WorldWideScience

Sample records for dusty star-forming galaxies

  1. Dusty Star-Forming Galaxies at High Redshift

    CERN Document Server

    Casey, Caitlin M; Cooray, Asantha

    2014-01-01

    Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest of these galaxies have infrared luminosities in excess of 10$^{13}$ L$_{\\odot}$ with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the Universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wavelengths. The bulk of this infrared extragalactic background light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrare...

  2. Hα Kinematics of High-z Dusty Star Forming Galaxies

    Science.gov (United States)

    Drew, Patrick; Casey, Caitlin; Hung, Chao-Ling; Cooray, Asantha R.; Sanders, David B.; Fu, Hai

    2017-01-01

    Dusty Star Forming Galaxies (DSFGs) have the highest star formation rates in the Universe, but compared with other star forming galaxies at z > ~1 they are difficult to characterize, physically. Their low number density and extreme dust obscuration has led to very few kinematic studies of DSFGs at optical wavelengths. We present a rest-frame optical kinematic analysis of 5 DSFGs at z ~1.5 using long slit spectroscopy obtained with MOSFIRE at Keck Observatory. From our high signal-to-noise spectra we simultaneously fit Hα, [NII] λ6548, and [NII] λ6583 along each slit to generate position-velocity diagrams. We infer the kinematic disturbances and derive dynamical masses in order to compare with other derived quantities such as fractional obscuration, stellar and gas fractions, and dust characteristics.

  3. The Evolution of the Fractions of Quiescent and Star-forming Galaxies as a Function of Stellar Mass Since z=3: Increasing Importance of Massive, Dusty Star-forming Galaxies in the Early Universe

    CERN Document Server

    Martis, Nicholas S; Brammer, Gabriel B; Muzzin, Adam; Franx, Marijn; Labbé, Ivo; Momcheva, Ivelina G; Skelton, Rosalind E; Stefanon, Mauro; van Dokkum, Pieter G; Whitaker, Katherine E

    2016-01-01

    Using the UltraVISTA DR1 and 3D-HST catalogs, we construct a stellar-mass-complete sample, unique for its combination of surveyed volume and depth, to study the evolution of the fractions of quiescent galaxies, moderately unobscured star-forming galaxies, and dusty star-forming galaxies as a function of stellar mass over the redshift interval $0.2 \\le z \\le 3.0$. We show that the role of dusty star-forming galaxies within the overall galaxy population becomes more important with increasing stellar mass, and grows rapidly with increasing redshift. Specifically, dusty star-forming galaxies dominate the galaxy population with $\\log{(M_{\\rm star}/M_{\\odot})} \\gtrsim 10.3$ at $z\\gtrsim2$. The ratio of dusty and non-dusty star-forming galaxies as a function of stellar mass changes little with redshift. Dusty star-forming galaxies dominate the star-forming population at $\\log{(M_{\\rm star}/M_{\\odot})} \\gtrsim 10.0-10.5$, being a factor of $\\sim$3-5 more common, while unobscured star-forming galaxies dominate at $\\lo...

  4. Candidate Gravitationally Lensed Dusty Star-forming Galaxies in the Herschel Wide Area Surveys

    CERN Document Server

    Nayyeri, H; Cooray, A; Riechers, D A; Ivison, R J; Harris, A I; Frayer, D T; Baker, A J; Chapman, S C; Eales, S; Farrah, D; Fu, H; Marchetti, L; Marques-Chaves, R; Martinez-Navajas, P I; Oliver, S; Omont, A; Perez-Fournon, I; Scott, D; Vaccari, M; Vieira, J; Viero, M; Wardlow, J

    2016-01-01

    We present a list of candidate gravitationally lensed dusty star-forming galaxies (DSFGs) from the HerMES Large Mode Survey (HeLMS) and the Herschel Stripe 82 Survey (HerS). Together, these partially overlapping surveys cover 372 deg^2 on the sky. After removing local spiral galaxies and known radio-loud blazars, our candidate list of lensed DSFGs is composed of 77 sources with 500 micron flux densities (S_500) greater than 100 mJy. Such sources are likely dusty starburst galaxies that are selected as bright sub-millimeter galaxies (SMGs). We expect a large fraction of this list to be strongly lensed, with a small fraction made up of bright SMG-SMG mergers that appear as hyper-luminous infrared galaxies (HyLIRGs). Thirteen of the 77 candidates have spectroscopic redshifts from CO spectroscopy with ground-based interferometers, putting them at z>1 and well above the redshift of the foreground lensing galaxies. The surface density of our sample of 0.21 +/- 0.03 deg^-2. We also find nine radio-bright blazars tha...

  5. The Rest-Frame Submillimeter Spectrum of High-Redshift, Dusty, Star-Forming Galaxies

    CERN Document Server

    Spilker, J S; Aguirre, J E; Aravena, M; Ashby, M L N; Bethermin, M; Bradford, C M; Bothwell, M S; Brodwin, M; Carlstrom, J E; Chapman, S C; Crawford, T M; de Breuck, C; Fassnacht, C D; Gonzalez, A H; Greve, T R; Gullberg, B; Hezaveh, Y; Holzapfel, W L; Husband, K; Ma, J; Malkan, M; Murphy, E J; Reichardt, C L; Rotermund, K M; Stalder, B; Stark, A A; Strandet, M; Vieira, J D; Weiss, A; Welikala, N

    2014-01-01

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250-770GHz. This spectrum was constructed by stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral features of 12CO, [CI], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z>2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlik...

  6. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  7. The Quest for Dusty Star-forming Galaxies at High Redshift z>4

    CERN Document Server

    Mancuso, C; Shi, J; Gonzalez-Nuevo, J; Aversa, R; Danese, L

    2016-01-01

    We exploit the continuity equation approach and the `main sequence' star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population featuring large star formation rates (SFRs) > 10^2 M_sun/yr in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z30 M_sun/yr cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data...

  8. ALMA observations of atomic carbon in z ∼ 4 dusty star-forming galaxies

    Science.gov (United States)

    Bothwell, M. S.; Aguirre, J. E.; Aravena, M.; Bethermin, M.; Bisbas, T. G.; Chapman, S. C.; De Breuck, C.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Ma, J.; Malkan, M.; Marrone, D. P.; Murphy, E. J.; Spilker, J. S.; Strandet, M.; Vieira, J. D.; Weiß, A.

    2017-04-01

    We present Atacama Large Millimeter Array [C I](1 - 0) (rest frequency 492 GHz) observations for a sample of 13 strongly lensed dusty star-forming galaxies (DSFGs) originally discovered at 1.4 mm in a blank-field survey by the South Pole Telescope (SPT). We compare these new data with available [C I] observations from the literature, allowing a study of the interstellar medium (ISM) properties of ∼30 extreme DSFGs spanning a redshift range 2 modern photodissociation region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterized by dense gas permeated by strong UV fields. We note that previous efforts to characterize photodissociation region regions in DSFGs may have significantly under-estimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.

  9. Dusty Star Forming Galaxies and Supermassive Black Holes at High Redshifts: In- Situ Coevolution

    Science.gov (United States)

    Mancuso, Claudia

    2016-10-01

    We have exploited the continuity equation approach and the star-formation timescales derived from the observed 'main sequence' relation (Star Formation Rate vs Stellar Mass), to show that the observed high abundance of galaxies with stellar masses ≥ a few 10^10 M⊙ at redshift z ≥ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≥ 10^2 M⊙ yr^-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≤ 3 in the Far-InfraRed (FIR) band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼10, elucidating that the number density at z ≤ 8 for SFRs ψ ≥ 30 M⊙ yr^-1 cannot be estimated relying on the UltraViolet (UV) luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z ≤ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2. The same could be done with radio observations by SKA and its precursors. In particular we have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. To do that we

  10. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  11. The Quest for Dusty Star-forming Galaxies at High Redshift z ≳ 4

    Science.gov (United States)

    Mancuso, C.; Lapi, A.; Shi, J.; Gonzalez-Nuevo, J.; Aversa, R.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 1010 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 102 M ⊙ yr-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ˜ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr-1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC-LABOCA, SCUBA-2, and ALMA-SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2, supplemented by photometric data from on-source observations with ALMA, can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  12. HerMES: Cosmic Infrared Background Anisotropies and the Clustering of Dusty Star-Forming Galaxies

    CERN Document Server

    Viero, M P; Zemcov, M; Addison, G; Amblard, A; Arumugam, V; Aussel, H; Bethermin, M; Bock, J; Boselli, A; Buat, V; Burgarella, D; Casey, C M; Clements, D L; Conley, A; Conversi, L; Cooray, A; De Zotti, G; Dowell, C D; Farrah, D; Franceschini, A; Glenn, J; Griffin, M; Hatziminaoglou, E; Heinis, S; Ibar, E; Ivision, R J; Lagache, G; Levenson, L; Marchetti, L; Marsden, G; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Page, M J; Papageorgiou, A; Peason, C P; Perez-Fournon, I; Pohlen, M; Rigopoulou, D; Roseboom, I G; Rowan-Robinson, M; Scott, D; Seymour, N; Schulz, B; Shupe, D L; Smith, A J; Symeonidis, M; Vaccari, M; Valtchanov, I; Vieira, J D; Wardlow, J; Xu, C K

    2012-01-01

    We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500um (1200, 860, and 600 GHz) from observations totaling ~ 70 deg^2 made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy dI / I = 14 +- 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and non-linear (1-halo) regimes to unprecedented levels; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k_theta ~ 0.1 arcmin^-1 (l ~ 2200). New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources --- suggesting that some fraction of the more luminous sources occupy more massive halos as satellites. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least...

  13. The redshift distribution of dusty star forming galaxies from the SPT survey

    CERN Document Server

    Strandet, M L; Vieira, J D; de Breuck, C; Aguirre, J E; Aravena, M; Ashby, M L N; Béthermin, M; Bradford, C M; Carlstrom, J E; Chapman, S C; Crawford, T M; Everett, W; Fassnacht, C D; Furstenau, R M; Gonzalez, A H; Greve, T R; Gullberg, B; Hezaveh, Y; Kamenetzky, J R; Litke, K; Ma, J; Malkan, M; Marrone, D P; Menten, K M; Murphy, E J; Nadolski, A; Rotermund, K M; Spilker, J S; Stark, A A; Welikala, N

    2016-01-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3mm spectral scans between 84-114GHz for 15 galaxies and targeted ALMA 1mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI] , [NII] , H_2O and NH_3. We further present APEX [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new mm/submm line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redsh...

  14. ALMA Observations of SPT-Discovered, Strongly Lensed, Dusty, Star-Forming Galaxies

    CERN Document Server

    Hezaveh, Y D; Fassnacht, C D; Spilker, J S; Vieira, J D; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Bleem, L E; Bothwell, M; Brodwin, M; Carlstrom, J E; Chang, C L; Chapman, S C; Crawford, T M; Crites, A T; De Breuck, C; de Haan, T; Dobbs, M A; Fomalont, E B; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Husband, K; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Weiß, A; Welikala, N; Williamson, R

    2013-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1-3 arcsec, consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z=5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200 M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, w...

  15. HerMES: ALMA Imaging of Herschel-selected Dusty Star-forming Galaxies

    CERN Document Server

    Bussmann, R S; Fialkov, A; Scudder, J; Hayward, C C; Cowley, W I; Bock, J; Calanog, J; Chapman, S C; Cooray, A; De Bernardis, F; Farrah, D; Fu, Hai; Gavazzi, R; Hopwood, R; Ivison, R J; Jarvis, M; Lacey, C; Loeb, A; Oliver, S J; Perez-Fournon, I; Rigopoulou, D; Roseboom, I G; Scott, Douglas; Smith, A J; Vieira, J D; Wang, L; Wardlow, J

    2015-01-01

    The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the poor spatial resolution of Herschel. We present 870um 0.45" imaging obtained in Cycle 0 with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5-sigma limit in our ALMA sample; sigma~0.2 mJy). Optical imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing (mu>1.1), but only 6 are strongly lensed and show multiple images. We introduce and make use of uvmcmcfit, a general purpose and publicly available Markov chain Monte Carlo visibility plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for...

  16. ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ˜ 7

    Science.gov (United States)

    Strandet, M. L.; Weiss, A.; De Breuck, C.; Marrone, D. P.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Cunningham, D. J. M.; Chen, Chian-Chou; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hayward, C. C.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Menten, K. M.; Miller, T.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Spilker, J. S.; Sreevani, J.

    2017-06-01

    We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z=6.900+/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [{{C}} {{I}}](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and [{{C}} {{II}}] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [{{C}} {{I}}] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of {M}{gas}=3.3+/- 1.9× {10}11 {M}⊙ . Its large mass and intense star formation is very rare for a source well into the epoch of reionization.

  17. Tracing the Far-Infrared Roles of AGN in Dusty Star-Forming Galaxies

    Science.gov (United States)

    Brown, Arianna; Nayyeri, Hooshang; Cooray, Asantha R.; Mitchell-Wynne, Ketron

    2017-01-01

    Active galactic nuclei (AGNs) are suggested to play an important role in quenching their host galaxy’s star formation rate (SFR) by heating up and/or consuming the cool gas necessary to create stars. This mechanism is theorized as a critical step in AGN evolutionary models. The efforts to study this effect suffer in part from low-number statistics at high x-ray luminosities (LXR > 1044 ergs/s) for AGNs at z≈1-3, and a lack of separately estimated SFRs for AGN in dusty, star-forming galaxies (DSFGs). In this work, we extend our analysis to build a more complete picture using the variety of available multi-wavelength data in the XBoötes region. The Chandra XBoötes Survey is a 5-ks X-ray survey of the 9.3 square degree Boötes Field of the NOAO Deep Wide-Field Survey, a survey imaged from the optical to the near-IR. We estimate AGN spectral energy distributions and SFRs for ~400 x-ray sources using available data in all four Spitzer IRAC bands, the Spitzer MIPS 24µm band, all five Herschel SPIRE and PACS bands, along with NEWFIRM optical bands. Preliminary results show an exponential correlation between x-ray luminosity and star formation. As a comparison, we will use a stacking technique for the ~500 x-ray sources that were not detected at submillimeter wavelengths, where sources are binned by x-ray luminosity. We will compare these two samples and expect to see a difference in slope. Using these techniques, we hope to place tighter constraints on the mean SFRs of high-luminosity AGNs inside DSFGs, and determine if x-ray luminosities are independent of average SFRs for our sample in the Boötes field.

  18. ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hezaveh, Y. D. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Marrone, D. P.; Spilker, J. S.; Bothwell, M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Vieira, J. D. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Aravena, M.; De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Strasse, D-85748 Garching bei Muenchen (Germany); Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); and others

    2013-04-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.

  19. ALMA redshifts of millimeter-selected galaxies from the SPT survey: The redshift distribution of dusty star-forming galaxies

    CERN Document Server

    Weiss, A; Marrone, D P; Vieira, J D; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Bethermin, M; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Chapman, S C; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Downes, T P; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Halverson, N W; Hezaveh, Y D; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Husband, K; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Murphy, E J; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Rosenman, M; Ruel, J; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-01-01

    Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensd dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope (SPT). The sources were selected to have S_1.4mm>20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz=3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of =2.3 and for which only 10-15% of the population is expected to be at z>3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  20. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Science.gov (United States)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crichton, Devin; hide

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 - 1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, alpha(sub 148-218), of 3.7 +0.62/-0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  1. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Science.gov (United States)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D.; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Johnathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  2. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    CERN Document Server

    Marsden, Danica; Marriage, Tobias A; Switzer, Eric R; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Jonathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward

    2013-01-01

    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty ...

  3. Molecular Gas Content of an Extremely Star-forming Herschel Observed Lensed Dusty Galaxy at z=2.685

    Science.gov (United States)

    Nayyeri, Hooshang; Cooray, Asantha R.; H-ATLAS

    2017-01-01

    We present the results of combined deep near-infrared, far infrared and millimeter observations of an extremely star forming lensed dusty star-forming galaxy (DSFG) identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). The high redshift DSFG is gravitationally lensed by a massive WISE identified cluster at z~1 (spectroscopically confirmed with Keck/DEIMOS and Gemini/GMOS) producing multiply lensed images and arcs observed in the optical. The DSFG is spectroscopically confirmed at z=2.685 from CO(1-0) observations by GBT and separately from CO(3-2) observations by CARMA. We use the combined spectroscopic and imaging observations to construct a detailed lens model of the background DSFG which allowed us to study the sources plane properties of the target. Multi-band data from Keck/NIRC2, HST/WFC3 and Herschel yields star formation rate and stellar mass well above the main sequence. Observations of the dust continuum by the Sub-millimeter Array yields an observed total ISM mass of 6.5E+11 M* which is responsible for the intense observed star formation rates. Comparing the measured SFR with molecular gas measurements from CO(1-0) observations reveals that this system has relatively short gas depletion time scale which is consistent with the starburst phase observed in high redshift sub-millimeter galaxies.

  4. ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); De Breuck, C.; Aravena, M.; Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild Strasse, D-85748 Garching bei Muenchen (Germany); Marrone, D. P.; Bothwell, M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Vieira, J. D.; Bock, J. J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bethermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu - CNRS - Universite Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 Canada (Canada); and others

    2013-04-10

    Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S{sub 1.4{sub mm}} > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S{sub 843{sub MHz}} < 6 mJy) or far-infrared counterparts (S{sub 100{sub {mu}m}} < 1 Jy, S{sub 60{sub {mu}m}} < 200 mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of {sup 12}CO, {sup 13}CO, C I, H{sub 2}O, and H{sub 2}O{sup +}. We find one or more spectral features in 23 sources yielding a {approx}90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for {approx}70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7 < z < 2.0. The resulting mean redshift of our sample is z-bar = 3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of z-bar = 2.3 and for which only 10%-15% of the population is expected to be at z > 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  5. The K20 survey. I. Disentangling old and dusty star-forming galaxies in the ERO population

    CERN Document Server

    Cimatti, A; Mignoli, M; Pozzetti, L; Renzini, A; Zamorani, G; Broadhurst, T J; Fontana, A; Saracco, P; Poli, F; Cristiani, S; D'Odorico, S; Giallongo, E; Gilmozzi, R; Menci, N

    2002-01-01

    We present the results of VLT optical spectroscopy of a complete sample of 78 EROs with R-Ks\\geq5 over a field of 52 arcmin^2. About 70% of the 45 EROs with Ks\\leq19.2 have been spectroscopically identified with old passively evolving and dusty star-forming galaxies at 0.7star-forming EROs we estimate a substantial dust extinction with E(B-V) \\gtsima 0.5. The star formation rates, corrected for the average reddening, sugges...

  6. Herschel protocluster survey: A search for dusty star-forming galaxies in protoclusters at z=2-3

    CERN Document Server

    Kato, Y; Smail, Ian; Swinbank, A M; Hatsukade, B; Umehata, H; Tanaka, I; Saito, T; Iono, D; Tamura, Y; Kohno, K; Erb, D K; Lehmer, B D; Geach, J E; Steidel, C C; Alexander, D M; Yamada, T; Hayashino, T

    2016-01-01

    We present a Herschel/SPIRE survey of three protoclusters at z=2-3 (2QZCluster, HS1700, SSA22). Based on the SPIRE colours (S350/S250 and S500/S350) of 250 $\\mu$m sources, we selected high redshift dusty star-forming galaxies potentially associated with the protoclusters. In the 2QZCluster field, we found a 4-sigma overdensity of six SPIRE sources around 4.5' (~2.2 Mpc) from a density peak of H$\\alpha$ emitters at z=2.2. In the HS1700 field, we found a 5-sigma overdensity of eight SPIRE sources around 2.1' (~1.0 Mpc) from a density peak of LBGs at z=2.3. We did not find any significant overdensities in SSA22 field, but we found three 500 $\\mu$m sources are concentrated 3' (~1.4 Mpc) east to the LAEs overdensity. If all the SPIRE sources in these three overdensities are associated with protoclusters, the inferred star-formation rate densities are 10$^3$-10$^4$ times higher than the average value at the same redshifts. This suggests that dusty star-formation activity could be very strongly enhanced in z~2-3 pro...

  7. Stellar masses and star formation rates of lensed dusty star-forming galaxies from the SPT survey

    CERN Document Server

    Ma, Jingzhe; Spilker, J S; Strandet, M; Ashby, M L N; Aravena, M; Béthermin, M; Bothwell, M S; de Breuck, C; Brodwin, M; Chapman, S C; Fassnacht, C D; Greve, T R; Gullberg, B; Hezaveh, Y; Malkan, M; Marrone, D P; Saliwanchik, B R; Vieira, J D; Weiß, A; Welikala, N

    2015-01-01

    To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift ($2.8\\leq z \\leq 5.7$) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from ALMA observations. We have conducted follow-up observations, obtaining multi-wavelength imaging data, using {\\it HST}, {\\it Spitzer}, {\\it Herschel} and the Atacama Pathfinder EXperiment (APEX). We use the high-resolution {\\it HST}/WFC3 images to disentangle the background source from the foreground lens in {\\it Spitzer}/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses...

  8. ALMA Imaging and Gravitational Lens Models of South Pole Telescope-Selected Dusty, Star-Forming Galaxies at High Redshifts

    CERN Document Server

    Spilker, Justin; Aravena, Manuel; Bethermin, Matthieu; Bothwell, Matt; Carlstrom, John; Chapman, Scott; Crawford, Tom; de Breuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Greve, Thomas; Hezaveh, Yashar; Litke, Katrina; Ma, Jingzhe; Malkan, Matt; Rotermund, Kaja; Strandet, Maria; Vieira, Joaquin; Weiss, Axel; Welikala, Niraj

    2016-01-01

    The South Pole Telescope has discovered one hundred gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.5" resolution 870um Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9-5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies (mu_870um > 2), with a median magnification mu_870um = 6.3, extending to mu_870um > 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the du...

  9. The nature of the [CII] emission in dusty star-forming galaxies from the SPT-survey

    CERN Document Server

    Gullberg, Bitten; Vieira, Joaquin; Weiss, Axel; Aguirre, James; Aravena, Manuel; Béthermin, Matthieu; Bradford, C Matt; Bothwell, Matt; Carlstrom, John; Chapman, Scott; Fassnacht, Chris; Gonzalez, Anthony; Greve, Thomas; Hezavah, Yashar; Holtzapfel, William L; Husband, Kate; Ma, Jingzhe; Malkan, Matt; Marrone, Dan; Menten, Karl; Murphy, Eric; Reichardt, Chris; Spilker, Justin; Stark, Anthony; Strandet, Maria; Welikala, Niraj

    2015-01-01

    We present [CII] observations of 20 strongly lensed dusty star forming galaxies at 2.1 20 mJy) from the South Pole Telescope survey, with far-infrared (FIR) luminosities determined from extensive photometric data. The [CII] line is robustly detected in 17 sources, all but one being spectrally resolved. Eleven out of 20 sources observed in [CII] also have low-J CO detections from ATCA. A comparison with mid- and high-J CO lines from ALMA reveals consistent [CII] and CO velocity profiles, suggesting that there is little differential lensing between these species. The [CII], low-J CO and FIR data allow us to constrain the properties of the interstellar medium. We find [CII] to CO(1-0) luminosity ratios in the SPT sample of 5200 +- 1800, with significantly less scatter than in other samples. This line ratio can be best described by a medium of [CII] and CO emitting gas with a higher [CII] than CO excitation temperature, high CO optical depth tau_CO >> 1, and low to moderate [CII] optical depth tau_CII ~< 1. T...

  10. Multi-wavelength characterisation of z~2 clustered, dusty star forming galaxies discovered by Planck

    CERN Document Server

    Flores-Cacho, I; Soucail, G; Montier, L; Dole, H; Pointecouteau, E; Pello, R; Floch, E Le; Nesvadba, N; Lagache, G; Guery, D; Canameras, R

    2016-01-01

    (abridged) We report the discovery of PHz G95.5-61.6, a complex structure detected in emission in the Planck all-sky survey that corresponds to two over-densities of high-redshift galaxies. This is the first source from the Planck catalogue of high-z candidates that has been completely characterised with follow-up observations from the optical to the sub-millimetre domain. Herschel/SPIRE observations at 250, 350 and 500 microns reveal the existence of five sources producing a 500 microns emission excess that spatially corresponds to the candidate proto-clusters discovered by Planck. Further observations at CFHT in the optical bands (g and i) and in the near infrared (J, H and K_s), plus mid infrared observations with IRAC/Spitzer (at 3.6 and 4.5 microns) confirm that the sub-mm red excess is associated with an over-density of colour-selected galaxies. Follow-up spectroscopy of 13 galaxies with VLT/X-Shooter establishes the existence of two high-z structures: one at z~1.7 (three confirmed member galaxies), the...

  11. Rest-frame UV--Optically Selected Galaxies at 2.3Dusty Star-forming and Passively-Evolving Galaxies

    CERN Document Server

    Guo, Yicheng; Cassata, Paolo; Ferguson, Henry C; Williams, Christina C; Dickinson, Mark; Koekemoer, Anton M; Grogin, Norman A; Chary, Ranga-Ram; Messias, Hugo; Tundo, Elena; Lin, Lihwai; Lee, Seong-Kook; Salimbeni, Sara; Fontana, Adriano; Grazian, Andrea; Kocevski, Dale; Lee, Kyoung-Soo; Villanueva, Edward; van der Wel, Arjen

    2011-01-01

    A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively-evolving galaxies (PEGs) at 2.310^{10}M_{Sun}) galaxies at 2.30.4) SFGs, which however, only account for ~20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample, and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z~2.5. We find 6 PEG candidates at z>3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z~3, implying that this type of galaxies began to form their stars at z>5. We measure the integrated stellar mass density of PEGs at z~2.5 and set constraints on it at z>3. We find that the integrated stellar mass density grows by at least about factor of 10 in 1 Gyr at 3

  12. SXDF-ALMA 1.5 arcmin^2 deep survey. A compact dusty star-forming galaxy at z=2.5

    CERN Document Server

    Tadaki, Ken-ichi; Kodama, Tadayuki; Ikarashi, Soh; Aretxaga, Itziar; Berta, Stefano; Caputi, Karina I; Dunlop, James S; Hatsukade, Bunyo; Hayashi, Masao; Hughes, David H; Ivison, Rob; Izumi, Takuma; Koyama, Yusei; Lutz, Dieter; Makiya, Ryu; Matsuda, Yuichi; Nakanishi, Kouichiro; Rujopakarn, Wiphu; Tamura, Yoichi; Umehata, Hideki; Wang, Wei-Hao; Wilson, Grant W; Wuyts, Stijn; Yamaguchi, Yuki; Yun, Min S

    2015-01-01

    We present first results from the SXDF-ALMA 1.5 arcmin^2 deep survey at 1.1 mm using Atacama Large Millimeter Array (ALMA). The map reaches a 1sigma depth of 55 uJy/beam and covers 12 Halpha-selected star-forming galaxies at z = 2.19 or z=2.53. We have detected continuum emission from three of our Halpha-selected sample, including one compact star-forming galaxy with high stellar surface density, NB2315-07. They are all red in the rest-frame optical and have stellar masses of log (M*/Msun)>10.9 whereas the other blue, main-sequence galaxies with log(M*/Msun)=10.0-10.8 are exceedingly faint, <290 uJy (2sigma upper limit). We also find the 1.1 mm-brightest galaxy, NB2315-02, to be associated with a compact (R_e=0.7+-0.1 kpc), dusty star-forming component. Given high gas fraction (44^{+20}_{-8}% or 37^{+25}_{-3}%) and high star formation rate surface density (126^{+27}_{-30} Msun yr^{-1}kpc^{-2}), the concentrated starburst can within less than 50^{+12}_{-11} Myr build up a stellar surface density matching th...

  13. The space density of luminous dusty star-forming galaxies at $z>4$: SCUBA-2 and LABOCA imaging of ultrared galaxies from $Herschel$-ATLAS

    CERN Document Server

    Ivison, R J; Weiss, A; Arumugam, V; Simpson, J M; Holland, W S; Maddox, S; Dunne, L; Valiante, E; van der Werf, P; Omont, A; Dannerbauer, H; Smail, Ian; Bertoldi, F; Bremer, M; Bussmann, R S; Cai, Z -Y; Clements, D L; Cooray, A; De Zotti, G; Eales, S A; Fuller, C; Gonzalez-Nuevo, J; Ibar, E; Negrello, M; Oteo, I; Pérez-Fournon, I; Riechers, D; Stevens, J A; Swinbank, A M; Wardlow, J

    2016-01-01

    Until recently, only a handful of dusty, star-forming galaxies (DSFGs) were known at $z>4$, most of them significantly amplified by gravitational lensing. Here, we have increased the number of such DSFGs substantially, selecting galaxies from the uniquely wide 250-, 350- and 500-$\\mu$m Herschel-ATLAS imaging survey on the basis of their extremely red far-infrared colors and faint 350- and 500-$\\mu$m flux densities - ergo they are expected to be largely unlensed, luminous, rare and very distant. The addition of ground-based continuum photometry at longer wavelengths from the JCMT and APEX allows us to identify the dust peak in their SEDs, better constraining their redshifts. We select the SED templates best able to determine photometric redshifts using a sample of 69 high-redshift, lensed DSFGs, then perform checks to assess the impact of the CMB on our technique, and to quantify the systematic uncertainty associated with our photometric redshifts, $\\sigma=0.14\\,(1+z)$, using a sample of 25 galaxies with spect...

  14. Characterizing elusive, faint dusty star-forming galaxies: a lensed, optically-undetected ALMA galaxy at z~3.3

    CERN Document Server

    Santini, P; Fontana, A; Merlin, E; Maiolino, R; Mason, C; Mignano, A; Pilo, S; Amorin, R; Berta, S; Bourne, N; Calura, F; Daddi, E; Elbaz, D; Grazian, A; Magliocchetti, M; Michalowski, M J; Pentericci, L; Pozzi, F; Rodighiero, G; Schreiber, C; Valiante, R

    2016-01-01

    We present the serendipitous ALMA detection of a faint submillimeter galaxy (SMG) lensed by a foreground z~1 galaxy. By optimizing the source detection to deblend the system, we accurately build the full spectral energy distribution of the distant galaxy from the I814 band to radio wavelengths. It is extremely red, with a I-K colour larger than 2.5. We estimate a photometric redshift of 3.28 and determine the physical parameters. The distant galaxy turns out to be magnified by the foreground lens by a factor of ~1.5, which implies an intrinsic Ks-band magnitude of ~24.5, a submillimeter flux at 870um of ~2.5 mJy and a SFR of ~150-300Msun/yr, depending on the adopted tracer. These values place our source towards the faint end of the distribution of observed SMGs, and in particular among the still few faint SMGs with a fully characterized spectral energy distribution, which allows us not only to accurately estimate its redshift but also to measure its stellar mass and other physical properties. The galaxy studi...

  15. The faintest star forming galaxies

    CERN Document Server

    Ranalli, P

    2003-01-01

    I briefly report on the X-ray detection of 10 radio sub-mJy sources in the 2 Ms Chandra observation of the Hubble Deep Field North region. These sources follow the same radio/X-ray luminosities relation which holds for nearby galaxies. Making use of this relation, X-ray number counts from star forming galaxies are predicted from the deep radio Log N-Log S's.

  16. SPT 0538–50: Physical conditions in the interstellar medium of a strongly lensed dusty star-forming galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HA (United Kingdom); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Vieira, J. D.; Bock, J. J.; Downes, T. P. [California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aravena, M.; De Breuck, C.; Gullberg, B. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Benson, B. A.; Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); and others

    2013-12-10

    We present observations of SPT-S J053816–5030.8, a gravitationally lensed dusty star-forming galaxy (DSFG) at z = 2.7817 that was first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538–50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538–50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, the Very Large Telescope, ATCA, APEX, and the Submillimeter Array. We use high-resolution imaging from the Hubble Space Telescope to de-blend SPT 0538–50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 ± 4), we derive the intrinsic properties of SPT 0538–50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and—using molecular line fluxes—the excitation conditions within the interstellar medium. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538–50 similar to local starburst galaxies and unlike that seen in some other DSFGs at this epoch.

  17. SPT 0538-50: Physical conditions in the ISM of a strongly lensed dusty star-forming galaxy at z=2.8

    CERN Document Server

    Bothwell, M S; Chapman, S C; Marrone, D P; Vieira, J D; Ashby, M L N; Aravena, M; Benson, B A; Bock, J J; Bradford, C M; Brodwin, M; Carlstrom, J; Crawford, T M; de Breuck, C; Downes, T P; Fassnacht, C D; Gonzalez, A H; Greve, T R; Gullberg, B; Hezaveh, Y; Holder, G P; Holzapfel, W L; Ibar, E; Ivison, R; Kamenetzky, J; Keisler, R; Lupu, R E; Ma, J; Malkan, M; McIntyre, V; Murphy, E J; Nguyen, H T; Reichardt, C L; Rosenman, M; Spilker, J S; Stalder, B; Stark, A A; Strandet, M; Vernet, J; Weiss, A; Welikala, N

    2013-01-01

    We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538-50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, VLT, ATCA, APEX, and the SMA. We use high resolution imaging from HST to de-blend SPT 0538-50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 +/- 4), we derive the intrinsic properties of SPT 0538-50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and - using molecular line fluxes - the excitation conditions within the I...

  18. Probing star formation in the dense environments of z~1 lensing halos aligned with dusty star-forming galaxies detected with the South Pole Telescope

    CERN Document Server

    Welikala, N; Guery, D; Strandet, M; Aird, K A; Aravena, M; Ashby, M L N; Bothwell, M; Beelen, A; Bleem, L E; de Breuck, C; Brodwin, M; Carlstrom, J E; Chapman, S C; Crawford, T M; Dole, H; Doré, O; Everett, W; Flores-Cacho, I; Gonzalez, A H; González-Nuevo, J; Greve, T R; Gullberg, B; Hezaveh, Y D; Holder, G P; Holzapfel, W L; Keisler, R; Lagache, G; Ma, J; Malkan, M; Marrone, D P; Mocanu, L M; Montier, L; Murphy, E J; Nesvadba, N P H; Omont, A; Pointecouteau, E; Puget, J L; Reichardt, C L; Rotermund, K M; Scott, D; Serra, P; Spilker, J S; Stalder, B; Stark, A A; Story, K; Vanderlinde, K; Vieira, J D; Weiss, A

    2015-01-01

    We probe star formation in the environments of massive $\\sim10^{13}\\,M_{\\odot}$ dark matter halos at redshifts of $z$$\\sim$$1$. This star formation is linked to a sub-millimetre clustering signal which we detect in maps of the Planck High Frequency Instrument that are stacked at the positions of a sample of high-redshift ($z$$>$$2$) strongly-lensed dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope (SPT) 2500 deg$^2$ survey. The clustering signal has sub-millimetre colours which are consistent with the mean redshift of the foreground lensing halos ($z$$\\sim$$1$). We report a mean excess of star formation rate (SFR) compared to the field, of $(2700\\pm700)\\,M_{\\odot}\\,{yr}^{-1}$ from all galaxies contributing to this clustering signal within a radius of 3.5' from the SPT DSFGs. The magnitude of the Planck excess is in broad agreement with predictions of a current model of the cosmic infrared background. The model predicts that 80$\\%$ of the excess emission measured by Planck originates f...

  19. VALES I: the molecular gas content in star-forming dusty H-ATLAS galaxies up to z = 0.35

    Science.gov (United States)

    Villanueva, V.; Ibar, E.; Hughes, T. M.; Lara-López, M. A.; Dunne, L.; Eales, S.; Ivison, R. J.; Aravena, M.; Baes, M.; Bourne, N.; Cassata, P.; Cooray, A.; Dannerbauer, H.; Davies, L. J. M.; Driver, S. P.; Dye, S.; Furlanetto, C.; Herrera-Camus, R.; Maddox, S. J.; Michałowski, M. J.; Molina, J.; Riechers, D.; Sansom, A. E.; Smith, M. W. L.; Rodighiero, G.; Valiante, E.; van der Werf, P.

    2017-10-01

    We present an extragalactic survey using observations from the Atacama Large Millimeter/submillimeter Array (ALMA) to characterize galaxy populations up to z = 0.35: the Valparaíso ALMA Line Emission Survey (VALES). We use ALMA Band-3 CO(1-0) observations to study the molecular gas content in a sample of 67 dusty normal star-forming galaxies selected from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We have spectrally detected 49 galaxies at >5σ significance and 12 others are seen at low significance in stacked spectra. CO luminosities are in the range of (0.03-1.31) × 1010 K km s-1 pc2, equivalent to log ({M}_{gas}/M_{⊙}) =8.9 - 10.9 assuming an αCO = 4.6 (K km s-1 pc2)-1, which perfectly complements the parameter space previously explored with local and high-z normal galaxies. We compute the optical to CO size ratio for 21 galaxies resolved by ALMA at ˜3.5 arcsec resolution (6.5 kpc), finding that the molecular gas is on average ˜ 0.6 times more compact than the stellar component. We obtain a global Schmidt-Kennicutt relation, given by log [Σ _SFR/(M_{⊙} yr^{-1} kpc^{-2})] =(1.26 ± 0.02) × log [Σ _{{M}_{H2}}/(M_{⊙} pc^{-2})] - (3.6 ± 0.2). We find a significant fraction of galaxies lying at `intermediate efficiencies' between a long-standing mode of star formation activity and a starburst, specially at LIR = 1011-12 L⊙. Combining our observations with data taken from the literature, we propose that star formation efficiencies can be parametrized by log [{SFR/{M}_{H_2}}] = 0.19 × {(log {L_{IR}} - 11.45)}-8.26- 0.41 × arctan [-4.84 (log {{L}_{IR}}-11.45) ]. Within the redshift range we explore (z < 0.35), we identify a rapid increase of the gas content as a function of redshift.

  20. Dust and Nebular Emission in Star Forming Galaxies

    CERN Document Server

    Panuzzo, P; Granato, G L; Silva, L; Danese, L; Panuzzo, Pasquale; Bressan, Alessandro; Granato, Gian Luigi; Silva, Laura; Danese, Luigi

    2001-01-01

    Star forming galaxies exhibit a variety of physical conditions, from quiescent normal spirals to the most powerful dusty starbursts. In order to study these complex systems, we need a suitable tool to analyze the information coming from observations at all wavelengths. We present a new spectro-photometric model which considers in a consistent way starlight as reprocessed by gas and dust. We discuss preliminary results to interpret some observed properties of VLIRGs.

  1. Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry

    CERN Document Server

    Britavskiy, N E; Mehner, A; Boyer, M L; McQuinn, K B W

    2015-01-01

    Increasing the statistics of spectroscopically confirmed evolved massive stars in the Local Group enables the investigation of the mass loss phenomena that occur in these stars in the late stages of their evolution. We aim to complete the census of luminous mid-IR sources in star-forming dwarf irregular (dIrr) galaxies of the Local Group. To achieve this we employed mid-IR photometric selection criteria to identify evolved massive stars, such as red supergiants (RSGs) and luminous blue variables (LBVs), by using the fact that these types of stars have infrared excess due to dust. The method is based on 3.6 $\\mu$m and 4.5 $\\mu$m photometry from archival ${\\it Spitzer}$ Space Telescope images of nearby galaxies. We applied our criteria to 4 dIrr galaxies: Pegasus, Phoenix, Sextans A, and WLM, selecting 79 point sources, which we observed with the VLT/FORS2 spectrograph in multi-object spectroscopy mode. We identified 13 RSGs, of which 6 are new discoveries, also 2 new emission line stars, and 1 candidate yellow...

  2. Dust reddening in star-forming galaxies

    CERN Document Server

    Xiao, Ting; Wang, Huiyuan; Zhou, Hongyan; Lu, HongLin; Dong, Xiaobo

    2011-01-01

    We present empirical relations between the global dust reddening and other physical galaxy properties including the Halpha luminosity, Halpha surface brightness, metallicity and axial ratio for star-forming disc galaxies. The study is based on a large sample of ~22 000 well-defined star-forming galaxies selected from the Sloan Digital Sky Survey (SDSS). The reddening parameterized by color excess E(B-V) is derived from the Balmer decrement. Besides the dependency of reddening on Halpha luminosity / surface brightness and gas phase metallicity, it is also correlated with the galaxy inclination, in the sense that edge-on galaxies are more attenuated than face-on galaxies at a give intrinsic luminosity. In light of these correlations, we present the empirical formulae of E(B-V) as a function of these galaxy properties, with a scatter of only 0.07 mag. The empirical relation can be reproduced if most dust attenuation to the HII region is due to diffuse background dust distributing in a disc thicker than that of H...

  3. Star-Forming Complexes in Galaxies

    CERN Document Server

    Elmegreen, B G

    2004-01-01

    Star complexes are the largest globular regions of star formation in galaxies. If there is a spiral density wave, nuclear ring, tidal arm, or other well-defined stellar structure, then gravitational instabilities in the gaseous component produce giant cloud complexes with a spacing of about three times the width. These gas complexes form star complexes, giving the familiar beads on a string of star formation along spiral arms, or nuclear hotspots in the case of a ring. Turbulence compression, supernovae, and self-gravitational contraction inside the giant clouds produce a nearly scale-free structure, including giant molecular clouds that form OB associations and molecular cloud cores that form clusters. Without stellar density waves or similar structures, random gravitational instabilities form flocculent spirals and these fragment into star complexes, OB associations and star clusters in the same way. The largest coherent star-forming regions are the flocculent arms themselves. At the core of the hierarchy a...

  4. The ISO View of Star Forming Galaxies

    Science.gov (United States)

    Helou, George

    1999-01-01

    ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100Kgalaxy become more active in star formation, its [CII] flux weakens relative to total dust emission while the [OI] does not. This behavior has attracted much interest because it extrapolates to the most active galaxies, making them weaker in [CII] than previously expected. Several explanations for the effect have been advanced, and will be discussed in this review. Spectroscopy with SWS has measured molecular hydrogen in galaxies, providing a powerful handle on the warm molecular gas content. SWS and CAM-CVF studies targeting ionic fine-structure lines have demonstrated their value as diagnostics of the radiation field.

  5. The K20 survey. II. The Different Spatial Clustering of z~1 Old and Dusty Star-Forming EROs

    CERN Document Server

    Daddi, E; Broadhurst, T J; Renzini, A; Zamorani, G; Mignoli, M; Saracco, P; Fontana, A; Pozzetti, L; Poli, F; Cristiani, S; D'Odorico, S; Giallongo, E; Gilmozzi, R; Menci, N

    2002-01-01

    We compare the 3D clustering of old passively-evolving and dusty star-forming z~1 EROs from the K20 survey. With detailed simulations of clustering, the comoving correlation length of dusty star-forming EROs is constrained to be less than r_0~2.5 Mpc/h. In contrast, the old EROs are much more positively correlated, with 5.5<~r_0/(Mpc/h)<~16, consistent with previous claims for z~1 field early-type galaxies based on analyses of ERO angular clustering. The low level of clustering of dusty star-forming EROs does not support these to be major mergers building up an elliptical galaxy, or typical counterparts of SCUBA sources, but it is instead consistent with the weak clustering of high redshift blue galaxies and of luminous local IRAS galaxies. Current hierarchical merging models can explain the large r_0 for z~1 field early-type galaxies, but fail in matching their high number density and overall old ages.

  6. ALMA spectroscopic survey in the Hubble Ultra Deep Field: Continuum number counts, resolved 1.2-mm extragalactic background, and properties of the faintest dusty star forming galaxies

    CERN Document Server

    Aravena, Manuel; Walter, Fabian; Da Cunha, Elisabete; Bauer, Franz E; Carilli, Christopher; Daddi, Emanuele; Elbaz, David; Ivison, R J; Riechers, Dominik; Smail, Ian R; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J; Bell, Eric; Bertoldi, Frank; Bacon, Roland; Bouwens, Rychard; Cortes, Paulo; Cox, Pierre; Gónzalez-López, Jorge; Hodge, Jacqueline; Ibar, Eduardo; Inami, Hanae; Infante, Leopoldo; Karim, Alexander; Fèvre, Olivier Le; Magnelli, Benjamin; Ota, Kauzuaki; Popping, Gergö; Sheth, Kartik; van der Werf, Paul; Wagg, Jeffrey

    2016-01-01

    We present an analysis of a deep (1$\\sigma$=13 $\\mu$Jy) cosmological 1.2-mm continuum map based on ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field. In the 1 arcmin$^2$ covered by ASPECS we detect nine sources at $>3.5\\sigma$ significance at 1.2-mm. Our ALMA--selected sample has a median redshift of $z=1.6\\pm0.4$, with only one galaxy detected at z$>$2 within the survey area. This value is significantly lower than that found in millimeter samples selected at a higher flux density cut-off and similar frequencies. Most galaxies have specific star formation rates similar to that of main sequence galaxies at the same epoch, and we find median values of stellar mass and star formation rates of $4.0\\times10^{10}\\ M_\\odot$ and $\\sim40~M_\\odot$ yr$^{-1}$, respectively. Using the dust emission as a tracer for the ISM mass, we derive depletion times that are typically longer than 300 Myr, and we find molecular gas fractions ranging from $\\sim$0.1 to 1.0. As noted by previous studies, these values ar...

  7. Radio Observations of Star Forming Galaxies in the SKA era

    CERN Document Server

    Mancuso, C; Cai, Z-Y; Negrello, M; De Zotti, G; Perrotta, F; Danese, L

    2014-01-01

    We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of star-forming galaxies detected by planned Square Kilometer Array (SKA) surveys. The evolving SFR function comes from recent models fitting the far-infrared (FIR) to millimeter-wave luminosity functions and the ultraviolet (UV) luminosity functions up to z=10, extended to take into account additional UV survey data. We used very deep 1.4 GHz number counts from the literature to check the relationship between SFR and synchrotron emission, and the 95 GHz South Pole Telescope (SPT) counts of dusty galaxies to test the relationship between SFR and free-free emission. We show that the SKA will allow us to investigate the SFRs of galaxies down to few Msun/yr up to z=10, thus extending by more than two orders of magnitude the high-z SFR functions derived from Herschel sur...

  8. Active star-forming galaxies in the X ray foreground

    Science.gov (United States)

    Griffiths, R. E.; Padovani, P.

    1989-01-01

    Star forming galaxies were discovered as a component of the X-ray background (XRB) in the Einstein deep surveys. Such star forming galaxies may be largely powered by superluminous Population 1 massive X-ray binaries (MXRB), formed in the wake of star formation in regions of low metallicity. The star forming galaxies with moderate numbers of MXRB may evolve into the infrared starburst galaxies found at low redshifts using IRAS (Infrared Astronomy Satellite), and may also be related to those galaxies identified with sub-mJy radio sources. A conservative contribution to the XRB of at least approximately 15 percent, without evolution is estimated. It is shown that moderate evolution leads to a contribution at least equalling that of quasars. Above 3 keV, star forming galaxies may dominate the XRB.

  9. Star-forming galaxies in the infrared

    Science.gov (United States)

    Weedman, Daniel W.

    1988-01-01

    The infrared properties from IRAS of galaxy samples previously observed in the optical and ultraviolet are summarized in order to predict quantitatively the infrared fluxes corresponding to galaxies of given fluxes in other wavebands. An infrared luminosity function of galaxies is presented and used to predict galaxy counts and redshift ranges at the flux limits expected for SIRTF. Depending on the precise limit and whether or not galaxies evolve, SIRTF will see as many as 2200 galaxies/sq deg at 30 microns.

  10. Accretion phenomena in nearby star-forming dwarf galaxies

    Science.gov (United States)

    Annibali, F.; Tosi, M.; Aloisi, A.; Bellazzini, M.; Buzzoni, A.; Cignoni, M.; Ciotti, L.; Cusano, F.; Nipoti, C.; Sacchi, E.; Paris, D.; Romano, D.

    2017-03-01

    We present two pilot studies for the search and characterization of accretion events in star-forming dwarf galaxies. Our strategy consists of two complementary approaches: i) the direct search for stellar substructures around dwarf galaxies through deep wide-field imaging, and ii) the characterization of the chemical properties in these systems up to large galacto-centric distances. We show our results for two star-forming dwarf galaxies, the starburst irregular NGC 4449, and the extremely metal-poor dwarf DDO 68.

  11. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo

    2017-01-01

    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  12. Infrared Observations of Star-Forming Dwarf Galaxies with Spitzer

    Science.gov (United States)

    Rosenberg, J. L.; Ashby, M. L. N.; Salzer, J. J.

    2004-12-01

    We present a study of the infrared properties of a sample of actively star-forming dwarf galaxies (MB >-18) drawn from the KPNO International Spectroscopic Survey. Nearby actively star-forming dwarf galaxies are possible analogs to the high redshift star-forming systems that serve as galactic building blocks in hierarchical galaxy formation scenarios. These galaxies are gas-rich, metal-poor systems undergoing bursts of star formation in the local universe. A subset of such objects from the line-flux limited objective-prism survey of Salzer et al. (2001) lie in the NOAO Bootes field, and have therefore been observed by Spitzer as part of the IRAC Shallow Survey. We use the IRAC data to measure the stellar mass in these galaxies. In addition, we examine whether these metal-poor dwarf galaxies show warm dust emission, and examine whether it traces the star formation as it does in normal disk galaxies. J. L. Rosenberg would like to acknowledge the NSF Astronomy and Astrophysics Fellowship for support of this work. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA.

  13. Lyman-alpha emission in star-forming galaxies

    Science.gov (United States)

    Hartmann, Lee W.; Huchra, John P.; Geller, Margaret J.; O'Brien, Paul; Wilson, Robert

    1988-01-01

    IUE observations of five blue, low-metallicity, star-forming galaxies sufficiently redshifted to permit detection of Lyman-alpha are reported. The galaxies with metallicities 0.1 time solar or more have weak or absent Lyman-alpha emission. There is evidence for increasing Lyman-alpha emission with decreasing metallicity. The reduction of Lyman-alpha fluxes from recombination values is attributed to absorption of multiply scattered Lyman-alpha by dust.

  14. The Star-Forming Main Sequence at Low Galaxy Mass

    Science.gov (United States)

    Stierwalt, Sabrina; Johnson, Kelsey E.; Patton, David R.; Besla, Gurtina; Kallivayalil, Nitya; Liss, Sandra; Pearson, Sarah; Privon, George C.; Putman, Mary E.

    2017-01-01

    We present an investigation of the star-forming main sequence at the low mass end. The relation between galaxy stellar mass and star formation rate has been well-studied in the recent literature for a range of redshifts and galaxy type, but almost all of these studies are limited to galaxies with stellar masses above the dwarf galaxy range ( 109 Msun ). Our work, based on the panchromatic TiNy Titans survey of interacting dwarf galaxies, shows that dwarf galaxies extend the well-established main sequence at z=0 down to lower masses. Furthermore, like their more massive counterparts, dwarf mergers appear on an elevated main sequence with higher star formation rates for a given stellar mass. Finally we show that star formation is enhanced to a greater extent in low mass galaxy mergers than for higher mass systems.

  15. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  16. Colors, Star formation Rates, and Environments of Star forming and Quiescent Galaxies at the Cosmic Noon

    CERN Document Server

    Feldmann, Robert; Hopkins, Philip F; Faucher-Giguère, Claude-André; Kereš, Dušan

    2016-01-01

    We analyze the SFRs, stellar masses, galaxy colors, and dust extinctions of galaxies in massive (10^12.5-10^13.5 M_sun) halos at z~2 in high-resolution, cosmological zoom-in simulations as part of the Feedback in Realistic Environments (FIRE) project. The simulations do not model feedback from AGN but reproduce well the observed relations between stellar and halo mass and between stellar mass and SFR. About half of the simulated massive galaxies at z~2 have broad-band colors classifying them as `quiescent', and the fraction of quiescent centrals is steeply decreasing towards higher redshift, in agreement with observations. However, our simulations do not reproduce the reddest of the quiescent galaxies observed at z~2. While simulated quiescent galaxies are less dusty than star forming galaxies, their broad band colors are often affected by moderate levels of interstellar dust. The star formation histories of the progenitors of z~2 star forming and quiescent galaxies are typically bursty, especially at early t...

  17. The UV Properties of Star Forming Galaxies I]{The UV Properties of Star Forming Galaxies I: {\\em HST} WFC3 Observations of Very-high Redshift Galaxies

    CERN Document Server

    Wilkins, Stephen M; Stanway, Elizabeth; Lorenzoni, Silvio; Caruana, Joseph

    2011-01-01

    The acquisition of deep Near-IR imaging with Wide Field Camera 3 on the Hubble Space Telescope has provided the opportunity to study the very-high redshift Universe. For galaxies up to $z\\approx 7.7$ sufficient wavelength coverage exists to probe the rest-frame ultraviolet (UV) continuum without contamination from either Lyman-$\\alpha$ emission or the Lyman-$\\alpha$ break. In this work we use Near-IR imaging to measure the rest-frame UV continuum colours of galaxies at $4.7star forming population (or a moderately dusty population of low metallicity). At lower-redshift we find that the mean UV continuum colours of galaxies (over the same luminosi...

  18. On the Metallicity of Star-forming Dwarf Galaxies

    CERN Document Server

    Legrand, F; Silich, S A; Kunth, D; Cerviño, M; Legrand, Francois; Tenorio-Tagle, Guillermo; Silich, Sergiy; Kunth, Daniel; Cervino, Miguel

    2001-01-01

    We construct three extreme different scenarios of the star formation histories applicable to a sample of dwarf galaxies, based either on their present metallicity or their luminosity. The three possible scenarios imply different mechanical energy input rates and these we compare with the theoretical lower limits established for the ejection of processed matter out of dwarf galaxies. The comparison strongly points at the existence of extended gaseous haloes in these galaxies, acting as the barrier that allows galaxies to retain their metals and enhance their abundance. At the same time our findings strongly point at a continuous star-forming process, rather than to coeval bursts, as the main contributors to the overall metallicity in our galaxy sample.

  19. An atlas of ultraviolet spectra of star-forming galaxies

    Science.gov (United States)

    Kinney, A. L.; Bohlin, R. C.; Calzetti, D.; Panagia, N.; Wyse, Rosemary F. G.

    1993-01-01

    A systematic study is presented of the UV spectra of star-forming galaxies of different morphological type and activity class using a sample drawn from a uniformly reduced IUE data set. The spectra for a wide variety of galaxies, including normal spiral, LINER, starburst, blue compact, blue compact dwarf, and Seyfert 2 galaxies, are presented in the form of spectral energy distributions to demonstrate the overall characteristics according to morphology and activity class and in the form of absolute flux distributions to better show the absorption and emission features of individual objects. The data support the picture based on UV spectra of the Orbiting Astronomical Observatory and of the Astronautical Netherlands Satellite that spiral galaxies of later Hubble class have more flux at the shortest UV wavelengths than do spiral galaxies of earlier Hubble class.

  20. IROCKS: Spatially resolved kinematics of z~1 star forming galaxies

    CERN Document Server

    Mieda, Etsuko; Larkin, James E; Armus, Lee; Juneau, Stephanie; Salim, Samir; Murray, Norman

    2016-01-01

    We present results from IROCKS (Intermediate Redshift OSIRIS Chemo-Kinematic Survey) for sixteen z~1 and one z~1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Ha emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (sigma > 50 km/s) seen in z > 1.5 galaxies persist at z~1 in the integrated galaxies. Using an inclined disk model and the ratio of v/sigma, we find that 1/3 of the z~1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation towards HII regions derived from stellar population synthesis modeling brings star formation rates (SFR) using Ha and stellar population fit into a better agreement. We explore properties of compact Ha sub-component, or "clump," at z~1 and find that they fo...

  1. An Integrated Spectrophotometric Survey of Nearby Star-Forming Galaxies

    CERN Document Server

    Moustakas, J

    2005-01-01

    We present integrated optical spectrophotometry for a sample of 417 nearby galaxies. Our observations consist of spatially integrated, S/N=10-100 spectroscopy between 3600 and 6900 Angstroms at ~8 Angstroms FWHM resolution. In addition, we present nuclear (2.5"x2.5") spectroscopy for 153 of these objects. Our sample targets a diverse range of galaxy types, including starbursts, peculiar galaxies, interacting/merging systems, dusty, infrared-luminous galaxies, and a significant number of normal galaxies. We use population synthesis to model and subtract the stellar continuum underlying the nebular emission lines. This technique results in emission-line measurements reliably corrected for stellar absorption. Here, we present the integrated and nuclear spectra, the nebular emission-line fluxes and equivalent widths, and a comprehensive compilation of ancillary data available in the literature for our sample. In a series of subsequent papers we use these data to study optical star-formation rate indicators, nebul...

  2. Gas Inflow and Metallicity Drops in Star-forming Galaxies

    CERN Document Server

    Ceverino, Daniel; Muñoz-Tuñon, Casiana; Dekel, Avishai; Elmegreen, Bruce G; Elmegreen, Debra M; Primack, Joel

    2015-01-01

    Gas inflow feeds galaxies with low metallicity gas from the cosmic web, sustaining star formation across the Hubble time. We make a connection between these inflows and metallicity inhomogeneities in star-forming galaxies, by using synthetic narrow-band images of the Halpha emission line from zoom-in AMR cosmological simulations of galaxies with stellar masses of $M \\simeq 10^9 $Msun at redshifts z=2-7. In $\\sim$50\\% of the cases at redshifts lower than 4, the gas inflow gives rise to star-forming, Halpha-bright, off-centre clumps. Most of these clumps have gas metallicities, weighted by Halpha luminosity, lower than the metallicity in the surrounding interstellar medium by $\\sim$0.3 dex, consistent with observations of chemical inhomogeneities at high and low redshifts. Due to metal mixing by shear and turbulence, these metallicity drops are dissolved in a few disc dynamical times. Therefore, they can be considered as evidence for rapid gas accretion coming from cosmological inflow of pristine gas.

  3. Kinematic evolution of simulated star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kassin, Susan A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Brooks, Alyson [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Governato, Fabio [Astronomy Department, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Weiner, Benjamin J. [Steward Observatory, 933 N. Cherry Street, University of Arizona, Tucson, AZ 85721 (United States); Gardner, Jonathan P., E-mail: kassin@stsci.edu [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2014-08-01

    Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last ∼8 billion years since z = 1.2, undergoing a process of 'disk settling'. For the first time, we study the kinematic evolution of a suite of four state of the art 'zoom in' hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking because the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (σ{sub g}) and increase in ordered rotation (V{sub rot}) with time. The slopes of the relations between both σ{sub g} and V{sub rot} with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling'.

  4. Kinematic Evolution of Simulated Star-Forming Galaxies

    Science.gov (United States)

    Kassin, Susan A.; Brooks, Alyson; Governato, Fabio; Weiner, Benjamin J.; Gardner, Jonathan P.

    2014-01-01

    Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last approximately 8 billion years since z = 1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma(sub g)) and increase in ordered rotation (V(sub rot)) with time. The slopes of the relations between both sigma(sub g) and V(sub rot) with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling.

  5. Characterizing Dust Attenuation in Local Star Forming Galaxies

    Science.gov (United States)

    Battisti, Andrew; Calzetti, Daniela; Chary, Ranga-Ram

    2017-01-01

    The dust attenuation for a sample of ~10000 local (z ≤ 0.1) star forming galaxies is constrained as a function of their physical properties. We utilize aperture-matched multi-wavelength data from the UV-to-NIR, available from the Galaxy Evolution Explorer, the Sloan Digital Sky Survey, the United Kingdom Infrared Telescope, and the Two Micron All-Sky Survey, to ensure that regions of comparable size in each galaxy are being analyzed. We characterize the dust attenuation through the slope of the UV flux density and the Balmer decrement (Hα/Hβ). The observed relationship between these quantities is similar to the local starburst relation and is not seen to vary strongly with galactic properties. We derive the total attenuation curve over the range 1250 Å < λ < 28500 Å and find that a single attenuation curve is effective for characterizing the majority of galaxies in our sample. This attenuation curve is slightly lower in the far-UV than local starburst galaxies, by roughly 15%, but appears similar at longer wavelengths and has a normalization of RV = 3.7±0.4 (V-band). This indicates that a single attenuation curve is reasonable for wide application in the local Universe.

  6. Kinematic Evolution of Simulated Star-Forming Galaxies

    CERN Document Server

    Kassin, Susan A; Governato, Fabio; Weiner, Benjamin J; Gardner, Jonathan P

    2014-01-01

    Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last ~8 billion years since z=1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma_g) and increase in ordered rotation (Vrot) with time. The slopes of the relations between both sigma_g and Vrot with r...

  7. Outflows and complex stellar kinematics in SDSS star forming galaxies

    CERN Document Server

    Cicone, Claudia; Marconi, Alessandro

    2016-01-01

    We investigate the properties of star formation-driven outflows by using a large spectroscopic sample of ~160,000 local "normal" star forming galaxies, drawn from the SDSS, spanning a wide range of star formation rates and stellar masses. The galaxy sample is divided into a fine grid of bins in the M_*-SFR parameter space, for each of which we produce a composite spectrum by stacking together the SDSS spectra of the galaxies contained in that bin. We exploit the high signal-to-noise of the stacked spectra to study the emergence of faint features of optical emission lines that may trace galactic outflows and would otherwise be too faint to detect in individual galaxy spectra. We adopt a novel approach that relies on the comparison between the line-of-sight velocity distribution (LoSVD) of the ionised gas (as traced by the [OIII]5007 and Halpha+[NII]6548,6583 emission lines) and the LoSVD of the stars, which are used as a reference tracing virial motions. Significant deviations of the gas kinematics from the st...

  8. The mode of gas accretion onto star-forming galaxies

    CERN Document Server

    Marinacci, F; Fraternali, F; Nipoti, C; Ciotti, L; Londrillo, P

    2010-01-01

    It is argued that galaxies like ours sustain their star formation by transferring gas from an extensive corona to the star-forming disc. The transfer is effected by the galactic fountain -- cool clouds that are shot up from the plane to kiloparsec heights above the plane. The Kelvin-Helmholtz instability strips gas from these clouds. If the pressure and the the metallicity of the corona are high enough, the stripped gas causes a similar mass of coronal gas to condense in the cloud's wake. Hydrodynamical simulations of cloud-corona interaction are presented. These confirm the existence of a critical ablation rate above which the corona is condensed, and imply that for the likely parameters of the Galactic corona this rate lies near the actual ablation rate of clouds. In external galaxies trails of HI behind individual clouds will not be detectable, although the integrated emission from all such trails should be significant. Parts of the trails of the clouds that make up the Galaxy's fountain should be observab...

  9. The Structure of the Interstellar Medium of Star Forming Galaxies

    CERN Document Server

    Hopkins, Philip F; Murray, Norman

    2011-01-01

    We present numerical methods for including stellar feedback in galaxy-scale simulations. We include heating by SNe (I & II), gas recycling and shock-heating from O-star & AGB winds, HII photoionization, and radiation pressure from stellar photons. The energetics and time-dependence are taken directly from stellar evolution models. We implement these in simulations with pc-scale resolution, modeling galaxies from SMC-like dwarfs and MW analogues to massive z~2 starburst disks. Absent feedback, gas cools and collapses without limit. With feedback, the ISM reaches a multi-phase steady state in which GMCs continuously form, disperse, and re-form. Our primary results include: (1) Star forming galaxies generically self-regulate at Toomre Q~1. Most of the volume is in diffuse hot gas with most of the mass in dense GMC complexes. The phase structure and gas mass at high densities are much more sensitive probes of stellar feedback physics than integrated quantities (Toomre Q or gas velocity dispersion). (2) Di...

  10. The Mean Star-Forming Properties of QSO Host Galaxies

    CERN Document Server

    Rosario, D J; Lutz, D; Netzer, H; Trump, J R; Silverman, J D; Schramm, M; Lusso, E; Berta, S; Bongiorno, A; Brusa, M; Förster-Schreiber, N M; Genzel, R; Lilly, S; Magnelli, B; Mainieri, V; Maiolino, R; Merloni, A; Mignoli, M; Nordon, R; Popesso, P; Salvato, M; Santini, P; Tacconi, L J; Zamorani, G

    2013-01-01

    Quasi-stellar objects (QSOs) occur in galaxies in which supermassive black holes (SMBHs) are growing substantially through rapid accretion of gas. Many popular models of the co-evolutionary growth of galaxies and SMBHs predict that QSOs are also sites of substantial recent star formation, mediated by important processes, such as major mergers, which rapidly transform the nature of galaxies. A detailed study of the star-forming properties of QSOs is a critical test of such models. We present a far-infrared Herschel/PACS study of the mean star formation rate (SFR) of a sample of spectroscopically observed QSOs to z~2 from the COSMOS extragalactic survey. This is the largest sample to date of moderately luminous AGNs studied using uniform, deep far-infrared photometry. We study trends of the mean SFR with redshift, black hole mass, nuclear bolometric luminosity and specific accretion rate (Eddington ratio). To minimize systematics, we have undertaken a uniform determination of SMBH properties, as well as an anal...

  11. Locating star-forming regions in quasar host galaxies

    Science.gov (United States)

    Young, J. E.; Eracleous, M.; Shemmer, O.; Netzer, H.; Gronwall, C.; Lutz, Dieter; Ciardullo, R.; Sturm, Eckhard

    2014-02-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II]λ3727, Hβ, [O III]λ5007 and Paα images, taken with the Wide Field Planetary Camera 2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of the order of a few tens of M⊙ yr-1. The host galaxies of our target quasars have stellar masses of the order of 1011 M⊙ and specific star-formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation versus stellar mass diagram. We see a clear trend of increasing star-formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.

  12. Locating Star-Forming Regions in Quasar Host Galaxies

    CERN Document Server

    Young, J E; Shemmer, O; Netzer, H; Gronwall, C; Lutz, Dieter; Ciardullo, R; Sturm, Eckhard

    2013-01-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II] $\\lambda$3727, H$\\beta$, [O III] $\\lambda$5007 and Pa$\\alpha$ images, taken with the WFPC2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically aroun...

  13. Global Properties of Local Star Forming Galaxies (ADP 2000)

    Science.gov (United States)

    Leitherer, Claus

    2003-01-01

    We performed an archival study of the Hopkins Ultraviolet Telescope (HUT) Astro-2 database. Nineteen spectra of star-forming regions and starburst galaxies were retrieved, reprocessed, and analyzed. The spectra cover the wavelength region 912- 1800 A, providing access to the domain of peak luminosity from a young stellar population. We created an atlas of galaxy spectra documenting the continuum and line properties with an emphasis on the relatively unexplored spectral region below 1200 A. The dust obscuration law was derived from a comparison of the HUT spectra with synthetic population models. The law is similar to the commonly adopted starburst reddening curve at longer wavelengths and approaches the Milky Way law near the Lyman break. A simple power-law parameterization is given, which allows users to express the reddening law in terms of the stellar or nebular color excess at ultraviolet or optical wavelengths. We studied the effect of time-dependent dust obscuration on synthetic ultraviolet line profiles of a young stellar population. If the youngest and most massive stars are more obscured than the older, less massive stars, the C IV 1550 and other stellar wind lines are significantly diluted with respect to a simple foreground screen model for the dust. We propose to use stellar wind lines as a probe of the dust-obscuration model instead of the previously employed nebular emission lines. Since purely stellar diagnostics are utilized, uncertain assumptions on the nebular properties are unnecessary. Photoionization models demonstrate that the C IV 1550 emission is typically dominated by stellar winds and nebular contamination is negligible. A first comparison with the galaxy sample observed with the Hopkins Ultraviolet Telescope favors a dust geometry affecting ionizing and nonionizing stars equally. We point out the need for higher quality data for a more rigorous comparison. The Hubble Space Telescope is capable of obtaining such data in the future.

  14. The Quest for Dusty Primeval Galaxies

    Science.gov (United States)

    Mancuso, C.; Lapi, A.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and the 'main sequence' star-formation timescales to show that the observed high abundance of galaxies with stellar masses ? a few >10^10 M_⊙ at redshift z >? 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ >? 10^2 M_⊙ yr^-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for zdensity at z 30 M_⊙ yr^-1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z ? 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  15. Galaxy And Mass Assembly (GAMA): Bivariate functions of H$\\alpha$ star forming galaxies

    CERN Document Server

    Gunawardhana, M L P; Taylor, E N; Bland-Hawthorn, J; Norberg, P; Baldry, I K; Loveday, J; Owers, M S; Wilkins, S M; Colless, M; Brown, M J I; Driver, S P; Alpaslan, M; Brough, S; Cluver, M; Croom, S; Kelvin, L; Lara-López, M A; Liske, J; López-Sánchez, A R; Robotham, A S G

    2014-01-01

    We present bivariate luminosity and stellar mass functions of H$\\alpha$ star forming galaxies drawn from the Galaxy And Mass Assembly (GAMA) survey. While optically deep spectroscopic observations of GAMA over a wide sky area enable the detection of a large number of $0.001<{SFR}_{H\\alpha}$ (M$_{\\odot}$ yr$^{-1}$)$<100$ galaxies, the requirement for an H$\\alpha$ detection in targets selected from an $r$-band magnitude limited survey leads to an incompleteness due to missing optically faint star forming galaxies. Using $z<0.1$ bivariate distributions as a reference we model the higher-$z$ distributions, thereby approximating a correction for the missing optically faint star forming galaxies to the local SFR and stellar mass densities. Furthermore, we obtain the $r$-band LFs and stellar mass functions of H$\\alpha$ star forming galaxies from the bivariate LFs. As our sample is selected on the basis of detected H$\\alpha$ emission, a direct tracer of on-going star formation, this sample represents a true ...

  16. The MZ relation for local star-forming galaxies

    CERN Document Server

    Wu, Yu-Zhong; Zhao, Yong-Heng; Zhang, Wei

    2016-01-01

    We investigate the evolution of the mass-metallicity (MZ) relation with a large sample of 53,444 star-forming galaxies (SFGs) at $0.0441.0$ and log$(L_{\\rm O\\ III})>39.7$, we find that metallicity evolution is shown well, and that SFR evolution still is shown well under the latter luminosity threshold, but the evolution is not observed under the former one; (4) the evolution of the MZ relation seems to disappear at about $\\rm log(M_{*}/M_\\odot)>10.0$ after applying the luminosity threshold of log$(L_{\\rm H \\alpha})>41.0$ or log$(L_{\\rm O\\ III})>39.7$; (5) we find $\\alpha =0.09$ and $\\alpha =0.07$ in the equation ($\\mu={\\rm log}M_{*}-\\alpha \\rm log(SFR)$) for log$(L_{\\rm H \\alpha})>41.0$ and log$(L_{\\rm O\\ III})>39.7$ samples, respectively, and these imply that the evolution of the MZ relation may have a weaker dependence on SFR in our sample.

  17. Predictions for Ultra-Deep Radio Counts of Star-Forming Galaxies

    CERN Document Server

    Mancuso, Claudia; Cai, Zhen-Yi; Negrello, Mattia; De Zotti, Gianfranco; Bressan, Alessandro; Bonato, Matteo; Perrotta, Francesca; Danese, Luigi

    2015-01-01

    We have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free-free) emission. The SFR functions were derived taking into account both the dust obscured and the unobscured star-formation, by combining far-infrared (FIR), ultra-violet (UV) and H_alpha luminosity functions up to high redshifts. We have also revisited the South Pole Telescope (SPT) counts of dusty galaxies at 95\\,GHz performing a detailed analysis of the Spectral Energy Distributions (SEDs). Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of pla...

  18. Revealing the nature of star forming blue early-type galaxies at low redshift

    CERN Document Server

    George, Koshy

    2015-01-01

    Context: Star forming early-type galaxies with blue optical colours at low redshift can be used to test our current understanding of galaxy formation and evolution. Aims: We want to reveal the fuel and triggering mechanism for star formation in these otherwise passively evolving red and dead stellar systems. Methods: We undertook an optical and ultraviolet study of 55 star forming blue early-type galaxies, searching for signatures of recent interactions that could be driving the molecular gas into the galaxy and potentially triggering the star formation. Results: We report here our results on star forming blue early-type galaxies with tidal trails and in close proximity to neighbouring galaxies that are evidence of ongoing or recent interactions between galaxies. There are 12 galaxies with close companions with similar redshifts, among which two galaxies are having ongoing interactions that potentially trigger the star formation. Two galaxies show a jet feature that could be due to the complete tidal disrupti...

  19. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Continuum Number Counts, Resolved 1.2 mm Extragalactic Background, and Properties of the Faintest Dusty Star-forming Galaxies

    Science.gov (United States)

    Aravena, M.; Decarli, R.; Walter, F.; Da Cunha, E.; Bauer, F. E.; Carilli, C. L.; Daddi, E.; Elbaz, D.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Assef, R. J.; Bell, E.; Bertoldi, F.; Bacon, R.; Bouwens, R.; Cortes, P.; Cox, P.; Gónzalez-López, J.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Le Le Fèvre, O.; Magnelli, B.; Ota, K.; Popping, G.; Sheth, K.; van der Werf, P.; Wagg, J.

    2016-12-01

    We present an analysis of a deep (1σ = 13 μJy) cosmological 1.2 mm continuum map based on ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field. In the 1 arcmin2 covered by ASPECS we detect nine sources at \\gt 3.5σ significance at 1.2 mm. Our ALMA-selected sample has a median redshift of z=1.6+/- 0.4, with only one galaxy detected at z > 2 within the survey area. This value is significantly lower than that found in millimeter samples selected at a higher flux density cutoff and similar frequencies. Most galaxies have specific star formation rates (SFRs) similar to that of main-sequence galaxies at the same epoch, and we find median values of stellar mass and SFRs of 4.0× {10}10 {M}⊙ and ˜ 40 {M}⊙ yr-1, respectively. Using the dust emission as a tracer for the interstellar medium (ISM) mass, we derive depletion times that are typically longer than 300 Myr, and we find molecular gas fractions ranging from ˜0.1 to 1.0. As noted by previous studies, these values are lower than those using CO-based ISM estimates by a factor of ˜2. The 1 mm number counts (corrected for fidelity and completeness) are in agreement with previous studies that were typically restricted to brighter sources. With our individual detections only, we recover 55% ± 4% of the extragalactic background light (EBL) at 1.2 mm measured by the Planck satellite, and we recover 80% ± 7% of this EBL if we include the bright end of the number counts and additional detections from stacking. The stacked contribution is dominated by galaxies at z˜ 1{--}2, with stellar masses of (1-3) × 1010 M {}⊙ . For the first time, we are able to characterize the population of galaxies that dominate the EBL at 1.2 mm.

  20. Dust Attenuation in Clumpy, Star-Forming Galaxies at 0.07 < z < 0.14

    CERN Document Server

    Bassett, Robert; Fisher, David B; Wisnioski, Emily; Damjanov, Ivana; Abraham, Roberto; Obreschkow, Danail; Green, Andrew W; da Cunha, Elisabete; McGregor, Peter J

    2016-01-01

    Dust attenuation in galaxies has been extensively studied nearby, however, there are still many unknowns regarding attenuation in distant galaxies. We contribute to this effort using observations of star-forming galaxies in the redshift range z = 0.05-0.15 from the DYNAMO survey. Highly star-forming DYNAMO galaxies share many similar attributes to clumpy, star-forming galaxies at high redshift. Considering integrated Sloan Digital Sky Survey observations, trends between attenuation and other galaxy properties for DYNAMO galaxies are well matched to star-forming galaxies at high redshift. Integrated gas attenuations of DYNAMO galaxies are 0.2-2.0 mags in the V-band, and the ratio of stellar E(B-V) and gas E(B-V) is 0.78-0.08 (compared to 0.44 at low redshift). Four highly star-forming DYNAMO galaxies were observed at H-alpha using the Hubble Space Telescope and at Pa-alpha using integral field spectroscopy at Keck. The latter achieve similar resolution (~0.8-1 kpc) to our HST imaging using adaptive optics, pro...

  1. Galaxy Zoo Green Peas: Discovery of A Class of Compact Extremely Star-Forming Galaxies

    CERN Document Server

    Cardamone, Carolin N; Sarzi, Marc; Bamford, Steven P; Bennert, Nicola; Urry, C M; Lintott, Chris; Keel, William C; Parejko, John; Nichol, Robert C; Thomas, Daniel; Andreescu, Dan; Murray, Phil; Raddick, M Jordan; Slosar, Anze; Szalay, Alex; VandenBerg, Jan

    2009-01-01

    We investigate a class of rapidly growing emission line galaxies, known as "Green Peas", first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] 5007 A, with an unusually large equivalent width of up to ~1000 A. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M~10^8.5 - 10^10 M_sun) with high star formation rates (~10 M_sun/yr), low metallicities (log[O/H] + 12 ~ 8.7) and low reddening (E(B-V) < 0.25) and they reside in low density environments. They have some of the highest specific star formation rates (up to ~10^{-8} yr^{-1}) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming P...

  2. Physical properties of local star-forming analogues to z ˜ 5 Lyman-break galaxies

    Science.gov (United States)

    Greis, Stephanie M. L.; Stanway, Elizabeth R.; Davies, Luke J. M.; Levan, Andrew J.

    2016-07-01

    Intense, compact, star-forming galaxies are rare in the local Universe but ubiquitous at high redshift. We interpret the 0.1-22 μm spectral energy distributions of a sample of 180 galaxies at 0.05 origin and evolution of early galaxies.

  3. Early star-forming galaxies and the reionization of the Universe.

    Science.gov (United States)

    Robertson, Brant E; Ellis, Richard S; Dunlop, James S; McLure, Ross J; Stark, Daniel P

    2010-11-04

    Star-forming galaxies trace cosmic history. Recent observational progress with the NASA Hubble Space Telescope has led to the discovery and study of the earliest known galaxies, which correspond to a period when the Universe was only ∼800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen.

  4. The Connection Between Galaxy Environment and the Luminosity Function Slopes of Star-Forming Regions

    CERN Document Server

    Cook, David O; Lee, Janice C; Thilker, David; Calzetti, Daniela; Kennicutt, Robert C

    2016-01-01

    We present the first study of GALEX far ultra-violet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ~65,000 star-forming regions (i.e., FUV sources), measure each galaxy's luminosity function, and characterize the relationships between the luminosity function slope (alpha) and several global galaxy properties. A final sample of 82 galaxies with reliable luminosity functions are used to define these relationships and represent the largest sample of galaxies with the largest range of galaxy properties used to study the connection between luminosity function properties and galaxy environment. We find that alpha correlates with global star formation properties, where galaxies with higher star formation rates and star formation rate densities (Sigma_SFR) tend to have flatter luminosity function slopes. In addition, we find that neither stochastic sampling of the luminosity f...

  5. Observational Searches for Star-Forming Galaxies at z > 6

    Science.gov (United States)

    Finkelstein, Steven L.

    2016-08-01

    Although the universe at redshifts greater than six represents only the first one billion years ( 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.

  6. Archival research on absorption lines in violently star-forming galaxies

    Science.gov (United States)

    Gallagher, J. S.

    1989-01-01

    A computerized analysis of a starburst model is discussed. The model proposes that the absorption line equivalent width should scale with the level of star forming activity. Archival International Ultraviolet Explorer (IUE) data on IUE spectra of luminous blue galaxies were compared with previous IUE observations of extragalactic HII regions and low luminosity galaxies. The comparisons are summarized and causes for offsets are discussed.

  7. UV, optical and infrared properties of star forming galaxies

    Science.gov (United States)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  8. Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies

    Science.gov (United States)

    Izotov, Y. I.; Schaerer, D.; Thuan, T. X.; Worseck, G.; Guseva, N. G.; Orlitová, I.; Verhamme, A.

    2016-10-01

    Following our first detection reported in Izotov et al., we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. These galaxies, at redshifts of z ˜ 0.3, are characterized by high emission-line flux ratios [O III] λ5007/[O II] λ3727 ≳ 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ˜6-13 per cent, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Ly α emission lines are detected in the spectra of all four galaxies, compatible with predictions for LyC leakers. We find escape fractions of Ly α, fesc(Ly α) ˜ 20-40 per cent, among the highest known for Ly α emitting galaxies. Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the centre and exponential discs in the outskirts with disc scalelengths α in the range ˜0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ˜1/8-1/5 solar, low stellar mass ˜(0.2-4) × 109 M⊙, high star formation rates, SFR ˜ 14-36 M⊙ yr-1, and high SFR densities, Σ ˜ 2-35 M⊙ yr-1 kpc-2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al., reveal that a selection for compact star-forming galaxies showing high [O III] λ5007/[O II] λ3727 ratios appears to pick up very efficiently sources with escaping LyC radiation: all five of our selected galaxies are LyC leakers.

  9. A dusty, normal galaxy in the epoch of reionization.

    Science.gov (United States)

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-03-19

    Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z ≥ 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 ± 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7.

  10. The Clustering and Halo Masses of Star Forming Galaxies at z<1

    CERN Document Server

    Dolley, Tim; Weiner, Benjamin J; Brodwin, Mark; Kochanek, C S; Pimbblet, Kevin A; Palamara, David P; Jannuzi, Buell T; Dey, Arjun; Atlee, David W; Beare, Richard

    2014-01-01

    We present clustering measurements and halo masses of star forming galaxies at 0.2 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L_TIR > 10^11 Lsun) and is comprised entirely of LIRGs and ultra-luminous infrared galaxies (ULIRGs, L_TIR > 10^12 Lsun) at z > 0.6. We observe weak clustering of r_0 = 3-6 Mpc/h for almost all of our star forming samples. We find that the clustering and halo mass depend on L_TIR at all redshifts, where galaxies with higher L_TIR (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M_halo ~ 10^12.9 Msun/h. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star forming galaxy samples to their local descendants. Most star forming galaxies at z 10^11.7 Lsun) at 0.6

  11. The gas mass of star-forming galaxies at $z \\approx 1.3$

    CERN Document Server

    Kanekar, Nissim; Dwarakanath, K S

    2016-01-01

    We report a Giant Metrewave Radio Telescope (GMRT) search for HI 21cm emission from a large sample of star-forming galaxies at $z \\approx 1.18 - 1.34$, lying in sub-fields of the DEEP2 Redshift Survey. The search was carried out by co-adding ("stacking") the HI 21cm emission spectra of 857 galaxies, after shifting each galaxy's HI 21cm spectrum to its rest frame. We obtain the $3\\sigma$ upper limit S$_{\\rm{HI}} 1$. The implied limit on the average atomic gas mass fraction (relative to stars) is ${\\rm M}_{\\rm GAS}/{\\rm M}_* < 0.5$, comparable to the cold molecular gas mass fraction in similar star-forming galaxies at these redshifts. We find that the cosmological mass density of neutral atomic gas in star-forming galaxies at $z \\approx 1.3$ is $\\Omega_{\\rm GAS} < 3.7 \\times 10^{-4}$, significantly lower than $\\Omega_{\\rm GAS}$ estimates in both galaxies in the local Universe and damped Lyman-$\\alpha$ absorbers at $z \\geq 2.2$. Blue star-forming galaxies thus do not appear to dominate the neutral atomic ...

  12. Star forming regions in gas-rich SO galaxies

    Science.gov (United States)

    Pogge, Richard W.; Eskridge, Paul B.

    1987-01-01

    The first results of an H alpha imaging survey of HI rich SO galaxies, which were searched for HII regions and other sources of emission, are presented. The charge coupled device H alpha interference filter images were made of 16 galaxies. Eight of these galaxies show evidence for on-going star formation, one has nuclear emission but no HII regions, and the remaining seven have no emissions detected within well defined upper limits. With the exception of one notably peculiar galaxy in which the emission from HII regions appears pervasive, the HII regions are either organized into inner-disk rings or randomly distributed throughout the disk. A few of these galaxies are found to be clearly not SO's; or peculiar objects atypical of the SO class. Using simple models star formation rates (SFRs) and gas depletion times from the observed H alpha fluxes were estimated. In general, the derived SFRs are much lower than those found in isolated field spiral galaxies and the corresponding gas depletion time scales are also longer.

  13. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Garland, C. A. [Natural Sciences Department, Jeffords Science Center, Castleton State College, Castleton, VT 05735 (United States); Pisano, D. J.; Rabidoux, K. [Department of Physics and Astronomy, West Virginia University, 135 Willey Street, P.O. Box 6315, Morgantown, WV 26506 (United States); Low, M.-M. Mac [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Kreckel, K. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guzmán, R., E-mail: catherine.garland@castleton.edu, E-mail: djpisano@mail.wvu.edu, E-mail: krabidou@mix.wvu.edu, E-mail: mordecai@amnh.org, E-mail: kreckel@mpia.de, E-mail: guzman@astro.ufl.edu [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States)

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  14. GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Chang, Yu-Yen; Rix, H.-W.; Martig, M. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Holden, B. P.; Koo, D. C.; Mozena, M.; Faber, S. M. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Ferguson, H. C.; Brammer, G.; Kassin, S. A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Skelton, R. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Whitaker, K. [Astrophysics Science Division, Goddard Space Center, Greenbelt, MD 20771 (United States); Momcheva, I.; Van Dokkum, P. G. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Dekel, A. [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ceverino, D. [Department of Theoretical Physics, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Franx, M., E-mail: vdwel@mpia.de [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 AA Leiden (Netherlands); and others

    2014-09-01

    We determine the intrinsic, three-dimensional shape distribution of star-forming galaxies at 0 < z < 2.5, as inferred from their observed projected axis ratios. In the present-day universe, star-forming galaxies of all masses 10{sup 9}-10{sup 11} M {sub ☉} are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M {sub *} > 10{sup 10} M {sub ☉}) disks are the most common geometric shape at all z ≲ 2. Lower-mass galaxies at z > 1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 10{sup 9} M {sub ☉} (10{sup 10} M {sub ☉}) are a mix of roughly equal numbers of elongated and disk galaxies at z ∼ 1 (z ∼ 2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z ∼ 1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks.

  15. C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, J. R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Bayliss, M. B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Sharon, K.; Johnson, T. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wuyts, E. [Max Plank Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Peña-Guerrero, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-11-20

    We measure [C iii] 1907, C iii] 1909 Å emission lines in 11 gravitationally lensed star-forming galaxies at z ∼ 1.6–3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C iii] emitters, C iii] emission is not a universal property of distant star-forming galaxies. We also examine C iii] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C iii] emission, with equivalent widths < −5 Å. Three nearby galaxies show C iii] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf–Rayet galaxies. At all redshifts, strong C iii] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C iii] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.

  16. C III] Emission in Star-Forming Galaxies Near and Far

    Science.gov (United States)

    Rigby, J, R.; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Pena-Guerrero, M.

    2015-01-01

    We measure C III Lambda Lambda 1907, 1909 Angstrom emission lines in eleven gravitationally-lensed star-forming galaxies at zeta at approximately 1.6-3, finding much lower equivalent widths than previously reported for fainter lensed galaxies (Stark et al. 2014). While it is not yet clear what causes some galaxies to be strong C III] emitters, C III] emission is not a universal property of distant star-forming galaxies. We also examine C III] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST, and IUE. Twenty percent of these local galaxies show strong C III] emission, with equivalent widths less than -5 Angstrom. Three nearby galaxies show C III] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C III] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C III] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.

  17. The connection between galaxy environment and the luminosity function slopes of star-forming regions

    Science.gov (United States)

    Cook, David O.; Dale, Daniel A.; Lee, Janice C.; Thilker, David; Calzetti, Daniela; Kennicutt, Robert C.

    2016-11-01

    We present the first study of GALEX far-ultraviolet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ˜65 000 star-forming regions (i.e. FUV sources), measure each galaxy's luminosity function, and characterize the relationships between the luminosity function slope (α) and several global galaxy properties. A final sample of 82 galaxies with reliable luminosity functions are used to define these relationships and represent the largest sample of galaxies with the largest range of galaxy properties used to study the connection between luminosity function properties and galaxy environment. We find that α correlates with global star formation properties, where galaxies with higher star formation rates and star formation rate densities (ΣSFR) tend to have flatter luminosity function slopes. In addition, we find that neither stochastic sampling of the luminosity function in galaxies with low-number statistics nor the effects of blending due to distance can fully account for these trends. We hypothesize that the flatter slopes in high ΣSFR galaxies is due to higher gas densities and higher star formation efficiencies which result in proportionally greater numbers of bright star-forming regions. Finally, we create a composite luminosity function composed of star-forming regions from many galaxies and find a break in the luminosity function at brighter luminosities. However, we find that this break is an artefact of varying detection limits for galaxies at different distances.

  18. The Unresolved Star-Forming Galaxy Component of the Extragalactic Gamma Ray Background

    Science.gov (United States)

    Venters, Tonia M.; Stecker, F. W.

    2011-01-01

    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV.

  19. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  20. Interpreting the Ionization Sequence in Star-Forming Galaxy Emission-Line Spectra

    CERN Document Server

    Richardson, Chris T; Baldwin, Jack A; Hewett, Paul C; Ferland, Gary J; Crider, Anthony; Meskhidze, Helen

    2016-01-01

    High ionization star forming (SF) galaxies are easily identified with strong emission line techniques such as the BPT diagram, and form an obvious ionization sequence on such diagrams. We use a locally optimally emitting cloud model to fit emission line ratios that constrain the excitation mechanism, spectral energy distribution, abundances and physical conditions along the star-formation ionization sequence. Our analysis takes advantage of the identification of a sample of pure star-forming galaxies, to define the ionization sequence, via mean field independent component analysis. Previous work has suggested that the major parameter controlling the ionization level in SF galaxies is the metallicity. Here we show that the observed SF- sequence could alternatively be interpreted primarily as a sequence in the distribution of the ionizing flux incident on gas spread throughout a galaxy. Metallicity variations remain necessary to model the SF-sequence, however, our best models indicate that galaxies with the hig...

  1. Signatures of cool gas fueling a star-forming galaxy at redshift 2.3.

    Science.gov (United States)

    Bouché, N; Murphy, M T; Kacprzak, G G; Péroux, C; Contini, T; Martin, C L; Dessauges-Zavadsky, M

    2013-07-05

    Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxy's halo, delivering not just fuel for star formation but also angular momentum to the galaxy, leading to distinct kinematic signatures. We report observations showing these distinct signatures near a typical distant star-forming galaxy, where the gas is detected using a background quasar passing 26 kiloparsecs from the host. Our observations indicate that gas accretion plays a major role in galaxy growth because the estimated accretion rate is comparable to the star-formation rate.

  2. Assessing Radiation Pressure as a Feedback Mechanism in Star-forming Galaxies

    Science.gov (United States)

    Andrews, Brett H.; Thompson, Todd A.

    2011-02-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR-L'CO correlation, and the L IR-L'HCN correlation. In particular, the linear L IR-L'HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of "intermittency" in normal spirals—the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H2 and HCN-to-H2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  3. An Objective Definition for the Main Sequence of Star-Forming Galaxies

    CERN Document Server

    Renzini, Alvio

    2015-01-01

    The Main Sequence (MS) of star-forming galaxies plays a fundamental role in driving galaxy evolution and in our efforts to understand it. However, different studies find significant differences in the normalization, slope and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate star-forming galaxies, that may include or exclude galaxies with specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of star-forming galaxies. Constructing the 3D SFR-Mass-Number plot, the MS is then defined as the ridge line of the star-forming peak, as illustrated with various figures. The advantages of such definition are manifold. If generally adopted it will facilitate the inter-comparison of results from different groups using the same star formation rate (SFR) and stellar mass diagnostics, or to highlight the relative s...

  4. Metallicity gradients and newly created star-forming systems in interacting galaxies

    Science.gov (United States)

    Mendes de Oliveira, Claudia L.

    2015-08-01

    Interactions play an extremely important role in the evolution of galaxies, changing their morphologies and kinematics. Galaxy collisions may result in the formation of intergalactic star-forming objects, such as HII regions, young clusters and/or tidal dwarf galaxies. Several studies have found a wealth of newly created objects in interacting systems. We will exemplify the problems and challenges in this field and will describe observations of the interacting group NGC 6845, which contains four bright galaxies, two of which have extended tidal tails. We obtained Gemini/GMOS spectra for 28 of the regions located in the galaxies and in the tails. All regions in the latter are star-forming objects according to their line ratios, with ages younger than 10 Myr. A super luminous star forming complex is found in the brightest member of the group, NGC 6845A. Its luminosity reveals a star formation density of 0.19 solar masses, per year, per kpc^2, suggesting that this object is a localized starburst. We derived the gas-phase metallicity gradients across NGC 6845A and its two tails and we find that these are shallower than those for isolated galaxies. We speculate that the observed metallicity gradient may be related to one or more of the following mechanisms: (1) interaction induced inflow of fresh gas to the galaxy center, as seen in simulations, which is expected to dilute the metallicity of the central burst, (2) the formation of young metal-rich star forming regions in the tidal tails, which were born out of enriched gas expelled from the central regions of the system during the interaction and (3) the incremental growth of metals accumulated over time, due to the successful generations of star forming regions along the tails. Finally we will describe our plans to do a search for such objects on Halpha images that will soon be available for 17.5k degrees of the sky, with the A-PLUS survey.

  5. THE CLUSTERING AND HALO MASSES OF STAR-FORMING GALAXIES AT z < 1

    Energy Technology Data Exchange (ETDEWEB)

    Dolley, Tim; Brown, Michael J. I.; Pimbblet, Kevin A.; Palamara, David P.; Beare, Richard [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Weiner, Benjamin J.; Jannuzi, Buell T. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Kochanek, C. S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Dey, Arjun; Atlee, David W., E-mail: Tim.Dolley@monash.edu [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States)

    2014-12-20

    We present clustering measurements and halo masses of star-forming galaxies at 0.2 < z < 1.0. After excluding active galactic nuclei (AGNs), we construct a sample of 22,553 24 μm sources selected from 8.42 deg{sup 2} of the Spitzer MIPS AGN and Galaxy Evolution Survey of Boötes. Mid-infrared imaging allows us to observe galaxies with the highest star formation rates (SFRs), less biased by dust obscuration afflicting the optical bands. We find that the galaxies with the highest SFRs have optical colors that are redder than typical blue cloud galaxies, with many residing within the green valley. At z > 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L {sub TIR} > 10{sup 11} L {sub ☉}) and is composed entirely of LIRGs and ultraluminous infrared galaxies (ULIRGs, L {sub TIR} > 10{sup 12} L {sub ☉}) at z > 0.6. We observe weak clustering of r {sub 0} ≈ 3-6 h {sup –1} Mpc for almost all of our star-forming samples. We find that the clustering and halo mass depend on L {sub TIR} at all redshifts, where galaxies with higher L {sub TIR} (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M {sub halo} ≈ 10{sup 12.9} h {sup –1} M {sub ☉}. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star-forming galaxy samples to their local descendants. Most star-forming galaxies at z < 1.0 are the progenitors of L ≲ 2.5 L {sub *} blue galaxies in the local universe, but star-forming galaxies with the highest SFRs (L {sub TIR} ≳ 10{sup 11.7} L {sub ☉}) at 0.6 < z < 1.0 are the progenitors of early-type galaxies in denser group environments.

  6. Actively Star Forming Elliptical Galaxies at Low Redshifts in the Sloan Digital Sky Survey

    CERN Document Server

    Fukugita, M; Turner, E L; Helmboldt, J; Nichol, R C; Fukugita, Masataka; Nakamura, Osamu; Turner, Edwin L.; Helmboldt, Joe

    2004-01-01

    We report discovery of actively star forming elliptical galaxies in a morphologically classified sample of bright galaxies at a low redshift obtained from the Sloan Digital Sky Survey. The emission lines of these galaxies do not show the characteristics of active galactic nuclei, and thus their strong H$\\alpha$ emission is ascribed to star formation with a rate nearly as high as that is seen in typical late spiral galaxies. This is taken as evidence against the traditional view that all elliptical galaxies formed early and now evolve only passively. The frequency of such star forming elliptical galaxies is a few tenths of a percent in the sample, but increases to 3% if we include active S0 galaxies. We may identify these galaxies as probable progenitors of so-called E+A galaxies that show the strong Balmer absorption feature of A stars superimposed on an old star population. The approximate match of the abundance of active elliptical plus S0 galaxies with that of E+A galaxies indicates that the duration of su...

  7. Spectral Energy Distribution of Star-Forming Galaxies

    Science.gov (United States)

    Kinney, A. L.

    1997-01-01

    Our analysis allowed us to address the following points: 1) the nature of the featureless ultraviolet continuum in Seyfert 2's, in particular the amount of stellar population that contributes to this waveband; 2) the difference between Seyfert l's and Seyfert 2's in the ratio of ultraviolet (lambda)1400A to soft X-rays continuum, which is larger in Seyfert 2's and apparently contradicts the Unified Model, but may be resolved if we consider the stellar population; 3) search for anisotropic radiation escaping from the nucleus of Seyfert 2's, by comparing the number of ionizing photons, estimated from the ultraviolet continuum photons, to the number of recombination photons, calculated using the H(beta) line flux. In addition, the research from this grant produced template spectra that have been used in a wide variety of applications, including the identification of high redshift galaxies in the Slone survey.

  8. Star-Forming Galaxies at the Cosmic Dawn = Stervormende sterrenstelsels tijdens het kosmische ochtendgloren

    NARCIS (Netherlands)

    Smit, Renske

    2015-01-01

    The question of how the first stars formed and assembled into galaxies lies at the frontier of modern astrophysics. The study of these first sources of cosmic illumination was transformed by the installation of new instrumentation aboard the Hubble Space Telescope during one of the final Space Shutt

  9. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5

    Science.gov (United States)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  10. Low redshift star-forming galaxies: What can they teach us about primeval galaxies?

    Science.gov (United States)

    Calzetti, D.; Kinney, A. L.

    1993-01-01

    The analysis of the UV plus optical spectra of three star-forming galaxies, Mrk 496, Mrk 357, TOL1924-416, obtained by matching the size of the optical aperture with that of IUE, has given unexpected results. These can be summarized as follows: (1) the dereddened Ly(alpha)/H(beta) ratios are consistent with the prediction of case B recombination for nebular emission, within the uncertainties; (2) the decrease of the Ly(alpha)/H(beta) ratio with increasing metallicities is not confirmed in our three objects, although the sample is too small to consider this result definitive. The first result is surprising, mainly because at least the two Markarian galaxies have a large enough H1 content to markedly increase the optical depth for the Ly(alpha) photons and to trigger their absorption by dust. This finding can probably be explained as an effect of the inhomogeneous distribution of gas and dust within the galaxies. On the basis of these results, we conclude that the detection of the Ly(alpha) emission line in searching for primeval galaxies (PG's) can be still considered a valid technique.

  11. Physical properties of star-forming regions across the Galaxy

    Science.gov (United States)

    Dunham, Miranda Kay

    2010-12-01

    The Bolocam Galactic Plane Survey (BGPS) has surveyed the northern Galactic plane at 1.1 mm and detected 8,358 sources. The BGPS catalog is large enough to characterize the properties of massive star formation in a statistically significant way. In this dissertation, I have conducted a survey of NH2 lines toward 771 BGPS sources located throughout the Galactic plane. The NH2 and 1.1 mm continuum observations together have allowed for complete characterization of the physical properties of these sources. I detected the NH2(1,1) line toward 408 BGPS sources in the inner Galaxy, allowing for determination of their kinematic distances. At distances less than roughly 1 kpc, the BGPS detects predominately cores which will form a single star or small multiple system, while at distances between 1 and 7 kpc the BGPS detects predominately clumps which will form entire stellar clusters. At distances greater than 7 kpc, the BGPS detects the large scale clouds which contain clumps and cores. I have correlated the BGPS catalog with mid-IR catalogs of massive young stellar objects (MYSOs), and found that 49% of the BGPS sources contain signs of active star formation. The masses, densities, H2 and NH2 column densities, gas kinetic temperatures, and NH2 velocity dispersions are higher in BGPS sources with associated mid-IR sources. I have also studied the physical properties of the BGPS sources as a function of Galactocentric radius, R[subscript Gal]. I find that the mean radius and mass decrease with increasing R[subscript Gal] but peak within the 5 kpc molecular ring where the gas kinetic temperature reaches a minimum. The fraction of BGPS sources with associated mid-IR sources decreases by 10% within the molecular ring. I postulate that these trends can be explained by an ambient gas density which decreases with R[subscript Gal], but peaks within the molecular ring. Similarly, the NH2 column density and abundance decrease by almost an order! of magnitude from the inner to outer

  12. The sizes of massive quiescent and star forming galaxies at z~4 with ZFOURGE and CANDELS

    CERN Document Server

    Straatman, Caroline M S; Spitler, Lee R; Glazebrook, Karl; Tomczak, Adam; Allen, Rebecca; Brammer, Gabriel B; Cowley, Michael; van Dokkum, Pieter; Kacprzak, Glenn G; Kawinwanichakij, Lalit; Mehrtens, Nicola; Nanayakkara, Themiya; Papovich, Casey; Persson, S Eric; Quadri, Ryan F; Rees, Glen; Tilvi, Vithal; Tran, Kim-Vy; Whitaker, Katherine E

    2015-01-01

    We study the rest-frame ultra-violet sizes of massive (~0.8 x 10^11 M_Sun) galaxies at 3.45 x, between 2star-forming galaxies at z~4 and their large rest-frame ultra-violet median sizes suggest that the formation phase of compact cores is very short and/or highly dust obscured.

  13. Ultraviolet to optical spectral distributions of northern star-forming galaxies

    Science.gov (United States)

    Mcquade, Kerry; Calzetti, Daniela; Kinney, Anne L.

    1995-01-01

    We report spectral energy distribution from the UV to the optical for a sample of 31 northern star-forming galaxies. We also present measurements for emission-line fluxes, continuum levels, and equivalent widths of absorption features for each individual spectrum as well as averages for the eight galactic activity classes, including normal, starburst, Seyfert 2, blue compact dwarf, blue compact, Low-Inonization Nuclear Emission Regions (LINER), H II, and combination LINER-H II galaxies.

  14. Molecular gas properties of UV-luminous star-forming galaxies at low redshift

    CERN Document Server

    Gonçalves, T S; Overzier, R A; Pérez, L; Martin, D C

    2014-01-01

    Lyman break analogues (LBAs) are a population of star-forming galaxies at low redshift (z ~ 0.2) selected in the ultraviolet (UV). These objects present higher star formation rates and lower dust extinction than other galaxies with similar masses and luminosities in the local universe. In this work we present results from a survey with the Combined Array for Research in Millimetre-wave Astronomy (CARMA) to detect CO(1-0) emission in LBAs, in order to analyse the properties of the molecular gas in these galaxies. Our results show that LBAs follow the same Schmidt-Kennicutt law as local galaxies. On the other hand, they have higher gas fractions (up to 66%) and faster gas depletion time-scales (below 1 Gyr). These characteristics render these objects more akin to high-redshift star-forming galaxies. We conclude that LBAs are a great nearby laboratory for studying the cold interstellar medium in low-metallicity, UV-luminous compact star-forming galaxies.

  15. The formation and assembly of a typical star-forming galaxy at z~3

    CERN Document Server

    Stark, Daniel P; Ellis, Richard S; Dye, Simon; Smail, Ian R; Richard, Johan

    2008-01-01

    Recent studies of galaxies ~2-3 Gyr after the Big Bang have revealed large, turbulent rotating systems. The existence of well-ordered rotation in galaxies during this peak epoch of cosmic star formation may suggest that gas accretion through cold streams is likely to be the dominant mode by which most star-forming galaxies at high redshift since major mergers can completely disrupt the observed velocity fields. However poor spatial resolution and sensitivity have hampered this interpretation, limiting the study to the largest and most luminous galaxies, which may have fundamentally different modes of assembly than more typical star forming galaxies. Here we report observations of a typical star forming galaxy at z=3.07 with a linear resolution of ~100 parsec. This spatial sampling is made possible by the combination of gravitational lensing and laser guide star adaptive optics. We find a well-ordered compact source in which molecular gas is being converted efficiently into stars, likely assembling a spheroida...

  16. The MOSDEF Survey: Excitation Properties of $z\\sim 2.3$ Star-forming Galaxies

    CERN Document Server

    Shapley, Alice E; Kriek, Mariska; Freeman, William R; Sanders, Ryan L; Siana, Brian; Coil, Alison L; Mobasher, Bahram; Shivaei, Irene; Price, Sedona H; de Groot, Laura

    2014-01-01

    We present results on the excitation properties of z~2.3 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) Survey. With its coverage of the full suite of strongrest-frame optical emission lines, MOSDEF provides an unprecedented view of the rest-frame optical spectra of a representative sample of distant star-forming galaxies. We investigate the locations of z~2.3 MOSDEF galaxies in multiple emission-line diagnostic diagrams. These include the [OIII]/Hb vs. [NII]/Ha (O3N2) and [OIII]/Hb vs. [SII]/Ha (O3S2) "BPT" diagrams, as well as the O_32 vs. R_23 (O32R23) excitation diagram. We recover the well-known offset in the star-forming sequence of high-redshift galaxies in the O3N2 BPT diagram relative to Sloan Digital Sky Survey star-forming galaxies. However, the shift for our rest-frame optically selected sample is less significant than for rest-frame-UV selected and emission-line selected galaxies at z~2. Furthermore, we find that the offset is mass-dependent, only appearing withi...

  17. The formation and evolution of high-redshift dusty galaxies

    Science.gov (United States)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other ingredients including high metallicity, high depletion level, overall low ionization state of gas, neutral

  18. The sub-galactic and nuclear main sequences for local star-forming galaxies

    Science.gov (United States)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2017-04-01

    We describe a sub-galactic main sequence (SGMS) relating star formation rate (SFR) surface density (ΣSFR) and stellar mass density (Σ⋆) for distinct regions within star-forming galaxies, including their nuclei. We use a sample of 246 nearby star-forming galaxies from the 'Star Formation Reference Survey and demonstrate that the SGMS holds down to ˜1 kpc scales with a slope of α = 0.91 and a dispersion of 0.31 dex, similar to the well-known main sequence (MS) measured for globally integrated SFRs and stellar masses. The SGMS slope depends on galaxy morphology, with late-type galaxies (Sc-Irr) having α = 0.97 and early-type spirals (Sa-Sbc) having α = 0.81. The SGMS constructed from subregions of individual galaxies has on average the same characteristics as the composite SGMS from all galaxies. The SGMS for galaxy nuclei shows a dispersion similar to that seen for other subregions. Sampling a limited range of SFR-M⋆ space may produce either sublinearity or superlinearity of the SGMS slope. For nearly all galaxies, both SFR and stellar mass peak in the nucleus, indicating that circumnuclear clusters are among the most actively star-forming regions in the galaxy and the most massive. The nuclear SFR also correlates with total galaxy mass, forming a distinct sequence from the standard MS of star formation. The nuclear MS will be useful for studying bulge growth and for characterizing feedback processes connecting AGN and star formation.

  19. The JCMT Nearby Galaxies Legacy Survey I. Star Forming Molecular Gas in Virgo Cluster Spiral Galaxies

    CERN Document Server

    Wilson, C D; Israel, F P; Serjeant, S; Bendo, G; Brinks, E; Clements, D; Courteau, S; Irwin, J; Knapen, J H; Leech, J; Matthews, H E; Muehle, S; Mortier, A M J; Petitpas, G; Sinukoff, E; Spekkens, K; Tan, B K; Tilanus, R P J; Usero, A; Van der Werf, P P; Wiegert, T; Zhu, M

    2008-01-01

    We present large-area maps of the CO J=3-2 emission obtained at the James Clerk Maxwell Telescope for four spiral galaxies in the Virgo Cluster. We combine these data with published CO J=1-0, 24 micron, and Halpha images to measure the CO line ratios, molecular gas masses, and instantaneous gas depletion times. For three galaxies in our sample (NGC 4254, NGC4321, and NGC 4569), we obtain molecular gas masses of 7E8-3E9 Msun and disk-averaged instantaneous gas depletion times of 1.1-1.7 Gyr. We argue that the CO J=3-2 line is a better tracer of the dense star forming molecular gas than the CO J=1-0 line, as it shows a better correlation with the star formation rate surface density both within and between galaxies. NGC 4254 appears to have a larger star formation efficiency(smaller gas depletion time), perhaps because it is on its first passage through the Virgo Cluster. NGC 4569 shows a large-scale gradient in the gas properties traced by the CO J=3-2/J=1-0 line ratio, which suggests that its interaction with ...

  20. Compact star forming galaxies as the progenitors of compact quiescent galaxies: Clustering result

    Science.gov (United States)

    Lin, Xiaozhi; Fan, Lulu; Kong, Xu; Fang, Guanwen

    2017-02-01

    We present a measurement of the spatial clustering of massive compact galaxies at 1.2 ≤ z ≤ 3 in CANDELS/3D-HST fields. We obtain the correlation length for compact quiescent galaxies (cQGs) at z ∼ 1.6 of r0 = 7.1-2.6+2.3 h-1 Mpc and compact star forming galaxies (cSFGs) at z ∼ 2.5 of r0 = 7.7-2.9+2.7 h-1 Mpc assuming a power-law slope γ = 1.8 . The characteristic dark matter halo masses MH of cQGs at z ∼ 1.6 and cSFGs at z ∼ 2.5 are ∼ 7.1 ×1012h-1M⊙ and ∼ 4.4 ×1012h-1M⊙ , respectively. Our clustering result suggests that cQGs at z ∼ 1.6 are possibly the progenitors of local luminous ETGs and the descendants of cSFGs and SMGs at z > 2. Thus an evolutionary connection involving SMGs, cSFGs, QSOs, cQGs and local luminous ETGs has been indicated by our clustering result.

  1. Metal Abundances of KISS Galaxies. V. Nebular Abundances of 15 Intermediate Luminosity Star-forming Galaxies

    Science.gov (United States)

    Hirschauer, Alec S.; Salzer, John J.; Bresolin, Fabio; Saviane, Ivo; Yegorova, Irina

    2015-09-01

    We present high signal-to-noise ratio spectroscopy of 15 emission-line galaxies cataloged in the KPNO International Spectroscopic Survey, selected for their possession of high equivalent width [O iii] lines. The primary goal of this study was to attempt to derive direct-method (Te) abundances for use in constraining the upper-metallicity branch of the {R}23 relation. The spectra cover the full optical region from [O ii]λλ3726,3729 to [S iii]λλ9069,9531 and include the measurement of [O iii]λ4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0 ≲ 12+log(O/H) ≲ 8.3. We present a comparison of direct-method abundances with empirical strong-emission-line techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from emission lines of O++ and S++, finding a small systematic shift to lower Te (∼1184 K) and higher metallicity (∼0.14 dex) for sulfur-derived Te compared to oxygen-derived Te. Finally, we explore in some detail the different spectral activity types of targets in our sample, including regular star-forming galaxies, those with suspected AGN contamination, and a local pair of low-metallicity, high-luminosity compact objects.

  2. Compact star forming galaxies as the progenitors of compact quiescent galaxies: clustering result

    CERN Document Server

    Lin, Xiaozhi; Kong, Xu; Fang, Guanwen

    2016-01-01

    We present a measurement of the spatial clustering of massive compact galaxies at $1.2\\le z \\le 3$ in CANDELS/3D-HST fields. We obtain the correlation length for compact quiescent galaxies (cQGs) at $z\\sim1.6$ of $r_{0}=7.1_{-2.6}^{+2.3}\\ h^{-1}Mpc$ and compact star forming galaxies (cSFGs) at $z\\sim2.5$ of $r_{0}=7.7_{-2.9}^{+2.7}\\ h^{-1}Mpc$ assuming a power-law slope $\\gamma =1.8$. The characteristic dark matter halo masses $M_H$ of cQGs at $z\\sim1.6$ and cSFGs at $z\\sim2.5$ are $\\sim7.1\\times 10^{12}\\ h^{-1} M_\\odot$ and $\\sim4.4\\times10^{12}\\ h^{-1} M_\\odot$, respectively. Our clustering result suggests that cQGs at $z\\sim1.6$ are possibly the progenitors of local luminous ETGs and the descendants of cSFGs and SMGs at $z>2$. Thus an evolutionary connection involving SMGs, cSFGs, QSOs, cQGs and local luminous ETGs has been indicated by our clustering result.

  3. Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies

    CERN Document Server

    Izotov, Y I; Thuan, T X; Worseck, G; Orlitova, I; Verhamme, A

    2016-01-01

    Following our first detection reported in Izotov et al. (2016), we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). These galaxies, at redshifts of z~0.3, are characterized by high emission-line flux ratios [OIII]5007/[OII]3727 > 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ~6%-13%, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Lyalpha emission lines are detected in the spectra of all four galaxies, compatible with predictions for Lyman continuum leakers. We find escape fractions of Lyalpha, fesc(Lyalpha) ~60%-90%, among the highest known for Lyalpha emitters (LAEs). Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the center and exponential discs in the outskirts with disc scale lengths alpha in the range ~0.6-1.4 k...

  4. Low Gas Fractions Connect Compact Star-Forming Galaxies to their z ~ 2 Quiescent Descendants

    CERN Document Server

    Spilker, Justin S; Marrone, Daniel P; Weiner, Benjamin J; Whitaker, Katherine E; Williams, Christina C

    2016-01-01

    Early quiescent galaxies at z~2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z~2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions >~5 times lower and gas depletion times >~10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z>2, and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition t...

  5. [NeIII]/[OII] as an Ionization Parameter Diagnostic in Star-Forming Galaxies

    CERN Document Server

    Levesque, Emily M

    2013-01-01

    We present our parameterizations of the log([NeIII]3869/[OII]3727) (Ne3O2) and log([OIII]5007/[OII]3727) ratios as comparable and effective diagnostics of ionization parameter in star-forming galaxies. Our calibrations are based on the most recent generations of the Starburst99/Mappings III photoionization models, which extend up to the extremely high values of ionization parameter found in high-redshift galaxies. While similar calibrations have been presented previously for O3O2, this is the first such calibration of Ne3O2. We illustrate the tight correlation between these two ratios for star-forming galaxies and discuss the underlying physics that dictates their very similar evolution. Based on this work, we propose the Ne3O2 ratio as a new and useful diagnostic of ionization parameter for star-forming galaxies. Given the Ne3O2 ratio's relative insensitivity to reddening, this ratio is particularly valuable for use with galaxies that have uncertain amounts of extinction. The short wavelengths of the Ne3O2 r...

  6. The WiggleZ Dark Energy Survey: High Resolution Kinematics of Luminous Star-Forming Galaxies

    CERN Document Server

    Wisnioski, Emily; Blake, Chris; Wyder, Ted; Martin, Chris; Poole, Gregory B; Sharp, Rob; Couch, Warrick; Kacprzak, Glenn G; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Croom, Scott; Croton, Darren; Davis, Tamara; Drinkwater, Michael J; Forster, Karl; Gilbank, David G; Gladders, Michael; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Pimbblet, Kevin; Pracy, Michael; Woods, David; Yee, H K C

    2011-01-01

    We report evidence of ordered orbital motion in luminous star-forming galaxies at z~1.3. We present integral field spectroscopy (IFS) observations, performed with the OH Suppressing InfraRed Imaging Spectrograph (OSIRIS) system, assisted by laser guide star adaptive optics on the Keck telescope, of 13 star-forming galaxies selected from the WiggleZ Dark Energy Survey. Selected via ultraviolet and [OII] emission, the large volume of the WiggleZ survey allows the selection of sources which have comparable intrinsic luminosity and stellar mass to IFS samples at z>2. Multiple 1-2 kpc size sub-components of emission, or 'clumps', are detected within the Halpha spatial emission which extends over 6-10 kpc in 4 galaxies, resolved compact emission (r100 km/s) in the most compact sources. This unique data set reveals that the most luminous star-forming galaxies at z>1 are gaseous unstable disks indicating that a different mode of star formation could be feeding gas to galaxies at z>1, and lending support to theories o...

  7. A Study of the Star-forming Dwarf Galaxy NGC 855 with Spitzer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present a study of the dwarf elliptical galaxy NGC 855 using the narrow-band Ha and Spitzer data. Both the Ha and Spitzer IRAC images confirm star-forming activity in the center of NGC 855. We obtained a star formation rate (SFR) of 0.022 and 0.025 M☉yr-1, respectively, from the Spitzer IRAC 8.0 μm and MIPS 24 μm emission data. The HI observa tion suggests that the star-forming activity might be triggered by a minor merger. We also find that there is a distinct IR emission region in 5.8 and 8.0μm bands, located at about 10 "away from the nucleus of NGC 855. Given the strong 8.0μm but faint Hα emission, we expect that it is a heavily obscured star-forming region, which needs to be confirmed by further optical spectroscopic observations.

  8. HOW DO STAR-FORMING GALAXIES AT z > 3 ASSEMBLE THEIR MASSES?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung-Soo [Department of Physics and Astronomy, Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States); Ferguson, Henry C.; Dahlen, Tomas; Grogin, Norman [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wiklind, Tommy [ALMA/ESO, Santiago (Chile); Dickinson, Mark E. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Giavalisco, Mauro; Guo, Yicheng [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Papovich, Casey [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Messias, Hugo [Departamento de Astronomia, Av. Esteban Iturra 6to piso, Facultad de Ciencias Fisicas y Matematicas, Universidad de Concepcion (Chile); Lin, Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China)

    2012-06-10

    We investigate how star-forming galaxies typically assemble their masses at high redshift. Taking advantage of the deep multi-wavelength coverage of the GOODS data set, we select two of the largest samples of high-redshift star-forming galaxies based on their UV colors and measure stellar mass of individual galaxies. We use template-fitting photometry to obtain optimal estimates of the fluxes in lower-resolution ground-based and Spitzer images using prior information about galaxy positions, shapes, and orientations. By combining the data and realistic simulations to understand measurement errors and biases, we make a statistically robust determination of stellar mass function (SMF) of the UV-selected star-forming galaxies at z {approx} 4 and 5. We report a broad correlation between stellar mass and UV luminosity, such that more UV-luminous galaxies are, on average, also more massive. However, we show that the correlation has a substantial intrinsic scatter, particularly for UV-faint galaxies, evidenced by the fact there is a non-negligible number of UV faint but massive galaxies. Furthermore, we find that the low-mass end of the SMF does not rise as steeply as the UV luminosity function ({alpha}{sub UVLF} Almost-Equal-To - (1.7-1.8) while {alpha}{sub SMF} Almost-Equal-To - (1.3-1.4)) of the same galaxies. In a smooth and continuous formation scenario where star formation rates (SFRs) are sustained at the observed rates for a long time, these galaxies would have accumulated more stellar mass (by a factor of Almost-Equal-To 3) than observed and therefore the SMF would mirror more closely that of the UV luminosity function. The relatively shallow slope of the SMF is due to the fact that many of the UV-selected galaxies are not massive enough, and therefore are too faint in their rest-frame optical bands, to be detected in the current observations. Our results favor a more episodic formation history in which SFRs of low-mass galaxies vary significantly over cosmic time

  9. The nebular emission of star-forming galaxies in a hierarchical universe

    CERN Document Server

    Orsi, Alvaro; Groves, Brent; Cora, Sofia; Tecce, Tomas; Gargiulo, Ignacio; Ruiz, Andres

    2014-01-01

    [Abridged] We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model SAG with the photo-ionization code MAPPINGS-III. We characterise the interstellar medium (ISM) of galaxies by relating the ionization parameter of gas in galaxies to their cold gas metallicity. Our model is in reasonable agreement with the observed H-alpha, [OII] and [OIII] luminosity functions. Also, the model reproduces the star-forming sequence of the BPT diagram for local galaxies and the observed H-alpha to [OII] line ratios at high redshift. The average ionization parameter predicted for galaxies is found to increase in galaxies with low star-formation rates and also towards higher redshifts, in agreement with recent observational results. We study the relation between the star-formation rate of galaxies and their emission line luminosities as a function of redshift, finding strong correlations between different emission lines ...

  10. Physical conditions of the interstellar medium in star-forming galaxies at z~1.5

    CERN Document Server

    Hayashi, Masao; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $z\\sim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$\\lambda$3727 emitters at $z\\approx$ 1.47 and 1.62 from narrow-band imaging. We detect H$\\alpha$ emission line in 115 galaxies, [OIII]$\\lambda$5007 emission line in 45 galaxies, and H$\\beta$, [NII]$\\lambda$6584, and [SII]$\\lambda\\lambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $z\\sim$1.5. We find a tight correlation between H$\\alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $z\\sim1.5$. The line ratios of H$\\alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[...

  11. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    Science.gov (United States)

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  12. C iii] Emission in Star-forming Galaxies at z ∼ 1

    Science.gov (United States)

    Du, Xinnan; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.

    2017-03-01

    The C iii]λλ1907, 1909 rest-frame UV emission doublet has recently been detected in galaxies during the epoch of reionization (z > 6), with a high equivalent width (EW; 10 Å, rest frame). Currently, it is possible to obtain much more detailed information for star-forming galaxies at significantly lower redshift. Accordingly, studies of their far-UV spectra are useful for understanding the factors modulating the strength of C iii] emission. We present the first statistical sample of C iii] emission measurements in star-forming galaxies at z ∼ 1. Our sample is drawn from the DEEP2 survey and spans the redshifts 0.64 ≤slant z ≤slant 1.35 ( =1.08). We find that the median EW of individual C iii] detections in our sample (1.30 Å) is much smaller than the typical value observed thus far at z > 6. Furthermore, out of 184 galaxies with coverage of C iii], only 40 have significant detections. Galaxies with individual C iii] detections have bluer colors and lower luminosities on average than those without, implying that strong C iii] emitters are in general young and low-mass galaxies without significant dust extinction. Using stacked spectra, we further investigate how C iii] strength correlates with multiple galaxy properties (M B , U ‑ B, M *, star formation rate, specific star formation rate) and rest-frame near-UV (Fe ii* and Mg ii) and optical ([O iii] and Hβ) emission line strengths. These results provide a detailed picture of the physical environment in star-forming galaxies at z ∼ 1, and motivate future observations of strong C iii] emitters at similar redshifts.

  13. Star-Forming Galaxies at z~2 in the Hubble Ultra Deep Field

    Institute of Scientific and Technical Information of China (English)

    Xu Kong; Wei Zhang; Min Wang

    2008-01-01

    Using a simple color selection based on B-, z- and K-band photometry, BzK =(z - K)AB - (B - z)AB -0.2, we picked out 52 star-forming galaxies at 1.4 ≤ z ≤ 2.5(sBzKs) from a K-band selected sample (KVega < 22.0) in an area of ~ 5.5 arcmin2 of the Hubble Ultra Deep Field (UDF). We develop a new photometric redshift method, and the error in our photometric redshifts is less than 0.02(1 + z). From the photometric redshift distribution, we find the BzK color criterion can be used to select star-forming galaxies at 1.4 ≤ z ≤ 2.5 with KVega < 22.0. Down to KVega < 22.0, the number counts of sBzKs increase linearly with the K magnitude; the sBzKs are strongly clustered, and most of them have irregular morphologies on the ACS images. They have a median reddening of E(B -V) ~ 0.28, an average star formation rate of ~ 36 M⊙ yr-1 and a typical stellar mass of ~ 1010M⊙. The UV criterion for the galaxies at z~2 can select most of the faint sBzKs in the UDF, but it does not work well for bright, massive, highly-reddened, actively star-forming galaxies.

  14. The Incidence of Highly-Obscured Star-Forming Regions in SINGS Galaxies

    CERN Document Server

    Prescott, Moire K M; Bendo, George J; Buckalew, Brent A; Calzetti, Daniela; Engelbracht, Charles W; Gordon, Karl D; Hollenbach, David J; Lee, Janice C; Moustakas, John; Dale, Daniel A; Helou, George; Jarrett, Thomas H; Murphy, Eric J; Smith, John David T; Akiyama, Sanae; Sosey, Megan L; George J. Bendo Astrophysics Group, Imperial College

    2007-01-01

    Using the new capabilities of the Spitzer Space Telescope and extensive multiwavelength data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), it is now possible to study the infrared properties of star formation in nearby galaxies down to scales equivalent to large HII regions. We are therefore able to determine what fraction of large, infrared-selected star-forming regions in normal galaxies are highly obscured and address how much of the star formation we miss by relying solely on the optical portion of the spectrum. Employing a new empirical method for deriving attenuations of infrared-selected star-forming regions we investigate the statistics of obscured star formation on 500pc scales in a sample of 38 nearby galaxies. We find that the median attenuation is 1.4 magnitudes in H-alpha and that there is no evidence for a substantial sub-population of uniformly highly-obscured star-forming regions. The regions in the highly-obscured tail of the attenuation distribution (A_H-alpha > 3) make up only ~...

  15. The sub-galactic and nuclear main sequences for local star-forming galaxies

    CERN Document Server

    Maragkoudakis, A; Ashby, M L N; Willner, S P

    2016-01-01

    We describe a sub-galactic main sequence (SGMS) relating star formation rate surface density ($\\Sigma_{\\textrm{SFR}}$) and stellar mass density ($\\Sigma_{\\star}$) for distinct regions within star forming galaxies, including their nuclei. We use a sample of 246 nearby star-forming galaxies from the "Star Formation Reference Survey" and demonstrate that the SGMS holds down to $ \\sim $1 kpc scales with a slope of $\\alpha=0.91$ and a dispersion of 0.31 dex, similar to the well-known main sequence (MS) measured for globally integrated star formation rates (SFRs) and stellar masses. The SGMS slope depends on galaxy morphology, with late-type galaxies (Sc$-$Irr) having $\\alpha = 0.97$ and early-type spirals (Sa$-$Sbc) having $\\alpha = 0.81$. The SGMS constructed from sub-regions of individual galaxies has on average the same characteristics as the composite SGMS from all galaxies. The SGMS for galaxy nuclei shows a dispersion similar to that seen for other sub-regions. Sampling a limited range of SFR$-$M$_{\\star} $ ...

  16. The effect of disc inclination on the main sequence of star-forming galaxies

    Science.gov (United States)

    Morselli, L.; Renzini, A.; Popesso, P.; Erfanianfar, G.

    2016-11-01

    We use the Sloan Digital Sky Survey (York et al.) data base to explore the effect of the disc inclination angle on the derived star formation rate (SFR), hence on the slope and width of the main-sequence (MS) relation for star-forming galaxies. We find that SFRs for nearly edge-on discs are underestimated by factors ranging from ˜0.2 dex for low-mass galaxies up to ˜0.4 dex for high-mass galaxies. This results in a substantially flatter MS relation for high-inclination discs compared to that for less inclined ones, though the global effect over the whole sample of star-forming galaxies is relatively minor, given the small fraction of high-inclination discs. However, we also find that galaxies with high-inclination discs represent a non-negligible fraction of galaxies populating the so-called green valley, with derived SFRs intermediate between the MS and those of quenched, passively evolving galaxies.

  17. Geometry of Star-Forming Galaxies from SDSS, 3D-HST and CANDELS

    CERN Document Server

    van der Wel, A; Bell, E F; Holden, B P; Ferguson, H C; Giavalisco, M; Rix, H -W; Skelton, R; Whitaker, K; Momcheva, I; Brammer, G; Kassin, S A; Martig, M; Dekel, A; Ceverino, D; Koo, D C; Mozena, M; van Dokkum, P G; Franx, M; Faber, S M; Primack, J

    2014-01-01

    We determine the intrinsic, 3-dimensional shape distribution of star-forming galaxies at 0 1e10 Msol) disks are the most common geometric shape at all z 1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 1e9 Msol (1e10 Msol) are a mix of roughly equal numbers of elongated and disk galaxies at z~1 (z~2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z~1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks.

  18. [C II] emission in z ˜ 6 strongly lensed, star-forming galaxies

    Science.gov (United States)

    Knudsen, Kirsten K.; Richard, Johan; Kneib, Jean-Paul; Jauzac, Mathilde; Clément, Benjamin; Drouart, Guillaume; Egami, Eiichi; Lindroos, Lukas

    2016-10-01

    The far-infrared fine-structure line [C II] at 1900.5 GHz is known to be one of the brightest cooling lines in local galaxies, and therefore it has been suggested to be an efficient tracer for star formation in very high redshift galaxies. However, recent results for galaxies at z > 6 have yielded numerous non-detections in star-forming galaxies, except for quasars and submillimetre galaxies. We report the results of ALMA observations of two lensed, star-forming galaxies at z = 6.029 and z = 6.703. The galaxy A383-5.1 (star formation rate [SFR] of 3.2 M⊙ yr-1 and magnification of μ = 11.4 ± 1.9) shows a line detection with L_[C II] = 8.9× 106 L⊙, making it the lowest L_[C II] detection at z > 6. For MS0451-H (SFR = 0.4 M⊙ yr-1 and μ = 100 ± 20) we provide an upper limit of L_[C II] 6; however, other effects could also play a role in terms of decreasing L[CII]. The detection of A383-5.1 is encouraging and suggests that detections are possible, but much fainter than initially predicted.

  19. Aperture-free star formation rate of SDSS star-forming galaxies

    Science.gov (United States)

    Duarte Puertas, S.; Vilchez, J. M.; Iglesias-Páramo, J.; Kehrig, C.; Pérez-Montero, E.; Rosales-Ortega, F. F.

    2017-03-01

    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα fluxes have been extinction-corrected using the Hα/ Hβ ratio free from aperture effects. The total SFR for 210 000 SDSS star-forming galaxies has been derived applying pure empirical Hα and Hα/ Hβ aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is 0.65 dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR-M⋆) has been obtained, together with its dependence on extinction and Hα equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005 ≤ z ≤ 0.22. The SFR-M⋆ sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies. A table of the aperture-corrected fluxes and SFR for 210 000 SDSS star-forming galaxies and related relevant data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A71 Warning, no authors

  20. Photoionization Models for the Semi-Forbidden C III] 1909 Emission in Star-Forming Galaxies

    CERN Document Server

    Jaskot, Anne

    2016-01-01

    The increasing neutrality of the intergalactic medium at z>6 suppresses Ly-alpha emission, and spectroscopic confirmation of galaxy redshifts requires detecting alternative UV lines. The strong [C III] 1907 + C III] 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C III] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C III] EWs. The spectral energy distributions from the binary stellar population models also generate observable C III] over a longer timescale relative to single-star models. We show that diagnostics using C III] and nebular He II 1640 can separate star-forming...

  1. How Do Star-Forming Galaxies at Z>3 Assemble Their Masses?

    CERN Document Server

    Lee, Kyoung-Soo; Wiklind, Tommy; Dahlen, Tomas; Dickinson, Mark E; Giavalisco, Mauro; Grogin, Norman; Papovich, Casey; Messias, Hugo; Guo, Yicheng; Lin, Lihwai

    2011-01-01

    We investigate how star-forming galaxies typically assemble their masses at high redshift. Using the deep multi-wavelength coverage of the GOODS dataset, we measure stellar mass of a large sample of star-forming galaxies at z~4 and 5, and make a robust determination of stellar mass function (SMF). We report a broad correlation between stellar mass and UV luminosity, such that more UV-luminous galaxies are, on average, more massive. However, the correlation has a substantial intrinsic scatter evidenced by a non-negligible number of UV-faint but massive galaxies. Furthermore, the low-mass end of the SMF does not rise as steeply as the UV luminosity function (alpha_UVLF} -(1.7-1.8), alpha_SMF -(1.3-1.4)) of the same galaxies. In a smooth formation scenario where star formation (SF) is sustained at the observed rates for a long time, these galaxies would have accumulated more mass (by a factor of ~3) than observed and therefore the SMF would mirror more closely that of the UVLF. The relatively shallow slope of th...

  2. Aperture-free star formation rate of SDSS star-forming galaxies

    CERN Document Server

    Puertas, S Duarte; Iglesias-Paramo, J; Kehrig, C; Perez-Montero, E; Rosales-Ortega, F F

    2016-01-01

    Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured $\\rm H\\alpha$ flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the $\\rm H\\alpha$ fluxes have been extinction-corrected using the $\\rm H\\alpha/H\\beta$ ratio free from aperture effects. The total SFR for $\\sim$210,000 SDSS star-forming galaxies has been derived applying pure empirical $\\rm H\\alpha$ and $\\rm H\\alpha/H\\beta$ aperture corrections based ...

  3. Correlations among Multi-Wavelength Luminosities of Star-Forming Galaxies

    CERN Document Server

    Lou, Y Q; Lou, Yu-Qing; Bian, Fu-Yan

    2004-01-01

    It has been known for two decades that a tight correlation exists between far-infrared (FIR) and radio (1.4 and 4.8 GHz) global fluxes/luminosities from galaxies, which may be explained in terms of massive star formation activities in these galaxies. For this very reason, a correlation might also exist between X-ray and FIR/radio global luminosities of galaxies. We analyze data from {\\it ROSAT} All-Sky Survey and {\\it IRAS} to show that such correlation does indeed exist between FIR (42.5$-122.5\\mu$m) and soft X-ray (0.1$-$2.4keV) luminosities in active star-forming galaxies (ASFGs).In order to establish a physical connection between the $L_{\\rmX}-L_{\\rm FIR}$ correlation and global star formation rate (SFR) in galaxies, we empirically derive both $L_{\\rm X}-L_{\\rm B}$ and $L_{\\rm FIR}-L_{\\rm B}$ relations. Futhermore, we propose a relation between soft X-ray luminosity and SFR in star-forming galaxies. To further understand the $L_{\\rm X}-L_{\\rm FIR}$ relation, we construct an empirical model in which both F...

  4. New fully empirical calibrations of strong-line metallicity indicators in star forming galaxies

    CERN Document Server

    Curti, M; Mannucci, F; Marconi, A; Maiolino, R; Esposito, S

    2016-01-01

    We derive new empirical calibrations for strong-line diagnostics of gas phase metallicity in local star forming galaxies by uniformly applying the Te method over the full metallicity range probed by the Sloan Digital Sky Survey (SDSS). To measure electron temperatures at high metallicity, where the auroral lines needed are not detected in single galaxies, we stacked spectra of more than 110,000 galaxies from the SDSS in bins of log[O II]/H$\\beta$ and log[O III]/H$\\beta$. This stacking scheme does not assume any dependence of metallicity on mass or star formation rate, but only that galaxies with the same line ratios have the same oxygen abundance. We provide calibrations which span more than 1 dex in metallicity and are entirely defined on a consistent absolute Te metallicity scale for galaxies. We apply our calibrations to the SDSS sample and find that they provide consistent metallicity estimates to within 0.05 dex.

  5. The Hercules Cluster Environment Impact on the Chemical History of Star-Forming Galaxies

    Science.gov (United States)

    Petropoulou, V.; VíLchez, J. M.; Iglesias-Páramo, J.; Papaderos, P.

    In this work we study the effects of the Hercules cluster environment on the chemical history of star-forming (SF) galaxies. For this purpose we have derived the gas metallicities, the mean stellar metallicities and ages, the masses and the luminosities of our sample of galaxies. We have found that our Hercules SF galaxies are either chemically evolved spirals with nearly flat oxygen gradients, or less metal-rich dwarf galaxies which appear to be the "newcomers" in the cluster. Most Hercules SF galaxies follow well defined mass-metallicity and luminosity-metallicity sequences; nevertheless significant outliers to these relations have been identified, illustrating how environmental effects can provide a physical source of dispersion in these fundamental relations.

  6. New fully empirical calibrations of strong-line metallicity indicators in star-forming galaxies

    Science.gov (United States)

    Curti, M.; Cresci, G.; Mannucci, F.; Marconi, A.; Maiolino, R.; Esposito, S.

    2017-02-01

    We derive new empirical calibrations for strong-line diagnostics of gas-phase metallicity in local star-forming galaxies by uniformly applying the Te method over the full metallicity range probed by the Sloan Digital Sky Survey (SDSS). To measure electron temperatures at high metallicity, where the auroral lines needed are not detected in single galaxies, we stacked spectra of more than 110 000 galaxies from the SDSS in bins of log[O II]/Hβ and log[O III]/Hβ. This stacking scheme does not assume any dependence of metallicity on mass or star formation rate, but only that galaxies with the same line ratios have the same oxygen abundance. We provide calibrations which span more than 1 dex in metallicity and are entirely defined on a consistent absolute Te metallicity scale for galaxies. We apply our calibrations to the SDSS sample and find that they provide consistent metallicity estimates to within 0.05 dex.

  7. Timing the Evolution of Quiescent and Star-forming Local Galaxies

    Science.gov (United States)

    Pacifici, Camilla; Oh, Sree; Oh, Kyuseok; Lee, Jaehyun; Yi, Sukyoung K.

    2016-06-01

    Constraining the star formation histories (SFHs) of individual galaxies is crucial for understanding the mechanisms that regulate their evolution. Here, we combine multi-wavelength (ultraviolet, optical, and infrared) measurements of a very large sample of galaxies (˜230,000) at z motivated models of galaxy spectral energy distributions to extract constraints on galaxy physical parameters (such as stellar mass and star formation rate) as well as individual SFHs. In particular, we set constraints on the timescales in which galaxies form a certain percentage of their total stellar mass (namely, 10%, 50%, and 90%). The large statistics allows us to average such measurements over different populations of galaxies (quiescent and star-forming) and in narrow ranges of stellar mass. As in the downsizing scenario, we confirm that low-mass galaxies have more extended SFHs than high-mass galaxies. We also find that at the same observed stellar mass, galaxies that are now quiescent evolve more rapidly than galaxies that are currently still forming stars. This suggests that stellar mass is not the only driver of galaxy evolution, but plays along with other factors such as merger events and other environmental effects.

  8. The formation and assembly of a typical star-forming galaxy at redshift z approximately 3.

    Science.gov (United States)

    Stark, Daniel P; Swinbank, A Mark; Ellis, Richard S; Dye, Simon; Smail, Ian R; Richard, Johan

    2008-10-09

    Recent studies of galaxies approximately 2-3 Gyr after the Big Bang have revealed large, rotating disks, similar to those of galaxies today. The existence of well-ordered rotation in galaxies during this peak epoch of cosmic star formation indicates that gas accretion is likely to be the dominant mode by which galaxies grow, because major mergers of galaxies would completely disrupt the observed velocity fields. But poor spatial resolution and sensitivity have hampered this interpretation; such studies have been limited to the largest and most luminous galaxies, which may have fundamentally different modes of assembly from those of more typical galaxies (which are thought to grow into the spheroidal components at the centres of galaxies similar to the Milky Way). Here we report observations of a typical star-forming galaxy at z = 3.07, with a linear resolution of approximately 100 parsecs. We find a well-ordered compact source in which molecular gas is being converted efficiently into stars, likely to be assembling a spheroidal bulge similar to those seen in spiral galaxies at the present day. The presence of undisrupted rotation may indicate that galaxies such as the Milky Way gain much of their mass by accretion rather than major mergers.

  9. H{\\alpha} to FUV ratios in resolved star forming region populations of nearby spiral galaxies

    CERN Document Server

    Hermanowicz, Maciej T; Eldridge, John J

    2013-01-01

    We present a new study of H{\\alpha}/FUV flux ratios of star forming regions within a sample of nearby spiral galaxies. We search for evidence of the existence of a cluster mass dependent truncation in the underlying stellar initial mass function (IMF). We use an automated approach to identification of extended objects based on the SExtractor algorithm to catalogue resolved Hii regions within a set of nearby spiral galaxies. Corrections due to dust attenuation effects are applied to avoid artificially boosted H{\\alpha}/FUV values. We use the BPASS stellar population synthesis code of Eldridge & Stanway (2009) to create a benchmark population of star forming regions to act as a reference for our observations. Based on those models, we identify a zone of parameter space populated by regions that cannot be obtained with a cluster mass dependent truncation in the stellar IMF imposed. We find that the investigated galaxies display small subpopulations of star forming regions falling within our zone of interest,...

  10. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Science.gov (United States)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  11. The SAMI Galaxy Survey: energy sources of the turbulent velocity dispersion in spatially resolved local star-forming galaxies

    Science.gov (United States)

    Zhou, Luwenjia; Federrath, Christoph; Yuan, Tiantian; Bian, Fuyan; Medling, Anne M.; Shi, Yong; Bland-Hawthorn, Joss; Bryant, Julia J.; Brough, Sarah; Catinella, Barbara; Croom, Scott M.; Goodwin, Michael; Goldstein, Gregory; Green, Andrew W.; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Owers, Matt S.; Richards, Samuel N.; Sanchez, Sebastian F.

    2017-10-01

    We investigate the energy sources of random turbulent motions of ionized gas from H α emission in eight local star-forming galaxies from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. These galaxies satisfy strict pure star-forming selection criteria to avoid contamination from active galactic nuclei (AGNs) or strong shocks/outflows. Using the relatively high spatial and spectral resolution of SAMI, we find that - on sub-kpc scales, our galaxies display a flat distribution of ionized gas velocity dispersion as a function of star formation rate (SFR) surface density. A major fraction of our SAMI galaxies shows higher velocity dispersion than predictions by feedback-driven models, especially at the low SFR surface density end. Our results suggest that additional sources beyond star formation feedback contribute to driving random motions of the interstellar medium in star-forming galaxies. We speculate that gravity, galactic shear and/or magnetorotational instability may be additional driving sources of turbulence in these galaxies.

  12. The evolution of superbubbles and the detection of Lyman $\\alpha$ in star-forming galaxies

    CERN Document Server

    Tenorio-Tagle, G; Kunth, D; Terlevich, E; Terlevich, R J; Tenorio-Tagle, Guillermo; Silich, Sergey A.; Kunth, Daniel; Terlevich, Elena; Terlevich, Roberto

    1999-01-01

    The detection of Ly alpha emission in star-forming galaxies in different shapes and intensities (always smaller than predicted for case B recombination) has puzzled the astronomical community for more than a decade. Here we use two dimensional calculations to follow the evolution of superbubbles and of the H II regions generated by the output of UV photons from massive stars. We show the impact caused by massive star formation in the ISM of different galaxies and we look at the conditions required to detect Ly alpha emission from a nuclear H II region, and the variety of profiles that may be expected as a function of time.

  13. The structural and size evolution of star-forming galaxies over the last 11 Gyrs

    CERN Document Server

    Paulino-Afonso, Ana; Buitrago, Fernando; Afonso, Jose

    2016-01-01

    We present new results on the evolution of rest-frame blue/UV sizes and Sersic indices of H$\\alpha$-selected star-forming galaxies over the last 11 Gyrs. We investigate how the perceived evolution can be affected by a range of biases and systematics such as cosmological dimming and resolution effects. We use GALFIT and an artificial redshifting technique, which includes the luminosity evolution of H$\\alpha$-selected galaxies, to quantify the change on the measured structural parameters with redshift. We find typical sizes of 2 to 3 kpc and Sersic indices of n~1.2, close to pure exponential disks all the way from z=2.23 to z=0.4. At z=0 we find typical sizes of 4-5 kpc. Our results show that, when using GALFIT, cosmological dimming has a negligible impact on the derived effective radius for galaxies with <10 kpc, but we find a ~20% bias on the estimate of the median Sersic indices, rendering galaxies more disk-like. Star-forming galaxies have grown on average by a factor of 2-3 in the last 11 Gyrs with $r_e...

  14. ZFIRE: The Kinematics of Star-Forming Galaxies as a Function of Environment at z~2

    CERN Document Server

    Alcorn, Leo Y; Kacprzak, Glenn G; Nanayakkara, Themiya; Straatman, Caroline; Yuan, Tiantian; Allen, Rebecca J; Cowley, Michael; Davé, Romeel; Glazebrook, Karl; Kewley, Lisa J; Labbé, Ivo; Quadri, Ryan; Spitler, Lee R; Tomczak, Adam

    2016-01-01

    We perform a kinematic analysis of galaxies at $z\\sim2$ in the COSMOS legacy field using near-infrared (NIR) spectroscopy from Keck/MOSFIRE as part of the ZFIRE survey. Our sample consists of 75 Ks-band selected star-forming galaxies from the ZFOURGE survey with stellar masses ranging from log(M$_{\\star}$/M$_{\\odot}$)$=9.0-11.0$, 28 of which are members of a known overdensity at $z=2.095$. We measure H$\\alpha$ emission-line integrated velocity dispersions ($\\sigma_{\\rm int}$) from 50$-$230 km s$^{-1}$, consistent with other emission-line studies of $z\\sim2$ field galaxies. From these data we estimate virial, stellar, and gas masses and derive correlations between these properties for cluster and field galaxies at $z\\sim2$. We find evidence that baryons dominate within the central effective radius. However, we find no statistically significant differences between the cluster and the field, and conclude that the kinematics of star-forming galaxies at $z\\sim2$ are not significantly different between the cluster ...

  15. In-Situ View of Star-forming Galaxies at Cosmic Noon

    Science.gov (United States)

    Foerster Schreiber, Natascha M.

    2015-08-01

    Building on the ever-growing body of multiwavelength extragalactic surveys, spatially- and spectrally-resolved studies are providing new and unique insights into the physical and dynamical processes that drive the star formation and mass assembly of galaxies since as early as a few billion years after the Big Bang. I will present recent key progress in our understanding of galaxy evolution from state-of-the-art optical, near-IR, and submillimeter observations of massive star-forming galaxies around the peak epoch of cosmic star formation density, with an emphasis on high redshift disks. I will discuss implications on the star formation properties, feedback mechanisms, and early life cycle of z ~ 1 - 3 galaxies, and will highlight current challenges and emerging science questions.

  16. The Dawes Review 1: Kinematic studies of star-forming galaxies across cosmic time

    CERN Document Server

    Glazebrook, Karl

    2013-01-01

    The last seven years have seen an explosion in the number of Integral Field galaxy surveys, obtaining resolved two dimensional spectroscopy, especially at high-redshift. These have taken advantage of the mature capabilities of 8-10m class telescopes and the development of associated technology such as Adaptive Optics. Surveys have leveraged both high spectroscopic resolution enabling internal velocity measurements and high spatial resolution from Adaptive Optics techniques and sites with excellent natural seeing. For the first time we have been able to glimpse the kinematic state of matter in young, assembling star-forming galaxies and learn detailed astrophysical information about the physical processes and compare their kinematic scaling relations with those in the local universe. Observers have measured disk galaxy rotation, merger signatures and turbulence enhanced velocity dispersions of gas rich disks. Theorists have interpreted kinematic signatures of galaxies in a variety of ways (rotation, merging, o...

  17. The Infrared Spectral Energy Distribution of Normal Star-Forming Galaxies

    CERN Document Server

    Dale, D A; Contursi, A; Silbermann, N A; Kolhatkar, S; Dale, Daniel A.; Helou, George; Contursi, Alessandra; Silbermann, Nancy A.; Kolhatkar, Sonali

    2001-01-01

    We present a new phenomenological model for the spectral energy distribution of normal star-forming galaxies between 3 and 1100 microns. A sequence of realistic galaxy spectra are constructed from a family of dust emission curves assuming a power law distribution of dust mass over a wide range of interstellar radiation fields. For each interstellar radiation field heating intensity we combine emission curves for large and very small grains and aromatic feature carriers. The model is constrained by IRAS and ISOCAM broadband photometric and ISOPHOT spectrophotometric observations for our sample of 69 normal galaxies; the model reproduces well the empirical spectra and infrared color trends. These model spectra allow us to determine the infrared energy budget for normal galaxies, and in particular to translate far-infrared fluxes into total (bolometric) infrared fluxes. The 20 to 42 micron range appears to show the most significant growth in relative terms as the activity level increases, suggesting that the 20-...

  18. Luminous X-ray sources in spiral and star-forming galaxies.

    Science.gov (United States)

    Ward, Martin

    2002-09-15

    For studies of discrete X-ray source populations in nearby galaxies, high spatial resolution is a key to making progress. Now, for the first time, using the Chandra X-ray observatory, we are able to study these source populations in detail for galaxies beyond M31 and our local group galaxies. Analysis of accretion-driven and supernova-related discrete sources provides a new perspective on the evolution of galactic stellar populations, as well as giving insights into the physical mechanisms operating in individual cases. A particularly intriguing area, which we are only just beginning to address, is the nature of the most X-ray-luminous sources that are being discovered in many spiral and star-forming galaxies.

  19. The EGNoG Survey: Molecular Gas in Intermediate-Redshift Star-Forming Galaxies

    CERN Document Server

    Bauermeister, Amber; Bolatto, Alberto D; Bureau, Martin; Leroy, Adam; Ostriker, Eve; Teuben, Peter J; Wong, Tony; Wright, Melvyn C H

    2013-01-01

    We present the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey, an observational study of molecular gas in 31 star-forming galaxies from z=0.05 to z=0.5, with stellar masses of (4-30)x10^10 M_Sun and star formation rates of 4-100 M_Sun yr^-1. This survey probes a relatively un-observed redshift range in which the molecular gas content of galaxies is expected to have evolved significantly. To trace the molecular gas in the EGNoG galaxies, we observe the CO(1-0) and CO(3-2) rotational lines using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detect 24 of 31 galaxies and present resolved maps of 10 galaxies in the lower redshift portion of the survey. We use a bimodal prescription for the CO to molecular gas conversion factor, based on specific star formation rate, and compare the EGNoG galaxies to a large sample of galaxies assembled from the literature. We find an average molecular gas depletion time of 0.76 \\pm 0.54 Gyr for normal galaxies and 0.06 \\pm 0.04 Gyr for star...

  20. Timing the evolution of quiescent and star-forming local galaxies

    CERN Document Server

    Pacifici, Camilla; Oh, Kyuseok; Lee, Jaehyun; Yi, Sukyoung K

    2016-01-01

    Constraining the star formation histories (SFHs) of individual galaxies is crucial to understanding the mechanisms that regulate their evolution. Here, we combine multi-wavelength (ultraviolet, optical, and infrared) measurements of a very large sample of galaxies (~230,000) at z<0.16, with physically motivated models of galaxy spectral energy distributions to extract constraints on galaxy physical parameters (such as stellar mass and star formation rate) as well as individual SFHs. In particular, we set constraints on the timescales in which galaxies form a certain percentage of their total stellar mass (namely, 10, 50 and 90%). The large statistics allows us to average such measurements over different populations of galaxies (quiescent and star-forming) and in narrow ranges of stellar mass. As in the downsizing scenario, we confirm that low-mass galaxies have more extended SFHs than high-mass galaxies. We also find that at the same observed stellar mass, galaxies that are now quiescent evolve more rapidl...

  1. GALSPEC: A Tool for Computing the Spectra of Star-Forming Galaxies of Low Metallicity

    Science.gov (United States)

    Heap, S. R.; Hubeny, I.; Lanz, T. M.; Lindler, D. J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The far-ultraviolet spectral region is rich in diagnostics of star formation in galaxies; it gives information not only about the star-forming complex, but also about the dust and circumstellar gas. We have therefore developed a tool, called GALSPEC, for computing far-UV spectra of star-forming galaxies. The user controls the process through a graphical user interface (GUI) by specifying the input parameters for the stars, dust, and gas. GALSPEC computes the integrated spectrum of a star-forming complex, given the rate of star formation, metallicity (0.2 Z(sub \\odot) or 0.5 Z(sub \\odot)), and IMF upper mass limit. To compute the integrated spectrum, GALSPEC makes use of a library of stellar spectra composed of observed spectra from HST and model spectra calculated with the TLUSTY/SYNSPEC program (Hubeny & Lanz 1995). GALSPEC then applies wavelength-dependent extinction according to Calzetti's starburst extinction law. The mechanical luminosity from massive stars and supernovae sweeps up interstellar material thereby forming an expanding shell with a central cavity. GALSPEC computes the absorption spectrum of the shell using the CLOUDSPEC program (Hubeny 2000), a combination of Ferland's CLOUDY program and SYNSPEC.

  2. Searching for star-forming galaxies in the Fornax and Hydra clusters

    Science.gov (United States)

    Vaduvescu, O.; Kehrig, C.; Vilchez, J. M.; Unda-Sanzana, E.

    2011-09-01

    Context. The formation and evolution of dwarf galaxies is relatively difficult to understand because of their faint emission in all regimes that require large aperture telescopes. Aims: We intend to study the evolution of star-forming dwarf galaxies in clusters. We selected Fornax and Hydra clusters to complement our previous study of Virgo. On the basis of available literature data, we selected ten star-forming candidates in Fornax and another ten objects in Hydra. Methods: We used Gemini South with GMOS to acquire Hα images necessary to detect star-forming regions in the two galaxy samples. We then performed long-slit spectroscopy for the brightest six candidates, to derive their chemical properties. Finally, we employed the VLT with HAWK-I to observe all galaxies in the K' band to derive their main physical properties. Results: We studied the morphology of our two samples, finding five objects in Fornax and six in Hydra with structures consistent with those of star-forming dwarfs, i.e., dwarf irregulars (dIs) or blue compact dwarfs (BCDs). About four other objects are probably dwarf spirals, while three objects remained undetected in both visible and near infrared. On the basis of visible bright emission lines, we derived oxygen abundances for ten star-forming candidates with values between 8.00 ≤ 12+log(O/H) ≤8.78. Conclusions: Most fundamental properties of star-forming galaxies in Fornax and Hydra appear similar to corresponding properties of dIs and BCDs from Virgo and the local volume (LV). The luminosity-metallicity and metallicity-gas fraction relations in the LV and Virgo appear to be followed by Fornax and Hydra samples, suggesting that the chemical evolution of the two clusters seems consistent with the predictions from the closed box model, although larger samples are needed to investigate the role of possible environmental effects. Star-forming dwarfs (dIs and BCDs) in different environments appear to follow different mass-metallicity relations

  3. Gas-to-dust ratio in massive star-forming galaxies at z~1.4

    CERN Document Server

    Seko, Akifumi; Yabe, Kiyoto; Hatsukade, Bunyo; Aono, Yuya; Iono, Daisuke

    2016-01-01

    We present results of 12CO(J=2-1) observations toward four massive star-forming galaxies at z~1.4 with the Nobeyama 45~m radio telescope. The galaxies are detected with Spitzer/MIPS in 24 um, Herschel/SPIRE in 250 um, and 350 um and they mostly reside in the main sequence. Their gas-phase metallicities derived with N2 method by using the Ha and [NII]6584 emission lines are near the solar value. CO lines are detected toward three galaxies. The molecular gas masses obtained are (9.6-35) x 10^{10} Msun by adopting the Galactic CO-to-H2 conversion factor and the CO(2-1)/CO(1-0) flux ratio of 3. The dust masses derived with the modified blackbody model (assuming the dust temperature of 35 K and the emissivity index of 1.5) are (2.4-5.4) x 10^{8} Msun. The resulting gas-to-dust ratios (not accounting for HI mass) at z~1.4 are 220-1450, which are several times larger than those in local star-forming galaxies. A dependence of the gas-to-dust ratio on the far-infrared luminosity density is not clearly seen.

  4. Physical Properties of Local Star-Forming Analogues to z~5 Lyman Break Galaxies

    CERN Document Server

    Greis, Stephanie M L; Davies, Luke J M; Levan, Andrew J

    2016-01-01

    Intense, compact, star-forming galaxies are rare in the local Universe but ubiquitous at high redshift. We interpret the 0.1-22 um spectral energy distributions (SED) of a sample of 180 galaxies at 0.05star-forming galaxies with little dust extinction (mean stellar continuum extinction $E_\\mathrm{cont}$(B-V) ~ 0.1) and find star formation rates of a few tens of Solar masses per year. We use our inferred masses to determine a mean specific star formation rate for this sample of ~ $10^{-9}$ yr$^{-1}$, and compare this to the specific star formation rates in distant Lyman break galaxies (LBGs), and in other low redshift populations. We conclude that our sample's characteristics overlap significantly with those of the z~5 LBG population, maki...

  5. Evolution of oxygen and nitrogen abundances and nitrogen production mechanism in massive star-forming galaxies

    CERN Document Server

    Wu, Yu-Zhong

    2013-01-01

    Utilizing the observational data of 55,318 star-forming galaxies (SFGs) selected from the catalog of MPA-JHU emission-line measurements for the SDSS DR8, we investigate the galaxy downsizing effect of their O and N enrichments, and the nitrogen production mechanism in them. We show the redshift evolution of O and N abundances and specific star formation rates for different galaxy mass ranges, demonstrating the galaxy downsizing effect caused by less massive progenitors of less massive galaxies. The O and N abundances do not remain constant for different galaxy mass ranges, and the enrichment (and hence star formation) decreases with increasing galaxy stellar mass. We find evidence of the O enrichment for galaxies with stellar masses $M_{*}>10^{11.0} $ (in units of $M_{\\odot}$), i.e. $\\Delta({\\log}({\\rm O/H})) \\sim 0.10$ and $\\Delta({\\log}({\\rm N/H})) \\sim 0.28$ from redshift 0.023 to 0.30. Based on the evolutionary schematic model of N/O ratios in Coziol et al., who proposed the scheme that the production of ...

  6. Early Phases Of Galaxy Assembly Revealed By Young Star-Forming Dwarfs At Z 3

    Science.gov (United States)

    Amorín, Ricardo; VUDS Collaboration

    2017-06-01

    Studying lower-redshift analogs of the first galaxies is essential to scrutinize the details of galaxy formation and cosmic reionization, paving the way for a better interpretation of observations of primeval galaxies with the James Webb Space Telescope. In this talk I will present a thorough study of a recently discovered population of small, sub-L* star-forming galaxies at redshift z 2-4 that exhibit all the rest-frame properties expected for early galaxies in their first epoch of assembling and chemical enrichment. Selected by their strong nebular emission in the UV (including emission lines such as CIII]1908, CIV1550 and OIII]1664) from thousands of galaxies in the VIMOS Ultra Deep Survey, these young low mass systems are extremely metal-deficient galaxies that are likely experiencing their first significant starburst episode. I will discuss their rest-frame properties, hard radiations fields, strong Lyman-alpha emission, HST morphologies and strongly sub-solar chemical abundances. Finally, I will compare their properties with that of galaxies observed at the edge of the reionization epoch, which pose interesting prospects for JWST studies.

  7. Rapid growth of black holes in massive star-forming galaxies.

    Science.gov (United States)

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-07

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  8. The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode

    Science.gov (United States)

    Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing

    2017-08-01

    Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.

  9. A Weak Lensing View of the Downsizing of Star-forming Galaxies

    Science.gov (United States)

    Utsumi, Yousuke; Geller, Margaret J.; Dell'Antonio, Ian P.; Kamata, Yukiko; Kawanomoto, Satoshi; Koike, Michitaro; Komiyama, Yutaka; Koshida, Shintaro; Mineo, Sogo; Miyazaki, Satoshi; Sakurai, Junya; Tait, Philip J.; Terai, Tsuyoshi; Tomono, Daigo; Usuda, Tomonori; Yamada, Yoshihiko; Zahid, Harus J.

    2016-12-01

    We describe a weak lensing view of the downsizing of star-forming galaxies based on cross-correlating a weak lensing (κ) map with a predicted map constructed from a redshift survey. Moderately deep and high-resolution images with Subaru/Hyper Suprime-Cam covering the 4 {\\deg }2 DLS F2 field provide a κ map with 1 arcmin resolution. A dense complete redshift survey of the F2 field including 12,705 galaxies with R≤slant 20.6 is the basis for construction of the predicted map. The zero-lag cross-correlation between the κ and predicted maps is significant at the 30σ level. The width of the cross-correlation peak is comparable to the angular scale of rich clusters at z˜ 0.3, the median depth of the redshift survey. Slices of the predicted map in δ z=0.05 redshift bins enable exploration of the impact of structure as a function of redshift. The zero-lag normalized cross-correlation has significant local maxima at redshifts coinciding with known massive X-ray clusters. Even in slices where there are no known massive clusters, there is a significant signal in the cross-correlation originating from lower mass groups that trace the large-scale of the universe. Spectroscopic {D}n4000 measurements enable division of the sample into star-forming and quiescent populations. In regions surrounding massive clusters of galaxies, the significance of the cross-correlation with maps based on star-forming galaxies increases with redshift from 5σ at z = 0.3 to 7σ at z=0.5; the fractional contribution of the star-forming population to the total cross-correlation signal also increases with redshift. This weak lensing view is consistent with the downsizing picture of galaxy evolution established from other independent studies. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. Magnetic fields on a wide range of scales in star-forming galaxies

    CERN Document Server

    Heald, George; Sridhar, Sarrvesh S

    2016-01-01

    A key ingredient in the evolution of galaxies is the star formation cycle. Recent progress in the study of magnetic fields is revealing the close connection between star formation and its effect on the small-scale structure in the magnetized interstellar medium (ISM). In this contribution we describe how the modern generation of radio telescopes is being used to probe the physics of the ISM through sensitive multiwavelength surveys of gas and magnetic fields, from the inner star forming disk and outward into the galaxy outskirts where large-scale magnetic fields may also play a key role. We highlight unique pioneering efforts towards performing and scientifically exploiting large-scale surveys of the type that the SKA will undertake routinely. Looking to the future, we describe plans for using the Square Kilometre Array (SKA) and its pathfinders to gain important new insights into the cosmic history of galaxy evolution.

  11. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    Energy Technology Data Exchange (ETDEWEB)

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Dickinson, Mark; Kartaltepe, Jeyhan S. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Alexander, David M.; Mullaney, James R. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Magnelli, Benjamin [Max-Planck-Instituet fuer extraterrestrische Physik, Postfach 1312, D-85741 Garching bei Muenchen (Germany); Hwang, Ho Seong; Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Coil, Alison L. [Department of Physics, Center for Astrophysics and Space Sciences, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Rosario, David J. [Max-Planck-Instituet fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching bei Muenchen (Germany); Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Weiner, Benjamin J.; Willmer, Christopher N. A. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California-Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Frayer, David T., E-mail: stephanie.juneau@cea.fr [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  12. New analytical solutions for chemical evolution models: characterizing the population of star-forming and passive galaxies

    Science.gov (United States)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.

    2017-02-01

    Context. Analytical models of chemical evolution, including inflow and outflow of gas, are important tools for studying how the metal content in galaxies evolves as a function of time. Aims: We present new analytical solutions for the evolution of the gas mass, total mass, and metallicity of a galactic system when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation. Methods: We derived how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation timescales, infall masses, and mass loading factors. Results: We find that the local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies; on the other hand, the star-forming galaxies with higher masses generally show older ages and longer typical formation timescales compared than star-forming galaxies with lower masses. The local star-forming galaxies experience stronger galactic winds than the passive galaxy population. Exploring the effect of assuming different initial mass functions in our model, we show that to reproduce the observed mass-metallicity relation, stronger winds are requested if the initial mass function is top-heavy. Finally, our analytical models predict the assumed sample of local galaxies to lie on a tight surface in the 3D space defined by stellar metallicity, star formation rate, and stellar mass, in agreement with the well-known fundamental relation from adopting gas-phase metallicity. Conclusions: By using a new analytical model of chemical evolution, we characterize an ensemble of SDSS galaxies in terms of their infall timescales, infall masses, and mass loading factors. Local passive galaxies are, on average, older and assembled on shorter typical

  13. Characterizing and Cataloguing Star-Forming Galaxies in Preparation for the LADUMA Survey

    Science.gov (United States)

    Perez, Manuel Joe; Baker, Andrew J.; Wu, John F.

    2017-01-01

    This poster presents the results of an effort to process, characterize, and catalog the optical spectra of ~ 1,500 star-forming galaxies, located in the Extended Chandra Deep Field South (ECDFS), which will be used in stacking experiments by the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep HI survey. The LADUMA HI data will be used to study the evolution of the Tully-Fisher relation, cosmic neutral gas density, and other intrinsic properties of galaxies as a function of redshift. The stacking component of this research will rely on large catalogs of star-forming galaxies in the ECDFS, categorized according to star-formation rate (SFR), metallicity, stellar color excess, and redshift. We used optical spectra obtained with the Anglo-Australian Telescope, for which we have developed an automated pipeline to calculate extinction-corrected line fluxes, SFRs, and various metallicity diagnostics. The pipeline ultimately provides a visualization of the objects and their intrinsic properties as related to redshift for future analysis by the LADUMA team. This work has been supported by NSF grant PHY-1560077.

  14. Molecular Hydrogen and [Fe II] in Active Galactic Nuclei III: LINERS and Star Forming Galaxies

    CERN Document Server

    Riffel, R; Aleman, I; Brotherton, M S; Pastoriza, M G; Bonatto, C J; Dors, O L

    2013-01-01

    We study the kinematics and excitation mechanisms of H2 and [Fe II] lines in a sample of 67 emission-line galaxies with Infrared Telescope Facility SpeX near-infrared (NIR, 0.8-2.4 micrometers) spectroscopy together with new photoionisation models. H2 emission lines are systematically narrower than narrow-line region (NLR) lines, suggesting that the two are, very likely, kinematically disconnected. The new models and emission-line ratios show that the thermal excitation plays an important role not only in active galactic nuclei but also in star forming galaxies. The importance of the thermal excitation in star forming galaxies may be associated with the presence of supernova remnants close to the region emitting H2 lines. This hypothesis is further supported by the similarity between the vibrational and rotational temperatures of H2. We confirm that the diagram involving the line ratios H2 2.121/Br_gamma and [Fe II] 1.257/Pa_beta is an efficient tool for separating emission-line objects according to their dom...

  15. A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z>2

    CERN Document Server

    Aravena, M; Bethermin, M; Bothwell, M; Chapman, S C; de Breuck, C; Furstenau, R M; Gónzalez-López, J; Greve, T R; Litke, K; Ma, J; Malkan, M; Marrone, D P; Murphy, E J; Stark, A; Strandet, M; Vieira, J D; Weiss, A; Welikala, N; Wong, G F; Collier, J D

    2016-01-01

    Using the Australia Telescope Compact Array (ATCA), we conducted a survey of CO J=1-0 and J=2-1 line emission towards strongly lensed high-redshift dusty star forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sample comprises 17 sources that had CO-based spectroscopic redshifts obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder Experiment (APEX). We detect all sources with known redshifts in either CO J=1-0 or J=2-1. Twelve sources are detected in the 7-mm continuum. The derived CO luminosities imply gas masses in the range (0.5-11)x10^{10} M_sun and gas depletion timescales <200 Myr, using a CO to gas mass conversion factor alpha_CO=0.8 M_sun (K km/s pc^2)^{-1}. Combining the CO luminosities and dust masses, along with a fixed gas-to-dust ratio, we derive alpha_CO factors in the range 0.4-1.8, similar to what is found in other starbursting systems. We find small scatter in alpha_CO values within the sample, even though inh...

  16. A Systematic Investigation of Cold Gas and Dust in "Normal" Star-Forming Galaxies and Starbursts at Redshifts 5-6

    Science.gov (United States)

    Riechers, Dominik A.; Carilli, Chris Luke; Capak, Peter L.; COSMOS, HerMES

    2016-01-01

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the material that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We present some of the most recent progress in studies of gas-rich galaxies out to the highest redshifts through detailed investigations of the cold gas and dust with the most powerful facilities, i.e., the Karl G. Jansky Very Large Array (VLA), the NOrthern Extended Millimeter Array (NOEMA) and the Atacama Large (sub-) Millimeter Array (ALMA). Facilitating the impressive sensitivity of ALMA, this investigation encompasses a systematic study of the star-forming interstellar medium, gas dynamics, and dust obscuration in massive dusty starbursts and (much less luminous and massive) "typical" galaxies at such early epochs. These new results show that "typical" z>5 galaxies are significantly metal-enriched, but not heavily dust-obscured, consistent with a decreasing contribution of dust-obscured star formation to the star formation history of the universe towards the earliest cosmic epochs.

  17. Star Formation Rates and Stellar Masses of H-alpha Selected Star-Forming Galaxies at z=0.84: A Quantification of the Downsizing

    CERN Document Server

    Villar, V; Pérez-González, P-G; Barro, G; Zamorano, J; Noeske, K G; Koo, D C

    2011-01-01

    In this work we analyze the physical properties of a sample of 153 star forming galaxies at z~0.84, selected by their H-alpha flux with a NB filter. B-band luminosities of the objects are higher than those of local star forming galaxies. Most of the galaxies are located in the blue cloud, though some objects are detected in the green valley and in the red sequence. After the extinction correction is applied virtually all these red galaxies move to the blue sequence, unveiling their dusty nature. A check on the extinction law reveals that the typical extinction law for local starbursts is well suited for our sample but with E(B-V)_stars=0.55 E(B-V)_gas. We compare star formation rates (SFR) measured with different tracers (H-alpha, UV and IR) finding that they agree within a factor of three after extinction correction. We find a correlation between the ratios SFR_FUV/SFR_H-alpha, SFR_IR/SFR_H-alpha and the EW(H-alpha) (i.e. weighted age) which accounts for part of the scatter. We obtain stellar mass estimation...

  18. IROCKS: Spatially Resolved Kinematics of z ∼ 1 Star-forming Galaxies

    Science.gov (United States)

    Mieda, Etsuko; Wright, Shelley A.; Larkin, James E.; Armus, Lee; Juneau, Stéphanie; Salim, Samir; Murray, Norman

    2016-11-01

    We present results from the Intermediate Redshift OSIRIS Chemo-Kinematic Survey (IROCKS) for sixteen z ∼ 1 and one z ∼ 1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Hα emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (σ ≳ 50 km s‑1) seen in z > 1.5 galaxies persist at z ∼ 1 in the integrated galaxies. Using an inclined disk model and the ratio of v/σ , we find that 1/3 of the z ∼ 1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation toward H ii regions derived from stellar population synthesis modeling brings star formation rates (SFRs) using Hα and stellar population fit into a better agreement. We explore the properties of the compact Hα sub-component, or “clump,” at z ∼ 1 and find that they follow a similar size–luminosity relation as local H ii regions but are scaled-up by an order of magnitude with higher luminosities and sizes. Comparing the z ∼ 1 clumps to other high-redshift clump studies, we determine that the clump SFR surface density evolves as a function of redshift. This suggests clump formation is directly related to the gas fraction in these systems and may support disk fragmentation as their formation mechanism since gas fraction scales with redshift.

  19. Flat rotation curves and low velocity dispersions in KMOS star-forming galaxies at z ~ 1

    Science.gov (United States)

    Di Teodoro, E. M.; Fraternali, F.; Miller, S. H.

    2016-10-01

    The study of the evolution of star-forming galaxies requires the determination of accurate kinematics and scaling relations out to high redshift. In this paper we select a sample of 18 galaxies at z ~ 1, observed in the Hα emission line with KMOS, to derive accurate kinematics using a novel 3D analysis technique. We use the new code 3DBarolo, which models the galaxy emission directly in 3D observational space, without the need to extract kinematic maps. This major advantage of this technique is that it is not affected by beam smearing and thus it enables the determination of rotation velocity and intrinsic velocity dispersion, even at low spatial resolution. We find that (1) the rotation curves of these z ~ 1 galaxies rise very steeply within few kiloparsecs and remain flat out to the outermost radius and (2) the Hα velocity dispersions are low, ranging from 15 to 40 km s-1, which leads to V/σ = 3-10. These characteristics are similar to those of disc galaxies in the local Universe. Finally, we also report no significant evolution of the stellar-mass Tully-Fisher relation. Our results show that disc galaxies are kinematically mature and rotation-dominated at z ~ 1 already. The reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A77

  20. The Sizes of Diffuse Ly$\\alpha$ Nebulae around Star-Forming Galaxies at High Redshift

    CERN Document Server

    Xue, Rui; Dey, Arjun; Reddy, Naveen; Hong, Sungryong; Prescott, Moire K M; Inami, Hanae; Jannuzi, Buell T; Gonzalez, Anthony H

    2016-01-01

    We report the detection of diffuse Ly$\\alpha$ emission, or Lyman alpha halos (LAHs), around star-forming galaxies at $z\\approx3.78$ and $2.66$ in the NOAO Deep Wide-Field Survey Bo\\"otes field. Our samples consist of a total of $\\approx$1,400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Ly$\\alpha$ images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Ly$\\alpha$ radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scalelength of LAHs depends on UV continuum and Ly$\\alpha$ luminosities, but not on Ly$\\alpha$ equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Ly$\\alpha$ emitters ($M_{\\rm UV} \\gtrsim -21$), exhibit LAH s...

  1. The UV to FIR spectral energy distribution of star-forming galaxies in the redshift desert

    CERN Document Server

    Oteo, I; Magdis, G; Pérez-García, A M; Cepa, J; Cedrés, B; Sánchez, H Domínguez; Ederoclite, A; Sánchez-Portal, M; Pérez-Martínez, R; Pintos-Castro, I; Polednikova, J

    2013-01-01

    We analyze the rest-frame UV-to-near-IR spectral energy distribution (SED) of Lyman break galaxies (LBGs), star-forming (SF) BzK (sBzK), and UV-selected galaxies at 1.5 < z < 2.5 in the COSMOS, GOODS-North, and GOODS-South fields. Additionally, we complement the multi-wavelength coverage of the galaxies located in GOODS-North and GOODS-South fields with deep FIR data taken within the framework of the GOODS-Herschel project. According to their best-fitted SED-derived properties we find that, due to their selection criterion involving UV measurements, LBGs tend to be UV-brighter, bluer, have less prominent Balmer break (are younger), and have higher dust-corrected total SFR than sBzK galaxies. In a color versus stellar mass diagram, LBGs at z ~ 2 tend to be mostly located over the blue cloud of galaxies at their redshift, although galaxies with older ages, higher dust attenuation, and redder UV continuum slope deviate to the green valley and red sequence. We find PACS (100um or 160um) individual detection...

  2. 2D Kinematics and Physical Properties of z~3 Star-Forming Galaxies

    CERN Document Server

    Lemoine-Busserolle, M; Lamareille, F; Kissler-Patig, M

    2009-01-01

    We present results from a study of the kinematic structure of star-forming galaxies at redshift z~3 selected in the VVDS, using integral-field spectroscopy of rest-frame optical nebular emission lines, in combination with rest-frame UV spectroscopy, ground-based optical/near-IR and Spitzer photometry. We also constrain the underlying stellar populations to address the evolutionary status of these galaxies. We infer the kinematic properties of four galaxies: VVDS-20298666, VVDS-020297772, VVDS-20463884 and VVDS-20335183 with redshifts z = 3.2917, 3.2878, 3.2776, and 3.7062, respectively. While VVDS-20463884 presents an irregular velocity field with a peak in the local velocity dispersion of the galaxy shifted from the centre of the galaxy, VVDS-20298666 has a well-resolved gradient in velocity over a distance of ~4.5 kpc with a peak-to-peak amplitude of v = 91 km/s . We discovered that the nearby galaxy, VVDS-020297772 (which shows traces of AGN activity), is in fact a companion at a similar redshift with a pr...

  3. Multi-wavelength study of 14000 star-forming galaxies from the Sloan Digital Sky Survey

    CERN Document Server

    Izotov, Y I; Fricke, K J; Henkel, C

    2013-01-01

    (abridged) We studied a large sample of ~14000 dwarf star-forming galaxies with strong emission lines selected from the Sloan Digital Sky Survey (SDSS) and distributed in the redshift range of z~0-0.6. We modelled spectral energy distributions (SED) of all galaxies which were based on the SDSS spectra in the visible range of 0.38-0.92 micron and included both the stellar and ionised gas emission. These SEDs were extrapolated to the UV and mid-infrared ranges to cover the wavelength range of 0.1-22 micron. The SDSS spectroscopic data were supplemented by photometric data from the GALEX, SDSS, 2MASS, WISE, IRAS, and NVSS all-sky surveys. We derived global characteristics of the galaxies, such as their element abundances, luminosities, and stellar masses. The luminosities and stellar masses range within the sample over ~5 orders of magnitude, thereby linking low-mass and low-luminosity blue compact dwarf (BCD) galaxies to luminous galaxies, which are similar to high-redshift Lyman-break galaxies (LBGs). The lumi...

  4. Molecular and atomic gas along and across the main sequence of star-forming galaxies

    Science.gov (United States)

    Saintonge, Amelie; Catinella, Barbara; Cortese, Luca; Genzel, Reinhard; Giovanelli, Riccardo; Haynes, Martha P.; Janowiecki, Steven; Kramer, Carsten; Lutz, Katharina A.; Schiminovich, David; Tacconi, Linda J.; Wuyts, Stijn; Accurso, Gioacchino

    2016-10-01

    We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and IRAM observations, reliable mean atomic and molecular gas fractions can be obtained through a spectral stacking technique. We find that the position of galaxies in the SFR-M* plane can be explained mostly by their global cold gas reservoirs as observed in the H I line, with in addition systematic variations in the molecular-to-atomic ratio and star formation efficiency. When looking at galaxies within ±0.4 dex of the MS, we find that as stellar mass increases, both atomic and molecular gas mass fractions decrease, stellar bulges become more prominent, and the mean stellar ages increase. Both star formation efficiency and molecular-to-atomic ratios vary little for massive MS galaxies, indicating that the flattening of the MS is due to the global decrease of the cold gas reservoirs of galaxies rather than to bottlenecks in the process of converting cold atomic gas to stars.

  5. The Lyman-$\\alpha$ emission in local Star-Forming Galaxies Scenario and Connection with Primeval Galaxies

    CERN Document Server

    Kunth, D; Terlevich, R J; Tenorio-Tagle, G

    1998-01-01

    We review the Lyan alpha emission in local star-forming galaxies. In most cases as already shown by the IUE, the emission is absent or much weaker than expected. This occurs because Lyman alpha photons can be resonantly scattered by the neutral gas and destroyed by even very low amounts of dust. However new Hubble Space Telescope observations (HST) indicate that other factors such as the velocity structure of the gas play a crucial role. Gas flows are likely to occur as powered by the kinetic energy released via stellar winds and supernova. We propose a scenario based on the hydrodynamics of superbubbles powered by massive bursts of star formation that naturally accounts for the variety of Lyman alpha line detections in star-forming galaxies. We caution with the attempts to derive the co-moving star formation rate at high redshift from Lyman alpha emission searches.

  6. The Diversity of Diffuse Lyα Nebulae around Star-forming Galaxies at High Redshift

    Science.gov (United States)

    Xue, Rui; Lee, Kyoung-Soo; Dey, Arjun; Reddy, Naveen; Hong, Sungryong; Prescott, Moire K. M.; Inami, Hanae; Jannuzi, Buell T.; Gonzalez, Anthony H.

    2017-03-01

    We report the detection of diffuse Lyα emission, or Lyα halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ∼1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Lyα images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Lyα radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Lyα luminosities, but not on Lyα equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Lyα emitters (M UV ≳ ‑21), exhibit LAH sizes of 5–6 kpc. However, the most UV- or Lyα-luminous galaxies have more extended halos with scale-lengths of 7–9 kpc. The stacked Lyα radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H i column density, and outflow velocity) change with halo mass and/or star formation rates.

  7. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, Lee R.; Rees, Glen [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Allen, Rebecca, E-mail: lee.spitler@mq.edu.au [Australian Astronomical Observatory, P.O. Box 296 Epping, NSW 1710 (Australia)

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  8. Evolution of star-forming dwarf galaxies: characterizing the star formation scenarios

    Science.gov (United States)

    Martín-Manjón, M. L.; Mollá, M.; Díaz, A. I.; Terlevich, R.

    2012-02-01

    We use the self-consistent model technique developed by Martín-Manjón et al. that combines the chemical evolution with stellar population synthesis and photoionization codes, to study the star formation scenarios capable of reproducing the observed properties of star-forming galaxies. The comparison of our model results with a data base of H II galaxies shows that the observed spectra and colours of the present burst and the older underlying population are reproduced by models in a bursting scenario with star formation efficiency involving close to 20 per cent of the total mass of gas, and interburst times longer than 100 Myr, and more probably around 1 Gyr. Other modes like gasping and continuous star formation are not favoured.

  9. I Zw 18, a Template for Star-Forming, z is Greater than 7 Galaxies

    Science.gov (United States)

    Heap, Sara R.; Hubeny, Ivan

    2011-01-01

    I Zw 18-NW, one of the most primitive nearby dwarf galaxies, is arguably the best template we have for star-forming, very high-redshift galaxies (z>7). We have therefore obtained a far-UV spectrum of I Zw 18-NW using Hubble's Cosmic Origins Spectrograph (COS). The spectrum indicates star-formation over the past approx.10 Myr, a very low stellar metallicity, log Z/Zsun approx. -1.7, and high average stellar rotation rate, Vsini approx.200 km/s. Stellar wind lines are very weak, and the edge velocity of wind lines is very low (approx.250 km/s). The overall properties of I Zw 18-NW are consistent with theories of very low metallicity, rapidly rotating stars, e.g. Meynet et al. (2006).

  10. The WFC3 Mosaic of The Star-Forming Galaxy M51 in Paschen beta

    Science.gov (United States)

    Koda, Jin

    2011-10-01

    We propose WFC3/IR Paschen beta imaging of the entire star-forming disk of M51 in a 10-point mosaic. This proposal is motivated by a new picture of gas evolution in galaxies from our recent observations in carbon-monoxide {CO} emission, namely one driven by galactic dynamics. The Paschen beta and archival ACS/Halpha images will enable correction for extinction throughout the entire M51 disk, and show an unprecedented map of star forming activity across the entire galaxy. By comparing this map with our new CO intensity and velocity maps, we will {1} place star formation in this new context of gas evolution, {2} study the triggering of star formation by correlating the star formation efficiency of individual GMC with global galactic structures {such as observed spiral shear motions and local gas convergence}, and {3} investigate the physics that underlie the Schmidt law by resolving the early-phases of star formation and its environment. The extinction-corrected map of star formation activity will become a reference for future calibration of other tracers of star formation activity and will have an unparalleled archival value.

  11. A spectral and photometric study of 102 star forming regions in seven spiral galaxies

    CERN Document Server

    Gusev, A S; Piskunov, A E; Kharchenko, N V; Bruevich, V V; Ezhkova, O V; Guslyakova, S A; Lang, V; Shimanovskaya, E V; Efremov, Yu N

    2016-01-01

    We present a study of complexes of young massive star clusters (YMCs), embedded in extragalactic giant HII regions, based on the coupling of spectroscopic with photometric and spectrophotometric observations of about 100 star forming regions in seven spiral galaxies (NGC 628, NGC 783, NGC 2336, NGC 6217, NGC 6946, NGC 7331, and NGC 7678). The complete observational database has been observed and accumulated within the framework of our comprehensive study of extragalactic star forming regions. The current paper presents the last part of either unpublished or refreshed photometric and spectrophotometric observations of the galaxies NGC 6217, NGC 6946, NGC 7331, and NGC 7678. We derive extinctions, chemical abundances, continuum and line emissions of ionised gas, ages and masses for cluster complexes. We find the young massive cluster complexes to have ages no greater than 10 Myr and masses between 10^4Msol and 10^7Msol, and the extinctions A(V) vary between ~ 0 and 3 mag, while the impact of the nebular emissio...

  12. Properties and Star Formation Histories of Intermediate Redshift Dwarf Low-Mass Star-Forming Galaxies

    Science.gov (United States)

    Rodríguez-Muñoz, L.; Gallego, J.; Pacifici, C.; Tresse, L.; Charlot, S.; Gil de Paz, A.; Barro, G.; Villar, V.

    2017-03-01

    The epoch when low-mass star-forming galaxies (LMSFGs) form the bulk of their stellar mass is uncertain. While some models predict an early formation, others favor a delayed scenario until later ages of the Universe. We present improved constraints on the physical properties and star formation histories (SFHs) of a sample of intermediate redshift LMSFGs selected by their stellar mass or blue-compact-dwarf-like properties. Our work takes advantage of the deep UV-to-FIR photometric coverage available on the Extended-Chandra Deep Field South and our own dedicated deep VLT/VIMOS optical spectroscopy programs. On the one hand, we estimate the stellar mass (M_{*}), star formation rate (SFR), and SFH of each galaxy modeling its spectral energy distribution. We use a novel approach by Pacifici et al. 2012, that (1) consistently combines photometric (broad-band) and spectroscopic (emission line fluxes and equivalent widths) data, and (2) uses physically-motivated SFHs with non-uniform variations of the SFR as a function of time. On the other hand, we characterize the properties of their interstellar medium by analyzing the emission line features visible in the VIMOS spectroscopy. The final sample includes 91 spectroscopically confirmed LMSFGs (7.3 ≤ logM_{*}/M_{⊙} ≤ 9.5) at 0.3 star forming galaxies over 2 dex in stellar mass, and high specific-SFR. Furthermore, they are characterized by strong emission lines, low metallicity, and an enhanced level of excitation. Our selection criterion based on mass gathers galaxies within a wide range of properties, and possibly, different evolutionary stages. Despite the individual differences, the average SFH that we obtain suggests a late and fast (˜2 Gyr prior their observation) assembly scenario for this type of system.

  13. Outside-in Shrinking of the Star-forming Disk of Dwarf Irregular Galaxies

    CERN Document Server

    Zhang, Hong-Xin; Elmegreen, Bruce G; Gao, Yu; Schruba, Andreas

    2011-01-01

    We have studied multi-band surface brightness profiles of a representative sample of 34 nearby dwarf irregular galaxies (dIrrs). Our data include GALEX FUV/NUV, UBV, H\\alpha, and Spitzer 3.6 \\mum images. These galaxies constitute the majority of the LITTLE THINGS survey. By modeling the azimuthal averages of the spectral energy distributions with a complete library of star formation (SF) histories, we derived the stellar mass surface density distributions and the SF rate averaged over three different timescales: the recent 0.1 Gyr, 1 Gyr and a Hubble time. We find that, for \\sim 80% (27 galaxies) of our sample galaxies, radial profiles (at least in the outer part) at shorter wavelengths have shorter disk scale lengths than those at longer wavelengths. This indicates that the star-forming disk has been shrinking. In addition, the radial distributions of the stellar mass surface density are well described as piece-wise exponential profiles, and \\sim 80% of the galaxies have steeper mass profiles in the outer di...

  14. Far Infrared Luminosity Function of Local Star-forming Galaxies in the AKARI Deep Field South

    CERN Document Server

    Sedgwick, Chris; Pearson, Chris; Matsuura, Shuji; Shirahata, Mai; Oyabu, Shinki; Goto, Tomotsugu; Matsuhara, Hideo; Clements, D L; Negrello, Mattia; White, Glenn J

    2011-01-01

    We present a far-infrared galaxy luminosity function for the local universe. We have obtained 389 spectroscopic redshifts for galaxies observed at 90 microns in the AKARI Deep Field South, using the AAOmega fibre spectrograph via optical identifications in the digitized sky survey and 4m-class optical imaging. For the luminosity function presented in this paper, we have used those galaxies which have redshifts 0galaxies (giving a total of 130 sources). Infrared and optical completeness functions were estimated using earlier Spitzer data and APM B-band optical data respectively, and the luminosity function has been prepared using the 1/Vmax method. We also separate the luminosity function between galaxies which show evidence of predominantly star-forming activity and predominantly active galactic nucleus (AGN) activity in their optical spectra. Our luminosity function is in good agreement with the previous 90 micron lumino...

  15. Broadband and Narrowband Search for z < 1 Analogs of High Redshift Star Forming Galaxies

    Science.gov (United States)

    Rosenwasser, Benjamin; Barger, Amy J.; Wold, Isak; Lauchlan Cowie, Lennox

    2017-01-01

    Studies of high redshift (z > 6) galaxies rely on extreme broadband colors from Spitzer/IRAC to select samples of low-mass star forming galaxies. These broadband excess searches are biased towards galaxies with the strongest emission lines, and the extent to which existing studies miss fainter galaxies with lower star formation rates remains unknown. Using both broadband (BB) and narrowband (NB) imaging from the HyperSuprimeCam (HSC) and SuprimeCam (SC) on the Subaru Telescope, we have performed a search for z population. The search was performed over roughly 4 square degrees centered on the COSMOS field, and the narrowband filters allow us to probe fainter emission lines than the broadband searches. We carried out spectral followup of our BB excess and NB excess samples using WIYN/Hydra to measure redshifts and line ratios in order to understand the biases in the different selection techniques. We also investigate the rest frame UV properties of our sample using data from GALEX. This study demonstrates the effectiveness of using broadband colors to select intermediate redshift emission line galaxies.

  16. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    CERN Document Server

    Matsuki, Yasuhiro; Nakagawa, Takao; Takita, Satoshi

    2016-01-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ~ 0, using the AKARI Far-Infrared Surveyor (FIS) all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 4 A) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific SFR (SSFR_SDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 micron) and WIDE-L (140 micron) bands, and then compute IR-based SFR (SFR_IR) from L_IR. We find a mild decrease of IR- based SSFR (SSFR_IR) amongst SF galaxies with increasing local density (~0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (T_dust) using th...

  17. How does the far-IR properties of star-forming galaxies depend on environment?

    Science.gov (United States)

    Guo, Qi

    2015-08-01

    Traditionally, most observational studies estimate SFRs using rest-frame UV luminosities or emission lines, which are subject to uncertain corrections for dust extinction. In star-forming regions, UV photons heat the dust, and their energy is re-emitted in the mid- and far-IR range. About half of the starlight is absorbed and re-emitted over the history of the Universe. Observations at IR wavelengths are thus an essential complement to UV and optical tracers of star formation. We use far-IR selected galaxies from the Herschel ATLAS (H-ATLAS) survey and optically selected galaxies from the Galaxy and Mass Assembly (GAMA) redshift survey to study the environmental effects on far-IR properties. It includes the following aspects. What is the typical halo mass of the low-redshift H-ATLAS sources? How does far-IR luminosity depend on host halo mass? How do the far-IR conditional luminosity functions depend on group masses and redshifts? How is the total far-IR light-to-mass ratio in groups of different masses at different redshifts? How much of the far-IR luminosity is contributed by galaxies in groups? Are there any environmental effects on the far-IR-to-optical colour? How does the far-IR properties depend on large-scale environments? Can we pose constrains on current galaxy formation models?

  18. Mid- to far infrared properties of star-forming galaxies and active galactic nuclei

    CERN Document Server

    Magdis, G E; Helou, G; Farrah, D; Hurley, P; Alonso-Herrero, A; Bock, J; Burgarella, D; Chapman, S; Charmandaris, V; Cooray, A; Dai, Y S; Dale, D; Elbaz, D; Feltre, A; Hatziminaoglou, E; Huang, J-S; Morrison, G; Oliver, S; Page, M; Scott, D; Shi, Y

    2013-01-01

    We study the mid- to far-IR properties of a 24um-selected flux-limited sample (S24 > 5mJy) of 154 intermediate redshift (~0.15), infrared luminous galaxies, drawn from the 5MUSES survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the HerMES program, we derived robust total infrared luminosity (LIR) and dust mass (Md) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total infrared emission of galaxies with weak 6.2um PAH emission (EW0.2um more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500um Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8um luminosity ratio, IR8 = LIR\\L8, and the strength of PAH features. ...

  19. Modelling the nebular emission from primeval to present-day star-forming galaxies

    CERN Document Server

    Gutkin, Julia; Bruzual, Gustavo

    2016-01-01

    We present a new model of the nebular emission from star-forming galaxies in a wide range of chemical compositions, appropriate to interpret observations of galaxies at all cosmic epochs. The model relies on the combination of state-of-the-art stellar population synthesis and photoionization codes to describe the ensemble of HII regions and the diffuse gas ionized by young stars in a galaxy. A main feature of this model is the self-consistent yet versatile treatment of element abundances and depletion onto dust grains, which allows one to relate the observed nebular emission from a galaxy to both gas-phase and dust-phase metal enrichment. We show that this model can account for the rest-frame ultraviolet and optical emission-line properties of galaxies at different redshifts and find that ultraviolet emission lines are more sensitive than optical ones to parameters such as C/O abundance ratio, hydrogen gas density, dust-to-metal mass ratio and upper cutoff of the stellar initial mass function. We also find th...

  20. Widespread and Hidden Active Galactic Nuclei in Star-Forming Galaxies at Redshift > 0.3

    CERN Document Server

    Juneau, Stéphanie; Bournaud, Frédéric; Alexander, David M; Daddi, Emanuele; Mullaney, James R; Magnelli, Benjamin; Kartaltepe, Jeyhan S; Hwang, Ho Seong; Willner, S P; Coil, Alison L; Rosario, David J; Trump, Jonathan R; Weiner, Benjamin J; Willmer, Christopher N A; Cooper, Michael C; Elbaz, David; Faber, S M; Frayer, David T; Kocevski, Dale D; Laird, Elise S; Monkiewicz, Jacqueline A; Nandra, Kirpal; Newman, Jeffrey; Salim, Samir; Symeonidis, Myrto

    2012-01-01

    We characterize the incidence of active galactic nuclei (AGNs) is 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70-micron from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect "normal" galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37+/-3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-lum...

  1. Molecular and atomic gas along and across the main sequence of star-forming galaxies

    CERN Document Server

    Saintonge, A; Cortese, L; Genzel, R; Giovanelli, R; Haynes, M P; Janowiecki, S; Kramer, C; Lutz, K A; Schiminovich, D; Tacconi, L J; Wuyts, S; Accurso, G

    2016-01-01

    We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and IRAM observations, reliable mean atomic and molecular gas fractions can be obtained through a spectral stacking technique. We find that the position of galaxies in the SFR-M* plane can be explained mostly by their global cold gas reservoirs as observed in the HI line, with in addition systematic variations in the molecular-to-atomic ratio and star formation efficiency. When looking at galaxies within +/-0.4 dex of the MS, we find that as stellar mass increases, both atomic and molecular gas mass fractions decrease, stellar bulges become more prominent, and the mean stellar ages increase. Both star formation efficiency and molecular-to-atomic ratios vary little for massive main sequence galaxies, indicating that the ...

  2. Relation between Starlight and Nebular Emission Lines of Star-Forming Galaxies

    Institute of Scientific and Technical Information of China (English)

    Hong-Lin Lu; Hong-Yan Zhou; Ting-Gui Wang; Zhen-Quan Zhuang; Xiao-Bo Dong; Jun-Xian Wang; Cheng Li

    2005-01-01

    We present an exercise that intends to establish a relationship between the strength of nebular emission lines and optical stellar features in the spectrum of a galaxy. After accurately subtracting the stellar continuum and the underlying stellar absorption, we made reliable measurements of the emission lines of all the galaxies in the Sloan Digital Sky Survey Data Release 2 (SDSS DR2). More than 4000 star-forming galaxies with high S/N ratio of both the stellar spectrum and the emission lines are selected. These galaxy spectra are fitted with the 10 PCs of Yip et al., after all the emission line regions have been filtered out. We find that the flux of hydrogen Balmer emission lines, Hα and Hβ can be well recovered from the PCs, while the metal lines are not well reproduced. The fluxes of Hα and Hβ measured from the PC-reconstructed spectra and from the observed spectra agree well with an rms scatter of only ~ 0.1 dex. This result suggests that, with moderate spectral resolution and S/N ratio, the optical stellar spectrum of a galaxy can serve as an indicator of star formation rate.

  3. HR-Cosmos: Kinematics of Star-Forming Galaxies at z $\\sim$ 0.9

    CERN Document Server

    Pelliccia, D; Epinat, B; Ilbert, O; Scoville, N; Amram, P; Lemaux, B C; Zamorani, G

    2016-01-01

    We present the kinematic analysis of a sub-sample of 82 galaxies at $\\mathrm{0.75star-forming galaxies in the treasury COSMOS field at $\\mathrm{0galaxies using the multi-slit spectrograph ESO-VLT/VIMOS in high-resolution mode (R=2500). To better extract galaxy kinematics, VIMOS spectral slits have been carefully tilted along the major axis orientation of the galaxies, making use of the position angle measurements from the high spatial resolution ACS/HST COSMOS images. We constrained the kinematics of the sub-sample at $0.75

  4. On the Stellar Masses of Giant Clumps in Distant Star-forming Galaxies

    Science.gov (United States)

    Dessauges-Zavadsky, Miroslava; Schaerer, Daniel; Cava, Antonio; Mayer, Lucio; Tamburello, Valentina

    2017-02-01

    We analyze stellar masses of clumps drawn from a compilation of star-forming galaxies at 1.1 galaxies, we examine the effects of spatial resolution and sensitivity on the inferred stellar masses. Large differences are found, with median stellar masses ranging from ∼ {10}9 {M}ȯ for clumps in the often-referenced field galaxies to ∼ {10}7 {M}ȯ for fainter clumps selected in deep-field or lensed galaxies. We argue that the clump masses, observed in non-lensed galaxies with a limited spatial resolution of ∼1 kpc, are artificially increased due to the clustering of clumps of smaller mass. Furthermore, we show that the sensitivity threshold used for the clump selection affects the inferred masses even more strongly than resolution, biasing clumps at the low-mass end. Both improved spatial resolution and sensitivity appear to shift the clump stellar mass distribution to lower masses, qualitatively in agreement with clump masses found in recent high-resolution simulations of disk fragmentation. We discuss the nature of the most massive clumps, and we conclude that it is currently not possible to properly establish a meaningful clump stellar mass distribution from observations and to infer the existence and value of a characteristic clump mass scale.

  5. The Herschel-PEP survey: evidence for downsizing in the hosts of dusty star-forming systems

    CERN Document Server

    Magliocchetti, M; Rosario, D; Lutz, D; Aussel, H; Berta, S; Altieri, B; Andreani, P; Cepa, J; Castaneda, H; Cimatti, A; Elbaz, D; Genzel, R; Grazian, A; Gruppioni, C; Ilbert, O; Floc'h, E Le; Magnelli, B; Maiolino, R; Nordon, R; Poglitsch, A; Pozzi, F; Riguccini, L; Rodighiero, G; Sanchez-Portal, M; Santini, P; Schreiber, N M Forster; Sturm, E; Tacconi, L; Valtchanov, I

    2013-01-01

    By making use of Herschel-PEP observations of the COSMOS and Extended Groth Strip fields, we have estimated the dependence of the clustering properties of FIR-selected sources on their 100um fluxes. Our analysis shows a tendency for the clustering strength to decrease with limiting fluxes: r0(S100um >8 mJy)~4.3 Mpc and r0(S100um >5 mJy)~5.8 Mpc. These values convert into minimum halo masses Mmin~10^{11.6} Msun for sources brighter than 8 mJy and Mmin~10^{12.4} Msun for S100um > 5 mJy galaxies. We show such an increase of the clustering strength to be due to an intervening population of z~2 sources, which are very strongly clustered and whose relative contribution, equal to about 10% of the total counts at S100um > 2 mJy, rapidly decreases for brighter flux cuts. By removing such a contribution, we find that z ~100 Msun/yr). Our analysis shows that the same amount of (intense) star forming activity takes place in extremely different environments at the different cosmological epochs. For z<~1 the hosts of su...

  6. Leo P: A very low-mass, extremely metal-poor, star-forming galaxy

    Science.gov (United States)

    McQuinn, Kristen B.; Leo P Team

    2017-01-01

    Leo P is a low-luminosity dwarf galaxy just outside the Local Group with properties that make it an ideal probe of galaxy evolution at the faint-end of the luminosity function. Using combined data from 2 Hubble Space Telescope (HST) observing campaigns, the Very Large Array, the Spitzer Space telescope, as well as ground based data, we have constructed a robust evolutionary picture of Leo P. Leo P is one the most metal-poor, gas-rich galaxies ever discovered, has a stellar mass of a 5x105 Msun, comparable gas mass, and a single HII region. The star formation history reconstructed from the resolved stellar populations in Leo P shows it is unquenched, despite its very low mass. Based on the star formation history and metallicity measurements, the galaxy has lost 95% of its oxygen produced via nucleosynthesis, presumably to outflows. The neutral gas in the galaxy shows signs of rotation, although the velocity dispersion is comparable to the rotation velocity. Thus, Leo P bridges the gap between more massive dwarf irregular and less massive dwarf spheroidals on the baryonic Tully-Fisher relation. Furthermore, the galaxy hosts several, extremely dusty AGB candidates which will be probed with new HST and Spitzer observations. If confirmed as AGB stars, these may be our best local proxies for studying chemically unevolved star formation and subsequent dust production in metallicity environments comparable to the early universe.

  7. Sub-kpc ALMA imaging of compact star-forming galaxies at z~2.5: revealing the formation of dense galactic cores in the progenitors of compact quiescent galaxies

    CERN Document Server

    Barro, G; Pérez-González, P G; Trump, J R; Koo, D C; Faber, S M; Dekel, A; Primack, J R; Guo, Y; Kocevski, D D; Muñoz-Mateos, J C; Rujoparkarn, W; Sheth, K

    2016-01-01

    We present spatially-resolved Atacama Large Millimeter/sub-millimeter Array (ALMA) 870 $\\mu$m dust continuum maps of six massive, compact, dusty star-forming galaxies (SFGs) at $z\\sim2.5$. These galaxies are selected for their small rest-frame optical sizes ($r_{\\rm e, F160W}\\sim1.6$ kpc) and high stellar-mass densities that suggest that they are direct progenitors of compact quiescent galaxies at $z\\sim2$. The deep observations yield high far-infrared (FIR) luminosities of L$_{\\rm IR}=10^{12.3-12.8}$ L$_{\\odot}$ and star formation rates (SFRs) of SFR$=200-700$ M$_{\\odot}$yr$^{-1}$, consistent with those of typical star-forming "main sequence" galaxies. The high-spatial resolution (FWHM$\\sim$0.12"-0.18") ALMA and HST photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR-SFR overwhelmingly dominates the bolometric SFR up to $r\\sim5$ kpc, by a factor of over 100$\\times$ from the unobscured UV-SFR. Furthermore, the effecti...

  8. Are dusty galaxies blue? Insights on UV attenuation from dust-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C. M.; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 (United States); Scoville, N. Z. [California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Sanders, D. B.; Lee, N. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Finkelstein, S. L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Capak, P. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); De Zotti, G. [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Le Floc' h, E. [CEA-Saclay, Orme des Merisiers, bât. 709, F-91191 Gif-sur-Yvette Cedex (France); Ilbert, O. [Aix Marseille Université, CNRS, Laboratoire d' Astrophysique de marseille, UMR 7326, F-13388 Marseille (France); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Takeuchi, T. T. [Nagoya University, Division of Particle and Astrophysical Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2014-12-01

    Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates (SFRs). While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-z, here we investigate attenuation in dusty, star forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15-500 μm in the COSMOS field, in particular making use of Herschel imaging, and a rich data set on local galaxies, we find an empirical variation in the relationship between the rest-frame UV slope (β) and the ratio of infrared-to-ultraviolet emission (L {sub IR}/L {sub UV} ≡ IRX) as a function of infrared luminosity, or total SFR. Both locally and at high-z, galaxies above SFR ≳ 50 M {sub ☉} yr{sup –1} deviate from the nominal IRX-β relation toward bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-z dropout searches of <<1% at z ≲ 4-10, providing independent verification that contamination from very dusty foreground galaxies is low in Lyman-break galaxy searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g., galaxies with >50 M {sub ☉} yr{sup –1}, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at z ∼ 2 exhibit steady-state star formation in secular disks.

  9. Galaxy And Mass Assembly (GAMA): The 325 MHz Radio Luminosity Function of AGN and Star Forming Galaxies

    CERN Document Server

    Prescott, Matthew; Jarvis, M J; McAlpine, K; Smith, D J B; Fine, S; Johnston, R; Hardcastle, M J; Baldry, I K; Brough, S; Brown, M J I; Bremer, M N; Driver, S P; Hopkins, A M; Kelvin, L S; Loveday, J; Norberg, P; Obreschkow, D; Sadler, E M

    2016-01-01

    Measurement of the evolution of both active galactic nuclei (AGN) and star-formation in galaxies underpins our understanding of galaxy evolution over cosmic time. Radio continuum observations can provide key information on these two processes, in particular via the mechanical feedback produced by radio jets in AGN, and via an unbiased dust-independent measurement of star-formation rates. In this paper we determine radio luminosity functions at 325 MHz for a sample of AGN and star-forming galaxies by matching a 138 deg sq. radio survey conducted with the Giant Metrewave Radio Telescope (GMRT), with optical imaging and redshifts from the Galaxy And Mass Assembly (GAMA) survey. We find that the radio luminosity function at 325 MHz for star-forming galaxies closely follows that measured at 1.4 GHz. By fitting the AGN radio luminosity function out to $z = 0.5$ as a double power law, and parametrizing the evolution as ${\\Phi} \\propto (1 + z)^{k}$ , we find evolution parameters of $k = 0.92 \\pm 0.95$ assuming pure d...

  10. Ultraviolet to near-infrared spectral distributions of star-forming galaxies: Metallicity and age effects

    Science.gov (United States)

    Storchi-Bergmann, Thaisa; Calzetti, Daniela; Kinney, Anne L.

    1994-01-01

    Spectral distributions from the UV to the near-IR of a sample of 44 star-forming galaxies are used to calculate the metallicity (O/H), star-formation rate (SFR) and age of the starbursts. The oxygen abundance covers the range 8.3 less than O/H less than 9.4 and nitrogen (N) is found to be mostly a product of secondary nucleosynthesis for O/H greater than 8.4. Due to its secondary origin, N/O ratios up to approximately equals 4 times the solar value can be obtained for metal-rich starbursts. The SFR ranges 0.01 to 100 solar mass/year. The lower metallicity galaxies seem to be experiencing an instantaneous burst of star formation, with ages ranging from under 5 x 10(exp 6) to 10(exp 7) yr. The highest metallicity galaxies are most probably experiencing a continuous burst. Correlations between the calculated quantities and several spectral features are investigated. We found a highly significant correlation between the equivalent width W(C IV lambda 1550)-a stellar (absorption) feature- and the oxygen abundance of the emitting gas (O/H). Thus we show for the first time that the stellar metallicity is well correlated with the gas metallicity in star-bursting galaxies. The equivalent width W(Si IV lambda 1400) and the emission line ratio (N II) lambda lambda 6548.84/H(sub alpha) also correlate well with O/H, and all three features can be used as metallicity indicators for star-forming galaxies. The continuum color between lambda 1400 and lambda 3500 (C(14 - 35)) is shown to correlate with O/H, although it is better correlated with E(B - V). It was not possible to disentangle the metallicity from the reddening effect in C(14- 35). We estimate that the reddening affecting the UV continuum is about half the one derived from the Balmer decrement of the emitting gas. The SFR correlates well with the galaxy luminosity and there is no dependence of the continuum color on the SFR. The higher metallicities are only found in the more luminous galaxies, while low metallicities are

  11. The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are A Major Reservoir of Galactic Metals

    CERN Document Server

    Tumlinson, Jason; Werk, Jessica K; Prochaska, J Xavier; Tripp, Todd M; Weinberg, David H; Peeples, Molly S; O'Meara, John M; Oppenheimer, Benjamin D; Meiring, Joseph D; Katz, Neal S; Dave, Romeel; Ford, Amanda Brady; Sembach, Kenneth R

    2011-01-01

    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150 kiloparsec) halos of ionized oxygen surrounding star-forming galaxies, but we find much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. It is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.

  12. The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals.

    Science.gov (United States)

    Tumlinson, J; Thom, C; Werk, J K; Prochaska, J X; Tripp, T M; Weinberg, D H; Peeples, M S; O'Meara, J M; Oppenheimer, B D; Meiring, J D; Katz, N S; Davé, R; Ford, A B; Sembach, K R

    2011-11-18

    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.

  13. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    Science.gov (United States)

    Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi

    2017-04-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.

  14. Constraints on the Assembly and Dynamics of Galaxies. I. Detailed Rest-frame Optical Morphologies on Kiloparsec Scale of z ~ 2 Star-forming Galaxies

    Science.gov (United States)

    Förster Schreiber, N. M.; Shapley, A. E.; Erb, D. K.; Genzel, R.; Steidel, C. C.; Bouché, N.; Cresci, G.; Davies, R.

    2011-04-01

    We present deep and high-resolution Hubble Space Telescope NIC2 F160W imaging at 1.6 μm of six z ~ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. The unique combination of rest-frame optical imaging and nebular emission-line maps provides simultaneous insight into morphologies and dynamical properties. The overall rest-frame optical emission of the galaxies is characterized by shallow profiles in general (Sérsic index n Gini (G), multiplicity (Ψ), and M 20 coefficients. The estimated strength of the rest-frame optical emission lines in the F160W bandpass indicates that the observed structure is not dominated by the morphology of line-emitting gas, and must reflect the underlying stellar mass distribution of the galaxies. The sizes and structural parameters in the rest-frame optical continuum and Hα emission reveal no significant differences, suggesting similar global distributions of the ongoing star formation and more evolved stellar population. While no strong correlations are observed between stellar population parameters and morphology within the NIC2/SINFONI sample itself, a consideration of the sample in the context of a broader range of z ~ 2 galaxy types (K-selected quiescent, active galactic nucleus, and star forming; 24 μm selected dusty, infrared-luminous) indicates that these galaxies probe the high specific star formation rate and low stellar mass surface density part of the massive z ~ 2 galaxy population, with correspondingly large effective radii, low Sérsic indices, low G, and high Ψ and M 20. The combined NIC2 and SINFONI data set yields insights of unprecedented detail into the nature of mass accretion at high redshift. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555, and at the Very Large Telescope of the European Southern

  15. Empirical determination of the shape of dust attenuation curves in star-forming galaxies

    CERN Document Server

    Wild, Vivienne; Brinchmann, Jarle; Heckman, Timothy; Vince, Oliver; Pacifici, Camilla; Chevallard, Jacopo

    2011-01-01

    We present a systematic study of the shape of the dust attenuation curve in star-forming galaxies from the far ultraviolet to the near infrared (0.15-2microns), as a function of specific star formation rate (sSFR) and axis ratio (b/a), for galaxies with and without a significant bulge. Our sample comprises 23,000 (15,000) galaxies with a median redshift of 0.07, with photometric entries in the SDSS, UKIDSS-LAS (and GALEX-AIS) survey catalogues and emission line measurements from the SDSS spectroscopic survey. We develop a new pair-matching technique to isolate the dust attenuation curves from the stellar continuum emission. The main results are: (i) the slope of the attenuation curve in the optical varies weakly with sSFR, strongly with b/a, and is significantly steeper than the Milky Way extinction law in bulge-dominated galaxies; (ii) the NIR slope is constant, and matches the slope of the Milky Way extinction law; (iii) the UV has a slope change consistent with a dust bump at 2175AA which is evident in all...

  16. Untangling the Nature of Spatial Variations of Cold Dust Properties in Star Forming Galaxies

    CERN Document Server

    Kirkpatrick, Allison; Kennicutt, Robert; Galametz, Maud; Gordon, Karl; Groves, Brent; Hunt, Leslie; Dale, Daniel; Hinz, Joannah; Tabatabaei, Fatemeh

    2014-01-01

    We investigate the far-infrared (IR) dust emission for 20 local star forming galaxies from the Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH) sample. We model the far-IR/submillimeter spectral energy distribution (SED) using images from Spitzer Space Telescope and Herschel Space Observatory. We calculate the cold dust temperature (T(cold)) and emissivity (beta) on a pixel by pixel basis (where each pixel ranges from 0.1-3 kpc^2) using a two temperature modified blackbody fitting routine. Our fitting method allows us to investigate the resolved nature of temperature and emissivity variations by modeling from the galaxy centers to the outskirts (physical scales of ~15-50 kpc, depending on the size of the galaxy). We fit each SED in two ways: (1) fit T(cold) and beta simultaneously, (2) hold beta constant and fit T(cold). We compare T(cold) and beta with star formation rates (calculated from L(Halpha) and L(24)), the luminosity of the old stellar population (traced through L(3.6), and ...

  17. Synchrotron spectral index and interstellar medium densities of star-forming galaxies

    CERN Document Server

    Basu, Aritra; Schmidt, Philip; Roy, Subhashis

    2015-01-01

    The spectral index of synchrotron emission is an important parameter in understanding the properties of cosmic ray electrons (CREs) and the interstellar medium (ISM). We determine the synchrotron spectral index ($\\alpha_{\\rm nt}$) of four nearby star-forming galaxies, namely NGC 4736, NGC 5055, NGC 5236 and NGC 6946 at sub-kpc linear scales. The $\\alpha_{\\rm nt}$ was determined between 0.33 and 1.4 GHz for all the galaxies. We find the spectral index to be flatter ($\\gtrsim -0.7$) in regions with total neutral (atomic + molecular) gas surface density, $\\Sigma_{\\rm gas} \\gtrsim \\rm 50~M_\\odot pc^{-2}$, typically in the arms and inner parts of the galaxies. In regions with $\\Sigma_{\\rm gas} \\lesssim \\rm 50~M_\\odot pc^{-2}$, especially in the interarm and outer regions of the galaxies, the spectral index steepens sharply to $<-1.0$. The flattening of $\\alpha_{\\rm nt}$ is unlikely to be caused due to thermal free--free absorption at 0.33 GHz. Our result is consistent with the scenario where the CREs emitting a...

  18. The structural and size evolution of star-forming galaxies over the last 11 Gyr

    Science.gov (United States)

    Paulino-Afonso, Ana; Sobral, David; Buitrago, Fernando; Afonso, José

    2017-03-01

    We present new results on the evolution of rest-frame blue/UV sizes and Sérsic indices of Hα-selected star-forming galaxies over the last 11 Gyr. We investigate how the perceived evolution can be affected by a range of biases and systematics such as cosmological dimming and resolution effects. We use GALFIT and an artificial redshifting technique, which includes the luminosity evolution of Hα-selected galaxies, to quantify the change on the measured structural parameters with redshift. We find typical sizes of 2-3 kpc and Sérsic indices of n ∼ 1.2, close to pure exponential discs all the way from z = 2.23 to z = 0.4. At z = 0, we find typical sizes of 4-5 kpc. Our results show that, when using GALFIT, cosmological dimming has a negligible impact on the derived effective radius for galaxies with growth of discs where star formation is ongoing in galaxies while their profiles remain close to exponential discs, n ≲ 1.5, across the same period.

  19. SMT CO (2-1) Observations of Nearby Star-Forming Galaxies

    CERN Document Server

    Jiang, Xue-Jian; Gu, Qiusheng; Wang, Junzhi; Zhang, Zhi-Yu

    2014-01-01

    We present CO $J$=2-1 observations towards 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and WISE catalogs, using the Sub-millimeter Telescope. Our sample is selected to be dominated by intermediate-$M_{\\rm *}$ galaxies. The scaling-relations between molecular gas, atomic gas and galactic properties (stellar mass, NUV$- r$ and WISE color W3$-$W2) are examined and discussed. Our results show that (1). In the galaxies with stellar mass $M_{\\rm *}$ $\\leqslant 10^{10}$ $M_{\\odot}$, HI fraction ($f_{\\rm HI}$ $\\equiv$ $M_{\\rm HI}$/$M_{\\rm *}$) is significantly higher than that of more massive galaxies, while H$_2$ gas fraction ($f_{\\rm H_2}$ $\\equiv$ $M_{\\rm H_2}$/$M_{\\rm *}$) remain nearly unchanged. (2). Comparing with $f_{\\rm H_2}$, $f_{\\rm HI}$ correlates better with both $M_{\\rm *}$ and NUV$- r$. (3). A new parameter, WISE color W3$-$W2 (12\\,$\\mu$m$-$4.6\\,$\\mu$m) is introduced, which is similar to NUV$- r$ in tracing star formation activity, and we find that W3$-$W2 has a tighter anti-corr...

  20. Complex gas kinematics in compact, rapidly assembling star-forming galaxies

    CERN Document Server

    Amorín, Ricardo; Hägele, Guillermo; Firpo, Verónica; Pérez-Montero, Enrique; Papaderos, Polychronis

    2012-01-01

    Deep, high resolution spectroscopic observations have been obtained for six compact, strongly star-forming galaxies at redshift z~0.1-0.3, most of them also known as Green Peas. Remarkably, these galaxies show complex emission-line profiles in the spectral region including H\\alpha, [NII]$\\lambda\\lambda 6548, 6584$ and [SII]$\\lambda\\lambda 6717, 6731$, consisting of the superposition of different kinematical components on a spatial extent of few kpc: a very broad line emission underlying more than one narrower component. For at least two of the observed galaxies some of these multiple components are resolved spatially in their 2D-spectra, whereas for another one a faint detached H\\alpha\\ blob lacking stellar continuum is detected at the same recessional velocity ~7 kpc away from the galaxy. The individual narrower H\\alpha\\ components show high intrinsic velocity dispersion (\\sigma ~30-80 km s$^{-1}$), suggesting together with unsharped masking HST images that star formation proceeds in an ensemble of several c...

  1. A Multiwavelength Consensus on the Main Sequence of Star-Forming Galaxies at z~2

    CERN Document Server

    Rodighiero, G; Daddi, E; Baronchelli, I; Berta, S; Cresci, G; Franceschini, A; Gruppioni, C; Lutz, D; Mancini, C; Santini, P; Zamorani, G; Silverman, J; Kashino, D; Andreani, P; Cimatti, A; Sanchez, H Dominguez; Floch, E Le; Magnelli, B; Popesso, P; Pozzi, F

    2014-01-01

    We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR-stellar mass ($M_*$) relation, compared to that of the dominant main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{$M_*$} relation is $\\sim0.8-0.9$, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24$\\mu$m-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the $B$ band. The combination o...

  2. The Structural Evolution of Milky Way-like Star Forming Galaxies since z~1.3

    CERN Document Server

    Patel, Shannon G; Franx, Marijn; van Dokkum, Pieter G; van der Wel, Arjen; Leja, Joel; Labbe, Ivo; Brammer, Gabriel; Skelton, Rosalind E; Momcheva, Ivelina; Whitaker, Katherine E; Lundgren, Britt; Muzzin, Adam; Quadri, Ryan F; Nelson, Erica June; Wake, David A; Rix, Hans-Walter

    2013-01-01

    We follow the structural evolution of star forming galaxies (SFGs) like the Milky Way by selecting progenitors to z~1.3 based on the stellar mass growth inferred from the evolution of the star forming sequence. We select our sample from the 3D-HST survey, which utilizes spectroscopy from the HST WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of z=0 SFGs with stellar mass M=10^{10.5} Msun are ~2 times less massive at z~1. This late-time stellar mass assembly is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at z~0 have grown in half-light radius by a factor of ~1.4 since z~1. The half-light radius grows with stellar mass as r_e M^{0.29}. While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges ...

  3. The angular momentum distribution and baryon content of star forming galaxies at z~1-3

    CERN Document Server

    Burkert, A; Genzel, R; Lang, P; Tacconi, L J; Wisnioski, E; Wuyts, S; Bandara, K; Beifiori, A; Bender, R; Brammer, G; Chan, J; Davies, R; Dekel, A; Fabricius, M; Fossati, M; Kulkarni, S; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Naab, T; Renzini, A; Saglia, R; Sharples, R M; Sternberg, A; Wilman, D; Wuyts, E

    2015-01-01

    We analyze the angular momenta of massive star forming galaxies (SFGs) at the peak of the cosmic star formation epoch (z~0.8-2.6). Our sample of ~360 log(M*/Msun) ~ 9.3-11.8 SFGs is mainly based on the KMOS^3D and SINS/zC-SINF surveys of H\\alpha\\ kinematics, and collectively provides a representative subset of the massive star forming population. The inferred halo scale, angular momentum distribution is broadly consistent with that theoretically predicted for their dark matter halos, in terms of mean spin parameter ~ 0.037 and its dispersion ($\\sigma_{log(\\lambda)}$~0.2). Spin parameters correlate with the disk radial scale, and with their stellar surface density, but do not depend significantly on halo mass, stellar mass, or redshift. Our data thus support the long-standing assumption that on average the specific angular momentum of early disks reflects that of their dark matter halos (jd = jDM), despite the fact that gas enters the virial radius with substantially higher angular momentum, requiring subsequ...

  4. Circumnuclear star-forming regions in early type spiral galaxies: dynamical masses

    CERN Document Server

    Hagele, G F; Bosch, G L; Diaz, A I; Terlevich, E; Terlevich, R

    2012-01-01

    We present the measurements of gas and stellar velocity dispersions in 17 circumnuclear star-forming regions (CNSFRs) and the nuclei of three barred spiral galaxies: NGC2903, NGC3310 and NGC3351 from high dispersion spectra. The stellar dispersions have been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, while the gas velocity dispersions have been measured by Gaussian fits to the Hbeta and to the [OIII]5007A\\ lines. The CNSFRs, with sizes of about 100 to 150pc in diameter, are seen to be composed of several individual star clusters with sizes between 1.5 and 6.2pc on HST images. Using the stellar velocity dispersions, we have derived dynamical masses for the entire star-forming complexes and for the individual star clusters. Values of the stellar velocity dispersions are between 31 and 73 km/s. Dynamical masses for the whole CNSFRs are between 4.9x10^6 and 1.9x10^8 Mo and between 1.4x10^6 and 1.1x10^7 Mo for the individual star clusters. We have found indications for the presence of two dif...

  5. Modelling the nebular emission from primeval to present-day star-forming galaxies

    Science.gov (United States)

    Gutkin, Julia; Charlot, Stéphane; Bruzual, Gustavo

    2016-10-01

    We present a new model of the nebular emission from star-forming galaxies in a wide range of chemical compositions, appropriate to interpret observations of galaxies at all cosmic epochs. The model relies on the combination of state-of-the-art stellar population synthesis and photoionization codes to describe the ensemble of H II regions and the diffuse gas ionized by young stars in a galaxy. A main feature of this model is the self-consistent yet versatile treatment of element abundances and depletion on to dust grains, which allows one to relate the observed nebular emission from a galaxy to both gas-phase and dust-phase metal enrichment. We show that this model can account for the rest-frame ultraviolet and optical emission-line properties of galaxies at different redshifts and find that ultraviolet emission lines are more sensitive than optical ones to parameters such as C/O abundance ratio, hydrogen gas density, dust-to-metal mass ratio and upper cut-off of the stellar initial mass function. We also find that, for gas-phase metallicities around solar to slightly subsolar, widely used formulae to constrain oxygen ionic fractions and the C/O ratio from ultraviolet and optical emission-line luminosities are reasonable faithful. However, the recipes break down at non-solar metallicities, making them inappropriate to study chemically young galaxies. In such cases, a fully self-consistent model of the kind presented in this paper is required to interpret the observed nebular emission.

  6. The Dust Content and Opacity of Actively Star-Forming Galaxies

    Science.gov (United States)

    Calzetti, Daniela; Armus, Lee; Bohlin, Ralph C.; Kinney, Anne L.; Koornneef, Jan; Storchi-Bergmann, Thaisa

    2000-01-01

    ), UV - bright star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys, unless: (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.

  7. Dust emission in star-forming dwarf galaxies: General properties and the nature of the sub-mm excess

    CERN Document Server

    Izotov, Y I; Fricke, K J; Krugel, E; Henkel, C

    2014-01-01

    We studied the global characteristics of dust emission in a large sample of emission-line star-forming galaxies. The sample consists of two subsamples. One subsample (SDSS sample) includes ~4000 compact star-forming galaxies from the SDSS, which were also detected in all four bands at 3.4, 4.6, 12, and 22 mum of the WISE all-sky survey. The second subsample (Herschel sample) is a sample of 28 compact star-forming galaxies observed with Herschel in the FIR range. Data of the Herschel sample were supplemented by the photometric data from the Spitzer observations, GALEX, SDSS, WISE, 2MASS, NVSS, and FIRST surveys, as well as optical and Spitzer spectra and data in sub-mm and radio ranges. It is found that warm dust luminosities of galaxies from the SDSS sample and cold and warm dust luminosities of galaxies from the Herschel sample are strongly correlated with Hbeta luminosities, which implies that one of the main sources of dust heating in star-forming galaxies is ionising UV radiation of young stars. Using the...

  8. CLASH: A Census of Magnified Star-Forming Galaxies at z ~ 6-8

    CERN Document Server

    Bradley, L D; Coe, D; Bouwens, R; Postman, M; Balestra, I; Grillo, C; Monna, A; Rosati, P; Seitz, S; Host, O; Lemze, D; Moustakas, J; Moustakas, L A; Shu, X; Zheng, W; Broadhurst, T; Carrasco, M; Jouvel, S; Koekemoer, A; Medezinski, E; Meneghetti, M; Nonino, M; Smit, R; Umetsu, K; Bartelmann, M; Benitez, N; Donahue, M; Ford, H; Infante, L; Jimenez-Teja, Y; Kelson, D; Lahav, O; Maoz, D; Melchior, P; Merten, J; Molino, A

    2013-01-01

    We utilize 16-band Hubble Space Telescope (HST) observations of 18 lensing clusters obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program to search for z~6-8 galaxies. We report the discovery of 206, 45, and 13 Lyman-break galaxy (LBG) candidates at z~6, z~7, and z~8, respectively, identified from purely photometric redshift selections. This large sample, representing nearly an order of magnitude increase in the number of magnified star-forming galaxies at z~6-8 presented to date, is unique in that we have observations in four WFC3/UVIS UV, seven ACS/WFC optical and all five WFC3/IR broad-band filters, which enable very accurate photometric redshift selections. We construct detailed lensing models for all 18 clusters (although some are preliminary) to estimate object magnifications and to identify two new multiply-lensed z >~ 6 candidates. The median magnifications for these 18 clusters are 4, 4, and 5 for the z~6, z~7, and z~8 samples, respectively, ove...

  9. Boxy H$\\alpha$ Emission Profiles in Star-Forming Galaxies

    CERN Document Server

    Chen, Yan-Mei; Tremonti, Christy A; Shi, Yong; Jin, Yi-Fei

    2016-01-01

    We assemble a sample of disk star-forming galaxies from the Sloan Digital Sky Survey Data Release 7, studying the structure of H$\\alpha$ emission lines, finding a large fraction of this sample contains boxy H$\\alpha$ line profiles. This fraction depends on galaxy physical and geometric parameters in the following way: (1) it increases monotonically with star formation rate per unit area ($\\Sigma_{\\rm SFR}$), and stellar mass ($M_*$), with the trend being much stronger with $M_*$, from $\\sim$0% at $M_*=10^{10}M_{\\odot}$ to about 50% at $M_*=10^{11}M_\\odot$; (2) the fraction is much smaller in face-on systems than in edge-on systems. It increases with galaxy inclination ($i$) while $i < 60\\,^{\\circ}$ and is roughly a constant of 25% beyond this range; (3) for the sources which can be modeled well with two velocity components, blueshifted and redshifted from the systemic velocity, these is a positive correlation between the velocity difference of these two components and the stellar mass, with a slope similar...

  10. The Spatial Distribution of the Young Stellar Clusters in the Star-forming Galaxy NGC 628

    Science.gov (United States)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Aloisi, A.; Bright, S. N.; Christian, C.; Cignoni, M.; Dale, D. A.; Dobbs, C.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Grebel, E. K.; Johnson, K. E.; Lee, J. C.; Messa, M.; Smith, L. J.; Ryon, J. E.; Thilker, D.; Ubeda, L.; Wofford, A.

    2015-12-01

    We present a study of the spatial distribution of the stellar cluster populations in the star-forming galaxy NGC 628. Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (≲ 100 Myr) stellar clusters within the galaxy using a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent α. We recover a weighted mean index of α ∼ -0.8 for all spatial scales below the break at 3.″3 (158 pc at a distance of 9.9 Mpc) and an index of α ∼ -0.18 above 158 pc for the accumulation of all cluster types. The strength of the clustering increases with decreasing age and clusters older than 40 Myr lose their clustered structure very rapidly and tend to be randomly distributed in this galaxy, whereas the mass of the star cluster has little effect on the clustering strength. This is consistent with results from other studies that the morphological hierarchy in stellar clustering resembles the same hierarchy as the turbulent interstellar medium.

  11. Derivation of chemical abundances in star-forming galaxies at intermediate redshift

    CERN Document Server

    Perez-Martinez, J M

    2014-01-01

    We have studied a sample of 11 blue, luminous, metal-poor galaxies at redshift 0.744 < z < 0.835 from the DEEP2 redshift survey. They were selected by the presence of the [OIII]4363 auroral line and the [OII]3726,3729 doublet together with the strong emission nebular [OIII] lines in their spectra from a sample of around 6000 galaxies within a narrow redshift range. All the spectra have been taken with DEIMOS, which is a multi-slit, double-beam spectrograph which uses slitmasks to allow the spectra from many objects to be imaged at the same time. The selected objects present high luminosities (20.3 < MB < 18.5), remarkable blue color index, and total oxygen abundances between 7.69 and 8.15 which represent 1/3 to 1/10 of the solar value. The wide spectral coverage (from 6500 to 9100 angstroms) of the DEIMOS spectrograph and its high spectral resolution, R around 5000, bring us an opportunity to study the behaviour of these star-forming galaxies at intermediate redshift with high quality spectra. We ...

  12. The unorthodox evolution of major merger remnants into star-forming spiral galaxies

    CERN Document Server

    Sparre, Martin

    2016-01-01

    Galaxy mergers are believed to play a key role in transforming star-forming disk galaxies into quenched ellipticals. Most of our theoretical knowledge about such morphological transformations does, however, rely on idealised simulations where processes such as cooling of hot halo gas into the disk and gas accretion in the post-merger phase are not treated in a self-consistent cosmological fashion. In this paper we study the morphological evolution of the stellar components of four major mergers occurring at z=0.5 in cosmological hydrodynamical zoom-simulations. In all simulations the merger reduces the disk mass-fraction, but all galaxies simulated at our highest resolution regrow a significant disk by z=0 (with a disk fraction larger than 24%). For runs with our default physics model, which includes galactic winds from star formation and black hole feedback, none of the merger remnants are quenched, but in a set of simulations with stronger black hole feedback we find that major mergers can indeed quench gal...

  13. Kinematics in the Interacting, Star-Forming Galaxies NGC 3395/3396 and NGC 3991/3994/3995

    Science.gov (United States)

    Weistrop, Donna; Nelson, Charles H.

    1999-01-01

    It has been suggested that induced star formation is more sensitive to galaxy dynamics than to local phenomena and that enhanced star formation is found in galaxies with disturbed velocity structures. We are studying the stellar populations of several UV-bright, interacting galaxies to try to understand the detailed star formation process in these systems. We present preliminary results of an investigation of the kinematics of star-forming regions in the interacting systems NGC 3395/3396 and NGC 3991/3994/3995. Regions of powerful star formation are observed throughout these galaxies. The observatation will be used to investigate rotation curves in the galaxies and motion in the tidal tails.

  14. Characterizing the local population of star-forming and passive galaxies with analytical models of chemical evolution

    CERN Document Server

    Spitoni, E; Matteucci, F

    2016-01-01

    Analytical models of chemical evolution, including inflow and outflow of gas, are important tools to study how the metal content in galaxies evolves as a function of time. In this work, we present new analytical solutions for the evolution of the gas mass, total mass and metallicity of a galactic system, when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation; in this way, we can derive how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation time scales, infall masses and mass loading factors. We find that the local passive galaxies are on average older and assembled on shorter typical time-scales than the local star-forming ones; on the other hand, the larger mass star-forming galaxies show generally older ages and longer typical ...

  15. Everything you ever wanted to know about the ultraviolet spectra of star-forming galaxies but were afraid to ask

    Science.gov (United States)

    Kinney, A. L.; Bohlin, R.; Calzetti, D.; Panagia, N.; Wyse, R.

    1993-01-01

    We present ultraviolet spectra of 143 star-forming galaxies of different morphological types and activity classes including S0, Sa, Sb, Sc, Sd, irregular, starburst, blue compact, blue compact dwarf, Liner, and Seyfert 2 galaxies. These IUE spectra cover the wavelength range from 1200 to 3200 A and are taken in a large aperture (10 x 20 inch). The ultraviolet spectral energy distributions are shown for a subset of the galaxies, ordered by spectral index, and separated by type for normal galaxies, Liners, starburst galaxies, blue compact (BCG) and blue compact dwarf (BCDG) galaxies, and Seyfert 2 galaxies. The ultraviolet spectra of Liners are, for the most part, indistinguishable from the spectra of normal galaxies. Starburst galaxies have a large range of ultraviolet slope, from blue to red. The star-forming galaxies which are the bluest in the optical (BCG and BCDG), also have the 'bluest' average ultraviolet slope of beta = -1.75 +/- 0.63. Seyfert 2 galaxies are the only galaxies in the sample that consistently have detectable UV emission lines.

  16. Star-forming galaxies in low-redshift clusters: Data and integrated galaxy properties

    CERN Document Server

    Thomas, C F; James, P A; Bennett, S M; Aragón-Salamanca, A; Whittle, M

    2008-01-01

    This paper is a continuation of an ongoing study of the evolutionary processes affecting cluster galaxies. Both CCD R band and H alpha narrow-band imaging was used to determine photometric parameters (m_(r), r_(24), H alpha flux and equivalent width) and derive star formation rates for 227 CGCG galaxies in 8 low-redshift clusters. The galaxy sample is a subset of CGCG galaxies in an objective prism survey of cluster galaxies for H alpha emission. It is found that detection of emission-line galaxies in the OPS is 85%, 70%, and 50% complete at the mean surface brightness values of 1.25 x 10^(-19), 5.19 x 10^(-20), and 1.76 x 10^(-20) W m^(-2) arcsec^(-2), respectively, measured within the R band isophote of 24 mag arcsec^(-2) for the galaxy. The CCD data, together with matched data from a recent H alpha galaxy survey of UGC galaxies within 3000 km s^(-1), will be used for a comparative study of R band and H alpha surface photometry between cluster and field spirals.

  17. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Onodera, M.; Carollo, M. [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Renzini, A. [INAF-Osservatorio Astronomico di Padova Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Arimoto, N., E-mail: francesco.valentino@cea.fr [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  18. The growth of the central region by acquisition of counter-rotating gas in star-forming galaxies

    CERN Document Server

    Chen, Yan-Mei; Tremonti, Christy A; Bershady, Matt; Merrifield, Michael; Emsellem, Eric; Jin, Yi-Fei; Huang, Song; Fu, Hai; Wake, David A; Bundy, Kevin; Stark, David; Lin, Lihwai; Argudo-Fernandez, Maria; Bergmann, Thaisa Storchi; Bizyaev, Dmitry; Brownstein, Joel; Bureau, Martin; Chisholm, John; Drory, Niv; Guo, Qi; Hao, Lei; Hu, Jian; Li, Cheng; Li, Ran; Lopes, Alexandre Roman; Pan, Kai-Ke; Riffel, Rogemar A; Thomas, Daniel; Wang, Lan; Westfall, Kyle; Yan, Ren-Bin

    2016-01-01

    Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Based on new measurements with integral field spectroscopy of a large representative galaxy sample, we find an appreciable fraction of counter-rotators among blue galaxies (9 out of 489 galaxies). The central regions of blue counter-rotators show younger stellar populations and more intense, ongoing star formation than their outer parts, indicating ongoing growth of the central regions. The result offers observational evidence that the acquisition of external gas in blue galaxies is possible; the interaction with pre-existing gas funnels the gas into nuclear regions (< 1 kpc) to form new stars.

  19. A weak lensing view of the downsizing of star-forming galaxies

    CERN Document Server

    Utsumi, Yousuke; Dell'Antonio, Ian P; Kamata, Yukiko; Kawanomoto, Satoshi; Koike, Michitaro; Komiyama, Yutaka; Koshida, Shintaro; Mineo, Sogo; Miyazaki, Satoshi; Sakurai, Jyunya; Tait, Philip J; Terai, Tsuyoshi; Tomono, Daigo; Usuda, Tomonori; Yamada, Yoshihiko; Zahid, Harus J

    2016-01-01

    We describe a weak lensing view of the downsizing of star forming galaxies based on cross correlating a weak lensing ($\\kappa$) map with a predicted map constructed from a redshift survey. Moderately deep and high resolution images with Subaru/Hyper Suprime-Cam covering the 4 deg^2 DLS F2 field provide a $\\kappa$ map with 1 arcmin resolution. A dense complete redshift survey of the F2 field including 12,705 galaxies with $R\\leq20.6$ is the basis for construction of the predicted map. The zero-lag cross-correlation between the \\kappa and predicted maps is significant at the $30\\sigma$ level. The width of the cross-correlation peak is comparable with the angular scale of rich cluster at $z\\sim0.3$, the median depth of the redshift survey. Slices of the predicted map in $\\delta{z} = 0.05$ redshift bins enable exploration of the impact of structure as a function of redshift. The zero-lag normalised cross-correlation has significant local maxima at redshifts coinciding with known massive X-ray clusters. Even in sl...

  20. The Spatial Distribution of the Young Stellar Clusters in the Star Forming Galaxy NGC 628

    CERN Document Server

    Grasha, K; Adamo, A; Kim, H; Elmegreen, B G; Gouliermis, D A; Aloisi, A; Bright, S N; Christian, C; Cignoni, M; Dale, D A; Dobbs, C; Elmegreen, D M; Fumagalli, M; Gallagher, J S; Grebel, E K; Johnson, K E; Lee, J C; Messa, M; Smith, L J; Ryon, J E; Thilker, D; Ubeda, L; Wofford, A

    2015-01-01

    We present a study of the spatial distribution of the stellar cluster populations in the star forming galaxy NGC 628. Using Hubble Space Telescope broad band WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (<100 Myr) stellar clusters within the galaxy, identified from a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent $\\alpha$. We recover a weighted mean index of $\\alpha$ ~ -0.8 for all spatial scales below the break at 3".3 (158 pc at a distance of 9.9 Mpc) and an index of $\\alpha$ ~ -0.18 above 158 pc for the accumulation of all cluster types. The stre...

  1. The history of star-forming galaxies in the Sloan Digital Sky Survey

    CERN Document Server

    Asari, N V; Stasinska, G; Torres-Papaqui, J P; Mateus, A; Sodré, L; Schoenell, W; Gomes, J M

    2007-01-01

    We study the evolution of 82302 star-forming (SF) galaxies from the SDSS. Our main goals are to explore new ways of handling star formation histories (SFH) obtained with our publicly available spectral synthesis code STARLIGHT, and apply them to investigate how SFHs vary as a function of nebular metallicity (Zneb). Our main results are: (1) A conventional correlation analysis shows how global properties such as luminosity, mass, dust content, mean stellar metallicity and mean stellar age relate to Zneb. (2) We present a simple formalism which compresses the results of the synthesis into time-dependent star formation rates (SFR) and mass assembly histories. (3) The current SFR derived from the population synthesis and that from H-alpha are shown to agree within a factor of two. Thus we now have a way to estimate SFR in AGN hosts, where the H-alpha method cannot be applied. (4) Fully time-dependent SFHs are derived for all galaxies and averaged over six Zneb bins spanning the entire SF wing in the [OIII]/H-beta...

  2. Ultraviolet ISM Diagnostics for Star-Forming Galaxies I. Tracers of Metallicity and Extinction

    CERN Document Server

    Zetterlund, Erika; Leitherer, Claus; Danforth, Charles W

    2015-01-01

    We have observed a sample of 14 nearby ($z \\sim 0.03$) star-forming blue compact galaxies in the rest-frame far-UV ($\\sim1150-2200 \\AA$) using the Cosmic Origins Spectrograph on the Hubble Space Telescope. We have also generated a grid of stellar population synthesis models using the Starburst99 evolutionary synthesis code, allowing us to compare observations and theoretical predictions for the SiIV_1400 and CIV_1550 UV indices; both are comprised of a blend of stellar wind and interstellar lines and have been proposed as metallicity diagnostics in the UV. Our models and observations both demonstrate that there is a positive linear correlation with metallicity for both indices, and we find generally good agreement between our observations and the predictions of the Starburst99 models. By combining the rest-frame UV observations with pre-existing rest-frame optical spectrophotometry of our blue compact galaxy sample, we also directly compare the predictions of metallicity and extinction diagnostics across both...

  3. Structures of Local Galaxies Compared to High Redshift Star-forming Galaxies

    CERN Document Server

    Petty, Sara M; Gallagher, John S; Gardner, Jonathan P; Lotz, Jennifer M; Mountain, C Matt; Smith, Linda J

    2009-01-01

    The rest-frame far-ultraviolet (FUV) morphologies of 8 nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, NGC 7673) are compared with 54 galaxies at z ~ 1.5 and 46 galaxies at z ~ 4 observed in the GOODS-ACS field. The nearby sample is artificially redshifted to z ~ 1.5 and 4. We compare the simulated galaxy morphologies to real z ~ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M_20), and the Sersic index (n). We explore the use of nonparametric methods with 2D profile fitting and find the combination of M_20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M_20, 20/30% of real/simulated galaxies at z ~ 1.5 and 37/12% at z ~ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Se...

  4. SUB-MILLIMETER TELESCOPE CO (2-1) OBSERVATIONS OF NEARBY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xue-Jian; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Zhong [Harvard-Smithsonian Center for Astrophysics, MS 66, 60 Garden Street, Cambridge, MA 02138 (United States); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhi-Yu, E-mail: xjjiang@nju.edu.cn [The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2015-01-20

    We present CO J = 2-1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M {sub *} galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV – r, and WISE color W3 – W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M {sub *} ≤10{sup 10} M {sub ☉}, the H I fraction (f {sub H} {sub I} ≡ M {sub H} {sub I}/M {sub *}) is significantly higher than that of more massive galaxies, while the H{sub 2} gas fraction (f{sub H{sub 2}} ≡ M{sub H{sub 2}}/M {sub *}) remains nearly unchanged. (2) Compared to f{sub H{sub 2}}, f {sub H} {sub I} correlates better with both M {sub *} and NUV – r. (3) A new parameter, WISE color W3 – W2 (12-4.6 μm), is introduced, which is similar to NUV – r in tracing star formation activity, and we find that W3 – W2 has a tighter anti-correlation with log f{sub H{sub 2}} than the anti-correlation of (NUV – r)-f {sub H} {sub I}, (NUV – r)-f{sub H{sub 2}}, and (W3 – W2)-f {sub H} {sub I}. This indicates that W3 – W2 can trace the H{sub 2} fraction in galaxies. For the gas ratio M{sub H{sub 2}}/M {sub H} {sub I} , only in the intermediate-M {sub *} galaxies it appears to depend on M {sub *} and NUV – r. We find a tight correlation between the molecular gas mass M{sub H{sub 2}} and 12 μm (W3) luminosities (L {sub 12} {sub μm}), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H{sub 2} mass for star-forming galaxies.

  5. What Turns Galaxies Off? the Different Morphologies of Star-Forming and Quiescent Galaxies Since z Approximates 2 from CANDELS

    Science.gov (United States)

    Bell, Eric F.; VanDerWel, Arjen; Papovich, Casey; Kocevski, Dale; Lotz, Jennifer; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Faber, S. M.; Ferguson, Harry; Koekemoer, Anton; Grogin, Norman; Wuyts, Stijn; Cheung, Edmong; Conselice, Christopher J.; Dunlop, James S.; Giavalisco, Mauro; Herrington, Jessica; Koo, David; McGrath, Elizabeth J.; DeMello, Duilia; Rix, Hans-Walter; Robaina, Aday R.; Williams, Christina C.

    2011-01-01

    We use HST/WFC3 imaging from the CANDELS multicyc1e treasury survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses > 3 x 10(exp 10) Solar Mass from Z= 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and the structural parameters of galaxies as determined from parametric fits to the surface brightness profiles of galaxies. We confirm the dramatic evolution from z= 2.2 to the present day in the number density of non-star-forming galaxies above 3 x 10(exp 10) Solar Mass reported by other authors. We find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, mass divided by radius (a proxy for velocity dispersion), and stellar surface density. Quiescence correlates poorly with stellar mass at all z galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and, perhaps by association, a supermassive black hole) is a necessary but not sufficient condition for quenching star formation on galactic scales over the last 10 Gyr; such a result is qualitatively consistent with the expectations of the AGN feedback paradigm.

  6. The UV-optical Color Gradients in Star-Forming Galaxies at 0.5Galaxy Assembly

    CERN Document Server

    Liu, F S; Guo, Yicheng; Koo, David C; Faber, S M; Zheng, Xianzhong; Yesuf, Hassen M; Barro, Guillermo; Li, Yao; Li, Dingpeng; Wang, Weichen; Mao, Shude; Fang, Jerome J

    2016-01-01

    Rest-frame UV-optical (i.e., NUV-B) color index is sensitive to the low-level recent star formation and dust extinction, but is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV-B color gradients in ~1400 large ($\\rm r_e>0.18^{\\prime\\prime}$), nearly face-on (b/a>0.5) main-sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV-optical color gradients in the SFGs at z~1 and discuss their link with the buildup of stellar mass. We find that more massive, centrally compact and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than less massive, centrally diffuse and less dusty SFGs. After correcting for dust reddening based on optical-SED fitting, the color gradients in the low-mass ($M_{\\ast} 10^{10.5}M_{\\odot}$) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal c...

  7. Star-forming galaxies at z ~ 2: a major science case for the EMIR/GOYA survey on GTC

    CERN Document Server

    Contini, T; Pellò, R; Le Borgne, J F; Kneib, J P

    2004-01-01

    We present the first results of a project aiming to derive the physical properties of high-redshift lensed galaxies, intrinsically fainter than the Lyman break galaxies currently observed in the field. From FORS and ISAAC spectroscopy on the VLT, we use the full rest-frame UV-to-optical range to derive the physical properties (SFR, extinction, chemical abundances, dynamics, mass, etc) of low-luminosity z ~ 2 star-forming galaxies. Although the sample is still too small for statistical studies, these results give an insight into the nature and evolutionary status of distant star-forming objects and their link with present-day galaxies. Such a project will serve as a basis for the scientific analysis of the EMIR/GOYA survey on the GTC.

  8. Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-forming Galaxies

    NARCIS (Netherlands)

    Usero, Antonio; Leroy, Adam K.; Walter, Fabian; Schruba, Andreas; García-Burillo, Santiago; Sandstrom, Karin; Bigiel, Frank; Brinks, Elias; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl-Friedrich; de Blok, W. J. G.

    2015-01-01

    We present a new survey of HCN(1-0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in star formation, finding systematic variations in both the a

  9. C+/H2 gas in star-forming clouds and galaxies

    Science.gov (United States)

    Nordon, Raanan; Sternberg, Amiel

    2016-11-01

    We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.

  10. Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies

    Science.gov (United States)

    Arribas, S.; Colina, L.; Bellocchi, E.; Maiolino, R.; Villar-Martín, M.

    2014-08-01

    We study the kinematic properties of the ionised gas outflows and ambient interstellar medium (ISM) in a large and representative sample of local luminous and ultra-luminous infrared galaxies (U/LIRGs) (58 systems, 75 galaxies) at galactic and sub-galactic (i.e., star-forming clumps) scales, thanks to integral field spectroscopy (IFS)-based high signal-to-noise integrated spectra. The velocity dispersion of the ionized ISM in U/LIRGs (⟨ σ ⟩ ~ 70 km s-1) is larger than in lower luminosity local star-forming galaxies (⟨ σ ⟩ ~ 25 km s-1). While for isolated disc LIRGs star formation appears to sustain turbulence, gravitational energy release associated with interactions and mergers plays an important role in driving σ in the U/LIRG range. We find that σ has a dependency on the star formation rate density (ΣSFR), which is weaker than expected if it were driven by the energy released by the starburst. The relatively small role of star formation (SF) driving the σ in U/LIRGs is reinforced by the lack of an increase in σ associated with high luminosity SF clumps. We also find that the impact of an active galactic nucleus (AGN) in ULIRGs is strong, increasing on average σ by a factor 1.5. Low-z U/LIRGs cover a range of velocity dispersion (σ ~ 30 to 100 km s-1) and star formation rate density (ΣSFR ~ 0.1 to 20 M⊙ yr-1 kpc-2) similar to those of high-z SFGs. Moreover, the observed weak dependency of σ on ΣSFR for local U/LIRGs (σ ∝ ΣSFR+0.06) is in very good agreement with that measured in some high-z samples. The presence of ionized gas outflows in U/LIRGs seems universal based on the detection of a broad, usually blueshifted, Hα line. The observed dependency of the maximum velocity of the outflow (Vmax) on the star formation rate (SFR) is of the type Vmax(non - AGN) ∝ SFR(LIR)+ 0.24. We find that AGNs in U/LIRGs are able to generate faster (~×2) and more massive (~× 1.4) ionized gas outflows than pure starbursts. The derived ionized mass

  11. Untangling the nature of spatial variations of cold dust properties in star forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Kennicutt, Robert [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Galametz, Maud [European Southern Observatory, Karl-Schwarzchild-Str. 2, D-85748 Garching-bei-München (Germany); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Groves, Brent; Tabatabaei, Fatemeh [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Hunt, Leslie [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Dale, Daniel [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hinz, Joannah, E-mail: kirkpatr@astro.umass.edu [MMT Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States)

    2014-07-10

    We investigate the far-infrared (IR) dust emission for 20 local star forming galaxies from the Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH) sample. We model the far-IR/submillimeter spectral energy distribution (SED) using images from Spitzer Space Telescope and Herschel Space Observatory. We calculate the cold dust temperature (T{sub c} ) and emissivity (β) on a pixel by pixel basis (where each pixel ranges from 0.1 to 3 kpc{sup 2}) using a two-temperature modified blackbody fitting routine. Our fitting method allows us to investigate the resolved nature of temperature and emissivity variations by modeling from the galaxy centers to the outskirts (physical scales of ∼15-50 kpc, depending on the size of the galaxy). We fit each SED in two ways: (1) fit T{sub c} and β simultaneously, (2) hold β constant and fit T{sub c} . We compare T{sub c} and β with star formation rates (calculated from L{sub Hα} and L{sub 24μm}), the luminosity of the old stellar population (traced through L{sub 3.6μm}), and the dust mass surface density (traced by 500 μm luminosity, L{sub 500}). We find a significant trend between SFR/L{sub 500} and T{sub c} , implying that the flux of hard UV photons relative to the amount of dust is significantly contributing to the heating of the cold, or diffuse, dust component. We also see a trend between L{sub 3.6}/L{sub 500} and β, indicating that the old stellar population contributes to the heating at far-IR/submillimeter wavelengths. Finally, we find that when β is held constant, T{sub c} exhibits a strongly decreasing radial trend, illustrating that the shape of the far-IR SED is changing radially through a galaxy, thus confirming on a sample almost double in size the trends observed in Galametz et al.

  12. The SAMI Galaxy Survey: Shocks and Outflows in a normal star-forming galaxy

    CERN Document Server

    Ho, I-Ting; Dopita, Michael A; Medling, Anne M; Allen, J T; Bland-Hawthorn, Joss; Bloom, Jessica V; Bryant, Julia J; Croom, Scott M; Fogarty, L M R; Goodwin, Michael; Green, Andy W; Konstantopoulos, Iraklis S; Lawrence, Jon S; Owers, Matt S; Richards, Samuel; Sharp, Rob

    2014-01-01

    We demonstrate the feasibility and potential of using large integral field spectroscopic surveys to investigate the prevalence of galactic-scale outflows in the local Universe. Using integral field data from SAMI and the Wide Field Spectrograph, we study the nature of an isolated disk galaxy, SDSS J090005.05+000446.7 (z = 0.05386). In the integral field datasets, the galaxy presents skewed line profiles changing with position in the galaxy. The skewed line profiles are caused by different kinematic components overlapping in the line-of-sight direction. We perform spectral decomposition to separate the line profiles in each spatial pixel as combinations of (1) a narrow kinematic component consistent with HII regions, (2) a broad kinematic component consistent with shock excitation, and (3) an intermediate component consistent with shock excitation and photoionisation mixing. The three kinematic components have distinctly different velocity fields, velocity dispersions, line ratios, and electron densities. We m...

  13. The Kinematics of CIV in Star-Forming Galaxies at z~1.2

    CERN Document Server

    Du, Xinnan; Martin, Crystal L; Coil, Alison L

    2016-01-01

    We present the first statistical sample of rest-frame far-UV spectra of star-forming galaxies at z~1. These spectra are unique in that they cover the high-ionization CIV{\\lambda}{\\lambda}1548, 1550 doublet. We also detect low-ionization features such as SiII{\\lambda}1527, FeII{\\lambda}1608, AlII{\\lambda}1670, NiII{\\lambda}{\\lambda}1741, 1751 and SiII{\\lambda}1808, and intermediate-ionization features from AlIII{\\lambda}{\\lambda}1854, 1862. Comparing the properties of absorption lines of lower- and higher- ionization states provides a window into the multi-phase nature of circumgalactic gas. Our sample is drawn from the DEEP2 survey and spans the redshift range 1.01 = 1.25). By isolating the interstellar CIV absorption from the stellar P-Cygni wind profile we find that 69% of the CIV profiles are blueshifted with respect to the systemic velocity. Furthermore, CIV shows a small but significant blueshift relative to FeII (offset of the best-fit linear regression -76 $\\pm$ 26 km/s). At the same time, the CIV blu...

  14. Statistical Properties of Diffuse Lyman-alpha Halos around Star-forming Galaxies at z~2

    CERN Document Server

    Momose, Rieko; Nakajima, Kimihiko; Ono, Yoshiaki; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Yuma, Suraphong; Mori, Masao; Umemura, Masayuki

    2015-01-01

    We present statistical properties of diffuse Lyman-alpha halos (LAHs) around high-$z$ star-forming galaxies with large Subaru samples of Lyman-alpha emitters (LAEs) at $z=2.2$. We make subsamples defined by the physical quantities of LAEs' central Lyman-alpha luminosities, UV magnitudes, Lyman-alpha equivalent widths, and UV slopes, and investigate LAHs' radial surface brightness (SB) profiles and scale lengths $r_n$ as a function of these physical quantities. We find that there exist prominent LAHs around LAEs with faint Lyman-alpha luminosities, bright UV luminosities, and small Lyman-alpha equivalent widths in cumulative radial Lyman-alpha SB profiles. We confirm this trend with the anti-correlation between $r_n$ and Lyman-alpha luminosities (equivalent widths) based on the Spearman's rank correlation coefficient that is $\\rho=-0.9$ ($-0.7$) corresponding to the $96\\%$ ($93\\%$) confidence level, although the correlation between $r_n$ and UV magnitudes is not clearly found in the rank correlation coefficien...

  15. Extremely-bright submillimeter galaxies beyond the Lupus-I star-forming region

    CERN Document Server

    Tamura, Y; Shimajiri, Y; Tsukagoshi, T; Nakajima, Y; Oasa, Y; Wilner, D J; Chandler, C J; Saigo, K; Tomida, K; Yun, M S; Taniguchi, A; Kohno, K; Hatsukade, B; Aretxaga, I; Austermann, J E; Dickman, R; Ezawa, H; Goss, W M; Hayashi, M; Hughes, D H; Hiramatsu, M; Inutsuka, S; Ogasawara, R; Ohashi, N; Oshima, T; Scott, K S; Wilson, G W

    2015-01-01

    We report detections of two candidate distant submillimeter galaxies (SMGs), MM J154506.4$-$344318 and MM J154132.7$-$350320, which are discovered in the AzTEC/ASTE 1.1 mm survey toward the Lupus-I star-forming region. The two objects have 1.1 mm flux densities of 43.9 and 27.1 mJy, and have Herschel/SPIRE counterparts as well. The Submillimeter Array counterpart to the former SMG is identified at 890 $\\mu$m and 1.3 mm. Photometric redshift estimates using all available data from the mid-infrared to the radio suggest that the redshifts of the two SMGs are $z_{\\rm photo} \\simeq$ 4-5 and 3, respectively. Near-infrared objects are found very close to the SMGs and they are consistent with low-$z$ ellipticals, suggesting that the high apparent luminosities can be attributed to gravitational magnification. The cumulative number counts at $S_{\\rm 1.1mm} \\ge 25$ mJy, combined with other two 1.1-mm brightest sources, are $0.70 ^{+0.56}_{-0.34}$ deg$^{-2}$, which is consistent with a model prediction that accounts for ...

  16. New Star Forming Galaxies at $z\\approx 7$ from WFC3 Imaging

    CERN Document Server

    Wilkins, Stephen M; Lorenzoni, Silvio; Caruana, Joseph; Astrophysics, - Oxford

    2010-01-01

    The addition of Wide Field Camera 3 (WFC3) on the {\\em Hubble Space Telescope} ({\\em HST}) has led to a dramatic increase in our ability to study the $z>6$ Universe. The increase in the near-infrared (NIR) sensitivity of WFC3 over previous instruments has enabled us to reach apparent magnitudes approaching 29 (AB). This allows us to probe the rest-frame ultraviolet (UV) continuum, redshifted into the NIR at $z>6$. Taking advantage of the large optical depths at this redshift, resulting in the Lyman-$\\alpha$ break, we use a combination of WFC3 imaging and pre-existing Advanced Camera for Surveys (ACS) imaging to search for $z\\approx 7$ over 4 fields. Our analysis reveals 29 new $z\\approx 7$ star forming galaxy candidates in addition to 16 pre-existing candidates already discovered in these fields. The improved statistics from our doubling of the robust sample of $z$-drop candidates confirms the previously observed evolution of the bright end of the luminosity function.

  17. Spiral-like star-forming patterns in CALIFA early-type galaxies

    CERN Document Server

    Gomes, J M; Vílchez, J M; Kehrig, C; Iglesias-Páramo, J; Breda, I; Lehnert, M D; Sánchez, S F; Ziegler, B; Reis, S N dos; Bland-Hawthorn, J; Galbany, L; Bomans, D J; Rosales-Ortega, F F; Walcher, C J; García-Benito, R; Márquez, I; del Olmo, A; Mollá, M; Marino, R A; Catalán-Torrecilla, C; Delgado, R M González; López-Sánchez, Á R

    2015-01-01

    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 < {\\mu}$_r$ mag/arcsec$^2$ < 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified i+, is a two-radial-zone structure, with the inner zone that displays faint (EW(H\\alpha)$\\simeq$1{\\AA}) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3{\\AA}

  18. Magnetic fields in star-forming galaxies at high and low redshift

    CERN Document Server

    Garn, T; Alexander, P; Green, D A; Riley, J M

    2007-01-01

    As part of an ongoing series of deep GMRT surveys, we have observed the Spitzer extragalactic First Look Survey field at 610 MHz, producing the deepest wide-field 610 MHz survey published to date. We reach an rms noise of 30 microJy before primary beam correction, with a resolution of ~6 arcsec over an area of ~4 square degrees. By combining these observations with the existing 1.4 GHz VLA survey produced by Condon et al. (2003), along with infrared data in up to seven wavebands from the Spitzer Space Telescope, optical photometry from SDSS and a range of spectroscopic redshift surveys, we are able to study the relationship between radio luminosity and star formation rate in star-forming galaxies up to z ~ 1. The large amount of multi-wavelength data available allows accurate k-corrections to be performed in the radio, and in the infrared through the use of a semi-empirical radiative transfer model. We find a tight correlation between infrared-derived star formation rates and radio luminosities, but contrary ...

  19. Searching for star-forming dwarf galaxies in the Antlia cluster

    CERN Document Server

    Vaduvescu, O; Bassino, L P; Castelli, A V Smith; Calderon, J P

    2014-01-01

    The formation and evolution of dwarf galaxies in clusters need to be understood, and this requires large aperture telescopes. In this sense, we selected the Antlia cluster to continue our previous work in the Virgo, Fornax, and Hydra clusters and in the Local Volume (LV). Because of the scarce available literature data, we selected a small sample of five blue compact dwarf (BCD) candidates in Antlia for observation. Using the Gemini South and GMOS camera, we acquired the Halpha imaging needed to detect star-forming regions in this sample. With the long-slit spectroscopic data of the brightest seven knots detected in three BCD candidates, we derived their basic chemical properties. Using archival VISTA VHS survey images, we derived K_S magnitudes and surface brightness profile fits for the whole sample to assess basic physical properties. FS90-98, FS90-106, and FS90-147 are confirmed as BCDs and cluster members, based on their morphology, K_S surface photometry, oxygen abundance, and velocity redshift. FS90-15...

  20. Deep multiband surface photometry on star forming galaxies: I. A sample of 24 blue compact galaxies

    CERN Document Server

    Micheva, Genoveva; Bergvall, Nils; Zackrisson, Erik; Masegosa, Josefa; Marquez, Isabel; Marquart, Thomas; Durret, Florence

    2012-01-01

    [Abridged] We present deep optical and near-infrared UBVRIHKs imaging data for 24 blue compact galaxies (BCGs). The sample contains luminous dwarf and intermediate-mass BCGs which are predominantly metal-poor, although a few have near-solar metallicities. We have analyzed isophotal and elliptical integration surface brightness and color profiles, extremely deep (mu_B<29 mag arcsec^{-2}) contour maps and RGB images for each galaxy in the sample. The colors are compared to different spectral evolutionary models. We detect extremely extended low surface brightness (LSB) components dominant beyond the Holmberg radius as well as optical bridges between companion galaxies at the mu_V~28th mag arcsec^{-2} isophotal level. The central surface brightness mu_0 and scale length h_r are derived from two radial ranges typically assumed to be dominated by the underlying host galaxy. We find that mu_0 and h_r of the BCGs host deviate from those of dwarf ellipticals (dE) and dwarf irregulars (dI) solely due to a strong bu...

  1. The Kinematics of C iv in Star-forming Galaxies at z ≈ 1.2

    Science.gov (United States)

    Du, Xinnan; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.

    2016-10-01

    We present the first statistical sample of rest-frame far-UV spectra of star-forming galaxies at z ˜ 1. These spectra are unique in that they cover the high-ionization C iv λλ1548, 1550 doublet. We also detect low-ionization features such as Si ii λ1526, Fe ii λ1608, Al ii λ1670, Ni ii λλ1741, 1751, and Si ii λ1808, and intermediate-ionization features from Al iii λλ1854, 1862. Comparing the properties of absorption lines of lower- and higher-ionization states provides a window into the multiphase nature of circumgalactic gas. Our sample is drawn from the DEEP2 survey and spans the redshift range 1.01 ≤ z ≤ 1.35 ( =1.25). By isolating the interstellar C iv absorption from the stellar P Cygni wind profile, we find that 69% of the C iv profiles are blueshifted with respect to the systemic velocity. Furthermore, C iv shows a small but significant blueshift relative to Fe ii (offset of the best-fit linear regression -76 ± 26 km s-1). At the same time, the C iv blueshift is on average comparable to that of Mg ii λλ2796, 2803. At this point, in explaining the larger blueshift of C iv absorption at the ˜3σ level, we cannot distinguish between the faster motion of highly ionized gas relative to gas traced by Fe ii and filling in on the red side from resonant C iv emission. We investigate how far-UV interstellar absorption kinematics correlate with other galaxy properties using stacked spectra. These stacking results show a direct link between C iv absorption and the current star formation rate, though we only observe small velocity differences among different ionization states tracing the outflowing interstellar medium.

  2. Star-forming galaxies as the origin of IceCube neutrinos: Reconciliation with Fermi-LAT gamma rays

    CERN Document Server

    Chakraborty, Sovan

    2016-01-01

    Cosmic ray accelerators like supernova and hypernova remnants in star forming galaxies are one of the most plausible sources of the IceCube observed diffuse astrophysical neutrinos. The neutrino producing hadronic processes will also produce a diffuse gamma ray flux, constrained by the Fermi-LAT bounds. The fact that point sources like blazars also contribute to the diffuse gamma ray flux implies large gamma opacity of the neutrino sources. Indeed, for these high redshift star forming galaxies the gamma absorption during the intergalactic propagation can be significant. In addition, large gamma attenuation inside these extreme source galaxies can reduce the cascade component of the diffuse flux. Under the current astrophysical uncertainties affecting these absorptions processes, we find the associated diffuse gamma ray flux can remain compatible with the current Fermi-LAT bounds.

  3. Escape of about five per cent of Lyman-alpha photons from high-redshift star-forming galaxies.

    Science.gov (United States)

    Hayes, Matthew; Ostlin, Göran; Schaerer, Daniel; Mas-Hesse, J Miguel; Leitherer, Claus; Atek, Hakim; Kunth, Daniel; Verhamme, Anne; de Barros, Stéphane; Melinder, Jens

    2010-03-25

    The Lyman-alpha (Lyalpha) emission line is the primary observational signature of star-forming galaxies at the highest redshifts, and has enabled the compilation of large samples of galaxies with which to study cosmic evolution. The resonant nature of the line, however, means that Lyalpha photons scatter in the neutral interstellar medium of their host galaxies, and their sensitivity to absorption by interstellar dust may therefore be greatly enhanced. This implies that the Lyalpha luminosity may be significantly reduced, or even completely suppressed. Hitherto, no unbiased empirical test of the escaping fraction (f(esc)) of Lyalpha photons has been performed at high redshifts. Here we report that the average f(esc) from star-forming galaxies at redshift z = 2.2 is just 5 per cent by performing a blind narrowband survey in Lyalpha and Halpha. This implies that numerous conclusions based on Lyalpha-selected samples will require upwards revision by an order of magnitude and we provide a benchmark for this revision. We demonstrate that almost 90 per cent of star-forming galaxies emit insufficient Lyalpha to be detected by standard selection criteria. Both samples show an anti-correlation of f(esc) with dust content, and we show that Lyalpha- and Halpha-selection recovers populations that differ substantially in dust content and f(esc).

  4. Escape of ionizing radiation from star-forming regions in Young galaxies

    DEFF Research Database (Denmark)

    Razoumov, A; Sommer-Larsen, Jesper

    2006-01-01

    Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10......Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10...

  5. The local luminosity function of star-forming galaxies derived from the Planck Early Release Compact Source Catalogue

    CERN Document Server

    Negrello, Mattia; Gonzalez-Nuevo, Joaquin; De Zotti, Gianfranco; Bonavera, Laura; Cosco, Giorgio; Guarese, Gianpaolo; Boaretto, Luca; Serjeant, Stephen; Toffolatti, Luigi; Lapi, Andrea; Bethermin, Matthieu; Castex, Guillaume; Clements, Dave L; Delabrouille, Jacques; Dole, Herve'; Franceschini, Alberto; Mandolesi, Reno; Marchetti, Lucia; Partridge, Bruce; Sajina, Anna

    2012-01-01

    The Planck Early Release Compact Source Catalog (ERCSC) has offered the first opportunity to accurately determine the luminosity function of dusty galaxies in the very local Universe (i.e. distances ~ L_star our results agree with previous estimates, derived from the SCUBA Local Universe Galaxy Survey (SLUGS), but are higher than the latter at L <~ L_star. We also find good agreement with estimates at 350 and 500 microns based on preliminary Herschel survey data.

  6. Size evolution of star-forming galaxies with 2

    Science.gov (United States)

    Ribeiro, B.; Le Fèvre, O.; Tasca, L. A. M.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Maccagni, D.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Fontana, A.; Giavalisco, M.; Hathi, N. P.; Koekemoer, A.; Pforr, J.; Tresse, L.; Dunlop, J.

    2016-08-01

    Context. The size of a galaxy encapsulates the signature of the different physical processes driving its evolution. The distribution of galaxy sizes in the Universe as a function of cosmic time is therefore a key to understand galaxy evolution. Aims: We aim to measure the average sizes and size distributions of galaxies as they are assembling before the peak in the comoving star formation rate density of the Universe to better understand the evolution of galaxies across cosmic time. Methods: We used a sample of ~1200 galaxies in the COSMOS and ECDFS fields with confirmed spectroscopic redshifts 2 ≤ zspec ≤ 4.5 in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with iAB ≤ 25. We first derived galaxy sizes by applying a classical parametric profile-fitting method using GALFIT. We then measured the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compared the results obtained for the equivalent circularized radius enclosing 100% of the measured galaxy light r100T ~2.2 to those obtained with the effective radius re,circ measured with GALFIT. Results: We find that the sizes of galaxies computed with our non-parametric approach span a wide range but remain roughly constant on average with a median value r100T ~2.2 kpc for galaxies with 2 Program 185.A-0791.

  7. The anatomy of a star-forming galaxy: pressure-driven regulation of star formation in simulated galaxies

    Science.gov (United States)

    Benincasa, S. M.; Wadsley, J.; Couchman, H. M. P.; Keller, B. W.

    2016-11-01

    We explore the regulation of star formation in star-forming galaxies through a suite of high-resolution isolated galaxy simulations. We use the smoothed particle hydrodynamics code GASOLINE, including photoelectric heating and metal cooling, which produces a multi-phase interstellar medium (ISM). We show that representative star formation and feedback sub-grid models naturally lead to a weak, sub-linear dependence between the amount of star formation and changes to star formation parameters. We incorporate these sub-grid models into an equilibrium pressure-driven regulation framework. We show that the sub-linear scaling arises as a consequence of the non-linear relationship between scaleheight and the effective pressure generated by stellar feedback. Thus, simulated star formation regulation is sensitive to how well vertical structure in the ISM is resolved. Full galaxy discs experience density waves which drive locally time-dependent star formation. We develop a simple time-dependent, pressure-driven model that reproduces the response extremely well.

  8. The anatomy of a star-forming galaxy: Pressure-driven regulation of star formation in simulated galaxies

    CERN Document Server

    Benincasa, S M; Couchman, H M P; Keller, B W

    2016-01-01

    We explore the regulation of star formation in star-forming galaxies through a suite of high-resolution isolated galaxy simulations. We use the SPH code GASOLINE, including photoelectric heating and metal cooling, which produces a multi-phase interstellar medium. We show that representative star formation and feedback sub-grid models naturally lead to a weak, sub-linear dependence between the amount of star formation and changes to star formation parameters. We incorporate these sub-grid models into an equilibrium pressure-driven regulation framework. We show that the sub-linear scaling arises as a consequence of the non-linear relationship between scale height and the effective pressure generated by stellar feedback. Thus, simulated star-formation regulation is sensitive to how well vertical structure in the ISM is resolved. Full galaxy disks experience density waves which drive locally time-dependent star formation. We develop a simple time-dependent, pressure-driven model that reproduces the response extre...

  9. Metal Abundances of KISS Galaxies. V. Nebular Abundances of Fifteen Intermediate Luminosity Star-Forming Galaxies

    CERN Document Server

    Hirschauer, Alec S; Bresolin, Fabio; Saviane, Ivo; Yegorova, Irina

    2015-01-01

    We present high S/N spectroscopy of 15 emission-line galaxies (ELGs) cataloged in the KPNO International Spectroscopic Survey (KISS), selected for their possession of high equivalent width [O III] lines. The primary goal of this study was to attempt to derive direct-method ($T_e$) abundances for use in constraining the upper-metallicity branch of the $R_{23}$ relation. The spectra cover the full optical region from [O II]{\\lambda}{\\lambda}3726,3729 to [S III]{\\lambda}{\\lambda}9069,9531 and include the measurement of [O III]{\\lambda}4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0 $\\lesssim$ 12+log(O/H) $\\lesssim$ 8.3. We present a comparison of direct-method abundances with empirical SEL techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from e...

  10. Properties of the Interstellar Medium in Star-Forming Galaxies at z ~ 1.4 Revealed with ALMA

    Science.gov (United States)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Akiyama, Masayuki; Iwamuro, Fumihide; Tamura, Naoyuki; Dalton, Gavin

    2016-03-01

    We conducted observations of 12CO(J = 5-4) and dust thermal continuum emission toward 20 star-forming galaxies on the main sequence at z ˜ 1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trace the distributions of star-forming galaxies in diagrams of stellar mass versus star formation rate and stellar mass versus metallicity. We detected CO emission lines from 11 galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Masses of molecular gas and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) × 1010 M⊙ and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. Dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9-38) × 107 M⊙. We derived gas-to-dust ratios and found they are 3-4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4-36) × 108 yr while the results of the stacking analysis show ˜3 × 108 yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.

  11. The IRX-beta relation on sub-galactic scales in star-forming galaxies of the Herschel Reference Survey

    CERN Document Server

    Boquien, M; Boselli, A; Baes, M; Bendo, G J; Ciesla, L; Cooray, A; Cortese, L; Eales, S; Gavazzi, G; Gomez, H L; Lebouteiller, V; Pappalardo, C; Pohlen, M; Smith, M W L; Spinoglio, L

    2012-01-01

    UV and optical surveys are essential to gain insight into the processes driving galaxy formation and evolution. The rest-frame UV emission is key to measure the cosmic SFR. However, UV light is strongly reddened by dust. In starburst galaxies, the UV colour and the attenuation are linked, allowing to correct for dust extinction. Unfortunately, evidence has been accumulating that the relation between UV colour and attenuation is different for normal star-forming galaxies when compared to starburst galaxies. It is still not understood why star-forming galaxies deviate from the UV colour-attenuation relation of starburst galaxies. Previous work and models hint that the role of the shape of the attenuation curve and the age of stellar populations have an important role. In this paper we aim at understanding the fundamental reasons to explain this deviation. We have used the CIGALE SED fitting code to model the far UV to the far IR emission of a set of 7 reasonably face-on spiral galaxies from the HRS. We have exp...

  12. The growth of typical star-forming galaxies and their supermassive black holes across cosmic time since z ˜ 2

    Science.gov (United States)

    Calhau, João; Sobral, David; Stroe, Andra; Best, Philip; Smail, Ian; Lehmer, Bret; Harrison, Chris; Thomson, Alasdair

    2017-01-01

    Understanding galaxy formation and evolution requires studying the interplay between the growth of galaxies and the growth of their black holes across cosmic time. Here, we explore a sample of Hα-selected star-forming galaxies from the High Redshift Emission Line Survey and use the wealth of multiwavelength data in the Cosmic Evolution Survey field (X-rays, far-infrared and radio) to study the relative growth rates between typical galaxies and their central supermassive black holes, from z = 2.23 to z = 0. Typical star-forming galaxies at z ˜ 1-2 have black hole accretion rates (dot{M}_BH) of 0.001-0.01 M⊙ yr-1 and star formation rates (SFRs) of ˜10-40 M⊙ yr-1, and thus grow their stellar mass much quicker than their black hole mass (3.3±0.2 orders of magnitude faster). However, ˜3 per cent of the sample (the sources detected directly in the X-rays) show a significantly quicker growth of the black hole mass (up to 1.5 orders of magnitude quicker growth than the typical sources). dot{M}_BH falls from z = 2.23 to z = 0, with the decline resembling that of SFR density or the typical SFR (SFR*). We find that the average black hole to galaxy growth (dot{M}_BH/SFR) is approximately constant for star-forming galaxies in the last 11 Gyr. The relatively constant dot{M}_BH/SFR suggests that these two quantities evolve equivalently through cosmic time and with practically no delay between the two.

  13. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    Science.gov (United States)

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  14. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies

    Science.gov (United States)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.

    2017-09-01

    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}∼ 40{--}70 K), dense (n({{H}})∼ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}∼ 20{--}30 K), dense (n({{H}})∼ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  15. Properties of Interstellar Medium in Star-Forming Galaxies at z~1.4 revealed with ALMA

    CERN Document Server

    Seko, Akifumi; Yabe, Kiyoto; Hatsukade, Bunyo; Akiyama, Masayuki; Iwamuro, Fumihide; Tamura, Naoyuki; Dalton, Gavin

    2016-01-01

    We conducted observations of 12CO(J=5-4) and dust thermal continuum emission toward twenty star-forming galaxies on the main sequence at z~1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trace the distributions of star-forming galaxies in diagrams of stellar mass-star formation rate and stellar mass-metallicity. We detected CO emission lines from eleven galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H2 conversion factor and assuming a CO(5-4)/CO(1-0) luminosity ratio of 0.23. Molecular gas masses and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9-12) x 10^{10} Msun and 0.25-0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and that t...

  16. The KMOS Deep Survey (KDS) - I. Dynamical measurements of typical star-forming galaxies at z ≃ 3.5

    Science.gov (United States)

    Turner, O. J.; Cirasuolo, M.; Harrison, C. M.; McLure, R. J.; Dunlop, J. S.; Swinbank, A. M.; Johnson, H. L.; Sobral, D.; Matthee, J.; Sharples, R. M.

    2017-10-01

    We present dynamical measurements from the KMOS (K-band multi-object spectrograph) Deep Survey (KDS), which comprises 77 typical star-forming galaxies at z ≃ 3.5 in the mass range 9.0 mean velocity dispersion of the galaxies in our sample is σ _int = 70.8^{+3.3}_{-3.1} km s^{-1}, revealing that the increasing average σint with increasing redshift, reported for z ≲ 2, continues out to z ≃ 3.5. Only 36 ± 8 per cent of our galaxies are rotation-dominated (VC/σint > 1), with the sample average VC/σint value much smaller than at lower redshift. After carefully selecting comparable star-forming samples at multiple epochs, we find that the rotation-dominated fraction evolves with redshift with a z-0.2 dependence. The rotation-dominated KDS galaxies show no clear offset from the local rotation velocity-stellar mass (i.e. VC-M⋆) relation, although a smaller fraction of the galaxies are on the relation due to the increase in the dispersion-dominated fraction. These observations are consistent with a simple equilibrium model picture, in which random motions are boosted in high-redshift galaxies by a combination of the increasing gas fractions, accretion efficiency, specific star formation rate and stellar feedback and which may provide significant pressure support against gravity on the galactic disc scale.

  17. The quenched mass portion of star-forming galaxies and the origin of the star formation sequence slope

    CERN Document Server

    Pan, Zhizheng; Kong, Xu

    2016-01-01

    Observationally, a massive disk galaxy can harbor a bulge component that is comparably inactive as a quiescent galaxy (QG). It has been speculated that the quenched component contained in star-forming galaxies (SFGs) is the reason why the star formation main sequence (MS) has a shallow slope at high masses. In this paper, we present a toy model to quantify the quenched mass portion of SFGs ($f_{\\rm Q}$) at fixed stellar mass ($M_{\\ast}$) and to reconcile the MS slopes both in the low and the high mass regimes. In this model, each SFG is composed by a star-forming plus a quenched component. The mass of the star-forming component ($M_{\\rm SF}$) correlates with the star formation rate (SFR) following a relation SFR $\\propto M_{\\rm SF}^{\\alpha_{\\rm SF}}$, where $\\alpha_{\\rm SF}\\sim 1.0$ . The quenched component contributes to the stellar mass but does not to the SFR. It is thus possible to quantify $f_{\\rm Q}$ based on the departure of the observed MS slope $\\alpha$ from $\\alpha_{\\rm SF}$. Adopting the redshift-d...

  18. The UV-Optical Color Gradients in Star-forming Galaxies at 0.5 < z < 1.5: Origins and Link to Galaxy Assembly

    Science.gov (United States)

    Liu, F. S.; Jiang, Dongfei; Guo, Yicheng; Koo, David C.; Faber, S. M.; Zheng, Xianzhong; Yesuf, Hassen M.; Barro, Guillermo; Li, Yao; Li, Dingpeng; Wang, Weichen; Mao, Shude; Fang, Jerome J.

    2016-05-01

    The rest-frame UV-optical (i.e., NUV - B) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV - B color gradients in ˜1400 large (r e > 0.″18), nearly face-on (b/a > 0.5) main sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV-optical color gradients in the SFGs at z ˜ 1 and discuss their link with the buildup of stellar mass. We find that the more massive, centrally compact, and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than the less massive, centrally diffuse, and less dusty SFGs. After correcting for dust reddening based on optical-spectral energy distribution fitting, the color gradients in the low-mass (M * 1010.5 M ⊙) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal cause of negative color gradients in the low-mass SFGs, while both increased central dust reddening and buildup of compact old bulges are likely the origins of negative color gradients in the high-mass SFGs. These findings also imply that at these redshifts the low-mass SFGs buildup their stellar masses in a self-similar way, while the high-mass SFGs grow inside out.

  19. X-ray properties of radio-selected star forming galaxies in the Chandra-COSMOS survey

    OpenAIRE

    Ranalli, P.; Comastri, A.; Zamorani, G.; Cappelluti, N.; Civano, F.; Georgantopoulos, I.; Gilli, R.; Schinnerer, E.; Smolcic, V.; Vignali, C.

    2012-01-01

    X-ray surveys contain sizable numbers of star forming galaxies, beyond the AGN which usually make the majority of detections. Many methods to separate the two populations are used in the literature, based on X-ray and multiwavelength properties. We aim at a detailed test of the classification schemes and to study the X-ray properties of the resulting samples. We build on a sample of galaxies selected at 1.4 GHz in the VLA-COSMOS survey, classified by Smolcic et al. (2008) according to their o...

  20. On the universality of luminosity-metallicity and mass-metallicity relations for compact star-forming galaxies at redshifts 0 < z < 3

    CERN Document Server

    Izotov, Y I; Fricke, K J; Henkel, C

    2015-01-01

    We study relations between global characteristics of low-redshift (0 1. These data were combined with the corresponding data for high-redshift (2 < z < 3) star-forming galaxies. We find that in all diagrams low-z and high-z star-forming galaxies are closely related indicating a very weak dependence of metallicity on stellar mass, redshift, and star-formation rate. This finding argues in favour of the universal character of the global relations for compact star-forming galaxies with high-excitation HII regions over redshifts 0 < z < 3.

  1. VALES: II. The physical conditions of interstellar gas in normal star-forming galaxies up to z=0.2 revealed by ALMA

    CERN Document Server

    Hughes, T M; Villanueva, V; Aravena, M; Baes, M; Bourne, N; Cooray, A; Dunne, L; Dye, S; Eales, S; Furlanetto, C; Herrera-Camus, R; Ivison, R J; van Kampen, E; Lara-López, M A; Maddox, S J; Michałowski, M J; Smith, M W L; Valiante, E; van der Werf, P; Xue, Y Q

    2016-01-01

    We use new Band-3 CO(1-0) observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the physical conditions in the interstellar gas of a sample of 27 dusty main-sequence star-forming galaxies at 0.035$\\sigma$ in 26 sources. We find an average [CII] to CO(1-0) luminosity ratio of 3500$\\pm$1200 for our sample that is consistent with previous studies. Using the [CII], CO and FIR measurements as diagnostics of the physical conditions of the interstellar medium, we compare these observations to the predictions of a photodissociation region (PDR) model to determine the gas density, surface temperature, pressure, and the strength of the incident far-ultraviolet (FUV) radiation field, $G_{0}$, normalised to the Habing Field. The majority of our sample exhibit hydrogen densities of 4 < $\\log n/\\mathrm{cm}^{3}$ < 5.5 and experience an incident FUV radiation field with strengths of 2 < $\\log G_0$ < 3 when adopting standard adjustments. A comparison to galaxy samples at differen...

  2. Color-magnitude Diagrams of the Star-forming Galaxies Ho IX, Cam B, NGC 2976, and UGC 1281

    Science.gov (United States)

    Georgiev, T. B.; Bomans, D. J.

    We report results on a study of nearby late type galaxies performed with the 2m RC telescope of the Rozhen NAO with with 1×1 K CCD camera. The scale and the frame size are 0.32''/pix and 5.4'×5.4', respectively. At typical seeing of 1'' the data reach routinely a limiting magnitude of ˜4 mag. With these parameters many nearby galaxies, including the members of the IC 342 and M81 groups can be resolved into star-like and diffuse objects. This allows the determination of several fundamental properties of the galaxies, based on surface photometry and study of the brightest resolved objects. The most crucial parameter is the distance to the galaxy. It can be estimated to a standard error of 20 % using the brightest red and blue stars. Selection of these stars is greatly improved by analysis of the image shapes, which allows to detect diffuse objects, like cluster candidates and background galaxies. Further improvement gives the analysis of color-magnitude (CMD) and color-color diagrams. The CMDs also allow to estimate the age of the most recent star formation event and may hint at the metallicity. The CMDs of the low surface brightness irregular galaxies Ho IX and Cam B are very similar. Especially Cam B seems to be an extreme case of a low-mass star-forming dwarf galaxy. The CMD of NGC 2976 is very similar to this of the star burst galaxy M82 (Georgiev T., 2000, Compt. Rend. Acad. Bulg. Sci. 53/2, 5-8). The edge-on galaxy UGC 1281 is of intermediate star-forming activity, but the CMD is quite sparse.

  3. The clustering properties of radio-selected AGN and star-forming galaxies up to redshifts z ˜ 3

    Science.gov (United States)

    Magliocchetti, M.; Popesso, P.; Brusa, M.; Salvato, M.; Laigle, C.; McCracken, H. J.; Ilbert, O.

    2017-01-01

    We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the Very Large Array (VLA)-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92 per cent have redshift determinations from the Laigle et al. catalogue. Based on their radio luminosity, these objects have been divided into 644 AGN and 247 star-forming galaxies. By fixing the slope of the autocorrelation function to γ = 2, we find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc for z ≤ 0.9) are, respectively, obtained for AGN and star-forming galaxies. These values correspond to minimum masses for dark matter haloes of M_min=10^{13.6^{+0.3}_{-0.6}} M⊙ for radio-selected AGN and M_min=10^{13.1^{+0.4}_{-1.6}} M⊙ for radio-emitting star-forming galaxies (M_min=10^{12.7^{+0.7}_{-2.2}} M⊙ for z ≤ 0.9). Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. We obtain /Mhalo ≲ 10- 2.7 for AGN, and /Mhalo ≲ 10- 2.4 in the case of star-forming galaxies. Furthermore, if we restrict to z ≲ 0.9 star-forming galaxies, we derive /Mhalo ≲ 10- 2.1, result that clearly shows the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes show that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.

  4. A constant characteristic mass for star forming galaxies since z~3 revealed by radio emission in the COSMOS field

    CERN Document Server

    Karim, Alexander; VLA-COSMOS, the

    2011-01-01

    We present results of our 1.4 GHz image stacking analysis of mass-selected galaxies in the COSMOS field. From the resulting median radio continuum flux density we have determined the evolution of the average star formation rate (SFR) of galaxies as a function of stellar mass, unbiased from effects of dust but also source confusion due to the 1.5" angular resolution achieved by the VLA. We find a power-law relation between specific SFR (SSFR) and stellar mass for star forming galaxies out to z=3. While higher mass systems exhibit lower SSFRs at any epoch, no differential, more rapid evolution of high mass galaxies is evident at least out to z~1.5 where our conclusions are most robust. Utilizing measured mass functions of star forming systems, the characteristic stellar mass for galaxies contributing most to the comoving SFR density appears not to evolve. These findings hence challenge 'downsizing' scenarios in which star formation has gradually shifted towards lower mass systems with cosmic time. Our analysis ...

  5. Evidence for Wide-Spread AGN Driven Outflows in the Most Massive z~1-2 Star Forming Galaxies

    CERN Document Server

    Genzel, R; Rosario, D; Lang, P; Lutz, D; Wisnioski, E; Wuyts, E; Wuyts, S; Bandara, K; Bender, R; Berta, S; Kurk, J; Mendel, T; Tacconi, L J; Wilman, D; Beifiori, A; Brammer, G; Burkert, A; Buschkamp, P; Chan, J; Carollo, C M; Davies, R; Eisenhauer, F; Fabricius, M; Fossati, M; Kriek, M; Kulkarni, S; Lilly, S J; Mancini, C; Momcheva, I; Naab, T; Nelson, E J; Renzini, A; Saglia, R; Sharples, R M; Sternberg, A; Tacchella, S; van Dokkum, P

    2014-01-01

    In this paper we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M*/Msun) >= 10.9) z~1-3 star-forming galaxies (Forster Schreiber et al.), by increasing the sample size by a factor of six (to 44 galaxies above log(M*/Msun) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Ha, [NII], and [SII] lines ~ 450-5300 km/s), with large [NII]/Ha ratios, above log(M*/Msun) ~ 10.9, with 66+/-15% of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z~1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGN), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as lar...

  6. The growth of typical star-forming galaxies and their super massive black holes across cosmic time since z~2

    CERN Document Server

    Calhau, João; Stroe, Andra; Best, Philip; Smail, Ian; Lehmer, Bret; Harrison, Chris; Thomson, Alasdair

    2016-01-01

    Understanding galaxy formation and evolution requires studying the interplay between the growth of galaxies and the growth of their black holes across cosmic time. Here we explore a sample of Ha-selected star-forming galaxies from the HiZELS survey and use the wealth of multi-wavelength data in the COSMOS field (X-rays, far-infrared and radio) to study the relative growth rates between typical galaxies and their central supermassive black holes, from z=2.23 to z=0. Typical star-forming galaxies at z~1-2 have black hole accretion rates (BHARs) of 0.001-0.01 Msun/yr and star formation rates (SFRs) of ~10-40 Msun/yr, and thus grow their stellar mass much quicker than their black hole mass (~3.3 orders of magnitude faster). However, ~3% of the sample (the sources detected directly in the X-rays) show a significantly quicker growth of the black hole mass (up to 1.5 orders of magnitude quicker growth than the typical sources). BHARs fall from z=2.23 to z=0, with the decline resembling that of star formation rate de...

  7. Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Stalder, B.; Bayliss, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.

    2016-02-01

    We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star formation rate (SFR) for the BCG in each cluster, based on the UV and IR continuum luminosity, as well as the [O II] emission line luminosity in cases where spectroscopy is available, finding 7 systems with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1-5% at z ~ 0 from the literature. At z > 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star formation rate in BCGs is declining more slowly with time than for field or cluster galaxies, most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z > 0.6, the correlation between cluster central entropy and BCG star formation - which is well established at z ~ 0 - is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs using data from the Hubble Space Telescope, finding complex, highly asymmetric UV morphologies on scales as large as ~50-60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy-galaxy interactions to ICM cooling.

  8. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing

    CERN Document Server

    Vieira, J D; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiss, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski1, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R; 10.1038/nature1200

    2013-01-01

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty, starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift 2 distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimeters, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetrewave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geome...

  9. Herschel-ATLAS: Properties of dusty massive galaxies at low and high redshifts

    CERN Document Server

    Rowlands, K; Dye, S; Aragón-Salamanca, A; Maddox, S; da Cunha, E; Smith, D J B; Bourne, N; Eales, S; Gomez, H L; Smail, I; Alpaslan, M; Clark, C J R; Driver, S; Ibar, E; Ivison, R J; Robotham, A; Smith, M W L; Valiante, E

    2014-01-01

    We present a comparison of the physical properties of a rest-frame $250\\mu$m selected sample of massive, dusty galaxies from $01$ SMGs have an average SFR of $390^{+80}_{-70}\\,$M$_\\odot$yr$^{-1}$ which is 120 times that of the low-redshift sample matched in stellar mass to the SMGs (SFR$=3.3\\pm{0.2}$ M$_\\odot$yr$^{-1}$). The SMGs harbour a substantial mass of dust ($1.2^{+0.3}_{-0.2}\\times{10}^9\\,$M$_\\odot$), compared to $(1.6\\pm0.1)\\times{10}^8\\,$M$_\\odot$ for low-redshift dusty galaxies. At low redshifts the dust luminosity is dominated by the diffuse ISM, whereas a large fraction of the dust luminosity in SMGs originates from star-forming regions. At the same dust mass SMGs are offset towards a higher SFR compared to the low-redshift H-ATLAS galaxies. This is not only due to the higher gas fraction in SMGs but also because they are undergoing a more efficient mode of star formation, which is consistent with their bursty star-formation histories. The offset in SFR between SMGs and low-redshift galaxies is s...

  10. Spatially-resolved NUV-r color of local star-forming galaxies and clues for quenching

    CERN Document Server

    Pan, Zhizheng; Lin, Weipeng; Li, Jinrong; Wang, Jing; Fan, Lulu; Kong, Xu

    2016-01-01

    Using a sample of ~6,000 local face-on star-forming galaxies (SFGs), we examine the correlations between the NUV-r colors both inside and outside the half-light radius, stellar mass M* and S\\'{e}rsic index n in order to understand how the quenching of star formation is linked to galaxy structure. For these less dust-attenuated galaxies, NUV-r is found to be linearly correlated with Dn4000, supporting that NUV-r is a good photometric indicator of stellar age (or specific star formation rate). We find that: (1) At M*10^{10.2}M_{\\sun}. (2) The central NUV-r shows no dependence on S\\'{e}rsic index n at M*R_{50} region. In contrast, a considerable fraction of the M*>10^{10.2}M_{\\sun} galaxies, especially those with a high n, have harbored a relatively inactive bulge component.

  11. Molecular and atomic line surveys of galaxies I: the dense, star-forming phase as a beacon

    CERN Document Server

    Geach, James E

    2012-01-01

    We predict the space density of molecular gas reservoirs in the Universe, and place a lower limit on the number counts of carbon monoxide (CO), hydrogen cyanide (HCN) molecular and [CII] atomic emission lines in blind redshift surveys in the submillimeter-centimeter spectral regime. Our model uses: (a) recently available HCN Spectral Line Energy Distributions (SLEDs) of local Luminous Infrared Galaxies (LIRGs, L_IR>10^11 L_sun), (b) a value for epsilon=SFR/M_dense(H_2) provided by new developments in the study of star formation feedback on the interstellar medium and (c) a model for the evolution of the infrared luminosity density. Minimal 'emergent' CO SLEDs from the dense gas reservoirs expected in all star-forming systems in the Universe are then computed from the HCN SLEDs since warm, HCN-bright gas will necessarily be CO-bright, with the dense star-forming gas phase setting an obvious minimum to the total molecular gas mass of any star-forming galaxy. We include [CII] as the most important of the far-inf...

  12. Validation of the equilibrium model for galaxy evolution to z~3 through molecular gas and dust observations of lensed star-forming galaxies

    CERN Document Server

    Saintonge, Amelie; Genzel, Reinhard; Magnelli, Benjamin; Nordon, Raanan; Tacconi, Linda J; Baker, Andrew J; Bandara, Kaushala; Berta, Stefano; Schreiber, Natascha M Forster; Poglitsch, Albrecht; Sturm, Eckhard; Wuyts, Eva; Wuyts, Stijn

    2013-01-01

    We combine IRAM Plateau de Bure Interferometer and Herschel PACS and SPIRE measurements to study the dust and gas contents of high-redshift star forming galaxies. We present new observations for a sample of 17 lensed galaxies at z=1.4-3.1, which allow us to directly probe the cold ISM of normal star-forming galaxies with stellar masses of ~10^10Msun, a regime otherwise not (yet) accessible by individual detections in Herschel and molecular gas studies. The lensed galaxies are combined with reference samples of sub-millimeter and normal z~1-2 star-forming galaxies with similar far-infrared photometry to study the gas and dust properties of galaxies in the SFR-M*-redshift parameter space. The mean gas depletion timescale of main sequence galaxies at z>2 is measured to be only ~450Myr, a factor of ~1.5 (~5) shorter than at z=1 (z=0), in agreement with a (1+z)^-1 scaling. The mean gas mass fraction at z=2.8 is 40+/-15% (44% after incompleteness correction), suggesting a flattening or even a reversal of the trend ...

  13. Variations of the ISM Conditions Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations

    CERN Document Server

    Martínez-Galarza, Juan R; Lanz, Lauranne; Hayward, Christopher C; Zezas, Andreas; Rosenthal, Lee; Weiner, Aaron; Hung, Chao-Ling; Ashby, Matthew L N; Groves, Brent

    2014-01-01

    (abridged) Significant evidence has been gathered suggesting the existence of a main sequence (MS) of star-forming galaxies that relates their star formation rate and their stellar mass: $SFR \\propto M_*^{\\alpha}$. Several ideas have been suggested to explain fundamental properties of the MS, such as its slope, its dispersion, and its evolution with redshift. However, no consensus has been reached regarding its true nature, or whether the membership of particular galaxies to this MS implies the existence of two different modes of star formation. In order to advance our understanding of the MS, here we use a statistically robust Bayesian Spectral Energy Distribution (SED) analysis (CHIBURST) to consistently analyze the star-forming properties of a set of hydro-dynamical simulations of mergers, as well as observations of real mergers and luminous galaxies, both local and at intermediate redshift. We find a very tight correlation between the specific star formation rate (sSFR) of our fitted galaxies, and the typ...

  14. Gas-to-dust ratios in massive star-forming galaxies at z ˜ 1.4

    Science.gov (United States)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Aono, Yuya; Iono, Daisuke

    2016-08-01

    We present results of 12CO(J = 2-1) observations toward four massive star-forming galaxies at z ˜ 1.4 with the Nobeyama 45 m radio telescope. The galaxies are detected with Spitzer/MIPS in 24 μm and Herschel/SPIRE in 250 μm and 350 μm, and they mostly reside in the main sequence. Their gas-phase metallicities derived by the N2 method using the Hα and [N II]λ 6584 emission lines are near the solar value. CO lines are detected toward three galaxies. The molecular-gas masses obtained are (9.6-35) × 1010 M⊙ by adopting the Galactic CO-to-H2 conversion factor and a CO(2-1)/CO(1-0) flux ratio of 3. The dust masses derived from the modified blackbody model (assuming a dust temperature of 35 K and an emissivity index of 1.5) are (2.4-5.4) × 108 M⊙. Resulting gas-to-dust ratios (not accounting for H I mass) at z ˜ 1.4 are 220-1450, which are several times larger than those in local star-forming galaxies. A dependence of the gas-to-dust ratio on the far-infrared luminosity density is not clearly seen.

  15. Initial Results of a Far-Ultraviolet Spectroscopic Survey of Nearby Star-forming Galaxies with the Cosmic Origins Spectrograph

    Science.gov (United States)

    Redwine, Keith; McCandliss, Stephan R.; Wofford, Aida; Leitherer, Claus; Heckman, Timothy M.; France, Kevin; Fleming, Brian

    2017-01-01

    We present initial results for the HST Cycle 22 proposal 13761. We proposed to observe 75 target star-forming galaxies at a redshift 0.02 COS, spanning a bandpass of 1100 < λ < 2400 angstroms, and have thus far observed 34 of them. The main thrust of this project is to provide a previously unavailable survey of star-forming galaxies in this redshift range, allowing investigation into the factors that determine the Lyman-alpha emission at these low redshifts. We have begun a statistical analysis of the relationship between Lyman-alpha emission and the morphologies of the galaxies, such as absorption line strengths of other species, including various ionization states of oxygen, silicon, and other species to probe intrinsic properties of the emitting galaxy, such as metallicity, the gas-to-dust ratio, and local velocity fields. We have acquired a very rich dataset, with enough samples to try to answer a variety of open questions regarding the far-ultraviolet spectra of bright Lyman-alpha emitters. This work is supported by a NASA Grant HST-GO-13761 to the Johns Hopkins University.

  16. Similarities and uniqueness of Lyα emitters among star-forming galaxies at z = 2.5

    Science.gov (United States)

    Shimakawa, Rhythm; Kodama, Tadayuki; Shibuya, Takatoshi; Kashikawa, Nobunari; Tanaka, Ichi; Matsuda, Yuichi; Tadaki, Ken-ichi; Koyama, Yusei; Hayashi, Masao; Suzuki, Tomoko L.; Yamamoto, Moegi

    2017-01-01

    We conducted a deep narrow-band imaging survey with the Subaru Prime Focus Camera on the Subaru Telescope and constructed a sample of Lyα emitters (LAEs) at z = 2.53 in the UDS-CANDELS field where a sample of Hα emitters (HAEs) at the same redshift is already obtained from our previous narrow-band observation at NIR. The deep narrow-band and multi broadband data allow us to find LAEs of stellar masses and star-formation rates (SFRs) down to ≳108 M⊙ and ≳0.2 M⊙/yr, respectively. We show that the LAEs are located along the same mass-SFR sequence traced by normal star-forming galaxies such as HAEs, but towards a significantly lower mass regime. Likewise, LAEs seem to share the same mass-size relation with typical star-forming galaxies, except for the massive LAEs, which tend to show significantly compact sizes. We identify a vigorous mass growth in the central part of LAEs: the stellar mass density in the central region of LAEs increases as their total galaxy mass grows. On the other hand, we see no Lyα line in emission for most of the HAEs. Rather, we find that the Lyα feature is either absent or in absorption (Lyα absorbers; LAAs), and its absorption strength may increase with reddening of the UV continuum slope. We demonstrate that a deep Lyα narrow-band imaging like this study is able to search for not only LAEs but also LAAs in a certain redshift slice. This work suggests that LAEs trace normal star-forming galaxies in the low-mass regime, while they remain as a unique population because the majority of HAEs are not LAEs.

  17. SPECTROSCOPIC STUDY OF STAR-FORMING GALAXIES IN FILAMENTS AND THE FIELD AT z ∼ 0.5: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF ELECTRON DENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Darvish, Behnam; Mobasher, Bahram; Hemmati, Shoubaneh; Shivaei, Irene [University of California, Riverside, 900 University Ave, Riverside, CA 92521 (United States); Sobral, David [Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, PT 1349-018 Lisboa (Portugal); Nayyeri, Hooshang, E-mail: bdarv001@ucr.edu [University of California, Irvine, Irvine, CA 92697 (United States)

    2015-12-01

    We study the physical properties of a spectroscopic sample of 28 star-forming galaxies in a large filamentary structure in the COSMOS field at z ∼ 0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of 30 field galaxies. We spectroscopically confirm the presence of a large galaxy filament (∼8 Mpc), along which five confirmed X-ray groups exist. We show that within the uncertainties, the ionization parameter, equivalent width (EW), EW versus specific star-formation rate (sSFR) relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that, on average, filament star-forming galaxies are more metal enriched (∼0.1–0.15 dex), possibly owing to the inflow of the already-enriched intrafilamentary gas into filament galaxies. Moreover, we show that electron densities are significantly lower (a factor of ∼17) in filament star-forming systems compared to those in the field, possibly because of a longer star-formation timescale for filament star-forming galaxies. Our results highlight the potential pre-processing role of galaxy filaments and intermediate-density environments on the evolution of galaxies, which has been highly underestimated.

  18. Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA DR1 in the COSMOS field

    NARCIS (Netherlands)

    Ilbert, O.; McCracken, H. J.; Le Fèvre, O.; Capak, P.; Dunlop, J.; Karim, A.; Renzini, M. A.; Caputi, K.; Boissier, S.

    2013-01-01

    We estimate the galaxy stellar mass function and stellar mass density for star-forming and quiescent galaxies out to z=4. We construct a sample of 220000 galaxies selected at K_{s}1.5 consistent with the expected uncertainties. Finally, we present a new method to infer the specific star formation ra

  19. Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA DR1 in the COSMOS field

    NARCIS (Netherlands)

    Ilbert, O.; McCracken, H. J.; Le Fèvre, O.; Capak, P.; Dunlop, J.; Karim, A.; Renzini, M. A.; Caputi, K.; Boissier, S.; Cambresy, L.; Martins, F.; Nuss, E,; Palacios, A.

    2013-01-01

    We estimate the galaxy stellar mass function and stellar mass density for star-forming and quiescent galaxies out to z=4. We construct a sample of 220000 galaxies selected at K_{s}1.5 consistent with the expected uncertainties. Finally, we present a new method to infer the specific star formation ra

  20. Evolution of the mass-metallicity relations in passive and star-forming galaxies from SPH-cosmological simulations

    DEFF Research Database (Denmark)

    Velonà, A. D Romeo; Sommer-Larsen, J.; Napolitano, N. R.;

    2013-01-01

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star......-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided...... groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M * plane...

  1. Hubble imaging of the ionizing radiation from a star-forming galaxy at z=3.2 with fesc>50%

    CERN Document Server

    Vanzella, E; Vasei, K; Alavi, A; Giavalisco, M; Siana, B; Grazian, A; Hasinger, G; Suh, H; Cappelluti, N; Vito, F; Amorin, R; Balestra, I; Brusa, M; Calura, F; Castellano, M; Comastri, A; Fontana, A; Gilli, R; Mignoli, M; Pentericci, L; Vignali, C; Zamorani, G

    2016-01-01

    Star-forming galaxies are considered to be the leading candidate sources that dominate the cosmic reionization at z>7, and the search for analogs at moderate redshift showing Lyman continuum (LyC) leakage is currently a active line of research. We have observed a star-forming galaxy at z=3.2 with Hubble/WFC3 in the F336W filter, corresponding to the 730-890A rest-frame, and detect LyC emission. This galaxy is very compact and also has large Oxygen ratio [OIII]5007/[OII]3727 (>=10). No nuclear activity is revealed from optical/near-infrared spectroscopy and deep multi-band photometry (including the 6Ms X-ray, Chandra). The measured escape fraction of ionizing radiation spans the range 50-100\\%, depending on the IGM attenuation. The LyC emission is detected at S/N=10 with m(F336W)=27.57+/-0.11 and it is spatially unresolved, with effective radius R_e7 allowing a direct comparison with lower redshift LyC emitters, as reported here.

  2. Similarities and uniqueness of Ly$\\alpha$ emitters among star-forming galaxies at z=2.5

    CERN Document Server

    Shimakawa, Rhythm; Shibuya, Takatoshi; Kashikawa, Nobunari; Tanaka, Ichi; Matsuda, Yuichi; Tadaki, Ken-ichi; Koyama, Yusei; Hayashi, Masao; Suzuki, Tomoko L; Yamamoto, Moegi

    2016-01-01

    We conducted a deep narrow-band imaging survey with the Subaru Prime Focus Camera on the Subaru Telescope and constructed a sample of Ly$\\alpha$ emitters (LAEs) at z=2.53 in the UDS-CANDELS field where a sample of H$\\alpha$ emitters (HAEs) at the same redshift is already obtained from our previous narrow-band observation at NIR. The deep narrow-band and multi broadband data allow us to find LAEs of stellar masses and star-formation rates (SFRs) down to $\\gtrsim$$10^8$ M$_\\odot$ and $\\gtrsim$0.2 M$_\\odot$/yr, respectively. We show that the LAEs are located along the same mass-SFR sequence traced by normal star-forming galaxies such as HAEs, but towards a significantly lower mass regime. Likewise, LAEs seem to share the same mass--size relation with typical star-forming galaxies, except for the massive LAEs, which tend to show significantly compact sizes. We identify a vigorous mass growth in the central part of LAEs: the stellar mass density in the central region of LAEs increases as their total galaxy mass gr...

  3. Nearby supernova host galaxies from the CALIFA Survey: I. Sample, data analysis, and correlation to star-forming regions

    CERN Document Server

    Galbany, L; Mourão, A M; Rodrigues, M; Flores, H; García-Benito, R; Mast, D; Mendoza, M A; Sánchez, S F; Badenes, C; Barrera-Ballesteros, J; Bland-Hawthorn, J; Falcón-Barroso, J; García-Lorenzo, B; Gomes, J M; Delgado, R M González; Kehrig, C; Lyubenova, M; López-Sánchez, A R; de Lorenzo-Cáceres, A; Marino, R A; Meidt, S; Mollá, M; Papaderos, P; Pérez-Torres, M A; Rosales-Ortega, F F; van de Ven, G

    2014-01-01

    [Abridged] We use optical IFS of nearby SN host galaxies provided by the CALIFA Survey with the goal of finding correlations in the environmental parameters at the location of different SN types. We recover the sequence in association of different SN types to the star-forming regions by using several indicators of the ongoing and recent SF related to both the ionized gas and the stellar populations. While the total ongoing SF is on average the same for the three SN types, SNe Ibc/IIb tend to happen closer to star-forming regions and occur in higher SF density locations compared to SNe II and SNe~Ia, the latter showing the weakest correlation. SNe~Ia host galaxies have on average masses that are $\\sim$0.3-0.8~dex higher than CC SNe hosts due to a larger fraction of old stellar populations in the SNe~Ia hosts. Using the recent SN~Ia delay-time distribution and the SFHs of the galaxies, we show that the SN~Ia hosts in our sample should presently produce a factor 2 more SNe~Ia than the CC~SN hosts. Since both typ...

  4. Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution

    CERN Document Server

    Esteban, C; Carigi, L; Peimbert, M; Bresolin, F; López-Sánchez, A R; Mesa-Delgado, A

    2014-01-01

    We present deep echelle spectrophotometry of the brightest emission-line knots of the star-forming galaxies He 2-10, Mkn 1271, NGC 3125, NGC 5408, POX 4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the HII region Hubble V in the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10420 $\\AA$ range. We determine electron densities and temperatures of the ionized gas from several emission-line intensity ratios for all the objects. We derive the ionic abundances of C$^{2+}$ and/or O$^{2+}$ from faint pure recombination lines (RLs) in several of the objects, permitting to derive their C/H and C/O ratios. We have explored the chemical evolution at low metallicities analysing the C/O vs. O/H, C/O vs. N/O and C/N vs. O/H relations for Galactic and extragalactic HII regions and comparing with results for halo stars and DLAs. We find that HII regions in star-forming dwarf galaxies occupy a different locus in the C/O...

  5. Recent progress in understanding the hot and warm gas phases in the halos of star-forming galaxies

    CERN Document Server

    Strickland, D K; Colbert, E J M; Hoopes, C G; Weaver, K A

    2002-01-01

    In this contribution we present a few selected examples of how the latest generation of space-based instrumentation -- NASA's Chandra X-ray Observatory and the Far-Ultraviolet Spectroscopic Explorer (FUSE) -- are finally answering old questions about the influence of massive star feedback on the warm and hot phases of the ISM and IGM. In particular, we discuss the physical origin of the soft thermal X-ray emission in the halos of star-forming and starburst galaxies, its relationship to extra-planar H-alpha emission, and plasma diagnostics using FUSE observations of O VI absorption and emission.

  6. Near-ultraviolet Spectroscopy of Star-forming Galaxies from eBOSS: Signatures of Ubiquitous Galactic-scale Outflows

    CERN Document Server

    Zhu, Guangtun Ben; Kneib, Jean-Paul; Delubac, Timothée; Raichoor, Anand; Dawson, Kyle S; Newman, Jeffrey; Yèche, Christophe; Zhou, Xu; Schneider, Donald P

    2015-01-01

    We present the rest-frame near-ultraviolet (NUV) spectroscopy of star-forming galaxies (SFGs) at 0.60.6. We use the data from the pilot observations of this program, including 8620 spectra of SFGs at 0.6star-forming regions with the Hubble Space Telescope, and find the observed line ratios in the SFG spectra to be different from those in the spectra of local star-forming regions, as well as those of quasar absorption-line systems in the same redshift range. We ...

  7. Modelling Mechanical Heating in Star-Forming Galaxies: CO and 13CO Line Ratios as Sensitive Probes

    CERN Document Server

    Kazandjian, M V; Meijerink, R; Israel, F P; Spaans, M

    2016-01-01

    We apply photo-dissociation region (PDR) molecular line emission models, that have varying degrees of enhanced mechanical heating rates, to the gaseous component of simulations of star-forming galaxies taken from the literature. Snapshots of these simulations are used to produce line emission maps for the rotational transitions of the CO molecule and its 13CO isotope up to J = 4-3. We consider two galaxy models: a small disk galaxy of solar metallicity and a lighter dwarf galaxy with 0.2 \\zsun metallicity. Elevated excitation temperatures for CO(1 - 0) correlate positively with mechanical feedback, that is enhanced towards the central region of both model galaxies. The emission maps of these model galaxies are used to compute line ratios of CO and 13CO transitions. These line ratios are used as diagnostics where we attempt to match them These line ratios are used as diagnostics where we attempt to match them to mechanically heated single component (i.e. uniform density, Far-UV flux, visual extinction and velo...

  8. Spatially Resolved Spectroscopy and Chemical History of Star-forming Galaxies in the Hercules Cluster: The Effects of the Environment

    Science.gov (United States)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.; Papaderos, P.; Magrini, L.; Cedrés, B.; Reverte, D.

    2011-06-01

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep Hα survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be "newcomers" to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the local

  9. A Study of the Distribution of Star-Forming Regions in Luminous Infrared Galaxies by Means of H$\\alpha$ Imaging Observations

    CERN Document Server

    Hattori, T; Ohtani, H; Sugai, H; Ishigaki, T; Sasaki, M; Hayashi, T; Ozaki, S; Ishii, M; Kawai, A

    2003-01-01

    We performed H-alpha imaging observations of 22 luminous infrared galaxies to investigate how the distribution of star-forming regions in these galaxies is related to galaxy interactions. Based on correlation diagrams between H-alpha flux and continuum emission for individual galaxies, a sequence for the distribution of star-forming regions was found: very compact (~100 pc) nuclear starbursts with almost no star-forming activity in the outer regions (type 1), dominant nuclear starbursts 1 kpc in size and a significant contribution from the outer regions (type 3), and extended starbursts with relatively faint nuclei (type 4). These classes of star-forming region were found to be strongly related to global star-forming properties such as star-formation efficiency, far-infrared color, and dust extinction. There was a clear tendency for the objects with more compact distributions of star-forming regions to show a higher star-formation efficiency and hotter far-infrared color. An appreciable fraction of the sampl...

  10. The local luminosity function of star-forming galaxies derived from the Planck Early Release Compact Source Catalogue

    Science.gov (United States)

    Negrello, M.; Clemens, M.; Gonzalez-Nuevo, J.; De Zotti, G.; Bonavera, L.; Cosco, G.; Guarese, G.; Boaretto, L.; Serjeant, S.; Toffolatti, L.; Lapi, A.; Bethermin, M.; Castex, G.; Clements, D. L.; Delabrouille, J.; Dole, H.; Franceschini, A.; Mandolesi, N.; Marchetti, L.; Partridge, B.; Sajina, A.

    2013-02-01

    The Planck Early Release Compact Source Catalogue (ERCSC) has offered the first opportunity to accurately determine the luminosity function of dusty galaxies in the very local Universe (i.e. distances ≲100 Mpc), at several (sub-)millimetre wavelengths, using blindly selected samples of low-redshift sources, unaffected by cosmological evolution. This project, however, requires careful consideration of a variety of issues including the choice of the appropriate flux density measurement, the separation of dusty galaxies from radio sources and from Galactic sources, the correction for the CO emission, the effect of density inhomogeneities and more. We present estimates of the local luminosity functions at 857 GHz (350 μm), 545 GHz (550 μm) and 353 GHz (850 μm) extending across the characteristic luminosity L⋆, and a preliminary estimate over a limited luminosity range at 217 GHz (1382 μm). At 850 μm and for luminosities L ≳ L⋆ our results agree with previous estimates, derived from the Submillimeter Common-User Bolometer Array (SCUBA) Local Universe Galaxy Survey, but are higher than the latter at L ≲ L⋆. We also find good agreement with estimates at 350 and 500 μm based on preliminary Herschel survey data.

  11. The bursting nature of star formation in compact star-forming galaxies from the Sloan Digital Sky Survey

    Science.gov (United States)

    Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.

    2016-11-01

    We study integrated characteristics of ˜14 000 low-redshift (0 < z < 1) compact star-forming galaxies (SFGs) selected from the Data Release 12 of the Sloan Digital Sky Survey. It is found that emission of these galaxies is dominated by strong young bursts of star formation, implying that their luminosities experience rapid variations on a time-scale of a few Myr. Reducing integrated characteristics of these galaxies to zero burst age would result in a considerably tighter and almost linear relation between stellar mass and star formation rate (SFR). The same correction implies that the specific star formation rate (the ratio of SFR and stellar mass) is not dependent on the galaxy stellar mass. We conclude that the correction for rapid luminosity evolution must be taken into account in a similar way when comparing different samples of low- and high-redshift SFGs. If the bursting nature of star formation and young burst ages are characteristics of the galaxies selected at high redshifts, the age correction of observed SFRs derived from the Hβ emission line or UV continua would modify the derived SFR densities in the early universe.

  12. The bursting nature of star formation in compact star-forming galaxies from the Sloan Digital Sky Survey

    CERN Document Server

    Izotov, Y I; Fricke, K J; Henkel, C

    2016-01-01

    We study integrated characteristics of ~14000 low-redshift (0star-forming galaxies (SFGs) selected from the Data Release 12 of the Sloan Digital Sky Survey. It is found that emission of these galaxies is dominated by strong young bursts of star formation, implying that their luminosities experience rapid variations on a time scale of a few Myr. Reducing integrated characteristics of these galaxies to zero burst age would result in a considerably tighter and almost linear relation between stellar mass and star formation rate (SFR). The same correction implies that the specific star formation rate (the ratio of SFR and stellar mass) is not dependent on the galaxy stellar mass. We conclude that the correction for rapid luminosity evolution must be taken into account in a similar way when comparing different samples of low- and high-redshift SFGs. If the bursting nature of star formation and young burst ages are characteristics of the galaxies selected at high redshifts, the age correction of ...

  13. Absorption-line probes of the prevalence and properties of outflows in present-day star-forming galaxies

    CERN Document Server

    Chen, Yan-Mei; Heckman, Timothy M; Kauffmann, Guinevere; Weiner, Benjamin J; Brinchmann, Jarle; Wang, Jing

    2010-01-01

    We analyze star forming galaxies drawn from SDSS DR7 to show how the interstellar medium (ISM) Na I 5890, 5896 (Na D) absorption lines depend on galaxy physical properties, and to look for evidence of galactic winds. We combine the spectra of galaxies with similar geometry/physical parameters to create composite spectra with signal-to-noise ~300. The stellar continuum is modeled using stellar population synthesis models, and the continuum-normalized spectrum is fit with two Na I absorption components. We find that: (1) ISM Na D absorption lines with equivalent widths EW > 0.8A are only prevalent in disk galaxies with specific properties -- large extinction (Av), high star formation rates (SFR), high star formation rate per unit area ($\\Sigma_{\\rm SFR}$), or high stellar mass (M*). (2) the ISM Na D absorption lines can be separated into two components: a quiescent disk-like component at the galaxy systemic velocity and an outflow component; (3) the disk-like component is much stronger in the edge-on systems, a...

  14. Metallicity inhomogeneities in local star-forming galaxies as sign of recent metal-poor gas accretion

    CERN Document Server

    Almeida, J Sanchez; Munoz-Tunon, C; Elmegreen, D M; Elmegreen, B G; Mendez-Abreu, J

    2014-01-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show 0.5 dex metallicity decrements in inner regions with enhanced star-formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sanchez Almeida et al. (2013) and interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications: (1) it proves that galaxies other than the local tadpoles present the same unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are ra...

  15. Bayesian approaches to infer the physical properties of star-forming galaxies at cosmic dawn

    Science.gov (United States)

    Salmon, Brett Weston Killebrew

    In this thesis, I seek to advance our understanding of galaxy formation and evolution in the early universe. Using the largest single project ever conducted by the Hubble Space Telescope (the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, CANDELS) I use deep and wide broadband photometric imaging to infer the physical properties of galaxies from z=8.5 to z=1.5. First, I will present a study that extends the relationship between the star-formation rates (SFRs) and stellar masses (M⋆) of galaxies to 3.5attenuated in galaxies. I calculate the Bayesian evidence for galaxies under different assumptions of their underlying dust-attenuation law. By modeling galaxy ultraviolet-to-near-IR broadband CANDELS data I produce Bayesian evidence towards the dust law in individual galaxies that is confirmed by their observed IR luminosities. Moreover, I find a tight correlation between the strength of attenuation in galaxies and their dust law, a relation reinforced by the results from radiative transfer simulations. Finally, I use the Bayesian methods developed in this thesis to study the number density of SFR in galaxies from z=8 to z=4, and resolve the current disconnect between its evolution and that of the stellar mass function. In doing so, I place the first constraints on the dust law of z>4 galaxies, finding it obeys a similar relation as found at z˜2. I find a clear excess in number density at high SFRs. This new SFR function is in better agreement with the observed stellar mass functions, the few to-date infrared detections at high redshifts, and the connection to the observed distribution of lower redshift infrared sources. Together, these studies greatly improve our understanding of the galaxy star-formation histories, the nature of their dust attenuation, and the distribution of SFR among some of the most distant galaxies in the universe.

  16. Far-ultraviolet morphology of star-forming filaments in cool core brightest cluster galaxies

    Science.gov (United States)

    Tremblay, G. R.; O'Dea, C. P.; Baum, S. A.; Mittal, R.; McDonald, M. A.; Combes, F.; Li, Y.; McNamara, B. R.; Bremer, M. N.; Clarke, T. E.; Donahue, M.; Edge, A. C.; Fabian, A. C.; Hamer, S. L.; Hogan, M. T.; Oonk, J. B. R.; Quillen, A. C.; Sanders, J. S.; Salomé, P.; Voit, G. M.

    2015-08-01

    We present a multiwavelength morphological analysis of star-forming clouds and filaments in the central (≲50 kpc) regions of 16 low-redshift (z atlas of star formation locales relative to the ambient hot (˜107-8 K) and warm ionized (˜104 K) gas phases, as well as the old stellar population and radio-bright active galactic nucleus (AGN) outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend towards and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed in situ by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star-forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to-free-fall time ratio is tcool/tff ˜ 10. This condition is roughly met at the maximal projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.

  17. Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon

    Science.gov (United States)

    Feldmann, Robert; Quataert, Eliot; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan

    2017-09-01

    We analyse the star formation rates (SFRs), colours and dust extinctions of galaxies in massive (1012.5 - 1013.5 M⊙) haloes at z ∼ 2 in high-resolution, cosmological zoom-in simulations as part of the Feedback In Realistic Environments (FIRE) project. The simulations do not model feedback from active galactic nuclei (AGNs) but reproduce well the observed relations between stellar and halo mass and between stellar mass and SFR. About half (a third) of the simulated massive galaxies (massive central galaxies) at z ∼ 2 have broad-band colours classifying them as 'quiescent', and the fraction of quiescent centrals is steeply decreasing towards higher redshift, in agreement with observations. The progenitors of z ∼ 2 quiescent central galaxies are, on average, more massive, have lower specific SFRs and reside in more massive haloes than the progenitors of similarly massive star-forming centrals. The simulations further predict a morphological mix of galaxies that includes disc-dominated, irregular and early-type galaxies. However, our simulations do not reproduce the reddest of the quiescent galaxies observed at z ∼ 2. We also do not find evidence for a colour bimodality, but are limited by our modest sample size. In our simulations, the star formation activity of central galaxies of moderate mass (Mstar ∼ 1010 - 1011 M⊙) is affected by a combination of two distinct physical processes. Outflows powered by stellar feedback result in a short-lived (experience a moderate reduction of their SFRs ('cosmological starvation'). The relative importance of these processes and AGN feedback is uncertain and will be explored in future work.

  18. The evolution of the atomic and molecular interstellar medium in star-forming galaxies

    NARCIS (Netherlands)

    Popping, Gergö

    2014-01-01

    In this thesis I developed models to make predictions for the atomic and molecular gas content of galaxies. Main results of my thesis include that the atomic hydrogen content of galaxies remained relatively constant with over the last 10 Billion years, whereas the molecular hydrogen content decrease

  19. The Dust Content and Opacity of Actively Star-Forming Galaxies

    NARCIS (Netherlands)

    Calzetti, D.; Armus, L.; Bohlin, R. C.; Kinney, A. L.; Koornneef, J.; Storchi-Bergmann, T.

    1999-01-01

    Submitted to: Astrophys. J. Abstract: (Abridged) We present far-infrared (FIR) photometry at 150 micron and 205 micron of eight low-redshift starburst galaxies obtained with the ISO Photometer. Five of the eight galaxies are detected in both wavebands and these data are used, in conjunction with

  20. The dust content and opacity of actively star-forming galaxies

    NARCIS (Netherlands)

    Calzetti, D; Armus, L; Bohlin, RC; Kinney, AL; Koornneef, J; Storchi-Bergmann, T

    2000-01-01

    We present far-infrared (FIR) photometry at 150 and 205 mu m of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to

  1. The evolution of the stellar mass functions of star-forming and quiescent galaxies to z = 4 from the COSMOS/ultraVISTA survey

    DEFF Research Database (Denmark)

    Muzzin, Adam; Marchesini, Danilo; Stefano, Mauro

    2013-01-01

    We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95,675 Ks -selected galaxies in the COSMOS/UltraVISTA field. The SMFs of the combined population are in good agreement with previous measurements and show that the stella...

  2. X-Ray Emission from Star-Forming Galaxies - Signatures of Cosmic Rays and Magnetic Fields

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2014-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons traveling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the evolution of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional cont...

  3. A dusty, normal galaxy in the epoch of reionization

    CERN Document Server

    Watson, Darach; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-01-01

    Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts $z > 7$, have been found in large numbers with extremely deep restframe-UV imaging. But it has proved difficult for existing spectrographs to characterise them in the UV. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at $z = 3.25$, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be $z = 7.5\\pm0.2$ from a spectroscopic detection of the Ly{\\alpha} break. A1689-zD1 is representative of the star-forming population during reionisation, with ...

  4. DISSECTION OF H{alpha} EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University (Korea, Republic of); Chary, Ranga-Ram, E-mail: hjshim@knu.ac.kr [U.S. Planck Data Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States)

    2013-03-01

    Strong H{alpha} emitters (HAEs) dominate the z {approx} 4 Lyman-break galaxy (LBG) population. We have identified local analogs of these HAEs using the Sloan Digital Sky Survey. At z < 0.4, only 0.04% of the galaxies are classified as HAEs with H{alpha} equivalent widths ({approx}> 500 A) comparable to that of z {approx} 4 HAEs. Local HAEs have lower stellar mass and lower ultraviolet (UV) luminosity than z {approx} 4 HAEs, yet the H{alpha}-to-UV luminosity ratio, as well as their specific star formation rate, is consistent with that of z {approx} 4 HAEs, indicating that they are scaled-down versions of high-z star-forming galaxies. Compared to the previously studied local analogs of LBGs selected using rest-frame UV properties, local HAEs show similar UV luminosity surface density, weaker D{sub n} (4000) break, lower metallicity, and lower stellar mass. This implies that the local HAEs are less evolved galaxies than the traditional Lyman break analogs. In the stacked spectrum, local HAEs show a significant He II {lambda}4686 emission line suggesting a population of hot, massive stars similar to that seen in some Wolf-Rayet galaxies. Low [N II]/[O III] line flux ratios imply that local HAEs are inconsistent with being systems that host bright active galactic nuclei. Instead, it is highly likely that local HAEs are galaxies with an elevated ionization parameter, either due to a high electron density or large escape fraction of hydrogen ionizing photons as in the case of Wolf-Rayet galaxies.

  5. Diffuse Matter from Star Forming Regions to Active Galaxies A Volume Honouring John Dyson

    CERN Document Server

    Hartquist, T W

    2006-01-01

    John Dyson has contributed to the study of the hydrodynamic processes that govern a wide variety of astrophysical sources which he has helped explain. In this volume dedicated to him, introductory reviews to a number of the key processes and to the sources themselves are given by leading experts. The mechanisms in which the multi-component natures of media affect their dynamics receive particular attention, but the roles of hydromagnetic effects are also highlighted. The importance of cosmic ray moderation and mass transfer between different thermal phases for cosmic ray moderation and mass transfer between different thermal phases for the evolution of flows are amongst the topics treated. The main types of regions considered include those where stars form, the circumstellar environments of evolved stars, the larger scale interstellar structures caused by the mass loss of stars, and those where the lines of AGNs form. The reviews complement one another and together provide a coherent introduction to the astro...

  6. GeV Observations of Star-forming Galaxies with \\textit{Fermi} LAT

    CERN Document Server

    Ackermann, M; Allafort, A; Baldini, L; Ballet, J; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Cillis, A N; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; De Palma, F; Dermer, C D; Digel, S W; Silva, E Do Couto e; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Martin, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nishino, S; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Parent, D; Persic, M; Pesce-Rollins, M; Petrosian, V; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Roth, M; Sbarra, C; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Stawarz, \\{L}ukasz; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Wood, M; Yang, Z

    2012-01-01

    Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the \\textit{Fermi Gamma-ray Space Telescope} (\\textit{Fermi}). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative $P$-values $\\lesssim0.05$ accounting for statistical and systematic uncertainties). The normalizations ...

  7. Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4

    CERN Document Server

    Weiner, Benjamin J; Prochaska, Jason X; Newman, Jeffrey A; Cooper, Michael C; Bundy, Kevin; Conselice, Christopher J; Dutton, Aaron A; Faber, S M; Koo, David C; Lotz, Jennifer M; Rieke, G H; Rubin, K H R

    2008-01-01

    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxi...

  8. Molecular gas properties of a lensed star-forming galaxy at z~3.6: a case study

    CERN Document Server

    Dessauges-Zavadsky, M; Rujopakarn, W; Richard, J; Sklias, P; Schaerer, D; Combes, F; Ebeling, H; Rawle, T D; Egami, E; Boone, F; Clément, B; Kneib, J -P; Nyland, K; Walth, G

    2016-01-01

    We report on the galaxy MACSJ0032-arc (z=3.6314) discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters and strongly lensed by the cluster MACSJ0032.1+1808. The successful detections of its rest-frame UV, optical, FIR, millimeter, and radio continua as well as of CO emission enable us to characterise, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a normal star-forming galaxy with a stellar mass of 4.8x10^9 Msun and an IR luminosity of 4.8x10^{11} Lsun. We find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is seen through the thermal FIR dust emission and the radio synchrotron radiation, and is undetected at rest-frame UV wavelengths because of severe obscuration by dust. The observed CO(1-0), CO(4-3) and CO(6-5) lines demonstrate that high-J transitions, at least up to J=6, remain excited in this galaxy, whose CO sp...

  9. A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    CERN Document Server

    Yukita, M; Lehmer, B D; Ptak, A; Wik, D R; Zezas, A; Antoniou, V; Maccarone, T J; Replicon, V; Tyler, J B; Venters, T; Argo, M K; Bechtol, K; Boggs, S; Christensen, F E; Craig, W W; Hailey, C; Harrison, F; Krivonos, R; Kuntz, K; Stern, D; Zhang, W W

    2016-01-01

    We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum ...

  10. The Confinement of Star-Forming Galaxies into a Main Sequence through Episodes of Gas Compaction, Depletion, and Replenishment

    CERN Document Server

    Tacchella, Sandro; Carollo, C Marcella; Ceverino, Daniel; DeGraf, Colin; Lapiner, Sharon; Mandelker, Nir; Primack, Joel R

    2015-01-01

    Using cosmological simulations, we address the properties of high-redshift star-forming galaxies (SFGs) across their main sequence (MS) in the plane of star-formation rate (SFR) versus stellar mass. We relate them to the evolution of galaxies through phases of gas compaction, depletion, possible replenishment, and eventual quenching. We find that the high-SFR galaxies in the upper envelope of the MS are compact, with high gas fractions and short depletion times ("blue nuggets"), while the lower-SFR galaxies in the lower envelope have lower central gas densities, lower gas fractions and longer depletion times, consistent with observed gradients across the MS. Stellar-structure gradients are negligible. The SFGs oscillate about the MS ridge on timescales $\\sim0.4~t_{\\mathrm{Hubble}}$ ($\\sim1$ Gyr at $z\\sim3$). The propagation upwards is due to gas compaction, triggered, e.g., by mergers, counter-rotating streams, and/or violent disc instabilities. The downturn at the upper envelope is due to central gas depleti...

  11. Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ~100pc scales

    CERN Document Server

    Livermore, R C; Richard, J; Bower, R G; Swinbank, A M; Yuan, T -T; Edge, A C; Ellis, R S; Kewley, L J; Smail, Ian; Coppin, K E K; Ebeling, H

    2015-01-01

    We present adaptive optics-assisted integral field spectroscopy around the Ha or Hb lines of 12 gravitationally lensed galaxies obtained with VLT/SINFONI, Keck/OSIRIS and Gemini/NIFS. We combine these data with previous observations and investigate the dynamics and star formation properties of 17 lensed galaxies at z = 1-4. Thanks to gravitational magnification of 1.4 - 90x by foreground clusters, effective spatial resolutions of 40 - 700 pc are achieved. The magnification also allows us to probe lower star formation rates and stellar masses than unlensed samples; our target galaxies feature dust-corrected SFRs derived from Ha or Hb emission of 0.8 - 40Msol/yr, and stellar masses M* ~ 4e8 - 6e10 Msol. All of the galaxies have velocity gradients, with 59% consistent with being rotating discs and a likely merger fraction of 29%, with the remaining 12% classed as 'undetermined.' We extract 50 star-forming clumps with sizes in the range 60pc - 1kpc from the Ha (or Hb) maps, and find that their surface brightnesse...

  12. X-ray properties of UV-selected star forming galaxies at z~1 in the Hubble Deep Field North

    CERN Document Server

    Laird, E S; Adelberger, K L; Steidel, C C; Reddy, N A

    2005-01-01

    We present an analysis of the X-ray emission from a large sample of ultraviolet (UV) selected, star forming galaxies with 0.74galaxies for which the emission in both UV and X-ray is expected to be predominantly due to star formation. Stacking the X-ray flux from 216 galaxies in the soft and hard bands produces significant detections. The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s, corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6 Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected for attenuation, we find that the average UV attenuation correction factor is \\~3. By binning the galaxy sample according to UV magnitude and colour, correlations between UV and X-ray emission are also examined. We find a strong positive correlation between ...

  13. Constraint on the Gas-to-Dust Ratio in Massive Star-Forming Galaxies at z~1.4

    CERN Document Server

    Seko, Akifumi; Hatsukade, Bunyo; Yabe, Kiyoto; Takeuchi, Tomoe; Iono, Daisuke

    2014-01-01

    We carried out 12CO(J=2-1) observations toward three star-forming galaxies on the main sequence at z~1.4 with the Nobeyama 45m radio telescope. These galaxies are detected with Spitzer/MIPS in 24 um, Herschel/SPIRE in 250 um and 350 um, and their gas metallicity, derived from optical emission line ratios based on near infrared spectroscopic observations, is close to the solar metallicity. Although weak signal-like features of CO were seen, we could not detect significant CO emission. The dust mass and the upper limits on the molecular gas mass are (3.4-6.7) x 10^{8} Msun and (9.7-14) x 10^{10} Msun, respectively. The upper limits on the gas-to-dust ratios at z~1.4 are 150-410 which are comparable to the gas-to-dust ratios in local galaxies with similar gas metallicity. A line stacking analysis enables us to detect a significant CO emission and to derive an average molecular gas mass of 1.3 x 10^{11} Msun and gas-to-dust ratio of 250. This gas-to-dust ratio is also near that in local galaxies with solar metall...

  14. Spatially resolved spectroscopy and chemical history of star-forming galaxies in the Hercules cluster: the effects of the environment

    CERN Document Server

    Petropoulou, V; Iglesias-Páramo, J; Papaderos, P; Magrini, L; Cedrés, B; Reverte, D

    2011-01-01

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep Halpha survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT. We have obtained fundamental parameters of the stellar components, as the mean metallicity and age, and we have corrected the emission-line spectra for underlying stellar absorption. O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of galaxies and their existing HI data. We have found that our Hercules SF galaxies divide into three main subgroups: a) chemically evolved spirals with truncated ionized-gas disks and n...

  15. The Mg II 2797, 2803 emission in low-metallicity star-forming galaxies from the SDSS

    CERN Document Server

    Guseva, N G; Fricke, K J; Henkel, C

    2013-01-01

    We present 65 Sloan Digital Sky Survey (SDSS) spectra of 62 star-forming galaxies with oxygen abundances 12 + logO/H ~ 7.5-8.4. Redshifts of selected galaxies are in the range z~0.36-0.70. This allows us to detect the redshifted MgII 2797,2803 emission lines. Our aim is to use these lines for the magnesium abundance determination. The MgII emission was detected in ~2/3 of the galaxies. We find that the MgII 2797 emission-line intensity follows a trend with the excitation parameter x= O^{2+}/O that is similar to that predicted by CLOUDY photoionised HII region models, suggesting a nebular origin of MgII emission. The Mg/O abundance ratio is lower by a factor ~2 than the solar ratio. This is probably the combined effect of interstellar MgII absorption and depletion of Mg onto dust. However, the effect of dust depletion in selected galaxies, if present, is small, by a factor of ~2 lower than that of iron.

  16. Velocities of Warm Galactic Outflows from Synthetic Halpha Observations of Star-forming Galaxies

    CERN Document Server

    Ceverino, Daniel; Colina, Luis; Del Pino, Bruno Rodriguez; Dekel, Avishai; Primack, Joel

    2015-01-01

    The velocity structure imprinted in the Halpha emission line profiles contains valuable information about galactic outflows. Using a set of high-resolution zoom-in cosmological simulations of galaxies at z=2, we generate Halpha emission line profiles, taking into account the temperature-dependent Halpha emissivity, as well as dust extinction. The lines can be described as a sum of two gaussians, as typically done with observations. In general, its properties are in good agreement with those observed in local isolated galaxies with similar masses and star formation rates. Blueshifted outflows are very common in the sample. They extend several kpc above the galaxy discs. They are also spread over the full extent of the discs. However, at small radii, the material with high velocities tends to remain confined within a thick disc, as part of galactic fountains or a turbulent medium, most probably due to the deeper gravitational potential at the galaxy center.

  17. Cool dust heating and temperature mixing in nearby star-forming galaxies

    CERN Document Server

    Hunt, L K; Bianchi, S; Gordon, K D; Aniano, G; Calzetti, D; Dale, D A; Helou, G; Hinz, J L; Kennicutt, R C; Roussel, H; Wilson, C D; Bolatto, A; Boquien, M; Croxall, K V; Galametz, M; de Paz, A Gil; Koda, J; Munoz-Mateos, J C; Sandstrom, K M; Sauvage, M; Vigroux, L; Zibetti, S

    2014-01-01

    Physical conditions of the interstellar medium in galaxies are closely linked to the ambient radiation field and the heating of dust grains. In order to characterize dust properties in galaxies over a wide range of physical conditions, we present here the radial surface brightness profiles of the entire sample of 61 galaxies from Key Insights into Nearby Galaxies: Far-Infrared Survey with Herschel (KINGFISH). The main goal of our work is the characterization of the grain emissivities, dust temperatures, and interstellar radiation fields responsible for heating the dust. After fitting the dust and stellar radial profiles with exponential functions, we fit the far-infrared spectral energy distribution (SED) in each annular region with single-temperature modified black bodies using both variable (MBBV) and fixed (MBBF) emissivity indices beta, as well as with physically motivated dust models. Results show that while most SED parameters decrease with radius, the emissivity index beta also decreases with radius in...

  18. Gas-Rich Local Dwarf Star-Forming Galaxies and their connection with the Distant Universe

    CERN Document Server

    Kunth, D

    1998-01-01

    I discuss the properties of gas-rich forming galaxies. I particularly emphasize the latest results on Lyman alpha emission that are relevant to the search of distant young galaxies. The interdependance of the Lyman alpha escape with the properties of the ISM in starburst galaxies is outlined. A new model from G. Tenorio-Tagle and his collaborators explaining Lyman alpha profiles in starburst galaxies from the hydrodynamics of superbubbles powered by massive stars is presented. I stress again that since Lyman alpha is primarely a diagnostic of the ISM, it is mandatory to understand how the ISM and Lyman alpha are related to firmly relate Lyman alpha to the cosmic star-formation rate.

  19. Gas-rich Local Dwarf Star-Forming Galaxies and Their Connection With the Distant Universe

    Science.gov (United States)

    Kunth, D.

    1999-07-01

    I discuss the properties of gas-rich forming galaxies. I particularlyemphasize the latest results on Lyα emission that are relevant to the search of distant young galaxies. The interdependance of the Lyα escape with the properties of the ISM in starburst galaxies is outlined. A new modelfrom G. Tenorio-Tagle and his collaborators explains Lyα profiles instarburst galaxies from the hydrodynamics of superbubbles powered by massivestars. I stress again that since Lyα is primarely a diagnostic ofthe ISM, it is mandatory to understand how the ISM and Lyα arerelated to firmly relate Lyα to the cosmic star-formation rate.

  20. PLAYING WITH POSITIVE FEEDBACK: EXTERNAL PRESSURE-TRIGGERING OF A STAR-FORMING DISK GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A., E-mail: bieri@iap.fr [Institut d’Astrophysique de Paris (UMR 7095: CNRS and UPMC—Sorbonne Universités), 98 bis bd Arago, F-75014 Paris (France)

    2015-10-20

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  1. Near-infrared integral field spectroscopy of star-forming galaxies

    Science.gov (United States)

    Dale, D. A.; Roussel, H.; Contursi, A.; Helou, G.; Dinerstein, H. L.; Hunter, D. A.; Hollenbach, D. J.; Egami, E.; Matthews, K.; Murphy, T. W. Jr; Lafon, C. E.; Rubin, R. H.

    2004-01-01

    The Palomar Integral Field Spectrograph was used to probe a variety of environments in nine nearby galaxies that span a range of morphological types, luminosities, metallicities, and infrared-to-blue ratios.

  2. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6

    Science.gov (United States)

    Decarli, R.; Walter, F.; Venemans, B. P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E. P.; Mazzucchelli, C.; Riechers, D.; Rix, H.-W.; Strauss, M. A.; Wang, R.; Yang, Y.

    2017-05-01

    The existence of massive (1011 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 109 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C II] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C II] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C II] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C II] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  3. X-ray emission from star-forming galaxies - signatures of cosmic rays and magnetic fields

    Science.gov (United States)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2015-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons travelling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the higher temperature of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional contribution to the X-ray luminosity comes from X-ray binaries. We estimate this contribution with an analytical model as well as with an observational relation, and compare it to the pure inverse Compton luminosity. Using data from the Chandra Deep Field Survey and far-infrared observations from Atacama Large Millimeter/Submillimeter Array, we then determine upper limits for the cosmic ray energy. Assuming that the magnetic energy in a galaxy is in equipartition with the energy density of the cosmic rays, we obtain upper limits for the magnetic field strength. Our results suggest that the mean magnetic energy of young galaxies is similar to the one in local galaxies. This points towards an early generation of galactic magnetic fields, which is in agreement with current dynamo evolution models.

  4. The Quenched Mass Portion of Star-forming Galaxies and the Origin of the Star Formation Sequence Slope

    Science.gov (United States)

    Pan, Zhizheng; Zheng, Xianzhong; Kong, Xu

    2017-01-01

    Observationally, a massive disk galaxy can harbor a bulge component that is comparably inactive as a quiescent galaxy. It has been speculated that the quenched component contained in star-forming galaxies (SFGs) is the reason why the star formation main sequence (MS) has a shallow slope at high masses. In this paper, we present a toy model to quantify the quenched mass portion of SFGs (fQ) at fixed stellar mass (M*) and to reconcile the MS slopes in both the low- and the high-mass regimes. In this model, each SFG is composed of a star-forming plus a quenched component. The mass of the star-forming component (MSF) correlates with the star formation rate (SFR) following a relation SFR \\propto {M}{SF}{α {SF}}, where αSF ∼ 1.0. The quenched component contributes to the stellar mass but not to the SFR. It is thus possible to quantify fQ based on the departure of the observed MS slope α from αSF. Adopting the redshift-dependent MS slope reported by Whitaker et al., we explore the evolution of the {f}{{Q}}{--}{M}* relations over z = [0.5, 2.5]. We find that Milky Way-like SFGs (with {M}* ≈ {10}10.7 {M}ȯ ) typically have an fQ = 30%–40% at z ∼ 2.25, whereas this value rapidly rises up to 70%–80% at z ∼ 0.75. The origin of an α ∼ 1.0 MS slope seen in the low-mass regime is also discussed. We argue for a scenario in which the majority of low-mass SFGs stay in a “steady-stage” star formation phase. In this phase, the SFR is mainly regulated by stellar feedback and not significantly influenced by the quenching mechanisms, thus remaining roughly constant over cosmic time. This scenario successfully produces an α ∼ 1.0 MS slope, as well as the observed MS evolution from z = 2.5 to z = 0 at low masses.

  5. Search for gamma-ray emission from star-forming galaxies with Fermi LAT

    CERN Document Server

    Rojas-Bravo, Cesar

    2016-01-01

    Recent studies have found a positive correlation between the star-formation rate of galaxies and their gamma-ray luminosity. Galaxies with a high star-formation rate are expected to produce a large amount of high-energy cosmic rays, which emit gamma-rays when interacting with the interstellar medium and radiation fields. We search for gamma-ray emission from a sample of galaxies within and beyond the Local Group with data from the LAT instrument onboard the Fermi satellite. We exclude recently detected galaxies (NGC 253, M82, NGC 4945, NGC 1068, NGC 2146, Arp 220) and use seven years of cumulative Pass 8 data from the LAT in the 100 MeV to 100 GeV range. No new detections are seen in the data and upper limits for the gamma- ray fluxes are calculated. The correlation between gamma-ray luminosity and infrared luminosity for galaxies obtained using our new upper limits is in agreement with a previously published correlation, but the new upper limits imply that some galaxies are not as efficient gamma-ray emitter...

  6. Non-linearity and environmental dependence of the star forming galaxies Main Sequence

    CERN Document Server

    Erfanianfar, G; Finoguenov, A; Wilman, D; Wuyts, S; Biviano, A; Salvato, M; Mirkazemi, M; Morselli, L; Ziparo, F; Nandra, K; Lutz, D; Elbaz, D; Dickinson, M; Tanaka, M; Altieri, M B; Aussel, H; Bauer, F; Berta, S; Bielby, R M; Brandt, N; Cappelluti, N; Cimatti, A; Cooper, M C; Fadda, D; Ilbert, O; Floch, E Le; Magnelli, B; Mulchaey, J S; Nordon, R; Newman, J A; Poglitsch, A; Pozzi, F

    2015-01-01

    Using data from four deep fields (COSMOS, AEGIS, ECDFS, and CDFN), we study the correlation between the position of galaxies in the star formation rate (SFR) versus stellar mass plane and local environment at $z10^{10.4-10.6}$ $M_{\\odot}$), across all environments. At high redshift ( $0.5galaxies tend to deviate from the mean MS towards the region of quiescence with respect to isolated galaxies and less-dense environments. We find that the flattening of the MS toward low SFR is due to an increased fraction of bulge dominated galaxies at high masses. Instead, the deviation of group galaxies from the MS at low redshift is caused by a large fraction of red disk dominated galaxies which are not present in the lower density environments. Our results suggest that above a mass threshold ( $\\sim10^{10.4}-10^{10.6}$$M_{\\odot}$ ) stellar mass, morphology and environment act together in driving the evolution of the SF a...

  7. Direct determination of oxygen abundances in line emitting star-forming galaxies at intermediate redshift

    CERN Document Server

    Pérez, José M; Díaz, Ángeles I; Koo, David C; Willmer, Christopher N

    2015-01-01

    We present a sample of 22 blue ($(B-V)_{AB}<0.45$), luminous ($M_{B,AB}<-18.9$), metal-poor galaxies in the $0.69galaxy redshift survey. Their spectra contain the $[OIII]\\lambda4363$ auroral line, the $[OII]\\lambda \\lambda3726,3729$ doublet and the strong nebular $[OIII]\\lambda \\lambda 4959,5007$ emission lines. The ionised gas-phase oxygen abundances of these galaxies lie between $7.62<12+\\log O/H < 8.19$, i.e. between $1/10 Z_{\\odot}$ and $1/3 Z_{\\odot}$. We find that galaxies in our sample have comparable metallicities to other intermediate-redshift samples, but are more metal poor than local systems of similar B-band luminosities and star formation activity. The galaxies here show similar properties to the "green peas" discovered at $z\\simeq 0.2 - 0.3$ though our galaxies tend to be slightly less luminous.

  8. Observing Evolution in Star-Forming Galaxies in X-Rays

    Science.gov (United States)

    Ptak, Andrew

    2011-01-01

    The Chandra Deep Fields (CDFs) have reached flux limits where normal/starburst galaxies are significant contributors to the X-ray number counts (approximately 40% at F _{0.5-2.0} = 1 x 10(^)-17). Based on these results and current theoretical models of X-ray binary evolution we will discuss expectations for observing galaxy evolution in X-rays in IXO deep surveys. With the high sensitivity of IXO (particularly approximately 5" resolution constant across the WFI FOV and high effective area) IXO surveys should detect large numbers of galaxies which will allow evolution to be studied in multiple redshift bins. High spatial resolution will also drive the need to minimize source confusion below F _{0.5-2.0 keV} = 10^{-17} ergs/s/cm^2. In addition to detecting starburst galaxies individually, stacking will be used to constrain their properties on average, particularly Lyman-break galaxies at z greater than 2. We will also discuss challenges in segregating galaxies from obscured AGN in IXO deep fields and expectations proposed survey X-ray missions.

  9. The Star Formation in Radio Survey: GBT 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-Forming Regions

    CERN Document Server

    Murphy, E J; Mason, B S; Condon, J J; Schinnerer, E; Aniano, G; Armus, L; Helou, G; Turner, J L; Jarrett, T H

    2012-01-01

    We present 33\\,GHz photometry of 103 galaxy nuclei and extranuclear star-forming complexes taken with the Green Bank Telescope (GBT) as part of the Star Formation in Radio Survey (SFRS). Among the sources without evidence for an AGN, and also having lower frequency radio data, we find a median thermal fraction at 33GHz of ~76% with a dispersion of ~24%. For all sources resolved on scales 90%. This suggests that the rest-frame 33GHz emission provides a sensitive measure of the ionizing photon rate from young star-forming regions, thus making it a robust star formation rate indicator. Taking the 33GHz star formation rates as a reference, we investigate other empirical calibrations relying on different combinations of warm 24\\mu m dust, total infrared (IR; 8-1000\\mu m), H\\alpha\\ line, and far-UV continuum emission. The recipes derived here generally agree with others found in the literature, albeit with a large dispersion that most likely stems from a combination of effects. Comparing the 33GHz to total IR flux ...

  10. The very wide-field gzK galaxy survey - I. Details of the clustering properties of star-forming galaxies at z ˜ 2

    Science.gov (United States)

    Ishikawa, Shogo; Kashikawa, Nobunari; Toshikawa, Jun; Onoue, Masafusa

    2015-11-01

    We present the results of clustering analysis on z ˜ 2 star-forming galaxies. By combining our data with data from publicly available archives, we collect g-, zB/z- and K-band imaging data over 5.2 deg2, which represents the largest area BzK/gzK survey. We apply colour corrections to translate our filter set to those used in the original BzK selection for the gzK selection. Because of the wide survey area, we obtain a sample of 41 112 star-forming gzK galaxies at z ˜ 2 (sgzK galaxies) down to KAB error than that in previous studies. The large amount of data enables us to determine ACFs differentially depending on the luminosity of the subset of the data. The mean halo mass of faint sgzK galaxies (22.0 = (1.32^{+0.09}_{-0.12}) × 10^{12} h^{-1} M⊙, whereas bright sgzK galaxies (18.0 ≤ K ≤ 21.0) were found to reside in dark haloes with a mass of = (3.26^{+1.23}_{-1.02}) × 10^{13} h^{-1} M⊙.

  11. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Romeo Velona, A. D.; Gavignaud, I.; Meza, A. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Av. Republica 220, Santiago (Chile); Sommer-Larsen, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); Napolitano, N. R. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Antonuccio-Delogu, V. [INAF-Osservatorio Astrofisico di Catania, v. S. Sofia 78, I-95123 Catania (Italy); Cielo, S., E-mail: aro@oact.inaf.it [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-06-20

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevant evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M{sub *} plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active

  12. Search for [CII] emission in z=6.5-11 star-forming galaxies

    CERN Document Server

    González-López, Jorge; Decarli, Roberto; Walter, Fabian; Vallini, Livia; Neri, Roberto; Bertoldi, Frank; Bolatto, Alberto D; Carilli, Christopher L; Cox, Pierre; da Cunha, Elisabete; Ferrara, Andrea; Gallerani, Simona; Infante, Leopoldo

    2014-01-01

    We present the search for the [CII] emission line in three $z>6.5$ Lyman-alpha emitters (LAEs) and one J-Dropout galaxy using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Plateau de Bure Interferometer (PdBI). We observed three bright $z\\sim6.5-7$ LAEs discovered in the SUBARU deep field (SDF) and the Multiple Imaged lensed $z\\sim 11$ galaxy candidate found behind the galaxy cluster MACSJ0647.7+7015. For the LAEs IOK-1 ($z=6.965$), SDF J132415.7+273058 ($z=6.541$) and SDF J132408.3+271543 ($z=6.554$) we find upper limits for the [CII] line luminosity of $<2.05$, $<4.52$ and $<10.56\\times10^{8}{\\rm L}_{\\odot}$ respectively. We find upper limits to the FIR luminosity of the galaxies using a spectral energy distribution template of the local galaxy NGC 6946 and taking into account the effects of the Cosmic Microwave Background on the mm observations. For IOK-1, SDF J132415.7+273058 and SDF J132408.3+271543 we find upper limits for the FIR luminosity of $<2.33$, $3.79$ ...

  13. Phase Structure of Weak MgII Absorbers Star Forming Pockets Outside of Galaxies

    CERN Document Server

    Charlton, J C; Ding, J; Zonak, S G; Bond, N; Rigby, J R; Charlton, Jane C.; Churchill, Christopher W.; Ding, Jie; Zonak, Stephanie; Bond, Nicholas; Rigby, Jane R.

    2001-01-01

    A new and mysterious class of object has been revealed by the detection of numerous weak MgII doublets in quasar absorption line spectra. The properties of these objects will be reviewed. They are not in close proximity to luminous galaxies, yet they have metallicities close to the solar value; they are likely to be self-enriched. A significant fraction of the weak MgII absorbers are constrained to be less than 10 parsecs in size, yet they present a large cross-section for absorption, indicating that there are more than a million times more of them than there are luminous galaxies. They could be remnants of Population III star clusters or tracers of supernova remnants in a population of "failed dwarf galaxies" expected in cold dark matter structure formation scenarios.

  14. Escape of Lyα and continuum photons from star-forming galaxies

    Science.gov (United States)

    Yajima, Hidenobu; Li, Yuexing; Zhu, Qirong; Abel, Tom; Gronwall, Caryl; Ciardullo, Robin

    2014-05-01

    A large number of high-redshift galaxies have been discovered via their narrow-band Lyα line or broad-band continuum colours in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understand galaxy evolution and the cosmic reionization. Here, we investigate the escape of Lyα, non-ionizing UV-continuum (λ = 1300-1600 Å in rest frame), and ionizing photons (λ emissivity of Lyman Alpha Emitters (LAEs). By combining this relation with the observed luminosity functions of LAEs at different redshift, we estimate the contribution from LAEs to the reionization of intergalactic medium (IGM). Our result suggests that ionizing photons from LAEs alone are not sufficient to ionize IGM at z ≳ 6, but they can maintain the ionization of IGM at z ˜ 0-5.

  15. The Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7

    Science.gov (United States)

    Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G.

    2011-01-01

    We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift ' extinction, star formation rate ' ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios, The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Te method, for the first time in an average-metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically-calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, to explore the diversity of ionization conditions and mass-metallicity ratios at z=2.

  16. Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7

    Science.gov (United States)

    Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G. D.

    2010-01-01

    We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift, extinction, star formation rate, ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios. The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Tc method, for the first time in all metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, and explore the diversity of ionization conditions and mass-metallicity ratios at z=2.

  17. VALES - III. The calibration between the dust continuum and interstellar gas content of star-forming galaxies

    Science.gov (United States)

    Hughes, T. M.; Ibar, E.; Villanueva, V.; Aravena, M.; Baes, M.; Bourne, N.; Cooray, A.; Davies, L. J. M.; Driver, S.; Dunne, L.; Dye, S.; Eales, S.; Furlanetto, C.; Herrera-Camus, R.; Ivison, R. J.; van Kampen, E.; Lara-López, M. A.; Maddox, S.; Michałowski, M. J.; Oteo, I.; Smith, D.; Smith, M. W. L.; Valiante, E.; van der Werf, P.; Viaene, S.; Xue, Y. Q.

    2017-06-01

    We present the calibration between the dust continuum luminosity and interstellar gas content obtained from the Valparaíso ALMA Line Emission Survey (VALES) sample of 67 main-sequence star-forming galaxies at 0.02 Assembly survey. Adopting αCO = 6.5 (K km s-1 pc2)-1, the average ratio of L_{ν _{850}}/MH2 = (6.4 ± 1.4)× 1019 erg s-1 Hz-1 M_{⊙}^{-1}, in excellent agreement with literature values. We obtain a linear fit of log _{10} ({M}_{H2}/{M_{⊙}}) = (0.92± 0.02) log _{10} (L_{ν _{850}}/{erg s^{-1} Hz^{-1}})-(17.31± 0.59). We provide relations between L_{ν _{850}}, MH2 and MISM when combining the VALES and literature samples, and adopting a Galactic αCO value.

  18. Green Peas and diagnostics for Lyman continuum leaking in star-forming dwarf galaxies

    Science.gov (United States)

    Thuan, Trinh

    2014-10-01

    One of the key questions in observational cosmology is the identification of the sources responsible for cosmic reionization. The general consensus is that a population of faint low-mass galaxies must be responsible for the bulk of the ionizing photons. However, attempts at identifying individual galaxies showing Lyman continuum (LyC) leakage have so far not been successful, both at high and low redshifts. We propose here to observe directly the LyC of five so-called "Green Pea" (GP) galaxies. GPs share many of the properties of the Lyman Break galaxies at high z (compactness, low mass, low metallicity, high specific star formation rate, gas-rich and clumpy morphology) and may constitute local examples of the long sought-after LyC leaking galaxies. The five GPs have been identified by searching the Sloan Data Release 10 spectral data base of 2 million spectra for non-AGN emission-line objects that meet the following criteria: high [OIII]5007/[OII]3727 ratios, large GALEX FUV fluxes, and redshifted enough (z~0.3) so that the LyC is shifted into the sensitive spectral range of COS. Our unique GP sample will allow us to combine for the first time four fundamental tests for LyC leaking in galaxies and validate their usefulness as LyC leaking indicators : 1) direct measurements of the LyC; 2) high [OIII]/[OII] ratios; 3) characteristics of the Lyman alpha line profile; and 4) residual intensities in the low-ionization ISM absorption UV lines.

  19. Far Ultraviolet Morphology of Star Forming Filaments in Cool Core Brightest Cluster Galaxies

    CERN Document Server

    Tremblay, Grant R; Baum, Stefi A; Mittal, Rupal; McDonald, Michael; Combes, Françoise; Li, Yuan; McNamara, Brian; Bremer, Malcolm N; Clarke, Tracy E; Donahue, Megan; Edge, Alastair C; Fabian, Andrew C; Hamer, Stephen L; Hogan, Michael T; Oonk, Raymond; Quillen, Alice C; Sanders, Jeremy S; Salomé, Philippe; Voit, G Mark

    2015-01-01

    We present a multiwavelength morphological analysis of star forming clouds and filaments in the central ($ 5$ \\Msol) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Ly$\\alpha$, narrowband H$\\alpha$, broadband optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot ($\\sim10^{7-8}$ K) and warm ionised ($\\sim 10^4$ K) gas phases, as well as the old stellar population and radio-bright AGN outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend toward and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed {\\it in situ} by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations...

  20. Search for [C II] emission in z = 6.5-11 star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    González-López, Jorge; Infante, Leopoldo [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Riechers, Dominik A., E-mail: jgonzal@astro.puc.cl, E-mail: linfante@astro.puc.cl [Astronomy Department, Cornell University 220 Space Sciences Building, Ithaca, NY 14853 (United States); and others

    2014-04-01

    We present the search for the [C II] emission line in three z > 6.5 Lyα emitters (LAEs) and one J-dropout galaxy using the Combined Array for Research in Millimeter-wave Astronomy and the Plateau de Bure Interferometer. We observed three bright z ∼ 6.5-7 LAEs discovered in the Subaru Deep Field (SDF) and the multiple imaged lensed z ∼ 11 galaxy candidate found behind the galaxy cluster MACSJ0647.7+7015. For the LAEs IOK-1 (z = 6.965), SDF J132415.7+273058 (z = 6.541), and SDF J132408.3+271543 (z = 6.554) we find upper limits for the [C II] line luminosity of <2.05, <4.52, and <10.56 × 10{sup 8} L {sub ☉}, respectively. We find upper limits to the far-IR (FIR) luminosity of the galaxies using a spectral energy distribution template of the local galaxy NGC 6946 and taking into account the effects of the cosmic microwave background on the millimeter observations. For IOK-1, SDF J132415.7+273058, and SDF J132408.3+271543 we find upper limits for the FIR luminosity of <2.33, 3.79, and 7.72 × 10{sup 11} L {sub ☉}, respectively. For the lensed galaxy MACS0647-JD, one of the highest-redshift galaxy candidates to date with z{sub ph}=10.7{sub −0.4}{sup +0.6}, we put an upper limit in the [C II] emission of <1.36 × 10{sup 8} × (μ/15){sup –1} L {sub ☉} and an upper limit in the FIR luminosity of <6.1 × 10{sup 10} × (μ/15){sup –1} L {sub ☉} (where μ is the magnification factor). We explore the different conditions relevant for the search for [C II] emission in high-redshift galaxies as well as the difficulties for future observations with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Cerro Chajnantor Atacama Telescope (CCAT).

  1. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Rafelski, Marc [NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Acquaviva, Viviana [New York City College of Technology, Brooklyn, NY 11201 (United States); Brown, Thomas M.; Coe, Dan; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lee, Kyoung-soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Siana, Brian D. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-09-20

    We estimate the UV continuum slope, β, for 923 galaxies in the range 1 < z < 8 in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at 1 < z < 2 down to an absolute magnitude M{sub UV}=−14(∼0.006 L{sub z=1}{sup ∗};0.02 L{sub z=0}{sup ∗}), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range 1 < z < 2 are significantly bluer than local dwarf galaxies. We find their mean (median) values <β > = – 1.382(– 1.830) ± 0.002 (random) ± 0.1 (systematic). We find comparable scatter in β (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than z > 2 galaxies. We study the trends of β with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, dβ/dM = –0.11 ± 0.01, and no evolution in dβ/dM with redshift. A modest increase in dust reddening with redshift and luminosity, ΔE(B – V) ∼ 0.1, and a comparable increase in the dispersion of dust reddening at z < 2, appears likely to explain the observed trends. At z > 2, we find trends that are consistent with previous works; combining our data with the literature in the range 1 < z < 8, we find a color evolution with redshift, dβ/dz = –0.09 ± 0.01 for low luminosity (0.05 L{sub z=3}{sup ∗}), and dβ/dz = –0.06 ± 0.01 for medium luminosity (0.25 L{sub z=3}{sup ∗}) galaxies.

  2. The Structural Evolution of Milky-Way-Like Star-Forming Galaxies zeta is approximately 1.3

    Science.gov (United States)

    Patel, Shannon G.; Fumagalli, Mattia; Franx, Marun; VanDokkum, Pieter G.; VanDerWel, Arjen; Leja, Joel; Labbe, Ivo; Brammr, Gabriel; Whitaker, Katherine E.; Skelton, Rosalind E.; Momcheva, Ivelina; Lundgren, Britt; Muzzin, Adam; Quadri, Ryan F.; Nelson, Erica June; Wake, David A.; Rix, Hans-Walter

    2013-01-01

    We follow the structural evolution of star-forming galaxies (SFGs) like the Milky Way by selecting progenitors to zeta is approx. 1.3 based on the stellar mass growth inferred from the evolution of the star-forming sequence. We select our sample from the 3D-HT survey, which utilizes spectroscopy from the HST-WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of zeta = 0 SFGs with stellar mass M = 10(exp 10.5) solar mass are typically half as massive at zeta is approx. 1. This late-time stellar mass grow is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at zeta is approx. 0 have grown in half-light radius by a factor of approx. 1.4 zeta is approx. 1. The half-light radius grows with stellar mass as r(sub e) alpha stellar mass(exp 0.29). While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of H(a) maps for SFGs at zeta approx. are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R - 8 kkpc to have increased by a factor of approx. 2 since zeta is approx. 1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.

  3. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary......We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  4. X-ray properties of radio-selected star forming galaxies in the Chandra-COSMOS survey

    CERN Document Server

    Ranalli, P; Zamorani, G; Cappelluti, N; Civano, F; Georgantopoulos, I; Gilli, R; Schinnerer, E; Smolcic, V; Vignali, C

    2012-01-01

    X-ray surveys contain sizable numbers of star forming galaxies, beyond the AGN which usually make the majority of detections. Many methods to separate the two populations are used in the literature, based on X-ray and multiwavelength properties. We aim at a detailed test of the classification schemes and to study the X-ray properties of the resulting samples. We build on a sample of galaxies selected at 1.4 GHz in the VLA-COSMOS survey, classified by Smolcic et al. (2008) according to their optical colours and observed with Chandra. A similarly selected control sample of AGN is also used for comparison. We review some X-ray based classification criteria and check how they affect the sample composition. The efficiency of the classification scheme devised by Smolcic et al. (2008) is such that ~30% of composite/misclassified objects are expected because of the higher X-ray brightness of AGN with respect to galaxies. The latter fraction is actually 50% in the X-ray detected sources, while it is expected to be muc...

  5. Large Binocular Telescope and Sptizer Spectroscopy of Star-forming Galaxies at 1 Extinction and Star Formation Rate Indicators

    Science.gov (United States)

    Rujopakarn, W.; Rieke, G. H.; Papovich, C. J.; Weiner, B. J.; Rigby, Jane; Rex, M.; Bian, F.; Kuhn, O. P.; Thompson, D.

    2012-01-01

    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from 0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z 2 must take careful count of extinction in the most IR luminous galaxies.We also measure extinction by comparing SFR estimates from optical emission lines with those from far- IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 extinction, the Ha SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2µm polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, 0.2 dex, scatter is observed.

  6. Large gas reservoirs and free-free emission in two lensed star-forming galaxies at z=2.7

    CERN Document Server

    Aravena, M; Aguirre, J E; Ashby, M L N; Benson, B A; Bothwell, M; Brodwin, M; Carlstrom, J E; Chapman, S C; Crawford, T M; de Breuck, C; Fassnacht, C D; Gonzalez, A H; Greve, T R; Gullberg, B; Hezaveh, Y; Holder, G P; Holzapfel, W L; Keisler, R; Malkan, M; Marrone, D P; McIntyre, V; Reichardt, C L; Sharon, K; Spilker, J S; Stalder, B; Stark, A A; Vieira, J D; Weiss, A

    2013-01-01

    We report the detection of CO(1-0) line emission in the bright, lensed star-forming galaxies SPT-S 233227-5358.5 (z=2.73) and SPT-S 053816-5030.8 (z=2.78), using the Australia Telescope Compact Array (ATCA). Both galaxies were discovered in a large-area millimeter survey with the South Pole Telescope (SPT) and found to be gravitationally lensed by intervening structures. The measured CO intensities imply galaxies with molecular gas masses of (3.2 \\pm 0.5)x10^10 (mu/15)^{-1}(X_CO/0.8) M_sun and (1.7 \\pm 0.3)x10^10 (mu/20)^{-1}(X_CO/0.8) M_sun, and gas depletion timescales of 4.9x10^7 (X_CO/0.8) yr and 2.6x10^7 (X_CO/0.8) yr, respectively, where mu corresponds to the lens magnification and X_CO is the CO luminosity to gas mass conversion factor. In the case of SPT-S 053816-5030.8, we also obtained significant detections of the rest-frame 115.7 and 132.4 GHz radio continuum. Based on the radio to infrared spectral energy distribution and an assumed synchrotron spectral index, we find that 42 \\pm 10 % and 55 \\pm ...

  7. Star-Forming Galaxies at z=0.24 in the Subaru Deep Field and the Sloan Digital Sky Survey

    CERN Document Server

    Morioka, Taichi; Taniguchi, Yoshiaki; Shioya, Yasuhiro; Murayama, Takashi; Sasaki, Shunji S

    2008-01-01

    We make a search for Halpha emitting galaxies at z=0.24 in the Subaru Deep Field (SDF) using the archival data set obtained with the Subaru Telescope. We carefully select Halpha emitters in the narrowband filter NB816, using B, V, Rc, i', and z' broad-band colors. We obtain a sample of 258 emitting galaxies with observed equivalent widths of (Halpha+[NII]6548,6584) greater than 12 angstrom. We also analyze a sample of Halpha emitters taken from the Sloan Digital Sky Survey (SDSS) to constrain the luminous end of Halpha luminosity function. Using the same selection criteria as for the SDF, and after excluding AGNs, we obtain 317 Halpha emitting star-forming galaxies. Combining these two samples of Halpha emitters found in both SDF and SDSS, we derive a Halpha luminosity function with best-fit Schechter function parameters of alpha = -1.31^+0.17_-0.17, log phi^* = -2.46^+0.34_-0.40 Mpc^-3, log L^* = 41.99^+0.08_-0.07 ergs s^-1. An extinction-corrected Halpha luminosity density is 4.45^+2.96_-1.75 x 10^39 ergs s...

  8. An Extreme Metallicity, Large-Scale Outflow from a Star-Forming Galaxy at z ~ 0.4

    CERN Document Server

    Muzahid, Sowgat; Churchil, Christopher W; Charlton, Jane C; Nielsen, Nikole M; Mathes, Nigel L; Trujillo-Gomez, Sebastian

    2015-01-01

    We present a detailed analysis of a large-scale galactic outflow in the CGM of a massive (M_h ~ 10^12.5 Msun), star-forming (6.9 Msun/yr), sub-L* (0.5 L_B*) galaxy at z=0.39853 that exhibits a wealth of metal-line absorption in the spectra of the background quasar Q 0122-003 at an impact parameter of 163 kpc. The galaxy inclination angle (i=63 degree) and the azimuthal angle (Phi=73 degree) imply that the QSO sightline is passing through the projected minor-axis of the galaxy. The absorption system shows a multiphase, multicomponent structure with ultra-strong, wide velocity spread OVI (logN = 15.16\\pm0.04, V_{90} = 419 km/s) and NV (logN = 14.69\\pm0.07, V_{90} = 285 km/s) lines that are extremely rare in the literature. The highly ionized absorption components are well explained as arising in a low density (10^{-4.2} cm^{-3}), diffuse (10 kpc), cool (10^4 K) photoionized gas with a super-solar metallicity ([X/H] > 0.3). From the observed narrowness of the Lyb profile, the non-detection of SIV absorption, and...

  9. The Intrinsic Scatter Along The Main Sequence of Star-Forming Galaxies at z ~ 0.7

    CERN Document Server

    Guo, Kexin; Fu, Hai

    2013-01-01

    A sample of 12614 star-forming galaxies (SFGs) with stellar mass >10^9.5 M_sun between 0.6galaxies undetected at 24 micron. We confirm that the slope of the mass-SFR relation is close to unity. We examine the distributions of specific SFRs (SSFRs) in four equally spaced mass bins from 10^9.5 M_sun to 10^11.5 M_sun. Different models are used to constrain the scatter of SSFR for lower mass galaxies that are mostly undetected at 24 micron. The SFR scatter is dominated by the scatter of UV luminosity and gradually that of IR luminosity at increasing stellar mass. We derive SSFR dispersions of 0.18, 0.21, 0.26 and 0.31 dex with a typical measurement uncertainty of <~ 0.01 dex for the four mass bins. Interestingly, the scatter of the mass-SFR relation...

  10. Variability and star formation in Leo T, the lowest luminosity star-forming galaxy known today

    CERN Document Server

    Clementini, Gisella; Ramos, Rodrigo Contreras; Federici, Luciana; Ripepi, Vincenzo; Marconi, Marcella; Tosi, Monica; Musella, Ilaria

    2012-01-01

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way (MW) "ultra-faint" dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 10 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409 $^{+29}_{-27}$ kpc (distance modulus of 23.06 $\\pm$ 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V-I color-magnitude diagram of Leo T reaches V~29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the star formation history, based on the comparison of the observed V,V-I CMD...

  11. HCN Observations of Dense Star-Forming Gas in High Redshift Galaxies

    CERN Document Server

    Gao, Y; Solomon, P M; Bout, P A V; Gao, Yu; Carilli, Chris L.; Solomon, Philip M.; Bout, Paul A. Vanden

    2007-01-01

    We present here the sensitive HCN(1-0) observations made with the VLA of two submillimeter galaxies and two QSOs at high-redshift. HCN emission is the signature of dense molecular gas found in GMC cores, the actual sites of massive star formation. We have made the first detection of HCN in a submillimeter galaxy, SMM J16359+6612. The HCN emission is seen with a signal to noise ratio of 4$\\sigma$ and appears to be resolved as a double-source of $\\approxlt 2''$ separation. Our new HCN observations, combined with previous HCN detections and upper limits, show that the FIR/HCN ratios in these high redshift sources lie systematically above the FIR/HCN correlation established for nearby galaxies by about a factor of 2. Even considering the scatter in the data and the presence of upper limits, this is an indication that the FIR/HCN ratios for the early Universe molecular emission line galaxies (EMGs) deviate from the correlation that fits Galactic giant molecular cloud cores, normal spirals, LIRGs, and ULIRGs. This ...

  12. IR STAR FORMING KNOTS IN GRAND DESIGN SPIRAL GALAXIES: SPIRAL STRUCTURE STAR FORMATION CONNECTION

    Directory of Open Access Journals (Sweden)

    H. Dottori

    2009-01-01

    Full Text Available We are studying 46 Grand Design spirals widely spread in types, which have been imaged in the K-band with the ESO NTT telescope. Eleven objects show knots strongly associated to the m=2 Fourier component of the spiral structure. Corotation ressonance (CR for the two-armed pattern have been derived for ve galaxies.

  13. Investigating the presence of 500 um submillimeter excess emission in local star forming galaxies

    CERN Document Server

    Kirkpatrick, Allison; Galametz, Maud; Kennicutt, Rob; Dale, Daniel; Aniano, Gonzalo; Sandstrom, Karin; Armus, Lee; Crocker, Alison; Hinz, Joannah; Hunt, Leslie; Koda, Jin; Walter, Fabian

    2013-01-01

    Submillimeter excess emission has been reported at 500 microns in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 microns for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12+log(O/H)=7.8-8.7). We probe the far-infrared (IR) emission using images from the Spitzer Space Telescope and Herschel Space Observatory in the wavelength range 24-500 microns. We model the far-IR peak of the dust emission with a two-temperature modified blackbody and measure excess of the 500 micron photometry relative to that predicted by our model. We compare the submillimeter excess, where present, with global galaxy metallicity and, where available, resolved metallicity measurements. We do not find any correlation between the 500 micron excess and metallicity. A few individual sources do...

  14. NEAR-ULTRAVIOLET SPECTROSCOPY OF STAR-FORMING GALAXIES FROM eBOSS: SIGNATURES OF UBIQUITOUS GALACTIC-SCALE OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangtun Ben [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Comparat, Johan [Instituto de Física Teórica, UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Kneib, Jean-Paul; Delubac, Timothée [Laboratoire dástrophysique, Ecole Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, 1290 Versoix (Switzerland); Raichoor, Anand; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Newman, Jeffrey [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Zhou, Xu [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Schneider, Donald P., E-mail: guangtun@jhu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-12-10

    We present rest-frame near-ultraviolet (NUV) spectroscopy of star-forming galaxies (SFGs) at 0.6 < z < 1.2 from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) in SDSS-IV. One of the eBOSS programs is to obtain 2″ (about 15 kpc) fiber spectra of about 200,000 emission-line galaxies (ELGs) at redshift z ≳ 0.6. We use the data from the pilot observations of this program, including 8620 spectra of SFGs at 0.6 < z < 1.2. The median composite spectra of these SFGs at 2200 Å < λ < 4000 Å feature asymmetric, preferentially blueshifted non-resonant emission, Fe ii*, and blueshifted resonant absorption, e.g., Fe ii and Mg ii, indicating ubiquitous outflows driven by star formation at these redshifts. For the absorption lines, we find a variety of velocity profiles with different degrees of blueshift. Comparing our new observations with the literature, we do not observe the non-resonant emission in the small-aperture (<40 pc) spectra of local star-forming regions with the Hubble Space Telescope, and find the observed line ratios in the SFG spectra to be different from those in the spectra of local star-forming regions, as well as those of quasar absorption-line systems in the same redshift range. We introduce an outflow model that can simultaneously explain the multiple observed properties and suggest that the variety of absorption velocity profiles and the line ratio differences are caused by scattered fluorescent emission filling in on top of the absorption in the large-aperture eBOSS spectra. We develop an observation-driven, model-independent method to correct the emission infill to reveal the true absorption profiles. Finally, we show that the strengths of both the non-resonant emission and the emission-corrected resonant absorption increase with [O ii] λλ3727, 3730 rest equivalent width and luminosity, with a slightly larger dependence on the former. Our results show that the eBOSS and future dark-energy surveys (e.g., Dark Energy Spectroscopic

  15. Evolution and constrains in the star formation histories of IR-bright star forming galaxies at high redshift

    Science.gov (United States)

    Sklias, Panos; Schaerer, Daniel; Elbaz, David

    2015-08-01

    Understanding and constraining the early cosmic star formation history of the Universe is a key question of galaxy evolution. A large fraction of star formation is dust obscured, so it is crucial to have access to the IR emission of galaxies to properly study them.Utilizing the multi-wavelength photometry from GOODS-Herschel, we perform SED fitting with different variable star formation histories (SFHs), which we constrain thanks to the observed IR luminosities, on a large sample of individually IR-detected sources from z~1 to 4. We explore how (and to which extent) constraining dust attenuation thanks to the IR luminosities allows to reduce the scatter (expected when using variable SFHs, in contrast to IR+UV standard calibrations) in physical properties and relations such as mass-SFR and the so-called star-forming Main Sequence (MS).Although limited at the high-z end, our analysis shows a change of trends in SFHs between low and high z, that follows the established cosmic SFR density, with galaxies found to prefer rising SFRs at z~3-4, and declining SFRs at z≤1. We show that a fraction of galaxies (~20%), mainly at z≤2, can have lower SFRs than IR-inferred, but still being compatible with the observations, indicative of being post-starbursts/undergoing quenching while bright in the IR, in agreement with theoretical work. The IR-constrained stellar population models we obtain also indicate that the two main modes of star formation - MS and starburst - evolve differently with time, with the former being mostly slow evolving and lying on the MS for long lasting periods, and the latter being very recent, rapidly increasing bursts (or on the decline, when belonging to the aforementioned "quenched" category). Finally, we illustrate how spectroscopic observation of nebular emission lines further enables as to constrain effectively the SFHs of galaxies.

  16. CARMA CO Observations of Three Extremely Metal-Poor, Star-Forming Galaxies

    CERN Document Server

    Warren, Steven R; Cannon, John M; Bolatto, Alberto D; Adams, Elizabeth A K; Bernstein-Cooper, Elijah Z; Giovanelli, Riccardo; Haynes, Martha P; Herrera-Camus, Rodrigo; Jameson, Katie; McQuinn, Kristen B W; Rhode, Katherine L; Salzer, John J; Skillman, Evan D

    2015-01-01

    We present sensitive CO (J = 1 - 0) emission line observations of three metal-poor dwarf irregular galaxies Leo P (Z ~ 3% Z_Solar), Sextans A (Z ~ 7.5% Z_Solar), and Sextans B (Z ~ 7.5% Z_Solar), all obtained with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer. While no CO emission was detected, the proximity of the three systems allows us to place very stringent (4 sigma) upper limits on the CO luminosity (L_CO) in these metal-poor galaxies. We find the CO luminosities to be L_CO < 2900 K km/s pc^2 for Leo P, L_CO < 12400 K km/s pc^2 for Sextans A, and L_CO < 9700 K km/s pc^2 for Sextans B. Comparison of our results with recent observational estimates of the factor for converting between L_CO and the mass of molecular hydrogen, as well as theoretical models, provides further evidence that either the CO-to-H_2 conversion factor increases sharply as metallicity decreases, or that stars are forming in these three galaxies very efficiently, requiring little molecular hydrogen.

  17. The Mid-Infrared Spectrum of Star-Forming Galaxies: Global Properties of PAH Emission

    CERN Document Server

    Smith, J D T; Dale, D A; Moustakas, J; Kennicutt, R C; Helou, G; Armus, L; Roussel, H; Sheth, K; Bendo, G J; Buckalew, B A; Engelbracht, C W; Gordon, K D; Hollenbach, D J; Li, A; Malhotra, S; Murphy, E J; Walter, F

    2006-01-01

    We present a sample of low-resolution 5-38um Spitzer IRS spectra of the inner few square kiloparsecs of 59 nearby galaxies spanning a large range of star formation properties. A robust method for decomposing mid-infrared galaxy spectra is described, and used to explore the behavior of PAH emission and the prevalence of silicate dust extinction. Evidence for silicate extinction is found in ~1/8 of the sample, at strengths which indicate most normal galaxies undergo A_V < ~3 magnitudes averaged over their centers. The contribution of PAH emission to the total infrared power is found to peak near 10% and extend up to ~20%, and is suppressed at metallicities Z < ~Z_sun/4, as well as in low-luminosity AGN environments. Strong inter-band PAH feature strength variations (2-5x) are observed, with the presence of a weak AGN and, to a lesser degree, increasing metallicity shifting power to the longer wavelength bands. A peculiar PAH emission spectrum with markedly diminished 5-8um features arises among the sample...

  18. From Star-Forming Spirals to Passive Spheroids: Integral Field Spectroscopy of E+A Galaxies

    CERN Document Server

    Swinbank, Mark; Bower, Richard; Zabludoff, Ann; Lucey, John; McGee, Sean; Miller, Chris; Nichol, Robert

    2011-01-01

    We present three dimensional spectroscopy of eleven E+A galaxies, selected for their strong H-delta absorption but weak (or non-existent) [OII]3727 and H-alpha emission. This selection suggests that a recent burst of star-formation was triggered but subsequently abruptly ended. We probe the spatial and spectral properties of both the young (~1Gyr) and old (few Gyr) stellar populations. Using the H-delta equivalent widths we estimate that the burst masses must have been at least 10% by mass (Mburst~10^10Mo), which is also consistent with the star-formation history inferred from the broad-band SEDs. On average the A-stars cover ~33% of the galaxy image, extending over 2-15kpc^2, indicating that the characteristic E+A signature is a property of the galaxy as a whole and not due to a heterogeneous mixture of populations. In approximately half of the sample, we find that the A-stars, nebular emission, and continuum emission are not co-located, suggesting that the newest stars are forming in a different place than ...

  19. Lya escape from z~0.03 star-forming galaxies: the dominant role of outflows

    CERN Document Server

    Wofford, A; Salzer, J

    2013-01-01

    The usefulness of H I Lyman-alpha photons for characterizing star formation in the distant universe is limited by our understanding of the astrophysical processes that regulate their escape from galaxies. These processes can only be observed in detail out to a few x100 Mpc. Past nearby (z=0.03. The galaxies cover a broad range of luminosity, oxygen abundance, and reddening. In this paper, we characterize the observed Lyman-alpha lines and establish correlations with fundamental galaxy properties. We find seven emitters. These host young (\\le 10 Myr) stellar populations, have rest-frame equivalent widths in the range 1-12 \\AA, and have Lyman-alpha escape fractions within the COS aperture in the range 1-12 %. One emitter has a double-peaked Lyman-alpha with peaks 370 km/s apart and a stronger blue peak. Excluding this object, the emitters have Lyman-alpha and O I \\lambda 1302 offsets from H-alpha in agreement with expanding shell models and LBG observations. The absorbers have offsets that are almost consistent...

  20. Star forming galaxies in the AKARI Deep Field South: identifications and SEDs

    CERN Document Server

    Pollo, A; Bienias, P; Shirahata, M; Matsuura, S; Kawada, M

    2009-01-01

    To investigate the nature and properties of far-infrared (FIR) sources from the AKARI Deep Field South (ADF-S), we performed an extensive search for the counterparts of 1000 ADF-S objects brighter than 0.0301 Jy in the WIDE-S (90 $\\mu$m) AKARI band in the public databases (NED and SIMBAD). We analyzed the properties of the resulting sample: statistic of the identified objects, number counts, redshift distribution and morphological types. We also made a crude analysis of the clustering properties of the sources and constructed spectral energy distributions (SEDs) of 47 selected objects with the best photometry. Among 1000 investigated ADF-S sources, 545 were identified at other wavelengths. From them, 518 are known galaxies, and 343 of them were not known previously as infra-red sources. We found redshifts of 48 extragalactic objects and morphological types of 77 galaxies. We conclude that the bright FIR point sources observed in the ADF-S are mostly nearby galaxies.Their properties are very similar to propert...

  1. Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history

    CERN Document Server

    Tamborra, Irene; Murase, Kohta

    2014-01-01

    Star-forming galaxies have been predicted to contribute considerably to the isotropic diffuse gamma-ray background as they are guaranteed reservoirs of cosmic rays. Recent Fermi observations have reported the possible correlation between their gamma-ray and infrared luminosities from several galaxies identified with their gamma-ray emission. Relying on this correlation, we here compute the diffuse gamma-ray background from star-forming galaxies adopting the Herschel PEP/HerMES luminosity function up to z ~ 4. Thanks to contributions from star-forming galaxies at z > 2, we find that star-forming galaxies can explain the diffuse gamma-ray background in the 0.3-30 GeV range. We also find this result agrees with the one obtained with a simple semi-analytic model based on the star-formation rate and on templates of the Milky Way and the starbursts M82 and NGC 253. The hadronic interactions responsible for high-energy gamma rays also produce high-energy neutrinos. Assuming that at least 100 PeV cosmic rays can be p...

  2. Nebular excitation in z ∼ 2 star-forming galaxies from the SINS and LUCI surveys: The influence of shocks and active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Buschkamp, Peter; Förster Schreiber, Natascha M.; Kurk, Jaron; Rosario, David; Davies, Ric; Eisenhauer, Frank; Lutz, Dieter [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Gnat, Orly [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Lilly, Simon J.; Carollo, C. Marcella [Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, ETH, CH-8093 Zürich (Switzerland); Burkert, Andreas [Universitäts-Sternwarte Ludwig-Maximilians-Universität (USM), Scheinerstr. 1, D-81679 München (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Hicks, Erin K. S., E-mail: sfnewman@berkeley.edu [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); and others

    2014-01-20

    Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the 'composite' region of the z ∼ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass-metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration.

  3. Evolution of the Stellar-to-Dark Matter Relation: Separating Star-Forming and Passive Galaxies from z=1 to 0

    CERN Document Server

    Tinker, Jeremy L; Bundy, Kevin; George, Matthew R; Behroozi, Peter; Massey, Richard; Rhodes, Jason; Wechsler, Risa

    2013-01-01

    We use measurements of the stellar mass function, galaxy clustering, and galaxy-galaxy lensing within the COSMOS survey to constrain the stellar-to-halo mass relation (SHMR) of star forming and quiescent galaxies over the redshift range z=[0.2,1.0]. For massive galaxies, M*>~10^10.6 Msol, our results indicate that star-forming galaxies grow proportionately as fast as their dark matter halos while quiescent galaxies are outpaced by dark matter growth. At lower masses, there is minimal difference in the SHMRs, implying that the majority low-mass quiescent galaxies have only recently been quenched of their star formation. Our analysis also affords a breakdown of all COSMOS galaxies into the relative numbers of central and satellite galaxies for both populations. At z=1, satellite galaxies dominate the red sequence below the knee in the stellar mass function. But the number of quiescent satellites exhibits minimal redshift evolution; all evolution in the red sequence is due to low-mass central galaxies being quen...

  4. THE METALLICITY DEPENDENCE OF THE CO {yields} H{sub 2} CONVERSION FACTOR IN z {>=} 1 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Schreiber, N. M. Foerster; Gracia-Carpio, J.; Lutz, D.; Saintonge, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Neri, R.; Cox, P. [IRAM, 300 Rue de la Piscine, 38406 St. Martin d' Heres, Grenoble (France); Sternberg, A. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bouche, N. [Department of Physics, University of California, Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Davis, M.; Newman, S. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Apartado 1143, 28800 Alcala de Henares- Madrid (Spain); Naab, T., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de [Max-Planck Institut fuer Astrophysik (MPA), Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-02-10

    We use the first systematic samples of CO millimeter emission in z {>=} 1 'main-sequence' star-forming galaxies to study the metallicity dependence of the conversion factor {alpha}{sub CO,} from CO line luminosity to molecular gas mass. The molecular gas depletion rate inferred from the ratio of the star formation rate (SFR) to CO luminosity, is {approx}1 Gyr{sup -1} for near-solar metallicity galaxies with stellar masses above M{sub S} {approx} 10{sup 11} M{sub Sun }. In this regime, the depletion rate does not vary more than a factor of two to three as a function of molecular gas surface density or redshift between z {approx} 0 and 2. Below M{sub S} the depletion rate increases rapidly with decreasing metallicity. We argue that this trend is not caused by starburst events, by changes in the physical parameters of the molecular clouds, or by the impact of the fundamental-metallicity-SFR-stellar mass relation. A more probable explanation is that the conversion factor is metallicity dependent and that star formation can occur in 'CO-dark' gas. The trend is also expected theoretically from the effect of enhanced photodissociation of CO by ultraviolet radiation at low metallicity. From the available z {approx} 0 and z {approx} 1-3 samples we constrain the slope of the log({alpha}{sub CO})-log (metallicity) relation to range between -1 and -2, fairly insensitive to the assumed slope of the gas-SFR relation. Because of the lower metallicities near the peak of the galaxy formation activity at z {approx} 1-2 compared to z {approx} 0, we suggest that molecular gas masses estimated from CO luminosities have to be substantially corrected upward for galaxies below M{sub S}.

  5. The intrinsic scatter along the main sequence of star-forming galaxies at z ∼ 0.7

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kexin; Zhong Zheng, Xian [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West-Beijing Road, Nanjing 210008 (China); Fu, Hai, E-mail: kxguo@pmo.ac.cn, E-mail: xzzheng@pmo.ac.cn, E-mail: hai-fu@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States)

    2013-11-20

    A sample of 12,614 star-forming galaxies (SFGs) with stellar mass >10{sup 9.5} M {sub ☉} between 0.6 < z < 0.8 from COSMOS is selected to study the intrinsic scatter of the correlation between star formation rate (SFR) and stellar mass. We derive SFR from ultraviolet (UV) and infrared (IR) luminosities. A stacking technique is adopted to measure IR emission for galaxies undetected at 24 μm. We confirm that the slope of the mass-SFR relation is close to unity. We examine the distributions of specific SFRs (SSFRs) in four equally spaced mass bins from 10{sup 9.5} M {sub ☉} to 10{sup 11.5} M {sub ☉}. Different models are used to constrain the scatter of SSFR for lower mass galaxies that are mostly undetected at 24 μm. The SFR scatter is dominated by the scatter of UV luminosity and gradually that of IR luminosity at increasing stellar mass. We derive SSFR dispersions of 0.18, 0.21, 0.26, and 0.31 dex with a typical measurement uncertainty of ≲ 0.01 dex for the four mass bins. Interestingly, the scatter of the mass-SFR relation seems not constant in the sense that the scatter in SSFR is smaller for SFGs of stellar mass <10{sup 10.5} M {sub ☉}. If confirmed, this suggests that the physical processes governing star formation become systematically less violent for less massive galaxies. The SSFR distribution for SFGs with intermediate mass 10{sup 10}-10{sup 10.5} M {sub ☉} is characterized by a prominent excess of intense starbursts in comparison with other mass bins. We argue that this feature reflects that both violent (e.g., major/minor mergers) and quiescent processes are important in regulating star formation in this intermediate-mass regime.

  6. Chemo -- dynamical, multi -- fragmented SPH code for evolution of star forming disk galaxies

    Science.gov (United States)

    Berczik, P.

    The problem of chemical and dynamical evolution of galaxies is one of the most attracting and complex problems of modern astrophysics. Within the framework of the given paper the standard dynamic Smoothed Particle Hydrodynamics (SPH) code (Monaghan J.J. 1992, ARAA, 30, 543) is noticeably expanded. Our work concernes with the changes and incorporation of new ideas into the algorithmic inclusion of Star Formation (SF) and Super Novae (SN) explosions in SPH (Berczik P. & Kravchuk S.G., 1996, ApSpSci, 245, 27). The proposed energy criterion for definition of a place and efficiency of SF results in the successfully explain Star Formation History (SFH) in isolated galaxies of different types. On the base of original ideas we expand a code in a more realistic way of the description of effects of return of a hot, chemical enriched gas in Interstellar Matter (ISM). In addition to the account of SNII, we offer the self-agreed account of SNIa and PN. This allows to describe not only the ISM content of O^16 but also the content of Fe^56 . This model will allow to investigate adequately also a well known G - dwarf problem.

  7. Faint CO Line Wings in Four Star-Forming (Ultra)luminous Infrared Galaxies

    CERN Document Server

    Leroy, Adam K; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-01-01

    We report the results of a search for large velocity width, low-intensity line wings - a commonly used signature of molecular outflows - in four low redshift (ultra)luminous infrared galaxies (U/LIRGs) that appear to be dominated by star formation. The targets were drawn from a sample of fourteen such galaxies presented in Chung et al. (2011), who showed the stacked CO spectrum of the sample to exhibit 1000 km/s-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. (2014) we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high AGN contributions to their bolometric luminosity. We identify one of our targets, IRAS05083 (VII Z...

  8. Massive stars formed in atomic hydrogen reservoirs: HI observations of gamma-ray burst host galaxies

    CERN Document Server

    Michałowski, Michał J; Hjorth, J; Krumholz, M R; Tanvir, N R; Kamphuis, P; Burlon, D; Baes, M; Basa, S; Berta, S; Ceron, J M Castro; Crosby, D; D'Elia, V; Elliott, J; Greiner, J; Hunt, L K; Klose, S; Koprowski, M P; Floc'h, E Le; Malesani, D; Murphy, T; Guelbenzu, A Nicuesa; Palazzi, E; Rasmussen, J; Rossi, A; Savaglio, S; Schady, P; Sollerman, J; Postigo, A de Ugarte; Watson, D; van der Werf, P; Vergani, S D; Xu, D

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line-of-sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the Australia Telescope Compact Array, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought, with star formation being potentially directly fuelled by atomic gas (or with very efficient HI-to-H2 conversion and rapid exhaustion of molecular gas), as has been theoretically shown to be possible. This can happen in low metallicity gas near the onset of star forma...

  9. Collisions and Mergers of Disk Galaxies Hydrodynamics of Star Forming Gas

    CERN Document Server

    Lamb, S A; Hearn, Nathan C.

    2003-01-01

    We summarize the results of numerical simulations of colliding gas-rich disk galaxies in which the impact velocity is set parallel to the spin axes of the two galaxies. The effects of varying the impact speed are studied with particular attention to the resulting gaseous structures and shockwave patterns, and the time needed to produce these structures. The simulations employ an N-body treatment of the stars and dark matter, together with an SPH treatment of the gas, in which all components of the models are gravitationally active. The results indicate that for such impact geometries, collisions can lead to the very rapid formation of a central, rapidly rotating, dense gas disk, and that in all cases extensive star formation is predicted by the very high gas densities and prevalence of shocks, both in the nucleus and out in the galactic disks. As the dense nucleus is forming, gas and stars are dispersed over very large volumes, and only fall back towards the nucleus over long times. In the case of low impact ...

  10. The ACS Nearby Galaxy Survey Treasury VI. The Ancient Star Forming disk of NGC 404

    CERN Document Server

    Williams, Benjamin F; Gilbert, Karoline M; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C; Weisz, Daniel; Skillman, Evan

    2010-01-01

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. Our deepest field reaches the red clump and main-sequence stars with ages 10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ~70% of the stellar mass in the NGC 404 disk formed by z~2 (10 Gyr ago) and at least ~90% formed prior to z~1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early and late type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in GALEX images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mas...

  11. On the contribution of fluorescence to Ly$\\alpha$ halos (LAHs) around star forming galaxies

    CERN Document Server

    Mas-Ribas, Lluís

    2016-01-01

    We quantify the contribution of Ly$\\alpha$ fluorescence to observed spatially extended Ly$\\alpha$ halos around Ly$\\alpha$ emitters (LAE) at redshift ${\\rm z=3.1}$. The key physical quantities that describe the fluorescent signal include (${\\it i}$) the distribution of cold gas in the circum-galactic medium (CGM); we explore simple analytic models and fitting functions to recent hydrodynamical simulations; (${\\it ii}$) local variations in the ionizing background due to ionizing sources that cluster around the central galaxy. We account for clustering by boosting the observationally inferred volumetric production rate of ionizing photons, $\\epsilon_{\\rm LyC}$, by a factor $1+\\xi_{\\rm LyC}(r)$, in which $\\xi_{\\rm LyC}(r)$ quantifies the clustering of ionizing sources around the central galaxy. We compute $\\xi_{\\rm LyC}(r)$ by assigning an 'effective' bias parameter to the ionizing sources. This novel approach allows us to quantify our ignorance of the population of ionizing sources in a simple parametrized form....

  12. The Star-Forming Molecular Gas in High Redshift Submillimeter Galaxies

    CERN Document Server

    Narayanan, Desika; Hayward, Christopher; Younger, Joshua D; Hernquist, Lars

    2009-01-01

    We present a model for the CO molecular line emission from high redshift Submillimeter Galaxies (SMGs). By combining hydrodynamic simulations of gas rich galaxy mergers with the polychromatic radiative transfer code, Sunrise, and the 3D non-LTE molecular line radiative transfer code, Turtlebeach, we show that if SMGs are typically a transient phase of major mergers, their observed compact CO spatial extents, broad line widths, and high excitation conditions (CO SED) are naturally explained. In this sense, SMGs can be understood as scaled-up analogs to local ULIRGs. We utilize these models to investigate the usage of CO as an indicator of physical conditions. We find that care must be taken when applying standard techniques. The usage of CO line widths as a dynamical mass estimator from SMGs can possibly overestimate the true enclosed mass by a factor ~1.5-2. At the same time, assumptions of line ratios of unity from CO J=3-2 (and higher lying lines) to CO (J=1-0) will oftentimes lead to underestimates of the ...

  13. Mid-Infrared Luminosity Function of Local Star-Forming Galaxies in the NEP-Wide Survey Field of AKARI

    CERN Document Server

    Kim, Seong Jin; Jeong, Woong-Seob; Goto, Tomotsugu; Matsuhara, Hideo; Im, Myungshin; Shim, Hyunjin; Kim, Min Gyu; Lee, Myung Gyoon

    2015-01-01

    We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break lu...

  14. Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-Forming Galaxies

    CERN Document Server

    Usero, Antonio; Walter, Fabian; Schruba, Andreas; García-Burillo, Santiago; Sandstrom, Karin; Bigiel, Frank; Brinks, Elias; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl-Friedrich; de Blok, W J G

    2015-01-01

    We present a new survey of HCN(1-0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in Star Formation (SF), finding systematic variations in both the apparent dense gas fraction and the apparent SF efficiency (SFE) of dense gas. The latter may be unexpected, given the popularity of gas density threshold models to explain SF scaling relations. We used the IRAM 30-m telescope to observe HCN(1-0) across 29 nearby disk galaxies whose CO(2-1) emission has previously been mapped by the HERACLES survey. Because our observations span a range of galactocentric radii, we are able to investigate the properties of the dense gas as a function of local conditions. We focus on how the IR/CO, HCN/CO, and IR/HCN ratios (observational cognates of the SFE, dense gas fraction, and dense gas SFE) depend on the stellar surface density and the molecular/atomic ratio. The HCN/CO ra...

  15. ISM excitation and metallicity of star-forming galaxies at z~3.3 from near-IR spectroscopy

    CERN Document Server

    Onodera, M; Lilly, S; Renzini, A; Arimoto, N; Capak, P; Daddi, E; Scoville, N; Tacchella, S; Tatehora, S; Zamorani, G

    2016-01-01

    We study the relationship between stellar mass, star formation rate (SFR),ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at $3 \\lesssim z \\lesssim 3.7$. The gas-phase oxygen abundance, ionization parameter, and electron density of ionized gas are derived from rest-frame optical strong emission lines measured on near-infrared spectra obtained with Keck/MOSFIRE. We remove the effect of these strong emission lines in the broad-band fluxes to compute stellar masses via spectral energy distribution fitting, while the SFR is derived from the dust-corrected ultraviolet luminosity. The ionization parameter is weakly correlated with the specific SFR, but otherwise the ionization parameter and electron density do not correlate with other global galaxy properties such as stellar mass, SFR, and metallicity. The mass-metallicity relation (MZR) at $z\\simeq3.3$ shows lower metallicity by $\\simeq 0.7$ dex than that at $z=0$ at the same stellar mass. Our sample shows an offset by $...

  16. Fine-Structure FeII* Emission and Resonant MgII Emission in z = 1 Star-Forming Galaxies

    CERN Document Server

    Kornei, K A; Martin, C L; Coil, A L; Lotz, J M; Weiner, B J

    2013-01-01

    We present a study of the prevalence, strength, and kinematics of ultraviolet FeII and MgII emission lines in 212 star-forming galaxies at z = 1 selected from the DEEP2 survey. We find FeII* emission in composite spectra assembled on the basis of different galaxy properties, indicating that FeII* emission is prevalent at z = 1. In these composites, FeII* emission is observed at roughly the systemic velocity. At z = 1, we find that the strength of FeII* emission is most strongly modulated by dust attenuation, and is additionally correlated with redshift, star-formation rate, and [OII] equivalent width, such that systems at higher redshifts with lower dust levels, lower star-formation rates, and larger [OII] equivalent widths show stronger FeII* emission. We detect MgII emission in at least 15% of the individual spectra and we find that objects showing stronger MgII emission have higher specific star-formation rates, smaller [OII] linewidths, larger [OII] equivalent widths, lower dust attenuations, and lower st...

  17. The Properties of the Interstellar Medium within a Star-Forming Galaxy at z=2.3

    CERN Document Server

    Danielson, A L R; Smail, Ian; Cox, P; Edge, A C; Weiss, A; Harris, A I; Baker, A J; De Breuck, C; Geach, J E; Ivison, R J; Krips, M; Lungdren, A; Longmore, S; Neri, R; Flacquer, B Ocana

    2010-01-01

    We present an analysis of the molecular and atomic gas emission in the rest-frame far-infrared and sub-millimetre, from the lensed z=2.3 sub-millimetre galaxy SMM J2135-0102. We obtain very high signal-to-noise detections of 11 transitions from 3 species and limits on a further 20 transitions from 9 species. We use the 12CO, [CI] and HCN line strengths to investigate the gas mass, kinematic structure and interstellar medium (ISM) chemistry, and find strong evidence for a two-phase medium comprising a hot, dense, luminous component and an underlying extended cool, low-excitation massive component. Employing photo-dissociation region models we show that on average the molecular gas is exposed to a UV radiation field that is ~1000 x more intense than the Milky Way, with star-forming regions having a characteristic density of n~10^4 /cm^3. These conditions are similar to those found in local ULIRGs and in the central regions of typical starburst galaxies, even though the star formation rate is far higher in this ...

  18. PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy

    CERN Document Server

    Cenko, S Bradley; Kulkarni, S R; Strubbe, Linda E; Miller, Adam A; Butler, Nathaniel R; Quimby, Robert M; Gal-Yam, Avishay; Ofek, Eran O; Quataert, Eliot; Bildsten, Lars; Poznanski, Dovi; Perley, Daniel A; Morgan, Adam N; Filippenko, Alexei V; Arcavi, Iair; Ben-Ami, Sagi; Cucchiara, Antonio; Fassnacht, Christopher D; Green, Yoav; Hook, Isobel M; Howell, D Andrew; Lagattuta, David J; Law, Nicholas M; Kasliwal, Mansi M; Nugent, Peter E; Silverman, Jeffrey M; Sullivan, Mark; Tendulkar, Shriharsh P; Yaron, Ofer

    2011-01-01

    We present the discovery and characterisation of PTF10iya, a short-lived (dt ~ 10 d, with an optical decay rate of ~ 0.3 mag per d), luminous (M_g ~ -21 mag) transient source found by the Palomar Transient Factory. The ultraviolet/optical spectral energy distribution is reasonably well fit by a blackbody with T ~ 1-2 x 10^4 K and peak bolometric luminosity L_BB ~ 10^44 -10^45 erg per s (depending on the details of the extinction correction). A comparable amount of energy is radiated in the X-ray band that appears to result from a distinct physical process. The location of PTF10iya is consistent with the nucleus of a star-forming galaxy (z = 0.22405 +/- 0.00006) to within 350 mas (99.7 per cent confidence radius), or a projected distance of less than 1.2 kpc. At first glance, these properties appear reminiscent of the characteristic "big blue bump" seen in the near-ultraviolet spectra of many active galactic nuclei (AGNs). However, emission-line diagnostics of the host galaxy, along with a historical light cur...

  19. The warm, the excited, and the molecular gas: GRB 121024A shining through its star-forming galaxy

    CERN Document Server

    Friis, M; Krühler, T; Fynbo, J P U; Ledoux, C; Vreeswijk, P M; Malesani, D; Gorosabel, J; Starling, R L C; Jakobsson, P; Varela, K; Watson, D J; Wiersema, K; Drachmann, A P; Trotter, A; Thöne, C C; Postigo, A de Ugarte; D'Elia, V; Elliott, J; Maturi, M; Goldoni, P; Greiner, J; Haislip, J; Kaper, L; Knust, F; LaCluyze, A; Milvang-Jensen, B; Reichart, D; Schulze, S; Sudilovsky, V; Vergani, S D

    2014-01-01

    We present the first reported case of the simultaneous metallicity determination of a gamma-ray burst (GRB) host galaxy, from both afterglow absorption lines as well as strong emission-line diagnostics. Using spectroscopic and imaging observations of the afterglow and host of the long-duration GRB121024A at z = 2.30, we give one of the most complete views of a GRB host/environment to date. We observe a strong damped Ly-alpha absorber (DLA) with a hydrogen column density of log N(HI) = 21.80+/-0.15, H_2 absorption in the Lyman-Werner bands (molecular fraction of log(f) ~ -1.4; fourth solid detection of molecular hydrogen in a GRB-DLA), the nebular emission lines H-alpha, H-beta, [OII], [OIII] and [NII], as well as a large variety of metal absorption lines. We find a GRB host galaxy that is highly star-forming (SFR ~ 40 Msolar/yr), with a dust-corrected metallicity along the line of sight of [Zn/H]corr = -0.5+/-0.2 ([O/H] ~ -0.3 from emission lines), and a depletion factor of refractory elements of [Zn/Fe] = 0....

  20. Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust

    CERN Document Server

    Grossi, M; Bizzocchi, L; Giovanardi, C; Bomans, D; Coelho, B; De Looze, I; Gonçalves, T S; Hunt, L K; Leonardo, E; Madden, S; Menéndez-Delmestre, K; Pappalardo, C; Riguccini, L

    2016-01-01

    We present $^{12}$CO(1-0) and $^{12}$CO(2-1) observations of a sample of 20 star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is observed in ten galaxies and marginally detected in another one. CO fluxes correlate with the FIR 250 $\\mu$m emission, and the dwarfs follow the same linear relation that holds for more massive spiral galaxies extended to a wider dynamical range. We compare different methods to estimate H2 molecular masses, namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant at stellar masses <~ 10$^9$ M$_{\\odot}$, contrary to the atomic hydrogen fraction, M$_{HI}$/M$_*$, which increases inversely with M$_*$. The flattening of the M$_{H_2}$/M$_*$ ratio at low stellar masses does not seem to be related to the effects of the cluster environment because it occurs for both HI-deficient and HI-normal dwa...

  1. The COS-Halos Survey: Origins of the Highly Ionized Circumgalactic Medium of Star-Forming Galaxies

    CERN Document Server

    Werk, Jessica K; Cantalupo, Sebastiano; Fox, Andrew J; Oppenheimer, Benjamin; Tumlinson, Jason; Tripp, Todd M; Lehner, Nicolas; McQuinn, Matthew

    2016-01-01

    The total contribution of diffuse halo gas to the galaxy baryon budget strongly depends on its dominant ionization state. In this paper, we address the physical conditions in the highly-ionized circumgalactic medium (CGM) traced by OVI absorption lines observed in COS-Halos spectra. We analyze the observed ionic column densities, absorption-line widths and relative velocities, along with the ratios of NV/OVI for 39 fitted Voigt profile components of OVI. We compare these quantities with the predictions given by a wide range of ionization models. Photoionization models that include only extragalactic UV background radiation are ruled out; conservatively, the upper limits to NV/OVI and measurements of N$_{\\rm OVI}$ imply unphysically large path lengths $\\gtrsim$ 100 kpc. Furthermore, very broad OVI absorption (b $>$ 40 km/s) is a defining characteristic of the CGM of star-forming L$^{*}$ galaxies. We highlight two possible origins for the bulk of the observed OVI: (1) highly structured gas clouds photoionized p...

  2. Herschel Extreme Lensing Line Observations: Dynamics of two strongly lensed star forming galaxies near redshift z = 2

    CERN Document Server

    Rhoads, James E; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A

    2014-01-01

    We report on two regularly rotating galaxies at redshift z=2, using high resolution spectra of the bright [CII] 158 micron emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSS J120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed v sin(i) = 120 +/- 7 km/s and gas velocity dispersion sigma < 23 km/s. The best fitting model for the Clone is a rotationally supported disk having v sin(i) = 79 +/- 11 km/s and sigma < 4km/s. However the Clone is also consistent with a family of dispersion-dominated models having sigma = 92 +/- 20 km/s. Our results showcase the potential of the [CII] line as a kinematic probe of high redshift galaxy dynamics: [CII] is bright; accessible to heterodyne receivers with exquisite velocity resolution; and traces dense star-forming inte...

  3. Molecular gas content in strongly-lensed z~1.5-3 star-forming galaxies with low IR luminosities

    CERN Document Server

    Dessauges-Zavadsky, M; Schaerer, D; Combes, F; Egami, E; Swinbank, A M; Richard, J; Sklias, P; Rawle, T D; Rex, M; Kneib, J -P; Boone, F; Blain, A

    2014-01-01

    To extend the molecular gas measurements to typical star-forming galaxies (SFGs) with SFR 1. The combined sample of CO-detected SFGs at z>1 shows a large spread in star formation efficiency (SFE), such that SFE extend beyond the low values of local spirals and overlap the distribution of z>1 sub-mm galaxies. We find that the spread in SFE (or equivalently in molecular gas depletion timescale) is due to primarily the specific star formation rate, but also stellar mass and redshift. Correlations of SFE with the offset from the main-sequence and the compactness of the starburst are less clear. The increase of the molecular gas depletion timescale with M* now revealed by low M* SFGs at z>1 is opposed to the admitted constant molecular gas depletion timescale and the linear Kennicutt-Schmidt relation. We confirm an increase of the molecular gas fraction (fgas) from z~0.2 to z~1.2, followed by a quasi non-evolution toward higher redshifts. At each redshift fgas shows a large dispersion due to the dependence of fgas...

  4. The metallicity dependence of the CO {\\rightarrow} H_2 conversion factor in z>1 star forming galaxies

    CERN Document Server

    Genzel, R; Combes, F; Bolatto, A; Neri, R; Sternberg, A; Cooper, M C; Bouche, N; Bournaud, F; Burkert, A; Comerford, J; Cox, P; Davis, M; Schreiber, N M Foerster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Newman, S; Saintonge, A; Shapiro, K; Shapley, A; Weiner, B

    2011-01-01

    We use the first systematic samples of CO millimeter line emission in z~1-3 'main-sequence' star forming galaxies (SFGs) for studying the metallicity dependence of the conversion factor {\\alpha}_CO, from CO millimeter line luminosity to molecular gas mass. The molecular gas depletion rate, which is proportional to the ratio of star formation rate to CO line luminosity, is ~1 Gyr^-1 for near-solar metallicity galaxies with stellar masses above M_S~10^11 M_sun. Its value does not vary much between z~0 and 2. Below M_S the depletion rates appear to increase with decreasing metallicity. We show that this trend is probably not caused by starburst events or by changes in the physical parameters of the molecular clouds but instead requires a metallicity dependent conversion factor. The trend is also expected theoretically from the effect of UV-photodissociation of CO at low metallicity. From the available z~0 and z~1-3 samples we constrain the slope of the log({\\alpha}_CO) -log (metallicity) relation to range betwee...

  5. AGN and stellar feedback in star-forming galaxies at redshift 2 : outflows, mass-loading and quenching

    Science.gov (United States)

    Roos, O.

    2016-06-01

    Galactic-scale outflows are ubiquitous in observations of star-forming galaxies, up to high redshift. Such galactic outflows are mainly generated by internal sources of feedback: young stars, supernovae and active galactic nuclei (AGNs). Still, the physical origins of such outflows are not well understood, and their main driver is still debated. Up to now, most simulations take into account AGN feedback or stellar feedback but not both, because both phenomena happen on very different spatial and time scales. Most of them also still fail to reproduce all observed parameters from first principles. In this poster, we present the POGO project: Physical Origins of Galactic Outflows. With this suite of 23 simulations, we model AGN and stellar feedback simultaneously based on physical assumptions for the first time at very high resolution (6 to 1.5 pc), and investigate their impact on the outflow parameters of the host-galaxy. Here, we show that AGN and stellar feedback couple non-linearly, and that the mass-loading of the resulting outflow highly depends on the mass of the host, all the more because the coupling can either be positive (small masses) or negative (intermediate masses). Nevertheless, the main driver of the outflow remains the AGN at all masses.

  6. ONE PLANE FOR ALL: MASSIVE STAR-FORMING AND QUIESCENT GALAXIES LIE ON THE SAME MASS FUNDAMENTAL PLANE AT z ∼ 0 AND z ∼ 0.7

    Energy Technology Data Exchange (ETDEWEB)

    Bezanson, Rachel [Steward Observatory, Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Franx, Marijn [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands); Van Dokkum, Pieter G. [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States)

    2015-02-01

    Scaling relations between galaxy structures and dynamics have been studied extensively for early- and late-type galaxies, both in the local universe and at high redshifts. The abundant differences between the properties of disky and elliptical, or star-forming and quiescent, galaxies seem to be characteristic of the local universe; such clear distinctions begin to disintegrate as observations of massive galaxies probe higher redshifts. In this paper we investigate the existence of the mass fundamental plane of all massive galaxies (σ ≳ 100 km s{sup –1}). This work includes local galaxies (0.05 < z < 0.07) from the Sloan Digital Sky Survey, in addition to 31 star-forming and 72 quiescent massive galaxies at intermediate redshift (z ∼ 0.7) with absorption-line kinematics from deep Keck-DEIMOS spectra and structural parameters from Hubble Space Telescope imaging. In two-parameter scaling relations, star-forming and quiescent galaxies differ structurally and dynamically. However, we show that massive star-forming and quiescent galaxies lie on nearly the same mass fundamental plane, or the relationship between stellar mass surface density, stellar velocity dispersion, and effective radius. The scatter in this relation (measured about log σ) is low: 0.072 dex (0.055 dex intrinsic) at z ∼ 0 and 0.10 dex (0.08 dex intrinsic) at z ∼ 0.7. This 3D surface is not unique: virial relations, with or without a dependence on luminosity profile shapes, can connect galaxy structures and stellar dynamics with similar scatter. This result builds on the recent finding that mass fundamental plane has been stable for early-type galaxies since z ∼ 2. As we now find that this also holds for star-forming galaxies to z ∼ 0.7, this implies that these scaling relations of galaxies will be minimally susceptible to progenitor biases owing to the evolving stellar populations, structures, and dynamics of galaxies through cosmic time.

  7. Selection and Mid-infrared Spectroscopy of Ultraluminous Star-Forming Galaxies at z~2

    CERN Document Server

    Fang, Guanwen; Willner, S P; Kong, Xu; Wang, Tao; Chen, Yang; Lin, Xuanbin

    2014-01-01

    Starting from a sample of 24 \\micron\\ sources in the Extended Groth Strip, we use 3.6 to 8 \\micron\\ color criteria to select ultraluminous infrared galaxies (ULIRGs) at $z\\sim2$. Spectroscopy from 20-38 \\micron\\ of 14 objects verifies their nature and gives their redshifts. Multi-wavelength data for these objects imply stellar masses ${>}10^{11}$ \\Msun\\ and star formation rates $\\ge$410 \\Msun yr$^{-1}$. Four objects of this sample observed at 1.6 \\micron\\ (rest-frame visible) with {\\it HST}/WFC3 show diverse morphologies, suggesting that multiple formation processes create ULIRGs. Four of the 14 objects show signs of active galactic nuclei, but the luminosity appears to be dominated by star formation in all cases.

  8. The evolution of the equivalent width of the Hα emission line and specific star formation rate in star-forming galaxies at 1 < z < 5

    Science.gov (United States)

    Mármol-Queraltó, E.; McLure, R. J.; Cullen, F.; Dunlop, J. S.; Fontana, A.; McLeod, D. J.

    2016-08-01

    We present the results of a study which uses spectral energy distribution (SED) fitting to investigate the evolution of the equivalent width (EW) of the Hα emission line in star-forming galaxies over the redshift interval 1 mass range (9.5 luminosity and Hα line flux, we use our galaxy samples to compare the evolution of EW(Hα) and specific star formation rate (sSFR). Our results indicate that over the redshift range 1 masses M⋆ ≃ 10^{10}{ M_{sun;} are related by EW(Hα)/Å = (63 ± 7) × sSFR/Gyr-1. Given the current uncertainties in measuring the SFRs of high-redshift galaxies, we conclude that EW(Hα) provides a useful independent tracer of sSFR for star-forming galaxies out to redshifts of z = 5.

  9. Evolution of the stellar-to-dark matter relation: Separating star-forming and passive galaxies from z = 1 to 0

    Energy Technology Data Exchange (ETDEWEB)

    Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Leauthaud, Alexie; Bundy, Kevin [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); George, Matthew R. [Department of Astronomy, University of California, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Behroozi, Peter; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, and SLAC National Accelerator Laboratory, Stanford, CA 94305 (United States); Massey, Richard [Institute for Computational Cosmology, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Rhodes, Jason, E-mail: jeremy.tinker@nyu.edu [California Institute of Technology, MC 350-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2013-12-01

    We use measurements of the stellar mass function, galaxy clustering, and galaxy-galaxy lensing within the COSMOS survey to constrain the stellar-to-halo mass relation (SHMR) of star forming and quiescent galaxies over the redshift range z = [0.2, 1.0]. For massive galaxies, M {sub *} ≳ 10{sup 10.6} M {sub ☉}, our results indicate that star-forming galaxies grow proportionately as fast as their dark matter halos while quiescent galaxies are outpaced by dark matter growth. At lower masses, there is minimal difference in the SHMRs, implying that the majority low-mass quiescent galaxies have only recently been quenched of their star formation. Our analysis also affords a breakdown of all COSMOS galaxies into the relative numbers of central and satellite galaxies for both populations. At z = 1, satellite galaxies dominate the red sequence below the knee in the stellar mass function. But the number of quiescent satellites exhibits minimal redshift evolution; all evolution in the red sequence is due to low-mass central galaxies being quenched of their star formation. At M {sub *} ∼ 10{sup 10} M {sub ☉}, the fraction of central galaxies on the red sequence increases by a factor of 10 over our redshift baseline, while the fraction of quenched satellite galaxies at that mass is constant with redshift. We define a 'migration rate' to the red sequence as the time derivative of the passive galaxy abundances. We find that the migration rate of central galaxies to the red sequence increases by nearly an order of magnitude from z = 1 to z = 0. These results imply that the efficiency of quenching star formation for centrals is increasing with cosmic time, while the mechanisms that quench the star formation of satellite galaxies in groups and clusters is losing efficiency.

  10. Statistical properties of diffuse Lyα haloes around star-forming galaxies at z ˜ 2

    Science.gov (United States)

    Momose, Rieko; Ouchi, Masami; Nakajima, Kimihiko; Ono, Yoshiaki; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Yuma, Suraphong; Mori, Masao; Umemura, Masayuki

    2016-04-01

    We present statistical properties of diffuse Lyα haloes (LAHs) around high-z star-forming galaxies with large Subaru samples of Lyα emitters (LAEs) at z = 2.2. We make subsamples defined by the physical quantities of LAEs' central Lyα luminosities, ultraviolet (UV) magnitudes, Lyα equivalent widths, and UV slopes, and investigate LAHs' radial surface brightness (SB) profiles and scale lengths rn as a function of these physical quantities. We find that there exist prominent LAHs around LAEs with faint Lyα luminosities, bright UV luminosities, and small Lyα equivalent widths in cumulative radial Lyα SB profiles. We confirm this trend with the anticorrelation between rn and Lyα luminosities (equivalent widths) based on the Spearman's rank correlation coefficient that is ρ = -0.9 (-0.7) corresponding to the 96 per cent (93 per cent) confidence level, although the correlation between rn and UV magnitudes is not clearly found in the rank correlation coefficient. Our results suggest that LAEs with properties similar to typical Lyman-break galaxies (with faint Lyα luminosities and small equivalent widths) possess more prominent LAHs. We investigate scenarios for the major physical origins of LAHs with our results. Because we find relatively small Lyα equivalent widths up to 77 Å in LAHs that include LAEs' central components, these results suggest that the cold stream scenario is not preferred. There remain two possible scenarios of Lyα scattering in circumgalactic medium and satellite galaxies that cannot be tested with our observational data.

  11. High-resolution spectroscopy of a young, low-metallicity optically-thin L = 0.02L* star-forming galaxy at z = 3.12

    NARCIS (Netherlands)

    Vanzella, E.; De Barros, S.; Cupani, G.; Karman, W.; Gronke, M.; Balestra, I.; Coe, D.; Mignoli, M.; Brusa, M.; Calura, F.; Caminha, G. -B.; Caputi, K.; Castellano, M.; Christensen, L.; Comastri, A.; Cristiani, S.; Dijkstra, M.; Fontana, A.; Giallongo, E.; Giavalisco, M.; Gilli, R.; Grazian, A.; Grillo, C.; Koekemoer, A.; Meneghetti, M.; Nonino, M.; Pentericci, L.; Rosati, P.; Schaerer, D.; Verhamme, A.; Vignali, C.; Zamorani, G.

    2016-01-01

    We present VLT/X-Shooter and MUSE spectroscopy of a faint F814W = 28.60 +/- 0.33 (M-UV = -17.0), low-mass (less than or similar to 10(7)M(circle dot)), and compact (R-eff = 62 pc) freshly star-forming galaxy at z = 3.1169 magnified (16x) by the Hubble Frontier Fields galaxy cluster Abell S1063. Grav

  12. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Rix, Hans-Walter; Skelton, Rosalind E.; VanDokkum, Pieter G.; Tease, Katherine Whitaker; Wuyts, Stijn

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  13. The FMOS-COSMOS Survey of Star-forming Galaxies at Z ˜ 1.6. V: Properties of Dark Matter Halos Containing Hα Emitting Galaxies

    Science.gov (United States)

    Kashino, Daichi; More, Surhud; Silverman, John D.; Daddi, Emanuele; Renzini, Alvio; Sanders, David B.; Rodighiero, Giulia; Puglisi, Annagrazia; Kajisawa, Masaru; Valentino, Francesco; Kartaltepe, Jeyhan S.; Le Fèvre, Olivier; Nagao, Tohru; Arimoto, Nobuo; Sugiyama, Naoshi

    2017-07-01

    We study the properties of dark matter halos that contain star-forming galaxies at 1.43 ≤ z ≤ 1.74, using the FMOS-COSMOS survey. The sample consists of 516 objects with a detection of the Hα emission line, which represent the star forming population at this epoch, having a stellar mass range of 109.57 ≤ M */M ⊙ ≲ 1011.4 and a star-formation rate range of 15 ≲ SFR/(M ⊙ yr-1) ≲ 600. We measure the projected two-point correlation function while carefully taking into account observational biases, and find a significant clustering amplitude at scales of 0.04-10 h -1 cMpc, with a correlation length {r}0={5.26}-0.62+0.75 {h}-1 {cMpc} and a bias b={2.44}-0.32+0.38. We interpret our clustering measurement using a halo occupation distribution model. The sample galaxies appear to reside in halos with mass {M}{{h}}={4.71}-1.62+1.19× {10}12 {h}-1 {M}⊙ on average, which will likely become present-day halos of mass M h (z = 0) ˜ 2 × 1013 h -1 M ⊙, equivalent to the typical halo mass scale of galaxy groups. We then confirm the decline of the stellar-to-halo mass ratio at M h generation instrument that will provide strong constraints on the galaxy-formation scenario by obtaining precise measurements of galaxy clustering at z > 1.

  14. Synthetic High-Resolution Line Spectra of Star-Forming Galaxies Below 1200A

    CERN Document Server

    Robert, C; Aloisi, A; Leitherer, C; Hoopes, C; Heckman, T M; Robert, Carmelle; Pellerin, Anne; Aloisi, Alessandra; Leitherer, Claus; Hoopes, Charles; Heckman, Timothy M.

    2002-01-01

    We have generated a set of far-ultraviolet stellar libraries using spectra of OB and Wolf-Rayet stars in the Galaxy and the Large and Small Magellanic Cloud. The spectra were collected with the Far Ultraviolet Spectroscopic Explorer and cover a wavelength range from 1003.1 to 1182.7A at a resolution of 0.127A. The libraries extend from the earliest O- to late-O and early-B stars for the Magellanic Cloud and Galactic libraries, respectively. Attention is paid to the complex blending of stellar and interstellar lines, which can be significant, especially in models using Galactic stars. The most severe contamination is due to molecular hydrogen. Using a simple model for the H$_2$ line strength, we were able to remove the molecular hydrogen lines in a subset of Magellanic Cloud stars. Variations of the photospheric and wind features of CIII 1176, OVI 1032, 1038, PV 1118, 1128, and SIV 1063, 1073, 1074 are discussed as a function of temperature and luminosity class. The spectral libraries were implemented into the...

  15. Herschel unveils a puzzling uniformity of distant dusty galaxies

    CERN Document Server

    Elbaz, D; Magnelli, B; Daddi, E; Aussel, H; Altieri, B; Amblard, A; Andreani, P; Arumugam, V; Auld, R; Babbedge, T; Berta, S; Blain, A; Bock, J; Bongiovanni, A; Boselli, A; Buat, V; Burgarella, D; Castro-Rodriguez, N; Cava, A; Cepa, J; Chanial, P; Chary, R -R; Cimatti, A; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dickinson, M; Dominguez, H; Dowell, C D; Dunlop, J S; Dwek, E; Eales, S; Farrah, D; Schreiber, N Forster; Fox, M; Franceschini, A; Gear, W; Genzel, R; Glenn, J; Griffin, M; Gruppioni, C; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Le Borgne, D; Le Floc'h, E; Levenson, L; Lu, N; Lutz, D; Madden, S; Maffei, B; Magdis, G; Mainetti, G; Maiolino, R; Marchetti, L; Mortier, A M J; Nguyen, H T; Nordon, R; O'Halloran, B; Okumura, K; Oliver, S J; Omont, A; Page, M J; Panuzzo, P; Papageorgiou, A; Pearson, C P; Fournon, I Perez; Garcıa, A M Perez; Poglitsch, A; Pohlen, M; Popesso, P; Pozzi, F; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Saintonge, A; Sanchez-Portal, M; Santini, P; Sauvage, M; Schulz, B; Scott, Douglas; Seymour, N; Shao, L; Shupe, D L; Smith, A J; Stevens, J A; Sturm, E; Symeonidis, M; Tacconi, L; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Vieira, J; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2010-01-01

    The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved since z~2.5. We use Herschel deep extragalactic surveys from 100 to 500um to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used to identify isolated galaxies whose flux is not boosted by bright neighbors. Below z~1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15dex), therefore similar to z~0 galaxies. This narrow distribution is puzzling when considering the range of physical processes that could hav...

  16. Spectroscopic Study of Star-forming Galaxies in Filaments and the Field at $z\\sim$0.5: Evidence for Environmental Dependence of Electron Density

    CERN Document Server

    Darvish, Behnam; Sobral, David; Hemmati, Shoubaneh; Nayyeri, Hooshang; Shivaei, Irene

    2015-01-01

    We study the physical properties of a spectroscopic sample of 28 star-forming galaxies in a large filamentary structure in the COSMOS field at $z\\sim$0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of 30 field galaxies. We spectroscopically confirm the presence of a large galaxy filament ($\\sim$ 8 Mpc), along which five confirmed X-ray groups exist. We show that within the uncertainties, the ionization parameter, equivalent width (EW), EW versus specific star-formation rate (sSFR) relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that on average, filament star-forming galaxies are more metal-enriched ($\\sim$ 0.1$-$0.15 dex), possibly due to the inflow of the already enriched intrafilamentary gas into filament galaxies. Moreover, we show that electron densities are significantly lower (a factor of...

  17. The Evolution of the Stellar Mass Functions of Star-Forming and Quiescent Galaxies to z = 4 from the COSMOS/UltraVISTA Survey

    CERN Document Server

    Muzzin, Adam; Stefanon, Mauro; Franx, Marijn; McCracken, Henry J; Milvang-Jensen, Bo; Dunlop, James S; Fynbo, J P U; Fevre, Olivier Le; Brammer, Gabriel; Labbe, Ivo

    2013-01-01

    We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95 675 galaxies in the COSMOS/UltraVISTA field. Sources have been selected from the DR1 UltraVISTA K_{s}-band imaging which covers a unique combination of a wide area (1.62 deg^2), to a significant depth (K_{s,tot} = 23.4). The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10% and 1% of its current value at z ~ 1.0, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing by 2.71^{+0.93}_{-0.22} dex since z = 3.5. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a nonzero population of quiescent galaxies persists to z = 4. Comparisons of the K_{s}-selected star-forming galaxy SMFs to UV-selected SMFs at 2.5 3.5. We estimate the average mass growth of ind...

  18. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Rujopakarn, W. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Daddi, E.; Liu, D. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122 Padova (Italy); Sargent, M. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, v.co dell’Osservatorio 5, I-35122 Padova (Italy); Feruglio, C. [IRAM—Institut de RadioAstronomie Millimétrique, 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Sanders, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI-96720 (United States); Berta, S.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany); Béthermin, M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Koekemoer, A., E-mail: john.silverman@ipmu.jp [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); and others

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  19. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  20. The very wide-field $gzK$ galaxy survey -- I. Details of the clustering properties of star-forming galaxies at $z \\sim 2$

    CERN Document Server

    Ishikawa, Shogo; Toshikawa, Jun; Onoue, Masafusa

    2016-01-01

    We present the results of clustering analysis on the $z \\sim 2$ star-forming galaxies. By combining our data with data from publicly available archives, we collect $g$-, $\\zb / z$-, and $K$-band imaging data over 5.2 deg$^{2}$, which represents the largest area BzK/gzK survey. We apply colour corrections to translate our filter-set to those used in the original BzK selection for the gzK selection. Because of the wide survey area, we obtain a sample of 41,112 star-forming gzK galaxies at $z \\sim 2$ (sgzKs) down to $\\KAB < 23.0$, and determine high-quality two-point angular correlation functions (ACFs). Our ACFs show an apparent excess from power-law behaviour at small angular scale $(\\theta \\la 0.01^{\\circ})$, which corresponds the virial radius of a dark halo at $z \\sim 2$ with a mass of $\\sim 10^{13} \\Msun$. We find that the correlation lengths are consistent with the previous estimates over all magnitude range; however, our results are evaluated with a smaller margin of error than that in previous studie...

  1. Intrinsic Shape of Star-Forming BzK Galaxies II: Rest-Frame UV and Optical Structures in GOODS-South and SXDS

    CERN Document Server

    Yuma, Suraphong; Yabe, Kiyoto

    2012-01-01

    (Abridge) We study statistical intrinsic shape of star-forming BzK galaxies (sBzK galaxies) at z~2 in both rest-frame UV and rest-frame optical wavelengths. The sBzK galaxies are selected down to K(AB)=24.0 mag in the GOODS-South and SXDS fields, where high-resolution images from Hubble Space Telescope are publicly available. 57% (583) of all 1028 galaxies in GOODS-S show a single component in the ACS/F850LP image. As WFC3/F160W images cover only some part of GOODS-S and SXDS, 724/1028 and 2500/29835 sBzK galaxies in the GOODS-S and SXDS have the WFC3 coverage. 86% (626) and 82% (2044) of the sBzK galaxies in WFC3/F160W images appear as a single component in the GOODS-S and SXDS, respectively. Larger fraction of single-component objects in F850LP images represents multiple star-forming regions in galaxies, while they are not so obvious in the F160W image which appears smoother. Most of the single-component sBzK galaxies show S\\'ersic indices of n=0.5-2.5, in agreement with those of local disk galaxies. Their ...

  2. A Search for Molecular Gas toward a BzK-selected Star-forming Galaxy at z = 2.044

    CERN Document Server

    Hatsukade, Bunyo; Motohara, Kentaro; Nakanishi, Kouichiro; Hayashi, Masao; Shimasaku, Kazuhiro; Nagao, Tohru; Tamura, Yoichi; Malkan, Matthew A; Ly, Chun; Kohno, Kotaro

    2009-01-01

    We present a search for CO(3-2) emission in SDF-26821, a BzK-selected star-forming galaxy (sBzK) at z = 2.044, using the 45-m telescope of the Nobeyama Radio Observatory and the Nobeyama Millimeter Array. We do not detect significant emission and derive 2 \\sigma limits: the CO luminosity of L'CO 57 Lsun (K km s^{-1} pc^{-2})^{-1}, and the molecular gas mass of M_H2 < 2.5 x 10^10 Msun, assuming a velocity width of 200 km s^{-1} and a CO-to-H2 conversion factor of alpha_CO=0.8 Msun (K km s^{-1} pc^{-2})^{-1}. The ratio of L_FIR/L'CO, a measure of star formation efficiency (SFE), is comparable to or higher than the two z ~ 1.5 sBzKs detected in CO(2-1) previously, suggesting that sBzKs can have a wide range of SFEs. Comparisons of far-infrared luminosity, gas mass, and stellar mass among the sBzKs suggest that SDF-26821 is at an earlier stage of forming stars with a similar SFE and/or more efficiently forming stars than the two z ~ 1.5 sBzKs. The higher SFEs and specific star formation rates of the sBzKs com...

  3. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching (Germany); Combes, F.; Freundlich, J. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Neri, R. [IRAM, 300 Rue de la Piscine, F-38406 St. Martin d' Heres, Grenoble (France); Nordon, R. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Cox, P. [Department of Physics, Le Conte Hall, University of California, 94720 Berkeley, CA (United States); Davis, M. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Observatorio de Madrid, Alfonso XII, 3, E-28014 Madrid (Spain); Naab, T. [Max-Planck Institut fuer Astrophysik, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); Lutz, D., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de; and others

    2013-08-10

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.

  4. Abundance determination of multiple star-forming regions in the HII galaxy SDSS J165712.75+321141.4

    CERN Document Server

    Hagele, Guillermo F; Perez-Montero, Enrique; Diaz, Angeles I; Cardaci, Monica V; Firpo, Veronica; Terlevich, Elena; Terlevich, Roberto

    2011-01-01

    We analyze high signal-to-noise spectrophotometric observations acquired simultaneously with TWIN, a double-arm spectrograph, from 3400 to 10400 \\AA of three star-forming regions in the HII galaxy SDSS J165712.75+321141.4. We have measured four line temperatures: Te([OIII]), Te([SIII]), Te([OII]), and Te([SII]), with high precision, rms errors of order 2%, 5%, 6% and 6%, respectively, for the brightest region, and slightly worse for the other two. The temperature measurements allowed the direct derivation of ionic abundances of oxygen, sulphur, nitrogen, neon and argon. We have computed CLOUDY tailor-made models which reproduce the O2+ measured thermal and ionic structures within the errors in the three knots, with deviations of only 0.1 dex in the case of O+ and S2+ ionic abundances. In the case of the electron temperature and the ionic abundances of S+/H+, we find major discrepancies which could be consequence of the presence of colder diffuse gas. The star formation history derived using STARLIGHT shows a ...

  5. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star forming dwarf galaxies

    CERN Document Server

    Tang, Jing; Rosenfield, Philip; Slemer, Alessandra; Marigo, Paola; Girardi, Léo; Bianchi, Luciana

    2014-01-01

    We extend the {\\sl\\,PARSEC} library of stellar evolutionary tracks by computing new models of massive stars, from 14\\Msun to 350\\Msun. The input physics is the same used in the {\\sl\\,PARSEC}~V1.1 version, but for the mass-loss rate which is included by considering the most recent updates in literature. We focus on low metallicity, $Z$=0.001 and $Z$=0.004, for which the metal poor dwarf irregular star forming galaxies, Sextans A, WLM and NCG6822, provide simple but powerful workbenches. The models reproduce fairly well the observed CMDs but the stellar colour distributions indicate that the predicted blue loop is not hot enough in models with canonical extent of overshooting. In the framework of a mild extended mixing during central hydrogen burning, the only way to reconcile the discrepancy is to enhance the overshooting at the base of the convective envelope (EO) during the first dredge-UP. The mixing scales required to reproduce the observed loops, EO=2\\HP or EO=4\\HP, are definitely larger than those derive...

  6. PHIBSS: molecular gas, extinction, star formation and kinematics in the z=1.5 star forming galaxy EGS13011166

    CERN Document Server

    Genzel, R; Kurk, J; Wuyts, S; Combes, F; Freundlich, J; Bolatto, A; Cooper, M C; Neri, R; Nordon, R; Bournaud, F; Burkert, A; Comerford, J; Cox, P; Davis, M; Schreiber, N M Förster; García-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Newman, S; Saintonge, A; Griffin, K Shapiro; Shapley, A; Sternberg, A; Weiner, B

    2013-01-01

    We report matched resolution, imaging spectroscopy of the CO J=3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H-alpha line (with LUCI at the Large Binocular Telescope)in the massive z=1.53 main-sequence galaxy EGS 13011166, as part of the "Plateau de Bure high-z, blue sequence survey (PHIBSS). We combine these data with HST V-J-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution, and peaks in an obscured, star forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a 'm...

  7. The clustering properties of radio-selected AGN and star-forming galaxies up to redshifts z~3

    CERN Document Server

    Magliocchetti, M; Brusa, M; Salvato, M; Laigle, C; McCracken, H J; Ilbert, O

    2016-01-01

    We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. Ninety-two per cent have redshift determinations from the Laigle et al. (2016) catalogue. Based on their radio-luminosity, these objects have been divided into two populations of 644 AGN and 247 star-forming galaxies. We find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc if we restrict our analysis to z/M_halo/M_halo/M_halo<~10^{-2.1}, result which clearly indicates the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.

  8. The UVJ Selection of Quiescent and Star Forming Galaxies: Separating Early and Late-Type Galaxies and Isolating Edge-on Spirals

    CERN Document Server

    Patel, Shannon G; Kelson, Daniel D; Franx, Marijn; van der Wel, Arjen; Illingworth, Garth D

    2011-01-01

    We utilize for the first time HST ACS imaging to examine the structural properties of galaxies in the rest-frame U-V versus V-J diagram (i.e., the UVJ diagram) using a sample at 0.610.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sersic indices (n>2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad, but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sersic indices. Interestingly, most UVJ-selected SFGs with high Sersic indices also display structure due to dust and star formation typical of the n<2.5 SFGs and late-type systems. Finally, we find that the position of a SFG on the sequence of UVJ colors is determined to a large degree by the mass of ...

  9. The COS-Halos Survey: Origins of the Highly Ionized Circumgalactic Medium of Star-Forming Galaxies

    Science.gov (United States)

    Werk, Jessica K.; Prochaska, J. Xavier; Cantalupo, Sebastiano; Fox, Andrew J.; Oppenheimer, Benjamin; Tumlinson, Jason; Tripp, Todd M.; Lehner, Nicolas; McQuinn, Matthew

    2016-12-01

    The total contribution of diffuse halo gas to the galaxy baryon budget strongly depends on its dominant ionization state. In this paper, we address the physical conditions in the highly ionized circumgalactic medium (CGM) traced by {{O}} {{VI}} absorption lines observed in COS-Halos spectra. We analyze the observed ionic column densities, absorption-line widths and relative velocities, along with the ratios of {{N}} {{V}}/{{O}} {{VI}} for 39 fitted Voigt profile components of O vi. We compare these quantities with the predictions given by a wide range of ionization models. Photoionization models that include only extragalactic UV background radiation are ruled out; conservatively, the upper limits to {{N}} {{V}}/{{O}} {{VI}} and measurements of {N}{{O}{{VI}}} imply unphysically large path lengths ≳100 kpc. Furthermore, very broad {{O}} {{VI}} absorption (b > 40 km s-1) is a defining characteristic of the CGM of star-forming L* galaxies. We highlight two possible origins for the bulk of the observed {{O}} {{VI}}: (1) highly structured gas clouds photoionized primarily by local high-energy sources or (2) gas radiatively cooling on large scales behind a supersonic wind. Approximately 20% of circumgalactic O vi does not align with any low-ionization state gas within ±50 km s-1 and is found only in halos with {M}{halo} absorption traces the hot corona itself at a characteristic temperature of {10}5.5 K. We discuss the implications of these very distinct physical origins for the dynamical state, gas cooling rates, and total baryonic content of L* gaseous halos.

  10. GOODS-HERSCHEL: star formation, dust attenuation and the FIR-radio correlation on the Main Sequence of star-forming galaxies up to z~4

    CERN Document Server

    Pannella, Maurilio; Daddi, Emanuele; Dickinson, Mark E; Hwang, Ho Seong; Schreiber, Corentin; Strazzullo, Veronica; Aussel, Herve; Bethermin, Matthieu; Buat, Veronique; Charmandaris, Vassilis; Cibinel, Anna; Juneau, Stephanie; Ivison, Rob; Borgne, Damien Le; Floc'h, Emeric Le; Leiton, Roger; Lin, Lihwai; Magdis, Georgios; Morrison, Glenn E; Mullaney, James R; Onodera, Masato; Renzini, Alvio; Salim, Samir; Sargent, Mark T; Scott, Douglas; Shu, Xinwen; Wang, Tao

    2014-01-01

    We use the deep panchromatic dataset available in the GOODS-N field, spanning all the way from GALEX ultra-violet to VLA radio continuum data, to select a star-forming galaxy sample at z~[0.5-4] and robustly measure galaxy photometric redshifts, star formation rates, stellar masses and UV rest-frame properties. We quantitatively explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation properties of star-forming galaxies up to z~4. Our main results can be summarized as follows: i) we find that the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1.5, while the normalization keeps increasing to the highest redshift, z~4, we are able to explore; ii) for the first time in this work, we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z~4; iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-f...

  11. A higher efficiency of converting gas to stars push galaxies at z ~ 1.6 well above the star-forming main sequence

    CERN Document Server

    Silverman, J D; Rodighiero, G; Rujopakarn, W; Sargent, M; Renzini, A; Liu, D; Feruglio, C; Kashino, D; Sanders, D; Kartaltepe, J; Nagao, T; Arimoto, N; Berta, S; Bethermin, M; Lutz, D; Magdis, G; Mancini, C; Onodera, M; Zamorani, G

    2015-01-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high-redshift. To address this issue, we measure the CO molecular gas content of seven high-redshift starburst galaxies with ALMA and IRAM/PdBI. Our sample is selected from the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ~ 1.6 with Subaru. All galaxies have star formation rates (~300-800 Msolar/yr) elevated, by at least four times, above the star-forming main sequence. We detect CO emission in all cases at high significance, indicative of plentiful gas supplies (f_gas ~ 30-50%). Even more compelling, we firmly establish for the first time that starbursts at high redshift systematically have a lower ratio of CO to total infrared l...

  12. The MOSDEF Survey: Detection of [OIII]$\\lambda$4363 and the direct-method oxygen abundance of a star-forming galaxy at z=3.08

    CERN Document Server

    Sanders, Ryan L; Kriek, Mariska; Reddy, Naveen A; Freeman, William R; Coil, Alison L; Siana, Brian; Mobasher, Bahram; Shivaei, Irene; Price, Sedona H; de Groot, Laura

    2016-01-01

    We present measurements of the electron-temperature based oxygen abundance for a highly star-forming galaxy at z=3.08, COSMOS-1908. This is the highest redshift at which [OIII]$\\lambda$4363 has been detected, and the first time that this line has been measured at z>2. We estimate an oxygen abundance of 12+log(O/H)$=8.00^{+0.13}_{-0.14}$. This galaxy is a low-mass ($10^{9.3}$ M$_{\\odot}$), highly star-forming ($\\sim50$ M$_{\\odot}$ yr$^{-1}$) system that hosts a young stellar population ($\\sim160$ Myr). We investigate the physical conditions of the ionized gas in COSMOS-1908 and find that this galaxy has a high ionization parameter, little nebular reddening ($E(B-V)_{\\rm gas}<0.14$), and a high electron density ($n_e\\sim500$ cm$^{-3}$). We compare the ratios of strong oxygen, neon, and hydrogen lines to the direct-method oxygen abundance for COSMOS-1908 and additional star-forming galaxies at z=0-1.8 with [OIII]$\\lambda$4363 measurements, and show that galaxies at z$\\sim$1-3 follow the same strong-line corre...

  13. THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Franx, Marijn; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 06520 (United States); Stefanon, Mauro [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States); McCracken, Henry J. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Milvang-Jensen, Bo; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Dunlop, James S. [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Brammer, Gabriel [European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago (Chile); Van Dokkum, Pieter G. [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States)

    2013-11-01

    We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95,675 K{sub s} -selected galaxies in the COSMOS/UltraVISTA field. The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10%, and 1% of its current value at z ∼ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as ρ{sub star}∝(1 + z){sup –4.7±0.4} since z = 3.5, whereas the mass density of star-forming galaxies increases as ρ{sub star}∝(1 + z){sup –2.3±0.2}. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a non-zero population of quiescent galaxies persists to z = 4. Comparisons of the K{sub s} -selected star-forming galaxy SMFs with UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggest that UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with log(M{sub star}/M{sub ☉}) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0 (3.5), whereas those with log(M{sub star}/M{sub ☉}) = 10.5 have grown by >1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties in the SMFs and find that those from photo-z templates, stellar population synthesis modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.

  14. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163

    Science.gov (United States)

    Jencson, Jacob E.; Kasliwal, Mansi M.; Johansson, Joel; Contreras, Carlos; Castellón, Sergio; Bond, Howard E.; Monson, Andrew J.; Masci, Frank J.; Cody, Ann Marie; Andrews, Jennifer E.; Bally, John; Cao, Yi; Fox, Ori D.; Gburek, Timothy; Gehrz, Robert D.; Green, Wayne; Helou, George; Hsiao, Eric; Morrell, Nidia; Phillips, Mark; Prince, Thomas A.; Simcoe, Robert A.; Smith, Nathan; Tinyanont, Samaporn; Williams, Robert

    2017-03-01

    SPitzer InfraRed Intensive Transients Survey—SPIRITS—is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer/IRAC. We present the discovery and follow-up observations of one of our most luminous (M [4.5] = ‑17.1 ± 0.4 mag, Vega) and reddest ([3.6] ‑ [4.5] = 3.0 ± 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 (D ≈ 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400 km s‑1), double-peaked emission line of He i at 1.083 μm, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200 days. Assuming an A V = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]–[4.5] color has not been previously observed for any SN IIb. Another luminous (M 4.5 = ‑16.1 ± 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by A V ≈ 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that ≳18% of nearby core-collapse SNe are missed by currently operating optical surveys.

  15. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-Forming Galaxy IC 2163

    CERN Document Server

    Jencson, Jacob E; Johansson, Joel; Contreras, Carlos; Castellón, Sergio; Bond, Howard E; Monson, Andrew J; Masci, Frank J; Cody, Ann Marie; Andrews, Jennifer E; Bally, John; Cao, Yi; Fox, Ori D; Gburek, Timothy; Gehrz, Robert D; Green, Wayne; Helou, George; Hsiao, Eric; Morrell, Nidia; Phillips, Mark; Prince, Thomas A; Simcoe, Robert A; Smith, Nathan; Tinyanont, Samaporn; Williams, Robert

    2016-01-01

    SPIRITS---SPitzer InfraRed Intensive Transients Survey---is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer/IRAC. We present the discovery and follow-up observations of one of our most luminous ($M_{[4.5]} = -17.1\\pm0.4$ mag, Vega) and red ($[3.6] - [4.5] = 3.0 \\pm 0.2$ mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 ($D\\approx35.5$ Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad ($\\approx 8400$ km s$^{-1}$), double-peaked emission line of He I at $1.083 \\mu$m, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of $\\approx 200$ days. Assuming $A_V = 2.2$ mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The IR light curves and the extreme $[3.6]-[4.5]$ color cannot be explained using only a standard extinction l...

  16. Direct measurement of dust attenuation in z~1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    CERN Document Server

    Price, Sedona H; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M Forster; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J; Rix, Hans-Walter; Skelton, Rosalind E; van Dokkum, Pieter G; Whitaker, Katherine E; Wuyts, Stijn

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 $\\le$ z $\\le$ 1.5 with H$\\alpha$ SNR $\\ge$ 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions ($A_{V,HII}$ is 1.81 times the integrated $A_{V,star}$), though slightly lower than found for low-redshift starburst galax...

  17. The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of HII regions

    CERN Document Server

    Kashino, D; Sanders, D; Kartaltepe, J S; Daddi, E; Renzini, A; Valentino, F; Rodighiero, G; Juneau, S; Kewley, L J; Zahid, H J; Arimoto, N; Nagao, T; Chu, J; Sugiyama, N; Civano, F; Ilbert, O; Kajisawa, M; Fevre, O Le; Maier, C; Onodera, M; Puglisi, A; Taniguchi, Y; COSMOS,

    2016-01-01

    We present results on the physical conditions of the interstellar medium of star-forming galaxies at 1.410^11Msun being well sampled. The excitation state and chemical enrichment of the ionized gas are investigated using diagnostic diagrams based on the ratios of emission line strengths, including Alpha, [NII]6584, [SII]6717,6731, Hbeta, and [OIII]5007. Our data confirm an offset of the star-forming sequence on the BPT diagram ([OIII]/Hbeta vs. [NII]/Halpha), primarily towards higher [OIII]/Hbeta, compared with local star-forming galaxies. Based on the [SII] ratio, we measure an electron density (n_e=222^{+172}_{-128} cm^-3), higher than that of local galaxies. Overall, these changes in emission-line properties are due to a higher ionization parameter in high redshift galaxies as demonstrated by a lower than expected [SII]/Halpha ratio and a comparison to theoretical models. These results likely rule out an offset in the BPT diagram caused by a harder radiation field or AGN as assessed with Chandra. Finally, ...

  18. The Schmidt-Kennicutt Law of Matched-Age Star Forming Regions; Pa-alpha Observations of the Early-Phase Interacting Galaxy Taffy I

    CERN Document Server

    Komugi, S; Motohara, K; Takagi, T; Iono, D; Kaneko, H; Ueda, J; Saitoh, T R; Kato, N; Konishi, M; Koshida, S; Morokuma, T; Takahashi, H; Tanabe, T; Yoshii, Y

    2012-01-01

    In order to test a recent hypothesis that the dispersion in the Schmidt-Kennicutt law arises from variations in the evolutionary stage of star forming molecular clouds, we compared molecular gas and recent star formation in an early-phase merger galaxy pair, Taffy I (UGC\\ 12915/UGC\\ 12914, VV\\ 254) which went through a direct collision 20 Myr ago and whose star forming regions are expected to have similar ages. Narrow-band Pa-alpha image is obtained using the ANIR near-infrared camera on the mini-TAO 1m telescope. The image enables us to derive accurate star formation rates within the galaxy directly. The total star formation rate, 22.2 M_sun/yr, was found to be much higher than previous estimates. Ages of individual star forming blobs estimated from equivalent widths indicate that most star forming regions are ~7 Myr old, except for a giant HII region at the bridge which is much younger. Comparison between star formation rates and molecular gas masses for the regions with the same age exhibits a surprisingly...

  19. THE METALLICITY EVOLUTION OF STAR-FORMING GALAXIES FROM REDSHIFT 0 TO 3: COMBINING MAGNITUDE-LIMITED SURVEY WITH GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, T.-T.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Richard, J. [CRAL, Observatoire de Lyon, Universite Lyon 1, 9 Avenue Charles Andre, F-69561 Saint Genis Laval Cedex (France)

    2013-01-20

    We present a comprehensive observational study of the gas-phase metallicity of star-forming galaxies from z {approx} 0 {yields} 3. We combine our new sample of gravitationally lensed galaxies with existing lensed and non-lensed samples to conduct a large investigation into the mass-metallicity (MZ) relation at z > 1. We apply a self-consistent metallicity calibration scheme to investigate the metallicity evolution of star-forming galaxies as a function of redshift. The lensing magnification ensures that our sample spans an unprecedented range of stellar mass (3 Multiplication-Sign 10{sup 7} to 6 Multiplication-Sign 10{sup 10} M {sub Sun }). We find that at the median redshift of z = 2.07, the median metallicity of the lensed sample is 0.35 dex lower than the local SDSS star-forming galaxies and 0.18 dex lower than the z {approx} 0.8 DEEP2 galaxies. We also present the z {approx} 2 MZ relation using 19 lensed galaxies. A more rapid evolution is seen between z {approx} 1 {yields} 3 than z {approx} 0 {yields} 1 for the high-mass galaxies (10{sup 9.5} M {sub Sun} < M {sub *} < 10{sup 11} M {sub Sun }), with almost twice as much enrichment between z {approx} 1 {yields} 3 than between z {approx} 1 {yields} 0. We compare this evolution with the most recent cosmological hydrodynamic simulations with momentum-driven winds. We find that the model metallicity is consistent with the observed metallicity within the observational error for the low-mass bins. However, for higher masses, the model overpredicts the metallicity at all redshifts. The overprediction is most significant in the highest mass bin of 10{sup 10}-10{sup 11} M {sub Sun }.

  20. Dust extinction from Balmer decrements of star-forming galaxies at 0.75

    CERN Document Server

    Domínguez, A; Henry, A L; Scarlata, C; Bedregal, A G; Malkan, M; Atek, H; Ross, N R; Colbert, J W; Teplitz, H I; Rafelski, M; McCarthy, P; Bunker, A; Hathi, N P; Dressler, A; Martin, C L; Masters, D

    2012-01-01

    Spectroscopic observations of Halpha and Hbeta emission lines of 129 star-forming galaxies in the redshift range 0.75galaxy stellar mass down to M_{*} ~ 4 x 10^{8} Msun, and rest-frame Halpha equivalent width. The faintest galaxies are five times fainter in Halpha luminosity than galaxies previously studied at z ~ 1.5. We provide empirical relations to correct for the effect of dust extinction in star-forming galaxies as a function of Halpha luminosity and stellar mass. A clear evolution is observed where galaxies of the same Halpha luminosity have lower extinction at higher redshifts, whereas ...

  1. New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling

    CERN Document Server

    Brinchmann, Jarle; Charlot, Stephane

    2008-01-01

    We have used extensive libraries of model and empirical galaxy spectra (assembled respectively from the population synthesis code of Bruzual and Charlot and the fourth data release of the Sloan Digital Sky Survey) to interpret some puzzling features seen in the spectra of high redshift star-forming galaxies. We show that a stellar He II 1640 emission line, produced in the expanding atmospheres of Of and Wolf-Rayet stars, should be detectable with an equivalent width of 0.5-1.5AA in the integrated spectra of star-forming galaxies, provided the metallicity is greater than about half solar. Our models reproduce the strength of the He II 1640 line measured in the spectra of Lyman break galaxies for established values of their metallicities. With better empirical calibrations in local galaxies, this spectral feature has the potential of becoming a useful diagnostic of massive star winds at high, as well as low, redshifts. We also uncover a relationship in SDSS galaxies between their location in the [O III]/Hb vs. ...

  2. The SINS/zC-SINF survey of z~2 galaxy kinematics: Evidence for powerful AGN-driven nuclear outflows in massive star-forming galaxies

    CERN Document Server

    Schreiber, N M Förster; Newman, S F; Kurk, J D; Lutz, D; Tacconi, L J; Wuyts, S; Bandara, K; Burkert, A; Buschkamp, P; Carollo, C M; Cresci, G; Daddi, E; Davies, R; Eisenhauer, F; Hicks, E K S; Lang, P; Lilly, S J; Mainieri, V; Mancini, C; Naab, T; Peng, Y; Renzini, A; Rosario, D; Griffin, K Shapiro; Shapley, A E; Sternberg, A; Tacchella, S; Vergani, D; Wisnioski, E; Wuyts, E; Zamorani, G

    2013-01-01

    We report the detection of ubiquitous powerful nuclear outflows in massive (> 10^11 Msun) z~2 star-forming galaxies (SFGs), which are plausibly driven by an Active Galactic Nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics (AO) assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Halpha and forbidden [NII] and [SII] line emission, with typical velocity FWHM ~ 1500 km/s, [NII]/Halpha ratio ~ 0.6, and intrinsic extent of 2 - 3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~ 60 Msun/yr and mass loading of ~ 3. At larger radii, a weaker broad component is detecte...

  3. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J. [University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Trump, Jonathan R. [Pennsylvania State University, University Park, State College, PA 16802 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kassin, Susan A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [University of Kentucky, Lexington, KY 40506 (United States); Van der Wel, Arjen [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pérez-González, Pablo G. [Universidad Complutense de Madrid, Avda. de Sneca, 2 Ciudad Universitaria, E-28040 Madrid (Spain); Pacifici, Camilla [Yonsei University Observatory, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Simons, Raymond [Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2683 (United States); Campbell, Randy D.; Goodrich, Bob; Kassis, Marc [W. M. Keck Observatory, California Association for Research in Astronomy, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Ceverino, Daniel [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain); Finkelstein, Steven L. [The University of Texas at Austin, Austin, TX 78712 (United States); and others

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  4. SINFONI-HiZELS: the dynamics, merger rates and metallicity gradients of 'typical' star-forming galaxies at z = 0.8-2.2

    Science.gov (United States)

    Molina, J.; Ibar, Edo; Swinbank, A. M.; Sobral, D.; Best, P. N.; Smail, I.; Escala, A.; Cirasuolo, M.

    2017-04-01

    We present adaptive optics (AO) assisted SINFONI integral field unit (IFU) spectroscopy of 11 Hα emitting galaxies selected from the High-Z Emission Line Survey (HiZELS). We obtain spatially resolved dynamics on ∼kpc-scales of star-forming galaxies [stellar mass M⋆ = 109.5 - 10.5 M⊙ and star formation rate (SFR) = 2-30 M⊙ yr-1] near the peak of the cosmic star formation rate history. Combining these observations with our previous SINFONI-HiZELS campaign, we construct a sample of 20 homogeneously selected galaxies with IFU AO-aided observations - the 'SHiZELS' survey, with roughly equal number of galaxies per redshift slice, at z = 0.8, 1.47 and 2.23. We measure the dynamics and identify the major kinematic axis by modelling their velocity fields to extract rotational curves and infer their inclination-corrected rotational velocities. We explore the stellar mass Tully-Fisher relationship, finding that galaxies with higher velocity dispersions tend to deviate from this relation. Using kinemetry analyses, we find that galaxy interactions might be the dominant mechanism controlling the star formation activity at z = 2.23 but they become gradually less important down to z = 0.8. Metallicity gradients derived from the [N II]/Hα emission line ratio show a median negative gradient for the SHiZELS survey of Δlog(O/H)/ΔR = -0.026 ± 0.008 dex kpc-1. We find that metal-rich galaxies tend to show negative gradients, whereas metal-poor galaxies tend to exhibit positive metallicity gradients. This result suggests that the accretion of pristine gas in the periphery of galaxies plays an important role in replenishing the gas in 'typical' star-forming galaxies.

  5. A Revised Host Galaxy Association for GRB 020819B: A High-Redshift Dusty Starburst, Not a Low-Redshift Gas-Poor Spiral

    CERN Document Server

    Perley, Daniel A; Schady, Patricia; Michałowski, Michał J; Thöne, Christina C; Petry, Dirk; Graham, John F; Greiner, Jochen; Schulze, Steve; Kim, Sam

    2016-01-01

    The purported spiral host galaxy of GRB 020819B at z=0.41 has been seminal in establishing our view of the diversity of long-duration gamma-ray burst environments: optical spectroscopy of this host provided evidence that GRBs can form even at high metallicities, while millimetric observations suggested that GRBs may preferentially form in regions with minimal molecular gas. We report new observations from VLT (MUSE and X-shooter) which demonstrate that the purported host is an unrelated foreground galaxy. The probable radio afterglow is coincident with a compact, highly star-forming, dusty galaxy at z=1.9621. The revised redshift naturally explains the apparent nondetection of CO(3-2) line emission at the afterglow site from ALMA. There is no evidence that molecular gas properties in GRB host galaxies are unusual, and limited evidence that GRBs can form readily at super-Solar metallicity.

  6. On the frequency of star-forming galaxies in the vicinity of powerful AGNs: The case of SMM J04135+10277

    CERN Document Server

    Fogasy, J; Lagos, C D P; Drouart, G; Gonzalez-Perez, V

    2016-01-01

    (Abridged) In the last decade several massive molecular gas reservoirs were found 10^8\\, \\rm{M_{\\odot}}$, and 0.3% have at least one highly star-forming companion ($\\rm{SFR}>100\\,\\rm{M_{\\odot}\\,yr^{-1}}$). Our results suggest that quasar-gas-rich companion galaxy systems are common phenomena in the early Universe and the high incidence of companions makes the study of such systems crucial to understand the growth and hierarchical build-up of galaxies and black holes.

  7. The FMOS-COSMOS Survey of Star-forming Galaxies at z ≈ 1.6. IV. Excitation State and Chemical Enrichment of the Interstellar Medium

    Science.gov (United States)

    Kashino, D.; Silverman, J. D.; Sanders, D.; Kartaltepe, J. S.; Daddi, E.; Renzini, A.; Valentino, F.; Rodighiero, G.; Juneau, S.; Kewley, L. J.; Zahid, H. J.; Arimoto, N.; Nagao, T.; Chu, J.; Sugiyama, N.; Civano, F.; Ilbert, O.; Kajisawa, M.; Le Fèvre, O.; Maier, C.; Masters, D.; Miyaji, T.; Onodera, M.; Puglisi, A.; Taniguchi, Y.

    2017-01-01

    We investigate the physical conditions of ionized gas in high-z star-forming galaxies using diagnostic diagrams based on the rest-frame optical emission lines. The sample consists of 701 galaxies with an Hα detection at 1.4≲ z≲ 1.7, from the Fiber Multi-Object Spectrograph (FMOS)-COSMOS survey, that represent the normal star-forming population over the stellar mass range {10}9.6≲ {M}* /{M}ȯ ≲ {10}11.6, with those at {M}* > {10}11 {M}ȯ being well sampled. We confirm an offset of the average location of star-forming galaxies in the Baldwin–Phillips–Terlevich (BPT) diagram ({{[O}} {{III}}]/{{H}}β versus {{[N}} {{II}}]/{{H}}α ), primarily toward higher {{[O}} {{III}}]/{{H}}β , compared with local galaxies. Based on the [S ii] ratio, we measure an electron density ({n}{{e}}={220}-130+170 {{cm}}-3), which is higher than that of local galaxies. Based on comparisons to theoretical models, we argue that changes in emission-line ratios, including the offset in the BPT diagram, are caused by a higher ionization parameter both at fixed stellar mass and at fixed metallicity, with additional contributions from a higher gas density and possibly a hardening of the ionizing radiation field. Ionization due to active galactic nuclei is ruled out as assessed with Chandra. As a consequence, we revisit the mass–metallicity relation using {{[N}}{{II}}]/{{H}}α and a new calibration including {{[N}} {{II}}]/{{[S}} {{II}}] as recently introduced by Dopita et al. Consistent with our previous results, the most massive galaxies ({M}* ≳ {10}11 {M}ȯ ) are fully enriched, while those at lower masses have metallicities lower than local galaxies. Finally, we demonstrate that the stellar masses, metallicities, and star formation rates of the FMOS sample are well fit with a physically motivated model for the chemical evolution of star-forming galaxies.

  8. On the frequency of star-forming galaxies in the vicinity of powerful AGNs: The case of SMM J04135+10277

    Science.gov (United States)

    Fogasy, J.; Knudsen, K. K.; Lagos, C. D. P.; Drouart, G.; Gonzalez-Perez, V.

    2017-01-01

    Context. In the last decade several massive molecular gas reservoirs were found SMM J04135+10277 (z = 2.84) and investigate the expected frequency of quasar-starburst galaxy pairs at high redshift using a cosmological galaxy formation model. Methods: We use archive data and new APEX ArTeMiS data to construct and model the spectral energy distribution of SMM J04135+10277 in order to determine its properties. We also carry out a comprehensive analysis of the cosmological galaxy formation model galform with the aim of characterising how typical the system of SMM J04135+10277 is and whether quasar-star-forming galaxy pairs may constitute an important stage in galaxy evolution. Finally, we compare our results to observations found in the literature at both large and small scales (1 Mpc-100 kpc). Results: The companion galaxy of SMM J04135+10277 is a heavily dust-obscured starburst galaxy with a median star formation rate (SFR) of 700 M⊙ yr-1, median dust mass of 5.1 × 109M⊙ and median dust luminosity of 9.3 × 1012L⊙. Our simulations, performed at z = 2.8, suggest that SMM J04135+10277 is not unique. In fact, at a distance of 108M⊙, and 0.3% have at least one highly star-forming companion (SFR> 100 M⊙ yr-1). Conclusions: Our results suggest that quasar-gas-rich companion galaxy systems are common phenomena in the early Universe and the high incidence of companions makes the study of such systems crucial to understand the growth and hierarchical build-up of galaxies and black holes.

  9. Caught in the Act: Gas and Stellar Velocity Dispersions in a Fast Quenching Compact Star-Forming Galaxy at z~1.7

    Science.gov (United States)

    Barro, Guillermo; Faber, Sandra M.; Dekel, Avishai; Pacifici, Camilla; Pérez-González, Pablo G.; Toloba, Elisa; Koo, David C.; Trump, Jonathan R.; Inoue, Shigeki; Guo, Yicheng; Liu, Fengshan; Primack, Joel R.; Koekemoer, Anton M.; Brammer, Gabriel; Cava, Antonio; Cardiel, Nicolas; Ceverino, Daniel; Eliche, Carmen; Fang, Jerome J.; Finkelstein, Steven L.; Kocevski, Dale D.; Livermore, Rachael C.; McGrath, Elizabeth

    2016-04-01

    We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ˜ 1.7. Its spectrum reveals both Hα and [N ii] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR ≲ 5{--}10 {M}⊙ yr-1. This, added to a relatively young age of ˜700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ˜ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, {σ }{{{LOS}}}{{gas}} = 127 ± 32 km s-1, is nearly 40% smaller than that of its stars, {σ }{{{LOS}}}\\star = 215 ± 35 km s-1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ˜1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.

  10. Direct measurements of dust attenuation in z ∼ 1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Price, Sedona H.; Kriek, Mariska [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Conroy, Charlie [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Schreiber, Natascha M. Förster; Wuyts, Stijn [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Franx, Marijn; Fumagalli, Mattia [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Lundgren, Britt [Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI 53706 (United States); Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Skelton, Rosalind E. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Whitaker, Katherine E., E-mail: sedona@berkeley.edu [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2014-06-10

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A {sub V,} {sub H} {sub II}) and the integrated dust content (A {sub V,} {sub star}). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A {sub V,} {sub H} {sub II}. First, we stack spectra in bins of A {sub V,} {sub star}, and find that A {sub V,} {sub H} {sub II} = 1.86 A {sub V,} {sub star}, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M {sub *}). We find that on average A {sub V,} {sub H} {sub II} increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  11. A new method to separate star forming from AGN galaxies at intermediate redshift: The submillijansky radio population in the VLA-COSMOS survey

    CERN Document Server

    Smolcic, V; Scodeggio, M; Franzetti, P; Aussel, H; Bondi, M; Brusa, M; Carilli, C L; Capak, P; Charlot, S; Ciliegi, P; Ilbert, O; Ivezic, Z; Jahnke, K; McCracken, H J; Obric, M; Salvato, M; Sanders, D B; Scoville, N; Trump, J R; Tremonti, C; Tasca, L; Walcher, C J; Zamorani, G

    2008-01-01

    We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star forming (SF) from AGN galaxies at intermediate redshifts (z1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30-40% in the flux density range of ~50 microJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30-40% of SF and 50-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.

  12. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z$\\gtrsim$2: High velocity dispersions in progenitors of compact quiescent galaxies

    CERN Document Server

    Barro, G; Koo, D C; Dekel, A; Kassin, S A; Kocevski, D D; Faber, S M; van der Wel, A; Guo, Y; Perez-Gonzalez, P G; Toloba, E; Fang, J J; Pacifici, C; Simons, R; Campbell, R D; Ceverino, D; Finkelstein, S L; Goodrich, B; Kassis, M; Koekemoer, A M; Konidaris, N P; Livermore, R C; Lyke, J E; Mobasher, B; Nayyeri, H; Peth, M; Primack, J R; Rizzi, L; Somerville, R S; Wirth, G D; Zolotov, A

    2014-01-01

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift $2\\leq z \\leq2.5$ with star formation rates of SFR$\\sim$100M$_{\\odot}$ y$^{-1}$ and masses of log(M/M$_{\\odot}$)$\\sim10.8$. Their high integrated gas velocity dispersions of $\\sigma_{\\rm{int}}$=230$^{+40}_{-30}$ km s$^{-1}$, as measured from emission lines of H$_{\\alpha}$ and [OIII], and the resultant M$_{\\star}-\\sigma_{\\rm{int}}$ relation and M$_{\\star}$$-$M$_{\\rm{dyn}}$ all match well to those of compact quiescent galaxies at $z\\sim2$, as measured from stellar absorption lines. Since log(M$_{\\star}$/M$_{\\rm{dyn}}$)$=-0.06\\pm0.2$ dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter ($<$13$^{+17}_{-13}$\\%) than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than $\\sim$300 Myr. This discovery adds another link to our new dynamical chain of evidence...

  13. Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of Very Massive Stars

    CERN Document Server

    Gräfener, G

    2015-01-01

    In a recent study star-forming galaxies with HeII emission at moderate redshifts have been found to occur in two modes, distinguished by the width of their HeII emission lines. Broad HeII emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars while narrow HeII emission has been attributed to nebular emission excited by a population of very hot PopIII stars formed in pockets of pristine gas at moderate redshifts. In this work we propose an alternative scenario for the origin of the narrow HeII emission, namely very massive stars (VMS) at low metallicity (Z) which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. We estimate the expected HeII line fluxes and equivalent widths based on wind models for VMS and population synthesis models, and compare the results with recent observations of star-forming galaxies at moderate redshifts. The observed HeII line strengths and equivalent widths are in line with what is expected for a po...

  14. A Spatially Resolved Map of the Kinematics, Star-Formation and Stellar Mass Assembly in a Star-Forming Galaxy at z=4.9

    CERN Document Server

    Swinbank, Mark; Richard, Johan; Bower, Richard; Ellis, Richard; Illingworth, Garth; Jones, Tucker; Kriek, Mariska; Smail, Ian; Stark, Dan; Van Dokkum, Pieter

    2009-01-01

    We present a detailed study of the spatially resolved kinematics, star-formation and stellar mass in a highly amplified galaxy at z=4.92 behind the lensing cluster MS1358+62. We use the observed optical, near- and mid-infrared imaging from HST ACS & NICMOS and Spitzer IRAC to derive the stellar mass and the Gemini/NIFS IFU to investigate the velocity structure of the galaxy from the nebular [OII] emission. Using a detailed gravitational lens model, we account for lensing amplification factor 12.+/-2.0 and find that this intrinsically L* galaxy has a stellar mass of M*=7+/-2x10^8Mo, a dynamical mass of Mdyn=3+/-1x10^9csc^2(i)Mo (within of 2kpc) and a star-formation rate of 42+/-8Mo/yr. The source-plane UV/optical morphology of this galaxy is dominated by five discrete star-forming regions. Exploiting the dynamical information we derive masses for individual star-forming regions of Mcl~10^(8-9)Mo with sizes of ~200pc. We find that, at a fixed size, the star-formation rate density within these HII regions is...

  15. The ALHAMBRA survey : $B-$band luminosity function of quiescent and star-forming galaxies at $0.2 \\leq z < 1$ by PDF analysis

    CERN Document Server

    López-Sanjuan, C; Benítez, N; Molino, A; Viironen, K; Díaz-García, L A; Fernández-Soto, A; Santos, W A; Varela, J; Cenarro, A J; Moles, M; Arnalte-Mur, P; Ascaso, B; Montero-Dorta, A D; Pović, M; Martínez, V J; Nieves-Seoane, L; Stefanon, M; Hurtado-Gil, Ll; Márquez, I; Perea, J; Aguerri, J A L; Alfaro, E; Aparicio-Villegas, T; Broadhurst, T; Cabrera-Caño, J; Castander, F J; Cepa, J; Cerviño, M; Cristóbal-Hornillos, D; Delgado, R M González; Husillos, C; Infante, L; Masegosa, J; del Olmo, A; Prada, F; Quintana, J M

    2016-01-01

    Our goal is to study the evolution of the $B-$band luminosity function (LF) since $z=1$ using ALHAMBRA data. We used the photometric redshift and the $I-$band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with $I\\leq24$ mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift-magnitude-galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at $0.2\\leq z<1$ and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshif...

  16. Tackling the Saturation of Oxygen: The Use of Phosphorus and Sulphur as Proxies Within the Neutral ISM of Star-Forming Galaxies

    CERN Document Server

    James, Bethan L

    2015-01-01

    The abundance of oxygen in galaxies is widely used in furthering our understanding of galaxy formation and evolution. Unfortunately, direct measurements of O/H in the neutral gas are extremely difficult to obtain due to the fact that the only OI line available within the HST UV wavelength range (1150-3200A) is often saturated. As such, proxies for oxygen are needed to indirectly derive an O/H via the assumption that solar ratios based on local Milky Way sight lines hold in different environments. In this paper, we assess the validity of using two such proxies, PII and SII, within more typical star-forming environments. Using HST-COS FUV spectra of a sample of nearby star-forming galaxies, we find that P and S follow a trend, log(PII/SII)=1.73+/-0.18, which is in excellent agreement with the solar ratio of log(P/S)_sol=-1.71+/-0.04 over a large range of galaxy properties, i.e., metallicities in the range 0.03-3.2 Z_sol and HI column densities of log[N(HI)/cm^-2]=18.44-21.28. We additionally show evidence from ...

  17. The nature of dusty starburst galaxies in a rich cluster at z=0.4: the progenitors of lenticulars?

    CERN Document Server

    Geach, J E; Moran, Sean M; Treu, Tommaso; Ellis, Richard S

    2008-01-01

    We present the results of a Spitzer Infrared Spectrograph (IRS) survey of 24um-selected luminous infrared galaxies (LIRGs, L_IR > 10^11 L_sun) in the rich cluster Cl0024+16 at z=0.4. Optically, these LIRGs resemble unremarkable spiral galaxies with e(a)/e(c) spectral classifications and [Oii]-derived star formation rates (SFRs) of <2 M_sun/yr, generally indistinguishable from the 'quiescent' star forming population in the cluster. Our IRS spectra show that the majority of the 24um-detected galaxies exhibit polycyclic aromatic hydrocarbon (PAH) emission with implied SFRs ~30-60 M_sun/yr, with only one (<10%) of the sample displaying unambiguous evidence of an active galactic nucleus in the mid-infrared. This confirms the presence of a large population of obscured starburst galaxies in distant clusters, which comprise the bulk of the star formation occurring in these environments at z~0.5. We suggest that, although several mechanisms could be at play, these dusty starbursts could be the signature of an im...

  18. PROPERTIES OF THE INTERSTELLAR MEDIUM IN STAR-FORMING GALAXIES AT z ∼ 1.4 REVEALED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Seko, Akifumi; Ohta, Kouji; Iwamuro, Fumihide, E-mail: seko@kusastro.kyoto-u.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502 (Japan); and others

    2016-03-01

    We conducted observations of {sup 12}CO(J = 5–4) and dust thermal continuum emission toward 20 star-forming galaxies on the main sequence at z ∼ 1.4 using ALMA to investigate the properties of the interstellar medium. The sample galaxies are chosen to trace the distributions of star-forming galaxies in diagrams of stellar mass versus star formation rate and stellar mass versus metallicity. We detected CO emission lines from 11 galaxies. The molecular gas mass is derived by adopting a metallicity-dependent CO-to-H{sub 2} conversion factor and assuming a CO(5–4)/CO(1–0) luminosity ratio of 0.23. Masses of molecular gas and its fractions (molecular gas mass/(molecular gas mass + stellar mass)) for the detected galaxies are in the ranges of (3.9–12) × 10{sup 10} M{sub ⊙} and 0.25–0.94, respectively; these values are significantly larger than those in local spiral galaxies. The molecular gas mass fraction decreases with increasing stellar mass; the relation holds for four times lower stellar mass than that covered in previous studies, and the molecular gas mass fraction decreases with increasing metallicity. Stacking analyses also show the same trends. Dust thermal emissions were clearly detected from two galaxies and marginally detected from five galaxies. Dust masses of the detected galaxies are (3.9–38) × 10{sup 7} M{sub ⊙}. We derived gas-to-dust ratios and found they are 3–4 times larger than those in local galaxies. The depletion times of molecular gas for the detected galaxies are (1.4–36) × 10{sup 8} yr while the results of the stacking analysis show ∼3 × 10{sup 8} yr. The depletion time tends to decrease with increasing stellar mass and metallicity though the trend is not so significant, which contrasts with the trends in local galaxies.

  19. The Abundance of Star-Forming Galaxies in the Redshift Range 8.5 to 12: New Results from the 2012 Hubble Ultra Deep Field Campaign

    CERN Document Server

    Ellis, Richard S; Dunlop, James S; Robertson, Brant E; Ono, Yoshiaki; Schenker, Matthew A; Koekemoer, Anton; Bowler, Rebecca A A; Ouchi, Masami; Rogers, Alexander B; Curtis-Lake, Emma; Schneider, Evan; Charlot, Stephane; Stark, Daniel P; Furlanetto, Steven R; Cirasuolo, Michele

    2012-01-01

    We present the results of the deepest search to date for star-forming galaxies beyond a redshift z~8.5 utilizing a new sequence of near-infrared Wide Field Camera 3 images of the Hubble Ultra Deep Field. This `UDF12' campaign completed in September 2012 doubles the earlier exposures with WFC3/IR in this field and quadruples the exposure in the key F105W filter used to locate such distant galaxies. Combined with additional imaging in the F140W filter, the fidelity of high redshift candidates is greatly improved. Using spectral energy distribution fitting techniques on objects selected from a deep multi-band near-infrared stack we find 7 promising z>8.5 candidates. As none of the previously claimed UDF candidates with 8.510 galaxies with JWST.

  20. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Burkert, A.; Buschkamp, P.; Chan, J. [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr.1, D-85748 Garching (Germany); Brammer, G., E-mail: forster@mpe.mpg.de, E-mail: genzel@mpe.mpg.de [Space Telescope Science Institute, Baltimore, MD 21218 (United States); and others

    2014-11-20

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M {sub *}/M {sub ☉}) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M {sub *}/M {sub ☉}) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS{sup 3D}spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s{sup –1}), with large [N II]/Hα ratios, above log(M {sub *}/M {sub ☉}) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  1. Investigating Nearby Star-Forming Galaxies in the Ultraviolet with HST/COS Spectroscopy. I: Spectral Analysis and Interstellar Abundance Determinations

    CERN Document Server

    James, Bethan L; Heckman, Timothy M; Sohn, Sangmo Tony; Wolfe, Michael A

    2014-01-01

    This is the first in a series of three papers describing a project with the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure abundances of the neutral interstellar medium (ISM) in a sample of 9 nearby star-forming galaxies. The goal is to assess the (in)homogeneities of the multiphase ISM in galaxies where the bulk of metals can be hidden in the neutral phase, yet the metallicity is inferred from the ionized gas in the HII regions. The sample, spanning a wide range in physical properties, is to date the best suited to investigate the metallicity behavior of the neutral gas at redshift z=0. ISM absorption lines were detected against the far-ultraviolet spectra of the brightest star-forming region(s) within each galaxy. Here we report on the observations, data reduction, and analysis of these spectra. Column densities were measured by a multi-component line-profile fitting technique, and neutral-gas abundances were obtained for a wide range of elements. Several caveats were considered includ...

  2. The nature of H-alpha star-forming galaxies at z~0.4 in and around Cl 0939+4713: the environment matters

    CERN Document Server

    Sobral, David; Koyama, Yusei; Darvish, Behnam; Calhau, João; Afonso, Ana; Kodama, Tadayuki; Nakata, Fumiaki

    2016-01-01

    Cluster star-forming galaxies are found to have an excess of Far-Infrared emission relative to H-alpha (Ha), when compared to those in the field, which could be caused by intense AGN activity, dust and/or declining star formation histories. Here we present spectroscopic observations of Ha emitters in the Cl 0939+4713 (Abell 851) super-cluster at z=0.41, using AF2+WYFFOS on the WHT. We measure [OII], Hbeta (Hb), [OIII], Ha and [NII] for a sample of 119 Ha emitters in and around the cluster. We find that 17+-5% of the Ha emitters are AGN, irrespective of environment. For star-forming galaxies, we obtain Balmer decrements, metallicities and ionisation parameters with different methods, individually and by stacking. We find a strong mass-metallicity relation at all environments, with no significant dependence on environment. The ionisation parameter declines with increasing stellar mass for low-mass galaxies. Ha emitters residing in intermediate environments show the highest ionisation parameters (along with high...

  3. Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of very massive stars

    Science.gov (United States)

    Gräfener, G.; Vink, J. S.

    2015-06-01

    Context. In a recent study, star-forming galaxies with He ii λ1640 emission at moderate redshifts between 2 and 4.6 have been found to occur in two modes that are distinguished by the width of their He ii emission lines. Broad He ii emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars. The origin of narrow He ii emission is less clear but has been attributed to nebular emission excited by a population of very hot Pop III stars formed in pockets of pristine gas at moderate redshifts. Aims: We propose an alternative scenario for the origin of the narrow He ii emission, namely very massive stars (VMS) at low metallicity (Z), which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. Methods: We estimated the expected He ii line fluxes and equivalent widths based on wind models for VMS and Starburst99 population synthesis models and compared the results with recent observations of star-forming galaxies at moderate redshifts. Results: The observed He ii line strengths and equivalent widths are in line with what is expected for a population of VMS in one or more young super-clusters located within these galaxies. Conclusions: In our scenario the two observed modes of He ii emission originate from massive stellar populations in distinct evolutionary stages at low Z (~0.01 Z⊙). If this interpretation is correct, there is no need to postulate the existence of Pop III stars at moderate redshifts to explain the observed narrow He ii emission. An interesting possibility is the existence of self-enriched VMS with similar WR-type spectra at extremely low Z. Stellar He ii emission from such very early generations of VMS may be detectable in future studies of star-forming galaxies at high redshifts with the James Webb Space Telescope (JWST). The fact that the He ii emission of VMS is largely neglected in current population synthesis models will generally affect the interpretation of the

  4. The MOSDEF Survey: The Strong Agreement Between Hα and UV-To-FIR Star Formation Rates for z ~ 2 Star-Forming Galaxies

    Science.gov (United States)

    Shivaei, Irene; Reddy, Naveen; Kriek, Mariska T.; Shapley, Alice E.; Mobasher, Bahram; Coil, Alison L.; Siana, Brian D.; Sanders, Ryan; Price, Sedona; Freeman, William R.; Azadi, Mojegan

    2016-06-01

    We present the first direct comparison between Balmer line and panchromatic SED-based star-formation rates (SFRs) for z ~ 2 galaxies. While dust-corrected SFRs(Hα,Hβ) using Balmer decrements are commonly used at low redshift, it has been argued that Balmer lines may miss optically thick star-forming regions at high redshifts. In order to investigate this possible bias, we compare the SFRs(Hα,Hβ) with independently measured UV-to-far-IR SFRs for star-forming galaxies at z ~ 2. For this comparison we use a sample of galaxies selected from the unique spectroscopic dataset of the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey is a multi-year project that uses the near-IR MOSFIRE spectrograph on the 10-m Keck I telescope to characterize the gaseous and stellar contents of ~ 1500 rest-frame optically selected galaxies at 1.37 ≤ z ≤ 3.80. In addition to the rest-frame optical spectra, we use data from Spitzer/MIPS 24 μm, Herschel/PACS 100 and 160 μm, and Herschel/SPIRE 250, 350, and 500 μm to measure mid- and far-IR fluxes. We fit the UV-to-far-IR SEDs with the state-of-the-art flexible stellar population synthesis (FSPS) models, which utilize energy balance to fit the stellar and dust emission simultaneously. Comparing the SFR(Hα,Hβ) with the robust UV-to-far-IR SED inferrred SFRs, show us how accurately Balmer decrements predict the obscuration of the nebular lines in order to robustly calculate SFRs for star-forming galaxies at high redshift. Furthermore, we use our data to assess SFR indicators based on modeling the UV-to-mid-IR SEDs or by adding SFR(UV) and SFR(IR), for which the latter is based on the empirical conversions from mid-IR to total IR luminosity. This study shed light on the validity of various SFR indicators, specifically the nebular emission lines, for galaxies at z ~ 2.

  5. The Star Formation Rate-Density Relation at 0.6Star Forming Galaxies

    CERN Document Server

    Patel, Shannon G; Holden, Bradford P; Franx, Marijn; Illingworth, Garth D

    2011-01-01

    We study the star formation rates (SFRs) of galaxies as a function of local galaxy density at 0.61.8x10^{10} Msun to conduct our main analysis. With three different SFR indicators, (1) Spitzer MIPS 24-micron imaging, (2) SED fitting, and (3) [OII]3727 emission, we find the median specific SFR (SSFR) and SFR to decline from the low-density field to the cores of groups and a rich cluster. For the SED and [OII] based SFRs, the decline in SSFR is roughly an order of magnitude while for the MIPS based SFRs, the decline is a factor of ~4. We find approximately the same magnitude of decline in SSFR even after removing the sample of galaxies near the cluster. Galaxies in groups and a cluster at these redshifts therefore have lower star formation (SF) activity than galaxies in the field, as is the case at z~0. We investigated whether the decline in SFR with increasing density is caused by a change in the proportion of quiescent and star forming galaxies (SFGs) or by a decline in the SFRs of SFGs. Using the rest-frame ...

  6. The dust-to-stellar mass ratio as a valuable tool to probe the evolution of local and distant star forming galaxies

    CERN Document Server

    Calura, F; Cresci, G; Santini, P; Gruppioni, C; Pozzetti, L; Gilli, R; Matteucci, F; Maiolino, R

    2016-01-01

    The survival of dust grains in galaxies depends on various processes. Dust can be produced in stars, it can grow in the interstellar medium and be destroyed by astration and interstellar shocks. In this paper, we assemble a few data samples of local and distant star-forming galaxies to analyse various dust-related quantities in low and high redshift galaxies, to study how the relations linking the dust mass to the stellar mass and star formation rate evolve with redshift. We interpret the available data by means of chemical evolution models for discs and proto-spheroid (PSPH) starburst galaxies. In particular, we focus on the dust-to-stellar mass (DTS) ratio, as this quantity represents a true measure of how much dust per unit stellar mass survives the various destruction processes in galaxies and is observable. The theoretical models outline the strong dependence of this quantity on the underlying star formation history. Spiral galaxies are characterised by a nearly constant DTS as a function of the stellar ...

  7. Mid-infrared diagnostics of starburst galaxies: clumpy, dense structures in star-forming regions in the Antennae (NGC 4038/4039)

    CERN Document Server

    Snijders, Leonie; van der Werf, Paul P

    2007-01-01

    Recently, mid-infrared instruments have become available on several large ground-based telescopes, resulting in data sets with unprecedented spatial resolution at these long wavelengths. In this paper we examine 'ground-based-only' diagnostics, which can be used in the study of star-forming regions in starburst galaxies. By combining output from the stellar population synthesis code Starburst 99 with the photoionization code Mappings, we model stellar clusters and their surrounding interstellar medium, focusing on the evolution of emission lines in the N- and Q-band atmospheric windows (8-13 and 16.5-24.5 micron respectively) and those in the near-infrared. We address the detailed sensitivity of various emission line diagnostics to stellar population age, metallicity, nebular density, and ionization parameter. Using our model results, we analyze observations of two stellar clusters in the overlap region of the Antennae galaxies obtained with VLT Imager and Spectrometer for mid Infrared (VISIR). We find eviden...

  8. A Keck Adaptive Optics Survey of a Representative Sample of Gravitationally-Lensed Star-Forming Galaxies: High Spatial Resolution Studies of Kinematics and Metallicity Gradients

    CERN Document Server

    Leethochawalit, Nicha; Ellis, Richard S; Stark, Daniel P; Richard, Johan; Zitrin, Adi; Auger, Matthew

    2015-01-01

    We discuss spatially resolved emission line spectroscopy secured for a total sample of 15 gravitationally lensed star-forming galaxies at a mean redshift of $z\\simeq2$ based on Keck laser-assisted adaptive optics observations undertaken with the recently-improved OSIRIS integral field unit (IFU) spectrograph. By exploiting gravitationally lensed sources drawn primarily from the CASSOWARY survey, we sample these sub-L$^{\\ast}$ galaxies with source-plane resolutions of a few hundred parsecs ensuring well-sampled 2-D velocity data and resolved variations in the gas-phase metallicity. Such high spatial resolution data offers a critical check on the structural properties of larger samples derived with coarser sampling using multiple-IFU instruments. We demonstrate how serious errors of interpretation can only be revealed through better sampling. Although we include four sources from our earlier work, the present study provides a more representative sample unbiased with respect to emission line strength. Contrary t...

  9. The ISM in distant star-forming galaxies: Turbulent pressure, fragmentation and cloud scaling relations in a dense gas disk at z=2.3

    CERN Document Server

    Swinbank, Mark; Cox, Pierre; Krips, Melanie; Ivison, Rob; Smail, Ian; Thomson, Alasdair; Neri, Roberto; Richard, Johan; Ebeling, Harald

    2011-01-01

    We have used the IRAM Plateau de Bure Interferometer and the Expanded Very Large Array to obtain a high resolution map of the CO(6-5) and CO(1-0) emission in the lensed, star-forming galaxy SMMJ2135-0102 at z=2.32. The kinematics of the gas are well described by a model of a rotationally-supported disk with an inclination-corrected rotation speed, v_rot = 320+/-25km/s, a ratio of rotational- to dispersion- support of v/sigma=3.5+/-0.2 and a dynamical mass of 6.0+/-0.5x10^10Mo within a radius of 2.5kpc. The disk has a Toomre parameter, Q=0.50+/-0.15, suggesting the gas will rapidly fragment into massive clumps on scales of L_J ~ 400pc. We identify star-forming regions on these scales and show that they are 10x denser than those in quiescent environments in local galaxies, and significantly offset from the local molecular cloud scaling relations (Larson's relations). The large offset compared to local molecular cloud linewidth-size scaling relations imply that supersonic turbulence should remain dominant on sca...

  10. The ALHAMBRA survey: B-band luminosity function of quiescent and star-forming galaxies at 0.2 ≤ z < 1 by PDF analysis

    Science.gov (Unit