently handle these vast datasets and filter them out according to specific requirements. Having an statistically significant number of BDs is mandatory to better understand their general properties as well as to identify peculiar objects. WISE, an all-sky survey in the infrared, provides an excellent opportunity to significantly increase the number of BDs, in particular those at the lower end of the temperature scale. The main aim of this work is to demonstrate that VO tools are efficient to identify BDs by cross correlating public catalogues released by large imaging surveys. Using VO tools we have performed a cross-match of the WISE Preliminary Release, the 2MASS Point Source and SDSS Data Release 7 catalogues over the whole area of sky that they have in common. Photometric and proper motion criteria were used to obtain a list...

  5. Microlensing Discovery of a Population of Very Tight, Very Low-mass Binary Brown Dwarfs

    CERN Document Server

    Choi, J -Y; Udalski, A; Sumi, T; Gaudi, B S; Gould, A; Bennett, D P; Dominik, M; Beaulieu, J -P; Tsapras, Y; Bozza, V; Abe, F; Bond, I A; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Furusawa, K; Itow, Y; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Suzuki, K; Sweatman, W L; Suzuki, D; Takino, S; Tristram, P J; Wada, K; Yock, P C M; Szymański, M K; Kubiak, M; Pietrzyński, G; Soszyński, I; Skowron, J; Kozłowski, S; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Almeida, L A; DePoy, D L; Dong, Subo; Gorbikov, E; Jablonski, F; Henderson, C B; Hwang, K -H; Janczak, J; Jung, Y -K; Kaspi, S; Lee, C -U; Malamud, U; Maoz, D; McGregor, D; Munoz, J A; Park, B -G; Park, H; Pogge, R W; Shvartzvald, Y; Shin, I -G; Yee, J C; Alsubai, K A; Browne, P; Burgdorf, M J; Novati, S Calchi; Dodds, P; Fang, X -S; Finet, F; Glitrup, M; Grundahl, F; Gu, S -H; Hardis, S; Harpsøe, K; Hinse, T C; Hornstrup, A; Hundertmark, M; Jessen-Hansen, J; Jørgensen, U G; Kains, N; Kerins, E; Liebig, C; Lund, M N; Lundkvist, M; Maier, G; Mancini, L; Mathiasen, M; Penny, M T; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Snodgrass, C; Southworth, J; Surdej, J; Tregloan-Reed, J; Wambsganss, J; Wertz, O; Zimmer, F; Albrow, M D; Bachelet, E; Batista, V; Brillant, S; Cassan, A; Cole, A A; Coutures, C; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Kubas, D; Marquette, J -B; Menzies, J W; Sahu, K C; Zub, M; Bramich, D M; Horne, K; Steele, I A; Street, R A

    2013-01-01

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs are poorly understood. The multiplicity properties and minimum mass of the brown-dwarf mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low-mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 Msun and 0.034 Msun, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field brown-dwarf binaries known. The discovery of a population of such binaries indicates that brown dwarf binaries can robustly form at least down to masses of ~0.02 Msun. Future microlensing surveys will measure a mass-selected sample of brown-dwarf binary systems, which can then be directly compared to similar samples of stellar binaries.

  6. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    Science.gov (United States)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  7. SLoWPoKES-II: 100,000 Wide Binaries Identified in SDSS without Proper Motions

    CERN Document Server

    Dhital, Saurav; Stassun, Keivan G; Schluns, Kyle J; Massey, Angela P

    2015-01-01

    We present the SLoWPoKES-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without need of proper motions. 105,537 visual binaries with angular separations of $\\sim$1-20", were identified, each with a probability of chance alignment of $\\lesssim$5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems---in mass, mass ratios, binary separations, metallicity, and evolutionary states---that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supp...

  8. The evolutionary state of short period magnetic white dwarf binaries

    CERN Document Server

    Breedt, E; Girven, J; Drake, A J; Copperwheat, C M; Parsons, S G; Marsh, T R

    2012-01-01

    We present phase-resolved spectroscopy of two new short period low accretion rate magnetic binaries, SDSSJ125044.42+154957.3 (Porb = 86 min) and SDSSJ151415.65+074446.5 (Porb = 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable H_alpha emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSSJ121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary,...

  9. RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Kilic, Mukremin; Gianninas, A.; Kenyon, Scott J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Allende Prieto, Carlos; Cabrera-Lavers, Antonio [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Mukadam, Anjum S., E-mail: jjhermes@astro.as.utexas.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2012-10-01

    We report the detection of orbital decay in the 12.75-minute, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13 month baseline constrain the orbital period to 765.206543(55) s and indicate that the orbit is decreasing at a rate of (- 9.8 {+-} 2.8) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.31 {+-} 0.09 ms yr{sup -1}). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M{sub 1} = 0.26 {+-} 0.04 M{sub Sun} and M{sub 2} = 0.50 {+-} 0.04 M{sub Sun }. General relativity predicts orbital decay due to gravitational wave radiation of (- 8.2 {+-} 1.7) Multiplication-Sign 10{sup -12} s s{sup -1} (or -0.26 {+-} 0.05 ms yr{sup -1}). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of monitoring this system's orbital period decay at optical wavelengths.

  10. Discovery of the Eclipsing Detached Double White Dwarf Binary NLTT 11748

    CERN Document Server

    Steinfadt, Justin D R; Shporer, Avi; Bildsten, Lars; Howell, Steve B

    2010-01-01

    We report the discovery of the first eclipsing detached double white dwarf (WD) binary. In a pulsation search, the low-mass helium core WD NLTT 11748 was targeted for fast (approx 1-min) differential photometry with the Las Cumbres Observatory's Faulkes Telescope North. Rather than pulsations, we discovered approx 180-s 3-6% dips in the photometry. Subsequent radial velocity measurements of the primary from the Keck telescope found variations with a semi-amplitude K_1 = 271 +/- 3 km/s, and confirmed the dips as eclipses caused by an orbiting WD with a mass M_2 = 0.648-0.771 M_sun for M_1 = 0.1-0.2 M_sun. We detect both the primary and secondary eclipse during the P_orb = 5.64 hr orbit and measure the secondary's brightness to be 3.5 +/- 0.3% of the primary at SDSS-g'. Assuming that the secondary follows the mass-radius relation of a cold C/O WD and including the effects of microlensing in the binary, the primary eclipse yields a primary radius of R_1 = 0.043-0.039 R_sun for M_1 = 0.1-0.2 M_sun; consistent wit...

  11. SHAPING THE BROWN DWARF DESERT: PREDICTING THE PRIMORDIAL BROWN DWARF BINARY DISTRIBUTIONS FROM TURBULENT FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu [University of Massachusetts Dartmouth, 285 Old Westport Road, N. Dartmouth, MA 02747-2300 (United States)

    2013-05-20

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.

  12. SDSS1133: an unusually persistent transient in a nearby dwarf galaxy

    Science.gov (United States)

    Koss, Michael; Blecha, Laura; Mushotzky, Richard; Hung, Chao Ling; Veilleux, Sylvain; Trakhtenbrot, Benny; Schawinski, Kevin; Stern, Daniel; Smith, Nathan; Li, Yanxia; Man, Allison; Filippenko, Alexei V.; Mauerhan, Jon C.; Stanek, Kris; Sanders, David

    2014-11-01

    While performing a survey to detect recoiling supermassive black holes, we have identified an unusual source having a projected offset of 800 pc from a nearby dwarf galaxy. The object, SDSS J113323.97+550415.8, exhibits broad emission lines and strong variability. While originally classified as a supernova (SN) because of its non-detection in 2005, we detect it in recent and past observations over 63 yr and find over a magnitude of rebrightening in the last 2 yr. Using high-resolution adaptive optics observations, we constrain the source emission region to be ≲12 pc and find a disturbed host-galaxy morphology indicative of recent merger activity. Observations taken over more than a decade show narrow [O III] lines, constant ultraviolet emission, broad Balmer lines, a constant putative black hole mass over a decade of observations despite changes in the continuum, and optical emission-line diagnostics consistent with an active galactic nucleus (AGN). However, the optical spectra exhibit blueshifted absorption, and eventually narrow Fe II and [Ca II] emission, each of which is rarely found in AGN spectra. While this peculiar source displays many of the observational properties expected of a potential black hole recoil candidate, some of the properties could also be explained by a luminous blue variable star (LBV) erupting for decades since 1950, followed by a Type IIn SN in 2001. Interpreted as an LBV followed by an SN analogous to SN 2009ip, the multidecade LBV eruptions would be the longest ever observed, and the broad Hα emission would be the most luminous ever observed at late times (>10 yr), larger than that of unusually luminous SNe such as SN 1988Z, suggesting one of the most extreme episodes of pre-SN mass-loss ever discovered.

  13. Accreting Double White Dwarf Binaries: Implications for LISA

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr‑2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  14. Dynamical Tides in Compact White Dwarf Binaries: Influence of Rotation

    CERN Document Server

    Fuller, Jim

    2014-01-01

    Tidal interactions play an important role in the evolution and ultimate fate of compact white dwarf (WD) binaries. Not only do tides affect the pre-merger state (such as temperature and rotation rate) of the WDs, but they may also determine which systems merge and which undergo stable mass transfer. In this paper, we attempt to quantify the effects of rotation on tidal angular momentum transport in binary stars, with specific calculations applied to WD stellar models. We incorporate the effect of rotation using the traditional approximation, in which the dynamically excited gravity waves within the WDs are transformed into gravito-inertial Hough waves. The Coriolis force has only a minor effect on prograde gravity waves, and previous results predicting the tidal spin-up and heating of inspiraling WDs are not significantly modified. However, rotation strongly alters retrograde gravity waves and inertial waves, with important consequences for the tidal spin-down of accreting WDs. We identify new dynamical tidal...

  15. The ELM Survey. VII. Orbital Properties of Low Mass White Dwarf Binaries

    CERN Document Server

    Brown, Warren R; Kilic, Mukremin; Kenyon, Scott J; Prieto, Carlos Allende

    2016-01-01

    We present the discovery of 15 extremely low mass (5 < log{g} < 7) white dwarf candidates, 9 of which are in ultra-compact double-degenerate binaries. Our targeted ELM Survey sample now includes 76 binaries. The sample has a lognormal distribution of orbital periods with a median period of 5.4 hr. The velocity amplitudes imply that the binary companions have a normal distribution of mass with 0.76 Msun mean and 0.25 Msun dispersion. Thus extremely low mass white dwarfs are found in binaries with a typical mass ratio of 1:4. Statistically speaking, 95% of the white dwarf binaries have a total mass below the Chandrasekhar mass and thus are not Type Ia supernova progenitors. Yet half of the observed binaries will merge in less than 6 Gyr due to gravitational wave radiation; probable outcomes include single massive white dwarfs and stable mass transfer AM CVn binaries.

  16. MARVELS-1b: A Short-Period, Brown Dwarf Desert Candidate from the SDSS-III MARVELS Planet Search

    CERN Document Server

    Lee, Brian L; Fleming, Scott W; Stassun, Keivan G; Gaudi, B Scott; Barnes, Rory; Mahadevan, Suvrath; Eastman, Jason D; Wright, Jason; Siverd, Robert J; Gary, Bruce; Ghezzi, Luan; Laws, Chris; Wisniewski, John P; de Mello, G F Porto; Ogando, Ricardo L C; Maia, Marcio A G; da Costa, Luiz Nicolaci; Sivarani, Thirupathi; Pepper, Joshua; Nguyen, Duy Cuong; Hebb, Leslie; De Lee, Nathan; Wang, Ji; Wan, Xiaoke; Zhao, Bo; Chang, Liang; Groot, John; Varosi, Frank; Hearty, Fred; Hanna, Kevin; van Eyken, J C; Kane, Stephen R; Agol, Eric; Bizyaev, Dmitry; Bochanski, John J; Brewington, Howard; Chen, Zhiping; Costello, Erin; Dou, Liming; Eisenstein, Daniel J; Fletcher, Adam; Ford, Eric B; Guo, Pengcheng; Holtzman, Jon A; Jiang, Peng; Leger, R French; Liu, Jian; Long, Daniel C; Malanushenko, Elena; Malanushenko, Viktor; Malik, Mohit; Oravetz, Daniel; Pan, Kaike; Rohan, Pais; Schneider, Donald P; Shelden, Alaina; Snedden, Stephanie A; Simmons, Audrey; Weaver, B A; Weinberg, David H; Xie, Ji-Wei

    2010-01-01

    We present a new short-period brown dwarf candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the third phase of the Sloan Digital Sky Survey (SDSS-III), and we designate the brown dwarf as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5-m telescope. From our 20 radial velocity measurements spread over a ~370 d time baseline, we derive a Keplerian orbital fit with semi-amplitude K=2.533+/-0.025 km/s, period P=5.8953+/-0.0004 d, and eccentricity consistent with circular. Independent follow-up radial velocity data confirm the orbit. Adopting a mass of 1.37+/-0.11 M_Sun for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0+/-1.5 M_Jup, a semimajor axis 0....

  17. Constraining White Dwarf Masses Via Apsidal Precession in Eccentric Double White Dwarf Binaries

    CERN Document Server

    Valsecchi, Francesca; Willems, Bart; Deloye, Christopher J; Kalogera, Vicky

    2011-01-01

    Galactic short period double white dwarfs (DWD) are guaranteed gravitational wave (GW) sources for the next generation of space-based interferometers sensitive to low-frequency GWs (10^{-4}- 1 Hz). Here we investigate the possibility of constraining the white dwarf (WD) properties through measurements of apsidal precession in eccentric binaries. We analyze the general relativistic (GR), tidal, and rotational contributions to apsidal precession by using detailed He WD models. We find that apsidal precession can lead to a detectable shift in the emitted GW signal, the effect being stronger (weaker) for binaries hosting hot (cool) WDs. We find that in hot (cool) DWDs tides dominate the precession at orbital frequencies above ~0.01 mHz (~1 mHz). Analyzing the apsidal precession of these sources only accounting for GR would potentially lead to an extreme overestimate of the component masses. Finally, we derive a relation that ties the radius and apsidal precession constant of cool WD components to their masses, th...

  18. Superhumps in Cataclysmic Binaries. XXIV. Twenty More Dwarf Novae

    CERN Document Server

    Patterson, J; Kemp, J; Skillman, D R; Vanmunster, T; Harvey, D; Fried, R E; Jensen, L; Cook, L; Rea, R; Monard, B; McCormick, J; Velthuis, F; Walker, S; Martin, B; Bolt, G; Pavlenko, E P; O'Donoghue, D; Gunn, J; Novak, R; Masi, G; Garradd, G; Butterworth, N D; Krajci, T; Foote, J; Beshore, E

    2003-01-01

    We report precise measures of the orbital and superhump period in twenty more dwarf novae. For ten stars, we report new and confirmed spectroscopic periods - signifying the orbital period P_o - as well as the superhump period P_sh. These are GX Cas, HO Del, HS Vir, BC UMa, RZ Leo, KV Dra, KS UMa, TU Crt, QW Ser, and RZ Sge. For the remaining ten, we report a medley of P_o and P_sh measurements from photometry; most are new, with some confirmations of previous values. These are KV And, LL And, WX Cet, MM Hya, AO Oct, V2051 Oph, NY Ser, KK Tel, HV Vir, and RX J1155.4-5641. Periods, as usual, can be measured to high accuracy, and these are of special interest since they carry dynamical information about the binary. We still have not quite learned how to read the music, but a few things are clear. The fractional superhump excess epsilon [=(P_sh-P_o)/P_o] varies smoothly with P_o. The scatter of the points about that smooth curve is quite low, and can be used to limit the intrinsic scatter in M_1, the white dwarf ...

  19. Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den; Roelofs, G.H.A.; Nelemans, G.A.; Augusteijn, T.; Groot, P.J.

    2005-01-01

    We present the identification of 13 DB + dM binaries and 2 DC + dM binaries from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM binaries and 1 DC + dM binary were known. At least three, possibly 8, of the new DB + dM binaries seem to have white dwarf temperatures well above 30 0

  20. Models of Vortices and Spirals in White Dwarf's Accretion Binaries

    Science.gov (United States)

    Boneva, Daniela

    2010-11-01

    The main aim in the current survey is to suggest models of the development of structures, such as vortices and spirals, in accretion white dwarf's binaries. On the base of hydrodynamical analytical considerations it is applied numerical methods and simulations. It is suggested in the theoretical model the perturbation's parameters of the accretion flow, caused by the influences of the tidal wave over the flux of accretion matter around the secondary star. To examine such disturbed flow, the numerical code has involved in the calculations. The results reveal us an appearing of structure with spiral shape due to the tidal interaction in the close binaries. Our further simulations give the solution, which expresses the formation of vortical configurations in the accretion disc's zone. The evolution of vortices in areas of the flow's interaction is explored using single vortex and composite vortex models. Gas in the disc matter is considered to be compressible and non-ideal. The longevity of all these structures is different and each depends of time period of the rotation, density and velocity of the accretion matter.

  1. Modeling Stellar Parameters for High Resolution Late-M and Early-L Dwarf SDSS/APOGEE Spectra

    Science.gov (United States)

    Birky, Jessica L.; Aganze, Christian; Burgasser, Adam J.; Theissen, Christopher; Schmidt, Sarah J.; Teske, Johanna K.; Stassun, Keivan G.; Bird, Jonathan C.; UCSD FAST Team

    2017-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) of the Sloan Digital Sky Survey IV has measured high resolution (R~22,500), near-infrared (1.51-1.70 µm) spectra for nearly 100,000 stars within the Milky Way Galaxy. While the APOGEE experiment was designed to research Galactic structure by targeting bright stellar populations in the disk, we have focused attention on the lesser-studied subset of faint and low-temperature late-M and early-L dwarfs, with the objective of characterizing their chemical abundances. Using spectral synthesis routines from the Starfish package, we report preliminary determinations of Teff, logg, and [Fe/H] for a small sample of spectra using PHOENIX models ranging in the 2,300 to 3,000K temperature grids.This work is supported by the SDSS Faculty and Student (FAST) initiative, funded by the Alfred P. Sloan Foundation.

  2. Chemo-orbital evidence from SDSS/SEGUE G dwarf stars for a mixed origin of the Galactic thick disk

    Directory of Open Access Journals (Sweden)

    van de Ven G.

    2012-02-01

    Full Text Available About 13,000 G dwarf within 7SDSS/SEGUE spectroscopic survey are used to study the origin of the Milky Way thick disk. Combining [α/Fe] and [Fe/H] measurements with six-dimensional position-velocity parameters, we find that the sample is composed of two distinct stellar populations. The metal-rich population encompasses the thin disk with α-deficient stars and smoothly extends into a thick disk with α-enhanced stars, consistent with an in-situ formation through radial migration. On the other hand, the metal-poor population with enhanced α-abundance, higher scale height, and disperse kinematical properties, is difficult to explain with radial migration but might have originated from gas-rich mergers. The thick disk of the Milky Way seems to have a mixed origin.

  3. Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter

    CERN Document Server

    Manjavacas, E; Alcalá, J M; Zapatero-Osorio, M R; Béjar, V J S; Homeier, D; Bonnefoy, M; Smart, R L; Henning, T; Allard, F

    2015-01-01

    The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the VLT. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral ...

  4. Quantifying dwarf satellites through gravitational imaging : The case of SDSS J120602.09+514229.5

    NARCIS (Netherlands)

    Vegetti, Simona; Czoske, Oliver; Koopmans, Léon V. E.

    2010-01-01

    SDSS J120602.09+514229.5 is a gravitational lens system formed by a group of galaxies at redshift z(FG) = 0.422 lensing a bright background galaxy at redshift z(BG) = 2.001. The main peculiarity of this system is the presence of a luminous satellite near the Einstein radius, which slightly deforms t

  5. Interactions between brown-dwarf binaries and Sun-like stars

    CERN Document Server

    Kaplan, M; Whitworth, A P

    2012-01-01

    Several mechanisms have been proposed for the formation of brown dwarfs, but there is as yet no consensus as to which -- if any -- are operative in nature. Any theory of brown dwarf formation must explain the observed statistics of brown dwarfs. These statistics are limited by selection effects, but they are becoming increasingly discriminating. In particular, it appears (a) that brown dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, $a\\ga 100\\,{\\rm AU}$ (the Brown Dwarf Desert), and (b) that these brown dwarfs have a significantly higher chance of being in a close ($a\\la 10\\,{\\rm AU}$) binary system with another brown dwarf than do brown dwarfs in the field. This then raises the issue of whether these brown dwarfs have formed {\\it in situ}, i.e. by fragmentation of a circumstellar disc; or have formed elsewhere and subsequently been captured. We present numerical simulations of the purely gravitational interaction between a close brown-dwarf binary and a Sun-like star. These simulatio...

  6. Three New Eclipsing White-dwarf - M-dwarf Binaries Discovered in a Search for Transiting Planets Around M-dwarfs

    CERN Document Server

    Law, Nicholas M; Street, Rachel; Fulton, Benjamin J; Hillenbrand, Lynne A; Shporer, Avi; Lister, Tim; Baranec, Christoph; Bloom, Joshua S; Bui, Khanh; Burse, Mahesh P; Cenko, S Bradley; Das, H K; Davis, Jack T C; Dekany, Richard G; Filippenko, Alexei V; Kasliwal, Mansi M; Kulkarni, S R; Nugent, Peter; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M; Ramaprakash, A N; Riddle, Reed; Silverman, Jeffrey M; Sivanandam, Suresh; Tendulkar, Shriharsh

    2011-01-01

    We present three new eclipsing white-dwarf / M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a Graphics Processing Unit (GPU)-based box-least-squares search for transits that runs approximately 8X faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 solar radi...

  7. An Improved Red Spectrum of the Methane or T Dwarf SDSS 1624+0029: The Role of the Alkali Metals.

    Science.gov (United States)

    Liebert; Reid; Burrows; Burgasser; Kirkpatrick; Gizis

    2000-04-20

    A Keck II low-resolution spectrum shortward of 1 µm is presented for SDSS 1624+0029, the first field methane or T dwarf discovered in the Sloan Digital Sky Survey. Significant flux is detected down to the spectrum's short-wavelength limit of 6200 Å. The spectrum exhibits a broad absorption feature centered at 7700 Å, which we interpret as the K i lambdalambda7665, 7699 resonance doublet. The observed flux declines shortward of 7000 Å, most likely owing to the red wing of the Na i doublet. Both Cs i doublet lines are detected more strongly than in an earlier red spectrum. Neither Li i absorption nor Halpha emission are detected. An exploratory model fit to the spectrum suggests that the shape of the red spectrum can be primarily accounted for by the broad wings of the K i and Na i doublets. This behavior is consistent with the argument proffered by Burrows, Marley, & Sharp that strong alkali absorption is principally responsible for depressing T dwarf spectra shortward of 1 µm. In particular, there seems no compelling reason at this time to introduce dust or an additional opacity source in the atmosphere of the Sloan object. The width of the K i and strengths of the Cs i lines also indicate that the Sloan object is warmer than Gl 229B.

  8. At the survey limits: discovery of the Aquarius 2 dwarf galaxy in the VST ATLAS and the SDSS data

    Science.gov (United States)

    Torrealba, G.; Koposov, S. E.; Belokurov, V.; Irwin, M.; Collins, M.; Spencer, M.; Ibata, R.; Mateo, M.; Bonaca, A.; Jethwa, P.

    2016-11-01

    We announce the discovery of the Aquarius 2 dwarf galaxy, a new distant satellite of the Milky Way, detected on the fringes of the VLT Survey Telescope (VST) ATLAS and the Sloan Digital Sky Survey (SDSS) surveys. The object was originally identified as an overdensity of red giant branch stars, but chosen for subsequent follow-up based on the presence of a strong blue horizontal branch, which was also used to measure its distance of ˜110 kpc. Using deeper imaging from the Inamori-Magellan Areal Camera and Spectrograph camera on the 6.5m Baade and spectroscopy with DEep Imaging Multi-Object Spectrograph on Keck, we measured the satellite's half-light radius 5.1 ± 0.8 arcmin, or ˜160 pc at this distance, and its stellar velocity dispersion of 5.4^{+3.4}_{-0.9} km s-1. With μ = 30.2 mag arcsec-2 and MV = -4.36, the new satellite lies close to two important detection limits: one in surface brightness; and one in luminosity at a given distance, thereby making Aquarius 2 one of the hardest dwarfs to find.

  9. White dwarf pollution by planets in stellar binaries

    Science.gov (United States)

    Hamers, Adrian S.; Portegies Zwart, Simon F.

    2016-10-01

    Approximately 0.2 ± 0.2 of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass-loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between ˜0.01 and 1 MMars, although non-gravitational effects may already be important for masses ≲0.3 MMars. The fraction of polluted WDs in our simulations, ˜0.05, is consistent with observations of WDs with intermediate cooling times between ˜0.1 and 1 Gyr. For cooling times ≲0.1 Gyr and ≳1 Gyr, our scenario cannot explain the high observed pollution fractions of up to 0.7. Nevertheless, our results motivate searches for companions around polluted WDs.

  10. White dwarf pollution by planets in stellar binaries

    CERN Document Server

    Hamers, Adrian S

    2016-01-01

    Approximately $0.2 \\pm 0.2$ of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between $\\sim 0.01$ and $1\\,M_\\mathrm{Mars}$, although nongravitational effects may already be important for masses $\\lesssim 0.3 \\, M_\\mathrm{Mars}$. The fraction of polluted WDs in our simulations, $\\sim 0.05$, is consistent with observations of WDs with intermediate cooling times between $\\sim 0.1$ and 1 Gyr. For cooling times $\\lesssim 0.1$ Gyr and $\\gtrsim 1$ Gyr, our scenario cannot explain the high observed pollution fractions of up to 0....

  11. Exploring the brown dwarf desert: new substellar companions from the SDSS-III MARVELS survey

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; Sithajan, Sirinrat; Ghezzi, Luan; Kimock, Ben; Willis, Kevin; De Lee, Nathan; Lee, Brian; Fleming, Scott W.; Agol, Eric; Troup, Nicholas; Paegert, Martin; Schneider, Donald P.; Stassun, Keivan; Varosi, Frank; Zhao, Bo; Jian, Liu; Li, Rui; Porto de Mello, Gustavo F.; Bizyaev, Dmitry; Pan, Kaike; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Santiago, Basílio X.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; del Peloso, E. F.

    2017-06-01

    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ˜5 au in the mass range of ˜10-80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ˜13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ˜98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ˜300 d to be ˜0.56 per cent.

  12. Discovery of ZZ Cetis in detached white dwarf plus main-sequence binaries

    CERN Document Server

    Pyrzas, S; Hermes, J J; Copperwheat, C M; Rebassa-Mansergas, A; Dhillon, V S; Littlefair, S P; Marsh, T R; Parsons, S G; Savoury, C D J; Schreiber, M R; Barros, S C C; Bento, J; Breedt, E; Kerry, P

    2014-01-01

    We present the first results of a dedicated search for pulsating white dwarfs (WDs) in detached white dwarf plus main-sequence binaries. Candidate systems were selected from a catalogue of WD+MS binaries, based on the surface gravities and effective temperatures of the WDs. We observed a total of 26 systems using ULTRACAM mounted on ESO's 3.5m New Technology Telescope (NTT) at La Silla. Our photometric observations reveal pulsations in seven WDs of our sample, including the first pulsating white dwarf with a main-sequence companion in a post common envelope binary, SDSSJ1136+0409. Asteroseismology of these new pulsating systems will provide crucial insight into how binary interactions, particularly the common envelope phase, affect the internal structure and evolution of WDs. In addition, our observations have revealed the partially eclipsing nature of one of our targets, SDSSJ1223-0056.

  13. 白矮-主序双星的搜寻及研究进展%Research Progress on Searching for White Dwarf-Main Sequence Binaries

    Institute of Scientific and Technical Information of China (English)

    任娟娟; 罗阿理; 赵永恒

    2014-01-01

    White dwarf-main sequence binaries (WDMS) are the most common compact binary ob jects in the Galaxy, each of which consists of a white dwarf and a main sequence star and is evolved from main sequence binary. About 25 percent of the WDMS binaries are close WDMS binaries that evolved through a common envelope phase, and are commonly referred to as post-common-envelope binaries (PCEBs). The remaining 75 percent are wide WDMS binaries that did not evolve through a common envelope phase, with the orbital separation roughly the same as the orbital separation of the initial main sequence binary. Generally, the two components can be seen clearly from the WDMS binary spectra optically. Thanks to the large spectroscopic survey like SDSS and LAMOST, the number of WDMS binaries has been increased dramatically recently. A large number of wide WDMS binaries and PCEBs have been identified by the follow-up observations of these WDMS bina-ries. Currently, more than 2000 WDMS binaries have been discovered spectroscopically and about 200 PCEBs have been confirmed. Upon the large sample of SDSS WDMS binaries and PCEBs identified, many important researches have been carried on, such as the com-mon envelope theory, the origin of low mass white dwarf, mass-radius relations of both white dwarfs and low mass main sequence stars, and the pairing properties of main sequence stars. However, as the SDSS WDMS binaries sample has serious selection effects, which is strongly biased against binary systems containing cool white dwarf and/or early type companions, we still need to search more WDMS binaries to enlarge the sample. The LAMOST sky survey began its five years regular survey from September 2012, which will observe a large number of targets in the Milky Way. From the recent data release (DR1) of LAMOST, more than 100 WDMS binaries have been found. With the ongoing SDSS and LAMOST survey, more WDMS binaries are hoped to be identified and extend the existing WDMS binary sample. In this paper

  14. Very Low-Mass Stellar and Substellar Companions to Solar-like Stars From MARVELS VI: A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    CERN Document Server

    Ma, Bo; Wolszczan, Alex; Muterspaugh, Matthew W; Lee, Brian; Henry, Gregory W; Schneider, Donald P; Martin, Eduardo L; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; da Costa, Luiz Nicolaci; Jiang, Peng; Fiorenzano, A F Martinez; Hernandez, Jonay I Gonzalez; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C; Wan, Xiaoke; Wang, Ji; Wisniewski, John P; Zhao, Bo; Zucker, Shay

    2016-01-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. It is the first close binary system with more than one substellar circum-primary companion discovered to the best of our knowledge. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using ET at Kitt Peak National Observatory, HRS at HET, the "Classic" spectrograph at the Automatic Spectroscopic Telescope at Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period brown dwarf in this binary. HD 87646 is a close binary with a separation of $\\sim22$ AU between the two stars, estimated using the Hipparcos catalogue and our newly acquired AO image from PALAO on the 200-inch Hale Telescope at Palomar. The primary star in the binary, HD 87646...

  15. MARVELS-1b: A Short-period, Brown Dwarf Desert Candidate from the SDSS-III Marvels Planet Search

    Science.gov (United States)

    Lee, Brian L.; Ge, Jian; Fleming, Scott W.; Stassun, Keivan G.; Gaudi, B. Scott; Barnes, Rory; Mahadevan, Suvrath; Eastman, Jason D.; Wright, Jason; Siverd, Robert J.; Gary, Bruce; Ghezzi, Luan; Laws, Chris; Wisniewski, John P.; Porto de Mello, G. F.; Ogando, Ricardo L. C.; Maia, Marcio A. G.; Nicolaci da Costa, Luiz; Sivarani, Thirupathi; Pepper, Joshua; Nguyen, Duy Cuong; Hebb, Leslie; De Lee, Nathan; Wang, Ji; Wan, Xiaoke; Zhao, Bo; Chang, Liang; Groot, John; Varosi, Frank; Hearty, Fred; Hanna, Kevin; van Eyken, J. C.; Kane, Stephen R.; Agol, Eric; Bizyaev, Dmitry; Bochanski, John J.; Brewington, Howard; Chen, Zhiping; Costello, Erin; Dou, Liming; Eisenstein, Daniel J.; Fletcher, Adam; Ford, Eric B.; Guo, Pengcheng; Holtzman, Jon A.; Jiang, Peng; French Leger, R.; Liu, Jian; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Malik, Mohit; Oravetz, Daniel; Pan, Kaike; Rohan, Pais; Schneider, Donald P.; Shelden, Alaina; Snedden, Stephanie A.; Simmons, Audrey; Weaver, B. A.; Weinberg, David H.; Xie, Ji-Wei

    2011-02-01

    We present a new short-period brown dwarf (BD) candidate around the star TYC 1240-00945-1. This candidate was discovered in the first year of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III, and we designate the BD as MARVELS-1b. MARVELS uses the technique of dispersed fixed-delay interferometery to simultaneously obtain radial velocity (RV) measurements for 60 objects per field using a single, custom-built instrument that is fiber fed from the SDSS 2.5 m telescope. From our 20 RV measurements spread over a ~370 day time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 2.533 ± 0.025 km s-1, period P = 5.8953 ± 0.0004 days, and eccentricity consistent with circular. Independent follow-up RV data confirm the orbit. Adopting a mass of 1.37 ± 0.11 M sun for the slightly evolved F9 host star, we infer that the companion has a minimum mass of 28.0 ± 1.5 M Jup, a semimajor axis 0.071 ± 0.002 AU assuming an edge-on orbit, and is probably tidally synchronized. We find no evidence for coherent intrinsic variability of the host star at the period of the companion at levels greater than a few millimagnitudes. The companion has an a priori transit probability of ~14%. Although we find no evidence for transits, we cannot definitively rule them out for companion radii lsim1 R Jup.

  16. ENIGMATIC RECURRENT PULSATIONAL VARIABILITY OF THE ACCRETING WHITE DWARF EQ LYN (SDSS J074531.92+453829.6)

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Townsley, D. M.; Brockett, T. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Gaensicke, B. T.; Parsons, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Southworth, J. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Harrold, S. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Tovmassian, G.; Zharikov, S. [Observatorio Astronomico Nacional SPM, Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ensenada, BC (Mexico); Drake, A. J. [Department of Astronomy and the Center for Advanced Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States); Henden, A. [American Association of Variable Star Observers, 25 Birch Street, Cambridge, MA 02138 (United States); Rodriguez-Gil, P. [Departamento de Astrofisica, Universidad de La Laguna, La Laguna, E-38204 Santa Cruz de Tenerife (Spain); Sion, E. M. [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Zola, S.; Szymanski, T. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Pavlenko, E. [Crimean Astrophysical Observatory, Crimea 98409 (Ukraine); and others

    2013-09-15

    Photometric observations of the cataclysmic variable EQ Lyn (SDSS J074531.92+453829.6), acquired from 2005 October to 2006 January, revealed high-amplitude variability in the range 1166-1290 s. This accreting white dwarf underwent an outburst in 2006 October, during which its brightness increased by at least five magnitudes, and it started exhibiting superhumps in its light curve. Upon cooling to quiescence, the superhumps disappeared and it displayed the same periods in 2010 February as prior to the outburst within the uncertainties of a couple of seconds. This behavior suggests that the observed variability is likely due to nonradial pulsations in the white dwarf star, whose core structure has not been significantly affected by the outburst. The enigmatic observations begin with an absence of pulsational variability during a multi-site campaign conducted in 2011 January-February without any evidence of a new outburst; the light curve is instead dominated by superhumps with periods in the range of 83-87 minutes. Ultraviolet Hubble Space Telescope time-series spectroscopy acquired in 2011 March reveals an effective temperature of 15,400 K, placing EQ Lyn within the broad instability strip of 10,500-16,000 K for accreting pulsators. The ultraviolet light curve with 90% flux from the white dwarf shows no evidence of any pulsations. Optical photometry acquired during 2011 and Spring 2012 continues to reflect the presence of superhumps and an absence of pulsations. Subsequent observations acquired in 2012 December and 2013 January finally indicate the disappearance of superhumps and the return of pulsational variability with similar periods as previous data. However, our most recent data from 2013 March to May reveal superhumps yet again with no sign of pulsations. We speculate that this enigmatic post-outburst behavior of the frequent disappearance of pulsational variability in EQ Lyn is caused either by heating the white dwarf beyond the instability strip due to an

  17. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Daniela; Tinney, C. G. [School of Physics, University of New South Wales, NSW 2052 (Australia); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Sweet, Sarah [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Gelino, Christopher R.; Kirkpatrick, J. Davy, E-mail: daniela.opitz@student.unsw.edu.au [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-03-01

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.

  18. A Ground-based Measurement of the Relativistic Beaming Effect in a Detached Double White Dwarf Binary

    Science.gov (United States)

    Shporer, Avi; Kaplan, David L.; Steinfadt, Justin D. R.; Bildsten, Lars; Howell, Steve B.; Mazeh, Tsevi

    2010-12-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass-ratio and low-luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during three nights at the 2.0 m Faulkes Telescope North with the SDSS-g' filter and fitted the data simultaneously for the beaming, ellipsoidal, and reflection effects. Our fitted relative beaming amplitude is (3.0 ± 0.4) × 10-3, consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity (RV) amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic RV amplitude in NLTT 11748 and similar systems. We did not identify any variability due to the ellipsoidal or reflection effects, consistent with their expected undetectable amplitude for this system. Low-mass, helium-core WDs are expected to reside in binary systems, where in some of those systems the binary companion is a faint C/O WD and the two stars are detached and non-interacting, as in the case of NLTT 11748. The beaming effect can be used to search for the faint binary companion in those systems using wide-band photometry.

  19. A stellar prominence in the white dwarf/red dwarf binary QS Vir: evidence for a detached system

    CERN Document Server

    Parsons, S G; Gänsicke, B T; Tappert, C

    2010-01-01

    Using high resolution UVES spectra of the eclipsing Post Common Envelope Binary QS Vir we detect material along the line of sight to the white dwarf at orbital phase $\\phi=0.16$. We ascribe this to a stellar prominence originating from the M dwarf secondary star which passes in front of the white dwarf at this phase. This creates sharp absorption features in the hydrogen Balmer series and Ca II H and K lines. The small size of the white dwarf allows us to place tight constraints on the column density of hydrogen in the n=2 level of log_(10)(N_2) = 14.10 +/- 0.03 cm^(-2) and, assuming local thermodynamical equilibrium, the temperature of the prominence material of ~9000K. The prominence material is at least 1.5 stellar radii from the surface of the M dwarf. The location of the prominence is consistent with emission features previously interpreted as evidence for Roche lobe overflow in the system. We also detect Mg II 4481A absorption from the white dwarf. The width of the Mg II line indicates that the white dw...

  20. Spiral Disk Instability Can Drive Thermonuclear Explosions in Binary White Dwarf Mergers

    CERN Document Server

    Kashyap, Rahul; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon-oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems which give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel, in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model which yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  1. Detailed abundances in extremely metal poor dwarf stars extracted from SDSS

    CERN Document Server

    Sbordone, Luca; Caffau, Elisabetta; Ludwig, Hans-Gunther

    2012-01-01

    We report on the result of an ongoing campaign to determine chemical abundances in extremely metal poor (EMP) turn-off (TO) stars selected from the Sloan Digital Sky Survey (SDSS) low resolution spectra. This contribution focuses principally on the largest part of the sample (18 stars out of 29), observed with UVES@VLT and analyzed by means of the automatic abundance analysis code MyGIsFOS to derive atmosphere parameters and detailed compositions. The most significant findings include i) the detection of a C-rich, strongly Mg-enhanced star ([Mg/Fe]=1.45); ii) a group of Mn-rich stars ([Mn/Fe]>-0.4); iii) a group of Ni-rich stars ([Ni/Fe]>0.2). Li is measured in twelve stars, while for three upper limits are derived.

  2. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  3. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    Science.gov (United States)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  4. A Second Stellar Color Locus: a Bridge from White Dwarfs to M stars

    CERN Document Server

    Smolcic, V; Knapp, G R; Lupton, R H; Pavlovski, K; Ilijic, S; Schlegel, D J; Smith, J A; McGehee, P M; Silvestri, N M; Hawley, S L; Rockosi, C M; Gunn, J E; Strauss, M A; Fan, X; Eisenstein, D J; Harris, H

    2004-01-01

    We report the discovery of a locus of stars in the SDSS g-r vs. u-g color-color diagram that connects the colors of white dwarfs and M dwarfs. While its contrast with respect to the main stellar locus is only ~1:2300, this previously unrecognized feature includes 863 stars from the SDSS Data Release 1. The position and shape of the feature are in good agreement with predictions of a simple binary star model that consists of a white dwarf and an M dwarf, with the components' luminosity ratio controlling the position along this binary system locus. SDSS DR1 spectra for 47 of these objects strongly support this model. The absolute magnitude--color distribution inferred for the white dwarf component is in good agreement with the models of Bergeron et al. (1995).

  5. MICROLENSING DISCOVERY OF A POPULATION OF VERY TIGHT, VERY LOW MASS BINARY BROWN DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Gaudi, B. S.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Beaulieu, J.-P. [Institut dAstrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, F-75014 Paris (France); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Drive, Goleta, CA 93117 (United States); Bozza, V. [INFN, Sezione di Napoli, I-80126 Napoli (Italy); Abe, F.; Furusawa, K.; Itow, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Chote, P. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; muFUN Collaboration; MiNDSTEp Consortium; PLANET Collaboration; RoboNet Collaboration; and others

    2013-05-10

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M{sub Sun} and 0.034 M{sub Sun }, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of {approx}0.02 M{sub Sun }. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries.

  6. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    Science.gov (United States)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R∼ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_ȯ and 0.29-0.67R_ȯ, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  7. The Discovery of Binary White Dwarfs that will Merge within 500 Myr

    CERN Document Server

    Kilic, Mukremin; Prieto, Carlos Allende; Kenyon, S J

    2009-01-01

    We present radial velocity observations of four extremely low-mass (0.2 Msol) white dwarfs. All four stars show peak-to-peak radial velocity variations of 540 - 710 km/s with 1.0 - 5.9 hr periods. The optical photometry rules out main-sequence companions. In addition, no milli-second pulsar companions are detected in radio observations. Thus the invisible companions are most likely white dwarfs. Due to the loss of angular momentum through gravitational radiation, three of the systems will merge within 500 Myr. The remaining system will merge within a Hubble time. The mass functions for three of the systems imply companions more massive than 0.44 Msol; thus those are carbon/oxygen core white dwarfs. However, the chance of a supernova Ia event is only 1% to 5%. These systems will most likely form single R Coronae Borealis stars, providing evidence for a white dwarf + white dwarf merger mechanism for these unusual objects. One of the systems, SDSS J105353.89+520031.0 has a 70% chance of having a low-mass white d...

  8. Discovery of New Ultracool White Dwarfs in the Sloan Digital Sky Survey

    CERN Document Server

    Gates, E; Harris, H C; Subba-Rao, M; Anderson, S; Kleinman, S J; Liebert, J; Brewington, H; Brinkmann, J; Harvanek, M; Krzesínski, J; Lamb, D Q; Long, D; Neilsen, E H; Newman, P R; Nitta, A; Snedden, S A; Gates, Evalyn; Gyuk, Geza; Harris, Hugh C.; Subbarao, Mark; Anderson, Scott; Liebert, James; Brewington, Howard; Harvanek, Michael; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Neilsen, Eric H.; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

    2004-01-01

    We report the discovery of five very cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Four are ultracool, exhibiting strong collision induced absorption (CIA) from molecular hydrogen and are similar in color to the three previously known coolest white dwarfs, SDSS J1337+00, LHS 3250 and LHS 1402. The fifth, an ultracool white dwarf candidate, shows milder CIA flux suppression and has a color and spectral shape similar to WD 0346+246. All five new white dwarfs are faint (g > 18.9) and have significant proper motions. One of the new ultracool white dwarfs, SDSS J0947, appears to be in a binary system with a slightly warmer (T_{eff} ~ 5000K) white dwarf companion.

  9. Detection of a white dwarf in a visual binary system

    Science.gov (United States)

    Boehm-Vitense, Erika

    1992-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with IUE shows that the white dwarf has an effective temperature of 23,000 +/- 2000 K. If log g = 8 the Lya profile indicates an effective temperature around 24,500 K. Using the theoretical models by Wesemael et al. (1980) one finds a visual magnitude of m(V) about 16.5. For T(eff) = 24,500 K one expects for a white dwarf a luminosity of log L/L(solar) about 1.3 and M(V) about 10.67. This gives a distance modulus for the system of m(V) - M(V) = 5.83 and an absolute magnitude M(V)= 0.3 for the giant.

  10. A Search for Fine Wines: Discovering Close Red Dwarf-White Dwarf Binaries

    Science.gov (United States)

    Boyd, Mark; Finch, C. T.; Hambly, N. C.; Henry, T. J.; Jao, W.; Riedel, A. R.; Subasavage, J. P.; Winters, J. G.; RECONS

    2012-01-01

    Like fine wines, stars come in both red and white varieties. Here we present initial results of the Fine Wines Project that targets red dwarf-white dwarf pairs. The two scientific goals of Fine Wines are (1) to develop methods to estimate ages for red dwarfs based on the cooling ages of the white dwarfs, and (2) to identify suitable pairs for dynamical mass determinations of white dwarfs to probe their interior structures. Here we focus on the search for Fine Wines, including sample selection, elimination of false positives, and initial reconnaissance. The sample was extracted via color-color plots from a pool of more than 30,000 proper motion systems examined during the SuperCOSMOS-RECONS (SCR) and UCAC3 Proper Motion (UPM) surveys. The initial sample of 75 best candidates is being observed for BVRI photometry and 3500-9500 A spectroscopy to confirm whether or not the systems are red dwarf-white dwarf pairs. Early results indicate that roughly 50% of the candidates selected are indeed Fine Wine systems. This effort is supported by the NSF through grant AST 09-08402 and via observations made possible by the SMARTS Consortium.

  11. Kelu-1 is a Binary L Dwarf: First Brown Dwarf Science from Laser Guide Star Adaptive Optics

    CERN Document Server

    Liu, M C; Liu, Michael C.; Leggett, Sandy K.

    2005-01-01

    (Abridged) We present near-IR imaging of the nearby L dwarf Kelu-1 obtained with the Keck sodium laser guide star adaptive optics (LGS AO) system as part of a high angular resolution survey for substellar binaries. Kelu-1 was one of the first free-floating L dwarfs identified, and the origin of its overluminosity compared to other similar objects has been a long-standing question. Our images clearly resolve Kelu-1 into a 0.29'' (5.4 AU) binary, and a previous non-detection by HST demonstrates that the system is a true physical pair. Binarity explains the properties of Kelu-1 that were previously noted to be anomalous compared to other early-L dwarfs. We estimate spectral types of L1.5-L3 and L3-L4.5 for the two components, giving model-derived masses of 0.05-0.07 Msun and 0.045-0.065 Msun for an estimated age of 0.3-0.8 Gyr. More distant companions are not detected to a limit of 5-9 Mjup. The presence of lithium absorption indicates that both components are substellar, but the weakness of this feature relativ...

  12. Dissecting accretion and outflows in accreting white dwarf binaries

    CERN Document Server

    de Martino, D; Balman, S; Bernardini, F; Bianchini, A; Bode, M; Bonnet-Bidaud, J -M; Falanga, M; Greiner, J; Groot, P; Hernanz, M; Israel, G; Jose, J; Motch, C; Mouchet, M; Norton, A J; Nucita, A; Orio, M; Osborne, J; Ramsay, G; Rodriguez-Gil, P; Scaringi, S; Schwope, A; Traulsen, I; Tamburini, F

    2015-01-01

    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of accreting white dwarfs. For a summary, we refer to the paper.

  13. HR2875 Spectroscopic discovery of the first B star + white dwarf binary

    CERN Document Server

    Burleigh, M R; Burleigh, Matt; Barstow, Martin

    1998-01-01

    We report the discovery, in an Extreme Ultraviolet Explorer (EUVE) short wavelength spectrum, of an unresolved hot white dwarf companion to the 5th-magnitude B5Vp star HR2875. This is the first time that a non-interacting white dwarf$+$ B star binary has been discovered; previously, the the earliest type star known with a white dwarf companion was Sirius (A1V). Since the white dwarf must have evolved from a main sequence progenitor with a mass greater than that of a B5V star ($\\geq$6.0M$_\\odot$), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial-final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39,000K and 49,000K. We also argue that this degenerate star is likely to have mass significantly greater than the mean mass for white dwarf stars ($\\approx$0.55M$_\\odot$). Finally, we suggest that other bright B stars (e.g.\\ Field Camera and EUVE may a...

  14. The Merger Rate of Binary White Dwarfs in the Galactic Disk

    CERN Document Server

    Badenes, Carles

    2012-01-01

    We use multi-epoch spectroscopy of about 4000 white dwarfs in the Sloan Digital Sky Survey to constrain the properties of the Galactic population of binary white dwarf systems and calculate their merger rate. With a Monte Carlo code, we model the distribution of DRVmax, the maximum radial velocity shift between exposures of the same star, as a function of the binary fraction within 0.05 AU, fbin, and the power-law index in the separation distribution at the end of the common envelope phase, alpha. Although there is some degeneracy between fbin and alpha, the data constrain the combination of these parameters, which determines a white dwarf merger rate per unit stellar mass of 1.4(+3.4,-1.0)e-13 /yr/Msun (1-sigma limits). This is remarkably similar to the measured rate of Type Ia supernovae per unit stellar mass in Milky-Way-like Sbc galaxies. The rate of super-Chandrasekhar mergers is only 1.0(+1.6,-0.6)e-14 /yr/Msun. We conclude that there are not enough close binary white dwarf systems to reproduce the obse...

  15. Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries

    CERN Document Server

    Willems, B; Kalogera, V

    2009-01-01

    We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 solar mass helium white dwarf in binaries with orbital frequencies in the LISA gravitational wave frequency band and companion masses ranging from 0.3 to 10^5 solar masses. The resulting tidal evolution time scales for the orbital semi-major axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational ...

  16. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael [Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  17. Another one grinds the dust: Variability of the planetary debris disc at the white dwarf SDSS J104341.53+085558.2

    CERN Document Server

    Manser, Christopher J; Koester, Detlev; Marsh, Thomas R; Southworth, John

    2016-01-01

    We report nine years of optical spectroscopy of the metal-polluted white dwarf SDSS J104341.53+085558.2, which presents morphological variations of the line profiles of the 8600 \\AA\\ Ca II triplet emission from the gaseous component of its debris disc. Similar changes in the shape of the Ca II triplet have also been observed in two other systems that host a gaseous disc, and are likely related to the same mechanism. We report the Mg, Si, and Ca abundances of the debris detected in the photosphere of SDSS J1043+0855, place upper limits on O and Fe, and derive an accretion rate of (2.5 - 12)x$10^8$ g/s, consistent with those found in other systems with detected debris discs. The Mg/Si ratio and the upper limit on the Fe/Si ratio of the accreted material broadly agree with those found for the crust of the Earth. We also review the range of variability observed among white dwarfs with planetary debris discs.

  18. Using Close White Dwarf + M Dwarf Stellar Pairs to Constrain the Flare Rates in Close Stellar Binaries

    CERN Document Server

    Morgan, Dylan P; Becker, Andrew C

    2016-01-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations < 1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing H{\\alpha} in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. (2012) observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overa...

  19. The mass and radius of the M-dwarf in the short-period eclipsing binary RR Caeli

    NARCIS (Netherlands)

    Maxted, P.F.L.; O'Donoghue, D.; Morales-Rueda, L.; Napiwotzki, R.; Smalley, B.

    2007-01-01

    We present new photometry and spectroscopy of the eclipsing white dwarf-M-dwarf binary star RR Cae. We use timings of the primary eclipse from white-light photo-electric photometry to derive a new ephemeris for the eclipses. We find no evidence for any period change greater than over a time-scale of

  20. Long-term eclipse timing of white dwarf binaries: an observational hint of a magnetic mechanism at work

    CERN Document Server

    Bours, M C P; Parsons, S G; Dhillon, V S; Ashley, R P; Bento, J P; Breedt, E; Butterley, T; Caceres, C; Copperwheat, C M; Hardy, L K; Hermes, J J; Irawati, P; Kerry, P; Kilkenny, D; Littlefair, S P; McAllister, M J; Rattanasoon, S; Sahman, D I; Vuckovic, M; Wilson, R W

    2016-01-01

    We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. We use this sample to search for orbital period variations and aim to identify the underlying cause of these variations. We find that the probability of observing orbital period variations increases significantly with the observational baseline. In particular, all binaries with baselines exceeding 10 yrs, with secondaries of spectral type K2 -- M5.5, show variations in the eclipse arrival times that in most cases amount to several minutes. In addition, among those with baselines shorter than 10 yrs, binaries with late spectral type (>M6), brown dwarf or white dwarf secondaries appear to show no orbital period variations. This is in agreement with t...

  1. Constraining white dwarf viscosity through tidal heating in detached binary systems

    CERN Document Server

    Dall'Osso, Simone

    2013-01-01

    Although the internal structure of white dwarfs is considered to be generally well understood, the source and entity of viscosity is still very uncertain. We propose here to study white dwarf viscous properties using short period (< 1 hr), detached white dwarf binaries, such as the newly discovered ~12.8 min system. These binaries are wide enough that mass transfer has not yet started but close enough that the least massive component is subject to a measurable tidal deformation. The associated tidal torque transfers orbital energy, which is partially converted into heat by the action of viscosity within the deformed star. As a consequence, its outer non-degenerate layers expand, and the star puffs up. We self-consistently calculate the fractional change in radius, and the degree of asynchronism (ratio of stellar to orbital spin) as a function of the viscous time. Specializing our calculations to J0651, we find that the discrepancy between the measured radius of the secondary star and He white dwarf model p...

  2. Hystereses in dwarf nova outbursts and low-mass X-ray binaries

    Science.gov (United States)

    Hameury, J.-M.; Lasota, J.-P.; Knigge, C.; Körding, E. G.

    2017-04-01

    Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star, or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries, which contain neutron-star or black-hole accretors, exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV, and X-ray fluxes. Aims: We examine the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods: We used our disc evolution code for modelling dwarf nova outbursts, and constructed the hardness intensity diagram as predicted by the disc instability model. Results: We show explicitly that the standard DIM, modified only to account for disc truncation, can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions: The spectral evidence for the existence of different accretion regimes or components (disc, corona, jets, etc.) should only be based on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays; this task is difficult because of interstellar absorption. The existing data, however, indicate that a hysteresis is in the EUV - X-ray domain is present in SS Cyg.

  3. Magnetized Moving Mesh Merger of a Carbon-Oxygen White Dwarf Binary

    CERN Document Server

    Zhu, Chenchong; van Kerkwijk, Marten H; Chang, Philip

    2015-01-01

    White dwarf binary mergers are possible progenitors to a number of unusual stars and transient phenomena, including type Ia supernovae. To date, simulations of mergers have not included magnetic fields, even though they are believed to play a significant role in the evolution of the merger remnant. We simulated a 0.625 - 0.65 $M_{\\odot}$ carbon-oxygen white dwarf binary merger in the magnetohydrodynamic moving mesh code Arepo. Each white dwarf was given an initial dipole field with a surface value of $\\sim10^3$ G. As in simulations of merging double neutron star binaries, we find exponential field growth within Kelvin-Helmholtz instability-generated vortices during the coalescence of the two stars. The final field has complex geometry, and a strength $>10^{10}$ G at the center of the merger remnant. Its energy is $\\sim2\\times10^{47}$ ergs, $\\sim0.2$% of the remnant's total energy. The strong field likely influences further evolution of the merger remnant by providing a mechanism for angular momentum transfer ...

  4. Evolution of Cataclysmic Variables and Related Binaries Containing a White-Dwarf

    CERN Document Server

    Kalomeni, B; Rappaport, S; Molnar, M; Quintin, J; Yakut, K

    2016-01-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources, and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that ZACVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 white dwarf accretor masses, 43 donor-star masses ($0.1-4.7$ $M_{\\odot}$), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ($P_{\\rm orb}-M_{\\rm don}$) plane in terms of evolution dwell times, masses of the white dwarf accretor, accretion rate, and chemical composition of the center and surface of the donor s...

  5. The Late-Type Extension to MoVeRS (LaTE-MoVeRS): Proper Motion Verified Low-mass Stars and Brown Dwarfs from SDSS, 2MASS, and WISE

    Science.gov (United States)

    Theissen, Christopher A.; West, Andrew A.; Shippee, Guillaume; Burgasser, Adam J.; Schmidt, Sarah J.

    2017-03-01

    We present the Late-Type Extension to the Motion Verified Red Stars (LaTE-MoVeRS) catalog, containing 46,463 photometric late-type (>M5) dwarfs within the Sloan Digital Sky Survey (SDSS) footprint. Proper motions were computed for objects combining astrometry from the SDSS Data Release 12 (DR12), the Two-micron All-Sky Survey (2MASS) Point Source Catalog, and the Wide-field Infrared Survey Explorer (WISE) AllWISE data sets. LaTE-MoVeRS objects were required to have significant proper motion ({μ }{tot}≥slant 2{σ }{μ {tot}}). Using the LaTE-MoVeRS sample and Gaia Data Release 1, we estimate Gaia will be ∼64% complete for very low-mass objects (>M5) in comparison to the combined SDSS+2MASS+WISE data set (iSDSS CasJobs and VizieR.

  6. A new detached K7 dwarf eclipsing binary system

    CERN Document Server

    Young, T B; Webb, J K; Ashley, M C B; Christiansen, J L; Derekas, A; Nutto, C

    2006-01-01

    We present an analysis of a new, detached, double-lined eclipsing binary system with K7 Ve components, discovered as part of the University of New South Wales Extrasolar Planet Search. The object is significant in that only 6 other binary systems are known with comparable or lower mass. Such systems offer important tests of mass-radius theoretical models. Follow-up photometry and spectroscopy were obtained with the 40-inch and 2.3m telescopes at SSO respectively. An estimate of the radial velocity amplitude from spectral absorption features, combined with the orbital inclination (83.5 deg) estimated from lightcurve fitting, yielded a total mass of M=(1.041 +/- 0.06)M_sun and component masses of M_A=(0.529 +/- 0.035)M_sun and M_B=(0.512 +/- 0.035)M_sun. The radial velocity amplitude estimated from absorption features (167 +/- 3)kmps was found to be less than the estimate from the H_alpha emission lines (175 +/- 1.5)kmps. The lightcurve fit produced radii of R_A=(0.641 +/- 0.05)R_sun and R_B=(0.608 +/- 0.06)R_s...

  7. Discovery of a Wide Binary Brown Dwarf Born in Isolation

    CERN Document Server

    Luhman, K L; Allen, P R; Muench, A A; Finkbeiner, D P

    2009-01-01

    During a survey for stars with disks in the Taurus star-forming region using the Spitzer Space Telescope, we have discovered a pair of young brown dwarfs, FU Tau A and B, in the Barnard 215 dark cloud. They have a projected angular separation of 5.7", corresponding to 800 AU at the distance of Taurus. To assess the nature of these two objects, we have obtained spectra of them and have constructed their spectral energy distributions. Both sources are young (~1 Myr) according to their Halpha emission, gravity-sensitive spectral features, and mid-IR excess emission. The proper motion of FU Tau A provides additional evidence of its membership in Taurus. We measure spectral types of M7.25 and M9.25 for FU Tau A and B, respectively, which correspond to masses of ~0.05 and ~0.015 Msun according to the evolutionary models of Chabrier and Baraffe. FU Tau A is significantly overluminous relative to an isochrone passing through FU Tau B and relative to other members of Taurus near its spectral type, which may indicate t...

  8. A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar/Helium White Dwarf Binaries

    CERN Document Server

    Jiang, Long; Dey, Jishnu; Dey, Mira

    2015-01-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during the binary evolution, as observed in most of the binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are PSRs J2234$+$06, J1946$+$3417 and J1950$+$2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive white dwarfs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from neutron stars to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitati...

  9. Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Sravan, N.; Valsecchi, F.; Kalogera, V. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Althaus, L. G., E-mail: niharika.sravan@gmail.com [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina)

    2014-09-10

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

  10. Importance of Tides for Periastron Precession in Eccentric Neutron Star - White Dwarf Binaries

    CERN Document Server

    Sravan, Niharika; Kalogera, Vassiliki; Althaus, Leandro G

    2014-01-01

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational wave sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141-6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to gravitational-wave observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. We find that the contribution from tides should not be neglected when analyzing periastron precession signatures in gravitational-wave signals: not accounting for tides can produce errors as high as a factor of 80 in the WD...

  11. Improved photometry of SDSS crowded field images: Structure and dark matter content in the dwarf spheroidal galaxy Leo I

    CERN Document Server

    Smolcic, V; Bell, E F; Coleman, M G; Rix, H W; Schinnerer, E; Ivezic, Z; Kniazev, A

    2007-01-01

    We explore how well crowded field point-source photometry can be accomplished with SDSS data: We present a photometric pipeline based on DoPhot, and tuned for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations we show that the completeness of source extraction is above 80% to i >6 ( Ic_sol), and possibly >75 if the DM halo dominates the mass and extends further out than 12'. In summary, our results show that Leo I is a symmetric, relaxed and bound system; this supports the idea that Leo I is a dark-matter dominated system.

  12. Runaway Dwarf Carbon Stars as Candidate Supernova Ejecta

    CERN Document Server

    Plant, Kathryn A; Guhathakurta, Puragra; Cunningham, Emily C; Toloba, Elisa; Munn, Jeffrey A

    2016-01-01

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531$\\pm 4$ km s$^{-1}$. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425$\\pm 9$ km s$^{-1}$. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of $C_2$ bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric $C_2$ via mass transfer from an evolved companion.

  13. The gaseous debris disk of the white dwarf SDSS J1228+1040. HST/COS search for far-ultraviolet signatures

    CERN Document Server

    Hartmann, S; Rauch, T; Werner, K

    2016-01-01

    Gaseous and dust debris disks around white dwarfs (WDs) are formed from tidally disrupted planetary bodies. This offers an opportunity to determine the composition of exoplanetary material by measuring element abundances in the accreting WD's atmosphere. A more direct way to do this is through spectral analysis of the disks themselves. Currently, the number of chemical elements detected through disk emission-lines is smaller than that of species detected through lines in the WD atmospheres. We assess the far-ultraviolet (FUV) spectrum of one well-studied object (SDSS J122859.93+104032.9) to search for disk signatures at wavelengths <1050 angstrom, where the broad absorption lines of the Lyman series effectively block the WD photospheric flux. We performed FUV observations (950-1240 angstrom) with the Hubble Space Telescope/Cosmic Origins Spectrograph and used archival optical spectra. We compared them with non-local thermodynamic equilibrium model spectra. In addition, we investigate the Ca II infrared tri...

  14. Phase resolved spectroscopy and Kepler photometry of the ultracompact AM CVn binary SDSS J190817.07+394036.4

    CERN Document Server

    Kupfer, T; Bloemen, S; Levitan, D; Steeghs, D; Marsh, T R; Rutten, R G M; Nelemans, G; Prince, T A; Fürst, F; Geier, S

    2015-01-01

    {\\it Kepler} satellite photometry and phase-resolved spectroscopy of the ultracompact AM CVn type binary SDSS J190817.07+394036.4 are presented. The average spectra reveal a variety of weak metal lines of different species, including silicon, sulphur and magnesium as well as many lines of nitrogen, beside the strong absorption lines of neutral helium. The phase-folded spectra and the Doppler tomograms reveal an S-wave in emission in the core of the He I 4471 \\AA\\,absorption line at a period of $P_{\\rm orb}=1085.7\\pm2.8$\\,sec identifying this as the orbital period of the system. The Si II, Mg II and the core of some He I lines show an S-wave in absorption with a phase offset of $170\\pm15^\\circ$ compared to the S-wave in emission. The N II, Si III and some helium lines do not show any phase variability at all. The spectroscopic orbital period is in excellent agreement with a period at $P_{\\rm orb}=1085.108(9)$\\,sec detected in the three year {\\it Kepler} lightcurve. A Fourier analysis of the Q6 to Q17 short cad...

  15. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    Energy Technology Data Exchange (ETDEWEB)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, Mail Code 0424, La Jolla, CA 92093 (United States); Gelino, Christopher R. [NASA Exoplanet Science Institute, Mail Code 100-22, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Looper, Dagny L. [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Schmidt, Sarah J. [Department of Physics and Astronomy, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065 (United States); Cruz, Kelle [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); West, Andrew A. [Department of Physics and Astronomy, University of Delaware, 104 The Green, Newark, DE 19716 (United States); Gizis, John E. [Department of Physics and Astronomy, Western University, London, ON N6A 3K7 (Canada); Metchev, Stanimir, E-mail: daniella@physics.ucsd.edu [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-10-20

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  16. Detailed compositional analysis of the heavily polluted DBZ white dwarf SDSS J073842.56+183509.06: A window on planet formation?

    CERN Document Server

    Dufour, P; Fontaine, G; Bergeron, P; Melis, C; Bochanski, J

    2012-01-01

    We present a new model atmosphere analysis of the most metal contaminated white dwarf known, the DBZ SDSS J073842.56+183509.06. Using new high resolution spectroscopic observations taken with Keck and Magellan, we determine precise atmospheric parameters and measure abundances of 14 elements heavier than helium. We also report new Spitzer mid-infrared photometric data that are used to better constrain the properties of the debris disk orbiting this star. Our detailed analysis, which combines data taken from 7 different observational facilities (GALEX, Gemini, Keck, Magellan, MMT, SDSS and Spitzer) clearly demonstrate that J0738+1835 is accreting large amounts of rocky terrestrial-like material that has been tidally disrupted into a debris disk. We estimate that the body responsible for the photospheric metal contamination was at least as large Ceres, but was much drier, with less than 1% of the mass contained in the form of water ice, indicating that it formed interior to the snow line around its parent star....

  17. A Binary Scenario for the Formation of Strongly Magnetized White Dwarfs

    CERN Document Server

    Nordhaus, J

    2011-01-01

    Since their initial discovery, the origin of isolated white dwarfs (WDs) with magnetic fields in excess of $\\sim$1 MG has remained a mystery. Recently, the formation of these high-field magnetic WDs has been observationally linked to strong binary interactions incurred during post-main-sequence evolution. Planetary, brown dwarf or stellar companions located within a few AU of main-sequence stars may become engulfed during the primary's expansion off the main sequence. Sufficiently low-mass companions in-spiral inside a common envelope until they are tidally shredded near the natal white dwarf. Formation of an accretion disk from the disrupted companion provides a source of turbulence and shear which act to amplify magnetic fields and transport them to the WD surface. We show that these disk-generated fields explain the observed range of magnetic field strengths for isolated, high-field magnetic WDs. Additionally, we discuss a high-mass binary analogue which generates a strongly-magnetized WD core inside a pre...

  18. Characterization of close visual binaries from the AstraLux Large M Dwarf Survey

    Science.gov (United States)

    Bergfors, C.; Brandner, W.; Bonnefoy, M.; Schlieder, J.; Janson, M.; Henning, Th.; Chauvin, G.

    2016-03-01

    We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) J, H + K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within ±1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with the Fiberfed Extended Range Optical Spectrograph (FEROS) at the European Southern Observatory (ESO)-Max-Planck-Gesellschaft (MPG) 2.2 m telescope. The equivalent width of the absorption suggests an age consistent with the β Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dynamical masses and thus calibration of evolutionary models for low mass stars.

  19. Characterisation of close visual binaries from the AstraLux Large M Dwarf Survey

    CERN Document Server

    Bergfors, C; Bonnefoy, M; Schlieder, J; Janson, M; Henning, Th; Chauvin, G

    2015-01-01

    We present VLT/SINFONI J, H+K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within 1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with FEROS at the ESO-MPG 2.2m telescope. The equivalent width of the absorption suggests an age consistent with the beta Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dy...

  20. CENSUS OF BLUE STARS IN SDSS DR8

    Energy Technology Data Exchange (ETDEWEB)

    Scibelli, Samantha [Burnt Hills-Ballston Lake High School, 88 Lake Hill Road, Ballston, NY 12027 (United States); Newberg, Heidi Jo; Carlin, Jeffrey L. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Yanny, Brian, E-mail: heidi@rpi.edu [Experimental Astrophysics Group, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

    2015-01-01

    We present a census of the 12,060 spectra of blue objects ((g – r){sub 0} < –0.25) in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). As part of the data release, all of the spectra were cross-correlated with 48 template spectra of stars, galaxies, and QSOs to determine the best match. We compared the blue spectra by eye to the templates assigned in SDSS DR8. 10,856 of the objects matched their assigned template, 170 could not be classified due to low signal-to-noise ratio, and 1034 were given new classifications. We identify 7458 DA white dwarfs, 1145 DB white dwarfs, 273 rarer white dwarfs (including carbon, DZ, DQ, and magnetic), 294 subdwarf O stars, 648 subdwarf B stars, 679 blue horizontal branch stars, 1026 blue stragglers, 13 cataclysmic variables, 129 white dwarf-M dwarf binaries, 36 objects with spectra similar to DO white dwarfs, 179, quasi-stellar objects (QSOs), and 10 galaxies. We provide two tables of these objects, sample spectra that match the templates, figures showing all of the spectra that were grouped by eye, and diagnostic plots that show the positions, colors, apparent magnitudes, proper motions, etc., for each classification. Future surveys will be able to use templates similar to stars in each of the classes we identify to automatically classify blue stars, including rare types.

  1. The WIRED Survey III: An Infrared Excess around the Eclipsing Post-Common Envelope Binary SDSS J030308.35+005443.7

    CERN Document Server

    Debes, John H; Farihi, Jay; Wachter, Stefanie; Leisawitz, David T; Cohen, Martin

    2012-01-01

    We present the discovery with WISE of a significant infrared excess associated with the eclipsing post-common envelope binary SDSSJ 030308.35+005443.7, the first excess discovered around a non-interacting white dwarf+main sequence M dwarf binary. The spectral energy distribution of the white dwarf+M dwarf companion shows significant excess longwards of 3-microns. A T_eff of 8940K for the white dwarf is consistent with a cooling age >2 Gyr, implying that the excess may be due to a recently formed circumbinary dust disk of material that extends from the tidal truncation radius of the binary at 1.96 Rsun out to <0.8 AU, with a total mass of ~10^20 g. We also construct WISE and follow-up ground-based near-infrared light curves of the system, and find variability in the K-band that appears to be in phase with ellipsoidal variations observed in the visible. The presence of dust might be due to a) material being generated by the destruction of small rocky bodies that are being perturbed by an unseen planetary sys...

  2. Post-common envelope binaries from SDSS - XVI. Long orbital period systems and the energy budget of CE evolution

    CERN Document Server

    Rebassa-Mansergas, A; Schreiber, M R; Gaensicke, B T; Southworth, J; Gomez-Moran, A Nebot; Tappert, C; Koester, D; Pyrzas, S; Papadaki, C; Schmidtobreick, L; Schwope, A; Toloza, O

    2012-01-01

    Virtually all close compact binary stars are formed through common-envelope (CE) evolution. It is generally accepted that during this crucial evolutionary phase a fraction of the orbital energy is used to expel the envelope. However, it is unclear whether additional sources of energy, such as the recombination energy of the envelope, play an important role. Here we report the discovery of the second and third longest orbital period post-common envelope binaries (PCEBs) containing white dwarf (WD) primaries, i.e. SDSSJ121130.94-024954.4 (Porb = 7.818 +- 0.002 days) and SDSSJ222108.45+002927.7 (Porb = 9.588 +- 0.002 days), reconstruct their evolutionary history, and discuss the implications for the energy budget of CE evolution. We find that, despite their long orbital periods, the evolution of both systems can still be understood without incorporating recombination energy, although at least small contributions of this additional energy seem to be likely. If recombination energy significantly contributes to the...

  3. Hubble Space Telescope astrometry of the closest brown dwarf binary system - I. Overview and improved orbit★

    Science.gov (United States)

    Bedin, L. R.; Pourbaix, D.; Apai, D.; Burgasser, A. J.; Buenzli, E.; Boffin, H. M. J.; Libralato, M.

    2017-09-01

    Located at 2 pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman 16 AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity, and planet-hosting frequency. In the first study of this series - based on a multicycle Hubble Space Telescope (HST) program - we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5 ± 0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.

  4. Physical properties and evolution of the two white dwarfs in the Sanduleak-Pesch binary

    Science.gov (United States)

    Greenstein, J. L.; Dolez, N.; Vauclair, G.

    1983-10-01

    An important new binary white dwarf has been found by Sanduleak and Pesch. The stars are analyzed with the data from the Palomar double CCD spectrograph, using continuum fluxes, lines profiles, and Balmer decrements. They have hydrogen atmospheres, are young Population I, age ≈5×108 yr, temperatures of 12500K and 9500K, and the same visual magnitude. The cooler and less luminous star, B, has the larger radius and lower mass; B started its degenerate cooling, more recently, as the brighter of the pair. The estimated cooling times differ by approximately 108 yr. The white dwarfs, with masses 0.80 and 0.43 m_sun;, are descended from progenitors of 8 and 4 m_sun; (or 5 and 3.5 m_sun;).

  5. The First Proto-Brown Dwarf Binary Candidate Identified through Dynamics of Jets

    Science.gov (United States)

    Hsieh, Tien-Hao; Lai, Shih-Ping; Belloche, Arnaud; Wyrowski, Friedrich

    The formation mechanism of brown dwarfs (BDs) is one of the long-standing problems in star formation because the typical Jeans mass in molecular clouds is too large to form these substellar objects. To answer this question, it is crucial to study a BD at the embedded phase (proto-brown dwarf). IRAS16253 is classified as a Very Low Luminosity Object (VeLLO, L int pattern in the position-velocity diagrams of the jets. Assuming that this pattern is due to the orbital motion of a binary system, we obtain the current mass of the binary is ~0.026 M ⊙. Together with the low parent core mass, IRAS16253 will likely form one or two proto-BD in the future. This is the first time that the current mass of a proto-BD binary system is identified through the dynamics of the jets. Since IRAS16253 is located in an isolated environment, we suggest that BDs can form through fragmentation and collapse like low mass stars.

  6. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  7. Dancing in the Dark: New Brown Dwarf Binaries from Kernel Phase Interferometry

    CERN Document Server

    Pope, Benjamin; Tuthill, Peter

    2013-01-01

    This paper revisits a sample of ultracool dwarfs in the Solar neighborhood previously observed with the Hubble Space Telescope's NICMOS NIC1 instrument. We have applied a novel high angular resolution data analysis technique based on the extraction and fitting of kernel phases to archival data. This was found to deliver a dramatic improvement over earlier analysis methods, permitting a search for companions down to projected separations of $\\sim$1 AU on NIC1 snapshot images. We reveal five new close binary candidates and present revised astrometry on previously-known binaries, all of which were recovered with the technique. The new candidate binaries have sufficiently close separation to determine dynamical masses in a short-term observing campaign. We also present four marginal detections of objects which may be very close binaries or high contrast companions. Including only confident detections within 19 parsecs, we report a binary fraction of at least $\\epsilon_b = 17.2^{+5.7}_{-3.7}%$. The results reporte...

  8. Additional Ultracool White Dwarfs Found in the Sloan Digital Sky Survey

    CERN Document Server

    Harris, H C; Gyuk, G; Subba-Rao, M; Anderson, S F; Hall, P B; Munn, J A; Liebert, J; Knapp, G R; Bizyaev, D; Malanushenko, E; Malanushenko, V; Pan, K; Schneider, D P; Smith, J A

    2008-01-01

    We identify seven new ultracool white dwarfs discovered in the Sloan Digital Sky Survey (SDSS). The SDSS photometry, spectra, and proper motions are presented, and additional BVRI data are given for these and other previously discovered ultracool white dwarfs. The observed colors span a remarkably wide range, qualitatively similar to colors predicted by models for very cool white dwarfs. One of the new stars (SDSS J1251+44) exhibits strong collision-induced absorption (CIA) in its spectra, while the spectra and colors of the other six are consistent with mild CIA. Another of the new discoveries (SDSS J2239+00A) is part of a binary system -- its companion is also a cool white dwarf, and other data indicate that the companion exhibits an infrared flux deficiency, making this the first binary system composed of two CIA white dwarfs. A third discovery (SDSS J0310-00) has weak Balmer emission lines. The proper motions of all seven stars are consistent with membership in the disk or thick disk.

  9. Oscillations of red dwarfs in evolved low-mass binaries with neutron stars

    Science.gov (United States)

    Sarna, Marek J.; Lee, Umin; Muslimov, Alexander G.

    1994-01-01

    We investigate a novel aspect of a problem related to the properties of low-mass binaries (LMBs) with millisecond pulsars: the pulsations of the red dwarf (donor) companion of the neutron star (NS). The illumination of the donor star by the pulsar's high-energy nonthermal radiation and relativistic wind may substantially affect its structure. We present a quantitative analysis of the oscillation spectrum of a red dwarf which has evolved in an LMB and has undergone the stage of evaporation. We calculate the p- and g-modes for red dwarfs with masses in the interval (0.2-0.6) stellar mass. For comparison, similar calculations are presented for zero age main-sequence (ZAMS) stars of the same masses. For less massive donor stars (approximately 0.2 stellar mass) the oscillation spectrum becomes quantitatively different from that of their ZAMS counterparts. The differnce is due to the fact that a ZAMS star of 0.2 stellar mass is fully convective, while the donor star in an LMB is expected to be far from thermal equilibrium and not fully convective. As a result, in contrast to a low-mass ZAMS star, a red dwarf of the same mass in an LMB allows the existence of g-modes. We also consider tidally forced g-modes, and perform a linear analysis of these oscillations for different degrees of nonsynchronism between the orbital and spin rotation of the red dwarf component. We demonstrate the existence of a series of reasonances for the low-order g-modes which may occur in LMBs at a late stage of their evolution. We discuss the possibility that these oscillations may trigger Roche lobe overflow and sudden mass loss by the donor star. Further implications of this effect for gamma- and X-ray burst phenomena are outlined.

  10. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    CERN Document Server

    Rebassa-Mansergas, A; García-Berro, E; Freeman, K C; Cojocaru, R; Manser, C J; Pala, A F; Gänsicke, B T; Liu, X -W

    2016-01-01

    The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white dwarf-main sequence (WDMS) binaries. White dwarfs are natural clocks and can be used to derive accurate ages. Metallicities can be obtained from the main sequence companions. Since the progenitors of white dwarfs and the main sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between...

  11. Flare Activity and Polarization States of White Dwarfs in Binary Star Systems

    Science.gov (United States)

    Boneva, D.; Filipov, L.

    2017-03-01

    We investigate flare activity and emission properties of white dwarf binary stars. We apply the polarization as a mechanism to probe the flares and the released resulting radiation. The polarization could appear as patterns in these cases, as it depends mainly on the properties of radiation and geometry of the source. The observational data of MV Lyr and CH Cyg are analysed. A repeated variability in the brightness could affect the degree of polarization. Detectable variations in the polarization parameters of selected binaries for the flares activity period are shown in the result. The analysis may help us to establish more evidence of the close correlation between flares, flow structure transformation around the primary star and polarization parameter variability.

  12. A Code for Stellar Binary Evolution and its Application to the Formation of Helium White Dwarfs

    CERN Document Server

    Benvenuto, O G

    2003-01-01

    We present a numerical code intended for calculating stellar evolution in close binary systems. In doing so, we consider that mass transfer episodes occur when the stellar size overflows the corresponding Roche lobe. In such situation we equate the radius of the star with the equivalent radius of the Roche lobe. This equation is handled implicitly together with those corresponding to the whole structure of the star. We describe in detail the necessary modifications to the standard Henyey technique for treating the mass loss rate implicitly together with thin outer layers integrations. We have applied this code to the calculation of the formation of low mass, helium white dwarfs in low mass close binary systems. We found that the global numerical convergence properties are fairly good. In particular, the onset and end of mass transfer episodes is computed automatically.

  13. Desert Dwellers and Dynamic Duos: Short-Period Brown Dwarf Companions and Binary Science with Exoplanet Surveys

    Science.gov (United States)

    Fleming, Scott W.; Ge, J.

    2011-01-01

    Exoplanet transit and Doppler surveys detect many binary stars and brown dwarf companions with relative ease because the observational signatures are 1-2 orders of magnitude larger than planets. These objects allow for studies of several ancillary science topics, such as the two brown dwarf deserts and the mass-radius relationship of stars. In this dissertation talk, I will present my thesis work on conducting these studies using data from the MARVELS survey and several transit survey databases. I will present the discovery of two short-period (P MARVELS survey and its Pilot Project. Although I will focus on these two brown dwarfs, the MARVELS survey has already discovered a dozen brown dwarf companions that will serve to characterize the dryness of the brown dwarf deserts. These discoveries are needed to better understand brown dwarf formation and dynamical evolution histories. I will then present results from my work on cross-referencing spectroscopic binaries found in the MARVELS survey with archival photometry to conduct studies of the mass-radius relationship. Finally, I will present spectroscopic observations of known eclipsing binaries from transit surveys using the EXPERT instrument at the KPNO 2.1m telescope.

  14. On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral

    CERN Document Server

    McKernan, B

    2016-01-01

    White dwarfs (WDs) are believed to detonate via explosive Carbon-fusion in a Type Ia Supernova when their temperature and/or density reach the point where Carbon is ignited in a runaway reaction. Observations of the Type Ia supernova (SN) rate imply all WD binaries that merge through the emission of gravitational radiation within a Hubble time should result in SNe, regardless of total mass. Here we investigate the conditions under which a single WD in a binary system might extract energy from its orbit, depositing enough energy into a resonant mode such that it detonates before merger. We show that, ignoring non-linear effects, in a WD binary in tidal lock at small binary separations, the sustained tidal forcing of a low-order quadrupolar g-mode or a harmonic of a low-order quadrupolar p-mode could in principle drive the average temperature of Carbon nuclei in the mode over the runaway fusion threshold. If growing mode energy is thermalized at a core/atmosphere boundary, rapid Helium burning and inward-travel...

  15. Properties of the Eclipsing Double-White Dwarf Binary NLTT 11748

    CERN Document Server

    Kaplan, David L; Walker, Arielle N; Bildsten, Lars; Bours, Madelon C P; Breedt, Elmé; Copperwheat, Chris M; Dhillon, Vik S; Howell, Steve B; Littlefair, Stuart P; Shporer, Avi; Steinfadt, Justin D R

    2013-01-01

    We present high-quality ULTRACAM photometry of the eclipsing detached double-white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely-low mass (1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (~13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses we find that our primary mass (0.136-0.162 Msun) and surface gravity (log(g)=6.32-6.38; radii are 0.0423-0.0433 Rsun) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Romer delay at 7 sigma significance, providing an additional weak constraint on the masses and limiting the eccentricity to e*cos(omega)= -4e-5 +/- 5e-5. Finally, we use multi-color data to constrain the secondary's effective te...

  16. SDSS J001641-000925: THE FIRST STABLE RED DWARF CONTACT BINARY WITH A CLOSE-IN STELLAR COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Qian, S.-B.; Jiang, L.-Q.; Zhu, L.-Y.; Zhao, E. G.; He, J.-J.; Liao, W.-P.; Wang, J.-J.; Liu, L.; Zhou, X.; Liu, N. P. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernández Lajús, E. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); Soonthornthum, B.; Rattanasoon, S.; Aukkaravittayapun, S., E-mail: qsb@ynao.ac.cn [National Astronomical Research Insititude of Thailand, 191 Siriphanich Bldg., Huay Kaew Road, Chiang Mai 50200 (Thailand)

    2015-01-10

    SDSS J001641-000925 is the first red dwarf contact binary star with an orbital period of 0.19856 days that is one of the shortest known periods among M-dwarf binary systems. The orbital period was detected to be decreasing rapidly at a rate of P-dot ∼8 s yr{sup −1}. This indicated that SDSS J001641-000925 was undergoing coalescence via a dynamical mass transfer or loss and thus this red dwarf contact binary is dynamically unstable. To understand the properties of the period change, we monitored the binary system photometrically from 2011 September 2 to 2014 October 1 by using several telescopes in the world and 25 eclipse times were determined. It is discovered that the rapid decrease of the orbital period is not true. This is contrary to the prediction that the system is merging driven by rapid mass transfer or loss. Our preliminary analysis suggests that the observed minus calculated (O–C) diagram shows a cyclic oscillation with an amplitude of 0.00255 days and a period of 5.7 yr. The cyclic variation can be explained by the light travel time effect via the presence of a cool stellar companion with a mass of M {sub 3}sin i' ∼ 0.14 M {sub ☉}. The orbital separation between the third body and the central binary is about 2.8 AU. These results reveal that the rarity of red dwarf contact binaries could not be explained by rapidly dynamical destruction and the presence of the third body helps to form the red dwarf contact binary.

  17. Gravitational-radiation losses from the pulsar-white-dwarf binary PSR J1141-6545

    CERN Document Server

    Bhat, N D Ramesh; Verbiest, Joris P W

    2008-01-01

    Pulsars in close binary orbit around another neutron star or a massive white dwarf make ideal laboratories for testing the predictions of gravitational radiation and self-gravitational effects. We report new timing measurements of the pulsar-white-dwarf binary PSR J1141-6545, providing strong evidence that such asymmetric systems have gravitational wave losses that are consistent with general relativity. The orbit is found to be decaying at a rate of $1.04\\pm0.06$ times the general relativistic prediction and the Shapiro delay is consistent with the orbital inclination angle derived from scintillation measurements. The system provides a unique test-bed for tensor-scalar theories of gravity; our current measurements place stringent constraints in the theory space, with a limit of $\\alpha_0^2 < 2.1 \\times 10^{-5}$ for weakly non-linear coupling and an asymptotic limit of $\\alpha_0^2 < 3.4 \\times 10^{-6}$ for strongly non-linear coupling, where $\\alpha_0$ is the linear coupling strength of matter to an und...

  18. The formation of a helium white dwarf in a close binary system with diffusion

    Science.gov (United States)

    Benvenuto, O. G.; De Vito, M. A.

    2004-07-01

    We study the evolution of a system composed of a 1.4-Msolar neutron star and a normal, solar composition star of 2 Msolar in orbit with a period of 1 d. Calculations were performed employing the binary HYDRO code presented by Benvenuto & De Vito that handle the mass transfer rate in a fully implicit way. We then included the main standard physical ingredients together with the diffusion processes and a proper outer boundary condition. We have assumed fully non-conservative mass transfer episodes. In order to study the interplay of mass loss episodes and diffusion we considered evolutionary sequences with and without diffusion in which all Roche lobe overflows (RLOFs) produce mass transfer. Another two sequences in which thermonuclearly driven RLOFs were not allowed to drive mass transfer have been computed with and without diffusion. As far as we are aware, this study represents the first binary evolution calculations in which diffusion is considered. The system produces a helium white dwarf of ~0.21 Msolar in an orbit with a period of ~4.3 d for the four cases. We find that mass transfer episodes induced by hydrogen thermonuclear flashes drive a tiny amount of mass transfer. As diffusion produces stronger flashes, the amount of hydrogen-rich matter transferred is slightly higher than in the models without diffusion. We find that diffusion is the main agent in determining the evolutionary time-scale of low-mass white dwarfs even in the presence of mass transfer episodes.

  19. RESOLVED NEAR-INFRARED SPECTROSCOPY OF WISE J104915.57-531906.1AB: A FLUX-REVERSAL BINARY AT THE L DWARF/T DWARF TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Sheppard, Scott S. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington, DC 20015 (United States); Luhman, K. L., E-mail: aburgasser@ucsd.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-08-01

    We report resolved near-infrared spectroscopy and photometry of the recently identified brown dwarf binary WISE J104915.57-531906.1AB, located 2.02 {+-} 0.15 pc from the Sun. Low-resolution spectral data from Magellan/FIRE and IRTF/SpeX reveal strong H{sub 2}O and CO absorption features in the spectra of both components, while the secondary also exhibits weak CH{sub 4} absorption at 1.6 {mu}m and 2.2 {mu}m. Spectral indices and comparison to low-resolution spectral standards indicate component types of L7.5 and T0.5 {+-} 1, the former consistent with the optical classification of the primary. Both sources also have unusually red spectral energy distributions for their spectral types, which we attribute to enhanced condensate opacity (thick clouds). Relative photometry reveals a flux reversal between the J and K bands, with the T dwarf component being brighter in the 0.95-1.3 {mu}m region ({Delta}J = -0.31 {+-} 0.05). As with other L/T transition binaries, this reversal likely reflects the depletion of condensate opacity in the T dwarf, with the contrast enhanced by the thick clouds present in the photosphere of the L dwarf primary. The 1 {mu}m flux from the T dwarf most likely emerges from gaps in its cloud layer, as suggested by the significant optical variability detected from this source by Gillon et al. Component mass measurements of the WISE J1049-5319AB system through astrometric and component radial velocity monitoring may resolve the current debate as to whether the loss of photospheric condensate clouds at the L dwarf/T dwarf boundary is a slow or rapid process, a conceivable endeavor given its proximity, brightness, small separation (3.1 {+-} 0.3 AU), and reasonable orbital period (20-30 yr)

  20. Outliers from the Mass--Metallicity Relation I: A Sample of Metal-Rich Dwarf Galaxies from SDSS

    CERN Document Server

    Peeples, Molly S; Stanek, K Z

    2008-01-01

    We have identified a sample of 41 low-mass high--oxygen abundance outliers from the mass--metallicity relation of star-forming galaxies measured by Tremonti et al (2004). These galaxies, which have 8.6 M_B > -19.1 and 7.4 < log M_*/M_solar < 10, are surprisingly non-pathological. They have typical specific star formation rates, they are fairly isolated and, with few exceptions, have no obvious companions. Morphologically, they are similar to dwarf spheroidal or dwarf elliptical galaxies. We predict that their observed high oxygen abundances are due to relatively low gas masses, concluding that these are transitional dwarf galaxies nearing the end of their star formation activity.

  1. DE0823-49 is a juvenile binary brown dwarf at 20.7 pc

    Science.gov (United States)

    Sahlmann, J.; Burgasser, A. J.; Martín, E. L.; Lazorenko, P. F.; Bardalez Gagliuffi, D. C.; Mayor, M.; Ségransan, D.; Queloz, D.; Udry, S.

    2015-07-01

    Astrometric monitoring of the nearby early-L dwarf DE0823-49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise the system in detail. The optical spectrum shows Li i-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 + L5.5 and effective temperatures of 2150 ± 100 K and 1670 ± 140 K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80-500 Myr range. Evolutionary models predict component masses in the ranges of M1 ≃ 0.028-0.063 M⊙ and M2 ≃ 0.018-0.045 M⊙ with a mass ratio of q ≃ 0.64-0.74. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the system and allow us to investigate its kinematic properties. DE0823-49 emerges as a rare example of a nearby brown dwarf binary with orbit, component properties, and age that are characterised well. It is a juvenile resident of the solar neighbourhood, but does not appear to belong to a known young association or moving group. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 086.C-0680, 088.C-0679, 090.C-0786, and 092.C-0202.

  2. Color-Induced Displacement double stars in SDSS

    CERN Document Server

    Pourbaix, D; Knapp, G R; Gunn, J E

    2004-01-01

    We report the first successful application of the astrometric color-induced displacement technique (CID, the displacement of the photocenter between different bandpasses due to a varying contribution of differently colored components to the total light), originally proposed by Wielen (1996) for discovering unresolved binary stars. Using the Sloan Digital Sky Survey (SDSS) Data Release 1 with 2.5 million stars brighter than 21m in the u and g bands, we select 419 candidate binary stars with CID greater than 0.5 arcsec. The SDSS colors of the majority of these candidates are consistent with binary systems including a white dwarf and any main sequence star with spectral type later than ~K7. The astrometric CID method discussed here is complementary to the photometric selection of binary stars in SDSS discussed by Smolcic et al. (2004), but there is considerable overlap (15%) between the two samples of selected candidates. This overlap testifies both to the physical soundness of both methods, as well as to the as...

  3. WD0837+185: THE FORMATION AND EVOLUTION OF AN EXTREME MASS-RATIO WHITE-DWARF-BROWN-DWARF BINARY IN PRAESEPE

    Energy Technology Data Exchange (ETDEWEB)

    Casewell, S. L.; Burleigh, M. R.; Wynn, G. A.; Alexander, R. D.; Lawrie, K. A.; Jameson, R. F. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Napiwotzki, R. [Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Dobbie, P. D. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania 7001 (Australia); Hodgkin, S. T., E-mail: slc25@le.ac.uk [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2012-11-10

    There is a striking and unexplained dearth of brown dwarf companions in close orbits (<3 AU) around stars more massive than the Sun, in stark contrast to the frequency of stellar and planetary companions. Although rare and relatively short-lived, these systems leave detectable evolutionary end points in the form of white-dwarf-brown-dwarf binaries and these remnants can offer unique insights into the births and deaths of their parent systems. We present the discovery of a close (orbital separation {approx}0.006 AU) substellar companion to a massive white dwarf member of the Praesepe star cluster. Using the cluster age and the mass of the white dwarf, we constrain the mass of the white dwarf progenitor star to lie in the range 3.5-3.7 M{sub Sun} (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was {approx}2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency ({alpha}) and binding energy parameters ({lambda}) for the AGB star to {alpha}{lambda} {approx} 3. We examine the various formation scenarios and conclude that the substellar object was most likely captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.

  4. Quark-Novae in Neutron Star-White-Dwarf Binaries: A model for dim, sub-Chandrasekhar, Type Ia Supernovae ?

    CERN Document Server

    Ouyed, Rachid

    2011-01-01

    We show that appealing to a Quark-Nova in a tight NS-WD binary system, a Type Ia explosion can occur for a narrow range in white dwarf mass (0.5 2 universe, we expect QNe-Ia to manifest themselves as rare sub-Chandrasekhar Type Ias; most likely in star-forming galaxies.

  5. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    CERN Document Server

    Prieto, J L; Kochanek, C S; Weisz, D R; Baruffolo, A; Bechtold, J; Burwitz, V; DeSantis, C; Gallozzi, S; Garnavich, P M; Giallongo, E; Hill, J M; Pogge, R W; Ragazzoni, R; Speziali, R; Thompson, D J; Wagner, R M

    2007-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ -7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 272 days and the light curve is well-fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed by two yellow supergiants (V-I ~ 1 mag, T_eff = 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however note a second example. The SMC F0 supergiant R47 is a bright (MV ~ -7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well-fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star...

  6. An eccentric binary millisecond pulsar with a helium white dwarf companion in the Galactic Field

    CERN Document Server

    Antoniadis, John; Stovall, Kevin; Freire, Paulo C; Deneva, Julia S; Koester, Detlev; Jenet, Frederick; Martinez, Jose

    2016-01-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the Universe is not yet old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant host systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of a LMWD in an eccentric (e=0.13) orbit with a millisecond pulsar, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature T_eff = 8600 +/- 190 K) and 3D systemic velocity (179.5 km\\s). We also place model-independent constraints on the WD radius (R_WD = 0.024+/- 0.004/0.002 R_sun) and surface gravity (log g = 7.11 +/- 0.08/0.16 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavour a three-body formation channel. In the case of the high eccentricity being the result of a spontaneou...

  7. Discovery of a T Dwarf Binary with the Largest Known J-Band Flux Reversal

    CERN Document Server

    Looper, D L; Burgasser, A J; Kirkpatrick, J D

    2008-01-01

    We present Keck laser guide star observations of two T2.5 dwarfs - 2MASS J11061197+2754225 & 2MASS J14044941-3159329 - using NIRC2 on Keck-II and find 2MASS J14044941-3159329 to be a 0.13" binary. This system has a secondary that is 0.45 mags brighter than the primary in J-band but 0.49 mags fainter in H-band and 1.13 mags fainter in Ks-band. We use this relative photometry along with near-infrared synthetic modeling performed on the integrated light spectrum to derive component types of T1 for the primary and T5 for the secondary. Optical spectroscopy of this system obtained with Magellan/LDSS-3 is also presented. This is the fourth L/T transition binary to show a flux reversal in the 1-1.2 micron regime and this one has the largest flux reversal. Unless the secondary is itself an unresolved binary, the J-band magnitude difference between the secondary and primary shows that the J-band ``bump'' is indeed a real feature and not an artifact caused by unresolved binarity.

  8. Phase-resolved spectroscopy and Kepler photometry of the ultracompact AM CVn binary SDSS J190817.07+394036.4

    Science.gov (United States)

    Kupfer, T.; Groot, P. J.; Bloemen, S.; Levitan, D.; Steeghs, D.; Marsh, T. R.; Rutten, R. G. M.; Nelemans, G.; Prince, T. A.; Fürst, F.; Geier, S.

    2015-10-01

    Kepler satellite photometry and phase-resolved spectroscopy of the ultracompact AM CVn type binary SDSS J190817.07+394036.4 are presented. The average spectra reveal a variety of weak metal lines of different species, including silicon, sulphur and magnesium as well as many lines of nitrogen, beside the strong absorption lines of neutral helium. The phase-folded spectra and the Doppler tomograms reveal an S-wave in emission in the core of the He I 4471 Å absorption line at a period of Porb = 1085.7 ± 2.8 s identifying this as the orbital period of the system. The Si II, Mg II and the core of some He I lines show an S-wave in absorption with a phase offset of 170° ± 15° compared to the S-wave in emission. The N II, Si III and some helium lines do not show any phase variability at all. The spectroscopic orbital period is in excellent agreement with a period at Porb = 1085.108(9) s detected in the 3 yr Kepler light curve. A Fourier analysis of the Q6-Q17 short-cadence data obtained by Kepler revealed a large number of frequencies above the noise level where the majority shows a large variability in frequency and amplitude. In an Observed-minus-computed analysis, we measured a \\vert dot{P}\\vert ˜ 1.0 × 10-8 s s-1 for some of the strongest variations and set a limit for the orbital period to be \\vert dot{P}\\vert phase-folded light curve on the orbital period indicates the motion of the bright-spot. Models of the system were constructed to see whether the phases of the radial velocity curves and the light-curve variation can be combined to a coherent picture. However, from the measured phases neither the absorption nor the emission can be explained to originate in the bright-spot.

  9. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    Science.gov (United States)

    Weston, Jennifer Helen Seng; E-Nova Project

    2017-01-01

    In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the

  10. Does the Eclipsing Binary KIC 10935310 Contain a Massively Inflated M Dwarf?

    Science.gov (United States)

    Swift, Jonathan; Han, Eunkyu; Ding, Jeffrey; O'Neill, Kathleen; Lawrence, Yousef; Klink, Douglas; Muirhead, Philip Steven; Shan, Yutong

    2017-01-01

    Stellar evolution models are known to under-predict the radii of low-mass stars by between 5% and 10%, and there are a number of theoretical explanations for this discrepancy including metallicity and age variations, and magnetic suppression of convection. An eclipsing binary system in the Kepler field has been reported to have stars with masses of 0.68 and 0.34 solar and radii of 0.61 and 0.90 solar, respectively. We investigate this system with a new code under development that uses a Gaussian process technique to account for the out of eclipse light variations. We combine new NIR light curve data with the Kepler data and literature RVs to assess the feasibility that this system contains a hugely inflated M dwarf, or if another explanation of the data is preferred.

  11. Resolving M-dwarf Binaries in Young Moving Groups (YMGs) with MagAO

    Science.gov (United States)

    Shan, Yutong; Yee, Jennifer C.; Bowler, Brendan P.

    2017-01-01

    With relatively well-determined ages and uniform histories, YMGs are sparse ensembles of stars that serve as benchmarks for the transition of stellar populations from their birth clusters to the field. We present data and analysis from our Magellan Adaptive Optics (MagAO) campaign to image more than 100 K- and M-dwarf members of several YMGs in the southern sky, revealing ~30 previously unresolved visual stellar companions at separations of ~3 — 300 AU. Knowledge of their binarity is instrumental to interpreting their measured properties for a variety of applications. The tighter of these systems also represent opportunities for future monitoring and dynamical mass inference.Due to faintness and lack of clarity in their YMG memberships (until recently), the multiplicity of PMS M-dwarfs in young associations is hitherto unconstrained. Our study provides statistics for such young M-dwarf multiples in an intermediate regime of orbital distance (across the hard-soft boundary) to populate this little-explored region in the parameter space of multiple star systems. Among the ensemble properties of interest are distributions in physical separations and mass ratios for the binary components. When combined with the SACY survey (Elliott et al. 2015), whose focus is on YMG systems with earlier type primaries, we are able to provide an updated measurement of young-star multiplicity as a function of stellar mass, age, and environment, with significantly more statistical power at lower masses. We discuss implications for the universality and scalability of star formation and evolution processes, as well as comparison to measurements in related populations (e.g. cluster, field, young, old, FGK stars) which form a storyline that theory must explain.

  12. LONG-TERM EVOLUTION OF DOUBLE WHITE DWARF BINARIES ACCRETING THROUGH DIRECT IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Kyle; Kalogera, Vassiliki [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Sepinsky, Jeremy, E-mail: kremer@u.northwestern.edu, E-mail: vicky@northwestern.edu, E-mail: jeremy.sepinsky@scranton.edu [Department of Physics and Electrical Engineering, The University of Scranton Scranton, PA 18510 (United States)

    2015-06-10

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or SNe Ia. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters, which were found in previous studies. Removing these oscillations can reduce the peak mass transfer rate in some systems, keeping them from entering an unstable mass transfer phase.

  13. Long-term Evolution of Double White Dwarf Binaries Accreting through Direct Impact

    Science.gov (United States)

    Kremer, Kyle; Sepinsky, Jeremy; Kalogera, Vassiliki

    2015-06-01

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or SNe Ia. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters, which were found in previous studies. Removing these oscillations can reduce the peak mass transfer rate in some systems, keeping them from entering an unstable mass transfer phase.

  14. DE0823$-$49 is a juvenile binary brown dwarf at 20.7 pc

    CERN Document Server

    Sahlmann, J; Martín, E L; Lazorenko, P F; Gagliuffi, D C Bardalez; Mayor, M; Ségransan, D; Queloz, D; Udry, S

    2015-01-01

    Astrometric monitoring of the nearby early-L dwarf DE0823$-$49 has revealed a low-mass companion in a 248-day orbit that was announced in an earlier work. Here, we present new astrometric and spectroscopic observations that allow us to characterise the system in detail. The optical spectrum shows LiI-absorption indicative of a young age and/or substellar mass for the primary component. The near-infrared spectrum is best reproduced by a binary system of brown dwarfs with spectral types of L1.5 $+$ L5.5 and effective temperatures of $2150\\pm100$ K and $1670\\pm140$ K. To conform with the photocentric orbit size measured with astrometry and the current understanding of substellar evolution, the system must have an age in the 80--500 Myr range. Evolutionary models predict component masses in the ranges of $M_1\\simeq0.028-0.063\\,M_\\odot$ and $M_2\\simeq0.018-0.045\\,M_\\odot$ with a mass ratio of $q\\simeq0.64-0.74$. Multi-epoch radial velocity measurements unambiguously establish the three-dimensional orbit of the sys...

  15. VLT X-shooter spectroscopy of the nearest brown dwarf binary

    CERN Document Server

    Lodieu, N; Rebolo, R; Bejar, V J S; Pavlenko, Y; Perez-Garrido, A

    2015-01-01

    The aim of the project is to characterise both components of the nearest brown dwarf sytem to the Sun, WISE J104915.57-531906.1 (=Luhman16AB) at optical and near-infrared wavelengths. We obtained high signal-to-noise intermediate-resolution (R~6000-11000) optical (600-1000 nm) and near-infrared (1000-2480nm) spectra of each component of Luhman16AB, the closest brown dwarf binary to the Sun, with the X-Shooter instrument on the Very Large Telescope. We classify the primary and secondary of the Luhman16 system as L6-L7.5 and T0+/-1, respectively, in agreement with previous measurements published in the literature. We present measurements of the lithium pseudo-equivalent widths, which appears of similar strength on both components (8.2+/-1.0 Angstroms and 8.4+/-1.5 Angstroms for the L and T components, respectively). The presence of lithium (Lithium 7) in both components imply masses below 0.06 Msun while comparison with models suggests lower limits of 0.04 Msun. The detection of lithium in the T component is th...

  16. Long-term evolution of double white dwarf binaries accreting through direct impact

    CERN Document Server

    Kremer, Kyle; Kalogera, Vassiliki

    2015-01-01

    We calculate the long-term evolution of angular momentum in double white dwarf binaries undergoing direct impact accretion over a broad range of parameter space. We allow the rotation rate of both components to vary, and account for the exchange of angular momentum between the spins of the white dwarfs and the orbit, while conserving the total angular momentum. We include gravitational, tidal, and mass transfer effects in the orbital evolution, and allow the Roche radius of the donor star to vary with both the stellar mass and the rotation rate. We examine the long-term stability of these systems, focusing in particular on those systems that may be progenitors of AM CVn or Type Ia Supernovae. We find that our analysis yields an increase in the predicted number of stable systems compared to that in previous studies. Additionally, we find that by properly accounting for the effects of asynchronism between the donor and the orbit on the Roche-lobe size, we eliminate oscillations in the orbital parameters which a...

  17. The minimum mass for star formation, and the origin of binary brown dwarfs

    CERN Document Server

    Stamatellos, A P W D

    2006-01-01

    Our first aim is to calculate the minimum mass for Primary Fragmentation in a variety of potential star-formation scenarios, i.e. (i) hierarchical fragmentation of a 3-D medium; (ii) one-shot, 2-D fragmentation of a shock-compressed layer; (iii) fragmentation of a circumstellar disc. Our second aim is to evaluate the role of H2 dissociation in facilitating Secondary Fragmentation and thereby producing close, low-mass binaries. Results: (i)For contemporary, local star formation, the minimum mass for Primary Fragmentation is in the range 0.001-0.004Msun, irrespective of the scenario considered. (ii)Circumstellar discs are only able to radiate fast enough to undergo Primary Fragmentation in their cool outer parts (R>100AU). Therefore brown dwarfs (BDs) should have difficulty forming by Primary Fragmentation at R100AU could be the source of brown dwarfs in wide orbits, and could explain why massive discs with Rd>100AU are rarely seen.(iii)H2 dissociation can lead to collapse and Secondary Fragmentation, thereby c...

  18. Pruning The ELM Survey: Characterizing Candidate Low-mass White Dwarfs through Photometric Variability

    Science.gov (United States)

    Bell, Keaton J.; Gianninas, A.; Hermes, J. J.; Winget, D. E.; Kilic, Mukremin; Montgomery, M. H.; Castanheira, B. G.; Vanderbosch, Z.; Winget, K. I.; Brown, Warren R.

    2017-02-01

    We assess the photometric variability of nine stars with spectroscopic Teff and log g values from the ELM Survey that locates them near the empirical extremely low-mass (ELM) white dwarf instability strip. We discover three new pulsating stars: SDSS J135512.34+195645.4, SDSS J173521.69+213440.6, and SDSS J213907.42+222708.9. However, these are among the few ELM Survey objects that do not show radial velocity (RV) variations that confirm the binary nature expected of helium-core white dwarfs. The dominant 4.31 hr pulsation in SDSS J135512.34+195645.4 far exceeds the theoretical cut-off for surface reflection in a white dwarf, and this target is likely a high-amplitude δ Scuti pulsator with an overestimated surface gravity. We estimate the probability to be less than 0.0008 that the lack of measured RV variations in four of eight other pulsating candidate ELM white dwarfs could be due to low orbital inclination. Two other targets exhibit variability as photometric binaries. Partial coverage of the 19.342 hr orbit of WD J030818.19+514011.5 reveals deep eclipses that imply a primary radius >0.4 R⊙—too large to be consistent with an ELM white dwarf. The only object for which our time series photometry adds support to ELM white dwarf classification is SDSS J105435.78‑212155.9, which has consistent signatures of Doppler beaming and ellipsoidal variations. We conclude that the ELM Survey contains multiple false positives from another stellar population at Teff ≲ 9000 K, possibly related to the sdA stars recently reported from SDSS spectra.

  19. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary

    Science.gov (United States)

    Eigmüller, Ph.; Eislöffel, J.; Csizmadia, Sz.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, Th.; Rauer, H.; Tkachenko, A.; Voss, H.

    2016-03-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M⊙ and a radius of (1.474 ± 0.040) R⊙. The companion is an M dwarf with a mass of (0.188 ± 0.014) M⊙ and a radius of (0.234 ± 0.009) R⊙. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ˜250 Myr. The mass-radius relation of both components are in agreement with this finding.

  20. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  1. An M dwarf Companion to an F-type Star in a young main-sequence binary

    CERN Document Server

    Eigmüller, Ph; Csizmadia, Sz; Lehmann, H; Erikson, A; Fridlund, M; Hartmann, M; Hatzes, A; Pasternacki, Th; Rauer, H; Tkachenko, A; Voss, H

    2016-01-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectro- scopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 +- 0.073) Msun and a radius of (1.474 +- 0.040) Rsun. The companion is an M dwarf with a mass of (0.188 +- 0.014) Msun and a radius of (0.234 +- 0.009) Rsun. The orbital period is (1.35121 +- 0:00001)d. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ~250 Myrs. The mass-radius re...

  2. The Field White Dwarf Mass Distribution

    CERN Document Server

    Tremblay, P -E; Kalirai, J S; Gaensicke, B T; Gentile-Fusillo, N; Raddi, R

    2016-01-01

    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Never...

  3. The binary fraction, separation distribution, and merger rate of white dwarfs from the SPY sample

    CERN Document Server

    Maoz, Dan

    2016-01-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor surveY (SPY), we measure the maximal changes in radial-velocity (DRVmax) between epochs (generally two epochs, separated by up to 470d), and model the observed DRVmax statistics via Monte-Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin=0.103+/-0.017 (1-sigma, random) +/-0.015 (systematic), in the separation range ~<4AU within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power-law, dN/dt ~ a^alpha, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is alpha=-1.4+/-0.4 (1-sigma). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is R_merge=1.4e-13 to 1.3e-11 /yr/Msun (2-sigma), with a likelihood-weighted mean of R_merge=(7.3+/-2.7)e-13 /yr/Msun (1-sigm...

  4. A molecular outflow driven by the brown dwarf binary FU Tau

    CERN Document Server

    Monin, J -L; Lefloch, B; Dougados, C; de Oliveira, C Alves

    2013-01-01

    We report the detection of a molecular outflow driven by the brown dwarf binary FU Tau. Using the IRAM 30 m telescope we observed the $^{12}$CO(2-1) (CO) emission in the vicinity of FU Tau and detected a bipolar outflow by examining the wings of the CO(2-1) line as we moved away from the source position. An integrated map of the wing emission between 3 kms$^{-1}$ and 5 kms$^{-1}$ reveals a blue-shifted lobe at a position of $\\sim$ 20 \\arcsec\\ from the FU Tau system and at a position angle of $\\sim$ 20$^{\\circ}$. The beam size of the observations is $11\\arcsec$\\ hence it is not possible to distinguish between the two components of the FU Tau binary. However as optical forbidden emission, a strong tracer of the shocks caused by outflow activity, has been detected in the spectrum of FU Tau A we assume this component to be the driving source of the molecular outflow. We estimate the mass and mass outflow rate of the outflow at 4 $\\times$ 10$^{-6}$ \\Msun\\ and 6 $\\times$ 10$^{-10}$ \\Msun/yr respectively. These resu...

  5. Lucky Imaging Adaptive Optics of the brown dwarf binary GJ569Bab

    CERN Document Server

    Femenía, Autors: B; Pérez-Prieto, J A; Hildebrandt, S R; Labadie, L; Pérez-Garrido, A; Béjar, V J S; Díaz-Sánchez, A; Villó, I; Oscoz, A; López, R; Rodríguez, L F; Piqueras, J

    2010-01-01

    The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by conducting observations of the close 0\\farcs1 brown dwarf binary GJ569Bab. We took 50000 $I$-band images with our LI instrument FastCam attached to NAOMI, the 4.2-m William Herschel Telescope (WHT) AO facility. In order to extract the most of the astrometry and photometry of the GJ569Bab system we have resorted to a PSF fitting technique using the primary star GJ569A as a suitable PSF reference which exhibits an $I$-band magnitude of $7.78\\pm0.03$. The AO+LI observations at WHT were able to resolve the binary system GJ569Bab located at $4\\farcs 92 \\pm 0\\farcs05$ from GJ569A. We measure a separation of $98.4 \\pm 1.1$ mas and $I$-band magnitudes of $13.86 \\pm 0.03$ and $14.48 \\pm 0.03$ and $I-J$ colors of 2.72$\\pm$0.08 and 2.83$\\pm$0.08 for the Ba and Bb components, respectively. Our study rules out the presence of any other companion to GJ569A...

  6. Dynamical Tides in Compact White Dwarf Binaries: Tidal Synchronization and Dissipation

    CERN Document Server

    Fuller, Jim

    2011-01-01

    In compact white dwarf (WD) binary systems (with periods ranging from minutes to hours), dynamical tides involving the excitation and dissipation of gravity waves play a dominant role in determining the physical conditions of the WDs prior to mass transfer or binary merger. We calculate the amplitude of the tidally excited gravity waves as a function of the tidal forcing frequency \\omega=2(\\Omega-\\Omega_s) (where \\Omega is the orbital frequency and \\Omega_s is the spin frequency) for several realistic carbon-oxygen WD models, assuming that the waves are efficiently dissipated in the outer layer of the star by nonlinear effects or radiative damping. The mechanism of wave excitation in WDs is complex due to the sharp features associated with composition changes inside the WD, and in our WD models gravity waves are launched just below the helium-carbon boundary. We find that the tidal torque on the WD and the related tidal energy transfer rate, \\dot E_{\\rm tide}, depend on \\omega in an erratic way. On average, \\...

  7. The Formation of a Helium White Dwarf in Close Binary System with Diffusion

    CERN Document Server

    Benvenuto, O G

    2004-01-01

    We study the evolution of a system composed by a 1.4 \\msun neutron star and a normal, solar composition star of 2 \\msun in orbit with a period of 1 day. Calculations were performed employing the binary hydro code presented in Benvenuto & De Vito (2003) that handle the mass transfer rate in a fully implicit way. Now we included the main standard physical ingredients together with diffusion processes and a proper outer boundary condition. We have assumed fully non - conservative mass transfer episodes. In order to study the interplay of mass loss episodes and diffusion we considered evolutionary sequences with and without diffusion in which all Roche lobe overflows (RLOFs) produce mass transfer. Another two sequences in which thermonuclearly-driven RLOFs are not allowed to drive mass transfer have been computed with and without diffusion. To our notice, this study represents the first binary evolution calculations in which diffusion is considered. The system produces a helium white dwarf of \\sim 0.21 \\msun ...

  8. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    Science.gov (United States)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s-1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}⊙ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ˜1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  9. Studies of Virgo cluster early-type dwarf galaxies with the SDSS: I. On the possible disk nature of bright early-type dwarfs

    CERN Document Server

    Lisker, T; Grebel, E K; Binggeli, Bruno; Grebel, Eva K.; Lisker, Thorsten

    2006-01-01

    We present a systematic search for disks in 476 Virgo cluster early-type dwarf (dE) galaxies. Disk features (spiral arms, edge-on disks, or bars) were identified by applying unsharp masks to a combined image from three bands (g, r, i), as well as by subtracting the axisymmetric light distribution of each galaxy from that image. 14 objects are unambiguous identifications of disks, 10 objects show 'probable disk' features, and 17 objects show 'possible disk' features. The number fraction of these galaxies, for which we introduce the term dEdi, reaches more than 50% at the bright end of the dE population, and decreases to less than 5% for magnitudes B>16. The luminosity function of our full dE sample can be explained by a superposition of dEdis and ordinary dEs, strongly suggesting that dEdis are a distinct type of galaxy. This is supported by the projected spatial distribution: dEdis show basically no clustering and roughly follow the spatial distribution of spirals and irregulars, whereas ordinary dEs are dist...

  10. The Post-Merger Magnetized Evolution of White Dwarf Binaries: The Double-Degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    CERN Document Server

    Ji, Suoqing; Garcia-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Loren-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-01-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly-rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly-rotating white dwarf merger surrounded by a hot corona and a thick, differentially-rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an i...

  11. Spectroscopy of the extreme-ultraviolet source Feige 24 - The binary orbit and the mass of the white dwarf

    Science.gov (United States)

    Thorstensen, J. R.; Charles, P. A.; Bowyer, S.; Margon, B.

    1978-01-01

    Results are reported for coude spectroscopy of the extreme-ultraviolet white dwarf Feige 24. Radial velocities of the H-alpha, He I 5876-A, and He I 6678-A emission lines, and the underlying M-dwarf absorption features, were determined from spectrograms obtained with the Lick 3-m telescope. The velocities show a binary period of 4.239(+ or - 0.0015) days. The emission-line and absorption-line velocities agree in phase, which indicates that the emission lines originate in the atmosphere of the M-dwarf secondary as a result of reprocessing of the EUV radiation. This effect is modeled, and the observed amplitude of the emission-line variability is used to place a lower limit on the orbital inclination. From these and other data it is shown that the mass of the white dwarf lies between 0.46 and 1.24 solar masses. Some possible implications for the evolution of binary stars are briefly discussed.

  12. The binary fraction, separation distribution, and merger rate of white dwarfs from SPY

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama

    2017-01-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor surveY (SPY), we measure the maximal changes in radial-velocity (ΔRVmax) between epochs (generally two epochs, separated by up to 470 d), and model the observed ΔRVmax statistics via Monte-Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin=0.100 ± 0.020 (1σ, random) +0.02 (systematic), in the separation range ≲ 4 AU within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power-law, dN/da∝aα, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is α = -1.3 ± 0.2 (1σ) ±0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is Rmerge = (1 - 80) × 10-13 yr^{-1} M_⊙ ^{-1} (2σ), with a likelihood-weighted mean of Rmerge = (7 ± 2) × 10-13 yr^{-1} M_⊙ ^{-1} (1σ). The Milky Way's specific Type-Ia supernova (SN Ia) rate is likely RIa ≈ 1.1 × 10-13 yr^{-1} M_⊙ ^{-1} and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.

  13. The binary fraction, separation distribution, and merger rate of white dwarfs from SPY

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama

    2017-05-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor Survey (SPY), we measure the maximal changes in radial velocity (ΔRVmax) between epochs (generally two epochs, separated by up to 470 d), and model the observed ΔRVmax statistics via Monte Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin = 0.10 ± 0.02 (1σ, random) +0.02 (systematic), in the separation range ≲4 au within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power law, dN/da ∝ aα, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is α = -1.3 ± 0.2 (1σ) ±0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is Rmerge = (1-80) × 10-13 yr^{-1} M_{⊙}^{-1} (2σ), with a likelihood-weighted mean of Rmerge = (7 ± 2) × 10-13 yr^{-1} M_{⊙}^{-1} (1σ). The Milky Way's specific Type Ia supernova (SN Ia) rate is likely RIa ≈ 1.1 × 10-13 yr^{-1} M_{⊙}^{-1} and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.

  14. A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density

    Science.gov (United States)

    Marocco, F.; Jones, H. R. A.; Day-Jones, A. C.; Pinfield, D. J.; Lucas, P. W.; Burningham, B.; Zhang, Z. H.; Smart, R. L.; Gomes, J. I.; Smith, L.

    2015-06-01

    We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from the United Kingdom Deep Infrared Sky Survey. Using the YJHK photometry from the Large Area Survey and the red-optical photometry from the Sloan Digital Sky Survey we selected a sample of 262 brown dwarf candidates and we have followed-up 196 of them using the echelle spectrograph X-shooter on the Very Large Telescope. The large wavelength coverage (0.30-2.48 μm) and moderate resolution (R ˜ 5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low-gravity M dwarfs. Using a spectral indices-based technique, we identified 27 unresolved binary candidates, for which we have determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity of our targets, and we determined the distribution of the sample, which is centred at -1.7 ± 1.2 km s-1 with a dispersion of 31.5 km s-1. Using our results, we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are (0.85 ± 0.55) × 10-3 to (1.00 ± 0.64) × 10-3 objects per cubic parsec in the L4-L6.5 range, (0.73 ± 0.47) × 10-3 to (0.85 ± 0.55) × 10-3 objects per cubic parsec in the L7-T0.5 range, and (0.74 ± 0.48) × 10-3 to (0.88 ± 0.56) × 10-3 objects per cubic parsec in the T1-T4.5 range. We notice that there seems to be an excess of objects in the L-T transition with respect to the late-T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L-T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following

  15. IP Eri: A surprising long-period binary system hosting a He white dwarf

    CERN Document Server

    Merle, T; Masseron, T; Van Eck, S; Siess, L; Van Winckel, H

    2014-01-01

    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M$_\\odot$, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are $T_{\\rm eff} = 4960$ K, $\\log{g} = 3.3$, [Fe/H] = 0.09 and $\\xi = 1.5$ km/s. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, N...

  16. Spitzer 24-micron Time-Series Observations of the Eclipsing M-dwarf Binary GU Bootis

    CERN Document Server

    von Braun, Kaspar; Ciardi, David R; Lopez-Morales, Mercedes; Hoard, D W; Wachter, Stefanie

    2007-01-01

    We present a set of {\\it Spitzer} 24$\\mu$m MIPS time series observations of the M-dwarf eclipsing binary star GU Bo\\"otis. Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength (and thus limb darkening-independent) characterization of GU Boo's light curve, allowing for independent verification of the results of previous optical studies. Our results confirm previously obtained system parameters. We further compare GU Boo's measured 24$\\mu$m flux density to the value predicted by spectral fitting and find no evidence for circumstellar dust. In addition to GU Boo, we characterize (and show examples of) light curves of other objects in the field of view. Analysis of these light curves serves to characterize the photometric stability and repeatability of {\\it Spitzer's} MIPS 24\\micron array over short (days) and long (weeks) timescales at flux densities between approximately 300--2,000$\\mu$Jy. We find...

  17. A Neutron Star-White Dwarf Binary Model for Repeating Fast Radio Burst 121102

    CERN Document Server

    Gu, Wei-Min; Liu, Tong; Ma, Renyi; Wang, Junfeng

    2016-01-01

    We propose a compact binary model for the fast radio burst (FRB) repeaters, where the system consists of a magnetic white dwarf (WD) and a neutron star (NS) with strong bipolar magnetic fields. When the WD fills its Roche lobe, mass transfer will occur from the WD to the NS through the inner Lagrange point. The accreted magnetized materials may trigger magnetic reconnection when they approach the NS surface, and therefore the electrons can be accelerated to an ultra-relativistic speed. In this scenario, the curvature radiation of the electrons moving along the NS magnetic field lines can account for the characteristic frequency and the timescale of an FRB. Owing to the conservation of angular momentum, the WD may be kicked away after a burst, and the next burst may appear when the system becomes semi-detached again through the gravitational radiation. By comparing our analyses with the observations, we show that such an intermittent Roche lobe overflow mechanism can be responsible for the observed repeating b...

  18. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Wako; Suda, Takuma [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame,225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); Honda, Satoshi, E-mail: aoki.wako@nao.ac.jp, E-mail: takuma.suda@nao.ac.jp, E-mail: tbeers@nd.edu, E-mail: honda@nhao.jp [Center for Astronomy, University of Hyogo, 407-2, Nishigaichi, Sayo-cho, Sayo, Hyogo 679-5313 (Japan)

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  19. Bayesian Evidence for Two Populations of White Dwarfs: Preliminary Results

    Science.gov (United States)

    Valentim, R.; Romero, A. D.; Kepler, S. O.; Horvath, J. E.; Rangel, E. M.

    2017-03-01

    White dwarf (WD) populations are analyzed using Bayesian tools, which allows inferring possible evolutionary paths through the study of the mass values. We employed a sample of 2761 DA white dwarf stars from the SDSS, and obtained the central mass values and their corresponding standard deviations using a bimodal population as an ansatz. The results indicate a population with M1 = 0.60 M⊙ and σ1 = 0.06 M⊙, corresponding to a single stellar evolution, and a second population with M2 = 1.00 M⊙ and σ1 = 0.11 M⊙ possibly due to binary evolution resulting from mergers.

  20. Discovery of 11 New T Dwarfs in the Two Micron All-Sky Survey, Including a Possible L/T Transition Binary

    CERN Document Server

    Looper, Dagny L; Burgasser, Adam J

    2007-01-01

    We present the discovery of 11 new T dwarfs, found during the course of a photometric survey for mid-to-late T dwarfs in the 2MASS Point Source Catalog and from a proper motion selected sample of ultracool dwarfs in the 2MASS Working Database. Using the NASA Infrared Telescope Facility SpeX spectrograph, we obtained low-resolution (R~150) spectroscopy, allowing us to derive near-infrared spectral types of T2-T8. One of these new T dwarfs, 2MASS J13243559+6358284, was also discovered independently by Metchev et al., in prep. This object is spectroscopically peculiar and possibly a binary and/or very young (<300 Myr). We specifically attempted to model the spectrum of this source as a composite binary to reproduce its peculiar spectral characteristics. The latest-type object in our sample is a T8 dwarf, 2MASS J07290002-3954043, now one of the four latest-type T dwarfs known. All 11 T dwarfs are nearby given their spectrophotometric distance estimates, with 1 T dwarf within 10 pc and 8 additional T dwarfs wit...

  1. A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself to be a Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    Science.gov (United States)

    Mack, Claude E., III; Ge, Jian; Deshpande, Rohit; Wisniewski, John P.; Stassun, Keivan G.; Gaudi, B. Scott; Fleming, Scott W.; Mahadevan, Suvrath; De Lee, Nathan; Eastman, Jason; Ghezzi, Luan; González Hernández, Jonay I.; Femenía, Bruno; Ferreira, Letícia; Porto de Mello, Gustavo; Crepp, Justin R.; Mata Sánchez, Daniel; Agol, Eric; Beatty, Thomas G.; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A.; da Costa, Luiz N.; Esposito, Massimiliano; Ebelke, Garret; Hebb, Leslie; Jiang, Peng; Kane, Stephen R.; Lee, Brian; Maia, Marcio A. G.; Malanushenko, Elena; Malanushenko, Victor; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Allende Prieto, Carlos; Pepper, Joshua; Rebolo, Rafael; Roy, Arpita; Santiago, Basílio X.; Schneider, Donald P.; Simmons, Audrey; Siverd, Robert J.; Snedden, Stephanie; Tofflemire, Benjamin M.

    2013-05-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R <~ 30, 000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin i ~ 50 M Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e ~ 0.8), its relatively long period (P ~ 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (ω ~ 189°). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e ~ 0.3). Only during the ~5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of ~15 km s-1 reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  2. Formation of Binary Millisecond Pulsars by Accretion-Induced Collapse of White Dwarfs under Wind-Driven Evolution

    CERN Document Server

    Ablimit, Iminhaji

    2014-01-01

    Accretion-induced collapse of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods ($\\gtrsim 10$ days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822$-$37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled due to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with a He WD companion, with the orbital periods distributed between $\\gtrsim 0.1$ day and $\\lesssim 30$ days, while...

  3. Modeling the Effect of Kick Velocity during the Accretion Induced Collapse of White Dwarfs on Binary Pulsars

    Science.gov (United States)

    Taani, Ali

    2016-07-01

    The kick velocity which arises during the binary interaction plays an important role in disruption or surviving the binary systems. This paper attempts to draw an evolutionary connection of the long-period (Porb ≥ 2 d) millisecond pulsars (MSPs) with orbits of low eccentricity (e ≤ 0.2). We propose that a kick velocity caused by dynamical effects of asymmetric collapse imparted to the companion star through an accretion induced collapse (AIC) of white dwarfs-that become unstable once they approach the Chandrasekhar limit-can account for the differences in their orbital period distributions. Furthermore, in some cases, an appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. In this case only the binding energy equivalent (0.2M⊙) of mass is lost and the system remains intact in a symmetric collapse. Consequently, the AIC decreases the mass of the neutron star and increases the orbital period leading to orbit circularization. We present the results of our model and discuss the possible implications for the binary MSPs in galactic disk and globular clusters.

  4. CFBDSIR J1458+1013B: A Very Cold (>T10) Brown Dwarf in a Binary System

    CERN Document Server

    Liu, Michael C; Dupuy, Trent J; Bowler, Brendan P; Albert, Loic; Artigau, Etienne; Reyle, Celine; Forveille, Thierry; Delfosse, Xavier

    2011-01-01

    (Abridged) We have identified CFBDSIR J1458+10 as a 0.11" binary using Keck laser guide star AO imaging. We measure a parallactic distance of 23.1+/-2.4 pc to the system based on CFHT near-IR astrometry. We assign a spectral type of T9.5 to the integrated-light near-IR spectrum, and model atmospheres suggest a slightly higher temperature and surface gravity than the T10 dwarf UGPS J0722-05. Thus, CFBDSIR J1458+10AB is the coolest brown dwarf binary to date. Its secondary component has an absolute H-band magnitude that is 1.9+/-0.3 mag fainter than UGPS J0722-05, giving an inferred spectral type of >T10. The secondary's bolometric luminosity of ~2 x 10^{-7} L_sun makes it the least luminous known brown dwarf by a factor of 4-5. By comparing to models and known T9-T10 objects, we estimate a temperature of 370+/-40 K and a mass of 6-15 Mjup for CFBDSIR J1458+10B. At such extremes, atmospheric models predict the onset of novel photospheric processes, namely the appearance of water clouds and the removal of strong...

  5. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    Science.gov (United States)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially

  6. SDSS J074511.56+194926.5: Discovery of a metal-rich and tidally distorted extremely low mass white dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Gianninas, A.; Barber, Sara D.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Hermes, J. J.; Harrold, Samuel T. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Dufour, P., E-mail: alexg@nhn.ou.edu [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada)

    2014-02-01

    We present the discovery of an unusual, tidally distorted extremely low mass white dwarf (WD) with nearly solar metallicity. Radial velocity measurements confirm that this is a compact binary with an orbital period of 2.6975 hr and a velocity semi-amplitude of K = 108.7 km s{sup –1}. Analysis of the hydrogen Balmer lines yields an effective temperature of T {sub eff} = 8380 K and a surface gravity of log g = 6.21 that in turn indicate a mass of M = 0.16 M {sub ☉} and a cooling age of 4.2 Gyr. In addition, a detailed analysis of the observed metal lines yields abundances of log (Mg/H) = –3.90, log (Ca/H) = –5.80, log (Ti/H) = –6.10, log (Cr/H) = –5.60, and log (Fe/H) = –4.50, similar to the sun. We see no evidence of a debris disk from which these metals would be accreted, though the possibility cannot entirely be ruled out. Other potential mechanisms to explain the presence of heavy elements are discussed. Finally, we expect this system to ultimately undergo unstable mass transfer and merge to form a ∼0.3-0.6 M {sub ☉} WD in a few Gyr.

  7. The evolutionary status of the white dwarf companion of the binary pulsar PSR J1713+0747

    CERN Document Server

    Benvenuto, O G; De Vito, M A

    2006-01-01

    Splaver and coworkers have measured the masses of the white dwarf and the neutron star components of the PSR J1713+0747 binary system pair by Shapiro Delay. We attempt to find the original configuration of this system performing a set of binary evolution calculations to simultaneously account for the masses of both stars and the orbital period. We considered initial masses of 1.5 and 1.4 \\msun for the normal (donor) and the neutron star, respectively. We assumed two metallicity values (Z = 0.010 and 0.020), and an initial orbital period near 3 days. We assume that the neutron star is only able to retain \\lesssim 0.10 of the matter transferred by the donor star. Calculations were performed employing our binary hydro code that handles the mass transfer rate in a fully implicit way together with state-of-the-art physical ingredients, diffusion and a non-grey atmospheres. We compare the structure of the resulting white dwarfs with the characteristic age of PSR J1713+0747 finding a nice agreement with observations...

  8. Constraints on the binary properties of mid- to late T dwarfs from Hubble space telescope WFC3 observations

    Energy Technology Data Exchange (ETDEWEB)

    Aberasturi, M.; Solano, E. [Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mora, A. [ESA–ESAC, Gaia SOC. P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Martín, E. L. [Centro de Astrobiología (INTA-CSIC), Departamento de Astrofísica. Carretera de Ajalvir km 4, E-28550 Torrejín de Ardoz, Madrid (Spain); Reid, I. N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Looper, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-12-01

    We used Hubble Space Telescope/Wide Field Camera 3 (WFC3) observations of a sample of 26 nearby (≤20 pc) mid- to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs (BDs). Tightly separated companions were searched for using a double point-spread-function-fitting algorithm. We also compared our detection limits based on simulations to other prior T5+ BD binary programs. No new wide or tight companions were identified, which is consistent with the number of known T5+ binary systems and the resolution limits of WFC3. We use our results to add new constraints to the binary fraction (BF) of T-type BDs. Modeling selection effects and adopting previously derived separation and mass ratio distributions, we find an upper limit total BF of <16% and <25% assuming power law and flat mass ratio distributions, respectively, which are consistent with previous results. We also characterize a handful of targets around the L/T transition.

  9. A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary

    CERN Document Server

    Mack, Claude E; Deshpande, Rohit; Wisniewski, John P; Stassun, Keivan G; Gaudi, B Scott; Fleming, Scott W; Mahadevan, Suvrath; De Lee, Nathan; Eastman, Jason; Ghezzi, Luan; Hernandez, Jonay I Gonzalez; Femenia, Bruno; Ferreira, Leticia; de Mello, Gustavo Porto; Crepp, Justin R; Sanchez, Daniel Mata; Agol, Eric; Beatty, Thomas G; Bizyaev, Dmitry; Brewington, Howard; Cargile, Phillip A; da Costa, Luiz N; Esposito, Massimiliano; Ebelke, Garret; Hebb, Leslie; Jiang, Peng; Kane, Stephen R; Lee, Brian; Maia, Marcio A G; Malanushenko, Elena; Malanushenko, Victor; Oravetz, Daniel; Paegert, Martin; Pan, Kaike; Prieto, Carlos Allende; Peper, Joshua; Rebolo, Rafael; Roy, Arpita; Santiago, Basilio X; Schneider, Donald P; Simmons, Audrey; Siverd, Robert J; Snedden, Stephanie; Tofflemire, Benjamin M

    2013-01-01

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very low-mass companion: its large eccentricity (e~0.8), its relatively long period (P~238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight (omega~189 degrees). As a result of these properties, for ~95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding ...

  10. On the possibility of a helium white dwarf donor in the presumed ultracompact binary 2S 0918-549

    CERN Document Server

    in 't Zand, J J M; Van der Sluys, M V; Verbunt, F; Pols, O R

    2005-01-01

    2S 0918-549 is a low-mass X-ray binary (LMXB) with a low optical to X-ray flux ratio. Probably it is an ultracompact binary with an orbital period shorter than 60 min. Such binaries cannot harbor hydrogen rich donor stars. As with other (sometimes confirmed) ultracompact LMXBs, 2S 0918-549 is observed to have a high neon-to-oxygen abundance ratio (Juett et al. 2001) which has been used to argue that the companion star is a CO or ONe white dwarf. However, type-I X-ray bursts have been observed from several of these systems implying the presence of hydrogen or helium on the neutron star surface. In this paper, we argue that the companion star in 2S 0918-549 is a helium white dwarf We first present a Type I X-ray burst from 2S 0918-549 with a long duration of 40 minutes. We show that this burst is naturally explained by accretion of pure helium at the inferred accretion rate of ~0.01 times the Eddington accretion rate. At higher accretion rates of ~0.1 Eddington, hydrogen is required to explain long duration bur...

  11. Connections Between Tilted Accretion Disks Around White Dwarfs and Substellar Companions

    CERN Document Server

    Montgomery, M M

    2010-01-01

    Accretion disks in white dwarf systems are believed to be tilted. In a recent publication, the lift force has been suggested to be a source to disk tilt, a source that is likely relevant to all accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether a brown dwarf donor star accreting onto a white dwarf primary has enough mass to contribute to disk tilt. We also would like to obtain whether a white dwarf - brown dwarf close binary system has enough mass to induce and maintain a disk tilt of four degrees. We adopt SDSS 103533.03+055158.4 as our model system which has a mass transfer rate of \\( (10\\pm2) \\times 10^{-12} \\) M$_{\\odot}$ yr$^{-1}$. We find that the brown dwarf in SDSS 1035 does not have enough mass to contribute to disk tilt. We find a gross magnitude of the minimum mass transfer rate to be $\\sim10^{-10}$M$_{\\odot}$yr$^{-1}$. We conclude that SDSS 1035 does not ...

  12. Connections between Tilted Accretion Disks around White Dwarfs and Substellar Companions

    CERN Document Server

    Montgomery, M M

    2011-01-01

    Accretion disks in white dwarf systems are believed to be tilted. In a recent publication, the lift force has been suggested to be a source to disk tilt, a source that is likely relevant to all accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether a brown dwarf donor star accreting onto a white dwarf primary has enough mass to contribute to disk tilt. We also would like to obtain whether a white dwarf - brown dwarf close binary system has enough mass to induce and maintain a disk tilt of four degrees. We adopt SDSS 103533.03+055158.4 as our model system which has a mass transfer rate of (10 \\pm 2) x 10-12 M* yr-1. We find that the brown dwarf in SDSS 1035 does not have enough mass to contribute to disk tilt. We find a gross magnitude of the minimum mass transfer rate to be - 10-10 M* yr-1 . We conclude that SDSS 1035 does not seem to have a high enough mass transfer rat...

  13. WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System

    CERN Document Server

    Gelino, Christopher R; Cushing, Michael C; Eisenhardt, Peter R; Griffith, Roger L; Mainzer, Amanda K; Marsh, Kenneth A; Skrutskie, Michael F; Wright, Edward L

    2011-01-01

    The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging can not only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer (WISE) and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9.

  14. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE: II. Binary Fraction

    CERN Document Server

    Aoki, Wako; Beers, Timothy C; Honda, Satoshi

    2014-01-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor, Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] < -3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey, and observed at high spectral resolution in a previous study by Aoki et al. That survey reported three double-lined spectroscopic...

  15. Two Extraordinary Substellar Binaries at the T/Y Transition and the Y-Band Fluxes of the Coolest Brown Dwarfs

    CERN Document Server

    Liu, Michael C; Bowler, Brendan P; Leggett, S K; Best, William M J

    2012-01-01

    Using Keck laser guide star adaptive optics imaging, we have found that the T9 dwarf WISE J1217+1626 and T8 dwarf WISE J1711+3500 are exceptional binaries, with unusually wide separations (~0.8 arcsec, 8-15 AU), large near-IR flux ratios (~2-3 mags), and small mass ratios (~0.5). Keck/NIRSPEC H-band spectra give a spectral type of Y0 for WISE J1217+1626B, and photometric estimates suggest T9.5 for WISE J1711+3500B. The WISE J1217+1626AB system is very similar to the T9+Y0 binary CFBDSIR J1458+1013AB; these two systems are the coldest known substellar multiples, having secondary components of ~400 K and being planetary-mass binaries if their ages are <~1 Gyr. Both WISE J1217+1626B and CFBDSIR J1458+1013B have strikingly blue Y-J colors compared to previously known T dwarfs, including their T9 primaries. Combining all available data, we find that Y-J color drops precipitously between the very latest T dwarfs and the Y dwarfs. The fact that this is seen in (coeval, mono-metallicity) binaries demonstrates that...

  16. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually `merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  17. CFBDS J111807-064016: A new L/T transition brown dwarf in a binary system

    CERN Document Server

    Reylé, C; Artigau, É; Delfosse, X; Albert, L; Forveille, T; Rajpurohit, A S; Allard, F; Homeier, D; Robin, A C

    2013-01-01

    Stellar-substellar binary systems are quite rare, and provide interesting benchmarks. They constrain the complex physics of substellar atmospheres, because several physical parameters of the substellar secondary can be fixed from the much better characterized main sequence primary. We report the discovery of CFBDS J111807-064016, a T2 brown dwarf companion to 2MASS J111806.99-064007.8, a low-mass M4.5-M5 star. The brown-dwarf was identified from the Canada France Brown Dwarf Survey. At a distance of 50-120 pc, the 7.7 arcsec angular separation corresponds to projected separations of 390-900 AU. The primary displays no Halpha emission, placing a lower limit on the age of the system of about 6 Gyr. The kinematics is also consistent with membership in the old thin disc. We obtained near-infrared spectra, which together with recent atmosphere models allow us determine the effective temperature and gravity of both components. From these parameters and the age constraint, evolutionary models estimate masses of 0.10...

  18. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M ☉ and 0.034 M ☉, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known...

  19. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    CERN Document Server

    Morgan, Dylan P; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M

    2012-01-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf -- main sequence binaries from Rebassa et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space to construct a sample of 1756 WD+dM high-quality pairs from the SDSS DR8 spectroscopic database. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{\\alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types \\leqM7. Our results show that early-type M dwarfs (\\leqM4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just pas...

  20. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    CERN Document Server

    Gagliuffi, Daniella C Bardalez; Burgasser, Adam J

    2015-01-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341$-$3052, SDSS J1511+0607 and SDSS J2052$-$1609; the first two are resolved for the first time. All three have projected separations $<8$ AU and estimated periods of $14-80$ years. We also report a preliminary orbit determination for SDSS J2052$-$1609 based on six epochs of resolved astrometry between 2005$-$2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of $47^{+12}_{-11}\\%$ for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging.

  1. A CAUTIONARY TALE: MARVELS BROWN DWARF CANDIDATE REVEALS ITSELF TO BE A VERY LONG PERIOD, HIGHLY ECCENTRIC SPECTROSCOPIC STELLAR BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Claude E. III; Stassun, Keivan G.; De Lee, Nathan [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ge, Jian; Fleming, Scott W. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL, 32611-2055 (United States); Deshpande, Rohit; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Gaudi, B. Scott; Eastman, Jason; Beatty, Thomas G. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Observatorio Nacional, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Gonzalez Hernandez, Jonay I.; Femenia, Bruno; Mata Sanchez, Daniel [Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ferreira, Leticia; Porto de Mello, Gustavo [Laboratorio Interinstitucional de e-Astronomia-LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Agol, Eric [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bizyaev, Dmitry, E-mail: claude.e.mack@vanderbilt.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-05-15

    We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R {approx}< 30, 000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin i {approx} 50 M{sub Jup}) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very-low-mass companion: its large eccentricity (e {approx} 0.8), its relatively long period (P {approx} 238 days), and the approximately perpendicular orientation of the semi-major axis with respect to the line of sight ({omega} {approx} 189 Degree-Sign ). As a result of these properties, for {approx}95% of the orbit the two sets of stellar spectral lines are completely blended, and the RV measurements based on centroiding on the apparently single-lined spectrum is very well fit by an orbit solution indicative of a brown dwarf companion on a more circular orbit (e {approx} 0.3). Only during the {approx}5% of the orbit near periastron passage does the true, double-lined nature and large RV amplitude of {approx}15 km s{sup -1} reveal itself. The discovery of this binary system is an important lesson for RV surveys searching for substellar companions; at a given resolution and observing cadence, a survey will be susceptible to these kinds of astrophysical false positives for a range of orbital parameters. Finally, for surveys like MARVELS that lack the resolution for a useful line bisector analysis, it is imperative to monitor the peak of the cross-correlation function for suspicious changes in width or shape, so that such false positives can be flagged during the candidate vetting process.

  2. Constraining RRc candidates using SDSS colours

    CERN Document Server

    Bányai, E; Molnár, L; Dobos, L; Szabó, R

    2016-01-01

    The light variations of first-overtone RR Lyrae stars and contact eclipsing binaries can be difficult to distinguish. The Catalina Periodic Variable Star catalog contains several misclassified objects, despite the classification efforts by Drake et al. (2014). They used metallicity and surface gravity derived from spectroscopic data (from the SDSS database) to rule out binaries. Our aim is to further constrain the catalog using SDSS colours to estimate physical parameters for stars that did not have spectroscopic data.

  3. Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii

    Science.gov (United States)

    Buckley, D. A. H.; Meintjes, P. J.; Potter, S. B.; Marsh, T. R.; Gänsicke, B. T.

    2017-01-01

    The variable star AR Scorpii (AR Sco) was recently discovered to pulse in brightness every 1.97 min from ultraviolet wavelengths into the radio regime. The system is composed of a cool, low-mass star in a tight, 3.55-hour orbit with a more massive white dwarf. Here we report new optical observations of AR Sco that show strong linear polarization (up to 40%) that varies strongly and periodically on both the spin period of the white dwarf and the beat period between the spin and orbital period, as well as low-level (up to a few per cent) circular polarization. These observations support the notion that, similar to neutron-star pulsars, the pulsed luminosity of AR Sco is powered by the spin-down of the rapidly rotating white dwarf that is highly magnetized (up to 500 MG). The morphology of the modulated linear polarization is similar to that seen in the Crab pulsar, albeit with a more complex waveform owing to the presence of two periodic signals of similar frequency. Magnetic interactions between the two component stars, coupled with synchrotron radiation from the white dwarf, power the observed polarized and non-polarized emission. AR Sco is therefore the first example of a white dwarf pulsar.

  4. Hot subdwarf binaries from the MUCHFUSS project - Analysis of 12 new systems and a study of the short-period binary population

    CERN Document Server

    Kupfer, T; Heber, U; Østensen, R H; Barlow, B N; Maxted, P F L; Heuser, C; Schaffenroth, V; Gänsicke, B T

    2015-01-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions like massive white dwarfs (M>1.0 M$_\\odot$), neutron stars, or stellar-mass black holes. We present orbital and atmospheric parameters and put constraints on the nature of the companions of 12 close hot subdwarf B star (sdB) binaries found in the course of the MUCHFUSS project. The systems show periods between 0.14 and 7.4 days. Three systems most likely have white dwarf companions. SDSS J083006.17+475150.3 is likely to be a rare example of a low-mass helium-core white dwarf. SDSS J095101.28+034757.0 shows an excess in the infrared that probably originates from a third companion in a wide orbit. SDSS J113241.58-063652.8 is the first helium deficient sdO star with a confirmed close companion. This study brings to 142 the number of sdB binaries with orbital periods of less than 30 days and with measured mass functions. We present an analysis of the minimu...

  5. IRAS 16253-2429: the First Proto-Brown Dwarf Binary Candidate Identified through Dynamics of Jets

    CERN Document Server

    Hsieh, Tien-Hao; Belloche, Arnaud; Wyrowski, Friedrich

    2016-01-01

    The formation mechanism of brown dwarfs (BDs) is one of the long-standing problems in star formation because the typical Jeans mass in molecular clouds is too large to form these substellar objects. To answer this question, it is crucial to study a BD at the embedded phase. IRAS 16253-2429 is classified as a very low luminosity object (VeLLO) with internal luminosity 0.1 Lsun. VeLLOs are believed to be very low-mass protostars or even proto-BDs. We observed the jet/outflow driven by IRAS 16253-2429 in CO (2-1), (6-5), and (7-6) using the IRAM 30 m and APEX telescopes and the SMA in order to study its dynamical features and physical properties. Our SMA map reveals two protostellar jets, indicating the existence of a proto-binary system as implied by the precessing jet detected in H2 emission. We detect a wiggling pattern in the position-velocity diagrams along the jet axes, which is likely due to the binary orbital motion. Based on this, we derive the current mass of the binary as ~0.032 Msun. Given the low en...

  6. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  7. The evolutionary status of the white dwarf companion of the binary pulsar PSR J1713+0747

    Science.gov (United States)

    Benvenuto, O. G.; Rohrmann, R. D.; De Vito, M. A.

    2006-03-01

    Recently Splaver et al. have measured the masses of the white dwarf and the neutron star (NS) components of the PSR J1713+0747 binary system pair by means of the general relativistic effect known as Shapiro delay with very high accuracy. Employing these data we attempt to find the original configuration that evolved to the observed system. For this purpose we perform a set of binary evolution calculations trying to simultaneously account for the masses of both stars and the orbital period. In doing so, we considered normal (donor) stars with an initial mass of 1.5Msolar, while for the neutron star companion we assumed a mass of 1.4Msolar. We assumed two metallicity values for the donor star (Z= 0.010 and 0.020) and that the initial orbital period was nearly 3d. In order to get a good agreement between the masses of the models and observations we had to assume that the NS is only able to retain Benvenuto & De Vito, that handles the mass transfer rate in a fully implicit way together with state-of-the-art physical ingredients and diffusion processes. Now our code also includes a detailed non-grey treatment for the atmospheres of white dwarfs (WDs). We compare the structure of the resulting WDs with the characteristic age of PSR J1713+0747 finding a nice agreement with observations by Lundgren et al. especially for the case of a donor star with Z= 0.010. This result indicates that, at least for the purposes of this paper, the evolution of this kind of binary system is fairly well understood. The models predict that, due to diffusion, the atmosphere of the white dwarf is an almost hydrogen-pure one. We find that such structures are unable to account for the colours measured by Lundgren et al. within their error bars. Thus, in spite of the very good agreement of the model with the main characteristics of the system, we find that some discrepancies in the WD emergent radiation remain to be explained.

  8. Arbitrarily Degenerate Helium White Dwarfs as Donors in AM Canum Venaticorum Binaries

    NARCIS (Netherlands)

    Deloye, C.J.; Bildsten, L.; Nelemans, G.A.

    2005-01-01

    We apply the Deloye & Bildsten isentropic models for donors in ultracompact low-mass X-ray binaries to the AM CVn population of ultracompact, interacting binaries. The mass-radius relations of these systems' donors in the mass range of interest (M2<0.1Msolar) are not single-val

  9. The SDSS-HET Survey of Kepler Eclipsing Binaries: Spectroscopic Dynamical Masses of the Kepler-16 Circumbinary Planet Hosts

    CERN Document Server

    Bender, Chad F; Deshpande, Rohit; Wright, Jason T; Roy, Arpita; Terrien, Ryan C; Sigurdsson, Steinn; Ramsey, Lawrence W; Schneider, Donald P; Fleming, Scott W

    2012-01-01

    We have used high-resolution spectroscopy to observe the Kepler-16 eclipsing binary as a double-lined system, and measure precise radial velocities for both stellar components. These velocities yield a dynamical mass-ratio of q=0.2994+-0.0031. When combined with the inclination, i=90.3401+0.0016-0.0019 deg, measured from the Kepler photometric data by Doyle et al. 2011, we derive dynamical masses for the Kepler-16 components of M_A=0.654+-0.017 M_sun and M_B=0.1959+-0.0031 M_sun, a precision of 2.5% and 1.5% respectively. Our results confirm at the ~2% level the mass-ratio derived by Doyle et al. with their photometric-dynamical model, q=0.2937+-0.0006. These are among the most precise spectroscopic dynamical masses ever measured for low-mass stars, and provide an important direct test of the results from the photometric-dynamical modeling technique.

  10. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  11. Detection of binary and multiple systems among rapidly rotating K and M dwarf stars from Kepler data

    CERN Document Server

    Oláh, Katalin; Joss, Matthew

    2016-01-01

    From an examination of ~18,000 Kepler light curves of K- and M-stars we find some 500 which exhibit rotational periods of less than 2 days. Among such stars, approximately 50 show two or more incommensurate periodicities. We discuss the tools that allow us to differentiate between rotational modulation and other types of light variations, e.g., due to pulsations or binary modulations. We find that these multiple periodicities are independent of each other and likely belong to different, but physically bound, stars. This scenario was checked directly by UKIRT and adaptive optics imaging, time-resolved Fourier transforms, and pixel-level analysis of the data. Our result is potentially important for discovering young multiple stellar systems among rapidly rotating K- and M-dwarfs.

  12. The Time-Domain Spectroscopic Survey: Understanding the Optically Variable Sky with SEQUELS in SDSS-III

    Science.gov (United States)

    Ruan, John J.; Anderson, Scott F.; Green, Paul J.; Morganson, Eric; Eracleous, Michael; Myers, Adam D.; Badenes, Carles; Bershady, Matthew A.; Brandt, William N.; Chambers, Kenneth C.; Davenport, James R. A.; Dawson, Kyle S.; Flewelling, Heather; Heckman, Timothy M.; Isler, Jedidah C.; Kaiser, Nick; Kneib, Jean-Paul; MacLeod, Chelsea L.; Paris, Isabelle; Ross, Nicholas P.; Runnoe, Jessie C.; Schlafly, Edward F.; Schmidt, Sarah J.; Schneider, Donald P.; Schwope, Axel D.; Shen, Yue; Stassun, Keivan G.; Szkody, Paula; Waters, Christoper Z.; York, Donald G.

    2016-07-01

    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ˜220,000 optically variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ˜320 deg2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population based on their Hα emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ˜15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.

  13. Adaptive Optics imaging of VHS 1256-1257: A Low Mass Companion to a Brown Dwarf Binary System

    CERN Document Server

    Stone, Jordan M; Kratter, Kaitlin M; Dupuy, Trent J; Close, Laird M; Eisner, Josh A; Fortney, Jonathan J; Hinz, Philip M; Males, Jared R; Morley, Caroline V; Morzinski, Katie M; Ward-Duong, Kimberly

    2016-01-01

    Recently, Gauza et al. (2015) reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion's absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age $\\sim300$ Myr the A and B components each have a mass of $64.6^{+0.8}_{-2.0}~M_{\\mathrm{Jup}}$, and the b component has a mass of $11.2^{+9.7}_{-1.8}$, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of $17.2\\pm2.6$ pc and the parallax distance of $12.7\\pm1.0$ pc. At 12.7 pc VHS1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particul...

  14. The shortest period sdB plus white dwarf binary CD-30 11223 (GALEX J1411-3053)

    CERN Document Server

    Vennes, S; O'Toole, S J; Nemeth, P; Burton, D

    2012-01-01

    We report on the discovery of the shortest period binary comprising a hot subdwarf star (CD-30 11223, GALEX J1411-3053) and a massive unseen companion. Photometric data from the All Sky Automated Survey show ellipsoidal variations of the hot subdwarf primary and spectroscopic series revealed an orbital period of 70.5 minutes. The large velocity amplitude suggests the presence of a massive white dwarf in the system (M_2/M_sun > 0.77) assuming a canonical mass for the hot subdwarf (0.48 M_sun), although a white dwarf mass as low as 0.75 M_sun is allowable by postulating a subdwarf mass as low as 0.44 M_sun. The amplitude of ellipsoidal variations and a high rotation velocity imposed a high-inclination to the system (i > 68 deg) and, possibly, observable secondary transits (i > 74 deg). At the lowest permissible inclination and assuming a subdwarf mass of ~0.48 M_sun, the total mass of the system reaches the Chandrasekhar mass limit at 1.35 M_sun and would exceed it for a subdwarf mass above 0.48 M_sun. The syst...

  15. Fundamental Stellar Parameters with HST/FGS Dynamical Masses and HST/STIS Spectroscopy of M Dwarf Binaries

    Science.gov (United States)

    Dieterich, Sergio; Henry, Todd J.; Benedict, George Fritz; Jao, Wei-Chun; White, Russel; RECONS Team

    2017-01-01

    Mass is the most fundamental stellar parameter, and yet model independent dynamical masses can only be obtained for a small subset of closely separated binaries. The high angular resolution needed to characterize individual components of those systems means that little is known about the details of their atmospheric properties. We discuss the results of HST/STIS observations yielding spatially resolved optical spectra for six closely separated M dwarf systems, all of which have HST/FGS precision dynamical masses for the individual components ranging from 0.4 to 0.076 MSol. We assume coevality and equal metallicity for the components of each system and use those constraints to perform stringent tests of the leading atmospheric and evolutionary model families throughout the M dwarf mass range. We find the latest models to be in good agreement with observations. We discuss specific spectral diagnostic features such as the well-known gravity sensitive Na and K lines and address ways to break the temperature-metallicity-gravity degeneracy that often hinders the interpretation of these features. We single out a comparison between the systems GJ 469 AB and G 250-29 AB, which have nearly identical mass configurations but different metallicities, thus causing marked differences in atmospheric properties and overall luminosities.This work is funded by NASA grant HST-GO-12938. and By the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through NSF grant AST-1400680.

  16. New Evidence for a Substellar Luminosity Problem: Dynamical Mass for the Brown Dwarf Binary Gl 417BC

    CERN Document Server

    Dupuy, Trent J; Ireland, Michael J

    2014-01-01

    We present new evidence for a problem with cooling rates predicted by substellar evolutionary models that implies model-derived masses in the literature for brown dwarfs and directly imaged planets may be too high. Based on our dynamical mass for Gl 417BC (L4.5+L6) and a gyrochronology system age from its young, solar-type host star, commonly used models predict luminosities 0.2$-$0.4 dex lower than we observe. This corroborates a similar luminosity$-$age discrepancy identified in our previous work on the L4+L4 binary HD 130948BC, which coincidentally has nearly identical component masses ($\\approx$50$-$55 $M_{\\rm Jup}$) and age ($\\approx$800 Myr) as Gl 417BC. Such a luminosity offset would cause systematic errors of 15%$-$25% in model-derived masses at this age. After comparing different models, including cloudless models that should not be appropriate for mid-L dwarfs like Gl 417BC and HD 130948BC but actually match their luminosities better, we speculate the observed over-luminosity could be caused by opac...

  17. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    CERN Document Server

    Fenn, D; Gawryszczak, A

    2016-01-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a co-rotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multi-grid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heat...

  18. Hubble Space Telescope NICMOS Observations of T Dwarfs: Brown Dwarf Multiplicity and New Probes of the L/T Transition

    CERN Document Server

    Burgasser, A J; Cruz, K L; Reid, I N; Leggett, S K; Liebert, J; Burrows, A; Brown, M E; Burgasser, Adam J.; Cruz, Kelle L.; Leggett, Sandy K.; Liebert, James; Burrows, Adam; Brown, Michael E.

    2006-01-01

    We present the results of a Hubble Space Telescope NICMOS imaging survey of 22 T-type field brown dwarfs. Five are resolved as binary systems with angular separations of 0"05-0"35, and companionship is established on the basis of component F110W-F170M colors (indicative of CH4 absorption) and low probabilities of background contamination. Prior ground-based observations show 2MASS 1553+1532AB to be a common proper motion binary. The properties of these systems - low multiplicity fraction (11[+7][-3]% resolved, as corrected for sample selection baises), close projected separations (a = 1.8-5.0 AU) and near-unity mass ratios - are consistent with previous results for field brown dwarf binaries. Three of the binaries have components that span the poorly-understood transition between L dwarfs and T dwarfs. Spectral decomposition analysis of one of these, SDSS 1021-0304AB, reveals a peculiar flux reversal between its components, as its T5 secondary is ~30% brighter at 1.05 and 1.27 micron than its T1 primary. This...

  19. Investigating the Properties of Low-Mass Stars Using Spectra of Wide Binaries

    Science.gov (United States)

    Schluns, Kyle; West, A. A.; Dhital, S.; Massey, A. P.

    2013-01-01

    We present results from a study designed to characterize wide, low-mass (Sun) binaries identified in the Sloan Digital Sky Survey (SDSS). We examine the SDSS database level completeness (for identifying visual binaries) and analyze the pairs that both have individual SDSS spectra. A comprehensive by-eye examination reveals that a significant fraction of the sources within 1" of the primary stellar source are misclassified as duplicate detections and, hence, are omitted from the photometric primary catalog in the SDSS database. This discrepancy has a noticeable effect on estimates of the binary fraction, mass function, luminosity function, and other studies that rely on large, photometric samples of low-mass stars. Due to their coeval nature, binaries with at least one low-mass component are important for calibrating the age-activity relation and the relative metallicity scales. Better defined stellar ages and metallicities allow for a proper analysis of stellar and Galactic evolution using ubiquitous low-mass stars. We constructed a spectroscopic sample of wide binaries, for which there is at least one low-mass component and an individual spectrum for each star. Each binary was verified using measurements of their common proper motions and a chance alignment probability calculated from a six-dimensional model of the Milky Way. The orbital separation of the binary components provides an extra age constraint due to mechanisms that destroy wide binaries during thin-disk dynamical heating. We evaluate the behavior of the magnetic activity in coeval systems, with a specific focus on the dependence of activity on orbital separation and location in the Galactic disk. The preliminary results of our analysis will help calibrate the age-activity relation in M dwarfs. In addition, we calibrate the relative metallicity scale for metal poor K and M dwarfs using a modified index based on TiO and CaH molecular band features.

  20. High-resolution Smoothed Particle Hydrodynamics simulations of the merger of binary white dwarfs

    CERN Document Server

    Lorén-Aguilar, P; García-Berro, E

    2009-01-01

    We present the results of a set of high-resolution simulations of the merging process of two white dwarfs. In order to do so, we use an up-to-date Smoothed Particle Hydrodynamics code which incorporates very detailed input physics and an improved treatment of the artificial viscosity. Our simulations have been done using a large number of particles (4x10^5) and cover the full range of masses and chemical compositions of the coalescing white dwarfs. We also compare the time evolution of the system during the first phases of the coalescence with that obtained using a simplified treatment of mass transfer, we discuss in detail the characteristics of the final configuration, we assess the possible observational signatures of the merger, like the associated gravitational waveforms and the fallback X-ray flares, and we study the long-term evolution of the coalescence.

  1. Resonant Excitation of White Dwarf Oscillations in Compact Object Binaries: 1. The No Back Reaction Approximation

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Y.

    2004-06-14

    We consider the evolution of white dwarfs with compact object companions (specifically black holes with masses up to {approx} 10{sup 6} M{sub {circle_dot}}, neutron stars, and other white dwarfs). We suppose that the orbits are initially quite elliptical and then shrink and circularize under the action of gravitational radiation. During this evolution, the white dwarfs will pass through resonances when harmonics of the orbital frequency match the stellar oscillation eigenfrequencies. As a star passes through these resonances, the associated modes will be excited and can be driven to amplitudes that are so large that there is a back reaction on the orbit which, in turn, limits the growth of the modes. A formalism is presented for describing this dynamical interaction for a non-rotating star in the linear approximation when the orbit can be treated as non-relativistic. A semi-analytical expression is found for computing the resonant energy transfer as a function of stellar and orbital parameters for the regime where back reaction may be neglected. This is used to calculate the results of passage through a sequence of resonances for several hypothetical systems. It is found that the amplitude of the {ell} = m = 2 f-mode can be driven into the non-linear regime for appropriate initial conditions. We also discuss where the no back reaction approximation is expected to fail, and the qualitative effects of back reaction.

  2. OGLE‐2008‐BLG‐510: first automated real‐time detection of a weak microlensing anomaly – brown dwarf or stellar binary?★

    DEFF Research Database (Denmark)

    Bozza, V.; Dominik, M.; Rattenbury, N. J.

    2012-01-01

    The microlensing event OGLE‐2008‐BLG‐510 is characterized by an evident asymmetric shape of the peak, promptly detected by the Automated Robotic Terrestrial Exoplanet Microlensing Search (ARTEMiS) system in real time. The skewness of the light curve appears to be compatible both with binary......‐lens and binary‐source models, including the possibility that the lens system consists of an M dwarf orbited by a brown dwarf. The detection of this microlensing anomaly and our analysis demonstrate that: (1) automated real‐time detection of weak microlensing anomalies with immediate feedback is feasible...

  3. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  4. Twins: The Two Shortest Period Non-Interacting Double Degenerate White Dwarf Stars

    CERN Document Server

    Mullally, F; Thompson, Susan E; Lupton, Robert

    2009-01-01

    We report on the detection of the two shortest period non-interacting white dwarf binary systems. These systems, SDSS J143633.29+501026.8 and SDSS J105353.89+520031.0, were identified by searching for radial velocity variations in the individual exposures that make up the published spectra from the Sloan Digital Sky Survey. We followed up these systems with time series spectroscopy to measure the period and mass ratios of these systems. Although we only place a lower bound on the companion masses, we argue that they must also be white dwarf stars. With periods of approximately 1 hour, we estimate that the systems will merge in less than 100 Myr, but the merger product will likely not be massive enough to result in a Type 1a supernova.

  5. Individual, Model-independent Masses of the Closest Known Brown Dwarf Binary to the Sun

    Science.gov (United States)

    Garcia, E. Victor; Ammons, S. Mark; Salama, Maissa; Crossfield, Ian; Bendek, Eduardo; Chilcote, Jeffrey; Garrel, Vincent; Graham, James R.; Kalas, Paul; Konopacky, Quinn; Lu, Jessica R.; Macintosh, Bruce; Marin, Eduardo; Marois, Christian; Nielsen, Eric; Neichel, Benoît; Pham, Don; De Rosa, Robert J.; Ryan, Dominic M.; Service, Maxwell; Sivo, Gaetano

    2017-09-01

    At a distance of ∼2 pc, our nearest brown dwarf neighbor, Luhman 16 AB, has been extensively studied since its discovery 3 years ago, yet its most fundamental parameter—the masses of the individual dwarfs—has not been constrained with precision. In this work, we present the full astrometric orbit and barycentric motion of Luhman 16 AB and the first precision measurements of the individual component masses. We draw upon archival observations spanning 31 years from the European Southern Observatory (ESO) Schmidt Telescope, the Deep Near-Infrared Survey of the Southern Sky (DENIS), public FORS2 data on the Very Large Telescope (VLT), and new astrometry from the Gemini South Multiconjugate Adaptive Optics System (GeMS). Finally, we include three radial velocity measurements of the two components from VLT/CRIRES, spanning one year. With this new data sampling a full period of the orbit, we use a Markov chain Monte Carlo algorithm to fit a 16-parameter model incorporating mutual orbit and barycentric motion parameters and constrain the individual masses to be {27.9}-1.0+1.1 {M}J for the T dwarf and {34.2}-1.1+1.3 {M}J for the L dwarf. Our measurements of Luhman 16 AB’s mass ratio and barycentric motion parameters are consistent with previous estimates in the literature utilizing recent astrometry only. The GeMS-derived measurements of the Luhman 16 AB separation in 2014–2015 agree closely with Hubble Space Telescope (HST) measurements made during the same epoch, and the derived mutual orbit agrees with those measurements to within the HST uncertainties of 0.3–0.4 mas.

  6. Binary populations in Milky Way satellite galaxies: Constraints from multi-epoch data in the Carina, Fornax, Sculptor, and Sextans dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2013-12-20

    We introduce a likelihood analysis of multi-epoch stellar line-of-sight velocities to constrain the binary fractions and binary period distributions of dwarf spheroidal galaxies. This method is applied to multi-epoch data from the Magellan/MMFS survey of the Carina, Fornax, Sculptor, and Sextans dSph galaxies, after applying a model for the measurement errors that accounts for binary orbital motion. We find that the Fornax, Sculptor, and Sextans dSphs are consistent with having binary populations similar to that of Milky Way field binaries to within 68% confidence limits, whereas the Carina dSph is remarkably deficient in binaries with periods less than ∼10 yr. If Carina is assumed to have a period distribution identical to that of the Milky Way field, its best-fit binary fraction is 0.14{sub −0.05}{sup +0.28}, and is constrained to be less than 0.5 at the 90% confidence level; thus it is unlikely to host a binary population identical to that of the Milky Way field. By contrast, the best-fit binary fraction of the combined sample of all four galaxies is 0.46{sub −0.09}{sup +0.13}, consistent with that of Milky Way field binaries. More generally, we infer probability distributions in binary fraction, mean orbital period, and dispersion of periods for each galaxy in the sample. Looking ahead to future surveys, we show that the allowed parameter space of binary fraction and period distribution parameters in dSphs will be narrowed significantly by a large multi-epoch survey. However, there is a degeneracy between the parameters that is unlikely to be broken unless the measurement error is of order ∼0.1 km s{sup –1} or smaller, presently attainable only by a high-resolution spectrograph.

  7. PSR J1738+0333: The First Millisecond Pulsar + Pulsating White Dwarf Binary

    CERN Document Server

    Kilic, Mukremin; Gianninas, A; Brown, Warren R

    2014-01-01

    We report the discovery of the first millisecond pulsar with a pulsating white dwarf companion. Following the recent discoveries of pulsations in extremely low-mass (ELM, <0.3 Msol) white dwarfs (WDs), we targeted ELM WD companions to two millisecond pulsars with high-speed Gemini photometry. We find significant optical variability in PSR J1738+0333 with periods between roughly 1790-3060 s, consistent in timescale with theoretical and empirical observations of pulsations in 0.17 Msol He-core ELM WDs. We additionally put stringent limits on a lack of variability in PSR J1909-3744, showing this ELM WD is not variable to <0.1 per cent amplitude. Thanks to the accurate distance and radius estimates from radio timing measurements, PSR J1738+0333 becomes a benchmark for low-mass, pulsating WDs. Future, more extensive time-series photometry of this system offers an unprecedented opportunity to constrain the physical parameters (including the cooling age) and interior structure of this ELM WD, and in turn, the ...

  8. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    Science.gov (United States)

    Fenn, D.; Plewa, T.; Gawryszczak, A.

    2016-11-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a corotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multigrid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here, the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy (1.6 × 1051 erg) and 56Ni mass (0.86 M⊙) are consistent with an SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of Δm15(B) ≈ 0.99. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M⊙ helium secondary and a 0.9 M⊙ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primary's core.

  9. Blue Supergiant X-Ray Binaries in the Nearby Dwarf Galaxy IC 10

    Science.gov (United States)

    Laycock, Silas G. T.; Christodoulou, Dimitris M.; Williams, Benjamin F.; Binder, Breanna; Prestwich, Andrea

    2017-02-01

    In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black hole and neutron-star high-mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8σ correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color–magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher {f}x/{f}v ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.

  10. Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.

    2017-03-01

    We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.

  11. The origin of the strongest magnetic fields in dwarfs

    Indian Academy of Sciences (India)

    Christopher A Tout

    2011-07-01

    White dwarfs have frozen in magnetic fields ranging from below the measurable limit of about 3 × 103 to 109 G. White dwarfs with surface magnetic fields in excess of 1 MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1253 white dwarfs with a detached low-mass main-sequence companion have been identified in the Sloan Digital Sky Survey (SDSS) but none of these shows sufficient evidence for Zeeman splitting of hydrogen lines for a magnetic field in excess of 1 MG. If such high magnetic fields in white dwarfs result from the isolated evolution of a single star then there should be the same fraction of high field white dwarfs among this SDSS binary sample as among single stars. Thus, we deduce that the origin of such high magnetic fields must be intimately tied to the formation of cataclysmic variables (CVs). The formation of a CV must involve orbital shrinkage from giant star to main-sequence star dimensions. It is believed that this shrinkage occurs as the low-mass companion and the white dwarf spiral together inside a common envelope. CVs emerge as very close but detached binary stars that are then brought together by magnetic braking or gravitational radiation. We propose that the smaller the orbital separation at the end of the common envelope phase, the stronger the magnetic field. The magnetic cataclysmic variables (MCVs) originate from those common envelope systems that almost merge. Those common envelope systems that do merge are the progenitors of the single high field white dwarfs. Thus all highly magnetic white dwarfs, be they single stars or the components of MCVs, have a binary origin. This accounts for the relative dearth of single white dwarfs with fields of 104 – 106 G. Such intermediate-field white dwarfs are found preferentially in cataclysmic variables. The bias towards higher masses for highly magnetic white dwarfs is expected if a fraction of these form when two degenerate cores

  12. Halo Structure Traced by SDSS RR Lyrae

    CERN Document Server

    Ivezic, Z; Schlegel, D J; Smolcic, V; Johnston, D; Gunn, J E; Knapp, G R; Strauss, M A; Rockosi, C M

    2003-01-01

    We discuss the density and radial velocity distributions of over 3000 candidate RR Lyrae stars selected by various methods using Sloan Digital Sky Survey data for about 1000 deg^2 of sky. This is more than 20 times larger sample than previously reported by SDSS (Ivezic et al. 2000), and includes candidate RR Lyrae stars out to the sample limit of 100 kpc. A cutoff in the radial distribution of halo RR Lyrae at ~50-60 kpc that was suggested by the early SDSS data appears to be a statistical anomaly confined to a small region (~100 deg^2). Despite the large increase in observed area, the most prominent features remain to be those associated with the Sgr dwarf tidal stream. We find multiple number density peaks along three lines of sight in the Sgr dwarf tidal stream plane, that may indicate several perigalactic passages of the Sgr dwarf galaxy.

  13. Merger of a White Dwarf-Neutron Star Binary to $10^{29}$ Carat Diamonds: Origin of the Pulsar Planets

    CERN Document Server

    Margalit, Ben

    2016-01-01

    We show that the merger and tidal disruption of a C/O white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disk produced of the disrupted WD, we model its long term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disk opacity. For plausible values of the disk viscosity $\\alpha \\sim 10^{-3}-10^{-2}$ and the RIAF mass loss efficiency, we find that the disk mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon-dominated disk is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger ...

  14. A Very Bright, Very Hot, and Very Long Flaring Event from the M Dwarf Binary System DG CVn

    CERN Document Server

    Osten, Rachel A; Drake, Stephen A; Krimm, Hans; Page, Kim; Gazeas, Kosmas; Kennea, Jamie; Oates, Samantha; Page, Mathew; de Miguel, Enrique; Novák, Rudolf; Apeltauer, Tomas; Gehrels, Neil

    2016-01-01

    On April 23, 2014, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG~CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3-100 keV bandpass by either a single very high temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T$_{X}$ of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be $>$10$^{20}$ cm$^{2}$, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T$\\sim$10$^{4}$K blackbody emission seen in ...

  15. The formation of long-period eccentric binaries with a helium white dwarf

    CERN Document Server

    Siess, L; Jorissen, A

    2014-01-01

    The recent discovery of long-period eccentric binaries hosting a He-WD or a sdB star has been challenging binary-star modelling. Based on accurate determinations of the stellar and orbital parameters for IP Eri, a K0 + He-WD system, we propose an evolutionary path that is able to explain the observational properties of this system and, in particular, to account for its high eccentricity (0.25). Our scenario invokes an enhanced-wind mass loss on the first red giant branch (RGB) in order to avoid mass transfer by Roche-lobe overflow, where tides systematically circularize the orbit. We explore how the evolution of the orbital parameters depends on the initial conditions and show that eccentricity can be preserved and even increased if the initial separation is large enough. The low spin velocity of the K0 giant implies that accretion of angular momentum from a (tidally-enhanced) RGB wind should not be efficient.

  16. The field white dwarf mass distribution

    Science.gov (United States)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.; Gänsicke, B. T.; Gentile-Fusillo, N.; Raddi, R.

    2016-09-01

    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disc vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50 per cent the number of massive white dwarfs (M > 0.75 M⊙) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.

  17. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  18. Characterizing the population of active galactic nuclei in dwarf galaxies

    Science.gov (United States)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  19. DISCOVERY OF A BINARY BROWN DWARF AT 2 pc FROM THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L., E-mail: kluhman@astro.psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Center for Exoplanets and Habitable Worlds, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-04-10

    I am using multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE) to search for new members of the solar neighborhood via their high proper motions. Through this work, I have identified WISE J104915.57-531906.1 as a high proper motion object and have found additional detections in images from the Digitized Sky Survey, the Two Micron All-Sky Survey, and the Deep Near-Infrared Survey of the Southern Sky. I have measured a parallax of 0.''496 {+-} 0.''037 (2.0 {+-} 0.15 pc) from the astrometry in these surveys, making WISE J104915.57-531906.1 the third closest system to the Sun. During spectroscopic observations with the Gemini Multi-Object Spectrograph at Gemini Observatory, an i-band acquisition image resolved it as a 1.''5 (3 AU) binary. A spectrum was collected for the primary, which I classify as L8 {+-} 1. The secondary is probably near the L/T transition as well given that it is only modestly fainter than the primary ({Delta}i = 0.45 mag).

  20. Discovery of a Binary Brown Dwarf at 2 Parsecs from the Sun

    CERN Document Server

    Luhman, K L

    2013-01-01

    I am using multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE) to search for new members of the solar neighborhood via their high proper motions. Through this work, I have identified WISE J104915.57-531906.1 as a high proper motion object and have found additional detections in images from the Digitized Sky Survey, the Two Micron All-Sky Survey, and the Deep Near-Infrared Survey of the Southern Sky. I have measured a parallax of 0.496+/-0.037" (2.0+/-0.15 pc) from the astrometry in these surveys, making WISE J104915.57-531906.1 the third closest system to the Sun. During spectroscopic observations with GMOS at Gemini Observatory, an i-band acquisition image resolved it as a 1.5" (3 AU) binary. A spectrum was collected for the primary, which I classify as L8+/-1. The secondary is probably near the L/T transition as well given that it is only modestly fainter than the primary (delta i=0.45 mag).

  1. The Spitzer 24-micron Photometric Light Curve of the Eclipsing M-dwarf Binary GU Bootis

    CERN Document Server

    von Braun, Kaspar; Ciardi, David; Lopez-Morales, Mercedes; Hoard, D W; Wachter, Stefanie

    2007-01-01

    We present a carefully controlled set of Spitzer 24 \\micron MIPS time series observations of the low mass eclipsing binary star GU Bo\\"otis (GU Boo). Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength characterization of GU Boo's light curve, independent of limb darkening and less sensitive to surface features such as spots. Its analysis allows for independent verification of the results of optical studies of GU Boo. Our mid-infrared results show good agreement with previously obtained system parameters. In addition, the analysis of light curves of other objects in the field of view serves to characterize the photometric stability and repeatability of {\\it Spitzer's} MIPS-24 at flux densities between approximately 300--2,000$\\mu$Jy. We find that the light curve root mean square about the median level falls into the 1--4% range for flux densities higher than 1 mJy.

  2. The hot subdwarf B + white dwarf binary KPD 1930+2752. A supernova type Ia progenitor candidate

    Science.gov (United States)

    Geier, S.; Nesslinger, S.; Heber, U.; Przybilla, N.; Napiwotzki, R.; Kudritzki, R.-P.

    2007-03-01

    Context: The nature of the progenitors of type Ia supernovae is still under debate. KPD 1930+2752 is one of the best SN Ia progenitor candidates known today. The object is a double degenerate system consisting of a subluminous B star (sdB) and a massive white dwarf (WD). Maxted et al. ([CITE]) conclude that the system mass exceeds the Chandrasekhar mass. This conclusion, however, rests on the assumption that the sdB mass is 0.5 M⊙. However, recent binary population synthesis calculations suggest that the mass of an sdB star may range from 0.3 M⊙ to more than 0.7 M⊙. Aims: It is therefore important to measure the mass of the sdB star simultaneously with that of the white dwarf. Since the rotation of the sdB star is tidally locked to the orbit, the inclination of the system can be constrained if the sdB radius and the projected rotational velocity can be measured with high precision. An analysis of the ellipsoidal variations in the light curve allows the constraints derived from spectroscopy to be tightened. Methods: We derived the mass-radius relation for the sdB star from a quantitative spectral analysis of 150 low-resolution spectra obtained with the Calar Alto 2.2 m telescope using metal-rich, line-blanketed LTE model atmospheres with and without NLTE line formation. The projected rotational velocity was determined for the first time from 200 high-resolution spectra obtained with the Keck I 10 m and with the ESO-VLT 8.2 m telescopes. In addition a reanalysis of the published light curve was performed. Results: The atmospheric and orbital parameters were measured with unprecedented accuracy. In particular the projected rotational velocity was determined. Assuming the companion to be a white dwarf, the mass of the sdB is limited between and and the corresponding total mass of the system ranges from to . This constrains the inclination to i>68°. The photometric analysis allows the parameters to be constrained even more. A neutron star companion can be ruled

  3. New Low Accretion-Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

    CERN Document Server

    Schmidt, G D; Vanlandingham, K M; Anderson, S F; Barentine, J C; Brewington, H J; Hall, P B; Harvanek, M; Kleinman, S J; Krzesínski, J; Long, D; Margon, B; Neilsen, E H; Newman, P R; Nitta, A; Schneider, D P; Snedden, S A

    2005-01-01

    Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray faint, magnetic accretion binaries that accrete at rates 3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous Intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG.

  4. THE CRITICAL MASS RATIO OF DOUBLE WHITE DWARF BINARIES FOR VIOLENT MERGER-INDUCED TYPE IA SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yushi [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakasato, Naohito [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Tanikawa, Ataru; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Maeda, Keiichi, E-mail: sato@ea.c.u-tokyo.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-10

    Mergers of carbon–oxygen (CO) white dwarfs (WDs) are considered to be one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics simulations of merging CO WDs, we derived a critical mass ratio (q{sub cr}) leading to the violent merger scenario that is more stringent than previous results. We conclude that this difference mainly comes from the differences in the initial condition of whether or not the WDs are synchronously spinning. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new q{sub cr} does not significantly affect the brightness distribution. We present the direct outcome immediately following CO WD mergers for various primary masses and mass ratios. We also discussed the final fate of the central system of the bipolar planetary nebula Henize 2-428, which was recently suggested to be a double CO WD system whose total mass exceeds the Chandrasekhar-limiting mass, merging within the Hubble time. Even considering the uncertainties in the proposed binary parameters, we concluded that the final fate of this system is almost certainly a sub-Chandrasekhar mass SN Ia in the violent merger scenario.

  5. Keck Laser Guide Star Adaptive Optics Monitoring of 2MASS J1534-2952AB: First Dynamical Mass Determination of a Binary T Dwarf

    CERN Document Server

    Liu, Michael C; Ireland, Michael J

    2008-01-01

    (Abridged) We present multi-epoch imaging of the T5.0+T5.5 binary 2MASS J1534-2952AB obtained with the Keck laser guide star adaptive optics system. Combined with an extensive (re-)analysis of archival HST imaging, we find a total mass of 0.056+/-0.003 Msun (59+/-3 Mjup). This is the first field binary for which both components are directly confirmed to be substellar. This is also the coolest and lowest mass binary with a dynamical mass determination to date. Using evolutionary models, we derive an age of 0.78+/-0.09 Gyr for the system, and we find Teff = 1028+/-17 K and 978+/-17 K and masses of 0.0287+/-0.0016 Msun (30.1+/-1.7 Mjup) and 0.0269+/-0.0016 Msun (28.2+/-1.7 Mjup) for the individual components. These precise measurements generally agree with previous studies of T dwarfs and affirm the current theoretical models. However, (1) the temperatures are about 100 K cooler than derived for similar objects and suggest that the ages of field brown dwarfs may be overestimated. Also, (2) the H-R diagram positi...

  6. White Dwarfs in HETDEX: Preparation for the Survey

    Science.gov (United States)

    Castanheira, B. G.; Winget, D. E.

    2015-06-01

    In the past decade, large scale surveys have discovered a large number of white dwarf stars. Many new aspects have been revealed, including the discovery of the DQVs, close-in non-contact binary systems, and debris disks around many stars. Unfortunately, the population statistics of the newly discovered white dwarf stars are poorly constrained, because of the various methods used to assign objects to fibers for spectroscopic observations in the SDSS survey. A white dwarf sample that is magnitude limited, with well-constrained selection criteria, is needed. The HET Dark Energy Experiment (HETDEX) will use the 9.2 m HET at McDonald Observatory and a set of more than 100 spectrographs to map the three-dimensional positions of one million galaxies, to probe dark energy. In this unique magnitude limited survey, all objects that fall into the fibers will be observed. We expect to observe spectroscopically about 10,00 white dwarf stars. In this paper, we will present the specifications and current status of HETDEX, which will start taking data in Fall 2014. We will also show our first results from observations of white dwarf stars using an identical spectrograph with the 2.7m HJS Telescope and discuss some of the approaches we have been working on in preparation for this exciting survey.

  7. SDSS J105754.25+275947.5: a period-bounce eclipsing cataclysmic variable with the lowest-mass donor yet measured

    Science.gov (United States)

    McAllister, M. J.; Littlefair, S. P.; Dhillon, V. S.; Marsh, T. R.; Gänsicke, B. T.; Bochinski, J.; Bours, M. C. P.; Breedt, E.; Hardy, L. K.; Hermes, J. J.; Kengkriangkrai, S.; Kerry, P.; Parsons, S. G.; Rattanasoon, S.

    2017-05-01

    We present high-speed, multicolour photometry of the faint, eclipsing cataclysmic variable (CV) SDSS J105754.25+275947.5. The light from this system is dominated by the white dwarf. Nonetheless, averaging many eclipses reveals additional features from the eclipse of the bright spot. This enables the fitting of a parametrized eclipse model to these average light curves, allowing the precise measurement of system parameters. We find a mass ratio of q = 0.0546 ± 0.0020 and inclination i = 85.74 ± 0.21°. The white dwarf and donor masses were found to be Mw = 0.800 ± 0.015 M⊙ and Md = 0.0436 ± 0.0020 M⊙, respectively. A temperature Tw = 13300 ± 1100 K and distance d = 367 ± 26 pc of the white dwarf were estimated through fitting model atmosphere predictions to multicolour fluxes. The mass of the white dwarf in SDSS 105754.25+275947.5 is close to the average for CV white dwarfs, while the donor has the lowest mass yet measured in an eclipsing CV. A low-mass donor and an orbital period (90.44 min) significantly longer than the period minimum strongly suggest that this is a bona fide period-bounce system, although formation from a white dwarf/brown dwarf binary cannot be ruled out. Very few period-minimum/period-bounce systems with precise system parameters are currently known, and as a consequence the evolution of CVs in this regime is not yet fully understood.

  8. Enigmas from the Sloan Digital Sky Survey DR7 Kleinman White Dwarf Catalog

    CERN Document Server

    Liebert, James; Wickramasinghe, Dayal; Smith, Paul

    2015-01-01

    We report results from a continuation of our searches for high field magnetic white dwarfs paired in a detached binary with non degenerate companions. We made use of the Sloan Digital Sky Survey DR7 catalog of Kleinman et al. (2013) with 19,712 spectroscopically-identified white dwarfs. These include 1,735 white dwarf plus M dwarf detached pairs (almost 10\\% of the Kleinman at al.'s list). No new pairs were found, although we did recover the polar (AM~Herculis system) ST\\,LMi in a low state of accretion. With the larger sample the original situation reported ten years ago remains intact now at a much higher level of statistical significance: in the selected SDSS sample, high field magnetic white dwarfs are not found in an apparently-detached pairing with an M dwarf, unless they are a magnetic CV in a low state of accretion. This finding strengthens the case that the fields in the isolated high field magnetic white dwarfs are generated by stellar mergers but also raises questions on the nature of the progenito...

  9. Brown Dwarf Companions to White Dwarfs

    CERN Document Server

    Burleigh, M R; Dobbie, P D; Farihi, J; Napiwotzki, R; Maxted, P F L; Barstow, M A; Jameson, R F; Casewell, S L; Gänsicke, B T; Marsh, T R

    2011-01-01

    Brown dwarf companions to white dwarfs are rare, but recent infra-red surveys are slowly reveal- ing examples. We present new observations of the post-common envelope binary WD0137-349, which reveals the effects of irradiation on the ~ 0.05M* secondary, and new observations of GD 1400 which show that it too is a close, post-comon envelope system. We also present the lat- est results in a near-infrared photometric search for unresolved ultracool companions and to white dwarfs with UKIDSS. Twenty five DA white dwarfs were identified as having photometric excesses indicative of a low mass companion, with 8-10 of these having a predicted mass in the range asso- ciated with brown dwarfs. The results of this survey show that the unresolved (< 2") brown dwarf companion fraction to DA white dwarfs is 0.3 \\leq fWD+BD \\leq 1.3%.

  10. Faint Dwarfs in Nearby Groups

    CERN Document Server

    Speller, Ryan

    2013-01-01

    The number and distribution of dwarf satellite galaxies remain a critical test of cold dark matter-dominated structure formation on small scales. Until recently, observational information about galaxy formation on these scales has been limited mainly to the Local Group. We have searched for faint analogues of Local Group dwarfs around nearby bright galaxies, using a spatial clustering analysis of the photometric catalog of the Sloan Digital Sky Survey (SDSS) Data Release 8. Several other recent searches of SDSS have detected clustered satellite populations down to $\\Delta m_r \\equiv ({m}_{r,\\, {\\rm sat}} -\\, {m}_{r,\\, {\\rm main}}) \\sim 6$-$8$, using photometric redshifts to reduce background contamination. SDSS photometric redshifts are relatively imprecise, however, for faint and nearby galaxies. Instead we use angular size to select potential nearby dwarfs, and consider only the nearest isolated bright galaxies as primaries. As a result, we are able to detect an excess clustering signal from companions down...

  11. Natal Kicks and Time Delays in Merging Neutron Star Binaries: Implications for r-process Nucleosynthesis in Ultra-faint Dwarfs and in the Milky Way

    Science.gov (United States)

    Beniamini, Paz; Hotokezaka, Kenta; Piran, Tsvi

    2016-09-01

    Merging neutron star binaries are prime candidate sources for heavy r-process nucleosynthesis. The amount of heavy r-process material is consistent with the mass ejection and rates of mergers, and abundances of relic radioactive materials suggest that heavy r-process material is produced in rare events. Observations of possible macronovae provide further support for this model. Still, some concerns remain. One is the observation of heavy r-process elements in ultra-faint dwarf (UFD) galaxies. The escape velocities from UFDs are so small that the natal kicks, taking place at neutron stars’ birth, might eject such binaries from UFDs. Furthermore, the old stellar populations of UFDs require that r-process nucleosynthesis must have taken place very early on, while it may take several Gyr for compact binaries to merge. This last problem arises also within the Milky Way where heavy r-process materials have been observed in some low-metallicity stars. We show here that ≳ 0.5 of neutron star binaries form with a sufficiently small proper motion to remain bound even in a UFD. Furthermore, approximately 90% of double neutron stars with an initial separation of 1011 cm merge within 300 Myr and ≈ 15 % merge in less than 100 Myr. This population of “rapid mergers” explains the appearance of heavy r-process material in both UFDs and in the early Milky Way.

  12. K2 Discovery of Young Eclipsing Binaries in Upper Scorpius: Direct Mass and Radius Determinations for the Lowest Mass Stars and Initial Characterization of an Eclipsing Brown Dwarf Binary

    CERN Document Server

    David, Trevor J; Cody, Ann Marie; Carpenter, John M; Howard, Andrew W

    2015-01-01

    We report the discovery of three low-mass double-lined eclipsing binaries in the pre-main sequence Upper Scorpius association, revealed by $K2$ photometric monitoring of the region over $\\sim$ 78 days. The orbital periods of all three systems are $<$5 days. We use the $K2$ photometry plus multiple Keck/HIRES radial velocities and spectroscopic flux ratios to determine fundamental stellar parameters for both the primary and secondary components of each system, along with the orbital parameters. We present tentative evidence that EPIC 203868608 is a hierarchical triple system comprised of an eclipsing pair of $\\sim$25 $M_\\mathrm{Jup}$ brown dwarfs with a wide M-type companion. If confirmed, it would constitute only the second double-lined eclipsing brown dwarf binary system discovered to date. The double-lined system EPIC 203710387 is composed of nearly identical M4.5-M5 stars with fundamentally determined masses and radii measured to better than 3% precision ($M_1=0.1169\\pm0.0031 M_\\odot$, $M_2=0.1065\\pm0.0...

  13. Discovery of The New WZ Sge Star, SDSS J080434.20+510349.2

    CERN Document Server

    Pavlenko, E; Katysheva, N A; Nogami, D; Nakajima, K; Maehara, H; Andreev, M; Shimansky, V; Zubareva, A; Babina, Ju; Borisov, N; Golovin, A; Baklanov, A; Baklanova, D; Berezovsky, K; Kroll, P

    2007-01-01

    We present the results of photometric observations of SDSS J080434.20+510349.2 in its low state and during an outburst and spectroscopy during the outburst. We found such peculiarities as a long-term outburst with amplitude probably not less than 6m, rarity of the outbursts, eleven rebrightenings, and a short (0.059713(7) d) superhump period. We conclude that this star belongs to the WZ Sge-type subclass of cataclysmic variables. The spectrum shows both emission and absorption lines of H and He superimposed on the blue continuum. We also found 8 -- 9 min. brightness variations during the end of the super-outburst plateau that could be related to pulsations of the white dwarf in the binary.

  14. [Searching for WDMS Candidates In SDSS-DR10 With Automatic Method].

    Science.gov (United States)

    Jiang, Bin; Wang, Cheng-you; Wang, Wen-yu; Wang, Wei

    2015-05-01

    The Sloan Digital Sky Survey (SDSS) has released the latest data (DR10) which covers the first APOGEE spectra. The massive spectra can be used for large sample research inscluding the structure and evolution of the Galaxy and multi-wave-band identi cation. In addition, the spectra are also ideal for searching for rare and special objects like white dwarf main-sequence star (WDMS). WDMS consist of a white dwarf primary and a low-mass main-sequence (MS) companion which has positive significance to the study of evolution and parameter of close binaries. WDMS is generally discovered by repeated imaging of the same area of sky, measuring light curves for objects or through photometric selection with follow-up observations. These methods require significant manual processing time with low accuracy and the real-time processing requirements can not be satisfied. In this paper, an automatic and efficient method for searching for WDMS candidates is presented. The method Genetic Algorithm (GA) is applied in the newly released SDSS-DR10 spectra. A total number of 4 140 WDMS candidates are selected by the method and 24 of them are new discoveries which prove that our approach of finding special celestial bodies in massive spectra data is feasible. In addition, this method is also applicable to mining other special celestial objects in sky survey telescope data. We report the identfication of 24 new WDMS with spectra. A compendium of positions, mjd, plate and fiberid of these new discoveries is presented which enrich the spectral library and will be useful to the research of binary evolution models.

  15. The formation of low-mass helium white dwarfs orbiting pulsars: Evolution of low-mass X-ray binaries below the bifurcation period

    CERN Document Server

    Istrate, Alina; Langer, Norbert

    2014-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) which have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). However, many details of this recycling scenario remain to be understood. Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods P_orb = 2-9 hr. In particular, we examine: i) if such observed systems can be reproduced from theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (M_WD, P_orb) is valid for systems with P_orb < 2 days. Numerical calculations with a detailed stellar evolution code were used to trace the mass-tra...

  16. The X-ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-ray Sources

    CERN Document Server

    Laycock, Silas G T; Williams, Benjamin F; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M

    2016-01-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 sigma level, from a catalog of 110 unique point sources. We find 4 transients (flux variability ratio greater than 10) and a further 8 objects with ratio > 5. The observations span years 2003 - 2010 and reach a limiting luminosity of >10$^{35}$ erg/s, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light-curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magella...

  17. Natal Kicks and Time Delays in Merging Neutron Star Binaries - Implications for r-process nucleosynthesis in Ultra Faint Dwarfs and in the Milky Way

    CERN Document Server

    Beniamini, Paz; Piran, Tsvi

    2016-01-01

    Merging neutron star binaries are prime candidate sources for heavy r-process nucleosynthesis. The amount of heavy r-process material is consistent with the mass ejection and rates of mergers, and abundances of relic radioactive materials suggest that heavy r-process material is produced in rare events. Observations of possible macronovae provide further support for this model. Still, some concerns remain. One is the observation of heavy r-process elements in Ultra Faint Dwarf (UFD) galaxies. The escape velocities from UFDs are so small that the natal kicks, taking place at neutron stars birth, might eject such binaries from UFDs. Furthermore the old stellar populations of UFDs requires that r-process nucleosynthesis must have taken place very early on, while it may take several Gyr for compact binaries to merge. This last problem arises also within the Milky Way where heavy r-process materials has been observed in some low metallicity stars. We show here that since a significant fraction of neutron star bina...

  18. A Bright Short Period M-M Eclipsing Binary from the KELT Survey: Magnetic Activity and the Mass-Radius Relationship for M Dwarfs

    Science.gov (United States)

    Lubin, Jack B.; Rodriguez, Joseph E.; Zhou, George; Conroy, Kyle E.; Stassun, Keivan G.; Collins, Karen; Stevens, Daniel J.; Labadie-Bartz, Jonathan; Stockdale, Christopher; Myers, Gordon; Colón, Knicole D.; Bento, Joao; Kehusmaa, Petri; Petrucci, Romina; Jofré, Emiliano; Quinn, Samuel N.; Lund, Michael B.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.; Harlingten, Caisey; Pepper, Joshua; Gaudi, B. Scott; James, David; Jensen, Eric L. N.; Reichart, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy; Melville, Graeme

    2017-08-01

    We report the discovery of KELT J041621-620046, a moderately bright (J ˜ 10.2) M-dwarf eclipsing binary system at a distance of 39 ± 3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extremely Little Telescope (KELT) survey. The system has a short orbital period of ˜1.11 days and consists of components with {M}1={0.447}+0.052-0.047 {M}⊙ and {M}2={0.399}+0.046-0.042 {M}⊙ in nearly circular orbits. The radii of the two stars are {R}1={0.540}+0.034-0.032 {R}⊙ and {\\text{}}{R}2=0.453+/- 0.017 {R}⊙ . Full system and orbital properties were determined (to ˜10% error) by conducting an EBOP (Eclipsing Binary Orbit Program) global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17%-28% and cooler by 4%-10% than predicted by standard (non-magnetic) stellar models. Strong Hα emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.

  19. The Problem of Relationship Between Mass and Radius of the Red Dwarf Binaries%红矮星双星的质径关系难题

    Institute of Scientific and Technical Information of China (English)

    张斌; 朱俐颖

    2016-01-01

    红矮星的质量一般小于0.8 Mfl,有效温度介于2500~5000 K之间,包括晚K型和M型恒星,属于小质量晚型恒星.红矮星双星由于展现出许多独特的性质而备受天文界关注,最为突出的有三点:精确测量恒星半径和质量,强烈的活动性,以及由于存在质径关系难题而表现出与理论演化模型的不符.所谓红矮星质径关系难题,是指观测到的恒星半径要比理论计算的大,而有效温度却比理论计算的低,但是光度一致.对此难题的可能解释主要包括三个方面:恒星金属丰度,恒星的自转以及恒星的磁场活动.随着研究的深入,支持自转和磁场活动联合作用的证据逐渐增多,具体的细节还在研究中.%Red dwarfs which are ubiquitous in our galaxy refer to, the mass is less than 0.8 solar mass, with a low the surface effective temperature distribution between 2500~5000 K and in their main sequence evolution stage. Generally speaking, red dwarf binaries are cool stars including M and late K type stars, which belong to a part of late low-mass eclipsing binaries. Due to many unique properties, red dwarf binaries are brought into sharp focus in astronomy in recent years. The most prominent properties are the accurate measurement of stellar radius and mass; strongly activity and the discrepancy between theory evolution model and observation because of mass-radius relation problem. The so-called mass-radius relation problem means that the observed stellar radius is bigger than the theoretical calculation and the effective temperature is lower than the theoretical calculation, but the luminosity is consistent. The stellar metallicity, stellar rotation and stellar magnetic activity are three possible main explanations to this problem. As the deepening of the research, the evidence of supporting the combined action of rotation and magnetic activity is gradually increasing, the understanding of the specific details still need more efforts in

  20. The relativistic pulsar-white dwarf binary PSR J1738+0333 I. Mass determination and evolutionary history

    CERN Document Server

    Antoniadis, J; Koester, D; Freire, P C C; Wex, N; Tauris, T M; Kramer, M; Bassa, C G

    2012-01-01

    PSR J1738+0333 is one of the four millisecond pulsars known to be orbited by a white dwarf companion bright enough for optical spectroscopy. Of these, it has the shortest orbital period, making it especially interesting for a range of astrophysical and gravity related questions. We present a spectroscopic and photometric study of the white dwarf companion and infer its radial velocity curve, effective temperature, surface gravity and luminosity. We find that the white dwarf has properties consistent with those of low-mass white dwarfs with thick hydrogen envelopes, and use the corresponding mass-radius relation to infer its mass; M_WD = 0.181 +/- +0.007/-0.005 solar masses. Combined with the mass ratio q=8.1 +/- 0.2 inferred from the radial velocities and the precise pulsar timing ephemeris, the neutron star mass is constrained to M_PSR = 1.47 +/- +0.07/-0.06 solar masses. Contrary to expectations, the latter is only slightly above the Chandrasekhar limit. We find that, even if the birth mass of the neutron s...

  1. Variability of the Spin Period of the White Dwarf in the Magnetic Cataclysmic Binary System EX Hya

    CERN Document Server

    Andronov, Ivan L

    2013-01-01

    The observations of the two-periodic magnetic cataclysmic system EX Hya have been carried out, using the telescopes RC16 and TOA-150 of the Tzec Maun observatory. 6 nights of observations were obtained in 2010-2011 (alternatively changing filters VR). Also the databases of WASP, ASAS and AAVSO have been analyzed. Processing time series was carried out using the program MCV. We analyzed changes in the rotation period of the white dwarf, and based on our own and previously published moments of maximum. The ephemeris was determined for the maxima of the radiation flux associated with the rotation of the magnetic white dwarf: Tmax=2437699.89079(59) +0.0465464808(69).E-6.3(2)*10^{-13}E^2, which corresponds to the characteristic timescale of the rotation spin-up of 4.67(14)*10^6 years. This contradicts the estimated value of the mass of the white dwarf of 0.42M_\\odot, based on X-ray observations made by Yuasa et al (2010), however, is consistent with estimates of the masses of 0.79 M_\\odot (white dwarf) and 0.108 M...

  2. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    Science.gov (United States)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  3. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    Science.gov (United States)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >1035 erg s‑1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  4. The solar neighborhood. XXXI. Discovery of an unusual red+white dwarf binary at ∼25 pc via astrometry and UV imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jao, Wei-Chun; Henry, Todd J.; Winters, Jennifer G.; Gies, Douglas R. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Subasavage, John P. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Riedel, Adric R. [Department of Physics and Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065 (United States); Ianna, Philip A., E-mail: jao@chara.gsu.edu, E-mail: thenry@chara.gsu.edu, E-mail: winters@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jsubasavage@nofs.navy.mil, E-mail: ar494@hunter.cuny.edu, E-mail: philianna3@gmail.com [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2014-01-01

    We report the discovery of a nearby M5.0V dwarf at 24.6 pc, SCR 1848–6855, that is orbited by an unusual companion causing an astrometric perturbation of more than 200 mas. This is by far the largest perturbation found to date among more than 700 targets observed during our long-term astrometry/photometry program at the CTIO 0.9 m telescope. We present here a suite of astrometric, photometric, and spectroscopic observations of this high proper motion (∼1.''3 yr{sup –1}) system in an effort to reveal the nature of this unusual binary. The measured near-UV and optical U band fluxes exceed those expected for comparable M5.0V stars, and excess flux is also detected in the spectral range 4000-7000 Å. The elusive companion has been detected in HST-STIS+MAMA images at 1820 Å and 2700 Å, and our analysis shows that it is probably a rare, cool, white dwarf with T = 4600-5500 K. Given the long-term astrometric coverage, the prospects for an accurate mass determination are excellent, although as yet we can only provide limits on the unusual companion's mass.

  5. Orbital properties of an unusually low-mass sdB star in a close binary system with a white dwarf

    CERN Document Server

    Silvotti, R; Bloemen, S; Telting, J H; Heber, U; Oreiro, R; Reed, M D; Farris, L E; O'Toole, S J; Lanteri, L; Degroote, P; Hu, H; Baran, A S; Hermes, J J; Althaus, L G; Marsh, T R; Charpinet, S; Li, J; Morris, R L; Sanderfer, D T

    2012-01-01

    We have used 605 days of photometric data from the Kepler spacecraft to study KIC 6614501, a close binary system with an orbital period of 0.15749747(25) days (3.779939 hours), that consists of a low-mass subdwarf B (sdB) star and a white dwarf. As seen in many other similar systems, the gravitational field of the white dwarf produces an ellipsoidal deformation of the sdB which appears in the light curve as a modulation at two times the orbital frequency. The ellipsoidal deformation of the sdB implies that the system has a maximum inclination of \\sim40 degrees, with i \\approx 20\\degrees being the most likely. The orbital radial velocity of the sdB star is high enough to produce a Doppler beaming effect with an amplitude of 432 \\pm 5 ppm, clearly visible in the folded light curve. The photometric amplitude that we obtain, K1 = 85.8 km/s, is \\sim 12 per cent less than the spectroscopic RV amplitude of 97.2 \\pm 2.0 km/s. The discrepancy is due to the photometric contamination from a close object at about 5 arcse...

  6. Binary frequency of planet-host stars at wide separations: A new brown dwarf companion to a planet-host star

    CERN Document Server

    Lodieu, N; Bejar, V J S; Gauza, B; Ruiz, M T; Rebolo, R; Pinfield, D J; Martin, E L

    2014-01-01

    The aim of the project is to improve our knowledge on the multiplicity of planet-host stars at wide physical separations. We cross-matched approximately 6200 square degree area of the Southern sky imaged by the Visible Infrared Survey Telescope for Astronomy (VISTA) Hemisphere Survey (VHS) with the Two Micron All Sky Survey (2MASS) to look for wide common proper motion companions to known planet-host stars. We complemented our astrometric search with photometric criteria. We confirmed spectroscopically the co-moving nature of seven sources out of 16 companion candidates and discarded eight, while the remaining one stays as a candidate. Among these new wide companions to planet-host stars, we discovered a T4.5 dwarf companion at 6.3 arcmin (~9000 au) from HIP70849, a K7V star which hosts a 9 Jupiter mass planet with an eccentric orbit. We also report two new stellar M dwarf companions to one G and one metal-rich K star. We infer stellar and substellar binary frequencies for our complete sample of 37 targets of...

  7. Followup Observations of SDSS and CRTS Candidate Cataclysmic Variables

    OpenAIRE

    Szkody, Paula; Everett, Mark E.; Howell, Steve B.; Landolt, Arlo U.; Bond, Howard E.; Silva, David R.; Vasquez-Soltero, Stephanie

    2014-01-01

    We present photometry of 11 and spectroscopy of 35 potential cataclysmic variables from the Sloan Digital Sky Survey, the Catalina Real-Time Transient Survey and vsnet-alerts. The photometry results include quasi-periodic oscillations during the decline of V1363 Cyg, nightly accretion changes in the likely Polar (AM Herculis binary) SDSS J1344+20, eclipses in SDSS J2141+05 with an orbital period of 76+/-2 min, and possible eclipses in SDSS J2158+09 at an orbital period near 100 min. Time-reso...

  8. SHORT-PERIOD g-MODE PULSATIONS IN LOW-MASS WHITE DWARFS TRIGGERED BY H-SHELL BURNING

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A. H.; Althaus, L. G., E-mail: acorsico@fcaglp.unlp.edu.ar [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina)

    2014-09-20

    The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

  9. Performance of the SDSS-III MARVELS New Data Pipeline

    Science.gov (United States)

    Li, Rui; Ge, J.; Thomas, N. B.; Shi, J.; Petersen, E.; Ouyang, Y.; Wang, J.; Ma, B.; Sithajan, S.

    2013-01-01

    As one of the four surveys in the SDSS-III program, MARVELS (Multi-object APO Radial Velocity Exoplanet Large-area Survey) had monitored over 3,300 stars during 2008-2012 with each observed about 27 times over a 2-year window. MARVELS has successfully produced over 20 brown dwarf candidates and several hundreds of binaries. However, the early data pipeline has large long term systematic errors and cannot reliably produce giant planet candidates. Our new MARVELS pipeline team, with the assistance of UF Department of Mathematics, has made great progress in dealing with the long-term systematic errors over the past 9 months. We redesigned the entire pre-processing procedure to handle various types of systematic effects caused by the instrument (such as trace, slant and distortion) and observation condition changes (such as illumination profile). We explored several advanced methods to precisely extract the RV signal from the processed spectra. We also developed a new simulation program to model all of these effects and used it to test the performance of our new pipeline. Our goal is to deliver a new pipeline to meet the survey baseline performance 10-35 m/s for the survey stars) by the end of 2012. We will report the fundamental performance of the pipeline and lessons learned from the pipeline development.

  10. Optical linear polarization of 74 white dwarfs with the RoboPol polarimeter

    CERN Document Server

    Żejmo, M; Krzeszowski, K; Reig, P; Blinov, D

    2016-01-01

    We present the first linear polarimetric survey of white dwarfs (WDs). Our sample consists of WDs of DA and DC spectral types in the SDSS r magnitude range from 13 to 17. We performed polarimetric observations with the RoboPol polarimeter attached to the 1.3-m telescope at the Skinakas Observatory. We have 74 WDs in our sample, of which almost all are low polarized WDs with polarization degree (PD) smaller than 1%, while only 2 have PD higher than 1%. There is an evidence that on average the isolated WDs of DC type have higher PD (with median PD of 0.78%) than the isolated DA type WDs (with median PD of 0.36%). On the other hand, the median PD of isolated DA type WDs is almost the same, i.e. 0.36% as the median PD of DA type white dwarfs in binary systems with red dwarfs (dM type), i.e. 0.33%. This shows, as expected, that there is no contribution to the PD from the companion if the WD companion is the red dwarf, which is the most common situation for WDs binary systems. We do not find differences in the pola...

  11. Neighbours hiding in the Galactic plane - a new M/L dwarf (binary?) candidate for the 8pc sample

    CERN Document Server

    Scholz, Ralf-Dieter

    2013-01-01

    AIMS: Using Wide-field Infrared Survey Explorer (WISE) data and previous optical and near-infrared sky surveys, I try to identify still missing stellar and substellar neighbours of the Sun. METHODS: When checking the brightest red WISE sources for proper motions and colours expected for nearby M and L dwarfs I also approached the thin Galactic plane. Astrometry (proper motion and parallax measurements) and the available photometry were used to give first estimates of the distance and type of nearby candidates. RESULTS: I have discovered WISE~J072003.20$-$084651.2, an object with moderately high proper motion ($\\mu$$\\approx$120~mas/yr) and at low Galactic latitude ($b$$=$$+$2.3$\\degr$), with similar brightness ($J$$\\approx$10.6, $w2$$\\approx$8.9) and colours ($I$$-$$J$$\\approx$3.2, $J$$-$$K_s$$\\approx$1.2, $w1$$-$$w2$$\\approx$0.3) as the nearest known M-type brown dwarf LP~944-20. With a photometric classification as an M9$\\pm$1 dwarf, the photometric distance of the new object lies in the range of 6$\\pm$2~pc....

  12. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    CERN Document Server

    Brorby, Matthew; Feng, Hua

    2015-01-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high mass X-ray binary (HMXB), with a luminosity of 1.3-23x10^38 erg s^-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7x10^40 erg s^-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high flux state are hard, best described by a disk plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes (StMBH) accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate mass black hole. Determining the spectral properties of HMXBs in BCDs has important im...

  13. Photospheric and chromospheric activity in V405 And: An M dwarf binary with components on the two sides of the full convection limit

    CERN Document Server

    Vida, K; Kővári, Zs; Korhonen, H; Bartus, J; Hurta, Zs; Posztobányi, K

    2009-01-01

    We investigate the fast rotating (P_orb=P_rot=0.465d) active dwarf binary V405 And (M0V+M5V) using photometric BV(RI)_C and optical spectroscopic data. The light variation is caused by the combined effect of spottedness and binarity with a small eclipse. From the available light and radial velocity curves we estimate the system parameters. Three flare events happened during the observations: two were found in the spectroscopic data and one was observed photometrically in BV(RI)_C colours. An interesting eruptive phenomenon emerged from the photometric measurements which can be interpreted as a series of post-flare eruptions lasting for at least 3 orbits (rotations) of the system, originating from trans-equatorial magnetic loops, which connect the active regions in the two hemispheres. The two components of V405 And have masses well over and below the theoretical limit of full convection. This rare property makes the binary an ideal target for observing and testing models for stellar dynamo action.

  14. MOCCA-SURVEY database I. Accreting white dwarf binary systems in globular clusters - II. Cataclysmic variables - progenitors and population at birth

    Science.gov (United States)

    Belloni, Diogo; Giersz, Mirek; Rocha-Pinto, Helio J.; Leigh, Nathan W. C.; Askar, Abbas

    2017-02-01

    This is the second in a series of papers associated with cataclysmic variables (CVs) and related objects, formed in a suite of simulations for globular cluster evolution performed with the MOCCA Monte Carlo code. We study the properties of our simulated CV populations throughout the entire cluster evolution. We find that dynamics extends the range of binary CV progenitor properties, causing CV formation from binary progenitors that would otherwise not become CVs. The CV formation rate in our simulations can be separated into two regimes: an initial burst (≲1 Gyr) connected with the formation of the most massive white dwarfs, followed by a nearly constant formation rate. This result holds for all models regardless of the adopted initial conditions, even when most CVs form dynamically. Given the cluster age-dependence of CV properties, we argue that direct comparisons to observed Galactic field CVs could be misleading, since cluster CVs can be up to four times older than their field counterparts. Our results also illustrate that, due mainly to unstable mass transfer, some CVs that form in our simulations are destroyed before the present day. Finally, some field CVs might have originated from globular clusters, as found in our simulations, although the fraction of such escapers should be small relative to the entire Galactic field CV population.

  15. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: The effects of including recombination energy

    CERN Document Server

    Zorotovic, M; García-Berro, E; Camacho, J; Torres, S; Rebassa-Mansergas, A; Gänsicke, B T

    2014-01-01

    Detached WD+MS PCEBs are perhaps the most suitable objects for testing predictions of close-compact binary-star evolution theories, in particular, CE evolution. The population of WD+MS PCEBs has been simulated by several authors in the past and compared with observations. However, most of those predictions did not take the possible contributions to the envelope ejection from additional sources of energy (mostly recombination energy) into account. Here we update existing binary population models of WD+MS PCEBs by assuming that a fraction of the recombination energy available within the envelope contributes to ejecting the envelope. We performed Monte Carlo simulations of 10^7 MS+MS binaries for 9 different models using standard assumptions for the initial primary mass function, binary separations, and initial-mass-ratio distribution and evolved these systems using the publicly available BSE code. Including a fraction of recombination energy leads to a clear prediction of a large number of long orbital period (...

  16. ASASSN-16ae: A Powerful White-Light Flare on an Early-L Dwarf

    CERN Document Server

    Schmidt, Sarah J; Gangé, Jonathan; Stanek, K Z; Prieto, José L; Holoien, Thomas W-S; Kochanek, C S; Chomiuk, Laura; Dong, Subo; Seibert, Mark; Strader, Jay

    2016-01-01

    We report the discovery and classification of SDSS J053341.43+001434.1 (SDSS0533), an early-L dwarf first discovered during a powerful $\\Delta V 6.2\\times10^{34}$ erg), placing it among the strongest stellar flares detected. The presence of this powerful flare on an old L0 dwarf may indicate that stellar-type magnetic activity persists down to the end of the main sequence and on older ultracool dwarfs.

  17. MOCCA-SURVEY Database I. Accreting White Dwarf Binary Systems in Globular Clusters I. Cataclysmic Variables -- present-day population

    CERN Document Server

    Belloni, Diogo T; Askar, Abbas; Leigh, Nathan; Hypki, Arkadiusz

    2016-01-01

    In this paper, which is the first in a series of papers associated with cataclysmic variables and related objects, we introduce the CATUABA code, a numerical machinery written for analysis of the MOCCA simulations, and show some first results by investigating the present-day population of cataclysmic variables in globular clusters. Emphasis was given on their properties and the observational selection effects when observing and detecting them. In this work we analysed in this work six models, including three with Kroupa distributions of the initial binaries. We found that for models with Kroupa initial distributions, considering the standard value of the efficiency of the common envelope phase adopted in BSE, no single cataclysmic variable was formed only via binary stellar evolution, i. e., in order to form them, strong dynamical interactions have to take place. We show and explain why this is inconsistent with observational and theoretical results. Our results indicate that the population of cataclysmic var...

  18. Seventy-One New L and T Dwarfs from the Sloan Digital Sky Survey

    CERN Document Server

    Chiu, K; Fan, X; Geballe, T R; Golimowski, D A; Leggett, S K; Schneider, D P; Zheng, W

    2006-01-01

    We present near-infrared observations of 71 newly discovered L and T dwarfs, selected from imaging data of the Sloan Digital Sky Survey (SDSS) using the i-dropout technique. Sixty-five of these dwarfs have been classified spectroscopically according to the near-infrared L dwarf classification scheme of Geballe et al. and the unified T dwarf classification scheme of Burgasser et al. The spectral types of these dwarfs range from L3 to T7, and include the latest types yet found in the SDSS. Six of the newly identified dwarfs are classified as early- to mid-L dwarfs according to their photometric near-infrared colors, and two others are classified photometrically as M dwarfs. We also present new near-infrared spectra for five previously published SDSS L and T dwarfs, and one L dwarf and one T dwarf discovered by Burgasser et al. from the Two Micron All Sky Survey. The new SDSS sample includes 27 T dwarfs and 30 dwarfs with spectral types spanning the complex L-T transition (L7-T3). We continue to see a large (~0....

  19. The critical mass ratio of double white dwarf binaries for violent merger-induced Type Ia supernova explosions

    CERN Document Server

    Sato, Yushi; Tanikawa, Ataru; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi

    2016-01-01

    Mergers of carbon-oxygen (CO) white dwarfs (WDs) are considered as one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics (SPH) simulations of merging CO WDs, we derived more stringent critical mass ratio (qcr) leading to the violent merger scenario than the previous results. We conclude that this difference mainly comes from the differences in the initial condition, synchronously spinning of WDs or not. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new qcr does not significantly affect the brightness...

  20. The SDSS-III DR12 MARVELS radial velocity data release: the first data release from the multiple object Doppler exoplanet survey

    Science.gov (United States)

    Ge, Jian; Thomas, Neil B.; Li, Rui; Senan Seieroe Grieves, Nolan; Ma, Bo; de Lee, Nathan M.; Lee, Brian C.; Liu, Jian; Bolton, Adam S.; Thakar, Aniruddha R.; Weaver, Benjamin; SDSS-Iii Marvels Team

    2015-01-01

    We present the first data release from the SDSS-III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) through the SDSS-III DR12. The data include 181,198 radial velocity (RV) measurements for a total of 5520 different FGK stars with V~7.6-12, of which more than 80% are dwarfs and subdwarfs while remainders are GK giants, among a total of 92 fields nearly randomly spread out over the entire northern sky taken with a 60-object MARVELS dispersed fixed-delay interferometer instrument over four years (2008-2012). There were 55 fields with a total of 3300 FGK stars which had 14 or more observations over about 2-year survey window. The median number of observations for these plates is 27 RV measurements. This represents the largest homogeneous sample of precision RV measurements of relatively bright stars. In this first released data, a total of 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries with additional 96 targets having RV variability indicative of a giant planet companion are reported. The released data were produced by the MARVELS finalized 1D pipeline. We will also report preliminary statistical results from the MARVELS 2D data pipeline which has produced a median RV precision of ~30 m/s for stable stars.

  1. The Faint Stellar Object SDSS J1257+3419 is a Dark Matter Dominated System

    CERN Document Server

    Kamaya, Hideyuki

    2007-01-01

    A recent study has revealed SDSS J1257+3419 is either a faint and small dwarf galaxy or a faint and widely extended globular cluster. In this Letter, the author suggests this stellar system is a dwarf spheroidal (dSph). Adopting an observational relation between binding energy and mass of old stellar systems, we derive a relation between mass and size of dSphs by assuming that they are dark matter dominated and virialized objects. Letting half-light radius represent size of SDSS J1257+3419, we find that its mass is $\\sim 7\\times 10^6$ solar mass. This indicates mass-to-light ratio ($M/L$) of SDSS J1257+3419 is about 1000 in the solar unit. This large $M/L$ is expected from a Mateo plot of dSphs. Thus, we insist SDSS J1257+3419 is a dSph.

  2. The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity

    CERN Document Server

    Freire, Paulo C C; Esposito-Farèse, Gilles; Verbiest, Joris P W; Bailes, Matthew; Jacoby, Bryan A; Kramer, Michael; Stairs, Ingrid H; Antoniadis, John; Janssen, Gemma H

    2012-01-01

    (abridged) We report the results of a 10-year timing campaign on PSR J1738+0333, a 5.85-ms pulsar in a low-eccentricity 8.5-hour orbit with a low-mass white dwarf companion (...) The measurements of proper motion and parallax allow for a precise subtraction of the kinematic contribution to the observed orbital decay; this results in a significant measurement of the intrinsic orbital decay: (-25.9 +/- 3.2) \\times 10^{-15} s/s. This is consistent with the orbital decay from the emission of gravitational waves predicted by general relativity, (-27.7 +1.5/-1.9) \\times 10^{-15} s/s (...). This agreement introduces a tight upper limit on dipolar gravitational wave emission, a prediction of most alternative theories of gravity for asymmetric binary systems such as this. We use this limit to derive the most stringent constraints ever on a wide class of gravity theories, where gravity involves a scalar field contribution. When considering general scalar-tensor theories of gravity, our new bounds are more stringent tha...

  3. Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)

    CERN Document Server

    Williams, P K G; Irwin, J; Berta-Thompson, Z K; Charbonneau, D

    2014-01-01

    We present multi-epoch simultaneous radio, optical, H{\\alpha}, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 $\\pm$ 0.0001 and 3.7130 $\\pm$ 0.0002 hr. While these differ by only ~2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The system's radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational cam...

  4. A Nearby Old Halo White Dwarf Candidate from the Sloan Digital Sky Survey

    Science.gov (United States)

    2008-07-01

    2008 May 27 ABSTRACT We report the discovery of a nearby old halo white dwarf (WD) candidate from the Sloan Digital Sky Survey ( SDSS ). SDSS J110217.48...411315.4 has a proper motion of 1′′.75 yr−1 and redder optical colors than all other known featureless (type DC) WDs. We present SDSS imaging and...complicated physics of the dense atmospheres of cool WDs. Key words: stars: individual ( SDSS J110217.48+411315.4) – white dwarfs Online-only material

  5. LSPM J1112+7626: detection of a 41-day M-dwarf eclipsing binary from the MEarth transit survey

    CERN Document Server

    Irwin, Jonathan M; Berta, Zachory K; Latham, David W; Torres, Guillermo; Burke, Christopher J; Charbonneau, David; Dittmann, Jason; Esquerdo, Gilbert A; Stefanik, Robert P; Oksanen, Arto; Buchhave, Lars A; Nutzman, Philip; Berlind, Perry; Calkins, Michael L; Falco, Emilio E

    2011-01-01

    We report the detection of eclipses in LSPM J1112+7626, which we find to be a moderately bright (I_C = 12.14 +/- 0.05) very low-mass binary system with an orbital period of 41.03236 +/- 0.00002 days, and component masses M_1 = 0.395 +/- 0.002 Msol and M_2 = 0.275 +/- 0.001 Msol in an eccentric (e = 0.239 +/- 0.002) orbit. A 65 day out of eclipse modulation of approximately 2% peak-to-peak amplitude is seen in I-band, which is probably due to rotational modulation of photospheric spots on one of the binary components. This paper presents the discovery and characterization of the object, including radial velocities sufficient to determine both component masses to better than 1% precision, and a photometric solution. We find that the sum of the component radii, which is much better-determined than the individual radii, is inflated by 3.8 +0.9 -0.5 % compared to the theoretical model predictions, depending on the age and metallicity assumed. These results demonstrate that the difficulties in reproducing observed ...

  6. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    CERN Document Server

    Triaud, Amaury H M J; Anderson, David R; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Ségransan, Damien; Smalley, Barry; Stassun, Keivan; Udry, Stéphane; West, Richard G

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial plane...

  7. Warm Dust around Cool Stars: Field M Dwarfs with WISE 12 or 22 Micron Excess Emission

    CERN Document Server

    Theissen, Christopher A

    2014-01-01

    Using the SDSS DR7 spectroscopic catalog, we searched the WISE AllWISE catalog to investigate the occurrence of warm dust, as inferred from IR excesses, around field M dwarfs (dMs). We developed SDSS/WISE color selection criteria to identify 175 dMs (from 70,841) that show IR flux greater than typical dM photosphere levels at 12 and/or 22 $\\mu$m, including seven new stars within the Orion OB1 footprint. We characterize the dust populations inferred from each IR excess, and investigate the possibility that these excesses could arise from ultracool binary companions by modeling combined SEDs. Our observed IR fluxes are greater than levels expected from ultracool companions ($>3\\sigma$). We also estimate that the probability the observed IR excesses are due to chance alignments with extragalactic sources is $<$ 0.1%. Using SDSS spectra we measure surface gravity dependent features (K, Na, and CaH 3), and find $<$ 15% of our sample indicate low surface gravities. Examining tracers of youth (H$\\alpha$, UV fl...

  8. Deep search for companions to probable young brown dwarfs

    CERN Document Server

    Chauvin, G; Boccaletti, A; Cruz, K; Lagrange, A -M; Zuckerman, B; Bessell, M S; Beuzit, J -L; Bonnefoy, M; Dumas, C; Lowrance, P; Mouillet, D; Song, I

    2012-01-01

    We have obtained high contrast images of four nearby, faint, and very low mass objects 2MASSJ04351455-1414468, SDSSJ044337.61+000205.1, 2MASSJ06085283-2753583 and 2MASSJ06524851-5741376 (here after 2MASS0435-14, SDSS0443+00, 2MASS0608-27 and 2MASS0652-57), identified in the field as probable isolated young brown dwarfs. Our goal was to search for binary companions down to the planetary mass regime. We used the NAOS-CONICA adaptive optics instrument (NACO) and its unique capability to sense the wavefront in the near-infrared to acquire sharp images of the four systems in Ks, with a field of view of 28"*28". Additional J and L' imaging and follow-up observations at a second epoch were obtained for 2MASS0652-57. With a typical contrast DKs= 4.0-7.0 mag, our observations are sensitive down to the planetary mass regime considering a minimum age of 10 to 120 Myr for these systems. No additional point sources are detected in the environment of 2MASS0435-14, SDSS0443+00 and 2MASS0608-27 between 0.1-12" (i.e about 2 t...

  9. An accurate mass and radius measurement for an ultracool white dwarf

    CERN Document Server

    Parsons, S G; Marsh, T R; Bergeron, P; Copperwheat, C M; Dhillon, V S; Bento, J; Littlefair, S P; Schreiber, M R

    2012-01-01

    Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disk of 8-9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii, and atmospheric composition. So far, these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions (SEDs) in conjunction with a theoretical mass-radius relation. However, the mass-radius relation remains largely untested, and the derived cooling ages are hence model-dependent. Here we report direct measurements of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54-001621.6. We find M(WD)=0.529+/-0.010Msol and R(WD)=0.0131+/-0.0003Rsol. Our measurements are consistent with the mass-radius relation and we determine a robust cooling age of 9.5 billion years for the 3570K white dwarf. We find that the mass and radius o...

  10. Binaries discovered by the SPY project I. HE 1047-0436 a subdwarf B + white dwarf system

    CERN Document Server

    Napiwotzki, R; Heber, U; Karl, C; Drechsel, H; Pauli, E M; Christlieb, N

    2001-01-01

    In the course of our search for double degenerate binaries as potential progenitors of type Ia supernovae with the UVES spectrograph at the ESO VLT (ESO SN Ia Progenitor surveY - SPY) we discovered that the sdB star HE 1047-0436 is radial velocity variable. The orbital period of 1.213253d, a semi-amplitude of 94km/s, and a minimum mass of the invisible companion of 0.44Msol are derived from the analysis of the radial velocity curve. We use an upper limit on the projected rotational velocity of the sdB star to constrain the system inclination and the companion mass to M>0.71Msol, bringing the total mass of the system closer to the Chandrasekhar limit. However, the system will merge due to loss of angular momentum via gravitational wave radiation only after several Hubble times. Atmospheric parameters and metal abundances are also derived. The resulting values are typical for sdB stars.

  11. Quark-novae in neutron star-white dwarf binaries: a model for luminous (spin-down powered) sub-Chandrasekhar-mass Type Ia supernovae?

    Institute of Scientific and Technical Information of China (English)

    Rachid Ouyed; Jan Staff

    2013-01-01

    We show that,by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD),a Type Ia explosion could occur.The QN ejecta collides with the WD,driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia).The conditions in the compressed low-mass WD (MWD < 0.9 M☉) in our model mimic those of a Chandrasekhar mass WD.The spin-down luminosity from the QN compact remnant (the quark star) provides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield.In QNe-Ia,photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay.Although QNe-Ia may not obey the Phillips relationship,their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample.Light-curve fitters would be confused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes,thus over-or under-estimating the true magnitude of these spin-down powered SNe-Ia.Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift.The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the i-band despite their luminous nature.We discuss possible QNe-Ia progenitors.

  12. Update on the SDSS-III MARVELS data pipeline development

    Science.gov (United States)

    Li, Rui; Ge, J.; Thomas, N. B.; Petersen, E.; Wang, J.; Ma, B.; Sithajan, S.; Shi, J.; Ouyang, Y.; Chen, Y.

    2014-01-01

    MARVELS (Multi-object APO Radial Velocity Exoplanet Large-area Survey), as one of the four surveys in the SDSS-III program, has monitored over 3,300 stars during 2008-2012, with each being visited an average of 26 times over a 2-year window. Although the early data pipeline was able to detect over 20 brown dwarf candidates and several hundreds of binaries, no giant planet candidates have been reliably identified due to its large systematic errors. Learning from past data pipeline lessons, we re-designed the entire pipeline to handle various types of systematic effects caused by the instrument (such as trace, slant, distortion, drifts and dispersion) and observation condition changes (such as illumination profile and continuum). We also introduced several advanced methods to precisely extract the RV signals. To date, we have achieved a long term RMS RV measurement error of 14 m/s for HIP-14810 (one of our reference stars) after removal of the known planet signal based on previous HIRES RV measurement. This new 1-D data pipeline has been used to robustly identify four giant planet candidates within the small fraction of the survey data that has been processed (Thomas et al. this meeting). The team is currently working hard to optimize the pipeline, especially the 2-D interference-fringe RV extraction, where early results show a 1.5 times improvement over the 1-D data pipeline. We are quickly approaching the survey baseline performance requirement of 10-35 m/s RMS for 8-12 solar type stars. With this fine-tuned pipeline and the soon to be processed plates of data, we expect to discover many more giant planet candidates and make a large statistical impact to the exoplanet study.

  13. Irradiated brown dwarfs

    CERN Document Server

    Casewell, S L; Lawrie, K A; Maxted, P F L; Dobbie, P D; Napiwotzki, R

    2014-01-01

    We have observed the post common envelope binary WD0137-349 in the near infrared $J$, $H$ and $K$ bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.

  14. The Discovery of a Second Field Methane Brown Dwarf from Sloan Digital Sky Survey Commissioning Data

    CERN Document Server

    Tsvetanov, Z I

    2000-01-01

    We report the discovery of a second field methane brown dwarf from the commissioning data of the Sloan Digital Sky Survey (SDSS). The object, SDSS J134646.45-003150.4 (SDSS 1346-00), was selected because of its very red color and stellar appearance. Its spectrum between 0.8-2.5 mic is dominated by strong absorption bands of H_2O and CH_4 and closely mimics those of Gliese 229B and SDSS 162414.37+002915.6 (SDSS 1624+00), two other known methane brown dwarfs. SDSS 1346-00 is approximately 1.5 mag fainter than Gliese 229B, suggesting that it lies about 11 pc from the sun. The ratio of flux at 2.1 mic to that at 1.27 mic is larger for SDSS 1346-00 than for Gliese 229B and SDSS 1624+00, which suggests that SDSS 1346-00 has a slightly higher effective temperature than the others. Based on a search area of 130 sq. deg. and a detection limit of z* = 19.8, we estimate a space density of 0.05 pc^-3 for methane brown dwarfs with T_eff ~ 1000 K in the 40 pc^3 volume of our search. This estimate is based on small-sample s...

  15. A white dwarf with an oxygen atmosphere

    Science.gov (United States)

    Kepler, S. O.; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  16. On the properties of the interstellar medium in extremely metal-poor blue compact dwarf galaxies: GMOS-IFU spectroscopy and SDSS photometry of the double-knot galaxy HS 2236+1344

    CERN Document Server

    Lagos, P; Gomes, J M; Castelli, A V Smith; Vega, L R; .,

    2014-01-01

    The main goal of this study is to carry out a spatially resolved investigation of the warm interstellar medium (ISM) in the extremely metal-poor Blue Compact Dwarf (BCD) galaxy HS 2236+1344. Special emphasis is laid on the analysis of the spatial distribution of chemical abundances, emission-line ratios and kinematics of the ISM, and to the recent star-forming activity in this galaxy. This study is based on optical integral field unit spectroscopy data from Gemini Multi-Object Spectrograph at the Gemini North telescope and archival Sloan Digital Sky Survey images. The data were obtained in two different positions across the galaxy, obtaining a total 4 arcsec X 8 arcsec field which encompasses most of its ISM. Emission-line maps and broad-band images obtained in this study indicate that HS 2236+1344 hosts three Giant HII regions. Our data also reveal some faint curved features in the BCD periphery that might be due to tidal perturbations or expanding ionized-gas shells. The ISM velocity field shows systematic ...

  17. The effect of common-envelope evolution on the visible population of post-common-envelope binaries

    Science.gov (United States)

    Toonen, S.; Nelemans, G.

    2013-09-01

    Context. An important ingredient in binary evolution is the common-envelope (CE) phase. Although this phase is believed to be responsible for the formation of many close binaries, the process is not well understood. Aims: We investigate the characteristics of the population of post-common-envelope binaries (PCEB). As the evolution of these binaries and their stellar components are relatively simple, this population can be directly used to constraint CE evolution. Methods: We use the binary population synthesis code SeBa to simulate the current-day population of PCEBs in the Galaxy. We incorporate the selection effects in our model that are inherent to the general PCEB population and that are specific to the SDSS survey, which enables a direct comparison for the first time between the synthetic and observed population of visible PCEBs. Results: We find that selection effects do not play a significant role on the period distribution of visible PCEBs. To explain the observed dearth of long-period systems, the α-CE efficiency of the main evolutionary channel must be low. In the main channel, the CE is initiated by a red giant as it fills its Roche lobe in a dynamically unstable way. Other evolutionary paths cannot be constrained more. Additionally our model reproduces well the observed space density, the fraction of visible PCEBs amongst white dwarf (WD)-main sequence (MS) binaries, and the WD mass versus MS mass distribution, but overestimates the fraction of PCEBs with helium WD companions.

  18. Metallicity Calibration and Photometric Parallax Estimation: II. SDSS photometry

    CERN Document Server

    Guctekin, S Tuncel; Karaali, S; Plevne, O; Ak, S; Ak, T; Bostanci, Z F

    2016-01-01

    We used the updated [Fe/H] abundances of 168 F-G type dwarfs and calibrated them to a third order polynomial in terms of reduced ultraviolet excess, $\\delta_{0.41}$ defined with $ugr$ data in the SDSS. We estimated the $M_g$ absolute magnitudes for the same stars via the re-reduced Hipparcos parallaxes and calibrated the absolute magnitude offsets, $\\Delta M_g$, relative to the intrinsic sequence of Hyades to a third order polynomial in terms of $\\delta_{0.41}$. The ranges of the calibrations are $-218$ mag).

  19. Visitors from the Halo: 11 Gyr Old White Dwarfs in the Solar Neighborhood

    Science.gov (United States)

    2010-05-20

    the Sloan Digital Sky Survey ( SDSS ), including two stars in a common proper motion binary system. These candidates are selected from our 2800 deg2...ages are 10–11 Gyr. Along with SDSS J1102+4113, they are the oldest field WDs currently known. These three stars represent only a small fraction of...by using Sloan Digital Sky Survey ( SDSS ) and USNO-B astrometry to select high proper motion candidates. However, their survey suf- fered from the

  20. AR Sco: A White Dwarf Synchronar

    CERN Document Server

    Katz, J I

    2016-01-01

    The emission of the white dwarf-M dwarf binary AR Sco is driven by the rapid synchronization of its white dwarf, rather than by accretion. This requires a comparatively large magnetic field $\\sim 100$ gauss at the M dwarf and $\\sim 10^8$ gauss on the white dwarf, larger than the fields of most intermediate polars but within the range of fields of known magnetic white dwarfs. The spindown power is dissipated in the atmosphere of the M dwarf by magnetic reconnection, accelerating particles that produce the observed synchrotron radiation. The displacement of the optical maximum from conjunction may be explained either by dissipation in a bow wave as the white dwarf's magnetic field sweeps past the M dwarf or by a misaligned white dwarf's rotation axis and oblique magnetic moment. In the latter case the rotation axis precesses with a period of decades, predicting a drift in the orbital phase of maximum. Binaries whose emission is powered by synchronization may be termed synchronars, in analogy to magnetars.

  1. Return of Pulsations in SDSS 0745+4538

    Science.gov (United States)

    Mukadam, Anjum S.; Townsley, D. M.; Szkody, P.; Gänsicke, B. T.; Winget, D. E.; Hermes, J. J.; Howell, Steve B.; Teske, J.; Patterson, Joseph; Kemp, Jonathan; Armstrong, Eve

    2010-11-01

    Nonradial pulsations had ceased in the accreting white dwarf SDSS J074531.92+453829.6 subsequent to its October 2006 outburst. We recently acquired optical high-speed time-series photometry on this cataclysmic variable more than three years after its outburst to find that pulsations have now returned to the primary white dwarf. Moreover, the observed pulsation periods agree with pre-outburst periods within the uncertainties of 1-2 s. This discovery is both remarkable and significant because it indicates that the outburst did not affect the interior stellar structure, which dictates the observed pulsation frequencies. Using this discovery in addition to an HST ultra-violet temperature measurement obtained one year after outburst, we have also been able to constrain the matter accreted during the 2006 outburst.

  2. SDSS J080434.20+510349.2: Cataclysmic Variable Witnessing the Instability Strip?

    CERN Document Server

    Pavlenko, E; Tovmassian, G; Zharikov, S; Kato, T; Katysheva, N; Andreev, M; Baklanov, A; Antonyuk, K; Pit, N; Sosnovskij, A; Shugarov, S

    2011-01-01

    SDSS J080434.20+510349.2 is the 13th dwarf nova containing a pulsating white dwarf. Among the accreting pulsators that have experienced a dwarf novae outburst, SDSS J0804 has the most dramatic history of events within a short time scale: the 2006 outburst with 11 rebrightenings, series of December 2006 - January 2007 mini-outbursts, the 2010 outburst with 6 rebrightenings. Over 2006-2011, SDSS J080434.20+510349.2 in addition to positive 0.060^d superhumps during the outburst and 1-month post-outburst stage, 0.059005^d orbital humps in quiescence, displayed a significant short-term variations with periods P1 = 12.6 min, P2 = 21.7 min, P3 = 14.1 min and P4 = 4.28 min. The 12.6-min periodicity first appeared 7 months after the 2006 outburst and was the most prominent one during the following \\sim 900 days. It was identified as non-radial pulsations of the white dwarf. The period of this pulsations varied within a range of 36 s, and amplitude changed from 0.013m to 0.03m. Simultaneously one could observe the 21.7...

  3. Orbital solutions of eight close sdB binaries and constraints on the nature of the unseen companions

    CERN Document Server

    Geier, S; Heber, U; Kupfer, T; Maxted, P F L; Barlow, B N; Vuckovic, M; Tillich, A; Mueller, S; Edelmann, H; Classen, L; McLeod, A F

    2014-01-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars (sdBs) with massive compact companions such as white dwarfs, neutron stars, or stellar-mass black holes. In a supplementary programme we obtained time-resolved spectroscopy of known hot subdwarf binary candidates. Here we present orbital solutions of eight close sdB binaries with orbital periods ranging from 0.1 to 10 days, which allow us to derive lower limits on the masses of their companions. Additionally, a dedicated photometric follow-up campaign was conducted to obtain light curves of the reflection-effect binary HS 2043+0615. We are able to constrain the most likely nature of the companions in all cases but one, making use of information derived from photometry and spectroscopy. Four sdBs have white dwarf companions, while another three are orbited by low-mass main sequence stars of spectral type M.

  4. Monte Carlo simulations of the luminosity function of hot white dwarfs

    CERN Document Server

    Torres, S; Krzesinski, J; Kleinman, S J

    2012-01-01

    We present a detailed Monte Carlo simulation of the population of the hot branch of the white dwarf luminosity function. We used the most up-to-date stellar evolutionary models and we implemented a full description of the observational selection biases. Our theoretical results are compared with the luminosity function of hot white dwarfs obtained from the Sloan Digital Sky Survey (SDSS), for both DA and non-DA white dwarfs. For non-DA white dwarfs we find an excellent agreement with the observational data, while for DA white dwarfs our simulations show some discrepancies with the observations for the brightest luminosity bins, those corresponding to L>= 10 L_sun.

  5. Variability in Hot Carbon-Dominated Atmosphere (hot DQ) White Dwarfs: Rapid Rotation?

    CERN Document Server

    Williams, Kurtis A; Winget, D E; Falcon, Ross E; Bierwagon, Michael

    2015-01-01

    Hot white dwarfs with carbon-dominated atmospheres (hot DQs) are a cryptic class of white dwarfs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ white dwarfs. Three (SDSS J1426+5752, SDSS J2200-0741, and SDSS J2348-0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are not harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236-0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005-1002, known to exhibit a 2.1 d photometric variation; we do not observe any short-term variability. Monoperiodicit...

  6. High-Speed Ultracam Colorimetry of the Subdwarf B Star SDSS J171722.08+58055.8

    NARCIS (Netherlands)

    Aerts, C.C.; Jeffery, C.S.; Dhillon, V.S.; Marsh, T.R.; Groot, P.J.

    2006-01-01

    We present high-speed multicolour photometry of the faint sub-dwarf B star SDSS J171722.08+58055.8 (mB=16.7mag), which was recently discovered to be pulsating. The data were obtained during two consecutive nights in 2004 August using the three-channel photometer Ultracam attached to the 4

  7. Radial Velocity Variability of Field Brown Dwarfs

    CERN Document Server

    Prato, L; Rice, E L; McLean, I S; Kirkpatrick, J D; Burgasser, A J; Kim, S S

    2015-01-01

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant ...

  8. Cataclysmic Variables from SDSS II. The Second Year

    CERN Document Server

    Szkody, P; Silvestri, N M; Henden, A A; Anderson, S F; Frith, W J; Lawton, B; Owens, E; Raymond, S; Schmidt, G; Wolfe, M; Bochanski, J J; Covey, K; Harris, H; Hawley, S; Knapp, G R; Margon, B; Voges, W; Walkowicz, L; Brinkmann, J; Lamb, D Q; Anderson, Scott F.; Bochanski, John; Covey, Kevin; Fraser, Oliver; Frith, James; Harris, Hugh; Hawley, Suzanne; Henden, Arne; Knapp, Gillian R.; Lawton, Brandon; Margon, Bruce; Owens, Ethan; Raymond, Sean; Schmidt, Gary; Silvestri, Nicole; Szkody, Paula; Voges, Wolfgang; Walkowicz, Lucianne; Wolfe, Michael

    2003-01-01

    The first full year of operation following the commissioning year of the Sloan Digital Sky Survey has revealed a wide variety of newly discovered cataclysmic variables. We show the SDSS spectra of forty-two cataclysmic variables observed in 2002, of which thirty-five are new classifications, four are known dwarf novae (CT Hya, RZ Leo, T Leo and BZ UMa), one is a known CV identified from a previous quasar survey (Aqr1) and two are known ROSAT or FIRST discovered CVs (RX J09445+0357, FIRST J102347.6+003841). The SDSS positions, colors and spectra of all forty-two systems are presented. In addition, the results of follow-up studies of several of these objects identify the orbital periods, velocity curves and polarization that provide the system geometry and accretion properties. While most of the SDSS discovered systems are faint (>18th mag) with low accretion rates (as implied from their spectral characteristics), there are also a few bright objects which may have escaped previous surveys due to changes in the ...

  9. The Hawaii Infrared Parallax Program. I. Ultracool Binaries and the L/T Transition

    CERN Document Server

    Dupuy, Trent J

    2012-01-01

    We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 79 ultracool dwarfs (spectral types M6--T9) in 45 systems, with a median uncertainty of 1.3 mas (2.5%) while the best are 0.7 mas (1.0%). We provide the first parallaxes for 46 objects in 27 systems, and for another 25 objects in 15 systems, we significantly improve upon published results, with a median (best) improvement of 2.0x (5x). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASS J0518-2828AB and 2MASS J1404-3159AB) and one is spectrally peculiar (SDSS J0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6--T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from ~L8 to ~T4.5,...

  10. Binary Contamination in the SEGUE sample: Effects on SSPP Determinations of Stellar Atmospheric Parameters

    CERN Document Server

    Schlesinger, Katharine J; Lee, Young Sun; Masseron, Thomas; Yanny, Brian; Rockosi, Constance M; Gaudi, B Scott; Beers, Timothy C

    2010-01-01

    Using numerical modeling and a grid of synthetic spectra, we examine the effects that unresolved binaries have on the determination of various stellar atmospheric parameters for SEGUE targets measured using the SEGUE Stellar Parameter Pipeline (SSPP). To model undetected binaries that may be in the SEGUE sample, we use a variety of mass distributions for the primary and secondary stars in conjunction with empirically determined relationships for orbital parameters to determine the fraction of G-K dwarf stars, as defined by SDSS color cuts, that will be blended with a secondary companion. We focus on the G-K dwarf sample in SEGUE as it records the history of chemical enrichment in our galaxy. To determine the effect of the secondary on the spectroscopic parameters, we synthesize a grid of model spectra from 3275 to 7850 K (~0.1 to 1.0 \\msun) and [Fe/H]=-0.5 to -2.5 from MARCS model atmospheres using TurboSpectrum. We analyze both "infinite" signal-to-noise ratio (S/N) models and degraded versions, at median S/...

  11. Discovery And Characterization of Wide Binary Systems With a Very Low Mass Component

    CERN Document Server

    Baron, Frédérique; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Davison, Cassy L; Malo, Lison; Robert, Jasmin; Nadeau, Daniel; Reylé, Céline

    2015-01-01

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of 9 other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the OMM 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: L...

  12. Target Selection for the SDSS-III MARVELS Survey

    CERN Document Server

    Paegert, Martin; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E; Dhital, Saurav; Hebb, Leslie; Ge, Jian

    2015-01-01

    We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution ($R \\sim 11000$) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between $4500$ and $6250 \\, \\mbox{K}$. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and $\\log(g)$ for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of $\\sim$30\\% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate ...

  13. Target Selection for the SDSS-III MARVELS Survey

    Science.gov (United States)

    Paegert, Martin; Stassun, Keivan G.; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W.; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E., III; Dhital, Saurav; Hebb, Leslie; Ge, Jian

    2015-06-01

    We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution (R ∼ 11,000) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between 4500 and 6250 K. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and log (g) for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of ∼30% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate giants and used the Infrared Flux Method to estimate effective temperatures, using only extant photmetric and proper-motion catalog information. The target selection method introduced here may be useful for other surveys that need to rely on extant catalog data for selection of specific stellar populations.

  14. Detecting active comets with SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /MIT, MKI; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Princeton U. Observ.; Becker, Andrew; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Hall, Patrick B.; /York U., Canada; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  15. Building an Unusual White-Dwarf Duo

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three

  16. Optical linear polarization of 74 white dwarfs with the RoboPol polarimeter

    Science.gov (United States)

    Żejmo, Michał; Słowikowska, Aga; Krzeszowski, Krzysztof; Reig, Pablo; Blinov, Dmitry

    2017-01-01

    We present the first linear polarimetric survey of white dwarfs (WDs). Our sample consists of WDs of DA and DC spectral types in the SDSS r magnitude range from 13 to 17. We performed polarimetric observations using the RoboPol polarimeter attached to the 1.3-m telescope at Skinakas Observatory. We have 74 WDs in our sample, of which almost all are low-polarized WDs with a polarization degree (PD) lower than 1 per cent; only two have a PD higher than 1 per cent. There is evidence that on average isolated DC-type WDs have a higher PD (with a median PD of 0.78 per cent) than isolated DA-type WDs (with a median PD of 0.36 per cent). On the other hand, the median PD of isolated DA-type WDs is almost the same (i.e. 0.36 per cent) as the median PD of DA-type WDs in binary systems with red dwarfs (dM type; i.e. 0.33 per cent). This shows, as expected, that there is no contribution to the PD from the companion if the WD companion is a red dwarf, which is the most common situation for WD binary systems. We do not find differences in the PD between magnetic and non-magnetic WDs. Because 97 per cent of WDs in our sample have a PD lower than 1 per cent, they can be used as faint zero-polarized standard stars in the magnitude range from 13 to 17 of the SDSS r filter. They cover the Northern sky between 13h and 23h in right ascension and between -11° and 78° in declination. In addition, we found that for low extinction values (<0.04), the best model that describes the dependence of the PD on E(B - V) is given by the equation PDmax, ISM[per cent] = 0.65 E(B - V)0.12.

  17. A CATALOG OF GALEX ULTRAVIOLET EMISSION FROM SPECTROSCOPICALLY CONFIRMED M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Jones, David O. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); West, Andrew A., E-mail: djones@pha.jhu.edu [Astronomy Department of Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2016-01-20

    We present a catalog of Galaxy Evolution Explorer Near-UV (NUV) and Far-UV (FUV) photometry for the Palomar/MSU and SDSS DR7 spectroscopic M dwarf catalogs. The catalog contains NUV measurements matched to 577 spectroscopically confirmed M dwarfs and FUV measurements matched to 150 spectroscopically confirmed M dwarfs. Using these data, we find that NUV and FUV luminosities strongly correlate with Hα emission, a typical indicator of magnetic activity in M dwarfs. We also examine the fraction of M dwarfs with varying degrees of strong line emission at NUV wavelengths. Our results indicate that the frequency of M dwarf NUV emission peaks at intermediate spectral types, with at least ∼30% of young M4–M5 dwarfs having some level of activity. For mid-type M dwarfs, we show that NUV emission decreases with distance from the Galactic plane, a proxy for stellar age. Our complete matched source catalog is available online.

  18. Throwing Icebergs at White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  19. KIC 8262223: A Post-Mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor

    CERN Document Server

    Guo, Zhao; Matson, Rachel A; Hernández, Antonio García; Han, Zhanwen; Chen, Xuefei

    2016-01-01

    KIC~8262223 is an eclipsing binary with a short orbital period ($P=1.61$ d). The {\\it Kepler} light curves are of Algol-type and display deep and partial eclipses, ellipsoidal variations, and pulsations of Delta Scuti type. We analyzed the {\\it Kepler} photometric data, complemented by phase-resolved spectra from the R-C Spectrograph on the 4-meter Mayall telescope at Kitt Peak National Observatory and determined the fundamental parameters of this system. The low mass and oversized secondary ($M_2=0.20M_{\\odot}$, $R_2=1.31R_{\\odot}$) is the remnant of the donor star that transferred most of its mass to the gainer, and now the primary star. The current primary star is thus not a normal $\\delta$ Scuti star but the result of mass accretion from a lower mass progenitor. We discuss the possible evolutionary history and demonstrate with the MESA evolution code that the system can be understood as the result of non-conservative binary evolution similar to that for the formation of EL CVn type binaries. The pulsation...

  20. HD 30187 B and HD 39927 B: Two suspected nearby hot subdwarfs in resolved binaries (based on observations made with the ESA Hipparcos satellite)

    DEFF Research Database (Denmark)

    Makarov, V.V.; Fabricius, C.

    1999-01-01

    Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual......Stars: Individual: HD 30187 B -- Stars: Individual: HD 39927 B - Stars: White dwarfs - Stars: Binaries: Visual...

  1. The Space Density of Field Methane (``T") Dwarfs

    Science.gov (United States)

    Collinge, M. J.; Knapp, G. R.; Fan, X.; Lupton, R. H.; Narayanan, V.; Strauss, M. A.; Gunn, J. E.; Schlegel, D. J.; Ivezić, Ž.; Rockosi, C. M.; Geballe, T. R.; Leggett, S. K.; Golimowski, D.; Hawley, S. L.

    2002-12-01

    We describe a complete magnitude-limited sample of 11 field methane (T) dwarfs brighter than z ≈ 20.2 selected from the imaging data of the Sloan Digital Sky Survey (SDSS). We discuss the optical and near-infrared colors of these and other extremely red objects and show that T dwarfs occupy a unique region in optical color-color space. The area density of methane dwarfs in this sample is one per 140 square degrees, and the space density is about one per 160 pc3. We use simulations to show that this is consistent with an IMF that is slowly rising toward lower mass through the substellar regime (dn/dm m-α , where α < 1), in reasonable agreement with the results of many open cluster studies. The inferred mass density in substellar objects is about 10% of that in stars. Funding for the SDSS is provided by the Alfred P. Sloan Foundation, NASA, NSF, DoE, Monbukagakusho, the Max Planck Society and the member institutions. The SDSS web site is http://www.sdss.org/.

  2. AR Sco: A Precessing White Dwarf Synchronar?

    Science.gov (United States)

    Katz, J. I.

    2017-02-01

    The emission of the white dwarf–M dwarf binary AR Sco is driven by the rapid synchronization of its white dwarf, rather than by accretion. Synchronization requires a magnetic field ∼100 Gauss at the M dwarf and ∼ {10}8 Gauss at the white dwarf, larger than the fields of most intermediate polars but within the range of fields of known magnetic white dwarfs. The spindown power is dissipated in the atmosphere of the M dwarf, within the near zone of the rotating white dwarf’s field, by magnetic reconnection, accelerating particles that produce the observed synchrotron radiation. The displacement of the optical maximum from conjunction may be explained either by dissipation in a bow wave as the white dwarf’s magnetic field sweeps past the M dwarf or by a misaligned white dwarf rotation axis and oblique magnetic moment. In the latter case the rotation axis precesses with a period of decades, predicting a drift in the orbital phase of the optical maximum. Binaries whose emission is powered by synchronization may be termed synchronars, in analogy to magnetars.

  3. The Past and Future of Detached Double White Dwarfs with Helium Donors

    CERN Document Server

    Macias, Phillip J; Ramirez-Ruiz, Enrico

    2015-01-01

    We present a method for modeling the evolution of detached double white dwarf (DWD) binaries hosting helium donors from the end of the common envelope (CE) phase to the onset of Roche Lobe overflow (RLOF). This is achieved by combining detailed stellar evolution calculations of extremely low mass (ELM) helium WDs possessing hydrogen envelopes with the the orbital shrinking of the binary driven by gravitational radiation. We show that the consideration of hydrogen fusion in these systems is crucial, as a significant fraction ($\\approx$50%) of future donors are expected to still be burning when mass transfer commences. We apply our method to two detached eclipsing DWD systems, SDSS J0651+2844 and NLTT-11748, in order to demonstrate the effect that carbon-nitrogen-oxygen (CNO) flashes have on constraining the evolutionary history of such systems. We find that when CNO flashes are absent on the low mass WD ($M_{2}$ < $0.18 M_{\\odot}$), such as in NLTT-11748, we are able to self consistently solve for the donor...

  4. KIC 8262223: A Post-mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor

    Science.gov (United States)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.; García Hernández, Antonio; Han, Zhanwen; Chen, Xuefei

    2017-03-01

    KIC 8262223 is an eclipsing binary with a short orbital period (P = 1.61 day). The Kepler light curves are of Algol-type and display deep and partial eclipses, ellipsoidal variations, and pulsations of δ Scuti type. We analyzed the Kepler photometric data, complemented by phase-resolved spectra from the R-C Spectrograph on the 4 meter Mayall telescope at the Kitt Peak National Observatory and determined the fundamental parameters of this system. The low-mass and oversized secondary ({M}2=0.20{M}ȯ , {R}2=1.31{R}ȯ ) is the remnant of the donor star that transferred most of its mass to the gainer, and now the primary star. The current primary star is thus not a normal δ Scuti star but the result of mass accretion from a lower mass progenitor. We discuss the possible evolutionary history and demonstrate with the MESA evolution code that this system and several other systems discussed in prior literature can be understood as the result of non-conservative binary evolution for the formation of EL CVn-type binaries. The pulsations of the primary star can be explained as radial and non-radial pressure modes. The equilibrium models from single star evolutionary tracks can match the observed mass and radius ({M}1=1.94{M}ȯ , {R}1=1.67{R}ȯ ) but the predicted unstable modes associated with these models differ somewhat from those observed. We discuss the need for better theoretical understanding of such post-mass transfer δ Scuti pulsators.

  5. The Merger Rate of Extremely Low Mass White Dwarf Binaries: Links to the Formation of AM CVn Stars and Underluminous Supernovae

    CERN Document Server

    Brown, Warren R; Prieto, Carlos Allende; Kenyon, Scott J

    2010-01-01

    We study a complete, colour-selected sample of double-degenerate binary systems containing extremely low mass (ELM) 3% of AM CVn stars. More importantly, the ELM WD systems that may detonate merge at a rate comparable to the estimated rate of underluminous SNe, rare explosions estimated to produce only ~0.2 Msol worth of ejecta. At least 25% of our ELM WD sample belong to the old thick disk and halo components of the Milky Way. Thus, if merging ELM WD systems are the progenitors of underluminous SNe, transient surveys must find them in both elliptical and spiral galaxies.

  6. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Bell, Keaton J.; Harrold, Samuel T. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Gianninas, A.; Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes that are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.

  7. Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary

    CERN Document Server

    Anderson, D R; Delrez, L; Doyle, A P; Faedi, F; Fumel, A; Gillon, M; Chew, Y Gómez Maqueo; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Skillen, I; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Turner, O D; Udry, S; West, R G

    2013-01-01

    We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V~10). WASP-69b is a bloated Saturn-mass planet (0.26 M$_{\\rm Jup}$, 1.06 R$_{\\rm Jup}$) in a 3.868-d period around an active mid-K dwarf. We estimate a stellar age of 1 Gyr from both gyrochronological and age-activity relations, though an alternative gyrochronological relation suggests an age of 3 Gyr. ROSAT detected X-rays at a distance of 60$\\pm$27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ~10$^{12}$ g s$^{-1}$. This is 1-2 orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously-large Lyman-{\\alpha} absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 M$_{\\rm Jup}$, 1.16R$_{\\rm Jup}$) in a 3.713-d orbit around the primary of a spatially-resolved G4+K3 binary, with a separation of 3.3 arcsec ($\\geq$800 AU). We exploit the binar...

  8. MOCCA-SURVEY database I. Accreting white dwarf binary systems in globular clusters -- II. Cataclysmic variables -- progenitors and population at birth

    CERN Document Server

    Belloni, Diogo; Rocha-Pinto, Helio J; Leigh, Nathan; Askar, Abbas

    2016-01-01

    This is the second in a series of papers associated with cataclysmic variables (CVs) and related objects, formed in a suite of simulations for globular cluster evolution performed with the MOCCA Monte Carlo code. We study the properties of our simulated CV populations throughout the entire cluster evolution. We find that dynamics extends the range of binary CV progenitor properties, causing CV formation from binary progenitors that would otherwise not become CVs. The CV formation rate in our simulations can be separated into two regimes: an initial burst ($\\lesssim$ 1 Gyr) connected with the formation of the most massive WDs, followed by a nearly constant formation rate. This result holds for all models regardless of the adopted initial conditions, even when most CVs form dynamically. Given the cluster age-dependence of CV properties, we argue that direct comparisons to observed Galactic field CVs could be misleading, since cluster CVs can be up to 4 times older than their field counterparts. Our results also...

  9. MOCCA-SURVEY database I. Accreting white dwarf binary systems in globular clusters - II. Cataclysmic variables - progenitors and population at birth

    Science.gov (United States)

    Belloni, Diogo; Giersz, Mirek; Rocha-Pinto, Helio J.; Leigh, Nathan W. C.; Askar, Abbas

    2016-10-01

    This is the second in a series of papers associated with cataclysmic variables (CVs) and related objects, formed in a suite of simulations for globular cluster evolution performed with the MOCCA Monte Carlo code. We study the properties of our simulated CV populations throughout the entire cluster evolution. We find that dynamics extends the range of binary CV progenitor properties, causing CV formation from binary progenitors that would otherwise not become CVs. The CV formation rate in our simulations can be separated into two regimes: an initial burst (≲ 1 Gyr) connected with the formation of the most massive WDs, followed by a nearly constant formation rate. This result holds for all models regardless of the adopted initial conditions, even when most CVs form dynamically. Given the cluster age-dependence of CV properties, we argue that direct comparisons to observed Galactic field CVs could be misleading, since cluster CVs can be up to 4 times older than their field counterparts. Our results also illustrate that, due mainly to unstable mass transfer, some CVs that form in our simulations are destroyed before the present-day. Finally, some field CVs might have originated from GCs, as found in our simulations, although the fraction of such escapers should be small relative to the entire Galactic field CV population.

  10. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    Science.gov (United States)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  11. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Sarah M.; Drinkwater, Michael J. [School of Mathematics and Physics, University of Queensland, Qld 4072 (Australia); Meurer, Gerhardt; Bekki, Kenji [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Dopita, Michael A.; Nicholls, David C. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Kilborn, Virginia, E-mail: sarah@sarahsweet.com.au [Swinburne University of Technology, Mail number H30, PO Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  12. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada); Davison, Cassy L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Malo, Lison [Canada-France-Hawaii Telescope, 65–1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Reylé, Céline, E-mail: baron@astro.umontreal.ca [Institut Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  13. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  14. Gas, Stars and Star Formation in ALFALFA Dwarf Galaxies

    CERN Document Server

    Huang, S; Giovanelli, R; Brinchmann, J; Stierwalt, S; Neff, S G

    2012-01-01

    We examine the global properties of the stellar and HI components of 229 low HI mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with HI masses < 10^{7.7} M_sun and HI line widths < 80 km s^{-1}. SDSS data are combined with photometric properties derived from GALEX to derive stellar masses (M_*) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs) and estimates of their SFRs and M_* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M_* < 10^8 M_sun is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of t...

  15. Binaries discovered by the MUCHFUSS project; FBS 0117+396: An sdB+dM binary with a pulsating primary

    CERN Document Server

    Østensen, R H; Schaffenroth, V; Telting, J H; Bloemen, S; Németh, P; Beck, P G; Lombaert, R; Pápics, P I; Tillich, A; Ziegerer, E; Machado, L Fox; Littlefair, S; Dhillon, V; Aerts, C; Heber, U; Maxted, P F L; Gänsicke, B T; Marsh, T R

    2013-01-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (muchfuss) aims to discover subdwarf-B stars with massive compact companions such as overmassive white dwarfs (M > 1.0 M_sun), neutron stars or black holes. From the 127 subdwarfs with substantial radial-velocity variations discovered in the initial survey, a number of interesting objects have been selected for extensive follow-up. After an initial photometry run with BUSCA revealed that FBS 0117+396 is photometrically variable both on long and short timescales, we chose it as an auxiliary target during a 6-night multi-color photometry run with Ultracam. Spectroscopy was obtained at a number of observatories in order to determine the binary period and obtain a radial-velocity amplitude. After establishing an orbital period of P = 0.252 d, and removing the signal associated with the irradiated hemisphere of the M-dwarf companion, we were able to detect ten pulsation periods in the Fourier spectrum of the light curve. Two pulsation...

  16. Dynamical Masses of Accreting White Dwarfs

    Science.gov (United States)

    Pala, A. F.; Gänsckie, B. T.

    2017-03-01

    The mass retention efficiency is a key question in both the theoretical and observational study of accreting white dwarfs in interacting binaries, with important implications for their potential as progenitors for type Ia supernovae (SNe Ia). Canonical wisdom is that classical nova eruptions erode the white dwarf mass, and consequently, cataclysmic variables (CVs) have been excluded from the SN Ia progenitor discussion. However the average mass of white dwarfs in CVs is substantially higher (≃ 0.83 M⊙) than that of single white dwarfs (≃ 0.64 M ⊙), in stark contrast to expectations based on current classical nova models. This finding is based on a sample of ≃ 30 CV white dwarfs with accurate mass measurements, most of them in eclipsing systems. Given the fundamental importance of the mass evolution of accreting white dwarfs, it is necessary to enlarge this sample and to diversify the methods used for measuring masses. We have begun a systematic study of 27 CVs to almost double the number of CV white dwarfs with an accurate mass measurement. Using VLT/X-shooter phase-resolved observations, we can measure the white dwarf masses to a few percent, and will be able to answer the question whether accreting CV white dwarfs grow in mass.

  17. Multiwavelength View of SDSS Galaxies

    CERN Document Server

    Obric, M; Kauffmann, G; Lupton, R H; Tremonti, C A; Brinchmann, J; Charlot, S; Knapp, G R; Gunn, J E; Rockosi, C M; Schlegel, D J; Strauss, M A; Gacesa, M; Smolcic, V; Anderson, S; Voges, W; Blanton, M R; Eisenstein, D J

    2004-01-01

    We summarize the detection rates at wavelengths other than optical for \\~99,000 galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 1 ``main'' spectroscopic sample. The analysis is based on positional cross-correlation with source catalogs from ROSAT, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS surveys. We find that the rest-frame UV-IR broad-band galaxy SEDs form a remarkably uniform, nearly one parameter, family. As an example, the SDSS u and r band data, supplemented with redshift, can be used to predict K band magnitudes measured by 2MASS with an rms scatter of only 0.2 mag; when measurement uncertainties are taken into account, the astrophysical scatter appears not larger than ~0.1 mag.

  18. TiNy Titans: The Role of Dwarf-Dwarf Interactions in the Evolution of Low Mass Galaxies

    CERN Document Server

    Stierwalt, S; Patton, D; Johnson, K; Kallivayalil, N; Putman, M; Privon, G; Ross, G

    2014-01-01

    We introduce TiNy Titans (TNT), the first systematic study of star formation and the subsequent processing of the interstellar medium in interacting dwarf galaxies. Here we present the first results from a multiwavelength observational program based on a sample of 104 dwarf galaxy pairs selected from a range of environments within the SDSS and caught in various stages of interaction. The TNT dwarf pairs span mass ratios of M1/M2 100 A, occur in 20% of TNT dwarf pairs, regardless of environment, compared to only 6-8% of matched unpaired dwarfs. Starbursts can be triggered throughout the merger (out to large pair separations) and not just approaching coalescence. Despite their enhanced star formation, most TNT dwarf pairs have similar gas fractions relative to unpaired dwarfs. Thus, there may be significant reservoirs of diffuse, non-starforming gas surrounding the dwarf pairs or the gas consumption timescales may be long in the starburst phase. The only TNT dwarf pairs with low gas fractions (fgas <0.4) and...

  19. The SDSS-III BOSS quasar lens survey: discovery of 13 gravitationally lensed quasars

    Science.gov (United States)

    More, Anupreeta; Oguri, Masamune; Kayo, Issha; Zinn, Joel; Strauss, Michael A.; Santiago, Basilio X.; Mosquera, Ana M.; Inada, Naohisa; Kochanek, Christopher S.; Rusu, Cristian E.; Brownstein, Joel R.; da Costa, Luiz N.; Kneib, Jean-Paul; Maia, Marcio A. G.; Quimby, Robert M.; Schneider, Donald P.; Streblyanska, Alina; York, Donald G.

    2016-02-01

    We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quasar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ( ≲ 2 arcsec) confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs ≈ 4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.

  20. The SDSS-III BOSS quasar lens survey: discovery of thirteen gravitationally lensed quasars

    CERN Document Server

    More, Anupreeta; Kayo, Issha; Zinn, Joel; Strauss, Michael A; Santiago, Basilio X; Mosquera, Ana M; Inada, Naohisa; Kochanek, Christopher S; Rusu, Cristian E; Brownstein, Joel R; da Costa, Luiz N; Kneib, Jean-Paul; Maia, Marcio A G; Quimby, Robert M; Schneider, Donald P; Streblyanska, Alina; York, Donald G

    2015-01-01

    We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quasar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ($\\lesssim$2") confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs$\\approx$4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.

  1. SDSS J0926+3624, the first eclipsing AM CVn star, as seen by ULTRACAM

    CERN Document Server

    Marsh, T R; Littlefair, S; Groot, P; Hakala, P; Nelemans, G; Ramsay, G; Roelofs, G; Steeghs, D

    2006-01-01

    We present light curves of SDSS J0926+3624, the first eclipsing AM CVn star, observed with the high-speed CCD camera ULTRACAM on the WHT. We find unusually that the accreting white dwarf is only partially eclipsed by its companion. Apart from this, the system shows the classic eclipse morphology displayed by eclipsing dwarf novae, namely the eclipse of a white dwarf and accretion disc followed by that of the bright spot where the mass transfer stream hits the disc. We are able to fit this well to find masses of the accretor and donor to be M1 = 0.84 +/- 0.05 Msun and M2 = 0.029 +/- 0.02 Msun respectively. The mass of the donor is significantly above its zero temperature value and it must possess significant thermal content.

  2. Cataclysmic Variables from SDSS III. The Third Year

    CERN Document Server

    Szkody, P; Fraser, O J; Silvestri, N M; Bochanski, J J; Wolfe, M A; Agüeros, M A; Warner, B; Woudt, P; Tramposch, J; Homer, L; Schmidt, G; Knapp, G R; Anderson, S F; Covey, K; Harris, H; Hawley, S; Schneider, D P; Voges, W; Brinkmann, J; Szkody, Paula; Henden, Arne; Fraser, Oliver; Silvestri, Nicole; Bochanski, John; Wolfe, Michael A.; Ag\\"ueros, Marcel; Warner, Brian; Woudt, Patrick; Tramposch, Jonica; Homer, Lee; Schmidt, Gary; Knapp, Gillian R.; Anderson, Scott F.; Covey, Kevin; Harris, Hugh; Hawley, Suzanne; Schneider, Donald P.; Voges, Wolfgang

    2004-01-01

    This paper continues the series that identifies new cataclysmic variables found in the Sloan Digital Sky Survey. We present 36 cataclysmic variables and one possible symbiotic star from Sloan spectra obtained during 2002, of which 34 are new discoveries, 2 are known dwarf novae (BC UMa, KS UMa) and one is a known CV identified from the 2dF survey. The positions, colors and spectra of all 37 systems are presented, along with follow-up spectroscopic/photometric observations of 10 systems. As in the past 2 years of data, the new SDSS systems show a large variety of characteristics based on their inclination and magnetic fields, including 3 eclipsing systems, 4 with prominent He II emission, and 15 systems showing features of the underlying stars.

  3. Dynamical Masses of Young M Dwarfs. I. Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion to the Imaged Exoplanet Host 51 Eri

    CERN Document Server

    Montet, Benjamin T; Shkolnik, Evgenya L; Deck, Katherine M; Wang, Ji; Horch, Elliott P; Liu, Michael C; Hillenbrand, Lynne A; Kraus, Adam L; Charbonneau, David

    2015-01-01

    We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (~20 Myr) M+M binary (unresolved spectral type M0) member of the beta Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.10 \\pm 0.04 M_sun, a period of 29.16 \\pm 0.65$ yr, a semimajor axis of 9.80 \\pm 0.15 AU, and an eccentricity of 0.19 \\pm 0.02. The primary component has a dynamical mass of 0.65 \\pm 0.05 M_sun and the secondary has a mass of 0.44 \\pm 0.05 M_sun. The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5 sigma. Given the observed masses the models predict an age of the GJ 3305 AB system of 28 +15/-6 Myr. Based on the the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly alter...

  4. Strangelet dwarfs

    CERN Document Server

    Alford, Mark G; Reddy, Sanjay

    2011-01-01

    If the surface tension of quark matter is low enough, quark matter is not self bound. At sufficiently low pressure and temperature, it will take the form of a crystal of positively charged strangelets in a neutralizing background of electrons. In this case there will exist, in addition to the usual family of strange stars, a family of low-mass large-radius objects analogous to white dwarfs, which we call "strangelet dwarfs". Using a generic parametrization of the equation of state of quark matter, we calculate the mass-radius relationship of these objects.

  5. Galaxy Zoo: finding offset discs and bars in SDSS galaxies★

    Science.gov (United States)

    Kruk, Sandor J.; Lintott, Chris J.; Simmons, Brooke D.; Bamford, Steven P.; Cardamone, Carolin N.; Fortson, Lucy; Hart, Ross E.; Häußler, Boris; Masters, Karen L.; Nichol, Robert C.; Schawinski, Kevin; Smethurst, Rebecca J.

    2017-08-01

    We use multiwavelength Sloan Digital Sky Survey (SDSS) images and Galaxy Zoo morphologies to identify a sample of ∼270 late-type galaxies with an off-centre bar. We measure offsets in the range 0.2-2.5 kpc between the photometric centres of the stellar disc and stellar bar. The measured offsets correlate with global asymmetries of the galaxies, with those with largest offsets showing higher lopsidedness. These findings are in good agreement with predictions from simulations of dwarf-dwarf tidal interactions producing off-centre bars. We find that the majority of galaxies with off-centre bars are of Magellanic type, with a median mass of 109.6 M⊙, and 91 per cent of them having M⋆ < 3 × 1010 M⊙, the characteristic mass at which galaxies start having higher central concentrations attributed to the presence of bulges. We conduct a search for companions to test the hypothesis of tidal interactions, but find that a similar fraction of galaxies with offset bars have companions within 100 kpc as galaxies with centred bars. Although this may be due to the incompleteness of the SDSS spectroscopic survey at the faint end, alternative scenarios that give rise to offset bars such as interactions with dark companions or the effect of lopsided halo potentials should be considered. Future observations are needed to confirm possible low-mass companion candidates and to determine the shape of the dark matter halo, in order to find the explanation for the off-centre bars in these galaxies.

  6. A Population Synthesis Study of the White Dwarf Cooling Sequence of the Galactic Bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E. G.; Cojocaru, R. E.; Calamida, A.

    2017-03-01

    Recent Hubble Space Telescope observations have allowed to determine, for the first time, the white dwarf cooling sequence of the Galactic bulge. However, observations show systematically redder objects than those predicted by the theoretical cooling tracks of carbon-oxygen white dwarfs. Here we present a population synthesis study of the white dwarf cooling sequence of the galactic bulge including both single white dwarfs and binary systems. These calculations incorporate the most up-to-date cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolution of binary systems and of the observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. Among other interesting results we estimate the fraction of binaries and double degenerate systems of the Galactic bulge.

  7. AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    Science.gov (United States)

    Sánchez-Janssen, Rubén; Sánchez-Janssen

    2011-12-01

    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood-especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwarf's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.

  8. A DARK SPOT ON A MASSIVE WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon; Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Bell, Keaton J.; Winget, D. E.; Winget, K. I. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Hermes, J. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Dufour, Patrick [Institut de recherche sur les exoplanétes (iREx), Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada)

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.

  9. The SDSS data archive server

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Eric H., Jr.; /Fermilab

    2007-10-01

    The Sloan Digital Sky Survey (SDSS) Data Archive Server (DAS) provides public access to data files produced by the SDSS data reduction pipeline. This article discusses challenges in public distribution of data of this volume and complexity, and how the project addressed them. The Sloan Digital Sky Survey (SDSS)1 is an astronomical survey of covering roughly one quarter of the night sky. It contains images of this area, a catalog of almost 300 million objects detected in those images, and spectra of more than a million of these objects. The catalog of objects includes a variety of data on each object. These data include not only basic information but also fit parameters for a variety of models, classifications by sophisticated object classification algorithms, statistical parameters, and more. If the survey contains the spectrum of an object, the catalog includes a variety of other parameters derived from its spectrum. Data processing and catalog generation, described more completely in the SDSS Early Data Release2 paper, consists of several stages: collection of imaging data, processing of imaging data, selection of spectroscopic targets from catalogs generated from the imaging data, collection of spectroscopic data, processing of spectroscopic data, and loading of processed data into a database. Each of these stages is itself a complex process. For example, the software that processes the imaging data determines and removes some instrumental signatures in the raw images to create 'corrected frames', models the point spread function, models and removes the sky background, detects objects, measures object positions, measures the radial profile and other morphological parameters for each object, measures the brightness of each object using a variety of methods, classifies the objects, calibrates the brightness measurements against survey standards, and produces a variety of quality assurance plots and diagnostic tables. The complexity of the spectroscopic

  10. A Method for Selecting M dwarfs with an Increased Likelihood of Unresolved Ultra-cool Companionship

    CERN Document Server

    Cook, N J; Marocco, F; Burningham, B; Jones, H R A; Frith, J; Zhong, J; Luo, A L; Qi, Z X; Lucas, P W; Gromadzki, M; Day-Jones, A C; Kurtev, R G; Guo, Y X; Wang, Y F; Bai, Y; Yi, Z P; Smart, R L

    2016-01-01

    Locating ultra-cool companions to M dwarfs is important for constraining low-mass formation models, the measurement of sub-stellar dynamical masses and radii, and for testing ultra-cool evolutionary models. We present an optimised method for identifying M dwarfs which may have unresolved ultra-cool companions. We construct a catalogue of 440,694 candidates, from WISE, 2MASS and SDSS, based on optical and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints we isolate a sub-sample of 36,898 M dwarfs and search for possible mid-infrared M dwarf + ultra-cool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). We present 1,082 M dwarf + ultra-cool dwarf candidates for follow-up. Using simulated ultra-cool dwarf companions to M dwarfs, we estimate that the occurrence of unresolved ultra-cool companions amongst our M dwarf + ultra-cool dwarf candidates s...

  11. Periodic variability of spotted M dwarfs in WTS

    Directory of Open Access Journals (Sweden)

    Sipőcz B.

    2013-04-01

    Full Text Available We present an analysis of the photometric variability of M dwarfs in the WFCAM Transit Survey, selected from spectral types inferred by their WTS and SDSS colours, with periods detected using a Lomb-Scargle Periodogram Analisys. We estimate population membership of these objects from their tangential velocities and photometric parralaxes. Examples of M dwarfs with variable light curve morphologuies are found. We discuss possible causes for this and make use of models of spotted stars in our interpretation of the results.

  12. A Multi-Survey Approach to White Dwarf Discovery

    CERN Document Server

    Sayres, Conor; Bergeron, P; Dufour, P; Davenport, James R A; AlSayyad, Yusra; Tofflemire, Benjamin M

    2012-01-01

    By selecting astrometric and photometric data from the Sloan Digital Sky Survey (SDSS), the L{\\'e}pine & Shara Proper Motion North Catalog (LSPM-North), the Two Micron All Sky Survey (2MASS), and the USNO-B1.0 catalog, we use a succession of methods to isolate white dwarf candidates for follow-up spectroscopy. Our methods include: reduced proper motion diagram cuts, color cuts, and atmospheric model adherence. We present spectroscopy of 26 white dwarfs obtained from the CTIO 4m and APO 3.5m telescopes. Additionally, we confirm 28 white dwarfs with spectra available in the SDSS DR7 database but unpublished elsewhere, presenting a total of 54 WDs. We label one of these as a recovered WD while the remaining 53 are new discoveries. We determine physical parameters and estimate distances based on atmospheric model analyses. Three new white dwarfs are modeled to lie within 25 pc. Two additional white dwarfs are confirmed to be metal-polluted (DAZ). Follow-up time series photometry confirms another object to be ...

  13. The 2dF-SDSS LRG and QSO Survey: The spectroscopic QSO catalogue

    CERN Document Server

    Croom, Scott M; Shanks, Tom; Boyle, Brian J; Sharp, Robert G; Bland-Hawthorn, Joss; Bridges, Terry; Brunner, Robert J; Cannon, Russell; Carson, Daniel; Chiu, Kuenley; Colless, Matthew; Couch, Warrick; De Propris, Roberto; Drinkwater, Michael J; Edge, Alastair; Fine, Stephen; Loveday, Jon; Miller, Lance; Myers, Adam D; Nichol, Robert C; Outram, Phil; Pimbblet, Kevin; Roseboom, Isaac; Ross, Nicholas; Schneider, Donald P; Smith, Allyn; Stoughton, Chris; Strauss, Michael A; Wake, David

    2008-01-01

    We present the final spectroscopic QSO catalogue from the 2dF-SDSS LRG and QSO (2SLAQ) Survey. This is a deep, 18SDSS photometry and observed spectroscopically with the 2dF spectrograph on the Anglo-Australian Telescope. This sample covers an area of 191.9 deg^2 and contains new spectra of 16326 objects, of which 8764 are QSOs, and 7623 are newly discovered (the remainder were previously identified by the 2QZ and SDSS surveys). The full QSO sample (including objects previously observed in the SDSS and 2QZ surveys) contains 12702 QSOs. The new 2SLAQ spectroscopic data set also contains 2343 Galactic stars, including 362 white dwarfs, and 2924 narrow emission line galaxies with a median redshift of z=0.22. We present detailed completeness estimates for the survey, based on modelling of QSO colours, including host galaxy contributi...

  14. A Wide-Field View of Leo II -- A Structural Analysis Using the SDSS

    CERN Document Server

    Coleman, Matthew G; Rix, Hans-Walter; Grebel, Eva K; Koch, Andreas

    2007-01-01

    Using SDSS I data, we have analysed the stellar distribution of the Leo II dwarf spheroidal galaxy (distance of 233 kpc) to search for evidence of tidal deformation. The existing SDSS photometric catalogue contains gaps in regions of high stellar crowding, hence we filled the area at the centre of Leo II using the DAOPHOT algorithm applied to the SDSS images. The combined DAOPHOT-SDSS dataset contains three-filter photometry over a 4x4 square degree region centred on Leo II. By defining a mask in three-filter colour-magnitude space, we removed the majority of foreground field stars. We have measured the following Leo II structural parameters: a core radius of r_c = 2.64 +/- 0.19 arcmin (178 +/- 13 pc), a tidal radius of r_t = 9.33 +/- 0.47 arcmin (632 +/- 32 pc) and a total V-band luminosity of L_V = (7.4 +/- 2.0) times 10^5 L_sun (M_V = -9.9 +/- 0.3). Our comprehensive analysis of the Leo II structure did not reveal any significant signs of tidal distortion. The internal structure of this object contains onl...

  15. Orbital periods of cataclysmic variables identified by the SDSS. VII. Four new eclipsing systems

    CERN Document Server

    Southworth, John; Gansicke, B T; Pyrzas, S

    2009-01-01

    We present photometry of nine cataclysmic variable stars identified by the Sloan Digital Sky Survey, aimed at measuring the orbital periods of these systems. Four of these objects show deep eclipses, from which we measure their orbital periods. The light curves of three of the eclipsing systems are also analysed using the LCURVE code, and their mass ratios and orbital inclinations determined. SDSS J075059.97+141150.1 has an orbital period of 134.1564 +/- 0.0008 min, making it a useful object with which to investigate the evolutionary processes of cataclysmic variables. SDSS J092444.48+080150.9 has a period of 131.2432 +/- 0.0014 min and is probably magnetic. The white dwarf ingress and egress phases are very deep and short, and there is no clear evidence that this object has an accretion disc. SDSS J115207.00+404947.8 and SDSS J152419.33+220920.1 are nearly identical twins, with periods of 97.5 +/- 0.4 and 93.6 +/- 0.5 min and mass ratios of 0.14 +/- 0.03 and 0.17 +/- 0.03, respectively. Their eclipses have w...

  16. Orbital periods of cataclysmic variables identified by the SDSS. IX. NTT photometry of eight eclipsing and three magnetic systems

    CERN Document Server

    Southworth, John; Gaensicke, B T; Copperwheat, C M

    2014-01-01

    We report the discovery of eclipses and the first orbital period measurements for four cataclysmic variables, plus the first orbital period measurements for one known eclipsing and two magnetic systems. SDSS J093537.46+161950.8 exhibits 1-mag deep eclipses with a period of 92.245 min. SDSS J105754.25+275947.5 has short and deep eclipses and an orbital period of 90.44 min. Its light curve has no trace of a bright spot and its spectrum is dominated by the white dwarf component, suggesting a low mass accretion rate and a very low-mass and cool secondary star. CSS J132536+210037 shows 1-mag deep eclipses each separated by 89.821 min. SDSS J075653.11+085831.8 shows 2-mag deep eclipses on a period of 197.154 min. CSS J112634-100210 is an eclipsing dwarf nova identified in the Catalina Real Time Transit Survey, for which we measure a period of 111.523 min. SDSS J092122.84+203857.1 is a magnetic system with an orbital period of 84.240 min; its light curve is a textbook example of cyclotron beaming. A period of 158.72...

  17. Discs of Satellites: the new dwarf spheroidals

    CERN Document Server

    Metz, Manuel; Jerjen, Helmut

    2009-01-01

    The spatial distributions of the most recently discovered ultra faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation we pay special attention to the selection bias introduced due to the limited sky coverage of SDSS. We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also notice a deficit of satellite galaxies with Galactocentric distances larger than 100 kpc that are away from the disc-of-satellites of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the discs-of-satellites are optical manifestations of a phase-space correlation of satellite galaxies.

  18. Mining Databases for M Dwarf Variability

    CERN Document Server

    Davenport, James R A; Hawley, Suzanne L; Kowalski, Adam F; Sesar, Branimir; Cutri, Roc M

    2011-01-01

    Time-resolved databases with large spatial coverage are quickly becoming a standard tool for all types of astronomical studies. We report preliminary results from our search for stellar flares in the 2MASS calibration fields. A sample of 4343 M dwarfs, spatially matched between the SDSS and the 2MASS calibration fields, each with hundreds to thousands of epochs in near infrared bandpasses, is analyzed using a modified Welch-Stetson index to characterize the variability. A Monte Carlo model was used to assess the noise of the variability index. We find significnat residuals above the noise with power-law slopes of -3.37 and -4.05 for our JH and HKs distributions respectively. This is evidence for flares being observed from M dwarfs in infrared photometry.

  19. Runaway M Dwarf Candidates from the Sloan Digital Sky Survey

    CERN Document Server

    Favia, Andrej; Theissen, Christopher A

    2015-01-01

    We present a sample of 20 runaway M dwarf candidates (RdMs) within 1 kpc of the Sun whose Galactocentric velocities exceed 400 km s$^{-1}$. The candidates were selected from the SDSS DR7 M Dwarf Catalog of West et al. (2011). Our RdMs have SDSS+USNO-B proper motions that are consistent with those recorded in the PPMXL, LSPM, and combined WISE+SDSS+2MASS catalogs. Sixteen RdMs are classified as dwarfs, while the remaining four RdMs are subdwarfs. We model the Galactic potential using a bulge-disk-halo profile (Kenyon et al. 2008; Brown et al. 2014). Our fastest RdM, with Galactocentric velocity 658.5 $\\pm$ 236.9 km s$^{-1}$, is a possible hypervelocity candidate, as it is unbound in 77% of our simulations. About half of our RdMs have kinematics that are consistent with ejection from the Galactic center. Seven of our RdMs have kinematics consistent with an ejection scenario from M31 or M32 to within 2{\\sigma}, although our distance-limited survey makes such a realization unlikely. No more than four of our RdMs ...

  20. SDSS spectroscopic survey of stars

    CERN Document Server

    Ivezic, Z; Uomoto, A; Bond, N; Beers, T; Allende-Prieto, C; Wilhelm, R; Lee, Y S; Sivarani, T; Juric, M; Lupton, R; Rockosi, C M; Knapp, G; Gunn, J; Yanny, B; Jester, S; Kent, S; Pier, J; Munn, J A; Richards, G; Newberg, H; Blanton, M; Eisenstein, D; Hawley, S; Anderson, S; Harris, H; Kiuchi, F; Chen, A; Bushong, J; Sohi, H; Haggard, D; Kimball, A; Barentine, J; Brewington, H; Harvanek, M; Kleinman, S; Krzesínski, J; Long, D; Nitta, A; Snedden, S A

    2007-01-01

    In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is also producing a massive spectroscopic database. We discuss determination of stellar parameters, such as effective temperature, gravity and metallicity from SDSS spectra, describe correlations between kinematics and metallicity, and study their variation as a function of the position in the Galaxy. We show that stellar parameter estimates by Beers et al. show a good correlation with the position of a star in the g-r vs. u-g color-color diagram, thereby demonstrating their robustness as well as a potential for photometric parameter estimation methods. Using Beers et al. parameters, we find that the metallicity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal with a local minimum at [Z/Zo]~ -1.3. The median metallicity for the low-metallicity [Z/Zo] -1.3 sample. We also find that the low-metallicity sample has ~2.5 times larger velocity dispersion and that it does not rotate (at ...

  1. Gravitational wave radiation from a double white dwarf system inside our galaxy: a potential method for seeking strange dwarfs

    Institute of Scientific and Technical Information of China (English)

    Zhan-Kui Lü; Shi-Wei Wu; Zhi-Cheng Zeng

    2009-01-01

    Like the investigation of double white dwarf (DWD) systems, strange dwarf (SD) - white dwarf (WD) system evolution in Laser Interferometer Space Antenna (LISA)'s absolute amplitude-frequency diagram is investigated. Since there is a strange quark core inside an SD, SDs' radii are significantly smaller than the value predicted by the standard WD model, which may strongly affect the gravitational wave (GW) signal in the mass-transferring phases of binary systems. We study how an SD-WD binary evolves across LISA's absolute amplitude-frequency diagram. In principle, we provide an executable way to detect SDs in the Galaxy's DWD systems by radically new windows offered by GW detectors.

  2. Searching for benchmark systems containing ultra-cool dwarfs and white dwarfs

    Directory of Open Access Journals (Sweden)

    Pinfield D.J.

    2013-04-01

    Full Text Available We have used the 2MASS all-sky survey and WISE to look for ultracool dwarfs that are part of multiple systems containing main sequence stars. We cross-matched L dwarf candidates from the surveys with Hipparcos and Gliese stars, finding two new systems. We consider the binary fraction for L dwarfs and main sequence stars, and further assess possible unresolved multiplicity within the full companion sample. This analysis shows that some of the L dwarfs in this sample might actually be unresolved binaries themselves. We have also identified a sample of common proper motion systems in which a main sequence star has a white dwarf as wide companion. These systems can help explore key issues in star evolution theory, as the initial-final mass relationship of white dwarfs, or the chromospheric activity-age relationship for stars still in the main sequence. Spectroscopy for 50 white dwarf candidates, selected from the SuperCOSMOS Science Archive, was obtained. We have also observed 6 of the main sequence star companions, and have estimated their effective temperatures, rotational and microturbulent velocities and metallicities.

  3. XMM-Newton and optical follow-up observations of SDSS J093249.57+472523.0 and SDSS J102347.67+003841.2

    CERN Document Server

    Homer, L; Chen, B; Henden, A; Schmidt, G; Anderson, S F; Silvestri, N M; Brinkmann, J; Homer, Lee; Szkody, Paula; Chen, Bing; Henden, Arne; Schmidt, Gary; Anderson, Scott F.; Silvestri, Nicole M.

    2005-01-01

    We report follow-up XMM-Newton and ground-based optical observations of the unusual X-ray binary SDSS J102347.67+003841.2 (=FIRST J102347.6+003841), and a new candidate intermediate polar found in the Sloan Digital Sky Survey: SDSS J093249.57+472523.0. SDSS J1023 was observed in its low-state, with similar magnitude/color (V=17.4 and B=17.9), and smooth orbital modulation as seen in most previous observations. We further refine the ephemeris (for photometric minimum) to: HJD(TT)_min= 2453081.8546(3) + E* 0.198094(1) d. It is easily detected in X-rays at an unabsorbed flux (0.01-10.0 keV) of 5x10e-13 erg/cm^2/s. Fitting a variety of models we find that: (i) either a hot (kT>~15 keV) optically thin plasma emission model (bremsstrahlung or MEKAL) or a simple power law can provide adequate fits to the data; (ii) these models prefer a low column density ~10e19 cm^-2; (iii) a neutron star atmosphere plus power law model (as found for quiescent low-mass X-ray binaries) can also produce a good fit (for plausible dist...

  4. Magnetic white dwarfs with debris disks

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2012-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetism within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. In order to explain this discrepancy we build a model in which the interaction between the magnetosphere of the star and the disk induces angular momentum transfer. Our model predicts that the magnetospheric interaction of magnetic white dwarfs with their disks results in a significant spin down, and we show that the observed rotation period of REJ 0317-853, which is suggested to be a product of a double degenerate merger, can be reproduced.

  5. The surprising inefficiency of dwarf satellite quenching

    CERN Document Server

    Wheeler, Coral; Cooper, Michael C; Boylan-Kolchin, Mike; Bullock, James S

    2014-01-01

    We study dwarf satellite galaxy quenching using observations from the Geha et al. (2012) NSA/SDSS catalog together with LCDM cosmological simulations to facilitate selection and interpretation. We show that fewer than 30% of dwarfs (M* ~ 10^8.5-10^9.5 Msun) identified as satellites within massive host halos (Mhost ~ 10^12.5-10^14 Msun) are quenched, in spite of the expectation from simulations that half of them should have been accreted more than 6 Gyr ago. We conclude that whatever the action triggering environmental quenching of dwarf satellites, the process must be highly inefficient. We investigate a series of simple, one-parameter quenching models in order understand what is required to explain the low quenched fraction and conclude that either the quenching timescale is very long (> 9.5 Gyr, a "slow starvation" scenario) or that the environmental trigger is not well matched to accretion within the virial volume. We discuss these results in light of the fact that most of the low mass dwarf satellites in ...

  6. Searching for Rare Celestial Objects Automatically from Stellar Spectra of the Sloan Digital Sky Survey Data Release Eight%在 SDSS DR8恒星光谱中自动搜寻稀有天体

    Institute of Scientific and Technical Information of China (English)

    司建敏; 罗阿理; 吴福朝; 吴毅红

    2015-01-01

    There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS)Data Release eight (DR8),such as special white dwarfs (DZ,DQ,DC),carbon stars,white dwarf main-sequence binaries (WDMS),cata-clysmic variable (CV)stars and so on,so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset.A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN)has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8.Their densities are esti-mated using Gaussian kernel density estimation,the top 5 000 spectra in descend order by their densities are selected as rare ob-jects,and the top 300 000 spectra in ascend order by their densities are selected as normal objects.Then,KNN were used to classify the rest objects,and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects.As a result,there are totally 21 193 spectra selected as initial rare spectra,which include error spectra caused by deletion,redden, bad calibration,spectra consisting of different physically irrelevant components,planetary nebulas,QSOs,special white dwarfs (DZ,DQ,DC),carbon stars,white dwarf main-sequence binaries (WDMS),cataclysmic variable (CV)stars and so on.By cross identification with SIMBAD,NED,ADS and major literature,it is found that three DZ white dwarfs,one WDMS,two CVs with company of G-type star,three CVs candidates,six DC white dwarfs,one DC white dwarf candidate and one BL Lacer-tae (BL lac)candidate are our new findings.We also have found one special DA white dwarf with emission lines of CaⅡ triple and MgⅠ,and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula.%SDSS DR8海量光谱中包含许多有研究价值的稀有天体,如特殊白矮星(DZ,DQ,DC)、碳星、白矮主序双星、激变变星等

  7. The milky way tomography with sdss

    Energy Technology Data Exchange (ETDEWEB)

    Juric, Mario; Ivezic, Zeljko; Brooks, Alyson; Lupton, Robert H.; Schlegel, David; Finkbeiner, Douglas; Padmanabhan, Nikhil; Bond, Nicholas; Rockosi, Constance M.; Knapp,; Gunn, James E.; Sumi, Takahiro; Schneider, Donald; Barentine, J.C.; Brewington, Howard J.; Brinkmann, J.; Fukugita, Masataka; Harvanek, Michael; Kleinman, S.J.; Krzesinski, Jurek; Long, Dan; /Princeton U. Observ. /Washington U., Seattle, Astron. Dept. /Princeton U. /Penn State U., Astron. Astrophys. /Apache Point Observ. /Tokyo U., ICRR

    2005-10-01

    Using the photometric parallax method, we estimate the distances to {approx}48 million stars detected by the Sloan Digital Sky Survey (SDSS), and map their three-dimensional number density distribution in the Galaxy. The currently available data sample the distance range from 100 pc to 15 kpc and cover 6,500 deg{sup 2} of sky, mostly at high galactic latitudes (|b| > 25). These stellar number density maps allow an investigation of the Galactic structure without any a priori assumptions about its components. The data show strong evidence for a Galaxy consisting of an oblate halo, disk components, and a number of localized overdensities. The number density distribution of stars in the Solar neighborhood (D < 1.5kpc) favors a model having a ''thin'' and a ''thick'' exponential disk, with scale heights and lengths of H{sub 1} {approx} 280 pc and L{sub 1} {approx} 2400pc, and H{sub 2} {approx} 1200pc and L{sub 2} {approx} 3500pc, respectively, and local thick-to-thin disk normalization {rho}{sub thick} (R{sub {circle_dot}})/{rho}{sub thin}(R{sub {circle_dot}}) = 4%. Fits applied to the entire dataset are significantly more uncertain due to the presence of clumps and overdensities. The halo power law index is very poorly constrained, but we find an oblate halo with c/a {approx} 0.5 to be strongly preferred. While roughly consistent with this simple model, the measured density distribution shows a number of statistically significant deviations from the model predictions. In addition to known features, such as the Monoceros stream, a remarkable density enhancement covering over a thousand square degrees of sky is detected towards the constellation of Virgo, at distances of {approx} 5-15 kpc. Compared to counts in a region symmetric with respect to the l = 0 line and with the same Galactic latitude, it is responsible for a factor of 2 number density excess, and may be a nearby tidal stream or a low-surface brightness dwarf galaxy

  8. Satellites and Haloes of Dwarf Galaxies

    CERN Document Server

    Sales, Laura V; White, Simon D M; Navarro, Julio F

    2012-01-01

    We study the abundance of satellite galaxies as a function of primary stellar mass using the SDSS/DR7 spectroscopic catalogue. In contrast with previous studies, which focussed mainly on bright primaries, our central galaxies span a wide range of stellar mass, 10^7.5 < M_*^pri/M_sun < 10^11, from dwarfs to central cluster galaxies. Our analysis confirms that the average number of satellites around bright primaries, when expressed in terms of satellite-to-primary stellar mass ratio (m_*^sat/M_*^pri), is a strong function of M_*^pri. On the other hand, satellite abundance is largely independent of primary mass for dwarf primaries (M_*^pri<10^10 M_sun). These results are consistent with galaxy formation models in the LCDM scenario. We find excellent agreement between SDSS data and semi-analytic mock galaxy catalogues constructed from the Millennium-II Simulation. Satellite galaxies trace dark matter substructure in LCDM, so satellite abundance reflects the dependence on halo mass, M_200, of both substru...

  9. White dwarfs in cataclysmic variables

    Science.gov (United States)

    Gaensicke, Boris

    2016-07-01

    Cataclysmic variables (CVs) provide excellent laboratories to study the effect that the accretion of matter, energy and angular momentum has on the structure of white dwarfs, with important implications on the evolution of these compact binaries, the ignition of thermonuclear surface burning, and potentially their explosion as SNIa. I will provide an overview of our current understanding of CV white dwarfs, with a particular emphasis on the results of a recent large HST program. I will review our knowledge regarding the mass distribution of CV white dwarfs, as well as the secular mean accretion rates that can be inferred from their effective temperatures, and compare those statistics with predictions from CV population models. I will also discuss a sub-set of CVs which underwent thermal-time scale mass transfer, one of the channels that is often discussed as a pathway to SN Ia, and I will illustrate how the study of these "failed SNIa" can contribute to the discussion of SNIa progenitors. Finally, I will discuss the occurrence of non-radial pulsations in white dwarfs, both in CVs and their detached progenitors.

  10. New White Dwarf Stars in the Sloan Digital Sky Survey Data Release 10

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Kleinman, Scot J; Romero, Alejandra Daniela; Nitta, Atsuko; Eisenstein, Daniel J; Costa, José Eduardo da Silveira; Külebi, Baybars; Jordan, Stefan; Dufour, Patrick; Giommi, Paolo; Rebassa-Mansergas, Alberto

    2014-01-01

    We report the discovery of 9 088 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found 1 central star of a planetary nebula, 2 new oxygen spectra on helium atmosphere white dwarfs, 71 DQs, 42 hot DO/PG1159s, 171 white dwarf+main sequence star binaries, 206 magnetic DAHs, 327 continuum dominated DCs, 397 metal polluted white dwarfs, 450 helium dominated white dwarfs, 647 subdwarfs and 6887 new hydrogen dominated white dwarf stars.

  11. Time-Variable Aluminum Absorption in the Polar AR Ursae Majoris, and an Updated Estimate for the Mass of the White Dwarf

    CERN Document Server

    Bai, Yu; Liu, JiFeng; Guo, JinCheng; Gao, Qing; Gong, Hang

    2016-01-01

    We present spectra of the extreme polar AR Ursae Majoris (AR UMa) which display a clear Al I absorption doublet, alongside spectra taken less than a year earlier in which that feature is not present. Re-examination of earlier SDSS spectra indicates that the Al I absorption doublet was also present $\\approx$8 years before our first non-detection. We conclude that this absorbing material is unlikely to be on the surface of either the white dwarf (WD) or the donor star. We suggest that this Al I absorption feature arises in circumstellar material, perhaps produced by the evaporation of asteroids as they approach the hot WD. The presence of any remaining reservoir of rocky material in AR UMa might help to constrain the prior evolution of this unusual binary system. We also apply spectral decomposition to find the stellar parameters of the M dwarf companion, and attempt to dynamically measure the mass of the WD in AR UMa by considering both the radial velocity curves of the H$_\\beta$ emission line and the Na I abs...

  12. Spectral Synthesis of SDSS Galaxies

    CERN Document Server

    Sodre, J; Mateus, A; Stasinska, G; Gomes, J M

    2005-01-01

    We investigate the power of spectral synthesis as a mean to estimate physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities (here from Bruzual & Charlot 2003), producing as output the star-formation and chemical histories of a galaxy, its extinction and velocity dispersion. We discuss the reliability of this approach and apply it to a volume limited sample of 50362 galaxies from the SDSS Data Release 2, producing a catalog of stellar population properties. A comparison with recent estimates of both observed and physical properties of these galaxies obtained by other groups shows good qualitative and quantitative agreement, despite substantial differences in the method of analysis. The confidence in the method is further strengthened by several empirical and astrophysically reasonable correlations between synthesis results and independent quantiti...

  13. Discovery of a New Blue Quasar: SDSS J022218.03-062511.1

    CERN Document Server

    Fix, Mees B; Tucker, Douglas L; Wester, William; Annis, James

    2015-01-01

    We report the discovery of a bright blue quasar: SDSS J022218.03-062511.1. This object was discovered spectroscopically while searching for hot white dwarfs that may be used as calibration sources for large sky surveys such as the Dark Energy Survey or the Large Synoptic Survey Telescope project. We present the calibrated spectrum, spectral line shifts and report a redshift of z = 0.521 +/- 0.0015 and a rest-frame g-band luminosity of 8.71 X 10^11 L(Sun).

  14. Binary Popldation Synthcsis Study

    Institute of Scientific and Technical Information of China (English)

    HAN Zhanwen

    2011-01-01

    Binary population synthesis (BPS), an approach to evolving millions of stars (including binaries) simultaneously, plays a crucial role in our understanding of stellar physics, the structure and evolution of galaxies, and cosmology. We proposed and developed a BPS approach, and used it to investigate the formation of many peculiar stars such as hot subdwarf stars, progenitors of type la supernovae, barium stars, CH stars, planetary nebulae, double white dwarfs, blue stragglers, contact binaries, etc. We also established an evolution population synthesis (EPS) model, the Yunnan Model, which takes into account binary interactions for the first time. We applied our model for the origin of hot subdwarf stars in the study of elliptical galaxies and explained their far-UV radiation.

  15. A brown dwarf orbiting an M-dwarf

    DEFF Research Database (Denmark)

    Bachelet, E.; Fouqué, P.; Albrow, M.D.

    2012-01-01

    -Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit. Methods. Thanks to observations by all the collaborations, this event...... gives two local minima, which correspond to the theoretical degeneracy s ≡ s-1. We find that the lens is composed of a brown dwarf secondary of mass MS = 0.05 M⊙ orbiting a primary M-star of mass MP = 0.18 M⊙. We also reveal a new mass-ratio degeneracy for the central caustics of close binaries...

  16. Naming Disney's Dwarfs.

    Science.gov (United States)

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  17. Population synthesis studies of white dwarf binaries

    Directory of Open Access Journals (Sweden)

    U. Kolb

    2004-01-01

    Full Text Available Presentamos estudios de s ntesis de poblaci on de binarias enana blanca { estrella de la secuencia principal, de variables catacl smicas que son conducidas por discos circumbinarios y de binarias eclipsantes, en la b usqueda del tr ansito de exoplanetas SuperWASP.

  18. Close binary white dwarfs and supernovae IA

    Directory of Open Access Journals (Sweden)

    R. Napiwotzki

    2004-01-01

    Full Text Available Informamos sobre el estado actual de los \\surveys" de velocidades radiales para binarias de enanas blancas (degeneradas dobles - DDs incluyendo SPY (Exploraci on ESO de progenitoras de supernovas Ia que recien- temente se llevaron a cabo en el VLT. Una amplia muestra de DDs nos permitir a poner fuertes restricciones sobre las fases evolutivas de los sistemas progenitores de binarias cercanas y tambi en llevar a cabo pruebas observacionales del escenario DD para supernovas de tipo Ia.

  19. Microlensing Planet Around Brown-Dwarf

    CERN Document Server

    Han, C; Udalski, A; Sumi, T; Gaudi, B S; Gould, A; Bennett, D P; Tsapras, Y; Szymański, M K; Kubiak, M; Pietrzyński, G; Soszyński, I; Skowron, J; Kozłowski, S; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Abe, F; Bond, I A; Botzler, C S; Chote, P; Freeman, M; Fukui, A; Furusawa, K; Harris, P; Itow, Y; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Wada, K; Yock, P C M; Batista, V; Christie, G; Choi, J -Y; DePoy, D L; Dong, Subo; Hwang, K -H; Kavka, A; Lee, C -U; Monard, L A G; Natusch, T; Ngan, H; Park, H; Pogge, R W; Porritt, I; Shin, I -G; Tan, T G; Yee, J C; Alsubai, K A; Bramich, D M; Browne, P; Dominik, M; Horne, K; Hundertmark, M; Ipatov, S; Kains, N; Liebig, C; Snodgrass, C; Steele, I A; Street, R A

    2013-01-01

    Observations of accretion disks around young brown dwarfs have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around brown dwarfs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field brown dwarf via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 +- 0.001), relatively tightly-separated (~0.87 AU) binary composed of a planetary-mass object with 1.9 +- 0.2 Jupiter masses orbiting a brown dwarf with a mass 0.022 M_Sun. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the brown dwarf host, in a manner analogous to planets.

  20. A population synthesis study of the luminosity function of hot white dwarfs

    CERN Document Server

    Torres, S; Krzesinski, J; Kleinman, S J

    2014-01-01

    We present a coherent and detailed Monte Carlo simulation of the population of hot white dwarfs. We assess the statistical significance of the hot end of the white dwarf luminosity function and the role played by the bolometric corrections of hydrogen-rich white dwarfs at high effective temperatures. We use the most up-to-date stellar evolutionary models and implement a full description of the observational selection biases to obtain realistic simulations of the observed white dwarf population. Our theoretical results are compared with the luminosity function of hot white dwarfs obtained from the Sloan Digital Sky Survey (SDSS), for both DA and non-DA white dwarfs. We find that the theoretical results are in excellent agreement with the observational data for the population of white dwarfs with hydrogen deficient atmospheres (non-DA white dwarfs). For the population of white dwarfs with hydrogen-rich atmospheres (white dwarfs of the DA class), our simulations show some discrepancies with the observations for ...

  1. AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    CERN Document Server

    Sánchez-Janssen, Rubén

    2011-01-01

    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood -especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwar's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.

  2. Phase-resolved spectroscopy of the helium dwarf nova 'SN 2003aw' in quiescence

    CERN Document Server

    Roelofs, G; Marsh, T; Steeghs, D; Nelemans, G

    2006-01-01

    High time resolution spectroscopic observations of the ultra-compact helium dwarf nova 'SN 2003aw' in its quiescent state at V=20.5 reveal its orbital period at 2027.8 +/- 0.5 seconds or 33.80 minutes. Together with the photometric 'superhump' period of 2041.5 +/- 0.5 seconds, this implies a mass ratio q of 0.036. We compare both the average and time-resolved spectra of 'SN 2003aw' and SDSS J124058.03-015919.2. Both show a DB white dwarf spectrum plus an optically thin, helium-dominated accretion disc. 'SN 2003aw' distinguishes itself from the SDSS source by its strong calcium H & K emission lines, suggesting higher abundances of heavy metals than the SDSS source. The silicon and iron emission lines observed in the SDSS source are about twice as strong in 'SN 2003aw'. The peculiar 'double bright spot' accretion disc feature seen in the SDSS source is also present in time-resolved spectra of 'SN 2003aw', albeit much weaker.

  3. A Pulsar and White Dwarf in an Unexpected Orbit

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D

  4. A Dark Spot on a Massive White Dwarf

    CERN Document Server

    Kilic, Mukremin; Bell, Keaton J; Curd, Brandon; Brown, Warren R; Hermes, J J; Dufour, Patrick; Wisniewski, John P; Winget, D E; Winget, K I

    2015-01-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 min due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B<70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such ecli...

  5. KOI-3278: A Self-Lensing Binary Star System

    CERN Document Server

    Kruse, Ethan

    2014-01-01

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  6. Rapid Orbital Decay in the 12.75-minute WD+WD Binary J0651+2844

    CERN Document Server

    Hermes, J J; Brown, Warren R; Winget, D E; Prieto, Carlos Allende; Gianninas, A; Mukadam, Anjum S; Cabrera-Lavers, Antonio; Kenyon, Scott J

    2012-01-01

    We report the detection of orbital decay in the 12.75-min, detached binary white dwarf (WD) SDSS J065133.338+284423.37 (hereafter J0651). Our photometric observations over a 13-month baseline constrain the orbital period to 765.206543(55) s and indicate the orbit is decreasing as a rate of (-9.8 +/- 2.8) x 10^(-12) s/s (or -0.31 +/- 0.09 ms/yr). We revise the system parameters based on our new photometric and spectroscopic observations: J0651 contains two WDs with M1 = 0.26 +/- 0.04 Msun and M2 = 0.50 +/- 0.04 Msun. General relativity predicts orbital decay due to gravitational wave radiation of (-8.2 +/- 1.7) x 10^(-12) s/s (or -0.26 +/- 0.05 ms/yr). Our observed rate of orbital decay is consistent with this expectation. J0651 is currently the second-loudest gravitational wave source known in the milli-Hertz range and the loudest non-interacting binary, which makes it an excellent verification source for future missions aimed at directly detecting gravitational waves. Our work establishes the feasibility of ...

  7. Ultracompact AM CVn Binaries from the Sloan Digital Sky Survey: Three Candidates Plus the First Confirmed Eclipsing System

    CERN Document Server

    Anderson, S F; Homer, L; Joshi, N R; Margon, B; Silvestri, N M; Szkody, P; Wolfe, M A; Agol, E; Becker, A C; Henden, A; Hall, P B; Knapp, G R; Richmond, M W; Schneider, D P; Stinson, G; Barentine, J C; Brewington, H J; Brinkmann, J; Harvanek, M; Kleinman, S J; Krzesínski, J; Long, D; Neilsen, E H; Nitta, A; Snedden, S A; Anderson, Scott F.; Haggard, Daryl; Homer, Lee; Joshi, Nikhil R.; Margon, Bruce; Silvestri, Nicole M.; Szkody, Paula; Wolfe, Michael A.; Agol, Eric; Becker, Andrew C.; Henden, Arne; Hall, Patrick B.; Knapp, Gillian R.; Richmond, Michael W.; Schneider, Donald P.; Stinson, Gregory; Brewington, Howard J.; Harvanek, Michael; Krzesinski, Jurek; Long, Dan; Neilsen, Eric H.; Nitta, Atsuko; Snedden, Stephanie A.

    2005-01-01

    AM CVn systems are a rare (about a dozen previously known) class of cataclysmic variables, arguably encompassing the shortest orbital periods (down to about 10 minutes) of any known binaries. Both binary components are thought to be degenerate (or partially so), likely with mass-transfer from a helium-rich donor onto a white dwarf, driven by gravitational radiation. Although rare, AM CVn systems are of high interest as possible SN Ia progenitors, and because they are predicted to be common sources of gravity waves in upcoming experiments such as LISA. We have identified four new AM CVn candidates from the Sloan Digital Sky Survey (SDSS) spectral database. All four show hallmark spectroscopic characteristics of the AM CVn class: each is devoid of hydrogen features, and instead shows a spectrum dominated by helium. All four show double-peaked emission, indicative of helium-dominated accretion disks. Limited time-series CCD photometric follow-on data have been obtained for three of the new candidates from the AR...

  8. Cataclysmic Variables from SDSS. VIII. The Final Year (2007-2008)

    CERN Document Server

    Szkody, Paula; Brooks, Keira; Gaensicke, Boris T; Kronberg, Martin; Riecken, Thomas; Ross, Nicholas P; Schmidt, Gary D; Schneider, Donald P; Agueros, Marcel A; Gomez-Moran, Ada N; Knapp, Gillian R; Schreiber, Matthias R; Schwope, Axel D

    2011-01-01

    This paper completes the series of cataclysmic variables (CVs) identified from the Sloan Digital Sky Survey I/II. The coordinates, magnitudes and spectra of 33 CVs are presented. Among the 33 are eight systems known previous to SDSS (CT Ser, DO Leo, HK Leo, IR Com, V849 Her, V405 Peg, PG1230+226 and HS0943+1404), as well as nine objects recently found through various photometric surveys. Among the systems identified since the SDSS are two polar candidates, two intermediate polar candidates and one candidate for containing a pulsating white dwarf. Our followup data have confirmed a polar candidate from Paper VII and determined tentative periods for three of the newly identified CVs. A complete summary table of the 285 CVs with spectra from SDSS I/II is presented as well as a link to an online table of all known CVs from both photometry and spectroscopy that will continue to be updated as future data appear.

  9. Using M Dwarfs to Map Extinction in the Local Galaxy

    Science.gov (United States)

    Jones, David; West, A. A.; Foster, J.

    2011-01-01

    We use spectra of more than 56,000 M dwarfs from the Sloan Digital Sky Survey (SDSS) to create a high-latitude extinction map of the local Galaxy. Our technique compares spectra from low-extinction lines of sight as determined by Schlegel, Finkbeiner, & Davis to other SDSS spectra in order to derive improved distances and accurate extinctions for the stars in the SDSS data release 7 M dwarf sample. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across the entire spectral range from 5700 to 9200 angstroms for every star in our sample. Our result is an extinction map that extends from a few tens of pc to approximately 2 kpc from the Sun. We also use a similar technique to create a map of Rv values within approximately 1 kpc of the Sun and find that they are roughly consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local galaxy of 176 ± 15 parsecs.

  10. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  11. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools: II. SDSS DR7 vs UKIDSS LAS DR6, SDSS DR7 vs UKIDSS LAS DR8, SDSS DR9 vs UKIDSS LAS DR10, and SDSS DR7 vs 2MASS

    CERN Document Server

    Lodieu, N; Osorio, M R Zapatero; Solano, E; Aberasturi, M; Martin, E L; Rodrigo, C

    2016-01-01

    We aim at developing an efficient method to search for late-type subdwarfs (metal-depleted dwarfs with spectral types >M5) to improve the current statistics. Our objectives are: improve our knowledge of metal-poor low-mass dwarfs, bridge the gap between the late-M and L types, determine their surface density, and understand the impact of metallicity on the stellar and substellar mass function. We carried out a search cross-matching the SDSS, 2MASS, and UKIDSS using STILTS, Aladin, and Topcat. We considered different photometric and proper motion criteria for our selection. We identified 29 and 71 late-type subdwarf candidates in each cross-correlation over 8826 and 3679 square degrees, respectively. We obtained low-resolution optical spectra for 71 of our candidates with GTC, NOT, and VLT and retrieved spectra for 30 candidates from the SDSS spectroscopic database. We classified 92 candidates based on 101 optical spectra using two methods: spectral indices and comparison with templates of known subdwarfs. We ...

  12. Active states and structure transformations in accreting white dwarfs

    Science.gov (United States)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  13. Building Magnetic Fields in White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  14. Discovery of a widely separated UCD-WD binary

    CERN Document Server

    Day-Jones, A C; Napiwotzki, R; Burningham, B; Jenkins, J S; Jones, H R A; Folkes, S L; Weights, D J; Clarke, J R A

    2008-01-01

    We present the discovery of the widest known ultracool dwarf - white dwarf binary. This binary is the first spectroscopically confirmed widely separated system from our target sample. We have used the 2MASS and SuperCOSMOS archives in the southern hemisphere, searching for very widely separated ultracool dwarf - white dwarf dwarf binaries, and find one common proper motion system, with a separation of 3650-5250AU at an estimated distance of 41-59pc, making it the widest known system of this type. Spectroscopy reveals 2MASS J0030-3740 is a DA white dwarf with Teff=7600+/-100K, log(g)=7.79-8.09 and M(WD)=0.48-0.65Msun. We spectroscopically type the ultracool dwarf companion (2MASS J0030-3739) as M9+/-1 and estimate a mass of 0.07-0.08Msun, Teff=2000-2400K and log(g)=5.30-5.35, placing it near the mass limit for brown dwarfs. We estimate the age of the system to be >1.94Gyrs (from the white dwarf cooling age and the likely length of the main sequence lifetime of the progenitor) and suggest that this system and o...

  15. Hot C-rich white dwarfs: testing the DB-DQ transition through pulsations

    CERN Document Server

    Córsico, A H; Althaus, L G; García-Berro, E

    2009-01-01

    Hot DQ white dwarfs constitute a new class of white dwarf stars, uncovered recently within the framework of the SDSS project. Recently, three hot DQ white dwarfs have been reported to exhibit photometric variability with periods compatible with pulsation g-modes. Here, we present a nonadiabatic pulsation analysis of the recently discovered carbon-rich hot DQ white dwarf stars. One of our main aims is to test the convective-mixing picture for the origin of hot DQs through the pulsational properties. Our study relies on the full evolutionary models of hot DQ white dwarfs recently developed by Althaus et al. (2009), that consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Specifically, we present a stability analysis of white dwarf models from stages before the blue edge of the DBV instability strip until the domain of the hot DQ white dwarfs, including the transition DB --> hot DQ white dwarf. We found that at evolutionary phases in which the models are characteriz...

  16. Masses and Multiplicity of Nearby Free- floating Methane and L Dwarfs

    Science.gov (United States)

    Brandner, Wolfgang

    2000-07-01

    Brown dwarfs never stabilize themselves on the hydrogen main sequence, thus there is an ambiguity between the temperature or luminosity of a given object and its mass or age. In order to test the mass-luminosity relations of {still uncertain} evolutionary models, a direct dynamical determination of mass is required. As a first step towards a dynamical mass estimate for brown dwarfs, we have compiled a sample of 50 very-low-mass objects {Mmasses for brown dwarfs and to calibrate evolutionary tracks. Binary properties like multiplicity, distribution of binary separations and brightness ratios hold clues on the origin of free-floating brown dwarf binaries. Our program will be an important step towards a better understanding of the still elusive class of brown dwarfs.

  17. WISE Photometry for 400 Million SDSS Sources

    Science.gov (United States)

    Lang, Dustin; Hogg, David W.; Schlegel, David J.

    2016-02-01

    We present photometry of images from the Wide-Field Infrared Survey Explorer (WISE) of over 400 million sources detected by the Sloan Digital Sky Survey (SDSS). We use a “forced photometry” technique, using measured SDSS source positions, star-galaxy classification, and galaxy profiles to define the sources whose fluxes are to be measured in the WISE images. We perform photometry with The Tractor image modeling code, working on our “unWISE” coaddds and taking account of the WISE point-spread function and a noise model. The result is a measurement of the flux of each SDSS source in each WISE band. Many sources have little flux in the WISE bands, so often the measurements we report are consistent with zero given our uncertainties. However, for many sources we get 3σ or 4σ measurements; these sources would not be reported by the “official” WISE pipeline and will not appear in the WISE catalog, yet they can be highly informative for some scientific questions. In addition, these small-signal measurements can be used in stacking analyses at the catalog level. The forced photometry approach has the advantage that we measure a consistent set of sources between SDSS and WISE, taking advantage of the resolution and depth of the SDSS images to interpret the WISE images; objects that are resolved in SDSS but blended together in WISE still have accurate measurements in our photometry. Our results, and the code used to produce them, are publicly available at http://unwise.me.

  18. WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Dustin [Department of Astronomy and Astrophysics and Dunlap Institute, University of Toronto, 50 Saint George Street, Toronto, ON, M5S 3H4 (Canada); Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schlegel, David J., E-mail: dstndstn@gmail.com [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-02-15

    We present photometry of images from the Wide-Field Infrared Survey Explorer (WISE) of over 400 million sources detected by the Sloan Digital Sky Survey (SDSS). We use a “forced photometry” technique, using measured SDSS source positions, star–galaxy classification, and galaxy profiles to define the sources whose fluxes are to be measured in the WISE images. We perform photometry with The Tractor image modeling code, working on our “unWISE” coaddds and taking account of the WISE point-spread function and a noise model. The result is a measurement of the flux of each SDSS source in each WISE band. Many sources have little flux in the WISE bands, so often the measurements we report are consistent with zero given our uncertainties. However, for many sources we get 3σ or 4σ measurements; these sources would not be reported by the “official” WISE pipeline and will not appear in the WISE catalog, yet they can be highly informative for some scientific questions. In addition, these small-signal measurements can be used in stacking analyses at the catalog level. The forced photometry approach has the advantage that we measure a consistent set of sources between SDSS and WISE, taking advantage of the resolution and depth of the SDSS images to interpret the WISE images; objects that are resolved in SDSS but blended together in WISE still have accurate measurements in our photometry. Our results, and the code used to produce them, are publicly available at http://unwise.me.

  19. Spectroscopy of Putative Brown Dwarfs in Taurus

    CERN Document Server

    Luhman, K L

    2010-01-01

    Quanz and coworkers have reported the discovery of the coolest known member of the Taurus star-forming complex (L2+/-0.5) and Barrado and coworkers have identified a possible protostellar binary brown dwarf in the same region. We have performed infrared spectroscopy on the former and the brighter component of the latter to verify their substellar nature. The resulting spectra do not exhibit the strong steam absorption bands that are expected for cool objects, demonstrating that they are not young brown dwarfs. The optical magnitudes and colors for these sources are also indicative of background stars rather than members of Taurus. Although the fainter component of the candidate protostellar binary lacks spectroscopy, we conclude that it is a galaxy rather than a substellar member of Taurus based on its colors and the constraints on its proper motion.

  20. The 25 parsec local white dwarf population

    Science.gov (United States)

    Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.

    2016-11-01

    We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 ± 0.5 × 10-3 pc-3. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby `Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last ˜8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.

  1. Magnetic braking in ultracompact binaries

    CERN Document Server

    Farmer, Alison

    2010-01-01

    Angular momentum loss in ultracompact binaries, such as the AM Canum Venaticorum stars, is usually assumed to be due entirely to gravitational radiation. Motivated by the outflows observed in ultracompact binaries, we investigate whether magnetically coupled winds could in fact lead to substantial additional angular momentum losses. We remark that the scaling relations often invoked for the relative importance of gravitational and magnetic braking do not apply, and instead use simple non-empirical expressions for the braking rates. In order to remove significant angular momentum, the wind must be tied to field lines anchored in one of the binary's component stars; uncertainties remain as to the driving mechanism for such a wind. In the case of white dwarf accretors, we find that magnetic braking can potentially remove angular momentum on comparable or even shorter timescales than gravitational waves over a large range in orbital period. We present such a solution for the 17-minute binary AM CVn itself which a...

  2. Ultra-short period binaries from the Catalina Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Donalek, C.; Williams, R. [California Institute of Technology, 1200 East California Boulevard, CA 91225 (United States); García-Álvarez, D. [Instituto de Astrofísica de Canarias, Avenida Vía Láctea, 38205 La Laguna, Tenerife (Spain); Catelan, M.; Torrealba, G. [Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Facultad de Física, Av. Vicuña Mackena 4860, 782-0436 Macul, Santiago (Chile); Prieto, J. L. [Department of Astronomy, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Abraham, S. [St. Thomas College, Kozhencheri 689641 (India); Larson, S.; Christensen, E. [Department of Planetary Sciences, The University of Arizona, Lunar and Planetary Laboratory, 1629 East University Boulevard, Tucson, AZ 85721 (United States)

    2014-08-01

    We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.

  3. Investigating Dwarf Spiral Galaxies

    Science.gov (United States)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  4. Multi-wavelength characterization of stellar flares on low-mass stars using SDSS and 2MASS time domain surveys

    CERN Document Server

    Davenport, James R A; Kowalski, Adam F; Hawley, Suzanne L; Schmidt, Sarah J; Hilton, Eric J; Sesar, Branimir; Cutri, Roc

    2012-01-01

    We present the first rates of flares from M dwarf stars in both red optical and near infrared (NIR) filters. We have studied ~50,000 M dwarfs from the SDSS Stripe 82 area, and 1,321 M dwarfs from the 2MASS Calibration Scan Point Source Working Database that overlap SDSS imaging fields. We assign photometric spectral types from M0 to M6 using (r-i) and (i-z) colors for every star in our sample. Stripe 82 stars each have 50-100 epochs of data, while 2MASS Calibration stars have ~1900 epochs. From these data we estimate the observed rates and theoretical detection thresholds for flares in eight photometric bands as a function of spectral type. Optical flare rates are found to be in agreement with previous studies, while the frequency per hour of NIR flare detections is found to be more than two orders of magnitude lower. An excess of small amplitude flux increases in all bands exhibits a power-law distribution, which we interpret as the result of flares below our detection thresholds. In order to investigate the...

  5. Unusual double-peaked emission in the SDSS quasar J093201.60 + 031858.7

    Science.gov (United States)

    Barrows, R. S.; Lacy, C. H. S.; Kennefick, D.; Kennefick, J.; Seigar, M. S.

    2011-02-01

    We examine spectral properties of the SDSS quasar J093201.60 + 031858.7, in particular the presence of strong blue peaks in the Balmer emission lines offset from the narrow lines by approximately 4200 km s -1. Asymmetry in the broad central component of the H β line indicates the presence of a double-peaked emitter. However, the strength and sharpness of the blue H β and blue H γ peaks make this quasar spectrum unique among double-peaked emitters identified from SDSS spectra. We fit a disk model to the H β line and compare this object with other unusual double-peaked quasar spectra, particularly candidate binary supermassive black holes (SMBHs). Under the binary SMBH scenario, we test the applicability of a model in which a second SMBH may produce the strong blue peak in the Balmer lines of a double-peaked emitter. If there were only one SMBH, a circular, Keplerian disk model fit would be insufficient, indicating some sort of asymmetry is required to produce the strength of the blue peak. In either case, understanding the nature of the complex line emission in this object will aid in further discrimination between a single SMBH with a complex accretion disk and the actual case of a binary SMBH.

  6. New population synthesis model: Preliminary results for close double white dwarf populations

    CERN Document Server

    Toonen, Silvia; Zwart, Simon Portegies

    2011-01-01

    An update is presented to the software package SeBa for simulating single star and binary evolution in which new stellar evolution tracks have been implemented. SeBa is applied to study the population of close double white dwarf and the delay time distribution of double white dwarf mergers that may lead to Supernovae Type Ia.

  7. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  8. SDSS-D R10中WD MS光谱的自动搜索研究%Searching for WDMS Candidates In SDSS-DR10 With Automatic Method

    Institute of Scientific and Technical Information of China (English)

    姜斌; 王成优; 王文玉; 王为

    2015-01-01

    The Sloan Digital Sky Survey (SDSS) has released the latest data (DR10) which covers the first APOGEE spectra . The massive spectra can be used for large sample research including the structure and evolution of the Galaxy and multi-wave-band identi cation .In addition ,the spectra are also ideal for searching for rare and special objects like white dwarf main-sequence star (WDMS) .WDMS consist of a white dwarf primary and a low-mass main-sequence (MS) companion which has positive sig-nificance to the study of evolution and parameter of close binaries .WDMS is generally discovered by repeated imaging of the same area of sky ,measuring light curves for objects or through photometric selection with follow-up observations .These meth-ods require significant manual processing time with low accuracy and the real-time processing requirements can not be satisfied . In this paper ,an automatic and efficient method for searching for WDMS candidates is presented .The method Genetic Algorithm (GA) is applied in the newly released SDSS-DR10 spectra .A total number of 4 140 WDMS candidates are selected by the meth-od and 24 of them are new discoveries w hich prove that our approach of finding special celestial bodies in massive spectra data is feasible .In addition ,this method is also applicable to mining other special celestial objects in sky survey telescope data .We re-port the identfication of 24 new WDMS with spectra .A compendium of positions ,mjd ,plate and fiberid of these new discoveries is presented which enrich the spectral library and will be useful to the research of binary evolution models .%SDSS-DR10是美国SLOAN巡天望远镜发布的最新数据,包含了首批APOGEE光谱。这些海量的天文光谱除了可以用来探寻银河系的结构和进行多波段证认外,还蕴藏着包括白矮主序双星在内的特殊天体。白矮主序双星是一类特殊的双星系统,它由两颗主序星演化而来,包含了中低质量恒星演化的终

  9. Close supermassive binary black holes

    Science.gov (United States)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  10. A Dark Spot on a Massive White Dwarf

    Science.gov (United States)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  11. Spectral Energy Distributions of SDSS Blazars

    Indian Academy of Sciences (India)

    H. Z. Li; L. E. Chen

    2014-09-01

    We compiled the radio, optical and X-ray data for SDSS sample, and presented broad band spectral index. The broad band energy distribution reveals that FSRQs and LBLs objects have similar spectral properties. However, HBLs have a separate distinct property. Even so, a unified scheme was also revealed from colour–colour diagram.

  12. Molecular hydrogen absorption systems in SDSS

    CERN Document Server

    Balashev, S A; Ivanchik, A V; Varshalovich, D A; Petitjean, P; Noterdaeme, P

    2014-01-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS) II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Ly$\\alpha$ forest can effectively mimic H$_2$ absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte-Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H$_2$ absorption systems can be confidently identified. We find that H$_2$ absorption systems with column densities $\\log {\\rm N_{H_2}} > 19$ can be detected in only less than 3% of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H$_2$ absorption systems ($\\log {\\rm N_{H_2}} > 19$) in Damped Ly-$\\alpha$ (DLA) systems to be about 7%. We provide a sample of ...

  13. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  14. A quasar companion to the puzzling quasar SDSS J0927+2943

    OpenAIRE

    Decarli, R.; Falomo, R.; Treves, A.; Barattini, M

    2010-01-01

    We report the discovery of a quasar close to SDSS J0927+2943 (z = 0.713), which is a massive binary / recoiling black hole candidate. The companion quasar is at a projected distance of 125 h_70^{-1} kpc and exhibits a radial velocity difference of ~1400 km/s with respect to the known quasar. We discuss the nature of this peculiar quasar pair and the properties of its environment. We propose that the overall system is caught in the process of ongoing structure formation.

  15. Andromeda XXVIII: A Dwarf Galaxy More Than 350 kpc from Andromeda

    CERN Document Server

    Slater, Colin T; Martin, Nicolas F

    2011-01-01

    We report the discovery of a new dwarf galaxy, Andromeda XXVIII, using data from the recently-released SDSS DR8. The galaxy is a likely satellite of Andromeda, and, at a separation of $365^{+17}_{-1}$ kpc, would be one of the most distant of Andromeda's satellites. Its heliocentric distance is $650^{+150}_{-80}$ kpc, and analysis of its structure and luminosity show that it has an absolute magnitude of $M_V = -8.5^{+0.4}_{-1.0}$ and half-light radius of $r_h = 210^{+60}_{-50}$ pc, similar to many other faint Local Group dwarfs. With presently-available imaging we are unable to determine if there is ongoing or recent star formation, which prevents us from classifying it as a dwarf spheroidal or dwarf irregular.

  16. A Nearby Old Halo White Dwarf Candidate from the Sloan Digital Sky Survey

    CERN Document Server

    Hall, Patrick B; Harris, Hugh C; Awal, Akshay; Leggett, S K; Kilic, Mukremin; Anderson, Scott F; Gates, Evalyn

    2008-01-01

    We report the discovery of a nearby, old, halo white dwarf candidate from the Sloan Digital Sky Survey. SDSS J110217.48+411315.4 has a proper motion of 1.75 arcsec/year and redder optical colors than all other known featureless (type DC) white dwarfs. We present SDSS imaging and spectroscopy of this object, along with near-infrared photometry obtained at the United Kingdom Infra-Red Telescope. Fitting its photometry with up-to-date model atmospheres, we find that its overall spectral energy distribution is fit reasonably well with a pure hydrogen composition and T_eff~3800 K (assuming log g=8). That temperature and gravity would place this white dwarf at 35 pc from the Sun with a tangential velocity of 290 km/s and space velocities consistent with halo membership; furthermore, its combined main sequence and white dwarf cooling age would be ~11 Gyr. However, if this object is a massive white dwarf, it could be a younger object with a thick disk origin. Whatever its origin, the optical colors of this object are...

  17. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    Science.gov (United States)

    Kepler, S. O.; Pelisoli, I.; Koester, D.; Ourique, G.; Romero, A. D.; Reindl, N.; Kleinman, S. J.; Eisenstein, D. J.; Valois, A. D. M.; Amaral, L. A.

    2016-02-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon-dominated spectra (DQs). We found one central star of a planetary nebula, one ultracompact helium binary (AM CVn), one oxygen line-dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium-dominated white dwarfs, 148 white dwarf + main-sequence star binaries, 236 metal-polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen-dominated white dwarf stars, and 2675 cool hydrogen-dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N ≥ 15 in DR12, including the ones in DR7 and DR10, with an average S/N = 26, corrected to the 3D convection scale, and also the distribution after correcting for the observed volume, using 1/Vmax.

  18. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Romero, Alejandra Daniela; Reindl, Nicole; Kleinman, Scot J; Eisenstein, Daniel J; Valois, A Dean M; Amaral, Larissa A

    2015-01-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found one central star of a planetary nebula, one ultra-compact helium binary (AM CVn), one oxygen line dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium dominated white dwarfs, 148 white dwarf+main sequence star binaries, 236 metal polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen dominated white dwarf stars, and 2675 cool hydrogen dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N>15 in DR12, including the ones in DR7 and DR10, with an average S/N=26, correc...

  19. A Very Cool Pair of Brown Dwarfs

    Science.gov (United States)

    2011-03-01

    Observations with the European Southern Observatory's Very Large Telescope, along with two other telescopes, have shown that there is a new candidate for the coldest known star: a brown dwarf in a double system with about the same temperature as a freshly made cup of tea - hot in human terms, but extraordinarily cold for the surface of a star. This object is cool enough to begin crossing the blurred line dividing small cold stars from big hot planets. Brown dwarfs are essentially failed stars: they lack enough mass for gravity to trigger the nuclear reactions that make stars shine. The newly discovered brown dwarf, identified as CFBDSIR 1458+10B, is the dimmer member of a binary brown dwarf system located just 75 light-years from Earth [1]. The powerful X-shooter spectrograph on ESO's Very Large Telescope (VLT) was used to show that the composite object was very cool by brown dwarf standards. "We were very excited to see that this object had such a low temperature, but we couldn't have guessed that it would turn out to be a double system and have an even more interesting, even colder component," said Philippe Delorme of the Institut de planétologie et d'astrophysique de Grenoble (CNRS/Université Joseph Fourier), a co-author of the paper. CFBDSIR 1458+10 is the coolest brown dwarf binary found to date. The dimmer of the two dwarfs has now been found to have a temperature of about 100 degrees Celsius - the boiling point of water, and not much different from the temperature inside a sauna [2]. "At such temperatures we expect the brown dwarf to have properties that are different from previously known brown dwarfs and much closer to those of giant exoplanets - it could even have water clouds in its atmosphere," said Michael Liu of the University of Hawaii's Institute for Astronomy, who is lead author of the paper describing this new work. "In fact, once we start taking images of gas-giant planets around Sun-like stars in the near future, I expect that many of them

  20. Construction and compression of Dwarf

    Institute of Scientific and Technical Information of China (English)

    XIANG Long-gang; FENG Yu-cai; GUI Hao

    2005-01-01

    There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. Ifa partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more compressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of "ALL" cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.

  1. The Composition Of A Disrupted Extrasolar Planetesimal At SDSS J0845+2257 (Ton 345)

    CERN Document Server

    Wilson, David J; Koester, Detlev; Toloza, Odette; Pala, Anna F; Breedt, Elmé; Parsons, Steven G

    2015-01-01

    We present a detailed study of the metal-polluted DB white dwarf SDSS J0845+2257 (Ton 345). Using high-resolution HST/COS and VLT spectroscopy, we have detected hydrogen and eleven metals in the atmosphere of the white dwarf. The origin of these metals is almost certainly the circumstellar disc of dusty and gaseous debris from a tidally-disrupted planetesimal, accreting at a rate of 1.6E10 gs^-1. Studying the chemical abundances of the accreted material demonstrates that the planetesimal had a composition similar to the Earth, dominated by rocky silicates and metallic iron, with a low water content. The mass of metals within the convection zone of the white dwarf corresponds to an asteroid of at least ~130-170 km in diameter, although the presence of ongoing accretion from the debris disc implies that the planetesimal was probably larger than this. While a previous abundance study of the accreted material has shown an anomalously high mass fraction of carbon (15 percent) compared to the bulk Earth, our indepe...

  2. Binary Planetary Nebulae Nuclei towards the Galactic Bulge. I. Sample Discovery, Period Distribution and Binary Fraction

    CERN Document Server

    Miszalski, B; Moffat, A F J; Parker, Q A; Udalski, A

    2009-01-01

    Binarity has been hypothesised to play an important, if not ubiquitous, role in the formation of planetary nebulae (PNe). Yet there remains a severe paucity of known binary central stars required to test the binary hypothesis and to place strong constraints on the physics of the common-envelope (CE) phase of binary stellar evolution. Large photometric surveys offer an unrivalled opportunity to efficiently discover many binary central stars. We have combined photometry from the OGLE microlensing survey with the largest sample of PNe towards the Galactic Bulge to systematically search for new binaries. A total of 21 periodic binaries were found thereby more than doubling the known sample. The orbital period distribution was found to be best described by CE population synthesis models when no correlation between primary and secondary masses is assumed for the initial mass ratio distribution. A comparison with post-CE white dwarf binaries indicates both distributions are representative of the true post-CE period ...

  3. The Milky Way Tomography with SDSS. 2. Stellar Metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Ivezic, Zeljko; /Washington U., Seattle; Sesar, Branimir; /Washington U., Seattle; Juric, Mario; /Princeton, Inst. Advanced Study; Bond, Nicholas; /Princeton U.; Dalcanton, Julianne; /Washington U., Seattle; Rockosi, Constance M.; /UC, Santa Cruz; Yanny, Brian; /Fermilab; Newberg, Heidi J.; /Rensselaer Poly.; Beers, Timothy C.; /Michigan State U.; Prieto, Carlos Allende; /Texas U.; Wilhelm, Ron; /Texas Tech. /Michigan State U.

    2008-04-01

    from the plane from -0.6 at 500 pc to -0.8 beyond several kpc. Similarly, we find using proper motion measurements that a non-Gaussian rotational velocity distribution of disk stars shifts by {approx}50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall's {tau} = 0.017 {+-} 0.018). This absence of a correlation between metallicity and kinematics for disk stars is in a conflict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation ({tau} = ?0.30 {+-} 0.04) at {approx}1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19.5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of coherent substructures in the kinematics-metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [Fe/H] = ?0.95, with an rms scatter of only {approx}0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that the LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to {approx}0.2-0.5 mas/yr, for about 200 million F/G dwarf stars within a distance limit of {approx}100 kpc (g < 23.5).

  4. Dwarf Detachment and Globular Cluster Formation in Arp 305

    CERN Document Server

    Hancock, M; Struck, C; Giroux, M L; Hurlock, S

    2009-01-01

    Tidal Dwarf Galaxies (TDG), concentrations of interstellar gas and stars in the tidal features of interacting galaxies, have been the subject of much scrutiny. The `smoking gun' that will prove the TDG hypothesis is the discovery of independent dwarf galaxies that are detached from other galaxies, but have clear tidal histories. As part of a search for TDGs we are using GALEX to conduct a large UV imaging survey of interacting galaxies selected from the Arp Atlas. As part of that study, we present a GALEX UV and SDSS and SARA optical study of the gas-rich interacting galaxy pair Arp 305. The GALEX UV data reveal much extended diffuse UV emission and star formation outside the disks including a candidate TDG between the two galaxies. We have used a smooth particle hydrodynamics code to model the interaction and determine the fate of the candidate TDG.

  5. Cool DZ white dwarfs I: Identification and spectral analysis

    Science.gov (United States)

    Hollands, M. A.; Koester, D.; Alekseev, V.; Herbert, E. L.; Gänsicke, B. T.

    2017-01-01

    White dwarfs with metal lines in their spectra act as signposts for post-main sequence planetary systems. Searching the Sloan Digital Sky Survey (SDSS) data release 12, we have identified 231 cool (absorption, extending the DZ cooling sequence to both higher metal abundances, lower temperatures, and hence longer cooler ages. Of these 231 systems, 104 are previously unknown white dwarfs. Compared with previous work, our spectral fitting uses improved model atmospheres with updated line profiles and line-lists, which we use to derive effective temperatures and abundances for up to 8 elements. We also determine spectroscopic distances to our sample, identifying two halo-members with tangential space-velocities >300 km s-1. The implications of our results on remnant planetary systems are to be discussed in a separate paper.

  6. Massive double white dwarfs and the AM CVn birthrate

    Science.gov (United States)

    Kilic, Mukremin; Brown, Warren R.; Heinke, Craig O.; Gianninas, A.; Benni, P.; Agüeros, M. A.

    2016-08-01

    We present Chandra and Swift X-ray observations of four extremely low-mass (ELM) white dwarfs with massive companions. We place stringent limits on X-ray emission from all four systems, indicating that neutron star companions are extremely unlikely and that the companions are almost certainly white dwarfs. Given the observed orbital periods and radial velocity amplitudes, the total masses of these binaries are greater than 1.02-1.39 M⊙. The extreme mass ratios between the two components make it unlikely that these binary white dwarfs will merge and explode as Type Ia or underluminous supernovae. Instead, they will likely go through stable mass transfer through an accretion disc and turn into interacting AM CVn. Along with three previously known systems, we identify two of our targets, J0811 and J2132, as systems that will definitely undergo stable mass transfer. In addition, we use the binary white dwarf sample from the ELM Survey to constrain the inspiral rate of systems with extreme mass ratios. This rate, 1.7 × 10-4 yr-1, is consistent with the AM CVn space density estimated from the Sloan Digital Sky Survey. Hence, stable mass transfer double white dwarf progenitors can account for the entire AM CVn population in the Galaxy.

  7. A Detailed Model Atmosphere Analysis of Cool White Dwarfs in the Sloan Digital Sky Survey

    CERN Document Server

    Kilic, Mukremin; Tremblay, P -E; von Hippel, Ted; Bergeron, P; Harris, Hugh C; Munn, Jeffrey A; Williams, Kurtis A; Gates, Evalyn; Farihi, J

    2010-01-01

    We present optical spectroscopy and near-infrared photometry of 126 cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Our sample includes high proper motion targets selected using the SDSS and USNO-B astrometry and a dozen previously known ultracool white dwarf candidates. Our optical spectroscopic observations demonstrate that a clean selection of large samples of cool white dwarfs in the SDSS (and the SkyMapper, Pan-STARRS, and the Large Synoptic Survey Telescope datasets) is possible using a reduced proper motion diagram and a tangential velocity cut-off (depending on the proper motion accuracy) of 30 km/s. Our near-infrared observations reveal eight new stars with significant absorption. We use the optical and near-infrared photometry to perform a detailed model atmosphere analysis. More than 80% of the stars in our sample are consistent with either pure hydrogen or pure helium atmospheres. However, the eight stars with significant infrared absorption and the majority of the previously known ultra...

  8. VARIABILITY IN HOT CARBON-DOMINATED ATMOSPHERE (HOT DQ) WHITE DWARFS: RAPID ROTATION?

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A.; Bierwagen, Michael [Department of Physics and Astrophysics, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX, 75429 (United States); Montgomery, M. H.; Winget, D. E.; Falcon, Ross E., E-mail: Kurtis.Williams@tamuc.edu [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX, 78712 (United States)

    2016-01-20

    Hot white dwarfs (WDs) with carbon-dominated atmospheres (hot DQs) are a cryptic class of WDs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ WDs. Three (SDSS J1426+5752, SDSS J2200−0741, and SDSS J2348−0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are not harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236−0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005−1002, known to exhibit a 2.1-day photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating WDs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ WDs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear—both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions of future work that would best clarify the nature of these rare, intriguing objects.

  9. Blue diffuse dwarf galaxies: a clearer picture

    Science.gov (United States)

    James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.

    2017-03-01

    The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), i.e. galaxies with population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ∼150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.

  10. SN Typing for the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, Elizabeth S.; /Wellesley Coll. /SLAC

    2005-12-15

    In the fall of 2004 the Sloan Digital Sky Survey (SDSS) 2.5m telescope scanned the southern equatorial stripe for approximately 20 nights over the space of two months. Light curves for over four dozen supernovae (SNe) were collected over time using five colored filters ugriz that together had a range of approximately 3000{angstrom} to 10500{angstrom}. 22 SNe were spectroscopically confirmed with follow-up observation. Using the data obtained in the Fall 2004 campaign, preparations are now being made for the Supernova Survey of the SDSS II, a three-year extension of the original project. One main goal of the Supernova Survey will be to identify and study type Ia SNe of up to redshift {approx}0.4, the intermediate ''redshift desert'', as well as enabling further study of other types of SNe including type 1b/c and peculiar SNe. Most of the SNe found will not have spectra taken, due to time and cost constraints. Thus it would be advantageous to be able to robustly type SNe solely from the light curves obtained by the SDSS telescope prior to, or even without ever obtaining a spectrum. Using light curves of well-observed SNe templates were constructed for comparison with unknown SNe in order to photometrically type them.

  11. WISE photometry for 400 million SDSS sources

    CERN Document Server

    Lang, Dustin; Schlegel, David J

    2014-01-01

    We present photometry of images from the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010) of over 400 million sources detected by the Sloan Digital Sky Survey (SDSS; York et al. 2000). We use a "forced photometry" technique, using measured SDSS source positions, star-galaxy separation and galaxy profiles to define the sources whose fluxes are to be measured in the WISE images. We perform photometry with The Tractor image modeling code, working on our "unWISE" coaddds and taking account of the WISE point-spread function and a noise model. The result is a measurement of the flux of each SDSS source in each WISE band. Many sources have little flux in the WISE bands, so often the measurements we report are consistent with zero. However, for many sources we get three- or four-sigma measurements; these sources would not be reported by the WISE pipeline and will not appear in the WISE catalog, yet they can be highly informative for some scientific questions. In addition, these small-signal measurements...

  12. Clusters of Galaxies in the SDSS

    CERN Document Server

    Nichol, R C

    2003-01-01

    I review here past and present research on clusters and groups of galaxies within the Sloan Digital Sky Survey (SDSS). In particular, I discuss the C4 algorithm which is designed to search for clusters within a 7-dimensional data-space, i.e., simultaneous in both color & space. The C4 catalog has a well defined selection function based on mock SDSS galaxy catalogs constructed from the Hubble Volume simulation, and is >90% complete, with 10^14 Msolar at z<0.14. Furthermore, the observed summed r-band luminosity of C4 clusters is linearly related to M200 with <30% scatter at any given halo mass. I also briefly review the selection and observation of Luminous Red Galaxies (LRGs) and demonstrate that these galaxies have a similar clustering strength as clusters and groups of galaxies. I outline a new collaboration planning to obtain redshifts for 10,000 LRGs at 0.4SDSS photometric data and the AAT 2dF instrument. Finally, I review the role of clusters and groups of galaxies in th...

  13. The Fall 2004 SDSS Supernova Survey

    CERN Document Server

    Sako, M; Frieman, J A; Adelman-McCarthy, J; Becker, A; De Jongh, F; Dilday, B; Estrada, J; Hendry, J; Holtzman, J; Kaplan, J; Kessler, R; Lampeitl, H; Marriner, J P; Miknaitis, G; Riess, A; Tucker, D; Barentine, J; Blandford, R D; Brewington, H; Dembicky, J; Harvanek, M; Hawley, S; Hogan, C; Johnston, D; Kahn, S; Ketzeback, B; Kleinman, S; Krzesínski, J; Lamenti, D; Long, D; McMillan, R; Newman, P; Nitta, A; Nichol, R; Scranton, R; Sheldon, E S; Snedden, S A; Stoughton, C; York, D; Sako, Masao; Romani, Roger; Frieman, Josh; Carthy, Jen Adelman-Mc; Becker, Andrew; Jongh, Fritz De; Dilday, Ben; Estrada, Juan; Hendry, John; Holtzman, Jon; Kaplan, Jared; Kessler, Rick; Lampeitl, Hubert; Marriner, John; Miknaitis, Gajus; Riess, Adam; Tucker, Douglas

    2005-01-01

    In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of ~2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05 - 0.35,...

  14. Throwing Icebergs at White Dwarfs

    Science.gov (United States)

    Stephan, Alexander P.; Naoz, Smadar; Zuckerman, B.

    2017-08-01

    White dwarfs (WDs) have atmospheres that are expected to consist nearly entirely of hydrogen and helium, since heavier elements will sink out of sight on short timescales. However, observations have revealed atmospheric pollution by heavier elements in about a quarter to a half of all WDs. While most of the pollution can be accounted for with asteroidal or dwarf planetary material, recent observations indicate that larger planetary bodies, as well as icy and volatile material from Kuiper belt analog objects, are also viable sources of pollution. The commonly accepted pollution mechanisms, namely scattering interactions between planetary bodies orbiting the WDs, can hardly account for pollution by objects with large masses or long-period orbits. Here we report on a mechanism that naturally leads to the emergence of massive body and icy and volatile material pollution. This mechanism occurs in wide binary stellar systems, where the mass loss of the planets’ host stars during post main sequence stellar evolution can trigger the Eccentric Kozai-Lidov mechanism. This mechanism leads to large eccentricity excitations, which can bring massive and long-period objects close enough to the WDs to be accreted. We find that this mechanism readily explains and is consistent with observations.

  15. Binaries in the field: fossils of the star formation process?

    CERN Document Server

    Parker, Richard J

    2014-01-01

    Recent observations of binary stars in the Galactic field show that the binary fraction and the mean orbital separation both decrease as a function of decreasing primary mass. We present $N$-body simulations of the effects of dynamical evolution in star-forming regions on primordial binary stars to determine whether these observed trends can be explained by the dynamical processing of a common binary population. We find that dynamical processing of a binary population with an initial binary fraction of unity and an initial excess of intermediate/wide separation (100 - 10$^4$ au) binaries does not reproduce the observed properties in the field, even in initially dense ($\\sim 10^3$M$_\\odot$ pc$^{-3}$) star-forming regions. If instead we adopt a field-like population as the initial conditions, most brown dwarf and M-dwarf binaries are dynamically hard and their overall fractions and separation distributions are unaffected by dynamical evolution. G-dwarf and A-star binaries in the field are dynamically intermedia...

  16. QSOs in the combined SDSS/GALEX database

    CERN Document Server

    Hutchings, J B

    2008-01-01

    We discuss selection of QSO candidates from the combined SDSS and GALEX catalogues. We discuss properties of QSOs within the combined sample, and note uncertainties in number counts and completeness, compared with other SDSS-based samples. We discuss colour and other properties with redshift within the sample and the SEDs for subsets. We estimate the numbers of faint QSOs that are classified as extended objects in the SDSS, and consequent uncertainties that follow.

  17. Unusual Double-peaked Emission in the SDSS Quasar J093201.60+031858.7

    CERN Document Server

    Barrows, R Scott; Kennefick, Daniel; Kennefick, Julia

    2010-01-01

    We examine spectral properties of the SDSS quasar J093201.60+031858.7, in particular the presence of strong blue peaks in the Balmer emission lines offset from the narrow lines by approximately 4200 km s$^{-1}$. Asymmetry in the broad central component of the H$\\beta$ line indicates the presence of a double-peaked emitter. However, the strength and sharpness of the blue H$\\beta$ and blue H$\\gamma$ peaks make this quasar spectrum unique amongst double-peaked emitters identified from SDSS spectra. We fit a disk model to the H$\\beta$ line and compare this object with other unusual double-peaked quasar spectra, particularly candidate binary supermassive black holes (SMBHs). Under the binary SMBH scenario, we test the applicability of a model in which a second SMBH may produce the strong blue peak in the Balmer lines of a double-peaked emitter. If there were only one SMBH, a circular, Keplerian disk model fit would be insufficient, indicating some sort of asymmetry is required to produce the strength of the blue p...

  18. Brown dwarfs forming in discs: Where to look for them?

    Directory of Open Access Journals (Sweden)

    Stamatellos D.

    2011-07-01

    Full Text Available A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation for the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100–5000 AU around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  19. The formation of low-mass stars and brown dwarfs

    CERN Document Server

    Stamatellos, Dimitris

    2013-01-01

    It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragmentation, ejection of protostellar embryos, disc fragmentation, and photo-erosion of prestellar cores. I will focus on the disc fragmentation theory and discuss how it addresses critical observational constraints, i.e. the low-mass initial mass function, the brown dwarf desert, and the binary statistics of low-mass stars and brown dwarfs. I will examine whether observations may be used to distinguish between different formation mechanisms, and give a few examples of systems that strongly favour a specific formation scenario. Finally, I will argue that it is likely that all mechanisms may play a role in low-mass star and brown dwarf formation.

  20. Magnetic White Dwarfs: Observations, Theory, and Future Prospects

    CERN Document Server

    García-Berro, Enrique; Kepler, S O

    2015-01-01

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.

  1. Brown dwarfs forming in discs: where to look for them?

    CERN Document Server

    Stamatellos, Dimitris

    2009-01-01

    A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100-5000 AU) around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  2. GRB Afterglows and Other Transients in the SDSS

    OpenAIRE

    Lee, Brian C.; Reichart, Daniel E.

    2003-01-01

    The Sloan Digital Sky Survey (SDSS) will image one quarter of the sky centered on the northern galactic cap and produce a 3-D map of galaxies and quasars found in the sample. An additional 225 deg^2 southern survey will be imaged repeatedly on varying timescales. Here we discuss both archival searches in the SDSS catalog (such as SDSS J24602.54+011318.8) and active searches with the SDSS instruments (such as for GRB 010222) for GRB afterglows and other transient objects.

  3. The 25 Parsec Local White Dwarf Population

    CERN Document Server

    Oswalt, J B Holberg T D; McCook, G P

    2016-01-01

    We have extended our detailed survey of the local white dwarf population from 20 pc to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68% complete (the corresponding 20 pc sample is now 86\\% complete). The space density of white dwarfs is unchanged at 4.8 \\pm 0.5 x 10^{-3} pc^{-3}. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74\\% vs 26\\%). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition this updated sample exhibits a pronounced deficiency of nearby Sirius-Like systems. Eleven such systems were found within the 20 pc volume vs, only one add...

  4. Calibrating M dwarf metallicities using molecular indices

    CERN Document Server

    Woolf, V M; Woolf, Vincent M; Wallerstein, George

    2005-01-01

    We report progress in the calibration of a method to determine cool dwarf star metallicities using molecular band strength indices. The molecular band index to metallicity relation can be calibrated using chemical abundances calculated from atomic line equivalent width measurements in high resolution spectra. Building on previous work, we have measured Fe and Ti abundances in 32 additional M and K dwarf stars to extend the range of temperature and metallicity covered. A test of our analysis method using warm star - cool star binaries shows we can calculate reliable abundances for stars warmer than 3500 K. We have used abundance measurements for warmer binary or cluster companions to estimate abundances in 6 additional cool dwarfs. Adding stars measured in our previous work and others from the literature provides 76 stars with Fe abundance and CaH2 and TiO5 index measurements. The CaH2 molecular index is directly correlated with temperature. TiO5 depends on temperature and metallicity. Metallicity can be estim...

  5. Follow-up of MARVELS Brown Dwarf Candidates using EXPERT

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Li, Rui; Sithajan, Sirinrat; Thomas, Neil; Wang, Ji; De Lee, Nathan

    2013-02-01

    The SDSS-III MARVELS survey is a comprehensive radial velocity survey of 3,300 nearby F-K stars, between 7.6 < V < 12.0 in 2008-2012. All of the survey data for 2580 FGK stars from the first two and half years have been processed with the latest data pipeline. A total of 26 new brown dwarfs (BD) candidates have been identified in the processed RV data. We expect to have 8 more BD candidates from the ~800 stars currently under processing, which will make a total of 34 BD candidates. This proposal requests KPNO 2.1m telescope time with the EXPERT instrument, to follow up all of these BD candidates to confirm the detections and characterize the orbits. The results will be used to (1) reveal the overall distribution of the new BDs in the parameter space; (2) measure the occurrence rate of BD around FGK type stars; (3) measure dryness of the brown dwarf desert around stars with different mass and metallicity; (4) constrain theoretical models regarding the formation of brown dwarfs; (5) confirm the discovery of `desert in the brown dwarf desert'; (6) identify additional companions associated with the detected systems.

  6. A plausible (overlooked) super-luminous supernova in the SDSS Stripe 82 data

    CERN Document Server

    Kostrzewa-Rutkowska, Zuzanna; Wyrzykowski, Lukasz; Djorgovski, S George; Glikman, Eilat; Mahabal, Ashish A

    2013-01-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova peaked at M_g<-21.3 mag in the second half of September 2005, but was missed by the real-time supernova hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN2007bi type. Spectrum of the host galaxy reveals a redshift of z=0.281 and the distance modulus of \\mu=40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with the absolute magnitude of M_B=-18.2+/-0.2 mag and the oxygen abundance of 12+log[O/H]=8.3+/-0.2. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity ...

  7. GTC OSIRIS z-band imaging of Y dwarfs

    CERN Document Server

    Lodieu, N; Rebolo, R

    2013-01-01

    The aim of the project is to contribute to the characterisation of the spectral energy distribution of the coolest brown dwarfs discovered to date, the Y dwarfs. We obtained z-band far-red imaging for six Y dwarfs and a T9+Y0 binary with the OSIRIS (Optical System for Imaging and low Resolution Integrated Spectroscopy) instrument on the 10.4-m Gran Telescopio de Canarias (GTC). We detect five of the seven known Y dwarfs in the $z$-band, infer their optical-to-infrared colours, and measure their proper motions. We find a higher dispersion in the z-J and z-H colours of Y0 dwarfs than in T dwarfs. This dispersion is found to be correlated with H-w2. The high dispersion in the optical-to-infrared colours of Y dwarfs and the possible turn-over towards bluer colours may be a consequence of the presence of sulfide clouds with different thicknesses, the depletion of alcalines, and/or gravity effects.

  8. Analysis of White Dwarfs with Strange-Matter Cores

    CERN Document Server

    Mathews, G J; O'Gorman, B; Lan, N Q; Zech, W; Otsuki, K; Weber, F

    2006-01-01

    We summarize masses and radii for a number of white dwarfs as deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. A puzzling feature of these data is that some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equations of state. We construct a projection of white-dwarf radii for fixed effective mass and conclude that there is at least marginal evidence for bimodality in the radius distribution forwhite dwarfs. We argue that if such compact white dwarfs exist it is unlikely that they contain an iron core. We propose an alternative of strange-quark matter within the white-dwarf core. We also discuss the impact of the so-called color-flavor locked (CFL) state in strange-matter core associated with color superconductivity. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify ...

  9. DA white dwarfs in the Kepler field

    Science.gov (United States)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2017-01-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-m, and Bok 2.3-m telescopes. Using atmospheric models, we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows. (i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these 11 happens to be a presumed binary, KIC 11604781, with a period of ˜5 d. (ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation time-scales.

  10. Magnetic white dwarfs with debris discs

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2013-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetic fields within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. Smoothed Particle Hydrodynamics simulations show that in mergers in which the two white dwarfs have different masses a disc around the central compact object is formed. If the central object is magnetized it can interact with the disc through its magnetosphere. The torque applied by the disc changes the spin of the star, whereas the transferred angular momentum from the star to the disc determines the properties of the disc. In this work we build a model for the disc evolution under the effect of magnetic accretion, and for the angular momentum evolution of the star, which can be compared with the observations. Our model pre...

  11. DA White Dwarfs in the Kepler Field

    Science.gov (United States)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2016-10-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows: i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these eleven happens to be a presumed binary, KIC 11604781, with a period of ˜5 days. ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation timescales.

  12. Photometric brown-dwarf classification. I. A method to identify and accurately classify large samples of brown dwarfs without spectroscopy

    Science.gov (United States)

    Skrzypek, N.; Warren, S. J.; Faherty, J. K.; Mortlock, D. J.; Burgasser, A. J.; Hewett, P. C.

    2015-02-01

    Aims: We present a method, named photo-type, to identify and accurately classify L and T dwarfs onto the standard spectral classification system using photometry alone. This enables the creation of large and deep homogeneous samples of these objects efficiently, without the need for spectroscopy. Methods: We created a catalogue of point sources with photometry in 8 bands, ranging from 0.75 to 4.6 μm, selected from an area of 3344 deg2, by combining SDSS, UKIDSS LAS, and WISE data. Sources with 13.0 0.8, were then classified by comparison against template colours of quasars, stars, and brown dwarfs. The L and T templates, spectral types L0 to T8, were created by identifying previously known sources with spectroscopic classifications, and fitting polynomial relations between colour and spectral type. Results: Of the 192 known L and T dwarfs with reliable photometry in the surveyed area and magnitude range, 189 are recovered by our selection and classification method. We have quantified the accuracy of the classification method both externally, with spectroscopy, and internally, by creating synthetic catalogues and accounting for the uncertainties. We find that, brighter than J = 17.5, photo-type classifications are accurate to one spectral sub-type, and are therefore competitive with spectroscopic classifications. The resultant catalogue of 1157 L and T dwarfs will be presented in a companion paper.

  13. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    CERN Document Server

    Bluhm, P; Vanzi, L; Soto, M G; Vos, J; Wittenmyer, R A; Olivares, F; Drass, H; Mennickent, R E; Vuckovic, M; Rojo, P; Melo, C H F

    2016-01-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions.The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between $\\sim$ 97-1600 days and eccentricities of between $\\sim$ 0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a diffe...

  14. Juvenile Ultracool Dwarfs

    CERN Document Server

    Rice, Emily L; Cruz, Kelle; Barman, Travis; Looper, Dagny; Malo, Lison; Mamajek, Eric E; Metchev, Stanimir; Shkolnik, Evgenya L

    2011-01-01

    Juvenile ultracool dwarfs are late spectral type objects (later than ~M6) with ages between 10 Myr and several 100 Myr. Their age-related properties lie intermediate between very low mass objects in nearby star-forming regions (ages 1-5 Myr) and field stars and brown dwarfs that are members of the disk population (ages 1-5 Gyr). Kinematic associations of nearby young stars with ages from ~10-100 Myr provide sources for juvenile ultracool dwarfs. The lowest mass confirmed members of these groups are late-M dwarfs. Several apparently young L dwarfs and a few T dwarfs are known, but they have not been kinematically associated with any groups. Normalizing the field IMF to the high mass population of these groups suggests that more low mass (mainly late-M and possibly L dwarf) members have yet to be found. The lowest mass members of these groups, along with low mass companions to known young stars, provide benchmark objects with which spectroscopic age indicators for juvenile ultracool dwarfs can be calibrated and...

  15. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  16. Constraining white-dwarf kicks in globular clusters : IV. Retarding Core Collapse

    CERN Document Server

    Heyl, Jeremy S

    2009-01-01

    Observations of white dwarfs in the globular clusters NGC 6397 and Omega Centauri indicate that these stars may get a velocity kick during their time as giants. This velocity kick could originate naturally if the mass loss while on the asymptotic giant branch is slightly asymmetric. The kicks may be large enough to dramatically change the radial distribution of young white dwarfs, giving them larger energies than other stars in the cluster. As these energetic white dwarfs travel through the cluster they can impart their excess energy on the other stars in the cluster. A Monte-Carlo simualtion of the white-dwarfs kicks combined with estimate of the phase-space diffusion of the white dwarfs reveals that as the white dwarfs equilibrate, they lose most of their energy in the central region of the cluster. They could possibly mimic the effect of binaries, puffing up the cluster and delaying core collapse.

  17. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  18. Binary stars: Mass transfer and chemical composition

    Science.gov (United States)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  19. Detonability of white dwarf plasma: turbulence models at low densities

    Science.gov (United States)

    Fenn, D.; Plewa, T.

    2017-06-01

    We study the conditions required to produce self-sustained detonations in turbulent, carbon-oxygen degenerate plasma at low densities. We perform a series of three-dimensional hydrodynamic simulations of turbulence driven with various degrees of compressibility. The average conditions in the simulations are representative of models of merging binary white dwarfs. We find that material with very short ignition times is abundant in case turbulence is driven compressively. This material forms contiguous structures that persist over many ignition times, and that we identify as prospective detonation kernels. Detailed analysis of prospective kernels reveals that these objects are centrally condensed and their shape is characterized by low curvature, supportive of self-sustained detonations. The key characteristic of the newly proposed detonation mechanism is thus high degree of compressibility of turbulent drive. The simulated detonation kernels have sizes notably smaller than the spatial resolution of any white dwarf merger simulation performe