WorldWideScience

Sample records for dusty nuclear torus

  1. Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?

    Science.gov (United States)

    Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.

    1992-01-01

    New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.

  2. BayesCLUMPY: BAYESIAN INFERENCE WITH CLUMPY DUSTY TORUS MODELS

    International Nuclear Information System (INIS)

    Asensio Ramos, A.; Ramos Almeida, C.

    2009-01-01

    Our aim is to present a fast and general Bayesian inference framework based on the synergy between machine learning techniques and standard sampling methods and apply it to infer the physical properties of clumpy dusty torus using infrared photometric high spatial resolution observations of active galactic nuclei. We make use of the Metropolis-Hastings Markov Chain Monte Carlo algorithm for sampling the posterior distribution function. Such distribution results from combining all a priori knowledge about the parameters of the model and the information introduced by the observations. The main difficulty resides in the fact that the model used to explain the observations is computationally demanding and the sampling is very time consuming. For this reason, we apply a set of artificial neural networks that are used to approximate and interpolate a database of models. As a consequence, models not present in the original database can be computed ensuring continuity. We focus on the application of this solution scheme to the recently developed public database of clumpy dusty torus models. The machine learning scheme used in this paper allows us to generate any model from the database using only a factor of 10 -4 of the original size of the database and a factor of 10 -3 in computing time. The posterior distribution obtained for each model parameter allows us to investigate how the observations constrain the parameters and which ones remain partially or completely undetermined, providing statistically relevant confidence intervals. As an example, the application to the nuclear region of Centaurus A shows that the optical depth of the clouds, the total number of clouds, and the radial extent of the cloud distribution zone are well constrained using only six filters. The code is freely available from the authors.

  3. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    International Nuclear Information System (INIS)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy; Nikutta, Robert

    2017-01-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  4. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Nikutta, Robert, E-mail: tra3595@rit.edu [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States)

    2017-07-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  5. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    International Nuclear Information System (INIS)

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P.

    2013-01-01

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) ≈35°. We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14.°3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus

  6. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Torus theory

    International Nuclear Information System (INIS)

    Namsrai, Kh.

    2001-11-01

    Geometrical structure and physical characteristics of a torus are investigated in detail. Newtonian and electromagnetic potentials of the torus are defined at short and long distances. It is shown that torus potential at small distances has attractive oscillator behaviour. Motion of a particle in the torus potential is studied. The inertia tensor of the torus and its dynamics are obtained. Rotating torus whose tip is held fixed by two massless rigid threads and moves in a gravitational field is considered. (author)

  8. Nuclear performance calculations for the ELMO Bumpy Torus Reactor (EBTR) reference design

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1977-12-01

    The nuclear performance of the ELMO Bumpy Torus Reactor reference design has been calculated using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV transport cross-section data and nuclear response functions. The calculated results include estimates of the spatial and integral heating rate with emphasis on the recovery of fusion neutron energy in the blanket assembly and minimization of the energy deposition rates in the cryogenic magnet coil assemblies. The tritium breeding ratio in the natural lithium-laden blanket was calculated to be 1.29 tritium nuclei per incident neutron. The radiation damage in the reactor structural material and in the magnet assembly is also given

  9. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    Science.gov (United States)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  10. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  11. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development

    International Nuclear Information System (INIS)

    Cheng, E.T.; Cerbone, R.J.; Sviatoslavsky, I.N.; Galambos, L.D.; Peng, Y.-K.M.

    2000-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device can be complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation three, can produce a neutron wall loading from 0.5 to 5 MW m -2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW year m -2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  12. ''Dusty plasmas''

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bingham, R.; Angelis, U. de

    1989-09-01

    The field of ''dusty plasmas'' promises to be a very rewarding topic of research for the next decade or so, not only from the academic point of view where the emphasis is on developing the theory of the often complex collective and non-linear processes, but also from the point of view of applications in astrophysics, space physics, environmental and energy research. In this ''comment'' we should like to sketch the current development of this fast growing and potentially very important research area. We will discuss the new features of ''dusty'' plasmas in the most general terms and then briefly mention some successful applications and effects which have already been examined. (author)

  13. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  14. TORUS: Theory of Reactions for Unstable iSotopes.Topical Collaboration for Nuclear Theory Project. Period: June 1, 2010 - May 31, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, Charlotte [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nunes, Filomena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-28

    The work of this collaboration during its existence is summarized. The mission of the TORUS Topical Collaboration was to develop new methods that advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct reaction calculations. This multi-institution collaborative effort was and remains directly relevant to three areas of interest: the properties of nuclei far from stability, microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory. The TORUS project focused on understanding the details of (d,p) reactions for neutron transfer to heavier nuclei. The bulk of the work fell into three areas: coupled channel theory, modeling (d,p) reactions with a Faddeev-AGS approach, and capture reactions.

  15. ORIGINAL ARTICLE Torus Palatinus and Torus Mandibularis in a ...

    African Journals Online (AJOL)

    Ogunbodede

    ; 28:105-111. 4. Seah, Y. H. Torus Palatinus and. Torus Mandibularis: a Review of the Literature. Aust. Dent. J. 1995;. 40:318-321. 5. Bernal, B. A.; Moreira, D. E.;. Rodriguez, P., I [Prevalence of. Torus Palatinus and Torus. Mandibularis in the ...

  16. TORUS Annual Continuation and Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, Charlotte [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Echer, Jutta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nunes, Filomena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-24

    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding supports one postdoctoral researcher for the years 1 through 4. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve directreaction calculations. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.

  17. Torus type thermonuclear device

    International Nuclear Information System (INIS)

    Imura, Yasuya.

    1979-01-01

    Purpose: To attain supporting effect against electromagnetic force and moderate the inner stress applied to toroidal coils due to thermal expansion by intervening a stress relaxation member between the outer circumferential side of a torus and a support device in toroidal coils. Constitution: Toroidal coils for confining a plasma within a torus vacuum container is supported on a support secured to upper and lower bases. A thermoplastic stress relaxation material of a low young's modulus is put between the outer circumferential side of the torus container and the torus outer circumferential side of the support in the toroidal coil. Thermoplastic resin is best suited to the stress relaxation substance, although tetrafluoro resin may be used as the stress relaxation substance while packing non-woven tetron fabric or non-woven glass fabric impregnated with varnish in a gap between the stress relaxation substance and the support or the toroidal coils. (Seki, T.)

  18. The Bumpy Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-09

    This document summarizes the Bumpy Torus Experiment as a viable fusion reactor concept. Conclusions reached include the following: In 30 years, order-of-magnitude technological advances have occurred in multiple areas of plasma heating and confinement. The ORNL bumpy torus of the 1970s was technology limited. Now that ITER is technology limited, an alternate concept is needed. A device built on such a concept should be current free, CW, modular, have a gentle shutdown, and demonstrable stability. The bumpy torus meets or has the potential to meet all of these criteria. Earlier, stability was not possible due to power limits; it has not been fully tested. It is time to revisit the bumpy-torus concept with a modest new machine.

  19. The Bumpy Torus Experiment

    International Nuclear Information System (INIS)

    Cobble, James Allen

    2016-01-01

    This document summarizes the Bumpy Torus Experiment as a viable fusion reactor concept. Conclusions reached include the following: In 30 years, order-of-magnitude technological advances have occurred in multiple areas of plasma heating and confinement. The ORNL bumpy torus of the 1970s was technology limited. Now that ITER is technology limited, an alternate concept is needed. A device built on such a concept should be current free, CW, modular, have a gentle shutdown, and demonstrable stability. The bumpy torus meets or has the potential to meet all of these criteria. Earlier, stability was not possible due to power limits; it has not been fully tested. It is time to revisit the bumpy-torus concept with a modest new machine.

  20. Introduction to dusty plasma physics

    CERN Document Server

    Shukla, PK

    2001-01-01

    Introduction to Dusty Plasma Physics contains a detailed description of the occurrence of dusty plasmas in our Solar System, the Earth''s mesosphere, and in laboratory discharges. The book illustrates numerous mechanisms for charging dust particles and provides studies of the grain dynamics under the influence of forces that are common in dusty plasma environments.

  1. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development. Final report of a scientific research supported by the USDOE/SBIR program

    International Nuclear Information System (INIS)

    Cheng, E.T.

    1999-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation 3, can produce a neutron wall loading from 0.5 to 5 MW/m 2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW-y/m 2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  2. LASL Compact Torus Program

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Bartsch, R.R.

    1981-01-01

    The Compact Torus (CT) concept includes any axisymmetric toroidal plasma configuration, which does not require the linking of any material through the hole in the torus. Thus, the magnet coils, vacuum vessel, etc., have a simple cylindrical or spherical geometry instead of the toroidal geometry required for Tokamaks and RFP's. This simplified geometry results in substantial engineering advantages in CT reactor embodiments while retaining the good confinement properties afforded by an axisymmetric toroidal plasma-field geometry. CT's can be classified into three major types by using the ion gyro radius rho/sub i/ and the magnitude of the maximum toroidal field B/sub tm/

  3. Principal noncommutative torus bundles

    DEFF Research Database (Denmark)

    Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve

    2008-01-01

    of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...

  4. Torus sector handling system

    International Nuclear Information System (INIS)

    Grisham, D.L.

    1981-01-01

    A remote handling system is proposed for moving a torus sector of the accelerator from under the cryostat to a point where it can be handled by a crane and for the reverse process for a new sector. Equipment recommendations are presented, as well as possible alignment schemes. Some general comments about future remote-handling methods and the present capabilities of existing systems will also be included. The specific task to be addressed is the removal and replacement of a 425 to 450 ton torus sector. This requires a horizontal movement of approx. 10 m from a normal operating position to a point where its further transport can be accomplished by more conventional means (crane or floor transporter). The same horizontal movement is required for reinstallation, but a positional tolerance of 2 cm is required to allow reasonable fit-up for the vacuum seal from the radial frames to the torus sector. Since the sectors are not only heavy but rather tall and narrow, the transport system must provide a safe, stable, and repeatable method fo sector movement. This limited study indicates that the LAMPF-based method of transporting torus sectors offers a proven method of moving heavy items. In addition, the present state of the art in remote equipment is adequate for FED maintenance

  5. Torus type thermonuclear device

    International Nuclear Information System (INIS)

    Gomei, Yoshio.

    1982-01-01

    Purpose: To facilitate heat removal at limiters and enable helium discharge without using a diverter by the separate disposition of a main limiter receiving the heat from plasmas and an auxiliary limiter for helium discharge. Constitution: A main limiter for establishing and maintaining torus plasmas and an auxiliary limiter for helium discharge are disposed separately. The auxiliary limiter is disposed between the magnetic plane at the position where the plasmas in the confining region begin to contact the main limiter and the first blanket wall. Thus, a sufficient contact area with the plasmas can be taken for the main limiter disposed to the inside of the torus to thereby avoid excess heat concentration. Further, helium ions transported through a passage along the magnetic plane between the main limiter and the first blanket wall to the exhaust chamber are neutralized and thereafter discharged by the auxiliary limiter. (Moriyama, K.)

  6. Torus Breakdown in Noninvertible Maps

    DEFF Research Database (Denmark)

    Maistrenko, V.; Maistrenko, Yu.; Mosekilde, Erik

    2003-01-01

    We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to noninvertible maps. The cusp points arise when the tangent to the torus at the p......We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to noninvertible maps. The cusp points arise when the tangent to the torus...... at the point of intersection with the critical curve L-0 coincides with the eigendirection corresponding to vanishing eigenvalue for the noninvertible map. Further parameter changes lead typically to the generation of loops (self-intersections of the invariant manifolds) followed by the transformation...

  7. ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Berry, L.A.; Hedrick, C.L.; Uckan, N.A.

    1979-03-01

    The ELMO Bumpy Torus (EBT) program of experiment, theory, and reactor studies has been a remarkably successful one. In the five years since EBT-I began operating, work has progressed from a demonstration of macrostability to an increasingly detailed understanding of transport properties. Collisionless scaling (tau/sub E/ increases with temperature) has been observed, and the magnitude of the energy confinement time is consistent with neoclassical theory. Experiments on EBT-S (for scale) are now being conducted at the increased magnetic field levels and higher microwave power and frequency made possible by a 28-GHz gyrotron development program. A review of the program is given

  8. Elmo Bumpy Torus Reactor

    International Nuclear Information System (INIS)

    McAlees, D.G.; Uckan, N.A.; Lidsky, L.M.

    1976-01-01

    In the Elmo Bumpy Torus Reactor (EBTR) study the feasibility of achieving a fusion power plant based on the EBT confinement concept was evaluated. If the present understanding of the physics can be extrapolated to reactor scale devices the reactor could operate at high beta, high power density, and at steady state. The high aspect ratio of the device eases the accessibility, structural design and remote maintenance problems which are common to low aspect ratio machines. A version of the EBTR reference design described here could be constructed with only minor extrapolations in available technology

  9. Spherical Torus Center Stack Design

    International Nuclear Information System (INIS)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-01

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device

  10. Bumpy torus annulus startup

    International Nuclear Information System (INIS)

    Sperling, J.L.; Hamasaki, S.; Krall, N.A.

    1982-01-01

    In order that a stable bumpy torus plasma configuration can be attained, it is first necessary to irradiate the plasma with sufficient external power to cause annulus formation. To estimate the power required to initiate annuli, it is assumed that quasilinear electron-cyclotron heating by microwaves is the dominant electron heating mechanism. A scaling law for required microwave power is derived which shows that annulus formation is assisted by smaller cross-section areas, lower density, lower microwave frequency, and higher C-mode temperature. The scaling law is quantitatively evaluated for NBT, EBT-1, EBT-S, EBT-P, and EBT-R parameters. The resulting power estimates are consistent with the available microwave power in previous and present experiments. In larger projected bumpy tori, like EBT-P and EBT-R, it may be necessary to initiate annulus formation at densities which are lower than in the stable T-mode so that the necessary microwave power can be reduced to reasonably modest levels. It is suggested that instabilities as well as rf heating can aid the formation of bumpy torus electron annuli. Rf experiments on NBT and EBT-S would be beneficial in determining the capability of rf power to assist annulus startup

  11. The incredible shrinking torus

    International Nuclear Information System (INIS)

    Fischler, W.; Susskind, L.

    1997-01-01

    Using M(atrix) theory, the dualities of toroidally compactified M-theory can be formulated as properties of super Yang Mills theories in various dimensions. We consider the cases of compactification on 1-, 2-, 3-, 4- and 5-dimensional tori. The dualities required by string theory lead to conjectures of remarkable symmetries and relations between field theories as well as extremely unusual dynamical properties. By studying the theories in the limit of vanishingly small tori, a wealth of information is obtained about strongly coupled fixed points of super Yang-Mills theory in various dimensions. Perhaps the most striking behavior, as noted by Rozali in this context, is the emergence of an additional dimension of space in the case of a 4-torus. (orig.)

  12. Torus type thermonuclear device

    International Nuclear Information System (INIS)

    Kitazawa, Hakaru; Saito, Ryusei.

    1981-01-01

    Purpose: To obtain toroidal coil supports structures capable of coping with the changes in the elasticity distribution due to thermal expansion and performing elastic support function corresponding to the distribution of stresses exerted on the toroidal coils, by providing elastic function to the inner circumference side of the coil support structures. Constitution: Support structures for supporting toroidal coils from above and below are formed at the torus inner circumference side thereof with ribs in contact with a central block and having elasticity coefficient corresponding to the distribution of stresses exerted on the toroidal coils, and the stresses exerted on the toroidal coils are elastically supported on the ribs. Accordingly, if the stress distribution varies due to the thermal expansion or the like, adequate supporting function can be obtained well-corresponding to such changes, whereby effective plasma confinement can be attained. (Moriyama, K.)

  13. Torus knots and mirror symmetry

    CERN Document Server

    Brini, Andrea; Marino, Marcos

    2012-01-01

    We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.

  14. Fusion advanced studies Torus

    International Nuclear Information System (INIS)

    2007-01-01

    The successful development of ITER and DEMO scenarios requires preparatory activities on devices that are smaller than ITER, sufficiently flexible and capable of investigating the peculiar physics of burning plasma conditions. The aim of the Fusion Advanced Studies Torus (FAST) proposal [2.1] (formerly FT3 [2.2]) is to show that the preparation of ITER scenarios and the development of new expertise for the DEMO design and RD can be effectively implemented on a new facility. FAST will a) operate with deuterium plasmas, thereby avoiding problems associated with tritium, and allow investigation of nonlinear dynamics (which are important for understanding alpha particle behaviour in burning plasmas) by using fast ions accelerated by heating and current drive systems; b) work in a dimensionless parameter range close to that of ITER; c) test technical innovative solutions, such as full-tungsten plasma-facing components and an advanced liquid metal divertor target for the first wall/divertor, directly relevant for ITER and DEMO; d) exploit advanced regimes with a much longer pulse duration than the current diffusion time; e) provide a test bed for ITER and DEMO diagnostics; f) provide an ideal framework for model and numerical code benchmarks, their verification and validation in ITER/ DEMO-relevant plasma conditions

  15. ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    1978-01-01

    The ELMO Bumpy Torus (EBT) program of experiment, theory, and reactor studies has been a remarkably successful one. In the five years since EBT-I began operating, work has progressed from demonstrating macrostability to an increasingly detailed understanding of transport properties. Collisionless scaling (tau/sub E/ increases with temperature) has been observed and the magnitude of the energy confinement time is consistent with neoclassical theory. Experiments on EBT-S are now being conducted at the increased magnetic field levels and higher microwave power and frequency made possible by a 28-GHz gyrotron development program. Initial results confirm our assumptions of neoclassical scaling. In conjunction with the experimental advances, EBT theory now has a well-developed transport theory which models the physics which we now think to be important: for example, it yields negative ambipolar electric fields which are consistent with those measured. Stability calculations continue to predict stable equilibrium with β/sub ring/ approx. β/sub core/ approx. 20 to 40%

  16. White paper on dusty plasmas

    International Nuclear Information System (INIS)

    Whipple, E.C.

    1986-04-01

    Dusty plasmas is the name given to plasmas heavily laden with charged dust grains which together with the surrounding ions and electrons constitute a kind of plasma regime. This field of study is receiving increased attention because of the observation of dust during recent spacecraft missions to the planets and comets, together with the dawning recognition that the evolution of dusty plasma clouds in space may be quite different from that of nondusty clouds. Recent work in this field is reviewed and recommendations are made on the kind of research that is needed in the immediate future

  17. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  18. Bifurcation structure of successive torus doubling

    International Nuclear Information System (INIS)

    Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Tsubouchi, Takashi

    2006-01-01

    The authors discuss the 'embryology' of successive torus doubling via the bifurcation theory, and assert that the coupled map of a logistic map and a circle map has a structure capable of generating infinite number of torus doublings

  19. Space Propulsion via Spherical Torus Fusion Reactor

    International Nuclear Information System (INIS)

    Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.

    2003-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation

  20. Dusty Globules and Globulettes

    Science.gov (United States)

    Grenman, Tiia

    2018-05-01

    number of free floating planetary mass objects, originating from globulettes, during the history of the Milky Way. We found that a conservative value of the number of globulettes formed is 5.7×10^10. A less conservative estimate gave 2 × 10^11 globulettes and if 10% of these forms free floating planets then the globulettes have contributed about 0.2 free floating planets per star. In the Crab Nebula, which is a supernova remnant from the explosion of a massive old star, one can find dusty globules appearing as dark spots against the background nebulosity. These globules are very similar to the globulettes we have found in H II regions. The total mass of dust in globules was estimated to be 4.5×10^-4 M, which corresponds to .2% of the total dust content of the nebula. These globules move outward from the center with transversal velocities of 60-1600 km s-1. Using the extinction law for globules, we found that the dust grains are similar to the interstellar dust grains. This means that they contribute to the ISM dust population. We concluded that the majority of the globules are not located in bright filaments and we proposed that these globules may be products of cell-like blobs or granules in the atmosphere of the progenitor star. Theses blobs collapse and form globules during the passage of the blast wave during the explosion.

  1. 'Affine' algebras on the torus

    International Nuclear Information System (INIS)

    Zakkari, M.

    1993-07-01

    The analysis of the Kac-Moody ''like'' algebra L-circumflex 2 (G) on the torus is performed. It will be seen that the root systems construction leading to a Cartan matrix is not possible. Different twist of L-circumflex 2 λ (G) are discussed. Connections with known results are done. (author). 10 refs

  2. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    International Nuclear Information System (INIS)

    Neumeyer, C.; Barnes, G.; Chrzanowski, J.H.; Heitzenroeder, P.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  3. A major modification of the Joint European Torus using teleoperational techniques

    International Nuclear Information System (INIS)

    Rolfe, A.

    1998-04-01

    The Joint European Torus (JET) project was set up under the auspices of EURATOM in the late 1970's in order to study the feasibility of controlled Nuclear Fusion. The experimental device comprises a toroidal shaped vacuum vessel in which high temperature plasma is created and controlled. The inside of the torus is now inaccessible to personnel for around one year due to slightly elevated radiation levels. The JET programme however requires the immediate replacement of a major system within the torus and this must therefore be achieved using only remote handling techniques. This paper describes the preparations for this first fully remote handling shutdown at JET. (author)

  4. Formation of cavities in dusty plasmas

    International Nuclear Information System (INIS)

    Kravchenko, O.Yu.; Chutov, Yu.Yi.; Yurchuk, M.M.

    2003-01-01

    The computer modeling of evolution one-dimensional dusty of sheaths which is taking place in unbounded argon plasma will be carried out. For examination the magneto-hydrodynamics equations for particles of a dusty particles and ions,and also equilibrium approach for electrons will be utilized. As a result of the carried out calculations the spatial distributions of parameters of plasma in different instants are obtained. It is shown,that in a series of modes of the dusty particles are collected in layers which separated by areas where dusty particles practically miss. At increasing of concentration of neutral particles this effect disappears owing to action of a frictional force between dusty particles and neutral component of plasma. It is shown,that depending on concentration of plasma the dusty particles can be dilated or be compressed under action of an ion wind force

  5. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  6. FLIT: Flowing LIquid metal Torus

    Science.gov (United States)

    Kolemen, Egemen; Majeski, Richard; Maingi, Rajesh; Hvasta, Michael

    2017-10-01

    The design and construction of FLIT, Flowing LIquid Torus, at PPPL is presented. FLIT focuses on a liquid metal divertor system suitable for implementation and testing in present-day fusion systems, such as NSTX-U. It is designed as a proof-of-concept fast-flowing liquid metal divertor that can handle heat flux of 10 MW/m2 without an additional cooling system. The 72 cm wide by 107 cm tall torus system consisting of 12 rectangular coils that give 1 Tesla magnetic field in the center and it can operate for greater than 10 seconds at this field. Initially, 30 gallons Galinstan (Ga-In-Sn) will be recirculated using 6 jxB pumps and flow velocities of up to 10 m/s will be achieved on the fully annular divertor plate. FLIT is designed as a flexible machine that will allow experimental testing of various liquid metal injection techniques, study of flow instabilities, and their control in order to prove the feasibility of liquid metal divertor concept for fusion reactors. FLIT: Flowing LIquid metal Torus. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  7. Half-century archives of occupational medical data on French nuclear workers: a dusty warehouse or gold mine for epidemiological research?

    Science.gov (United States)

    Garsi, Jerome-Philippe; Samson, Eric; Chablais, Laetitia; Zhivin, Sergey; Niogret, Christine; Laurier, Dominique; Guseva Canu, Irina

    2014-12-01

    This article discusses the availability and completeness of medical data on workers from the AREVA NC Pierrelatte nuclear plant and their possible use in epidemiological research on cardiovascular and metabolic disorders related to internal exposure to uranium. We created a computer database from files on 394 eligible workers included in an ongoing nested case-control study from a larger cohort of 2897 French nuclear workers. For each worker, we collected records of previous employment, job positions, job descriptions, medical visits, and blood test results from medical history. The dataset counts 9,471 medical examinations and 12,735 blood test results. For almost all of the parameters relevant for research on cardiovascular risk, data completeness and availability is over 90%, but it varies with time and improves in the latest time period. In the absence of biobanks, collecting and computerising available good-quality occupational medicine archive data constitutes a valuable alternative for epidemiological and aetiological research in occupational health. Biobanks rarely contain biological samples over an entire worker's carrier and medical data from nuclear industry archives might make up for unavailable biomarkers that could provide information on cardiovascular and metabolic diseases.

  8. THE DIFFERENCES IN THE TORUS GEOMETRY BETWEEN HIDDEN AND NON-HIDDEN BROAD LINE ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Kohei; Ueda, Yoshihiro [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Packham, Christopher; Lopez-Rodriguez, Enrique; Alsip, Crystal D. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Almeida, Cristina Ramos; Ramos, Andrés Asensio; González-Martín, Omaira [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Díaz-Santos, Tanio [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Elitzur, Moshe [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Levenson, Nancy A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Mason, Rachel E. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Perlman, Eric S., E-mail: ichikawa@kusastro.kyoto-u.ac.jp [Department of Physics and Space Sciences, 150 W. University Blvd., Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2015-04-20

    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.

  9. Fuzzy torus via q-Parafermion

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2007-01-01

    We note that the recently introduced fuzzy torus can be regarded as a q-deformed parafermion. Based on this picture, classification of the Hermitian representations of the fuzzy torus is carried out. The result involves Fock-type representations and new finite-dimensional representations for q being a root of unity as well as already known finite-dimensional ones

  10. National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Masayuki Ono

    2000-01-01

    The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. Physics outcome of the NSTX research program is relevant to near-term applications such as the Volume Neutron Source (VNS) and burning plasmas, and future applications such as the pilot and power plants. The NSTX device began plasma operations in February 1999 and the plasma current was successfully ramped up to the design value of 1 million amperes (MA) on December 14, 1999. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments have also started. Stable CHI discharges of up to 133 kA and 130-msec duration have been produced using 20 kA of injected current. Using eight antennas connected to two transmitters, up to 2 MW of HHFW power was successfully coupled to the plasma. The Neutral-beam Injection (NBI) heating system and associated NBI-based diagnostics such as the Charge-exchange Recombination Spectrometer (CHERS) will be operational in October 2000

  11. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X. [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander (Spain); Ramos, A. Asensio; Almeida, C. Ramos [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain); Watson, M. G.; Blain, A. [Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Caccianiga, A.; Ballo, L. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Braito, V., E-mail: mateos@ifca.unican.es [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  12. Mineral magnetism of dusty olivine

    DEFF Research Database (Denmark)

    Lappe, Sophie-Charlotte L. L.; Church, Nathan S.; Kasama, Takeshi

    2011-01-01

    The magnetic properties of olivine-hosted Fe-Ni particles have been studied to assess the potential of "dusty olivine" to retain a pre-accretionary remanence in chondritic meteorites. Both body-centered (bcc) and face-centered cubic (fcc) Fe-Ni phases were formed by reduction of a terrestrial...... olivine precursor. The presence of Ni complicates the magnetic properties during heating and cooling due to the fcc-bcc martensitic transition. First-order reversal curve (FORC) diagrams contain a central ridge with a broad coercivity distribution extending to 600 mT, attributed to non-interacting single......-domain (SD) particles, and a "butterfly" structure extending to 250 mT, attributed to single-vortex (SV) states. SD and SV states were imaged directly using electron holography. The location of the SD/SV boundary is broadly consistent with theoretical predictions. A method to measure the volume of individual...

  13. Towards a physical model of dust tori in Active Galactic Nuclei. Radiative transfer calculations for a hydrostatic torus model

    Science.gov (United States)

    Schartmann, M.; Meisenheimer, K.; Camenzind, M.; Wolf, S.; Henning, Th.

    2005-07-01

    We explore physically self-consistent models of dusty molecular tori in Active Galactic Nuclei (AGN) with the goal of interpreting VLTI observations and fitting high resolution mid-IR spectral energy distributions (SEDs). The input dust distribution is analytically calculated by assuming hydrostatic equilibrium between pressure forces - due to the turbulent motion of the gas clouds - and gravitational and centrifugal forces as a result of the contribution of the nuclear stellar distribution and the central black hole. For a fully three-dimensional treatment of the radiative transfer problem through the tori we employ the Monte Carlo code MC3D. We find that in homogeneous dust distributions the observed mid-infrared emission is dominated by the inner funnel of the torus, even when observing along the equatorial plane. Therefore, the stratification of the distribution of dust grains - both in terms of size and composition - cannot be neglected. In the current study we only include the effect of different sublimation radii which significantly alters the SED in comparison to models that assume an average dust grain property with a common sublimation radius, and suppresses the silicate emission feature at 9.7~μm. In this way we are able to fit the mean SED of both type I and type II AGN very well. Our fit of special objects for which high angular resolution observations (≤0.3´´) are available indicates that the hottest dust in NGC 1068 reaches the sublimation temperature while the maximum dust temperature in the low-luminosity AGN Circinus falls short of 1000 K.

  14. Screening length in dusty plasma crystals

    International Nuclear Information System (INIS)

    Nikolaev, V S; Timofeev, A V

    2016-01-01

    Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)

  15. Quasi-electrostatic waves in dusty plasma

    International Nuclear Information System (INIS)

    Das, A.C.; Goswami, K.S.; Misra, A.K.

    1997-01-01

    Low frequency quasi-electrostatic waves in cold dusty plasma are investigated taking account of liberation and absorption of electrons and ions by the dust and their momentum transfer mechanism. (author)

  16. Acceleration of a compact torus

    International Nuclear Information System (INIS)

    Hartmann, C.W.; Eddleman, J.L.; Hammer, J.H.; Kusse, B.

    1987-01-01

    The authors report the first results of a study of acceleration of spheromak-type compact toruses in the RACE experiment (plasma Ring ACceleration Experiment). The RACE apparatus consists of (1) a magnetized, coaxial plasma gun 50 cm long, 35 cm OD, 20 cm ID, (2) 600 cm long coaxial acceleration electrodes 50 cm OD, 20 cm ID, (3) a 250 kJ electrolytic capacitor bank to drive the gun solenoid for initial magnetization, (4) a 200 kJ gun bank, (5) a 260 kJ accelerator bank, and (6) magnetic probes and other diagnostics, and vacuum apparatus. To outer acceleration electrode is an extension, at larger OD, of the gun outer electrode, and the inner acceleration electrode is supported and fed by a coaxial insert in the gun center electrode as shown

  17. Compact torus compression of microwaves

    International Nuclear Information System (INIS)

    Hewett, D.W.; Langdon, A.B.

    1985-01-01

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code

  18. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  19. TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY

    International Nuclear Information System (INIS)

    Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Mason, Rachel; Asensio Ramos, Andres; Rodriguez Espinosa, Jose Miguel; Perez-Garcia, Ana M.; Roche, Patrick F.; Levenson, Nancy A.; Elitzur, Moshe; Packham, Christopher; Young, Stuart; Diaz-Santos, Tanio

    2011-01-01

    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions and ground-based high angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle i, the radial thickness of the torus Y, the angular size of the cloud distribution σ torus , and the average number of clouds along radial equatorial rays N 0 . We found that the viewing angle i is not the only parameter controlling the classification of a galaxy into type 1 or type 2. In principle, type 2s could be viewed at any viewing angle i as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an active galactic nucleus (AGN) photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, P esc ∼ 12%-44%, while type 2s, as expected, tend to have very low escape probabilities. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6 pc. The scaling of the models to the data also provided the AGN bolometric luminosities L bol (AGN), which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L bol (AGN) ∼ 10 43 -10 47 erg s -1 , we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower (f 2 ∼ 0.1-0.3) at high AGN luminosities than at low AGN luminosities (f 2 ∼ 0.9-1 at ∼10 43 -10 44 erg s -1 ). This is because at low AGN luminosities the tori appear to have wider angular sizes (larger σ torus ) and more clouds along radial equatorial rays. We cannot, however, rule out the possibility that this is due to contamination by extended dust structures not associated with the dusty torus at low AGN luminosities

  20. Methanol in the L1551 Circumbinary Torus

    OpenAIRE

    White, Glenn J.; Fridlund, C. W. M.; Bergman, P.; Beardsmore, A.; Liseau, Rene; Phillips, R. R.

    2006-01-01

    We report observations of gaseous methanol in an edge-on torus surrounding the young stellar object L1551 IRS5. The peaks in the torus are separated by ~ 10,000 AU from L1551 IRS5, and contain ~ 0.03 earth masses of cold methanol. We infer that the methanol abundance increases in the outer part of the torus, probably as a result of methanol evaporation from dust grain surfaces heated by the shock luminosity associated with the shocks associated with the jets of an externally located x-ray sou...

  1. An experimental determination of the hot electron ring geometry in a Bumpy Torus and its implications for Bumpy Torus stability

    International Nuclear Information System (INIS)

    Hillis, D.L.; Wilgen, J.B.; Bigelow, T.S.; Jaeger, E.F.; Swain, D.W.; Hankins, O.E.; Juhala, R.E.

    1986-10-01

    The hot electron rings of the ELMO Bumpy Torus (EBT) [Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1975), Vol. II, p. 141] are formed by electron cyclotron resonance heating (ECRH) and have an electron temperature of 350 to 500 keV. The original intention of these hot electron rings was to provide a local minimum in the magnetic field and, thereby, stabilize the simple interchange and flute modes, which are inherent in a closed field line bumpy torus. To evaluate the electron energy density of the EBT rings and determine if enough stored energy is present to provide a local minimum in the magnetic field, a detailed understanding of the spatial distribution of the rings is imperative. The purpose of this report is to measure the ring thickness and investigate its implications for bumpy torus stability. The spatial location and radial profile of the hot electron ring are measured with a unique metal ball pellet injector, which injects small metallic balls into the EBT ring plasma. From these measurements the radial extent (or ring thickness) is about 5 to 7 cm full width at half maximum for typical EBT operation, which is much larger than previously expected. These measurements and recent modeling of the EBT plasma indicate that the hot electron ring's stored energy may not be sufficient to produce a local minimum in the magnetic field

  2. Tool path in torus tool CNC machining

    Directory of Open Access Journals (Sweden)

    XU Ying

    2016-10-01

    Full Text Available This paper is about tool path in torus tool CNC machining.The mathematical model of torus tool is established.The tool path planning algorithm is determined through calculation of the cutter location,boundary discretization,calculation of adjacent tool path and so on,according to the conversion formula,the cutter contact point will be converted to the cutter location point and then these points fit a toolpath.Lastly,the path planning algorithm is implemented by using Matlab programming.The cutter location points for torus tool are calculated by Matlab,and then fit these points to a toolpath.While using UG software,another tool path of free surface is simulated of the same data.It is drew compared the two tool paths that using torus tool is more efficient.

  3. Feasibility study for the Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.

    1985-10-01

    The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs

  4. Torus bifurcations in multilevel converter systems

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Yanochkina, Olga O.

    2011-01-01

    embedded one into the other and with their basins of attraction delineated by intervening repelling tori. The paper illustrates the coexistence of three stable tori with different resonance behaviors and shows how reconstruction of these tori takes place across the borders of different dynamical regimes....... The paper also demonstrates how pairs of attracting and repelling tori emerge through border-collision torus-birth and border-collision torus-fold bifurcations. © 2011 World Scientific Publishing Company....

  5. WISE and the Dusty Universe

    Science.gov (United States)

    Benford, Dominic J.

    2010-01-01

    The Wide-field Infrared Survey is a medium class Explorer mission that was launched onl4Dec 2009. WISE should detect hundreds of millions of stars and galaxies, including millions of ULIRGS and QSOs; hundreds of thousands of asteroids; and hundreds of cold brown dwarfs. The telescope cover was ejected on 29 Dec 2009 and the all-sky survey started on 14 Jan 2010. WISE takes more the 7000 framesets per day, with each frameset covering 0.6 square degrees in four bands centered at 3.4, 4.6, 12 and 22 microns. WISE is well-suited to the discovery of brown dwarfs, ultraluminous infrared galaxies, and near-Earth objects. With an angular resolution of 6 arcsecouds at 12 microns, a 5(sigma) point-source sensitivity of around 1 mJy at 12 microns and 6 mJy at 22 microns, and coverage of over 99% of the sky, WISE also provides a powerful database for the study of the dusty ISM in our own galaxy. A preliminary release of WISE data will be made available to the community 6 months after the end of the cryogenic survey, or about May 2011. The final data release will be 11 months later, about April 2012.

  6. Dusty Plasmas in Laboratory and in Space

    International Nuclear Information System (INIS)

    Fortov, Vladimir E.

    2013-01-01

    Investigations were directed on the study of dusty plasma structures and dynamics. Dusty plasma is a unique laboratory tool for the investigation of the physics of systems with strong Coulomb interaction. This is due to the fact that the interaction of micron-sized dust particles (usually 0.1-10 µm in diameter) with charges up to 10 2 -10 5 elementary charges may form the ordered structures of liquid and crystal types accessible to observe them at kinetic level, i.e. at level of behavior of separate particles of medium. Dusty plasma is affected by gravity, depending on the size of the solid particles gravity can be the dominating force. Under microgravity conditions in space much weaker forces become important and other new phenomena not achievable on Earth can be observed. In this report results are presented from the experimental studies of dusty plasmas under ground bounded and microgravity conditions. Structural and transport characteristics of the system of macroparticles in dusty plasma were measured in a set of experiments in rf gas-discharge plasmas in microgravity conditions on the board of International Space Station. A number of different phenomena were studied including self-excitation of dusty waves, formation of plasma crystal and plasma liquid regions, different vortices of charged dust grains. The experimental studies of the viscosity of a dust-plasma liquid were carried out. The results of analysis of the obtained data made it possible to estimate the coefficient of dynamic viscosity of a dust-plasma liquid. Dusty plasmas were also studied in a combined dc/rf discharge under microgravity conditions in parabolic flights. The chamber provided a particular advantage for investigation of different dynamical phenomena in dusty plasmas such as sheared laminar flow of a strongly coupled dusty liquid, nozzle flow, boundary layers and instabilities, shock waves formation and propagation, dust particle lane formation and space dust grain separation by their

  7. Probing a dusty magnetized plasma with self-excited dust-density waves

    Science.gov (United States)

    Tadsen, Benjamin; Greiner, Franko; Piel, Alexander

    2018-03-01

    A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.

  8. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    Science.gov (United States)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  9. Size selective dustiness and exposure; simulated workplace comparisons

    NARCIS (Netherlands)

    Brouwer, D.H.; Links, I.H.M.; Vreede, S.A.F. de; Christopher, Y.

    2006-01-01

    A simulated workplace study was conducted to investigate the relation between inhalation exposure and dustiness determined with a rotating drum dustiness tester. Three powders were used in the study, i.e. magnesium stearate, representing a very dusty powder, and aluminium oxide and calcium

  10. AN OCCULTATION EVENT IN CENTAURUS A AND THE CLUMPY TORUS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States)

    2011-12-15

    We have analyzed 16 months of sustained monitoring observations of Centaurus A from the Rossi X-Ray Timing Explorer to search for changes in the absorbing column in the line of sight to the central nucleus. We present time-resolved spectroscopy which indicates that a discrete clump of material transited the line of sight to the central illuminating source over the course of {approx}170 days between 2010 August and 2011 February with a maximum increase in the column density of about 8.4 Multiplication-Sign 10{sup 22} cm{sup -2}. This is the best quality data of such an event that has ever been analyzed with the shape of the ingress and egress clearly seen. Modeling the clump of material as roughly spherical with a linearly decreasing density profile and assuming a distance from the central nucleus commensurate with the dusty torus, we found that the clump would have a diameter of (1.4-2.4) Multiplication-Sign 10{sup 15} cm with a central number density of n{sub H} = (1.8-3.0) Multiplication-Sign 10{sup 7} cm{sup -3}. This is consistent with previous results for a similar (though possibly much longer) occultation event inferred in this source in 2003-2004 and supports models of the molecular torus as a clumpy medium.

  11. AN OCCULTATION EVENT IN CENTAURUS A AND THE CLUMPY TORUS MODEL

    International Nuclear Information System (INIS)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2011-01-01

    We have analyzed 16 months of sustained monitoring observations of Centaurus A from the Rossi X-Ray Timing Explorer to search for changes in the absorbing column in the line of sight to the central nucleus. We present time-resolved spectroscopy which indicates that a discrete clump of material transited the line of sight to the central illuminating source over the course of ∼170 days between 2010 August and 2011 February with a maximum increase in the column density of about 8.4 × 10 22 cm –2 . This is the best quality data of such an event that has ever been analyzed with the shape of the ingress and egress clearly seen. Modeling the clump of material as roughly spherical with a linearly decreasing density profile and assuming a distance from the central nucleus commensurate with the dusty torus, we found that the clump would have a diameter of (1.4-2.4) × 10 15 cm with a central number density of n H = (1.8-3.0) × 10 7 cm –3 . This is consistent with previous results for a similar (though possibly much longer) occultation event inferred in this source in 2003-2004 and supports models of the molecular torus as a clumpy medium.

  12. Reactor assessments of advanced bumpy torus configurations

    International Nuclear Information System (INIS)

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1984-02-01

    Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past

  13. Multicast Performance Analysis for High-Speed Torus Networks

    National Research Council Canada - National Science Library

    Oral, S; George, A

    2002-01-01

    ... for unicast-based and path-based multicast communication on high-speed torus networks. Software-based multicast performance results of selected algorithms on a 16-node Scalable Coherent Interface (SCI) torus are given...

  14. Various semiclassical limits of torus conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Alkalaev, Konstantin [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of General and Applied Physics, Moscow Institute of Physics and Technology,Institutskiy per. 7, Dolgoprudnyi, Moscow region, 141700 (Russian Federation); Geiko, Roman [Mathematics Department, National Research University Higher School of Economics,Usacheva str. 6, Moscow, 119048 (Russian Federation); Rappoport, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, Moscow, 127994 (Russian Federation)

    2017-04-12

    We study four types of one-point torus blocks arising in the large central charge regime. There are the global block, the light block, the heavy-light block, and the linearized classical block, according to different regimes of conformal dimensions. It is shown that the blocks are not independent being connected to each other by various links. We find that the global, light, and heavy-light blocks correspond to three different contractions of the Virasoro algebra. Also, we formulate the c-recursive representation of the one-point torus blocks which is relevant in the semiclassical approximation.

  15. A survey of dusty plasma physics

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2001-01-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  16. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  17. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  18. Pro-torus actions on Poincaré duality spaces

    Indian Academy of Sciences (India)

    duality spaces, Borel's dimension formula and topological splitting principle to local weights, hold if 'torus' is replaced by 'pro-torus'. Keywords. Pro-torus; Poincaré duality space; local weight. 1. Introduction. In the theory of linear representations of compact connected Lie groups, the crucial first step is restriction to the ...

  19. Cirugía de torus mandibular

    Directory of Open Access Journals (Sweden)

    Manuel Ramon Osorio Castillo

    2014-06-01

    Full Text Available ResumenLos huesos maxilares no son ajenos a las patologías que se pueden presentar en el sistema esquelético. Algunas de esas condiciones y patologías son singulares por sus características clínicas, su distribución y prevalencia. Los torus palatinos, los torus mandibulares (TM y las exostosis de los maxilares son un claro ejemplo de ellos. Hasta la presente existen ideas especulativas acerca de su etiopatogenia, de los factores asociados, de su incidencia y prevalencia, de su necesidad de tratamiento, lo que puede crear confusión entre los clínicos tanto en diagnóstico como en el manejo.El torus como tumor óseo benigno puede localizarse en el maxilar a nivel del paladar, o en la mandíbula a nivel de las tablas internas; o puede aparecer en cualquier parte del esqueleto. El TM es una exostosis o crecimiento óseo en la superficie lingual de la mandíbula. Este crecimiento ocurre generalmente cerca de la línea milohioidea, opuesto a los premolares, pero se puede extender del canino al primer molar. La mucosa que los recubre tiende a ser fina y no tolera por lo general las fuerzas de las prótesis que se colocan encima de ellos. La incidencia del torus de la mandíbula es baja en el 6% a 12.5% entre caucásicos y en los habitantes de la llanura africana. De manera contraria, algunos autores reportan una prevalencia mucho más elevada en la Costa Atlántica Colombiana.Se presenta el caso de un paciente con torus mandibulares bilaterales, con muchos años de crecimiento, hasta que por situaciones tanto fonéticas como de ulceraciones repetitivas decidió someterse al acto quirúrgico de forma bilateral. Se presentan algunas consideraciones para el manejo de esta. (Duazary 2008; 111-114AbstractThe jawbone is not a strange to the pathologies that can occur in the skeletal system. Some of these terms and conditions are unique for their clinical features, distribution and prevalence. The torus palate, jawbone torus (TM in spanish and

  20. Electron distribution functions in Io plasma torus

    International Nuclear Information System (INIS)

    Boev, A.G.

    2003-01-01

    Electron distribution functions measured by the Voyager 1 in different shares of the Io plasma torus are explained. It is proved that their suprathermal tails are formed by the electrical field induced by the 'Jupiter wind'. The Maxwellian parts of all these spectra characterize thermal equilibrium populations of electrons and the radiation of exited ions

  1. Surgical management of palatine Torus - case series

    Directory of Open Access Journals (Sweden)

    Thaís Sumie Nozu Imada

    Full Text Available INTRODUCTION: Torus palatinus is a specific name to identify exostoses developed in the hard palate along the median palatine suture. Despite of not being a pathological condition, its presence requires attention and knowledge regarding its management. Surgical removal of exostoses is indicated when the patient frequently traumatizes the area of palatine torus during mastication and speech or when it is necessary for the rehabilitation of the upper arcade with complete dentures. OBJECTIVE: The aim of this article is to present three cases of Torus palatinus and to discuss the management of them. CASE REPORT: In the first case, a 57-year-old Caucasian man sought oral rehabilitation of his edentulous maxilla but presented a hard nodules in the hard palate; in the second case, a 40-year-old Caucasian woman was referred for frequent trauma of palatal mucosa during mastication, aesthetic complaint, and discomfort caused by the trauma of her tongue in this area; and in the third case, a 45-year-old Caucasian woman presented with a lesion on the palate that caused difficulty swallowing. When the Torus palatinus was impairing the basic physiological functions of the patients, all cases were surgically treated, improving the patients' quality of life. FINAL CONSIDERATION: The dentist should be properly prepared to choose the best from among the existing surgical approaches for each individual lesion in order to improve the results and avoid possible complications.

  2. Induction effects of torus knots and unknots

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2017-09-01

    Geometric and topological aspects associated with induction effects of field lines in the shape of torus knots/unknots are examined and discussed in detail. Knots are assumed to lie on a mathematical torus of circular cross-section and are parametrized by standard equations. The induced field is computed by direct integration of the Biot-Savart law. Field line patterns of the induced field are obtained and several properties are examined for a large family of knots/unknots up to 51 crossings. The intensity of the induced field at the origin of the reference system (center of the torus) is found to depend linearly on the number of toroidal coils and reaches maximum values near the boundary of the mathematical torus. New analytical estimates and bounds on energy and helicity are established in terms of winding number and minimum crossing number. These results find useful applications in several contexts when the source field is either vorticity, electric current or magnetic field, from vortex dynamics to astrophysics and plasma physics, where highly braided magnetic fields and currents are present.

  3. Torus palatinus | Naidoo | SA Journal of Radiology

    African Journals Online (AJOL)

    Kupffer and Bessel-Hagen coined the term torus palatinus in 1879 for a benign osseous protuberance arising from the midline of the hard palate. Tori are present in approximately 20% of the population and are occult until adulthood. Recent advances in modern radiology have led to improved evaluation and diagnosis of ...

  4. Magnetostatics of the uniformly polarized torus

    DEFF Research Database (Denmark)

    Beleggia, Marco; De Graef, Marc; Millev, Yonko

    2009-01-01

    We provide an exhaustive description of the magnetostatics of the uniformly polarized torus and its derivative self-intersecting (spindle) shapes. In the process, two complementary approaches have been implemented, position-space analysis of the Laplace equation with inhomogeneous boundary condit...

  5. Spherical torus, compact fusion at low field

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1985-02-01

    A spherical torus is obtained by retaining only the indispensable components on the inboard side of a tokamak plasma, such as a cooled, normal conductor that carries current to produce a toroidal magnetic field. The resulting device features an exceptionally small aspect ratio (ranging from below 2 to about 1.3), a naturally elongated D-shaped plasma cross section, and ramp-up of the plasma current primarily by noninductive means. As a result of the favorable dependence of the tokamak plasma behavior to decreasing aspect ratio, a spherical torus is projected to have small size, high beta, and modest field. Assuming Mirnov confinement scaling, an ignition spherical torus at a field of 2 T features a major radius of 1.5 m, a minor radius of 1.0 m, a plasma current of 14 MA, comparable toroidal and poloidal field coil currents, an average beta of 24%, and a fusion power of 50 MW. At 2 T, a Q = 1 spherical torus will have a major radius of 0.8 m, a minor radius of 0.5 m, and a fusion power of a few megawatts

  6. Evaluation of Radioactivity in Dusty Storm

    International Nuclear Information System (INIS)

    Mohammed, A.S; Majeed, N. A.; Nasaer, M.H.; Hoshi, H.; Abood, M.

    2013-01-01

    sample had been collected from the powder of the dusty storms which had been moved over Baghdad for a different months of a year 2011 by using metal containers that had manufactured locally and had been mounted over the roof of houses in particular regions of Baghdad (Kerkh and Risafa).The radioactive concentration of dust samples had been measured and analyzed by using the Gamma Spectroscopy analyzing System which consist of high purity Germanium detector of efficiency of 40 %, resolution 2keV at 1.332 MeV (Co-60) , DSA 2000 system which protective barrier made in Canberra Company , the developed Genie 2000Program and using personal computer. The measurement system for energy calibration and efficiency had been calibrated by using a standard point sources and standard source of a multi energy made by the American Canberra company. The Marnelli geometrical shape had been used to measure the activity of the samples. Results indicated the existence of the natural radioactive isotopes such as K-40, Be-7 which has been composed of as a result of the nuclear reaction between the Cosmic ray and some other elements of the atmosphere like Oxygen and Nitrogen besides the existence of radioactive isotopes which belongs to the natural Uranium series and the natural Thorium series. Highest measurements indicated the existence of industrial radioactive isotope Cs-137.The highest value of concentration for Be-7 was (381.5 Bq/kg) at Al-Shaab region, and the highest value of concentration for K-40 was (467.7 Bq/kg) and some other radioactive isotopes which belong to the series of U-238 as follows:- Bi -214 (32.6 Bq/kg), Pb-214 (33.6 Bq/kg), and radioactive isotopes which belong to the series Th-232 as follows:- Bi-212(18.6Bq/kg), Pb-212 (18.8Bq/kg),Ac-228 (30.3 Bq/kg),the highest value of concentration for the industrial Cs-137 was (26,8 Bq/kg) it was at Al-shaab region ,and this concentration is relatively high in comparison to the levels of normal concentration which exist in

  7. First X-ray Statistical Tests for Clumpy-Torus Models: Constraints from RXTEmonitoring of Seyfert AGN

    Science.gov (United States)

    Markowitz, Alex; Krumpe, Mirko; Nikutta, R.

    2016-06-01

    In two papers (Markowitz, Krumpe, & Nikutta 2014, and Nikutta et al., in prep.), we derive the first X-ray statistical constraints for clumpy-torus models in Seyfert AGN by quantifying multi-timescale variability in line of-sight X-ray absorbing gas as a function of optical classification.We systematically search for discrete absorption events in the vast archive of RXTE monitoring of 55 nearby type Is and Compton-thin type IIs. We are sensitive to discrete absorption events due to clouds of full-covering, neutral/mildly ionized gas transiting the line of sight. Our results apply to both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for eclipses observed with XMM-Newton, Suzaku, and Chandra.We detect twelve eclipse events in eight Seyferts, roughly tripling the number previously published from this archive. Event durations span hours to years. Most of our detected clouds are Compton-thin, and most clouds' distances from the black hole are inferred to be commensurate with the outer portions of the BLR or the inner regions of infrared-emitting dusty tori.We present the density profiles of the highest-quality eclipse events; the column density profile for an eclipsing cloud in NGC 3783 is doubly spiked, possibly indicating a cloud that is being tidallysheared. We discuss implications for cloud distributions in the context of clumpy-torus models. We calculate eclipse probabilities for orientation-dependent Type I/II unification schemes.We present constraints on cloud sizes, stability, and radial distribution. We infer that clouds' small angular sizes as seen from the SMBH imply 107 clouds required across the BLR + torus. Cloud size is roughly proportional to distance from the black hole, hinting at the formation processes (e.g., disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces, such as magnetic fields or ambient pressure, are

  8. Nonmodal phenomena in differentially rotating dusty plasmas

    Science.gov (United States)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  9. Nonmodal phenomena in differentially rotating dusty plasmas

    International Nuclear Information System (INIS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-01-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior--shear-dust-acoustic vortices--are generated. The presence of self-gravity and the nonzero Coriolis parameter ('epicyclic shaking') makes these collective modes transiently unstable

  10. Jeans instability in a quantum dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Jamil, M.; Shah, H. A.; Murtaza, G.

    2009-01-01

    Jeans instability in a homogeneous cold quantum dusty plasma in the presence of the ambient magnetic field and the quantum effect arising through the Bohm potential has been examined using the quantum magnetohydrodynamic model. It is found that the Jeans instability is significantly reduced by the presence of the dust-lower-hybrid wave and the ion quantum effect. The minimum wavenumber for Jeans stability depends clearly on ion quantum effect and the dust-lower-hybrid frequency also.

  11. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  12. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  13. Stability and special solutions to the conducting dusty gas model

    International Nuclear Information System (INIS)

    Calmelet, C.J.

    1987-01-01

    Models of the flow of a dusty, conducting and non-conducting gas are examined. Exact solutions for a conducting dusty gas model in the presence of a magnetic field are developed for two different flow domains. The exact solutions are calculated in the cases of negligible and non-negligible induced magnetic field. Stability theorems are developed which depend on the flow parameters of the dusty gas and the magnetic field. In particular, a universal stability theorem is obtained when the dusty gas flow is electrically conducting in the presence of an applied magnetic field, and the dust particles are non-uniformly distributed

  14. Drift resonance and stability of the Io plasma torus

    Science.gov (United States)

    Zhan, Jie; Hill, T. W.

    2000-03-01

    The observed local time asymmetry of the Io plasma torus is generally attributed to the presence of a persistent dawn-to-dusk electric field in the Jovian magnetosphere. The local time asymmetry is modulated at the System 3 rotation period of Jupiter's magnetic field, suggesting that the dawn-to-dusk electric field may be similarly modulated. We argue that such a System 3 modulation would have a profound disruptive effect on the observed torus structure if the torus were to corotate at exactly the System 3 rate: the torus would be a resonantly forced harmonic oscillator, and would disintegrate in a few rotation periods, contrary to observations. This destabilizing effect is independent of, and in addition to, the more familiar effect of the centrifugal interchange instability, which is also capable of disrupting the torus in a few rotation periods in the absence of other effects. We conclude that the observed (few percent) corotation lag of the torus is essential to preserving the observed long-lived torus structure by detuning the resonant frequency (the torus drift frequency) relative to the forcing frequency (System 3). A possible outcome of this confinement mechanism is a residual radial oscillation of the torus at the beat period (~10 days) between System 3 and the torus drift period.

  15. A new equilibrium torus solution and GRMHD initial conditions

    Science.gov (United States)

    Penna, Robert F.; Kulkarni, Akshay; Narayan, Ramesh

    2013-11-01

    Context. General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. Aims: In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. Methods: We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum distribution and solve the relativistic Euler equations in the Kerr metric. Results: The Bernoulli parameter, rotation rate, and geometrical thickness of the torus can be adjusted independently. Our torus tends to be more bound and have a larger radial extent than earlier torus solutions. Conclusions: While this paper was in preparation, several GRMHD simulations appeared based on our equilibrium torus. We believe it will continue to provide a more realistic starting point for future simulations.

  16. Exploring Torus Universes in Causal Dynamical Triangulations

    DEFF Research Database (Denmark)

    Budd, Timothy George; Loll, R.

    2013-01-01

    Motivated by the search for new observables in nonperturbative quantum gravity, we consider Causal Dynamical Triangulations (CDT) in 2+1 dimensions with the spatial topology of a torus. This system is of particular interest, because one can study not only the global scale factor, but also global...... shape variables in the presence of arbitrary quantum fluctuations of the geometry. Our initial investigation focusses on the dynamics of the scale factor and uncovers a qualitatively new behaviour, which leads us to investigate a novel type of boundary conditions for the path integral. Comparing large....... Apart from setting the stage for the analysis of shape dynamics on the torus, the new set-up highlights the role of nontrivial boundaries and topology....

  17. Equilibrium-torus bifurcation in nonsmooth systems

    DEFF Research Database (Denmark)

    Zhusubahyev, Z.T.; Mosekilde, Erik

    2008-01-01

    Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions...... in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus. Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise...

  18. Next Step Spherical Torus Design Studies

    International Nuclear Information System (INIS)

    Neumeyer, C.; Heitzenroeder, P.; Kessel, C.; Ono, M.; Peng, M.; Schmidt, J.; Woolley, R.; Zatz, I.

    2002-01-01

    Studies are underway to identify and characterize a design point for a Next Step Spherical Torus (NSST) experiment. This would be a ''Proof of Performance'' device which would follow and build upon the successes of the National Spherical Torus Experiment (NSTX) a ''Proof of Principle'' device which has operated at PPPL since 1999. With the Decontamination and Decommissioning (DandD) of the Tokamak Fusion Test Reactor (TFTR) nearly completed, the TFTR test cell and facility will soon be available for a device such as NSST. By utilizing the TFTR test cell, NSST can be constructed for a relatively low cost on a short time scale. In addition, while furthering spherical torus (ST) research, this device could achieve modest fusion power gain for short-pulse lengths, a significant step toward future large burning plasma devices now under discussion in the fusion community. The selected design point is Q=2 at HH=1.4, P subscript ''fusion''=60 MW, 5 second pulse, with R subscript ''0''=1.5 m, A=1.6, I subscript ''p''=10vMA, B subscript ''t''=2.6 T, CS flux=16 weber. Most of the research would be conducted in D-D, with a limited D-T campaign during the last years of the program

  19. Torus-doubling process via strange nonchaotic attractors

    International Nuclear Information System (INIS)

    Mitsui, Takahito; Uenohara, Seiji; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki

    2012-01-01

    Torus-doubling bifurcations typically occur only a finite number of times. It has been assumed that torus-doubling bifurcations in quasiperiodically forced systems are interrupted by the appearance of strange nonchaotic attractors (SNAs). In the present Letter, we study a quasiperiodically forced noninvertible map and report the occurrence of a torus-doubling process via SNAs. The mechanism of this process is numerically clarified. Furthermore, this process is experimentally demonstrated in a switched-capacitor integrated circuit. -- Highlights: ► We report the occurrence of a torus-doubling process via strange nonchaotic attractors (SNAs). ► The process consists of the gradual fractalization of a torus and the Heagy–Hammel transition. ► The torus-doubling process via SNAs is also experimentally demonstrated in an electronic circuit.

  20. Studying uniform thickness II: Transversely nonsimple iterated torus knots

    DEFF Research Database (Denmark)

    LaFountain, Douglas

    2011-01-01

    We prove that an iterated torus knot type in the standard contact 3-sphere fails the uniform thickness property (UTP) if and only if it is formed from repeated positive cablings, which is precisely when an iterated torus knot supports the standard contact structure. This is the first complete UTP...... classification for a large class of knots. We also show that all iterated torus knots that fail the UTP support cabling knot types that are transversely non-simple....

  1. Effects of torus wall flexibility on forces in the Mark I Boiling Water Reactor Pressure Suppression System. Part I

    International Nuclear Information System (INIS)

    Martin, R.W.; McCauley, E.W.

    1977-09-01

    The authors investigated the effects of torus wall flexibility in the pressure suppression system of a Mark I boiling water reactor (BWR) when the torus wall is subjected to hydrodynamic loadings. Using hypothetical models, they examined these flexibility effects under two hydrodynamic loading conditions: (1) a steam relief valve (SRV) discharge pulse, and (2) a loss-of-coolant accident (LOCA) chugging pulse. In the analyses of these events they used a recently developed two-dimensional finite element computer code. Taking the basic geometry and dimensions of the Monticello Mark I BWR nuclear power plant (in Monticello, Minnesota, U.S.A.), they assessed the effects of flexibility in the torus wall by changing values of the inside-diameter-to-wall-thickness ratio. Varying the torus wall thickness (t) with respect to the inside diameter (D) of the torus, they assigned values to the ratio D/t ranging from 0 (infinitely rigid) to 600 (highly flexible). In the case of a modeled steam relief valve (SRV) discharge pulse, they found the peak vertical reaction force on the torus was reduced from that of a rigid wall response by a factor of 3 for the most highly flexible, plant-simulated wall (D/t = 600). The reduction factor for a modeled loss-of-coolant accident (LOCA) chugging pulse was shown to be 1.5. The two-dimensional analyses employed overestimate these reduction factors but have provided, as intended, definition of the effect of torus boundary stiffness. In the work planned for FY79, improved modeling of the structure and of the source is expected to result in factors more directly applicable to actual pressure suppression systems

  2. Progress in the study of dusty plasmas

    International Nuclear Information System (INIS)

    Mendis, D A

    2002-01-01

    While the study of dust-plasma interactions is by no means new, early progress in the field was slow and uneven. It received a major boost in the early 1980s with the Voyager spacecraft observations of peculiar features in the Saturnian ring system (e.g. the 'radial spokes') which could not be explained by gravitation alone and led to the development of the gravito-electrodynamic theory of dust dynamics. This theory scored another major success more recently in providing the only possible explanation of collimated high-speed beams of fine dust particles observed to sporadically emanate from Jupiter by the Ulysses and Galileo spacecrafts. These dynamical studies were complimented in the early 1990s by the study of collective processes in dusty plasmas. Not only has this led to the discovery of a whole slew of new wave modes and instabilities with wide ranging consequences for the space environment, it also spurred laboratory studies leading to the observation of several of them, including the very low frequency dust acoustic mode, which can be made strikingly visual by laser light scattering off the dust. The most fascinating new development in dusty plasmas, which occurred about 7 years ago, was the crystallization of dusty plasmas in several laboratories. In these so-called 'plasma crystals', micrometre-sized dust, which are either externally introduced or internally grown in the plasma, acquire large negative charges and form Coulomb lattices as was theoretically anticipated for some time. This entirely new material, whose crystalline structure is so strikingly observed by laser light scattering, could be a valuable tool for studying physical processes in condensed matter, such as melting, annealing and lattice defects. Recognizing the crucial role of gravity on the crystal structure, microgravity experiments have already been performed in aircraft, sounding rockets, the Mir Space Station, and most recently in the International Space Station, leading to

  3. Kadomstev–Petviashvili (KP) equation in warm dusty plasma with ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with ... Mamun et al [7] have also derived rarefactive solitary waves in low-temperature dusty plasmas such as those in laboratory and astrophysical environments. ... plasma environments that clearly indicate the presence of nonthermal electron pop-.

  4. ISO science - observations of dusty discs.

    Science.gov (United States)

    Heske, A.

    1992-12-01

    ISO, the Infrared Space Observatory, will be an infrared observing facility in space. Via submission of observing proposals, use of this facility will be open to the astronomical community. The scientific payload consists of two spectrometers, a camera and a photo-polarimeter. Following an overview of the ISO mission, this paper describes the highlights of the Central Programme - proposals which are being prepared by the instrument groups, the mission scientists and the astronomers of the ISO Science Operations Team - with special emphasis on the proposals concerned with dusty discs.

  5. Nanodiamonds in dusty low-pressure plasmas

    International Nuclear Information System (INIS)

    Vandenbulcke, L.; Gries, T.; Rouzaud, J. N.

    2009-01-01

    Dusty plasmas composed of carbon, hydrogen, and oxygen have been evidenced by optical emission spectroscopy and microwave interferometry, due to the increase in electron energy and the decrease in electron density. These plasmas allow homogeneous synthesis of nanodiamond grains composed of either pure diamond nanocrystals only (2-10 nm in size) or of diamond nanocrystals and some sp 2 -hybridized carbon entities. The control of their size and their microstructure could open ways for a wide range of fields. Their formation from a plasma-activated gaseous phase is also attractive because the formation of nanodiamonds in the universe is still a matter of controversy

  6. Benchmark experiments on neutron streaming through JET Torus Hall penetrations

    Science.gov (United States)

    Batistoni, P.; Conroy, S.; Lilley, S.; Naish, J.; Obryk, B.; Popovichev, S.; Stamatelatos, I.; Syme, B.; Vasilopoulou, T.; contributors, JET

    2015-05-01

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in 6LiF/7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% 7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with natLi and 7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the

  7. TORUS: Theory of Reactions for Unstable iSotopes - Year 1 Continuation and Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, G; Elster, C; Escher, J; Mukhamedzhanov, A; Nunes, F; Thompson, I J

    2011-02-24

    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding started on June 1, 2010, it will have been running for nine months by the date of submission of this Annual Continuation and Progress Report on March 1, 2011. The extent of funding was reduced from the original application, and now supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.

  8. Summary of US compact torus experiments

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1981-01-01

    During the past several years a rapid increase has occurred in compact torus (CT) research in the United States, reflecting renewed interest in this simplified reactor consequences of this configuration. This paper reviews early approaches to CT formation and results and summarizes present experimental studies. Recent experiments have demonstrated a number of macroscopic aspects of the CT, including the conditions under which a macroscopically stable CT can be formed and maintained. Scaling experiments and more detailed studies of plasma transport in progress are discussed along with experiments under construction

  9. The ELMO Bumpy Torus: present and future

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1978-01-01

    The ELMO Bumpy Torus (EBT) experiment at ORNL was designed to circumvent the MHD stability problem encountered in standard bumpy tori by using the ''minimum-B'' properties of annular high-beta, hot-electron plasmas formed by microwave heating. The EBT combines the attractive features of both mirrors and tokamaks. The feasibility of this combined system has been demonstrated successfully in the EBT-I experiment and discussed at greater length elsewhere. The present status of the EBT research activities at ORNL is described briefly

  10. Two dimensional critical models on a torus

    International Nuclear Information System (INIS)

    Saleur, H.; Di Francesco, P.

    1987-01-01

    After the general developments of conformal invariance in two dimensions, it was realized that the study of critical models in finite geometries, in addition to the practical information it could provide through finite size scaling, was also of great conceptual interest. The simplest example is the case of the torus, a genus 1 surface which is thus not conformally equivalent to the plane. This geometry appears quite frequently in lattice calculations for systems with periodic boundary conditions, and is also very natural from the point of view of string theory. We will discuss briefly in these notes the main results obtained so far in this simple case

  11. The Schwinger Model on the torus

    International Nuclear Information System (INIS)

    Azakov, S.

    1996-08-01

    The classical and quantum aspects of the Schwinger model on the torus are considered. First we find explicitly all zero modes of the Dirac operator in the topological sectors with nontrivial Chern index and its spectrum. In the second part we determine the regularized effective action and discuss the propagators related to it. Finally we calculate the gauge invariant averages of the fermion bilinears and correlation functions of currents and densities. We show that in the infinite volume limit the well-known result for the chiral condensate can be obtained and the clustering property can be established. (author). 23 refs

  12. The Columbia Non-neutral Torus

    International Nuclear Information System (INIS)

    Pedersen, Thomas Sunn

    2009-01-01

    Final report for the Columbia Non-neutral Torus. This details the results from the design, construction and initial operation of the Columbia Non-neutral Torus. During the duration of this grant, I designed, built, and operated the Columbia Nonneutral Torus, the world's lowest aspect ratio stellarator, and arguably, the world's simplest stellarator. This demonstrates the ease and robustness of the chosen stellarator design and allowed us to commence the investigation of the physics of non-neutral plasmas confined on magnetic surfaces. These plasmas are unique in many ways and had not previously been studied in a stellarator. Our first results showed that it is possible to confine and study a relatively cold pure electron plasma in a stellarator. We confirmed that the plasma is stable, and that the plasma is reasonably well confined in a stellarator configuration. These results were published in Physics of Plasmas (2006) and Physical Review Letters (2006). They enabled the existing program which is resolving the underlying transport processes in a classical stellarator with intense self-electric fields and enable the next phase of operation, electron-positron plasma physics. During the period of this grant, two students were trained in experimental plasma physics and both received their PhD degrees shortly after the grant terminated. One student is now employed in the financial services industry, the other is a postdoctoral associate at Los Alamos National Laboratory. The chief goals were to build and begin operation of the Columbia Non-neutral Torus. These goals were achieved in the third year of funding. The development of diagnostic methods and the confirmation of stable equilibria were also achieved during the grant period. In summary, the main scientific goals were all met. The main educational goals were also met, as the experiment became the training ground not only for the two aforementioned graduate students but also for a number of undergraduate students

  13. Streaming instabilities in a collisional dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2000-01-01

    A pair of low-frequency electrostatic modes, which are very similar to those experimentally observed by Praburam and Goree [Phys. Plasmas 3, 1212 (1996)], are found to exist in a dusty plasma with a significant background neutral pressure and background ion streaming. One of these two modes is the dust-acoustic mode and the other one is a new mode which is due to the combined effects of the ion streaming and ion--neutral collisions. It has been shown that in the absence of the ion streaming, the dust-acoustic mode is damped due to the combined effects of the ion--neutral and dust--neutral collisions and the electron--ion recombination onto the dust grain surface. This result disagrees with Kaw and Singh [Phys. Rev. Lett. 79, 423 (1997)], who reported collisional instability of the dust-acoustic mode in such a dusty plasma. It has also been found that a streaming instability with the growth rate of the order of the dust plasma frequency is triggered when the background ion streaming speed relative to the charged dust particles is comparable or higher than the ion--thermal speed. This point completely agrees with Rosenberg [J. Vac. Soc. Technol. A 14, 631 (1996)

  14. On some Closed Magnetic Curves on a 3-torus

    Energy Technology Data Exchange (ETDEWEB)

    Munteanu, Marian Ioan, E-mail: marian.ioan.munteanu@gmail.com [Alexandru Ioan Cuza University of Iaşi, Faculty of Mathematics (Romania); Nistor, Ana Irina, E-mail: ana.irina.nistor@gmail.com [Gh. Asachi Technical University of Iaşi, Department of Mathematics and Informatics (Romania)

    2017-06-15

    We consider two magnetic fields on the 3-torus obtained from two different contact forms on the Euclidean 3-space and we study when their corresponding normal magnetic curves are closed. We obtain periodicity conditions analogues to those for the closed geodesics on the torus.

  15. Fabrication of an alumina torus for thermonuclear fusion containment

    International Nuclear Information System (INIS)

    Hauth, W.E.; Blake, R.D.; Dickinson, J.M.; Rutz, H.L.; Stoddard, S.D.

    1978-05-01

    A 235-cm-diam torus has been fabricated for plasma containment during thermonuclear fusion experiments. This 30-cm-diam torus consists of sixty 99.5%-alumina segments, 80% of which are assembled by forming vacuum-tight ceramic-to-ceramic seals. Selection of sealing materials and techniques are discussed

  16. Arithmetic functions in torus and tree networks

    Science.gov (United States)

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2007-12-25

    Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.

  17. Status of National Spherical Torus Experiment (NSTX)*

    Science.gov (United States)

    Ono, Masayuki

    2001-10-01

    The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. The NSTX experimental facility has been operating reliably and its capabilities steadily improving. Due to relatively efficient ohmic current drive and benign halo current behavior, the plasma current was increased to 1.4 MA, which is well above the design value of 1 MA. The plasmas at 1 MA are now routinely heated by NBI to the average toroidal beta value of 20 percent range at 3 kG with electrons and ions in the 1-2 keV range. Even with the “L-mode” edge, the energy confinement time can well exceed the so-called L-mode (and even H-mode) scaling values. As a part of ST tool development, High Harmonic Fast Wave (HHFW) heating has demonstrated efficient electron heating with the central electron temperatures reaching 3.7 keV. HHFW induced H-modes have been also observed. For CHI (Coaxial Helicity Injection) non-inductive start-up, CHI discharges of up to 300 kA of toroidal current and 300 msec duration have been produced from zero current using = 25 kA of injected current. The poster presentation will also include the near term NSTX facility upgrade plan.

  18. Recent Progress on Spherical Torus Research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki [PPPL; Kaita, Robert [PPPL

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  19. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi

    2015-01-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)

  20. Torus actions and their applications in topology and combinatorics

    CERN Document Server

    Buchstaber, Victor M

    2002-01-01

    The book presents the study of torus actions on topological spaces is presented as a bridge connecting combinatorial and convex geometry with commutative and homological algebra, algebraic geometry, and topology. This established link helps in understanding the geometry and topology of a space with torus action by studying the combinatorics of the space of orbits. Conversely, subtle properties of a combinatorial object can be realized by interpreting it as the orbit structure for a proper manifold or as a complex acted on by a torus. The latter can be a symplectic manifold with Hamiltonian torus action, a toric variety or manifold, a subspace arrangement complement, etc., while the combinatorial objects include simplicial and cubical complexes, polytopes, and arrangements. This approach also provides a natural topological interpretation in terms of torus actions of many constructions from commutative and homological algebra used in combinatorics. The exposition centers around the theory of moment-angle comple...

  1. Dusty plasma phase in a steady state plasma device

    International Nuclear Information System (INIS)

    Liang Xiaoping; Zheng Jian; Ma Jinxiu; Liu Wangdong; Zhuang Ge; Xie Jinlin; Wang Congrong; Yu Changxuan

    2000-01-01

    A DC discharge dusty plasma device used for study of waves in dusty plasma is introduced. A dusty plasma column is produced with about 30 cm in length and about 8.4 cm in diameter. The electron saturation current of Langmuir probe is obviously decreasing while the dust grains are present in the plasma. The negative charge on dust grains is directly proportional to the rotation rate of the dispenser. And the dust grains carry up to 40% of the negative charges in the whole plasma

  2. Investigations on isotopic composition of dusty mist of southern Tajikistan

    International Nuclear Information System (INIS)

    Abdullaev, S.F.; Abdurasulova, N.A.; Maslov, V.A.; Madvaliev, U.; Juraev, A.A.; Davlatshoev, T. S.U.

    2012-01-01

    Atmosphere physics laboratory under S.U. Umarov Physical and Technical Institute Academy of Sciences of the Republic of Tajikistan have carried out investigations on optical and micro physical properties of arid zone aerosols from 1982. Traces of man-made radioactive isotopes were revealed in sands and dust compositions taken in arid zone of Tajikistan during Soviet-American tests on investigation of arid aerosol. Produced result was the basis for further investigation of element composition for dusty haze distributed from south till central part of the country. We investigated samples of soil collected by natural sedimentation along dusty haze distribution and samples of dusty aerosol (in total 80 samples).

  3. Mach cones in space and laboratory dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Shukla, P.K

    2004-07-01

    We present a rigorous theoretical investigation on the possibility for the formation of Mach cones in both space and laboratory dusty magnetoplasmas. We find the parametric regimes for which different types of Mach cones, such as dust acoustic Mach cones, dust magneto-acoustic Mach cones, oscillonic Mach cones, etc. are formed in space and laboratory dusty magnetoplasmas. We also identify the basic features of such different classes of Mach cones (viz. dust- acoustic, dust magneto-acoustic, oscillonic Mach cones, etc.), and clearly explain how they are relevant to space and laboratory dusty manetoplasmas. (author)

  4. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  5. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  6. Three Millennia of Southwestern North American Dustiness and Future Implications.

    Directory of Open Access Journals (Sweden)

    Cody C Routson

    Full Text Available Two sediment records of dust deposition from Fish Lake, in southern Colorado, offer a new perspective on southwest United States (Southwest aridity and dustiness over the last ~3000 years. Micro scanning X-ray fluorescence and grain size analysis provide separate measures of wind-deposited dust in the lake sediment. Together these new records confirm anomalous dustiness in the 19th and 20th centuries, associated with recent land disturbance, drought, and livestock grazing. Before significant anthropogenic influences, changes in drought frequency and aridity also generated atmospheric dust loading. Medieval times were associated with high levels of dustiness, coincident with widespread aridity. These records indicate the Southwest is naturally prone to dustiness. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape, the Southwest will likely become dustier, driving negative impacts on snowpack and water availability, as well as human health.

  7. Propagation and scattering of waves in dusty plasmas

    International Nuclear Information System (INIS)

    Vladimirov, S.V.

    1994-01-01

    Wave propagation and scattering in dusty plasmas with variable charges on dust particles are considered. New kinetic theory including instant charge of a dust particle as a new independent variable is further developed. (author). 9 refs

  8. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    -ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  9. Electro-acoustic shock waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Rahman, A.

    2005-10-01

    A rigorous theoretical investigation has been made of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] shock waves in unmagnetized dusty plasmas. The reductive perturbation method has been employed for the study of the small but finite amplitude DIA and DA shock waves. It has been reported that the dust grain charge fluctuation can be one of the candidates for the source of dissipation, and can be responsible for the formation of DIA shock waves in an unmagnetized dusty plasma with static charged dust particles. It has also been reported that the strong co-relation among dust particles can be one of the candidates for the source of dissipation, and can be responsible for the formation of DA shock waves in an unmagnetized strongly coupled dusty plasma. The basic features and the underlying physics of DIA and DA shock waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  10. Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Popel, S.I.

    2005-01-01

    Dust acoustic mode manifestations in the dusty ionosphere are studied. The reason for an appearance of the low-frequency radio noises associated with such meteor fluxes as Perseids, Orionids, Leonids, and Gemenids is determined

  11. An FPGA-based torus communication network

    Energy Technology Data Exchange (ETDEWEB)

    Pivanti, Marcello; Schifano, Sebastiano Fabio [INFN, Ferrara (Italy); Ferrara Univ. (Italy); Simma, Hubert [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2011-02-15

    We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)

  12. An FPGA-based torus communication network

    International Nuclear Information System (INIS)

    Pivanti, Marcello; Schifano, Sebastiano Fabio; Simma, Hubert

    2011-02-01

    We describe the design and FPGA implementation of a 3D torus network (TNW) to provide nearest-neighbor communications between commodity multi-core processors. The aim of this project is to build up tightly interconnected and scalable parallel systems for scientific computing. The design includes the VHDL code to implement on latest FPGA devices a network processor, which can be accessed by the CPU through a PCIe interface and which controls the external PHYs of the physical links. Moreover, a Linux driver and a library implementing custom communication APIs are provided. The TNW has been successfully integrated in two recent parallel machine projects, QPACE and AuroraScience. We describe some details of the porting of the TNW for the AuroraScience system and report performance results. (orig.)

  13. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  14. Electromagnetic waves in dusty magnetoplasmas using two-potential theory

    International Nuclear Information System (INIS)

    Zubia, K.; Jamil, M.; Salimullah, M.

    2009-01-01

    The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.

  15. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2010-01-01

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  16. Effect of robust torus on the dynamical transport

    International Nuclear Information System (INIS)

    Martins, C G L; Carvalho, R Egydio de; Caldas, I L; Roberto, M

    2010-01-01

    In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.

  17. Current drive experiments on the HIT-II spherical torus

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Raman, R.; Nelson, B.A.; Holcomb, C.T.; McCollam, K.J.; Sieck, P.E.

    1999-01-01

    This paper describes the following new achievements from the Helicity Injected Torus (HIT) program: a) formation and sustainment of a toroidal magnetic equilibrium using coaxial helicity injection (CHI) in a conducting shell that has an L/R time much shorter than the pulse length; b) static formation of a spherical torus with plasma current over 180 kA using a transformer and feedback controlled equilibrium coils; and c) production of a current increase in a transformer produced spherical torus using CHI. (author)

  18. Current drive experiments on the HIT-II spherical torus

    International Nuclear Information System (INIS)

    Jarboe, T.; Raman, R.; Nelson, B.; Holcomb, C.T.; McCollam, K.J.; Sieck, P.E.

    2001-01-01

    This paper describes the following new achievements from the Helicity Injected Torus (HIT) program: a) formation and sustainment of a toroidal magnetic equilibrium using coaxial helicity injection (CHI) in a conducting shell that has an L/R time much shorter than the pulse length; b) static formation of a spherical torus with plasma current over 180 kA using a transformer and feedback controlled equilibrium coils; and c) production of a current increase in a transformer produced spherical torus using CHI. (author)

  19. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  20. Topological T-duality for torus bundles with monodromy

    Science.gov (United States)

    Baraglia, David

    2015-05-01

    We give a simplified definition of topological T-duality that applies to arbitrary torus bundles. The new definition does not involve Chern classes or spectral sequences, only gerbes and morphisms between them. All the familiar topological conditions for T-duals are shown to follow. We determine necessary and sufficient conditions for existence of a T-dual in the case of affine torus bundles. This is general enough to include all principal torus bundles as well as torus bundles with arbitrary monodromy representations. We show that isomorphisms in twisted cohomology, twisted K-theory and of Courant algebroids persist in this general setting. We also give an example where twisted K-theory groups can be computed by iterating T-duality.

  1. Torus as phase space: Weyl quantization, dequantization, and Wigner formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)

    2016-08-15

    The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.

  2. On the energy crisis in the Io plasma torus

    Science.gov (United States)

    Smith, Robert A.; Bagenal, Fran; Cheng, Andrew F.; Strobel, Darrell

    1988-01-01

    Recent calculations of the energy balance of the Io plasma torus show that the observed UV and EUV radiation cannot be maintained solely via energy input by the ion pickup mechanism. Current theoretical models of the torus must be modified to include non-local energy input. It is argued that the required energy may be supplied by inward diffusion of energetic heavy ions with energies less than about 20 keV.

  3. The geometric Schwinger model on the torus. Pt. 1

    International Nuclear Information System (INIS)

    Joos, H.

    1990-01-01

    The author analyzes the Euclidean version of the geometric Schwinger model on the torus. After the calculation of the zero mode wave functions associated with the different topological sectors, which can be expressed by θ functions defined on the two-dimensional torus, he determines the regularized effective action and discusses the propagator related to it. Finally he studies applications to the standard questions like the particle spectrum, the screening of the static potential, and the appearance of the anomaly. (HSI)

  4. Cooperative particle motion in complex (dusty) plasmas

    Science.gov (United States)

    Zhdanov, Sergey; Morfill, Gregor

    2014-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.

  5. Numerical Analysis of Dusty-Gas Flows

    Science.gov (United States)

    Saito, T.

    2002-02-01

    This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.

  6. Thomson scattering on ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Cobble, J.A.

    1985-04-01

    Below 10 12 cm -3 density, a Thomson scattering experiment is an exacting task. Aside from the low signal level, the core plasma in this instance is bathed in high-energy x rays, surrounded by a glowing molecular surface plasma, and heated steady state by microwaves. This means that the noise level from radiation is high and the environment is extremely harsh-so harsh that much effort is required to overcome system damage. In spite of this, the ELMO Bumpy Torus (EBT) system has proven itself capable of providing reliable n/sub e/ and T/sub e/ measurements at densities as low as 2 x 10 11 cm -3 . Radial scans across 20 cm of the plasma diameter have been obtained on a routine basis, and the resulting information has been a great help in understanding confinement in the EBT plasma. The bulk electron properties are revealed as flat profiles of n/sub e/ and T/sub e/, with density ranging from 0.5 to 2.0 x 10 12 cm -3 and temperature decreasing from 100 to 20 eV as pressure in the discharge is increased at constant power. Evidence is presented for a suprathermal tail, which amounts to about 10% of the electron distribution at low pressures. The validity of this conclusion is supported by two independent sensitivity calibrations

  7. Hirzebruch genera of manifolds with torus action

    International Nuclear Information System (INIS)

    Panov, T E

    2001-01-01

    A quasitoric manifold is a smooth 2n-manifold M 2n with an action of the compact torus T n such that the action is locally isomorphic to the standard action of T n on C n and the orbit space is diffeomorphic, as a manifold with corners, to a simple polytope P n . The name refers to the fact that topological and combinatorial properties of quasitoric manifolds are similar to those of non-singular algebraic toric varieties (or toric manifolds). Unlike toric varieties, quasitoric manifolds may fail to be complex. However, they always admit a stably (or weakly almost) complex structure, and their cobordism classes generate the complex cobordism ring. Buchstaber and Ray have recently shown that the stably complex structure on a quasitoric manifold is determined in purely combinatorial terms, namely, by an orientation of the polytope and a function from the set of codimension-one faces of the polytope to primitive vectors of the integer lattice. We calculate the χ y -genus of a quasitoric manifold with a fixed stably complex structure in terms of the corresponding combinatorial data. In particular, this gives explicit formulae for the classical Todd genus and the signature. We also compare our results with well-known facts in the theory of toric varieties

  8. ADHM construction of instantons on the torus

    International Nuclear Information System (INIS)

    Ford, C.; Pawlowski, J.M.; Tok, T.; Wipf, A.

    2001-01-01

    We apply the ADHM instanton construction to SU(2) gauge theory on T n xR 4-n for n=1,2,3,4. To do this we regard instantons on T n xR 4-n as periodic (modulo gauge transformations) instantons on R 4 . Since the R 4 topological charge of such instantons is infinite the ADHM algebra takes place on an infinite dimensional linear space. The ADHM matrix M is related to a Weyl operator (with a self-dual background) on the dual torus T-tilde n . We construct the Weyl operator corresponding to the one-instantons on T n xR 4-n . In order to derive the self-dual potential on T n xR 4-n it is necessary to solve a specific Weyl equation. This is a variant of the Nahm transformation. In the case n=2 (i.e., T 2 xR 2 ) we essentially have an Aharonov-Bohm problem on T-tilde 2 . In the one-instanton sector we find that the scale parameter, λ, is bounded above, λ 2 V-tilde 2

  9. Dusty WDs in the WISE all sky survey ∩ SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Sara D.; Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Brown, Warren R., E-mail: barber@nhn.ou.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-10

    A recent cross-correlation between the Sloan Digital Sky Survey (SDSS) Data Release 7 White Dwarf Catalog with the Wide-Field Infrared Survey Explorer (WISE) all-sky photometry at 3.4, 4.6, 12, and 22 μm performed by Debes et al. resulted in the discovery of 52 candidate dusty white dwarfs (WDs). However, the 6'' WISE beam allows for the possibility that many of the excesses exhibited by these WDs may be due to contamination from a nearby source. We present MMT+SAO Wide-Field InfraRed Camera J- and H-band imaging observations (0.''5-1.''5 point spread function) of 16 of these candidate dusty WDs and confirm that four have spectral energy distributions (SEDs) consistent with a dusty disk and are not accompanied by a nearby source contaminant. The remaining 12 WDs have contaminated WISE photometry and SEDs inconsistent with a dusty disk when the contaminating sources are not included in the photometry measurements. We find the frequency of disks around single WDs in the WISE ∩ SDSS sample to be 2.6%-4.1%. One of the four new dusty WDs has a mass of 1.04 M {sub ☉} (progenitor mass 5.4 M {sub ☉}) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

  10. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  11. Effect of the raw materials processing on their dustiness

    International Nuclear Information System (INIS)

    López Lilaoa, A.; Juárezb, M.; Sanfelix Fornera, V.; Mallol Gascha, G.; Monfort Gimeno, E.

    2017-01-01

    During the handling and/or processing of powdered materials in the CERAMICS INDUSTRY, one of the most important risks regarding the environmental and occupational health is the potential generation of dust. In this regard, a parameter of great interest is the dustiness of the processed materials; this parameter quantifies the tendency of the powdered materials to generate dust when handled. In this study, to determine the dustiness of a ceramic raw material composition (mixture of the body raw materials), the continuous drop method has been used. This test apparatus was selected because it is considered to better simulate how ceramic materials are handled in the CERAMICS INDUSTRY. The obtained results show that the dustiness of the same ceramic composition exhibits significant changes during the manufacturing process, depending on the presentation form. In this regard, the dry milling sample presents the highest dustiness, which can be significantly reduced (>75%) applying the the moisturization and agglomeration. The obtained results also shown that the best presentation form, regarding the minimization of the dust generation, is achieved in the spray-drying process, where the dustiness is reduced by 95%. [es

  12. Design innovations of the next-step spherical torus experiment and spherical torus development path

    International Nuclear Information System (INIS)

    Ono, M.; Kessel, C.; Peng, M.

    2003-01-01

    The spherical torus (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as ITER as it focuses toward the compact Component Test Facility (CTF) and higher toroidal beta regimes to improve the design of DEMO and a Power Plant. To support the ST development path, one option of a Next Step Spherical Torus (NSST) device is examined. NSST is a 'performance extension' (PE) stage ST with a plasma current of 5 - 10 MA, R = 1.5, B T ≤ 2.7 T with flexible physics capability to 1) Provide a sufficient physics basis for the design of the CTF, 2) Explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, 3) Contribute to the general plasma/fusion science of high β toroidal plasmas. The NSST facility is designed to utilize the TFTR site to minimize the cost and time required for the construction. (author)

  13. Next-Step Spherical Torus Experiment and Spherical Torus Strategy in the Fusion Energy Development Path

    International Nuclear Information System (INIS)

    Ono, M.; Peng, M.; Kessel, C.; Neumeyer, C.; Schmidt, J.; Chrzanowski, J.; Darrow, D.; Grisham, L.; Heitzenroeder, P.; Jarboe, T.; Jun, C.; Kaye, S.; Menard, J.; Raman, R.; Stevenson, T.; Viola, M.; Wilson, J.; Woolley, R.; Zatz, I.

    2003-01-01

    A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction

  14. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  15. TFTR centralized torus interface valve control system

    International Nuclear Information System (INIS)

    Pearson, G.G.; Olsen, D.H.

    1983-01-01

    A system developed especially for the TFTR to monitor and control the interface between the vacuum vessel and associated diagnostics will be described in this paper. Diagnostics which must be connected to the machine vacuum are required to do so through a Torus Interface Valve (TIV). Two types of TIV's are used on TFTR. The first type is a non-latching valve which must be held in the opened position by a sustained OPEN command, returning automatically to the closed position when the OPEN command is removed. This type of TIV is used on all systems which never insert a probe into the vacuum vessel through the TIV. The second type of TIV is a latching valve which requires a momentary OPEN command to open and a momentary CLOSE command to close. Each TIV is linked to its own dedicated logic controller. Each logic controller is hardwired to the appropriate TIV OPEN/CLOSED limit switches, probe IN/OUT limit switches, TFTR vacuum vessel pressure setpoint switches, and diagnostic pressure setpoint switches. The logic controller can be configured for local (push-button) or remote (computer) control. Each controller has a uniquely coded keyswitch to determine the configuration. Whether under local or remote control, all OPEN and CLOSE commands must be approved by the TIV controller (TIVC). In the case of systems with probes, the controller must receive a positive indication that the probe is completely backed out before a CLOSE command will be transmitted from the TIVC to the TIV. Before a valve will be opened by a controller, the differential pressure across the valve must be within certain limits

  16. Determination of the size of the dust torus in H0507+164 through optical and infrared monitoring

    Science.gov (United States)

    Mandal, Amit Kumar; Rakshit, Suvendu; Kurian, Kshama S.; Stalin, C. S.; Mathew, Blesson; Hoenig, Sebastian; Gandhi, Poshak; Sagar, Ram; Pandge, M. B.

    2018-04-01

    The time delay between flux variations in different wavelength bands can be used to probe the inner regions of active galactic nuclei (AGNs). Here, we present the first measurements of the time delay between optical and near-infrared (NIR) flux variations in H0507+164, a nearby Seyfert 1.5 galaxy at z = 0.018. The observations in the optical V-band and NIR J, H, and Ks bands carried over 35 epochs during the period 2016 October to 2017 April were used to estimate the inner radius of the dusty torus. From a careful reduction and analysis of the data using cross-correlation techniques, we found delayed responses of the J, H, and Ks light curves to the V-band light curve. In the rest frame of the source, the lags between optical and NIR bands are found to be 27.1^{+13.5}_{-12.0} d (V versus J), 30.4^{+13.9}_{-12.0} d (V versus H) and 34.6^{+12.1}_{-9.6} d (V versus Ks). The lags between the optical and different NIR bands are thus consistent with each other. The measured lags indicate that the inner edge of dust torus is located at a distance of 0.029 pc from the central ultraviolet/optical AGN continuum. This is larger than the radius of the broad line region of this object determined from spectroscopic monitoring observations thereby supporting the unification model of AGN. The location of H0507+164 in the τ-MV plane indicates that our results are in excellent agreement with the now known lag-luminosity scaling relationship for dust in AGN.

  17. Jeans instability with exchange effects in quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Jung, Y.-D.; Salimullah, M.

    2015-01-01

    Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems

  18. Partially collisional model of the Titan hydrogen torus

    International Nuclear Information System (INIS)

    Hilton, D.A.

    1987-01-01

    A numerical model was developed for atomic hydrogen densities in the Titan hydrogen torus. The effects of occasional collisions were included in order to accurately simulate physical conditions inferred from the Voyager 1 and 2 Ultraviolet Spectrometer (UVS) results of Broadfoot et al. (1981) and Sandel et al. (1982). The model employed Lagrangian perturbation of orbital elements of hydrogen atoms launched from Titan and Monte Carlo simulation of collisions and loss mechanisms. The torus is found to be azimuthally symmetric with the density sharply peaked at Titan's orbit, and decreasing rapidly in the outward and perpendicular directions and more gradually inward from 17 to 5 R/sub s/. The energetic hydrogen atoms from Saturn's upper atmosphere, first predicted by Shemansky and Smith (1982), were also investigated. Collisions of these Saturnian atoms with the torus population do not contribute to the torus density, and will lead to a net loss of torus atoms if their launch speeds from Saturn extend above 40 km/sec. The Saturnian atoms produce a corona which was modeled using the theory of Chamberlain (1963)

  19. The Ionization Fraction in the Obscuring ``Torus'' of an Active Galactic Nucleus

    Science.gov (United States)

    Wilson, A. S.; Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Weaver, K. A.; Braatz, J. A.; Henkel, C.; Matsuoka, M.; Xue, S.; Iyomoto, N.; Okada, K.

    1998-10-01

    The LINER galaxy NGC 2639 contains a water vapor megamaser, suggesting the presence of a nuclear accretion disk or torus viewed close to edge-on. This galaxy is thus a good candidate for revealing absorption by the torus of any compact nuclear continuum emission. In this paper, we report VLBA radio maps at three frequencies and an ASCA X-ray spectrum obtained to search for free-free and photoelectric absorptions, respectively. The radio observations reveal a compact (~1.3 × 10-5, which is comparable to the theoretical upper limit derived by Neufeld, Maloney, and Conger for X-ray heated molecular gas. The two values may be reconciled if the molecular gas is very dense: nH2>~109 cm-3. The measured ionization fraction is also consistent with the idea that both absorptions occur in a hot (~6000 K), weakly ionized (ionization fraction a few times 10-2) atomic region that may coexist with the warm molecular gas. If this is the case, the absorbing gas is ~1 pc from the nucleus. We rule out the possibility that both absorptions occur in a fully ionized gas near 104 K. If our line of sight passes through more than one phase, the atomic gas probably dominates the free-free absorption, while the molecular gas may dominate the photoelectric absorption.

  20. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  1. EVOLUTION OF THE MOST LUMINOUS DUSTY GALAXIES

    International Nuclear Information System (INIS)

    Weedman, Daniel W.; Houck, James R.

    2009-01-01

    A summary of mid-infrared continuum luminosities arising from dust is given for very luminous galaxies, L IR > 10 12 L sun , with 0.005 0.7 in the 9.7 μm silicate absorption feature (i.e., half of the continuum is absorbed) and having equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature ν (8 μm) for the most luminous obscured AGNs is found to scale as (1+z) 2.6 to z = 2.8. For unobscured AGNs, the scaling with redshift is similar, but luminosities νL ν (8 μm) are approximately three times greater for the most luminous sources. Using both obscured and unobscured AGNs having total infrared fluxes from the Infrared Astronomical Satellite, empirical relations are found between νL ν (8 μm) and L IR . Combining these relations with the redshift scaling of luminosity, we conclude that the total infrared luminosities for the most luminous obscured AGNs, L IR (AGN obscured ) in L sun , scale as log L IR (AGN obscured ) = 12.3 ± 0.25 + 2.6(±0.3)log(1+z), and for the most luminous unobscured AGNs, scale as log L IR (AGN1) = 12.6(±0.15) + 2.6(±0.3)log(1+z). We previously determined that the most luminous starbursts scale as log L IR (SB) = 11.8 ± 0.3 + 2.5(±0.3)log(1+z), indicating that the most luminous AGNs are about 10 times more luminous than the most luminous starbursts. Results are consistent with obscured and unobscured AGNs having the same total luminosities with differences arising only from orientation, such that the obscured AGNs are observed through very dusty clouds which extinct about 50% of the intrinsic luminosity at 8 μm. Extrapolations of observable f ν (24 μm) to z = 6 are made using evolution results for these luminous sources. Both obscured and unobscured AGNs should be detected to z ∼ 6 by Spitzer surveys with f ν (24 μm) > 0.3 mJy, even without luminosity evolution for z > 2.5. By contrast, the most luminous starbursts cannot be detected for z > 3, even if luminosity evolution continues beyond z = 2.5.

  2. Smooth invariant densities for random switching on the torus

    Science.gov (United States)

    Bakhtin, Yuri; Hurth, Tobias; Lawley, Sean D.; Mattingly, Jonathan C.

    2018-04-01

    We consider a random dynamical system obtained by switching between the flows generated by two smooth vector fields on the 2d-torus, with the random switchings happening according to a Poisson process. Assuming that the driving vector fields are transversal to each other at all points of the torus and that each of them allows for a smooth invariant density and no periodic orbits, we prove that the switched system also has a smooth invariant density, for every switching rate. Our approach is based on an integration by parts formula inspired by techniques from Malliavin calculus.

  3. The CLAS12 Torus Detector Magnet at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Luongo, Cesar [Jefferson Lab; Ballard, Joshua [Jefferson Lab; Biallas, George [Jefferson Lab; Elouadrhiri, Latifa [Jefferson Lab; Fair, Ruben [Jefferson Lab; Ghoshal, Probir [Jefferson Lab; Kashy, Dave [Jefferson Lab; Legg, Robert [Jefferson Lab; Pastor, Orlando [Jefferson Lab; Rajput-Ghoshal, Renuka [Jefferson Lab; Rode, Claus [Jefferson Lab; Wiseman, Mark [Jefferson Lab; Young, Glenn [Jefferson Lab; Elementi, Luciano [Fermilab; Krave, Steven [Fermilab; Makarov, Alexander [Fermilab; Nobrega, Fred [Fermilab; Velev, George [Fermilab

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  4. Maass Cusp Forms on Singly Punctured Two-Torus

    International Nuclear Information System (INIS)

    Siddig, Abubaker Ahmed Mohamed; Shah, Nurisya Mohd; Zainuddin, Hishamuddin

    2009-01-01

    Quantum mechanical systems on punctured surfaces modeled by hyperbolic spaces can play an interesting role in exploring quantum chaos and in studying behaviour of future quantum nano-devices. The case of singly-punctured two-torus, for example, has been well-studied in the literature particularly for its scattering states. However, the bound states on the punctured torus given by Maass cusp forms are lesser known. In this note, we report on the algorithm of numerically computing these functions and we present ten lower-lying eigenvalues for each odd and even Maass cusp forms.

  5. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  6. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  7. Ion streaming instability in a quantum dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P. K.; Brodin, G.; Stenflo, L.

    2008-01-01

    It is shown that a relative drift between the ions and the charged dust particles in a magnetized quantum dusty plasma can produce an oscillatory instability in a quantum dust acousticlike wave. The threshold and growth rate of the instability are presented. The result may explain the origin of low-frequency electrostatic fluctuations in semiconductors quantum wells

  8. Dusty Relic to Shining Treasure: Embedded in a Multicultural Environment

    Science.gov (United States)

    Avery, Beth Fuseler; Batman, Cindy

    2014-01-01

    Far from being dusty old relics who are guardians of the book, embedded librarians need to be proactively leading students through the digital maze of the virtual library. Working with students more than 7,000 miles away changed perceptions of how to teach and learn, and how people interact online. We will share how as embedded librarians we…

  9. Jeans instability of an inhomogeneous streaming dusty plasma

    Indian Academy of Sciences (India)

    The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear flow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma may grow at the expense of the density ...

  10. Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    Department of Physics, Cotton College, Guwahati 781 001, India. Abstract. Considering the Boltzmann response of the ions ... respect to normal electronic charge (q ~105. –106e). The mass of the dust grains can have very high value too, up to ... degrees of plasma dynamics. Thus, the theoretical modeling of a dusty plasma ...

  11. Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai; Soukhoterin, Evgeniy; Mosekilde, Erik

    2007-01-01

    This paper discusses the mechanisms of torus formation and torus destruction in a dc/dc converter with relay control and hysteresis. We establish a chart of the dynamical modes in the input voltage versus load resistance parameter plane. This chart displays several different torus bifurcations...

  12. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  13. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    Science.gov (United States)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  14. Direct torus venting analysis for Chinshan BWR-4 plant with MARK-I containment

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2017-03-15

    Highlights: • Study the effectiveness of Direct Torus Venting System (DTVS) during extended SBO of 24 h for Chinshan MARK-I plant. • Containment response is analyzed by GOTHIC based on boundary conditions from RETRAN calculation. • Analyses are performed with and without DTVS, respectively. • Suppression pool is sub-divided and thermal stratification is observed. - Abstract: The Chinshan plant, owned by Taiwan Power Company, has twin units of BWR-4 reactor and MARK-I containment. Both units have been operating at rated core thermal power of 1840 MWt. The existing Direct Torus Venting System (DTVS) is the main system used for venting the containment during the extended station blackout event. The purpose of this paper is to study the effects of the DTVS venting on the response of the containment pressure and temperature. The reactor is depressurized by manually opening the safety relief valves (SRVs) during the SBO, which causes the mass and energy to be discharged into and heat up the suppression pool. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The DTVS model is established in the GOTHIC model based on the venting size, venting piping loss, venting initiation time, and venting source. The lumped volume model, 1-D coarse-mesh model, and 3-D coarse-mesh model are considered in the torus volume. The calculation is first done without DTVS venting to establish a reference basis. Then a case with DTVS available is performed. Comparison of the two cases shows that the existing DTVS design is effective in mitigating the severity of the containment pressure and temperature transients. The results also show that the 1-D coarse-mesh model may not be appropriate since a

  15. Legendrian and transverse cables of positive torus knots

    DEFF Research Database (Denmark)

    B. Etnyre, John; la Fountain, Douglas James; Tosun, Bulent

    In this paper we classify Legendrian and transverse knots in the knot types obtained from positive torus knots by cabling. This classification allows us to demonstrate several new phenomena. Specifically, we show there are knot types that have non-destabilizable Legendrian representatives whose T...

  16. Beta II compact torus experiment plasma equilibrium and power balance

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Prono, D.S.; Hartman, C.W.; Taska, J.

    1982-01-01

    In this paper we follow up some of our earlier work that showed the compact torus (CT) plasma equilibrium produced by a magnetized coaxial plasma gun is nearly force free and that impurity radiation plays a dominant role in determining the decay time of plasma currents in present generation experiments

  17. Recursive representation of the torus 1-point conformal block

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Suchanek, Paulina

    2010-01-01

    The recursive relation for the 1-point conformal block on a torus is derived and used to prove the identities between conformal blocks recently conjectured by Poghossian in [1]. As an illustration of the efficiency of the recurrence method the modular invariance of the 1-point Liouville correlation function is numerically analyzed.

  18. Global solvability for involutive systems on the torus

    Directory of Open Access Journals (Sweden)

    Cleber de Medeira

    2013-11-01

    Full Text Available In this article, we consider a class of involutive systems of n smooth vector fields on the torus of dimension n+1. We prove that the global solvability of this class is related to an algebraic condition involving Liouville forms and the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form associated with the system.

  19. Atomic force microscopy of torus-bearing pit membranes

    Science.gov (United States)

    Roland R. Dute; Thomas Elder

    2011-01-01

    Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...

  20. Linear pinch driven by a moving compact torus

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.L.

    1984-01-01

    In principle, a Z-pinch of sufficiently large aspect ratio can provide arbitrarily high magnetic field intensity for the confinement of plasma. In practice, however, achievable field intensities and timescales are limited by parasitic inductances, pulse driver power, current, voltage, and voltage standoff of nearby insulating surfaces or surrounding gas. Further, instabilities may dominate to prevent high fields (kink mode) or enhance them (sausage mode) but in a nonuniform and uncontrollable way. In this paper we discuss an approach to producing a high-field-intensity pinch using a moving compact torus. The moving torus can serve as a very high power driver and may be used to compress a pre-established pinch field, switch on an accelerating pinch field, or may itself be reconfigured to form an intense pinch. In any case, the high energy, high energy density, and high velocity possible with an accelerated compact torus can provide extremely high power to overcome, by a number of orders of magnitude, the limitations to pinch formation described earlier. In this paper we will consider in detail pinches formed by reconfiguration of the compact torus

  1. Modular differential equations for torus one-point functions

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Lang, Samuel

    2009-01-01

    It is shown that in a rational conformal field theory every torus one-point function of a given highest weight state satisfies a modular differential equation. We derive and solve these differential equations explicitly for some Virasoro minimal models. In general, however, the resulting amplitudes do not seem to be expressible in terms of standard transcendental functions

  2. Spherical torus (ST) concept and its reactor implications

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Lazarus, E.A.; Miller, R.L.; Carreras, B.A.; Hogan, J.T.; Krakowski, R.A.; Seed, T.J.; Zubrin, R.M.; Schnurr, N.M.

    1986-01-01

    A brief description of the spherical torus design is given. The design concept includes resistive demountable toroidal field coils, poloidal divertor for impurity control, oscillating-field current maintenance, RF initiation and ramp-up of the plasma current, and flowing liquid-metal breeding blanket. 4 refs., 6 figs

  3. Five-dimensional gauge theory and compactification on a torus

    NARCIS (Netherlands)

    Haghighat, B.; Vandoren, S.J.G.

    2011-01-01

    We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkaehler equipped with a metric with modular transformation properties.

  4. Plasma diagnostics in compact torus of UNICAMP (Campinas state university)

    International Nuclear Information System (INIS)

    Ueda, M; Doi, Y.; Aramaki, E.A.; Porto, P.; Berni, L.; Machida, M.

    1989-08-01

    This paper which describes experiments carried out in the Compact Torus of UNICAMP (TC-1) is divided into 3 parts: 1) summary of TC-1 characteristics and its operation mode; 2) description of diagnostics in use and ones to be installed, 3) recent experimental results using optical and electromagnetical diagnostics. (author)

  5. ELMO Bumpy Torus fusion-reactor design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.

    1981-01-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is described that emphasizes those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are generic to magnetic fusion being adopted from past, more extensive tokamak reactor designs

  6. X-ray production experiments on the RACE Compact Torus Accelerator

    International Nuclear Information System (INIS)

    Hammer, J.H.; Eddleman, J.L.; Hartman, C.W.; McLean, H.S.; Molvik, A.W.; Gee, M.

    1989-12-01

    The Purpose of the Compact Torus Accelerator (CTA) program at LLNL is to prove the principle of a unique accelerator concept based on magnetically confined compact torus (CT) plasma rings and to study applications. Successful achievement of these goals could lead to a high power-density driver for many applications including an intense x-ray source for nuclear weapons effects simulation and an inertial fusion driver. Fusion applications and a description of the CTA concept are included in a companion paper at this conference. This paper will describe the initial experiments on soft x-ray production conducted on the plasma Ring ACcelerator Experiment (RACE) and compare the results to modeling studies. The experiments on CT stagnation and soft x-ray production were conducted with unfocused rings as a first of CT dynamics and the physics of x-ray production. The x-ray fluences observed are consistent with expectations based on calculations employing a radiation-hydrodynamics code. We conclude with a diffusion of future x-ray production studies that can be conducted on RACE and a possible multi-megajoule upgrade

  7. Nonlinear evolution of magnetic islands in a two fluid torus

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1996-01-01

    A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress

  8. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  9. Electro-acoustic solitary waves in dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Sayed, F.

    2005-10-01

    present a rigorous theoretical investigation of electro- acoustic [particularly, dust-ion acoustic (DIA) and dust-acoustic (DA)] solitary waves in dusty plasmas. We employ the reductive perturbation method for small but finite amplitude solitary waves as well as the pseudo-potential approach for arbitrary amplitude ones. We also analyze the effects of non-planar geometry and dust charge fluctuations on both DIA and DA solitary waves, the effect of finite ion-temperature on DIA solitary waves, and the effects of dust-fluid temperature and non-isothermal ion distributions on DA solitary waves. It has been reported that these effects do not only significantly modify the basic features of DIA or DA solitary waves, but also introduce some important new features. The basic features and the underlying physics of DIA and DA solitary waves, which are relevant to space and laboratory dusty plasmas, are briefly discussed. (author)

  10. Low frequency waves in streaming quantum dusty plasmas

    Science.gov (United States)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  11. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  12. Nonlinear drift waves in a dusty plasma with sheared flows

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.

  13. Nonlinear drift waves in a dusty plasma with sheared flows

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, R.K.

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented

  14. The potential around a test charge in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.; Salimullah, M.

    1996-01-01

    The potential of a test dust particle in a magnetized dusty plasma is calculated, taking into account the dielectric constant associated with electrostatic ion-cyclotron waves. Besides the well-known Debye-Hueckel screening potential, an oscillatory potential distribution around a test dust particle is found, which strongly depends on the strength of the external magnetic field. copyright 1996 American Institute of Physics

  15. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  16. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  17. Large amplitude ion-acoustic solitons in dusty plasmas

    International Nuclear Information System (INIS)

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-01-01

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail

  18. Ion-acoustic dressed solitons in a dusty plasma

    International Nuclear Information System (INIS)

    Tiwari, R.S.; Mishra, M.K.

    2006-01-01

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived

  19. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    Science.gov (United States)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  20. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  1. FIREBIRD - a conceptual design of a field reversed configuration compact torus fusion reactor (CTFR)

    International Nuclear Information System (INIS)

    Raman, R.; Zubrin, R.M.

    1987-01-01

    This paper is a summary of the work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (Field-Reversed) Fusion Reactor Configuration (CTFR). The primary objective of the study was to develop a reactor design that strived for high engineering power density, modest recirculating power and competitive cost of electrical power. A Conceptual design was developed for a translating field-reversed configuration reactor; based on the Physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe

  2. Transmutation of minor actinides in a spherical torus tokamak fusion reactor, FDTR

    International Nuclear Information System (INIS)

    Feng, K.M.; Zhang, G.S.; Deng, M.G.

    2003-01-01

    In this paper, a concept for the transmutation of minor actinide (MA) nuclear wastes based on a spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameters suitable for the transmutation blanket was chosen. The 2-D neutron transport code TWODANT, the 3-D Monte Carlo code MCNP/4B, the 1-D neutron transport and burn-up calculation code BISON3.0 and their associated data libraries were used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding ratio of the transmutation blanket. The calculation results for the system parameters and the actinide series isotopes for different operation times are presented. The engineering feasibility of the center-post (CP) of FDTR has been investigated and the results are also given. A preliminary neutronics calculation based on an ST transmutation blanket shows that the proposed system has a high transmutation capability for MA wastes. (author)

  3. Studies on Charge Variation and Waves in Dusty Plasmas

    Science.gov (United States)

    Kausik, Siddhartha Sankar

    Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move

  4. Exploration of spherical torus physics in the NSTX device

    Science.gov (United States)

    Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team

    2000-03-01

    The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.

  5. Short interval expansion of Rényi entropy on torus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Wu, Jun-Bao [Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Zhang, Jia-ju [Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)

    2016-08-23

    We investigate the short interval expansion of the Rényi entropy for two-dimensional conformal field theory (CFT) on a torus. We require the length of the interval ℓ to be small with respect to the spatial and temporal sizes of the torus. The operator product expansion of the twist operators allows us to compute the short interval expansion of the Rényi entropy at any temperature. In particular, we pay special attention to the large c CFTs dual to the AdS{sub 3} gravity and its cousins. At both low and high temperature limits, we read the Rényi entropies to order ℓ{sup 6}, and find good agreements with holographic results. Moreover, the expansion allows us to read 1/c contribution, which is hard to get by expanding the thermal density matrix. We generalize the study to the case with the chemical potential as well.

  6. Five-dimensional gauge theory and compactification on a torus

    Science.gov (United States)

    Haghighat, Babak; Vandoren, Stefan

    2011-09-01

    We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.

  7. Recent results from the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Maingi, R; Bell, M G; Bell, R E; Bialek, J; Bourdelle, C; Bush, C E; Darrow, D S; Fredrickson, E D; Gates, D A; Gilmore, M; Gray, T; Jarboe, T R; Johnson, D W; Kaita, R; Kaye, S M; Kubota, S; Kugel, H W; LeBlanc, B P; Maqueda, R J; Mastrovito, D; Medley, S S; Menard, J E; Mueller, D; Nelson, B A; Ono, M; Paoletti, F; Park, H K; Paul, S F; Peebles, T; Peng, Y-K M; Phillips, C K; Raman, R; Rosenberg, A L; Roquemore, A L; Ryan, P M; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stutman, D; Swain, D W; Synakowski, E J; Taylor, G; Wilgen, J; Wilson, J R; Wurden, G A; Zweben, S J

    2003-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect-ratio fusion research facility whose research goal is to make a determination of the attractiveness of the spherical torus concept in the areas of high-β stability, confinement, current drive, and divertor physics. Remarkable progress was made in extending the operational regime of the device in FY 2002. In brief, β t of 34% and β N of 6.5 were achieved. H-mode became the main operational regime, and energy confinement exceeded conventional aspect-ratio tokamak scalings. Heating was demonstrated with the radiofrequency antenna, and signatures of current drive were observed. Current initiation with coaxial helicity injection produced discharges of 400 kA, and first measurements of divertor heat flux profiles in H-mode were made

  8. Piotron at SIN - a large superconducting double torus spectrometer

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Zellweger, J.

    1981-01-01

    A test facility for radiation therapy with negative /pi/-mesons was constructed in Switzerland. The facility is a large double torus spectrometer similar to the Stanford design. For variation of stopping depth different momenta are selected by variation of the magnetic field. Superconducting ac magnets are necessary for tumor scanning and represent a major part of such a facility. Main design features and performance are reported. 10 refs

  9. Matrix factorizations and homological mirror symmetry on the torus

    International Nuclear Information System (INIS)

    Knapp, Johanna; Omer, Harun

    2007-01-01

    We consider matrix factorizations and homological mirror symmetry on the torus T 2 using a Landau-Ginzburg description. We identify the basic matrix factorizations of the Landau-Ginzburg superpotential and compute the full spectrum taking into account the explicit dependence on bulk and boundary moduli. We verify homological mirror symmetry by comparing three-point functions in the A-model and the B-model

  10. Wendelstein 7-X Torus Hall Layout and System Integration

    International Nuclear Information System (INIS)

    Hartmann, D.; Damiani, C.; Hartfuss, H.-J.; Krampitz, R.; Neuner, U.

    2006-01-01

    Wendelstein 7-X is an experimental fusion device presently under construction in Greifswald, Germany, to study the stellarator concept at reactor relevant parameters und steady-state conditions. The heart of the machine consists of the torus that houses the superconducting coils and the plasma vacuum vessel. It is located nearly in the center of a 30 m x 30 m x 20 m hall. A large number of components need to be placed in close proximity of the torus to provide the system with the required means, e.g. cryogenic gases, cooling water, electricity, and to integrate it with the peripheral diagnostic and heating components. The arrangement of these components has to be supported by suitable structures, and has to be optimized to allow for installation, maintenance, and repair. In addition, space has to be provided for escape routes and for sufficient distance between components that could negatively influence each other's performance, etc. The layout of the components has been done over many years using 3D CAD software. It was based on simple geometric models of the components and of the additionally required space. Presently the layout design is being detailed and updated by replacing the original coarse models with more refined estimates or - in some cases - with as-built models. All interface requirements are carefully taken into account. Detailed routing was specified for the cryo and cooling water supply lines whose design and installation is outsourced. Due to the limited space available and severely restricted access during experimental campaigns, the requirement to put auxiliary components like electronic racks into the torus hall is being queried. The paper summarizes the present state of the component layout in the torus hall, and how the peripheral supply, diagnostics, and heating systems are integrated into the machine. (author)

  11. Perturbative construction of self-dual configurations on the torus

    International Nuclear Information System (INIS)

    Garcia Perez, M.; Gonzalez-Arroyo, A.; Pena, C.

    2000-01-01

    We develop a perturbative expansion which allows the construction of non-abelian self-dual SU(2) Yang-Mills field configurations on the four-dimensional torus with topological charge 1/2. The expansion is performed around the constant field strength abelian solutions found by 't Hooft. Next to leading order calculations are compared with numerical results obtained with lattice gauge theory techniques. (author)

  12. Recent results in the Los Alamos compact torus program

    International Nuclear Information System (INIS)

    Tuszewski, M.; Armstrong, W.T.; Barnes, C.W.

    1983-01-01

    A Compact Toroid is a toroidal magnetic-plasma-containment geometry in which no conductors or vacuum-chamber walls pass through the hole in the torus. Two types of compact toroids are studied experimentally and theoretically at Los Alamos: spheromaks that are oblate in shape and contain both toroidal and poloidal magnetic fields, and field-reversed configurations (FRC) that are very prolate and contain poloidal field only

  13. High energy density fusing using the Compact Torus

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1989-01-01

    My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs

  14. Development of concentric equipotential surfaces in bumpy torus plasma

    International Nuclear Information System (INIS)

    Takasugi, Keiichi; Iguchi, Harukazu; Fujiwara, Masami; Ikegami, Hideo

    1983-01-01

    Radial profiles of the plasma space potential are measured in Nagoya Bumpy Torus (NBT-1) by the use of a heavy ion beam probe. Asymmetric potential profiles owing to toroidal drift are observed in high pressure operation (C-mode). As the pressure is decreased, toroidal plasma is effectively heated (T-mode), poloidal precessional frequency overcomes the electron collision frequency and the equipotential surfaces becomes concentric inside the hot electron ring. (author)

  15. Neoclassical transport associated with collisionless detrapping in a bumpy torus

    International Nuclear Information System (INIS)

    Hastings, D.E.

    1983-10-01

    In the two collisionality nonresonant regime in a bumpy torus the transitional particles can make a large contribution to neoclassical transport. This contribution can be moderated by the toroidally induced radial drift which causes transitional particles to detrap and retrap in the mirror sectors. This effect leads to diffusion coefficients which are linear in the collision frequency and scale with the inverse aspect ratio instead of the more usual square of the inverse aspect ratio. (author)

  16. The classical theory of the bumpy torus relativistic annulus

    International Nuclear Information System (INIS)

    Hamasaki, S.; Krall, N.A.; Sperling, J.L.

    1983-01-01

    The relativistic electron annulus is a critical component of the bumpy torus magnetic fusion concept. An analysis of the annulus is presented in which the ring steady state is determined by the explicit balance of quasi-linear heating and classical losses, i.e. collisions and synchrotron radiation. Both anisotropy and loss-cone effects are included in the formalism. It is demonstrated that a large number of electron cyclotron harmonics, not just the first and second, contribute in an appreciable way to annulus steady state and power balance. Without a loss cone, the analysis reproduces the relativistic passing electron population observed in bumpy tori on confined drift surfaces near the centre of the bumpy torus cross-section. Loss-cone effects permit an annulus population with large perpendicular pressure to exist. It is shown that the balance between quasi-linear heating and the classical losses cannot account for the experimental scaling of bumpy torus annulus temperature; therefore, processes not included in the classical ring power balance model must contribute in a non-trivial way to observed annulus properties. (author)

  17. An alternative to the compact torus ICF driver

    International Nuclear Information System (INIS)

    Latter, A.L.; Martinelli, E.A.

    1992-11-01

    Plasma guns have been used in the Controlled Thermonuclear Reaction (CTR) Program to inject energetic deuterium-tritium plasma into a magnetic confinement machine, also for dense-plasma-focus devices to achieve fusion utilizing Z-pinches. In this report we propose another CTR application of a plasma gun: accelerating the plasma in a coaxial geometry to a speed in the neighborhood of a centimeter per shake with a total kinetic energy of about 20 MJ. The kinetic energy is efficiently converted to x-rays in a time of about a shake, and the x-ray pulse is used to implode an Inertial Confinement Fusion (ICF) capsule. As far as we know the plasma gun application we are proposing has not been explored before, but we observe that the LLNL Compact Torus Program hopes to accelerate a compact-torus-plasma to a comparable speed and energy and, in one of its applications, to generate x-rays for ICF purposes. In fact, the only difference between the LLNL Compact Torus Program and what we are proposing is that our plasma does not rely on imbedded magnetic fields and currents to minimize instabilities. We minimize instabilities by snowplowing the plasma to its required speed in a single shock. Which approach is better requires additional investigation

  18. Compact torus accelerator as a driver for ICF

    International Nuclear Information System (INIS)

    Tobin, M.T.; Meier, W.R.; Morse, E.C.

    1986-01-01

    The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ. This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10 9 cm/s, and a mass of 4.42 μg. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver

  19. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes further design issues concerning remote maintenance of torus vacuum pumping systems options for ITER. The key issues under investigation in this report are flask support systems for valve seal exchange operations for the compound cryopump scheme and remote maintenance of a proposed multiple turbomolecular pump (TMP) system, an alternative ITER torus exhaust pumping option. Previous studies have shown that the overhead support methods for seal exchange flask equipment could malfunction due to valve/flask misalignment. A floor-mounted support system is described in this report. This scheme provides a more rigid support system for seal exchange operations. An alternative torus pumping system, based on the use of multiple TMPs, is studied from a remote maintenance standpoint. In this concept, centre distance spacing for pump/valve assemblies is too restrictive for remote maintenance. Recommendations are made for adequate spacing of these assemblies based on commercially-available 0.8 m and 1.0 m diameter valves. Fewer pumps will fit in this arrangement, which implies a need for larger TMPs. Pumps of this size are not commercially available. Other concerns regarding the servicing and storage of remote handling equipment in cells are also identified. (9 figs.)

  20. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)

    2016-04-15

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  1. Low-frequency dust-lower-hybrid modes in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1995-10-01

    The existence of low-frequency dust-lower-hybrid modes in a magnetized dusty plasma has been examined. These modes arise on account of the inequalities of charge and number densities of electrons, ions, and dust particles, and finite Larmor radius effects in a dusty plasma. (author). 14 refs

  2. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui

    2016-01-01

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  3. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  4. Dust Transport And Force Equilibria In Magnetized Dusty DC Discharges

    International Nuclear Information System (INIS)

    Land, Victor; Thomas, Edward Jr.; Williams, Jeremaiah

    2005-01-01

    We have performed experiments on magnetized dusty Argon DC discharges. Here we report on the characterization of the plasma- and the dustparameters and on the response of the dust particles and the plasma to a change in the magnetic configuration inside the discharge. Finally, we show a case in which the balance of forces acting on the dust particles differs from the classical balance (in which the electrostatic force balances the downward force of gravity). In this case the electrostatic force acts as a downward force on the dust particles. From observations we will argue that the ion drag force might be the force that balances this downward electrostatic force

  5. Formation and dissociation of dust molecules in dusty plasma

    International Nuclear Information System (INIS)

    Yan Jia; Feng Fan; Liu Fucheng; Dong Lifang; He Yafeng

    2016-01-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. (paper)

  6. Non-linear collective phenomena in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G E

    2004-01-01

    Dusty plasmas are unusual states of matter where the interactions between the dust grains can be collective and are not a sum of all pair particle interactions. This state of matter is appropriate to form non-linear dissipative collective self-organized structures. It is found that the potential around the grains can be over-screened leading to a new phenomenon-collective attraction of pairs of large charge grains of equal sign. The grain clouds can self-contract and their collapse is terminated at distances where the interaction becomes repulsive. The homogeneous dusty plasma distribution is universally unstable to form structures. The potential of the collective attraction is proportional to the square of the dimensionless parameter P = n d Z d /n i , where n d and n i are the average dust and ion densities, respectively, and Z d is the dust charge in units of electron charge. The collective attraction is determined by finite grain size and by the presence of absorption of plasma flux on grains. The physics of attraction is related to the space charge accumulation caused by collective flux disturbances. The collective attraction operates for systems with size larger than the mean free path for ion-dust absorption, the condition met in many existing low temperature dusty plasma experiments, in edge plasmas of fusion devices and in space dusty plasmas. The collective attraction exceeds the previously known non-collective attraction such as shadow attraction or wake attraction. The collective attraction can be responsible for pairing of dust grains (this process is completely classical in contrast to the known pairing in superconductivity) and can serve as the main process for the formation of more complicated dust complexes up to dust-plasma crystals. The equilibrium structures formed by collective attraction have universal properties and can exist in a limited domain of parameters (similar to the equilibrium balance known for stars). The balance conditions for

  7. Observations of dusty plasmas with magnetized dust grains

    Science.gov (United States)

    Luo, Q.-Z.; D'Angelo, N.

    2000-11-01

    We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.

  8. Nonlinear effects on bremsstrahlung emission in dusty plasmas

    International Nuclear Information System (INIS)

    Kim, Young-Woo; Jung, Young-Dae

    2004-01-01

    Nonlinear effects on the bremsstrahlung process due to ion-dust grain collisions are investigated in dusty plasmas. The nonlinear screened interaction potential is applied to obtain the Fourier coefficients of the force acting on the dust grain. The classical trajectory analysis is applied to obtain the differential bremsstrahlung radiation cross section as a function of the scaled impact parameter, projectile energy, photon energy, and Debye length. The result shows that the nonlinear effects suppress the bremsstrahlung radiation cross section due to collisions of ions with positively charged dust grains. These nonlinear effects decrease with increasing Debye length and temperature, and increase with increasing radiation photon energy

  9. A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514

    International Nuclear Information System (INIS)

    Rodriguez, David R.; Zuckerman, B.; Marois, Christian; Macintosh, Bruce; Melis, Carl

    2012-01-01

    With adaptive optics imaging at Keck observatory, we have discovered a substellar companion to the F6 Pleiades star HD 23514, one of the dustiest main-sequence stars known to date (L IR /L * ∼ 2%). This is one of the first brown dwarfs discovered as a companion to a star in the Pleiades. The 0.06 M ☉ late-M secondary has a projected separation of ∼360 AU. The scarcity of substellar companions to stellar primaries in the Pleiades combined with the extremely dusty environment make this a unique system to study.

  10. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  11. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization

    Science.gov (United States)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting

    2018-01-01

    This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.

  12. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  13. TORUS: Theory of Reactions for Unstable iSotopes Annual Continuation and Progress Report Year-2: March 1, 2011 - February 29, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, G; Elster, C; Escher, J; Mukhamedzanov, A; Nunes, F; Thompson, I J

    2012-02-24

    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.

  14. The torus parametrization of quasiperiodic LI-classes

    CERN Document Server

    Baake, M; Pleasants, P A B

    2002-01-01

    The torus parametrization of quasiperiodic local isomorphism classes is introduced and used to determine the number of elements in such a class with special symmetries or inflation properties. The method is explained in an illustrative fashion for some widely used tiling classes with golden mean rescaling, namely for the Fibonacci chain (1D), the triangle and Penrose patterns (2D) and for Kramer's and Danzer's icosahedral tilings (3D). We obtain a rather complete picture of the orbit structure within these classes, but discuss also various general results.

  15. Turbomolecular pump vacuum system for the Princeton Large Torus

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1977-10-01

    A turbomolecular pump vacuum system has been designed and installed on the Princeton Large Torus (PLT). Four vertical shaft, oil-bearing, 1500 l/s turbomolecular pumps have been interfaced to the 6400 liter PLT Vacuum vessel to provide a net pumping speed of 3000 l/s for H 2 . The particular requirements and problems of tokamak vacuum systems are enumerated. A vacuum control system is described which protects the vacuum vessel from contamination, and protects the turbomolecular pumps from damage under a variety of possible failure modes. The performance of the vacuum system is presented in terms of pumping speed measurements and residual gas behavior

  16. A Direct Approach to the Villarceau Circles of a Torus.

    Science.gov (United States)

    1984-03-01

    8217 following theorem . , Theorem 1. On F and F’ we select points P and P’, respectively, such that (4) 8 "LAOP, * =LAO’P’, (0 ( 8, * < 2), bi X,$ x ~-2- i4...6) by replacing c by -c. Proof of Theorem 1. In the cartesian, axes O’xyz of Fig. I we have .1, 1)P: x c + aoo 0, y- a sin0, z 0 -3- We now rotate...Bottema, Cirkels op een torus, Pythagoras , 19 (1979) 2 7. 2. Z. A. Nelzak, Invitation to Geometry, John Wiley & Sons, New York, 1983. 3. Y. Villarceau

  17. Final report on the LLNL compact torus acceleration project

    International Nuclear Information System (INIS)

    Eddleman, J.; Hammer, J.; Hartman, C.; McLean, H.; Molvik, A.

    1995-01-01

    In this report, we summarize recent work at LLNL on the compact torus (CT) acceleration project. The CT accelerator is a novel technique for projecting plasmas to high velocities and reaching high energy density states. The accelerator exploits magnetic confinement in the CT to stably transport plasma over large distances and to directed kinetic energies large in comparison with the CT internal and magnetic energy. Applications range from heating and fueling magnetic fusion devices, generation of intense pulses of x-rays or neutrons for weapons effects and high energy-density fusion concepts

  18. Monte Carlo neutral density calculations for ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Davis, W.A.; Colchin, R.J.

    1986-11-01

    The steady-state nature of the ELMO Bumpy Torus (EBT) plasma implies that the neutral density at any point inside the plasma volume will determine the local particle confinement time. This paper describes a Monte Carlo calculation of three-dimensional atomic and molecular neutral density profiles in EBT. The calculation has been done using various models for neutral source points, for launching schemes, for plasma profiles, and for plasma densities and temperatures. Calculated results are compared with experimental observations - principally spectroscopic measurements - both for guidance in normalization and for overall consistency checks. Implications of the predicted neutral profiles for the fast-ion-decay measurement of neutral densities are also addressed

  19. Legendrian and transverse cables of positive torus knots

    DEFF Research Database (Denmark)

    Etnyre, John; LaFountain, Douglas; Tosun, Bülent

    2012-01-01

    Thurston-Bennequin invariant is arbitrarily far from maximal. We also exhibit Legendrian knots requiring arbitrarily many stabilizations before they become Legendrian isotopic. Similar new phenomena are observed for transverse knots. To achieve these results we define and study "partially thickenable" tori......In this paper we classify Legendrian and transverse knots in the knot types obtained from positive torus knots by cabling. This classification allows us to demonstrate several new phenomena. Specifically, we show there are knot types that have non-destabilizable Legendrian representatives whose...

  20. Numerical study of spherical Torus MHD equilibrium configuration

    International Nuclear Information System (INIS)

    Cheng Faying; Dong Jiaqi; Wang Aike

    2003-01-01

    Tokamak equilibrium code SWEQU has been modified so that it can be used for the MHD equilibrium study of low aspect ratio device. Evolution of plasma configuration in start-up phase and double-null divertor configuration in steady-state phase has been simulated using the modified code. Results show that the new code can be used not only to obtain the equilibrium configuration of spherical Torus in steady-state phase, but also to simulate the evolution of plasma in the start-up phase

  1. Quasi-single helicity spectra in the Madison Symmetric Torus

    International Nuclear Information System (INIS)

    Marrelli, L.; Martin, P.; Spizzo, G.; Franz, P.; Chapman, B.E.; Craig, D.; Sarff, J.S.; Biewer, T.M.; Prager, S.C.; Reardon, J.C.

    2002-01-01

    Evidence of a self-organized collapse towards a narrow spectrum of magnetic instabilities in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] reversed field pinch device is presented. In this collapsed state, dubbed quasi-single helicity (QSH), the spectrum of magnetic modes condenses spontaneously to one dominant mode more completely than ever before observed. The amplitudes of all but the largest of the m=1 modes decrease in QSH states. New results about thermal features of QSH spectra and the identification of global control parameters for their onset are also discussed

  2. New aspects of the Jeans instability in dusty plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A; Mace, Richard L

    1998-01-01

    In contrast to a gas, a dusty plasma can support a variety of wave modes each in principle able to impart to the dust grains the randomizing energy necessary to avoid Jeans collapse on some length scale. Consequently, the stability to Jeans collapse is more complex in a dusty plasma than it is for a charge-neutral gas. After recalling some of the fundamental ideas related to the ordinary Jeans instability in neutral gases, we will extend the discussion to plasmas containing charged dust grains. Besides the usual Jeans criterion based upon thermal agitation, various other ways of countering the gravitational collapse can be considered. One is via excitation of electrostatic dust-acoustic modes, the other via novel Alfven-Jeans instabilities for perpendicularly propagating electromagnetic waves on the extraordinary mode branch. The wavelengths that are unstable are modified due to the presence of a magnetic field and of charged particles. These mechanisms yield different minimum threshold length scales for the onset of instability/condensation

  3. Rapid disappearance of a warm, dusty circumstellar disk.

    Science.gov (United States)

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-04

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  4. Quantifying Dustiness, Specific Allergens, and Endotoxin in Bulk Soya Imports

    Directory of Open Access Journals (Sweden)

    Howard J. Mason

    2017-11-01

    Full Text Available Soya is an important bulk agricultural product often transported by sea as chipped beans and/or the bean husks after pelletisation. There are proven allergens in both forms. Bulk handling of soya imports can generate air pollution containing dust, allergens, and pyrogens, posing health risks to dockside workers and surrounding populations. Using an International Organization for Standardization (ISO standardised rotating drum dustiness test in seven imported soya bulks, we compared the generated levels of dust and two major soya allergens in three particle sizes related to respiratory health. Extractable levels of allergen and endotoxin from the bulks showed 30–60 fold differences, with levels of one allergen (hydrophobic seed protein and endotoxin higher in husk. The generated levels of dust and allergens in the three particle sizes also showed very wide variations between bulks, with aerolysed levels of allergen influenced by both the inherent dustiness and the extractable allergen in each bulk. Percentage allergen aerolysed from pelletized husk—often assumed to be of low dustiness—after transportation was not lower than that from chipped beans. Thus, not all soya bulks pose the same inhalation health risk and reinforces the importance of controlling dust generation from handling all soya bulk to as low as reasonably practicable.

  5. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  6. Dusty air masses transport between Amazon Basin and Caribbean Islands

    Science.gov (United States)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  7. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    Science.gov (United States)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  8. Nonlinear screening of dust grains and structurization of dusty plasma

    International Nuclear Information System (INIS)

    Tsytovich, V. N.; Gusein-zade, N. G.

    2013-01-01

    A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the

  9. On the existence of star products on quotient spaces of linear Hamiltonian torus actions

    DEFF Research Database (Denmark)

    Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.

    2009-01-01

    that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43–103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products....

  10. A program to develop advanced EBT [ELMO Bumpy Torus] concepts and international collaboration on the Bumpy Torus concept: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    This project was undertaken to develop innovative concepts for improving the performance of ELMO Bumpy Torus devices in those aspects of plasma confinement that are particularly relevant to an eventual EBT reactor concept. These include effective magnetic utilization using Andreoletti coils, enhanced confinement using positive ambipolar potentials, and attractive divertor concepts that are compatible with formation and maintenance of ELMO rings. Each of the three major objectives was achieved and, except for the divertor studies, documented for publication and presentation at major scientific meetings. This report provides a brief recapitulation of the major results achieved in the form of a collection of those publications, together with this Introduction

  11. Control System Development Plan for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Neumeyer, C.; Mueller, D.; Gates, D.A.; Ferron, J.R.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has as one of its primary goals the demonstration of the attractiveness of the spherical torus concept as a fusion power plant. Central to this goal is the achievement of high plasma β ( = 2 micro 0 /B 2 a measure of the efficiency of a magnetic plasma confinement system). It has been demonstrated both theoretically and experimentally that the maximum achievable β is a strong function of both local and global plasma parameters. It is therefore important to optimize control of the plasma. To this end a phased development plan for digital plasma control on NSTX is presented. The relative level of sophistication of the control system software and hardware will be increased according to the demands of the experimental program in a three phase plan. During Day 0 (first plasma), a simple coil current control algorithm will initiate plasma operations. During the second phase (Day 1) of plasma operations the control system will continue to use the preprogrammed algorithm to initiate plasma breakdown but will then change over to a rudimentary plasma control scheme based on linear combinations of measured plasma fields and fluxes. The third phase of NSTX plasma control system development will utilize the rtEFIT code, first used on DIII-D, to determine, in real-time, the full plasma equilibrium by inverting the Grad-Shafranov equation. The details of the development plan, including a description of the proposed hardware will be presented

  12. Physics results from the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Kaye, S.; Bell, M.

    2000-01-01

    The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a ∼ 1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI), and Co-Axial Helicity Injection (CHI) for non-inductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high-β t and high-bootstrap current fraction, and to develop methods for non-inductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA, stored energies up to 55 kJ, β t ∼ 10%, and a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 msec was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and β t =21% were produced

  13. Braid group and anyons on an annulus and a torus

    International Nuclear Information System (INIS)

    Hatsugai, Y.; Kohmoto, M.; Wu Yongshi

    1992-01-01

    We present an examination of anyons on a cylinder (or annulus) starting from a braid group analysis. The rule for putting anyons on a lattice has to be modified when the periodic boundary condition is imposed on one direction. In contrast to the annulus, one extra restriction is needed for the cylinder geometry to recover its symmetry. The mean-field (MF) treatment is found to be good until level crossing occurs, and to be better if one starts from the hard-core boson rather than fermion. We also present a construction of anyons on a torus starting from a braid group analysis. The rules of Wen, Dagotto and Fradkin for putting anyons on a torus are reproduced and supplemented. The representation of the braid group is characterized by the anyon statistics θ and the magnetic fluxes Φ x and Φ y threading through the holes. It is shown that the anyon system has a smaller period in Φ x and Φ y than the natural period 1. We perform numerical calculations to investigate the spectral flow and find interesting features in understanding the Fractional Quantum Hall (FQH) effect. (orig.)

  14. Torus II. Technical description of the design proposal

    International Nuclear Information System (INIS)

    Aymar, R.; Deck, C.; Deschamps, P.; Lafon, D.; Leloup, C.; Pariente, M.; Renaud, C.; Sledziewski, Z.; Torossian, A.

    1976-06-01

    A new Tokamak device, called TORUS II, is proposed to be built inside the EURATOM-CEA Association. This is a large machine: I=1.7MA; B=30kGs; R=1.8m; a=75cm, designed to be a successor to TFR and to follow the lines of research already initiated in the present TFR programme, i.e. on plasma heating, on impurities, on energy confinement and scaling laws, providing to JET a very efficient backing. This part of the report provides a technical description of the main components of the basic machine, according to the state of design reached in June 1976. Every subsystem whose assembly forms the basic machine is the subject of one section: vacuum vessel, toroidal field coils, poloidal field system, mechanical structures, monitoring, control and data acquisition, and power supplies. The first part in each section attempts to summarize the solution that was retained, pointing out the problems to be solved and the choice made. No contribution takes into account the problems of installation and buildings and the time schedule which is given is only concerned with the simplest solution. By way, contributions are given which show the state of development of the peripheral systems envisaged for TORUS II, mainly: additional heating, control of impurities and plasma diagnostics [fr

  15. Coulomb thermal properties and stability of the Io plasma torus

    Science.gov (United States)

    Barbosa, D. D.; Coroniti, F. V.; Eviatar, A.

    1983-01-01

    Coulomb collisional energy exchange rates are computed for a model of the Io plasma torus consisting of newly created pickup ions, a background of thermally degraded intermediary ions, and a population of cooler electrons. The electrons are collisionally heated by both the pickup ions and background ions and are cooled by electron impact excitation of plasma ions which radiate in the EUV. It is found that a relative concentration of S III pickup ions forbidden S III/electrons = 0.1 with a temperature of 340 eV can deliver energy to the electrons at a rate of 3 x 10 to the -13th erg/cu cm per sec, sufficient to power the EUV emissions in the Io torus. The model predicts a background ion temperature Ti of about 53 eV and an electron temperature Te of about 5.5 eV on the basis of steady-state energy balance relations at Coulomb rates. The model also predicts electron temperature fluctuations at the 30 percent level on a time scale of less than 11 hours, consistent with recent observations of this phenomenon.

  16. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  17. Calibration of neutron detectors on the Joint European Torus.

    Science.gov (United States)

    Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L

    2017-10-01

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  18. Engineering feasibility of tight aspect ratio Tokamak (spherical torus) reactors

    International Nuclear Information System (INIS)

    Peng, Y-K.M.; Hicks, J.B.

    1990-01-01

    Engineering solutions are identified and analyzed for key high-power-density components of tight aspect ratio tokamak reactors (spherical torus reactors). The potentially extreme divertor heat loads can be reduced to about 3 MW/m 2 in expanded divertors using coils inside the demountable toroidal field coils. Given the long and narrow divertor channels, gaseous divertor targets become possible, which eliminate sputtering and increase the divertor life. The unshielded centre conductor post (CCP) of the toroidal field coil can be made of a single dispersion strengthened copper conductor cooled by high-velocity pressurized water to maintain acceptable copper temperature and strength. Damage and activation of the CCP at a neutron fluence of 10 MW-a/m 2 are also tolerable. Annual replacement of the centre post, the divertor assemblies and the blanket can be accomplished with vertical access for all torus components, which are modularized to reduce size and weight. The technical requirements of these solutions are shown to be comparable with, if not less demanding than, those estimated for conventional tokamak reactors. (author)

  19. NEAR-INFRARED REVERBERATION BY DUSTY CLUMPY TORI IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Kawaguchi, Toshihiro; Mori, Masao

    2011-01-01

    According to recent models, the accretion disk and black hole in active galactic nuclei (AGNs) are surrounded by a clumpy torus. We investigate the NIR flux variation of the torus in response to a UV flash for various geometries. Anisotropic illumination by the disk and the torus self-occultation contrast our study with earlier works. Both the waning effect of each clump and the torus self-occultation selectively reduce the emission from the region with a short delay. Therefore, the NIR delay depends on the viewing angle (where a more inclined angle leads to a longer delay), and the time response shows an asymmetric profile with negative skewness, opposing the results for optically thin tori. The range of the computed delay coincides with the observed one, suggesting that the viewing angle is primarily responsible for the scatter of the observed delay. We also propose that the red NIR-to-optical color of type 1.8/1.9 objects is caused not only by the dust extinction but also the intrinsically red color. Compared with the modest torus thickness, both a thick and a thin tori display weaker NIR emission. A selection bias is thus expected such that NIR-selected AGNs tend to possess moderately thick tori. A thicker torus shows a narrower and more heavily skewed time profile, while a thin torus produces a rapid response. A super-Eddington accretion rate leads to much weaker NIR emission due to the disk self-occultation and the disk truncation by self-gravity. A long delay is expected from an optically thin and/or a largely misaligned torus. Very weak NIR emission, such as in hot-dust-poor active nuclei, can arise from a geometrically thin torus, a super-Eddington accretion rate, or a slightly misaligned torus.

  20. Evolution of perturbation in charge-varying dusty plasmas

    International Nuclear Information System (INIS)

    Popel, S.I.; Golub, A.P.; Losseva, T.V.; Bingham, R.; Benkadda, S.

    2001-01-01

    The nonstationary problem of the evolution of perturbation and its transformation into nonlinear wave structure in dusty plasmas is considered. For this purpose two one-dimensional models based on a set of fluid equations, Poisson's equation, and a charging equation for dust are developed. The first (simplified) model corresponds to the case [Popel et al., Phys. Plasmas 3, 4313 (1996)] when exact steady-state shock wave solutions can exist. This simplified model includes variable-charged dust grains, Boltzmann electrons, and inertial ions. The second (ionization source) model takes into account the variation of the ion density and the ion momentum dissipation due to dust particle charging as well as the source of plasma particles due to ionization process. The computational method for solving the set of equations which describe the evolution in time of a nonlinear structure in a charge-varying dusty plasma is developed. The case of the evolution of an intensive initial nonmoving region with a constant enhanced ion density is investigated on the basis of these two models. The consideration within the ionization source model is performed for the data of the laboratory experiment [Luo et al., Phys. Plasmas 6, 3455 (1999)]. It is shown that the ionization source model allows one to obtain shock structures as a result of evolution of an initial perturbation and to explain the experimental value of the width of the shock wave front. Comparison of the numerical data obtained on the basis of the ionization source model and the simplified model shows that the main characteristic features of the shock structure are the same for both models. Nevertheless, the ionization source model is much more sensitive to the form of the initial perturbation than the simplified model. The solution of the problem of the evolution of perturbation and its transformation into shock wave in charge-varying dusty plasmas opens up possibilities for description of the real phenomena like supernova

  1. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2017-05-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.

  2. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    International Nuclear Information System (INIS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R K

    2017-01-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma. (paper)

  3. Propagation of dust electro-acoustic modes in dusty plasma

    International Nuclear Information System (INIS)

    Avinash, K.

    2001-01-01

    The propagation of the dust electro-acoustic (DEA) mode in dusty plasma with different electron and ion temperatures T e and T i and different ion species is studied. The critical ratio of the dust space charge to the ion space charge ε for the excitation of DEA mode is found to decrease with increasing T e /T i and increase with m i /m e (m i and m e are the ion and electron masses). Thus experiments with hydrogen plasma where electrons are sufficiently hotter than ions and where the reduction in the dust charge with ε is more than 50% are essential for the observation of self-shielding and the DEA mode

  4. Low-frequency waves in magnetized dusty plasmas revisited

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)

  5. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  6. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  7. A model for the condensation of a dusty plasma

    International Nuclear Information System (INIS)

    Bellan, P.M.

    2004-01-01

    A model for the condensation of a dusty plasma is constructed by considering the spherical shielding layers surrounding a dust grain test particle. The collisionless region less than a collision mean free path from the test particle is shown to separate into three concentric layers, each having distinct physics. The method of matched asymptotic expansions is invoked at the interfaces between these layers and provides equations which determine the radii of the interfaces. Despite being much smaller than the Wigner-Seitz radius, the dust Debye length is found to be physically significant because it gives the scale length of a precipitous cut-off of the shielded electrostatic potential at the interface between the second and third layers. Condensation is predicted to occur when the ratio of this cut-off radius to the Wigner-Seitz radius exceeds unity and this prediction is shown to be in good agreement with experiments

  8. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  9. Merging and Splitting of Plasma Spheroids in a Dusty Plasma

    Science.gov (United States)

    Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas

    2012-12-01

    Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.

  10. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  11. Dusty plasma in the region of the lunar terminator

    Energy Technology Data Exchange (ETDEWEB)

    Popel, S. I., E-mail: popel@iki.rssi.ru; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Atamaniuk, B. [Polish Academy of Sciences, Space Research Center (Poland)

    2016-05-15

    Dusty plasma in the region of the lunar terminator is considered. It is shown that, in this region, a structure resembling a plasma sheath forms near the lunar surface. This sheath creates a potential barrier, due to which electrons over the illuminated part of the Moon are confined by electrostatic forces. The width of the sheath-like structure is on the order of the ion Debye length. In this structure, significant (about several hundred V/m) electric fields arise, which lift charged micron-size dust grains to heights of several tens of centimeters. The suggested effect may be used to explain the glow observed by the Surveyor spacecraft over the lunar terminator.

  12. Formation and dissociation of dust molecules in dusty plasma

    Science.gov (United States)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  13. Complex (dusty) plasmas: Current status, open issues, perspectives

    International Nuclear Information System (INIS)

    Fortov, V.E.; Ivlev, A.V.; Khrapak, S.A.; Khrapak, A.G.; Morfill, G.E.

    2005-01-01

    The field of complex (dusty) plasmas-low-temperature plasmas containing charged microparticles-is reviewed: The major types of experimental complex plasmas are briefly discussed. Various elementary processes, including grain charging in different regimes, interaction between charged particles, and momentum exchange between different species are investigated. The major forces on microparticles and features of the particle dynamics in complex plasmas are highlighted. An overview of the wave properties in different phase states, as well as recent results on the phase transitions between different crystalline and liquid states are presented. Fluid behaviour of complex plasmas and the onset of cooperative phenomena are discussed. Properties of the magnetized complex plasmas and plasmas with nonspherical particles are briefly mentioned. In conclusion, possible applications of complex plasmas, interdisciplinary aspects, and perspectives are discussed

  14. Experiments in Ice Contaminant Remanent Magnetization of Dusty Frost Deposits

    Science.gov (United States)

    Grossman, Y.; Aharonson, O.; Shaar, R.

    2017-12-01

    Sedimentary rocks can acquire magnetization in the presence of an external field as grains settle out of suspension in a water column - a process known as Depositional Remanent Magnetization (DRM). In analogy with this, here we propose and experimentally demonstrate a new mechanism for acquisition of magnetization by ice and particulate mixtures which we term Ice Contaminant Remanent Magnetization (ICRM). This phenomenon results from the settling of atmospheric dust containing magnetic particles (e.g. magnetite or other iron oxides). Upon freezing, magnetic dust particles assume a preferential orientation that depends on the external planetary field, resulting in bulk magnetization of the dusty ice. Hence over geologic timescales, the ice stratigraphy is expected to record the geomagnetic history. To test this hypothesis, we designed a set of experiments in which mixtures of ice and dust were deposited in a controlled ambient magnetic field environment. We measured the ratio between the volume normalized magnetization of the dusty ice (m) and the applied field (H) during deposition of the mixture, which is expressed as the effective ICRM susceptibility: m=χICRMH. A magnetic field was applied by a 3-axis Helmholtz coil at the Weizmann Simulating Planetary Ices & Environments Laboratory, and the frozen samples were analyzed in a 2G-Entreprises SQUID Rock Magnetometer at the Hebrew University Institute for Earth Sciences. We measured a clear correlation in amplitude and direction between the ambient magnetic field applied during deposition and the remanent magnetic moment of the resulting samples. We studied various concentrations and particle sizes (diameters 5 µm to 50 µm) of iron and magnetite particles. Effective bulk susceptibilities show a range of values, starting from 10-3 and up to values that saturate the analytical instrument. Our preliminary results indicate that natural ice deposits may acquire variable magnetization due to ICRM, which may in turn be

  15. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  16. Visco-instability of shear viscoelastic collisional dusty plasma systems

    Science.gov (United States)

    Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-04-01

    In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.

  17. ON RADIATION PRESSURE IN STATIC, DUSTY H II REGIONS

    International Nuclear Information System (INIS)

    Draine, B. T.

    2011-01-01

    Radiation pressure acting on gas and dust causes H II regions to have central densities that are lower than the density near the ionized boundary. H II regions in static equilibrium comprise a family of similarity solutions with three parameters: β, γ, and the product Q 0 n rms ; β characterizes the stellar spectrum, γ characterizes the dust/gas ratio, Q 0 is the stellar ionizing output (photons/s), and n rms is the rms density within the ionized region. Adopting standard values for β and γ, varying Q 0 n rms generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q 0 n rms ) to shell-like (large Q 0 n rms ). When Q 0 n rms ∼> 10 52 cm -3 s -1 , dusty H II regions have conspicuous central cavities, even if no stellar wind is present. For given β, γ, and Q 0 n rms , a fourth quantity, which can be Q 0 , determines the overall size and density of the H II region. Examples of density and emissivity profiles are given. We show how quantities of interest-such as the peak-to-central emission measure ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas-depend on β, γ, and Q 0 n rms . For dusty H II regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the stellar photons that actually ionize H (relative to a uniform-density H II region with the same dust/gas ratio and density n = n rms ). We discuss the extent to which radial drift of dust grains in H II regions can alter the dust-to-gas ratio. The applicability of these solutions to real H II regions is discussed.

  18. Magnetic translation groups in an n-dimensional torus and their representations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    2002-01-01

    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG in an n-dimensional torus is isomorphic to a central extension of a cyclic group Z ν 1 x···xZ ν 2l xT m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG in a three-torus and apply the representation theory to three examples. We briefly describe a representation theory for a general n-torus. The MTG in an n-torus can be regarded as a generalization of the so-called noncommutative torus

  19. Nonlinear propagation of dust-acoustic solitary waves in a dusty ...

    Indian Academy of Sciences (India)

    component unmag- netized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian elec- tron distribution to a vortex-like ...

  20. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    Science.gov (United States)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  1. Solitary Waves in Space Dusty Plasma with Dust of Opposite Polarity

    International Nuclear Information System (INIS)

    Elwakil, S.A.; Zahran, M.A.; El-Shewy, E.K.; Abdelwahed, H.G.

    2009-01-01

    The nonlinear propagation of small but finite amplitude dust-acoustic solitary waves (DAWs) in an unmagnetized, collisionless dusty plasma has been investigated. The fluid model is a generalize to the model of Mamun and Shukla to a more realistic space dusty plasma in different regions of space viz.., cometary tails, mesosphere, Jupiter s magnetosphere, etc., by considering a four component dusty plasma consists of charged dusty plasma of opposite polarity, isothermal electrons and vortex like ion distributions in the ambient plasma. A reductive perturbation method were employed to obtain a modified Korteweg-de Vries (mKdV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of positively charged dust fluid, the specific charge ratioμ, temperature of the positively charged dust fluid, the ratio of constant temperature of free hot ions and the constant temperature of trapped ions and ion temperature are also discussed.

  2. Formation of a compact torus using a toroidal plasma gun

    International Nuclear Information System (INIS)

    Levine, M.A.; Pincosy, P.A.

    1981-01-01

    Myers, Levine and Pincosy earlier reported results using a toroidal plasma gun. The device differs from the usual coaxial plasma gun in the use of a strong toroidal bias current for enhanced efficiency, a pair of disk-like accelerating electrodes for reduced viscosity and a fast pulsed toroidal gas valve for more effective use of the injected gas sample. In addition, a technique is used for generating a toroidal current in the plasma ring. The combination offers an opportunity to deliver a plasma with a large amount of energy and to vary the density and relative toroidal and poloidal magnetic field intensities over a range of values. It is the purpose of this paper to report further experimental results, to project the gun's applications to the formation of a compact torus, and to propose a simple modification of the present apparatus as a test

  3. Imaging the Obscuring Torus in Nearby Active Galaxies

    Science.gov (United States)

    Wilson, Andrew S.; Storchi Bergmann, Thaisa; Morris, Simon

    2000-02-01

    We propose to study a sample of Seyfert galaxies with the aim of resolving spatially the torus of dense molecular gas and dust which is believed to surround the nuclei of these objects. The galaxies, selected to have strong molecular hydrogen emission and jet-like radio continuum sources, will be imaged in various molecular hydrogen lines and in [Fe II] or Br (gamma). The goals are to a) confirm the existence of such tori, b) determine whether the extended molecular gas is excited thermally or through fluorescence, and c) compare with the distribution of ionized gas, which may show an ionization cone structure from polar escape of ionizing photons. The availability of IR imaging capabilities with tip-tilt and narrow-band filters, which allow imaging in the H_2(lambda) 2.122(micron) line up to a recession velocity of 6,000 km s^-1, makes the Blanco 4m telescope very well suited to this project.

  4. Numerical model for radial transport in the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Hedrick, C.L.

    1977-11-01

    Neutral and charged particle densities and temperatures are calculated as functions of radius for the toroidal plasma in the ELMO Bumpy Torus (EBT) experiment. Energy dependent ionization and charge-exchange rates, ambipolar diffusion, and self-consistent radial electric field profiles are included. Variation in magnetic field due to finite plasma pressure, effects of energetic electron rings, and transport due to drift waves and magnetic field errors are neglected. Diffusion is assumed to be neoclassical with enhanced losses at low collisionalities. The model reproduces many of the observed features of EBT operation in the quiescent toroidal (T) mode. The self-consistently calculated electric field is everywhere positive (not as in experiments) unless enhanced electron collisionality is included. Solutions for advanced EBT's are obtained and confinement parameters predicted

  5. Space potential profiles in ELMO Bumpy Torus (EBT) experiment

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Connor, K.A.

    1983-01-01

    Spatially resolved measurements of the electric space potential in the ELMO Bumpy Torus (EBT) have been made by a heavy ion beam probe. The EBT-I device is characterized by positive potentials in the surface plasma the order of 100 V and by a nearly symmetric potential well in the core plasma of up to 300 V with respect to the surface potential. The EBT-S device has a similar potential structure with well depth and peak potential similar to or greater than that of EBT-I. Peak potential and well depth increase as the edge gas pressure is lowered and as the microwave power is increased. The potential structure is strongly linked to the specific heating geometry. The ambipolar electric field is large enough generally to dominate the core electron neoclassical diffusion. The potential profile is approximately parabolic in the core, which is shown to be a natural consequence of the spatially uniform plasma source function

  6. Experimental device for in-torus handling - EDITH intermediate report

    International Nuclear Information System (INIS)

    Suppan, A.; Krieg, R.; Krumm, H.G.; Kuehnapfel, U.; Leinemann, K.; Reim, J.; Woll, J.

    1993-10-01

    The Experimental Device for In-Torus Handling (EDITH) is based on articulated boom system (ABS), consisting of a support structure, the articulated boom transporter (ABT), the end-effector positioning unit (EEPU) and different end-effectors (EE's). It is the prototype of an in-vessel handling system for NET/ITER. In combination with a Full Scale Mock-up, EDITH is required to demonstrate that maintenance of plasma facing components can be carried out with the anticipated reliability and in time. A further aim of EDITH is to allow testing of the articulated boom components and subassemblies. The testbed EDITH and the Full Scale Mock-up are described. In addition, the performance and results of the commissioning and the qualification are summarized and an outlook is given for future tasks. (orig./HP) [de

  7. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  8. Quadratic rational rotations of the torus and dual lattice maps

    CERN Document Server

    Kouptsov, K L; Vivaldi, F

    2002-01-01

    We develop a general formalism for computed-assisted proofs concerning the orbit structure of certain non ergodic piecewise affine maps of the torus, whose eigenvalues are roots of unity. For a specific class of maps, we prove that if the trace is a quadratic irrational (the simplest nontrivial case, comprising 8 maps), then the periodic orbits are organized into finitely many renormalizable families, with exponentially increasing period, plus a finite number of exceptional families. The proof is based on exact computations with algebraic numbers, where units play the role of scaling parameters. Exploiting a duality existing between these maps and lattice maps representing rounded-off planar rotations, we establish the global periodicity of the latter systems, for a set of orbits of full density.

  9. Transient waveform acquisition system for the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Young, K.G.; Burris, R.D.; Hillis, D.H.; Overbey, D.R.

    1984-10-01

    The transient waveform system described in this report is designed to acquire analog waveforms from the ELMO Bumpy Torus (EBT) diagnostic experiments. Pressure, density, synchrotron radiation, etc., are acquired and digitized with a Kinetic Systems TR812 transient recorder and associated modules located in a CAMAC crate. The system can simultaneously acquire, display, and transmit sets of data consisting of identification parameters and up to 1024 data points for 1 to 64 input signals (frequency range = 0.01 pulse/s to 100 kHz) of data every one or more minutes; thus, it can run continuously without operator intervention. The data are taken on a VAX 11/780 and transmitted to a data base on a DECSystem-10. To aid the programmer in making future modifications to the system, detailed documentation using the Yourdon structural methods has been given

  10. ELMO Bumpy Torus Reactor and power plant: conceptual design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Dudziak, D.J.; Krakowski, R.A.

    1981-08-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is presented. An emphasis is placed on those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are more generic to magnetic fusion being adapted from past, more extensive tokamak reactor designs. Similar to the latter tokamak studies, this conceptual EBTR design also emphasizes the use of conventional or near state-of-the-art engineering technology and materials. An emphasis is also placed on system accessibility, reliability, and maintainability, as these crucial and desirable characteristics relate to the unique high-aspect-ratio configuration of EBTs. Equal and strong emphasis is given to physics, engineering/technology, and costing/economics components of this design effort. Parametric optimizations and sensitivity studies, using cost-of-electricity as an object function, are reported. Based on these results, the direction for future improvement on an already attractive reactor design is identified

  11. Latitudinal oscillations of plasma within the Io torus

    Science.gov (United States)

    Cummings, W. D.; Dessler, A. J.; Hill, T. W.

    1980-01-01

    The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.

  12. Energy and helicity of magnetic torus knots and braids

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  13. Reliability and availability assessments for the next European Torus

    International Nuclear Information System (INIS)

    Bunde, R.

    1988-01-01

    To achieve its targets in reasonable time, the Next European Torus (NET) must be operated with considerable reliability and availability (R and A). Therefore, failure modes, effects, and criticality analysis (FMECA) of the overall plant and of its major components is already being performed as the design evolves. The present status of the R and A work is described in four steps: First, the R and A targets envisaged for the NET operation are discussed. Then an FMECA covering the overall plant is described, and a more detailed FMECA of major components is presented concerning the toroidal field coil systeml plasma heating systems; protection, instrumentation, and control systems; first wall and blanket, as well as the cooling system. Finally, the R and A results are compared with the targets, and measures for improvements are given

  14. Physics Basis for a Spherical Torus Power Plant

    International Nuclear Information System (INIS)

    Kessel, C.E.; Menard, J.; Jardin, S.C.; Mau, T.K.

    1999-01-01

    The spherical torus, or low-aspect-ratio tokamak, is considered as the basis for a fusion power plant. A special class of wall-stabilized high-beta high-bootstrap fraction low-aspect-ratio tokamak equilibrium are analyzed with respect to MHD stability, bootstrap current and external current drive, poloidal field system requirements, power and particle exhaust and plasma operating regime. Overall systems optimization leads to a choice of aspect ratio A = 1:6, plasma elongation kappa = 3:4, and triangularity delta = 0:64. The design value for the plasma toroidal beta is 50%, corresponding to beta N = 7:4, which is 10% below the ideal stability limit. The bootstrap fraction of 99% greatly alleviates the current drive requirements, which are met by tangential neutral beam injection. The design is such that 45% of the thermal power is radiated in the plasma by Bremsstrahlung and trace Krypton, with Neon in the scrapeoff layer radiating the remainder

  15. Electron energy confinement in ELMO Bumpy Torus (EBT)

    International Nuclear Information System (INIS)

    Hiroe, S.; Haste, G.R.; Dandl, R.A.

    1979-06-01

    Using a calibrated, solid-state, soft x-ray detector, the electron temperature and density have been measured over a wide range of operating conditions of ELMO Bumpy Torus (EBT). The empirical relations of the temperature or the density to the microwave power and the ambient pressure have been determined. The toroidally stored energy has been observed to increase as the stored energy of the hot electron annulus increases. The energy confinement time has been obtained for various plasma parameters and has been found to agree with the neoclassical theory. The advantages of EBT collisionless scaling for fusion plasma confinement have been noted, i.e., n/sub e/tau/sub E/ increases as T/sub e/ 1 5 in the collisionless regime

  16. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, Ronald E.; Feder, Russell

    2010-01-01

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  17. Polynomial invariants for torus knots and topological strings

    International Nuclear Information System (INIS)

    Labastida, J.M.F.

    2001-01-01

    We make a precision test of a recently proposed conjecture relating Chern-Simons gauge theory to topological string theory on the resolution of the conifold. First, we develop a systematic procedure to extract string amplitudes from vacuum expectation values (vevs) of Wilson loops in Chern-Simons gauge theory, and then we evaluate these vevs in arbitrary irreducible representations of SU(N) for torus knots. We find complete agreement with the predictions derived from the target space interpretation of the string amplitudes. We also show that the structure of the free energy of topological open string theory gives further constraints on the Chern-Simons vevs. Our work provides strong evidence towards an interpretation of knot polynomial invariants as generating functions associated to enumerative problems. (orig.)

  18. I/O routing in a multidimensional torus network

    Science.gov (United States)

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    2018-04-24

    A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.

  19. Abelian projection on the torus for general gauge groups

    International Nuclear Information System (INIS)

    Ford, C.; Tok, T.; Wipf, A.

    1999-01-01

    We consider Yang-Mills theories with general gauge groups G and twists of the four-torus. We find consistent boundary conditions for gauge fields in all instanton sectors. An extended abelian projection with respect to the Polyakov loop operator is presented, where A 0 is independent of time and in the Cartan subalgebra. Fundamental domains for the gauge fixed A 0 are constructed for arbitrary gauge groups. In the sectors with non-vanishing instanton number such gauge fixings are necessarily singular. The singularities can be restricted to Dirac strings joining magnetically charged defects. The magnetic charges of these monopoles take their values in the co-root lattice of the gauge group. We relate the magnetic charges of the defects and the windings of suitable Higgs fields about these defects to the instanton number

  20. Low-frequency electromagnetic solitary and shock waves in an inhomogeneous dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2003-01-01

    It is shown that the nonlinear dynamics of one-dimensional Shukla mode [Phys. Lett. A 316, 238 (2003)] is governed by a modified Kortweg-de Vries-Burgers equation. The latter admits stationary solutions in the form of either a solitary wave or a monotonic/oscillatory shock. The present nonlinear waves may help to understand the salient features of localized density and magnetic field structures in molecular dusty clouds as well as in low-temperature laboratory dusty plasma discharges

  1. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  2. Computation of Quantum Bound States on a Singly Punctured Two-Torus

    International Nuclear Information System (INIS)

    Kar-Tim Chan; Zainuddin Hishamuddin; Molladavoudi Saeid

    2013-01-01

    We study a quantum mechanical system on a singly punctured two-torus with bound states described by the Maass waveforms which are eigenfunctions of the hyperbolic Laplace—Beltrami operator. Since the discrete eigenvalues of the Maass cusp form are not known analytically, they are solved numerically using an adapted algorithm of Hejhal and Then to compute Maass cusp forms on the punctured two-torus. We report on the computational results of the lower lying eigenvalues for the punctured two-torus and find that they are doubly-degenerate. We also visualize the eigenstates of selected eigenvalues using GridMathematica

  3. Analysis of performance improvements for host and GPU interface of the APENet+ 3D Torus network

    International Nuclear Information System (INIS)

    Ammendola A, R; Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2014-01-01

    APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34 Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol implemented in FPGA with specialized hardware blocks tightly coupled with embedded microprocessor. This architecture provides a high performance low latency offload engine for both trasmit and receive side of data transactions: preliminary results are encouraging, showing 50% of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+ architecture, detailing the hardware implementation and discuss the impact of such RDMA specialized hardware on host interface latency and bandwidth

  4. Analysis of performance improvements for host and GPU interface of the APENet+ 3D Torus network

    Science.gov (United States)

    Ammendola A, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2014-06-01

    APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34 Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol implemented in FPGA with specialized hardware blocks tightly coupled with embedded microprocessor. This architecture provides a high performance low latency offload engine for both trasmit and receive side of data transactions: preliminary results are encouraging, showing 50% of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+ architecture, detailing the hardware implementation and discuss the impact of such RDMA specialized hardware on host interface latency and bandwidth.

  5. Analysis of performance improvements for host and GPU interface of the APENet+ 3D Torus network

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola A, R [INFN Roma II, Via della Ricerca Scientifica 1 – 00133 Roma (Italy); Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P [INFN Roma I, P.le Aldo Moro 2 – 00185 Roma (Italy)

    2014-06-06

    APEnet+ is an INFN (Italian Institute for Nuclear Physics) project aiming to develop a custom 3-Dimensional torus interconnect network optimized for hybrid clusters CPU-GPU dedicated to High Performance scientific Computing. The APEnet+ interconnect fabric is built on a FPGA-based PCI-express board with 6 bi-directional off-board links showing 34 Gbps of raw bandwidth per direction, and leverages upon peer-to-peer capabilities of Fermi and Kepler-class NVIDIA GPUs to obtain real zero-copy, GPU-to-GPU low latency transfers. The minimization of APEnet+ transfer latency is achieved through the adoption of RDMA protocol implemented in FPGA with specialized hardware blocks tightly coupled with embedded microprocessor. This architecture provides a high performance low latency offload engine for both trasmit and receive side of data transactions: preliminary results are encouraging, showing 50% of bandwidth increase for large packet size transfers. In this paper we describe the APEnet+ architecture, detailing the hardware implementation and discuss the impact of such RDMA specialized hardware on host interface latency and bandwidth.

  6. Inertial fusion energy power plant design using the Compact Torus Accelerator: HYLIFE-CT

    International Nuclear Information System (INIS)

    Moir, R.W.; Hammer, J.H.; Hartman, C.W.; Leber, R.L.; Logan, B.G.; Petzoldt, R.W.; Tabak, M.; Tobin, M.T.; Bieri, R.L.; Hoffman, M.A.

    1992-01-01

    The Compact Torus Accelerator (CTA), under development at Lawrence Livermore National Laboratory, offers the promise of a low-cost, high-efficiency, high energy, high-power-density driver for ICF and MICF (Magnetically Insulated ICF) type fusion systems. A CTA with 100 MJ driver capacitor bank energy is predicted to deliver ∼30 MJ CT kinetic energy to a 1 cm 2 target in several nanoseconds for a power density of ∼10 16 watts/cm 2 . The estimated cost of delivered energy is ∼3$/Joule, or $100M for 30 MJ. This driver appears to be cost-effective and, in this regard, is virtually alone among IFE drivers. We discuss indirect-drive ICF with a DT fusion energy gain Q = 70 for a total yield of 2 GJ. The CT can be guided to the target inside a several-meter-long disposable cone made of frozen Li 2 BeF 4 , the same material as the coolant. We have designed a power plant including CT injection, target emplacement, containment, energy recovery, and tritium breeding. The cost of electricity is predicted to be 4.8 cents/kWh, which is competitive with future coal and nuclear costs

  7. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Menard, J.E.

    2008-01-01

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment (M.Ono, et al Nuclear Fusion 40, 557 (2000)) is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change

  8. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    DEFF Research Database (Denmark)

    Levin, Marcus; Rojas, Elena; Vanhala, Esa

    2015-01-01

    water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices......Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical...... respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool...

  9. The AGN Nature of LINER Nuclear Sources

    Energy Technology Data Exchange (ETDEWEB)

    Márquez, Isabel; Masegosa, Josefa [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain); González-Martin, Omaira [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia (Mexico); Hernández-Garcia, Lorena [Istituto di Astrofisica e Planetologia Spaziali, Rome (Italy); Pović, Mirjana [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain); Ethiopian Space Science and Technology Institute and Entoto Observatory and Research Center, Addis Ababa (Ethiopia); Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy and the Wise Observatory, Tel-Aviv University, Tel Aviv (Israel); Cazzoli, Sara; Olmo, Ascensión del, E-mail: isabel@iaa.es [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2017-11-16

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2–10keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN toward lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L{sub X}(2–10 keV) > 10{sup 41} erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison

  10. The AGN nature of LINER nuclear sources

    Science.gov (United States)

    Márquez, Isabel; Masegosa, Josefa; González-Martin, Omaira; Hernández-Garcia, Lorena; Pović, Mirjana; Netzer, Hagai; Cazzoli, Sara; del Olmo, Ascensión

    2017-11-01

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2-10 keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN towards lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L_X(2-10 keV) > 10^{41} erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison with both

  11. The AGN Nature of LINER Nuclear Sources

    International Nuclear Information System (INIS)

    Márquez, Isabel; Masegosa, Josefa; González-Martin, Omaira; Hernández-Garcia, Lorena; Pović, Mirjana; Netzer, Hagai; Cazzoli, Sara; Olmo, Ascensión del

    2017-01-01

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2–10keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN toward lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L X (2–10 keV) > 10 41 erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison with

  12. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    International Nuclear Information System (INIS)

    Zhang, J.; Wang, Y. H.; Wang, D. Z.

    2013-01-01

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed

  13. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Wang, Y. H.; Wang, D. Z. [Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-08-15

    Understanding the routes to chaos occurring in atmospheric-pressure dielectric barrier discharge systems by changing controlling parameters is very important to predict and control the dynamical behaviors. In this paper, a route of a quasiperiodic torus to chaos via the strange nonchaotic attractor is observed in an atmospheric-pressure dielectric barrier discharge driven by triangle-wave voltage. By increasing the driving frequency, the discharge system first bifurcates to a quasiperiodic torus from a stable single periodic state, and then torus and phase-locking periodic state appear and disappear alternately. In the meantime, the torus becomes increasingly wrinkling and stretching, and gradually approaches a fractal structure with the nonpositive largest Lyapunov exponent, i.e., a strange nonchaotic attractor. After that, the discharge system enters into chaotic state. If the driving frequency is further increased, another well known route of period-doubling bifurcation to chaos is also observed.

  14. MORSE-CGT Monte Carlo radiation transport code with the capability of the torus geometric treatment

    International Nuclear Information System (INIS)

    Deng Li

    1990-01-01

    The combinatorial geometry package CGT with the capability of the torus geometric treatment is introduced. It is get by developing the combinatorial geometry package CG. The CGT package can be transplanted to those codes which the CG package is being used and makes them also with the capability. The MORSE-CGT code can be used to solve the neutron, gamma-ray or coupled neutron-gamma-ray transport problems and time dependence for both shielding and criticality problems in torus system or system which is produced by arbitrary finite combining torus with torus or other bodies in CG package and it can also be used to design the blanket and compute shielding for TOKAMAK Fusion-Fission Hybrid Reactor

  15. Conceptual design of the Purdue compact torus/passive liner fusion reactor

    International Nuclear Information System (INIS)

    Terry, W.K.

    1981-01-01

    This proposal describes a program for the conceptual development of a novel fusion reactor design, the Purdue Compact Torus/Passive Liner Reactor. The key features of the concept are described and a comparison is made with a conventional tokamak

  16. Comparative study of poloidal field systems for the torus II experiment

    International Nuclear Information System (INIS)

    Farvaque, L.; Ghazal, S.; Leloup, C.; Pariente, M.; CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1976-11-01

    Three types of transformer for the TORUS II experiment are compared: a saturated iron core transformer with an entire magnetic circuit, an air core transformer and a saturated iron core transformer restricted to the central limb [fr

  17. SDN Data Center Performance Evaluation of Torus and Hypercube Interconnecting Schemes

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Vegas Olmos, Juan José; Mehmeri, Victor

    2015-01-01

    — By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures......— By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures...

  18. Minimal Liouville gravity on the torus via the Douglas string equation

    International Nuclear Information System (INIS)

    Spodyneiko, Lev

    2015-01-01

    In this paper we assume that the partition function in minimal Liouville gravity (MLG) obeys the Douglas string equation. This conjecture makes it possible to compute the torus correlation numbers in (3,p) MLG. We perform this calculation using also the resonance relations between the coupling constants in the KdV frame and in the Liouville frame. We obtain explicit expressions for the torus partition function and for the one- and two-point correlation numbers. (paper)

  19. 10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica

    2016-04-15

    We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Progress Towards High Performance, Steady-state Spherical Torus

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.

    2003-01-01

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted

  1. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com

    2016-11-15

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  2. Potential coherent structures in nonuniform streaming dusty magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, Jovo [Inst. of Physics, Belgrade (Yugoslavia); Shukla, Padma Kant [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik IV, Bochum (Germany)

    2001-07-01

    In this paper we study linear and nonlinear behaviour of modified convective cells and vortices in nonuniform dusty magnetoplasmas with perpendicular and parallel to the magnetic field plasma flows, and in basically two different physical systems, with stationary (corresponding to the case of ShuklaVarma mode) and nonstationary (i.e. taking part in perturbations) dust particles. For the case of stationary dust, by choosing some specific profiles for the sheared plasma flow and the dust density, we analyze the eigenvalue equation in order to deduce the growth rate. A threshold is also obtained for the wavenumber separating spatially damped and convective modes (growing in space) due to its interaction with the sheared plasma flow. In the nonlinear regime, for both stationary and nonstationary dust particles, and in the presence of various plasma flows perpendicular and parallel to the magnetic field lines, a variety of possible nonlinear solutions, driven by the nonuniform shear flow and dust density is presented, i.e., single and double vortex chains accompanied with zonal flows, and tripolar and global vortices. (author)

  3. Solitons in dusty plasmas with positive dust grains

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.; Mace, R. L.

    2008-01-01

    Although ''typical'' micrometer-sized dust grains in a space or laboratory plasma are often negatively charged because of collisions with the mobile electrons, there are environments in which grains may take on a positive charge. We consider a dusty plasma composed of electrons, positive ions and positive dust grains, and use the fluid dynamic paradigm to identify existence domains in parameter space for both dust-acoustic (DA) and dust-modified ion-acoustic (DIA) solitons. Only positive potential DA solitons are found. This represents an expected antisymmetry with the case of negative dust, where previously only negative solitons were reported. However, whereas for negative dust DIA solitons of either sign of potential may exist, we find that for the case of positive dust, DIA solitons are restricted to positive potentials only. The results for both positive and negative dust are consistent with an hypothesis that, in the absence of flows, the sign(s) of the soliton potential coincide(s) with the sign(s) of the species whose inertia is included in the calculation; i.e., the cold, supersonic species present in the plasma

  4. Kolmogorov flow in two dimensional strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)

    2014-07-15

    Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.

  5. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  6. Caltech water-ice dusty plasma: preliminary results

    Science.gov (United States)

    Bellan, Paul; Chai, Kilbyoung

    2013-10-01

    A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.

  7. Performance Evaluation of PV Panel Under Dusty Condition

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Tripathi

    2017-11-01

    Full Text Available The performance of PV panel depends on the incoming sunlight on its surface. The accumulated airborne dust particles on panel surface creates a barrier in the path of sunlight and panel surface, which significantly reduces the amount of solar radiation falling on the panel surface. The present study shows a significant reduction in short circuit current and power output of PV panel due to dust deposition on its surface, whereas the reduction in open circuit voltage is not much prominent. This study has been carried in the field as well as in the laboratory. The reduction in maximum power output of PV panel for both the studies ensures a linear relation with the dust deposition on its surface. In the field study, the reduction in the power output due to 12.86gm of dust deposition on the panel surface was 43.18%, whereas in the laboratory study it was 44.75% due to 11gm of dust deposition Article History: Received July 10th 2017; Received in revised form Sept 15th 2017x; Accepted 1st Oct 2017; Available online How to Cite This Article: Tripathi, A.K., Aruna, M. and Murthy, Ch.,S.N. (2017. Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Develeopment, 6(3, 225-233. https://doi.org/10.14710/ijred.6.3.225-233

  8. Waterspout as a special type of atmospheric aerosol dusty plasma

    Science.gov (United States)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.

  9. Kinetic transport model for the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Hedrick, C.L.; Tolliver, J.S.

    1978-05-01

    A bounce-averaged drift kinetic equation is solved for the toroidal plasma in the ELMO Bumpy Torus (EBT). The distribution function is assumed isotropic in pitch angle and calculated as a function of radius and speed using finite differences on a two-dimensional grid. A Fokker-Planck representation of the collision operator includes Coulomb, microwave, ionizing, and charge-exchange collisions. Ion and electron fluxes, computed as integrals of the distribution function, are of comparable magnitude for ambipolar potentials which are approximately self-consistent. Initial results assume an unperturbed distribution function which is Maxwellian; however, this is not a necessary assumption in the model. Careful accounting of loss regions where electric and magnetic poloidal drifts cancel (super banana particle orbits) leads to ion loss rates which are in some cases two orders of magnitude greater than electron rates. In these cases, radially inward pointing self-consistent electric fields occur with potentials on the order of a few times the ion temperature. These negative field results are in approximate agreement with experiment and appear to be stable to the electric field runaway encountered in positive field cases

  10. How fast does a random walk cover a torus?

    Science.gov (United States)

    Grassberger, Peter

    2017-07-01

    We present high statistics simulation data for the average time that a random walk needs to cover completely a two-dimensional torus of size L ×L . They confirm the mathematical prediction that ˜(LlnL ) 2 for large L , but the prefactor seems to deviate significantly from the supposedly exact result 4 /π derived by Dembo et al. [Ann. Math. 160, 433 (2004), 10.4007/annals.2004.160.433], if the most straightforward extrapolation is used. On the other hand, we find that this scaling does hold for the time TN (t )=1(L ) at which the average number of yet unvisited sites is 1, as also predicted previously. This might suggest (wrongly) that and TN (t )=1(L ) scale differently, although the distribution of rescaled cover times becomes sharp in the limit L →∞ . But our results can be reconciled with those of Dembo et al. by a very slow and nonmonotonic convergence of /(LlnL ) 2 , as had been indeed proven by Belius et al. [Probab. Theory Relat. Fields 167, 461 (2017), 10.1007/s00440-015-0689-6] for Brownian walks, and was conjectured by them to hold also for lattice walks.

  11. Regimes of operation in the Princeton Large Torus

    Energy Technology Data Exchange (ETDEWEB)

    Hosea, J.C.

    1979-10-01

    In the quest for optimum discharge conditions in the Princeton Large Torus (PLT), a variety of discharge regimes have been produced. These separate broadly into two main categories - those regimes with m greater than or equal to 2 oscillatory MHD instabilities and often hollow electron profiles for tungsten limiters, and those regimes for which the electron temperature is sufficiently peaked to support the internal sawtooth or near-sawtooth (m = 1) instability. The internal sawtooth regime is found to be optimum for confinement but to be more difficult to select when low-Z impurity concentrations have been reduced with low power discharge cleaning or gettering to permit extension of the high density operation limit. Gas programming is used to cool the plasma periphery, thereby reducing the high-Z impurity concentrations and causing the current channel to constrict into the sawtooth regime, and then to attain the desired plasma density. With discharges selected in this manner, gross energetic confinement times up to approx. 100 msec have been obtained at densities of approx. 10/sup 14/ cm/sup -3/, and very high ion and electron temperatures have been produced with neutral beam injection heating at lower densities with no observable deleterious effect on energy confinement.

  12. Design of the new magnetic sensors for Joint European Torus

    International Nuclear Information System (INIS)

    Coccorese, V.; Albanese, R.; Altmann, H.; Cramp, S.; Edlington, T.; Fullard, K.; Gerasimov, S.; Huntley, S.; Lam, N.; Loving, A.; Riccardo, V.; Sartori, F.; Marren, C.; McCarron, E.; Sowden, C.; Tidmarsh, J.; Basso, F.; Cenedese, A.; Chitarin, G.; DegliAgostini, F.

    2004-01-01

    A new magnetic diagnostics system has been designed for the 2005 Joint European Torus (JET) experimental campaigns onward. The new system, which adds to the existing sensors, aims to improve the JET safety, reliability, and performance, with respect to: (i) equilibrium reconstruction; (ii) plasma shape control; (iii) coil failures; (iv) VDEs; (v) iron modeling; and (vi) magnetohydrodynamics poloidal mode analysis. The system consists of in-vessel and ex-vessel sensors. The former are a set of 38 coil pairs (normal and tangential), located as near as possible to the plasma. Coils are generally grouped in rails, in order to ease remote handling in-vessel installation. The system includes: (i) two outer poloidal limiter arrays (2x7 coil pairs); (ii) two divertor region arrays (2x7 coil pairs); and (iii) two top coil arrays (2x5 coil pairs). Ex-vessel sensors, including discrete coils, Hall probes, and flux loops (26 in total) will be installed on the iron limbs, in order to provide experimental data for the treatment of iron in equilibrium codes. The design is accompanied by a software analysis, aiming to predict the expected improvement

  13. Neutral beam power measurements inside the ASDEX torus

    International Nuclear Information System (INIS)

    Zengliang, Y.; Staebler, A.; Vollmer, O.

    1982-11-01

    Neutral beam power measurements inside the ASDEX torus are done with a retractable calorimeter which is only radiation cooled. The calorimeter plate made from Molybdenum is subdivided into nine segments whose increase in energy content due to a shot yields the absorbed beam power. Different models for the backward extrapolation of the measured temperature curves are examined for a series of low energy shots with the result that pure radiation cooling is a valid assumption. Furthermore, a temperature correction to the measured power is derived from these experiments. The evaluation of the shots onto this calorimeter is done by a computer program. The application of this program to a few full power shots shows that a neutral power up to 3.2 MW has been injected into the ASDEX vessel by the two injectors with an overall efficiency of up to 40%. Reionization losses due to the ASDEX stray field are less than 10%; they do not show any dependence upon the pulse length for shots up to 200 ms. (orig.)

  14. New Capabilities and Results for the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    M.G. Bell, R.E. Bell, D.A. Gates, S.M. Kaye, H. Kugel, B.P. LeBlanc, F.M. Levinton, R. Maingi, J.E. Menard, R. Raman, S.A. Sabbagh, D. Stutman and the NSTX Research Team

    2008-02-29

    The National Spherical Torus Experiment (NSTX) produces plasmas with toroidal aspect ratio as low as 1.25, which can be heated by up to 6 MW High-Harmonic Fast Waves and up to 7 MW of deuterium Neutral Beam Injection. Using new poloidal fields coils, plasmas with cross-section elongation up to 2.7, triangularity 0.8, plasma currents Ip up to 1.5 MA and normalized currents Ip/a·BT up to 7.5 MA/m·T have been achieved. A significant extension of the plasma pulse length, to 1.5 s at a plasma current of 0.7 MA, has been achieved by exploiting the bootstrap and NBI-driven currents to reduce the dissipation of poloidal flux. Inductive plasma startup has been supplemented by Coaxial Helicity Injection (CHI) and the production of persistent current on closed flux surfaces by CHI has now been demonstrated in NSTX. The plasma response to magnetic field perturbations with toroidal mode numbers n = 1 or 3 and the effects on the plasma rotation have been investigated using three pairs of coils outside the vacuum vessel. Recent studies of both MHD stability and of transport benefitted from improved diagnostics, including measurements of the internal poloidal field using the motional Stark effect (MSE). In plasmas with a region of reversed magnetic shear in the core, now confirmed by the MSE data, improved electron confinement has been observed.

  15. Nonlocal neoclassical transport in tokamak and spherical torus experiments

    International Nuclear Information System (INIS)

    Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.

    2006-01-01

    Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global δf particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge

  16. Transient Transport Experiments in the CDX-U Spherical Torus

    International Nuclear Information System (INIS)

    T. Munsat; P.C. Efthimion; B. Jones; R. Kaita; R. Majeski; D. Stutman; G. Taylor

    2001-01-01

    Electron transport has been measured in the Current Drive Experiment-Upgrade (CDX-U) using two separate perturbative techniques. Gas modulation at the plasma edge was used to introduce cold-pulses which propagate towards the plasma center, providing time-of-flight information leading to a determination of chi(subscript e) as a function of radius. Sawteeth at the q=1 radius (r/a ∼ 0.15) induced heat-pulses which propagated outward towards the plasma edge, providing a complementary time-of-flight based chi(subscript e) profile measurement. This work represents the first localized measurement of chi(subscript e) in a spherical torus. It is found that chi(subscript e) = 1-2 meters squared per second in the plasma core (r/a < 1/3), increasing by an order of magnitude or more outside of this region. Furthermore, the chi(subscript e) profile exhibits a sharp transition near r/a = 1/3. Spectral and profile analyses of the soft X-rays, scanning interferometer, and edge probe data show no evidence of a significant magnetic island causing the high chi(subscript e) region

  17. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R.; Assadi, S.; Sidikman, K.L.

    1992-11-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in ''k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m 1 + m 2 = m 3 and n 1 + n 2 = n 3 is measured by the bicoherency. In the RFP, m=l, n∼2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the ''crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade

  18. Electron Bernstein Wave Research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Taylor, G.; Bers, A.; Bigelow, T.S.; Carter, M.D.; Caughman, J.B.; Decker, J.; Diem, S.; Efthimion, P.C.; Ershov, N.M.; Fredd, E.; Harvey, R.W.; Hosea, J.; Jaeger, F.; Preinhaelter, J.; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Wilgen, J.B.; Wilson, J.R.

    2005-01-01

    Off-axis electron Bernstein wave current drive (EBWCD) may be critical for sustaining noninductive high-beta National Spherical Torus Experiment (NSTX) plasmas. Numerical modeling results predict that the ∼100 kA of off-axis current needed to stabilize a solenoid-free high-beta NSTX plasma could be generated via Ohkawa current drive with 3 MW of 28 GHz EBW power. In addition, synergy between EBWCD and bootstrap current may result in a 10% enhancement in current-drive efficiency with 4 MW of EBW power. Recent dual-polarization EBW radiometry measurements on NSTX confirm that efficient coupling to EBWs can be readily accomplished by launching elliptically polarized electromagnetic waves oblique to the confining magnetic field, in agreement with numerical modeling. Plans are being developed for implementing a 1 MW, 28 GHz proof-of-principle EBWCD system on NSTX to test the EBW coupling, heating and current-drive physics at high radio-frequency power densities

  19. Simulation of microtearing turbulence in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Nevins, W. M.; Wang, E. [Lawrence Livermore National Laboratory, Livermore, California 04551 (United States); Zhang, J.; Crocker, N. A. [University of California Los Angeles, California 90095 (United States); Yuh, H. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport ({approx}98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E Multiplication-Sign B flows as experimental values of E Multiplication-Sign B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.

  20. Physics and engineering assessments of spherical torus component test facility

    International Nuclear Information System (INIS)

    Peng, Y.-K.M.; Neumeyer, C.A.; Kessel, C.; Rutherford, P.; Mikkelsen, D.; Bell, R.; Menard, J.; Gates, D.; Schmidt, J.; Synakowski, E.; Grisham, L.; Fogarty, P.J.; Strickler, D.J.; Burgess, T.W.; Tsai, J.; Nelson, B.E.; Sabbagh, S.; Mitarai, O.; Cheng, E.T.; El-Guebaly, L.

    2005-01-01

    A broadly based study of the fusion engineering and plasma science conditions of a Component Test Facility (CTF), using the Spherical Torus or Spherical Tokamak (ST) configuration, have been carried out. The chamber systems testing conditions in a CTF are characterized by high fusion neutron fluxes Γ n > 4.4x10 13 n/s/cm 2 , over size scales > 10 5 cm 2 and depth scales > 50 cm, delivering > 3 accumulated displacement per atom (dpa) per year. The desired chamber conditions can be provided by a CTF with R 0 1.2 m, A = 1.5, elongation ∼ 3.2, I p ∼ 9 MA, B T ∼ 2.5 T, producing a driven fusion burn using 36 MW of combined neutral beam and RF power. Relatively robust ST plasma conditions are adequate, which have been shown achievable [4] without active feedback manipulation of the MHD modes. The ST CTF will test the single-turn, copper alloy center leg for the toroidal field coil without an induction solenoid and neutron shielding, and require physics data on solenoid-free plasma current initiation, ramp-up, and sustainment to multiple MA level. A new systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of lowercost CTF devices to suit a variety of fusion engineering science test missions. (author)

  1. Internal transport barriers in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C.; Lee, W.; Park, H. K.

    2009-05-01

    In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum E ×B shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.

  2. Hamiltonian theory of vacuum helical torus lines of magnetic force

    International Nuclear Information System (INIS)

    Gnudi, Giovanni; Hatori, Tadatsugu

    1994-01-01

    For making plasma into equilibrium state, the lines of magnetic force must have magnetic surfaces. However in a helical system, space is divided into the region having magnetic surface structure and the region that does not have it. Accordingly, it is an important basic research for the plasma confinement in a helical system to examine where is the boundary of both regions and how is the large area structure of the lines of magnetic force in the boundary region. The lines of magnetic force can be treated as a Hamilton mechanics system, and it has been proved that the Hamiltonian for the lines of magnetic force can be expressed by a set of canonical variables and the function of time. In this research, the Hamiltonian that describes the lines of magnetic force of helical system torus coordination in vacuum was successfully determined concretely. Next, the development of new linear symplectic integration method was carried out. The important supports for the theory of determining Hamiltonian are Lie transformation and paraxial expansion. The procedure is explained. In Appendix, Lie transformation, Hamiltonian for the lines of magnetic force, magnetic potential, Taylor expansion of the potential, cylindrical limit approximation, helical toroidal potential and integrable model are described. (K.I.)

  3. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes design issues concerning remote maintenance of the ITER torus vacuum pumping system. Key issues under investigation in this report are bearings for inert gas operation, transporter integration options, cryopump access, gate valve maintenance frequency, tritium effects on materials, turbomolecular pump design, and remote maintenance. Alternative bearing materials are explored for inert gas operation. Encapsulated motors and rotary feedthroughs offer an alternative option where space requirements are restrictive. A number of transporter options are studied. The preferred scheme depends on the shielded reconfigured ducts to prevent streaming and activation of RH (remote handling) equipment. A radiation mapping of the cell is required to evaluate this concept. Valve seal and bellow life are critical issues and need to be evaluated, as they have a direct bearing on the provision of adequate RH equipment to meet scheduled and unscheduled maintenance outages. The limited space on the inboard side of the cryopumps for RH equipment access requires a reconfigured duct and manifold. A modified shielded duct arrangement is proposed, which would provide more access space, reduced activation of components, and the potential for improved valve seal life. Work at Mound Laboratories has shown the adverse effects of tritium on some bearing lubricants. Silicone-based lubricants should be avoided. (11 refs., 2 tabs., 31 figs.)

  4. Tritium systems concepts for the next European torus (NET)

    International Nuclear Information System (INIS)

    Sood, S.K.; Bagli, K.S.; Busigin, A.; Kveton, O.K.; Dombra, A.H.; Miller, A.I.

    1986-09-01

    The study deals with the design of the various tritium processing facilities that will be required for the Next European Torus (NET) design. The reference data for the design of the NET Tritium Systems was provided by the NET team. Significant achievements of this study were: (a) Identification of new ways of handling some problems for example: 1) Recovery of tritium from the helium purge of the lithium-ceramic blanket using a novel Adsoprtion and Catalytic Exchange Process, 2) A new way of combining fuel component separation and coolant water detritiation using cryogenic distillation, 3) The use of parasitic refrigeration for the cryogenic isotope separation, 4) Tritium extraction from effluent gas streams at their respective sources, 5) Attempt to eliminate the need for Air Cleanup Systems. (b) Identification of uncertainties, for example: composition of plasma exhaust, required helium purge rate of Li-Pb for tritium recovery, uncertainty in requirements for decontaminating blanket sectors, etc. (c) Review of ways to limit tritium permeation into steam by swamping with hydrogen and to provide quantitative estimates for this permeation

  5. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    International Nuclear Information System (INIS)

    Levin, Marcus; Rojas, Elena; Vanhala, Esa; Vippola, Minnamari; Liguori, Biase; Kling, Kirsten I.; Koponen, Ismo K.; Mølhave, Kristian; Tuomi, Timo; Gregurec, Danijela; Moya, Sergio; Jensen, Keld A.

    2015-01-01

    Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool NanoSafer. Drastic material-specific effects on powder respirable dustiness index were observed with the change in TiO 2 from 30 % RH (639 mg/kg) to 50 % RH (1.5 mg/kg). All five tested materials indicate a decreasing dustiness index with relative humidity increasing from 30 to 70 % RH. Test of powder water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices in three different exposure scenarios showed that in two of the tested materials, one 20 % change in RH changed the exposure banding from the lowest level to the highest. The study shows the importance of powder storage conditions prior to tests for classification of material dustiness indices. It also highlights the importance of correct storage information and relative humidity and expansion of the dustiness test conditions specifically, when using dustiness indices as a primary parameter for source strength in exposure assessment

  6. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Marcus, E-mail: mle@nrcwe.dk [Technical University of Denmark, Department of Micro and Nanotechnology (Denmark); Rojas, Elena [CIC biomaGUNE (Spain); Vanhala, Esa; Vippola, Minnamari [Finnish Institute of Occupational Health (Finland); Liguori, Biase; Kling, Kirsten I.; Koponen, Ismo K. [National Research Centre for the Working Environment (Denmark); Mølhave, Kristian [Technical University of Denmark, Department of Micro and Nanotechnology (Denmark); Tuomi, Timo [Finnish Institute of Occupational Health (Finland); Gregurec, Danijela; Moya, Sergio [CIC biomaGUNE (Spain); Jensen, Keld A. [National Research Centre for the Working Environment (Denmark)

    2015-08-15

    Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool NanoSafer. Drastic material-specific effects on powder respirable dustiness index were observed with the change in TiO{sub 2} from 30 % RH (639 mg/kg) to 50 % RH (1.5 mg/kg). All five tested materials indicate a decreasing dustiness index with relative humidity increasing from 30 to 70 % RH. Test of powder water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices in three different exposure scenarios showed that in two of the tested materials, one 20 % change in RH changed the exposure banding from the lowest level to the highest. The study shows the importance of powder storage conditions prior to tests for classification of material dustiness indices. It also highlights the importance of correct storage information and relative humidity and expansion of the dustiness test conditions specifically, when using dustiness indices as a primary parameter for source strength in exposure assessment.

  7. Dynamic and optical characterization of dusty plasmas for use as solar sails

    International Nuclear Information System (INIS)

    Sheldon, Robert; Thomas, Edward Jr.; Abbas, Mian; Gallagher, Dennis; Adrian, Mark; Craven, Paul

    2002-01-01

    Solar sails presently have mass loadings of 5 gm/m2 that, when including the support structure and payload, could easily average to >10 gm/m2. For reasonably sized spacecraft, the critical parameter is the total mass per total area, which when combined with the reflectivity, yield the true acceleration. We propose that dusty plasmas trapped in a 'Mini-Magnetosphere' (Winglee, 2000) can produce a solar sail with a total mass loading <0.01 gm/m2, and reflectivities of ∼1%. This configuration provides an acceleration equivalent to a standard sail of 95% reflectivity with <1 gm/m2. However, the physics of dusty plasma sails is not mature and several important questions need to be resolved before a large scale effort is warranted. Foremost among these questions are, what is the largest force a dusty plasma can sustain before it demagnetizes and separates from the binding magnetic field; what are the charging properties of dust under solar UV conditions; what is the light scattering cross section for the dust; what is the optimum dust grain size for magnetization and scattering; and, what are the optimum dust grain materials? We outline what we know about dusty plasmas, and what we are hoping to learn from two existing dusty plasma experiments at the National Space Science and Technology Center (NSSTC) and Auburn University

  8. A disrupted molecular torus around Eta Carinae as seen in 12CO with ALMA

    Science.gov (United States)

    Smith, Nathan; Ginsburg, Adam; Bally, John

    2018-03-01

    We present Atacama Large Millimeter Array (ALMA) observations of 12CO 2-1 emission from circumstellar material around the massive star Eta Carinae (η Car). These observations reveal new structural details about the cool equatorial torus located ˜4000 au from the star. The CO torus is not a complete azimuthal loop, but rather, is missing its near side, which appears to have been cleared away. The missing material matches the direction of apastron in the eccentric binary system, making it likely that η Car's companion played an important role in disrupting portions of the torus soon after ejection. Molecular gas seen in ALMA data aligns well with the cool dust around η Car previously observed in mid-infrared (IR) maps, whereas hot dust resides at the inner surface of the molecular torus. The CO also coincides with the spatial and velocity structure of near-IR H2 emission. Together, these suggest that the CO torus seen by ALMA is actually the pinched waist of the Homunculus polar lobes, which glows brightly because it is close to the star and warmer than the poles. The near side of the torus appears to be a blowout, associated with fragmented equatorial ejecta. We discuss implications for the origin of various features north-west of the star. CO emission from the main torus implies a total gas mass in the range of 0.2-1 M⊙ (possibly up to 5 M⊙ or more, although with questionable assumptions). Deeper observations are needed to constrain CO emission from the cool polar lobes.

  9. Nuclear mid-infrared properties of nearby low-luminosity AGN

    International Nuclear Information System (INIS)

    Asmus, D; Duschl, W J; Hönig, S F; Gandhi, P; Smette, A

    2012-01-01

    We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGN's lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 μm emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 /amemission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR- X-ray correlation found previously for AGN is extended to a range from 10 40 to 10 45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR-X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.

  10. THERMODYNAMIC REASONS OF AGGLOMERATION OF DUST PARTICLES IN THE THERMAL DUSTY PLASMA

    Directory of Open Access Journals (Sweden)

    V.I.Vishnyakov

    2003-01-01

    Full Text Available The thermodynamic equilibrium of thermal dusty plasmas consisting of ionized gas (plasma and solid particles (dust grains, which interact with each other, is studied. The tendency of grains in dusty plasmas to agglomerate corresponds to the tendency of dusty plasmas to balanced states. When grains agglomerate, electrical perturbations generated by each grain concentrate inside the agglomerate. The plasma is perturbed only by the agglomerate's exterior surface. The greater number of possible states for electrons and ions in plasma depends on the volume of perturbation of grains. The fewer are the perturbations the greater is the amount of possible states for electrons and ions in plasma. If the grains collected from a distance smaller than 8 Debye lengths, the total volume of perturbations is minimized; the free energy of the plasma is also minimized.

  11. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.

    1999-05-01

    A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)

  12. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  13. Operational Regimes of the National Spherical Torus Experiment; TOPICAL

    International Nuclear Information System (INIS)

    D. Mueller; M.G. Bell; R.E. Bell; M. Bitter; T. Bigelow; P. Bonoli; M. Carter; J. Ferron; E. Fredrickson; D. Gates; L. Grisham; J.C. Hosea; D. Johnson; R. Kaita; S.M. Kaye; H. Kugel; B.P. LeBlanc; R. Maingi; R. Majeski; R. Maqueda; J. Menard; M. Ono; F. Paoletti; S. Paul; C.K. Phillips; R. Pinsker; R. Raman; S.A. Sabbagh; C.H. Skinner; V.A. Soukhanovskii; D. Stutman; D. Swain; Y. Takase; J. Wilgen; J.R. Wilson; G.A. Wurden; S. Zweben

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is a proof-of-principle experiment designed to study the physics of Spherical Tori (ST), i.e., low-aspect-ratio toroidal plasmas. Important issues for ST research are whether the high-eta stability and reduced transport theoretically predicted for this configuration can be realized experimentally. In NSTX, the commissioning of a digital real-time plasma control system, the provision of flexible heating systems, and the application of wall conditioning techniques were instrumental in achieving routine operation with good confinement. NSTX has produced plasmas with R/a(approx) 0.85 m/0.68 m, A(approx) 1.25, Ip* 1.1 MA, BT= 0.3-0.45 T, k* 2.2, d* 0.5, with auxiliary heating by up to 4 MW of High Harmonic Fast Waves, and 5 MW of 80 keV D0 Neutral Beam Injection (NBI). The energy confinement time in plasmas heated by NBI has exceeded 100 ms and a toroidal beta (bT= 2m0 and lt;p and gt;/BT02, where BT0 is the central vacuum toroidal magnetic field) up to 22% has be en achieved. HHFW power of 2.3 MW has increased the electron temperature from an initial 0.4 keV to 0.9 keV both with and without producing a significant density rise in the plasma. The early application of both NBI and HHFW heating has slowed the penetration of the inductively produced plasma current, modifying the current profile and, thereby, the observed MHD stability

  14. Operational Regimes of the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Mueller, D.; Bell, M.G.; Bell, R.E.; Bitter, M.; Bigelow, T.; Bonoli, P.; Carter, M.; Ferron, J.; Fredrickson, E.; Gates, D.; Grisham, L.; Hosea, J.C.; Johnson, D.; Kaita, R.; Kaye, S.M.; Kugel, H.; LeBlanc, B.P.; Maingi, R.; Majeski, R.; Maqueda, R.; Menard, J.; Ono, M.; Paoletti, F.; Paul, S.; Phillips, C.K.; Pinsker, R.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.A; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.; Wilson, J.R.; Wurden, G.A.; Zweben, S.

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is a proof-of-principle experiment designed to study the physics of Spherical Tori (ST), i.e., low-aspect-ratio toroidal plasmas. Important issues for ST research are whether the high-eta stability and reduced transport theoretically predicted for this configuration can be realized experimentally. In NSTX, the commissioning of a digital real-time plasma control system, the provision of flexible heating systems, and the application of wall conditioning techniques were instrumental in achieving routine operation with good confinement. NSTX has produced plasmas with R/a ∼ 0.85 m/0.68 m, A ∼ 1.25, Ip * 1.1 MA, BT = 0.3-0.45 T, k * 2.2, d * 0.5, with auxiliary heating by up to 4 MW of High Harmonic Fast Waves, and 5 MW of 80 keV D0 Neutral Beam Injection (NBI). The energy confinement time in plasmas heated by NBI has exceeded 100 ms and a toroidal beta (bT = 2m0 /BT02, where BT0 is the central vacuum toroidal magnetic field) up to 22% has be en achieved. HHFW power of 2.3 MW has increased the electron temperature from an initial 0.4 keV to 0.9 keV both with and without producing a significant density rise in the plasma. The early application of both NBI and HHFW heating has slowed the penetration of the inductively produced plasma current, modifying the current profile and, thereby, the observed MHD stability

  15. Vortex flow in a torus - a method for arc stabilization

    International Nuclear Information System (INIS)

    Polman, R.W.

    1976-08-01

    Experiments on ring vortices inside a torus and experiments on semi-toroidal arcs stabilized by such vortices are described. The studies were performed in two separate devices. One of the toroidal vortex chambers - 'Cogion', with R = 0.45 m and r = 0.10 m - permits the establishment of a gas flow only. In the other device - 'Tovorex', with R = 0.19 m and r = 0.04 m - it is also possible to draw a semi-toroidal arc. The measurements surprisingly show that it is possible to describe the radial distribution of the poloidal flow in terms of a plane turbulent wall jet discharging in an external stream. The velocity profile and the growth of the width of the jet are in accordance with experimental data on this subject. A different behaviour is found for the decay of the maximum velocity. The core of the flow proves to be almost stagnant; the axis of rotation is displaced outwardly with respect to the centre of the cross-section over a distance of 6 mm. In 'Tovorex' information about the rotating flow is obtained without the presence of an arc in the vortex core. The velocity profiles prove to be independent of the pressure (50-400 Torr). For experiments with arcs nitrogen is used. It has been found that the semi-toroidal DC-arc, surrounded by a continuous metal wall can be stabilized by the toroidal vortices in the experimental range30 -1 , 0.6 -1 , depends on the current and on the pressure and is independent of Usub(j) and a. Temperatures of the discharge are estimated at approximately 6000 K. The velocity profiles in both vortex chambers are obtained with a hot-wire anemometer operated at constant resistance

  16. Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2007-01-01

    In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev-Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence

  17. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Lynch, Brian; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California–San Diego, La Jolla, California 92093 (United States)

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  18. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  19. The dust acoustic wave in a bounded dusty plasma with strong electrostatic interactions between dust grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2011-01-01

    The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains. - Highlights: → We study the dust acoustic wave (DAW) in a bounded plasma. → We account for interactions between dust grains. → The boundary effect limits the radial extent of the DAW.

  20. Dust-lower-hybrid waves in a magnetized self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Roy Chowdhury, A.; Dasgupta, B.

    1997-11-01

    General dispersion relation for a self-gravitating magnetized and finite temperature dusty plasma has been derived using the Vlasov-kinetic theory in guiding center technique. Results of earlier studies in unmagnetized situations turn out to be special cases of our general dispersion relation. In addition to the usual dust-acoustic waves in unmagnetized plasmas, we find an ultra-low-frequency mode in the frequency range between cyclotron frequencies of ions and charged dust particles and the Jean's instability of the self-gravitating dusty plasma systems. (author)

  1. Instability of the Shukla mode in a dusty plasma containing equilibrium density and magnetic field inhomogeneities

    International Nuclear Information System (INIS)

    Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.

    2004-01-01

    It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas

  2. Long Term Monitoring of the Io Plasma Torus During the Galileo Encounter

    Science.gov (United States)

    Brown, Michael E.

    2002-01-01

    In the fall of 1999, the Galileo spacecraft made four passes into the Io plasma torus, obtaining the best in situ measurements ever of the particle and field environment in this densest region of the Jovian magnetosphere. Supporting observations from the ground are vital for understanding the global and temporal context of the in situ observations. We conducted a three-month-long Io plasma torus monitoring campaign centered on the time of the Galileo plasma torus passes to support this aspect of the Galileo mission. The almost-daily plasma density and temperature measurements obtained from our campaign allow the much more sparse but also much more detailed Galileo data to be used to address the issues of the structure of the Io plasma torus, the stability mechanism of the Jovian magnetosphere, the transport of material from the source region near Io, and the nature and source of persistent longitudinal variations. Combining the ground-based monitoring data with the detailed in situ data offers the only possibility for answering some of the most fundamental questions about the nature of the Io plasma torus.

  3. Effect of torus wall flexibility on hydro-structural interaction in BWR containment system

    International Nuclear Information System (INIS)

    Lu, S.C.H.; McCauley, E.W.; Holman, G.S.

    1979-01-01

    The MARK I boiling water reactor (BWR) containment system is comprised of a light-bulb-shaped reactor compartment connected through vent pipes to a torus-shaped and partially water-filled pressure suppression chamber, or the wetwell. During either a normally occurring safety relief valve (SRV) discharge or a hypothetical loss-of-coolant accident (LOCA), air or steam is forced into the wetwell water pool for condensation and results in hydrodynamically induced loads on the torus shell. An analytical program is described which employs the finite element method to investigate the influence of torus wall flexibility on hydrodynamically induced pressure and the resultant force on the torus shell surface. The shell flexibility is characterized by the diameter-to-thickness ratio which is varied from the perfectly rigid case to the nominal plant condition. The general conclusion reached is that torus wall flexibility decreases both the maximum pressure seen by the shell wall and the total vertical load resulted from the hydrodynamically induced pressure

  4. Success and failure of the plasma analogy for Laughlin states on a torus

    Science.gov (United States)

    Fremling, Mikael

    2017-01-01

    We investigate the nature of the plasma analogy for the Laughlin wave function on a torus describing the quantum Hall plateau at ν =\\frac{1}{q} . We first establish, as expected, that the plasma is screening if there are no short nontrivial paths around the torus. We also find that when one of the handles has a short circumference—i.e. the thin-torus limit—the plasma no longer screens. To quantify this we compute the normalization of the Laughlin state, both numerically and analytically. In the thin torus limit, the analytical form of the normalization simplify and we can reconstruct the normalization and analytically extend it back into the 2D regime. We find that there are geometry dependent corrections to the normalization, and this in turn implies that the plasma in the plasma analogy is not screening when in the thin torus limit. Despite the breaking of the plasma analogy in this limit, the analytical approximation is still a good description of the normalization for all tori, and also allows us to compute hall viscosity at intermediate thickness.

  5. A time-dependent anisotropic plasma chemistry model of the Io plasma torus

    Science.gov (United States)

    Arridge, C. S.

    2016-12-01

    The physics of the Io plasma torus is typically modelled using one box neutral-plasma chemistry models, often referred to as neutral cloud theory models (e.g., Barbosa 1994; Delamere and Bagenal 2003). These models incorporate electron impact and photoionisation, charge exchange, molecular dissociation/recombination reactions, atomic radiatiative losses and Coulomb collisional heating. Isotropic Maxwellian distributions are usually assumed in the implementation of these models. Observationally a population of suprathermal electrons has been identified in the plasma torus and theoretically they have been shown to be important in reproducing the observed ionisation balance in the torus (e.g., Barbosa 1994). In this paper we describe an anisotropic plasma chemistry model for the Io torus that is inspired by ion cyclotron wave observations (Huddleston et al. 1994; Leisner et al. 2011), ion anisotropies due to pick up (Wilson et al. 2008), and theoretical ideas on the maintenance of the suprathermal electron population (Barbosa 1994). We present both steady state calculations and also time varying solutions (e.g., Delamere et al. 2004) where increases in the neutral source rate in the torus generates perturbations in ion anisotropies that subsequently decay over a timescale much longer than the duration of the initial perturbation. We also present a method for incorporating uncertainties in reaction rates into the model.

  6. Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission

    Science.gov (United States)

    Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.

    2018-01-01

    Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.

  7. ITER ECRH Upper Launcher: Test plan for qualification of the Diamond Torus Window Prototype III

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Sabine, E-mail: sabine.schreck@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Aiello, Gaetano; Meier, Andreas; Strauss, Dirk [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gagliardi, Mario; Saibene, Gabriella [F4E, Antennas and Plasma Engineering, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Scherer, Theo [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • A qualification program for the ITER diamond torus window is being developed. • The testing program for the qualification of the bare diamond disk is defined. • First qualification tests show a very good quality of the diamond disk prototypes. - Abstract: The diamond window is part of the electron cyclotron heating upper launcher system for ITER. Together with the isolation valve it constitutes the primary vacuum boundary and it also acts as first tritium barrier. Therefore the window is classified as Safety/Protection Important Component (SIC/PIC) with the nuclear safety function “confinement”. As the diamond window unit is not entirely covered by standard codes, an ad-hoc qualification program needs to be defined, including analysis, prototyping and testing. In the framework of a contract with F4E, the test program for a diamond window prototype is being developed with the aim to prove its operability for normal, accidental and incidental conditions as identified in the ITER load specifications. Tests range from dielectric loss measurements for the bare Chemical Vapour Deposition (CVD) diamond disk up to mechanical and vacuum tests for the complete window assembly. Finally mm-wave properties have to be characterized for the complete window. A clear definition of the testing requirements and of the acceptance criteria is necessary as well as a complete documentation of the process. This paper will present the development of the test plan for a window prototype, which is currently under manufacturing. First tests are directed to the characterization of the bare diamond disk with a focus on its dielectric properties.

  8. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    International Nuclear Information System (INIS)

    Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.

    2005-01-01

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER

  9. Discovery of a warm, dusty giant planet around HIP 65426

    Science.gov (United States)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Gratton, R.; Langlois, M.; Bonnefoy, M.; Beuzit, J.-L.; Feldt, M.; Mouillet, D.; Meyer, M.; Cheetham, A.; Biller, B.; Boccaletti, A.; D'Orazi, V.; Galicher, R.; Hagelberg, J.; Maire, A.-L.; Mesa, D.; Olofsson, J.; Samland, M.; Schmidt, T. O. B.; Sissa, E.; Bonavita, M.; Charnay, B.; Cudel, M.; Daemgen, S.; Delorme, P.; Janin-Potiron, P.; Janson, M.; Keppler, M.; Le Coroller, H.; Ligi, R.; Marleau, G. D.; Messina, S.; Mollière, P.; Mordasini, C.; Müller, A.; Peretti, S.; Perrot, C.; Rodet, L.; Rouan, D.; Zurlo, A.; Dominik, C.; Henning, T.; Menard, F.; Schmid, H.-M.; Turatto, M.; Udry, S.; Vakili, F.; Abe, L.; Antichi, J.; Baruffolo, A.; Baudoz, P.; Baudrand, J.; Blanchard, P.; Bazzon, A.; Buey, T.; Carbillet, M.; Carle, M.; Charton, J.; Cascone, E.; Claudi, R.; Costille, A.; Deboulbe, A.; De Caprio, V.; Dohlen, K.; Fantinel, D.; Feautrier, P.; Fusco, T.; Gigan, P.; Giro, E.; Gisler, D.; Gluck, L.; Hubin, N.; Hugot, E.; Jaquet, M.; Kasper, M.; Madec, F.; Magnard, Y.; Martinez, P.; Maurel, D.; Le Mignant, D.; Möller-Nilsson, O.; Llored, M.; Moulin, T.; Origné, A.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Puget, P.; Rabou, P.; Ramos, J.; Rigal, R.; Rochat, S.; Roelfsema, R.; Rousset, G.; Roux, A.; Salasnich, B.; Sauvage, J.-F.; Sevin, A.; Soenke, C.; Stadler, E.; Suarez, M.; Weber, L.; Wildi, F.; Antoniucci, S.; Augereau, J.-C.; Baudino, J.-L.; Brandner, W.; Engler, N.; Girard, J.; Gry, C.; Kral, Q.; Kopytova, T.; Lagadec, E.; Milli, J.; Moutou, C.; Schlieder, J.; Szulágyi, J.; Thalmann, C.; Wahhaj, Z.

    2017-09-01

    Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 MJup, Teff = 1300-1600 K and R = 1.5 ± 0.1 RJup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 RJup). Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. Based on observations collected at La Silla

  10. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  11. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  12. Simulations of the Effects of Jupiter's Plasma Torus on Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2014-11-01

    Io’s plumes rise hundreds of kilometers above its surface and sublimation atmosphere, presenting large targets for incoming ions from Jupiter’s plasma torus. The direct simulation Monte Carlo method is used to model the gas plume at Pele and its interaction with the Jovian plasma torus. Chemical reactions resulting from ion impacts in a plume change its composition and energy from the impacts changes the plume’s structure (asymmetrically). The presence of non-condensible daughter species in a warmer plume canopy produces a more diffuse deposition ring on Io’s surface, compared to simulations without plasma. Energized molecules also escape from the plume, forming a diffuse cloud of fast particles above the plume’s canopy, which may function to resupply the plasma torus and which suggests a mechanism for lofting other species to very high altitudes.

  13. EDDYMULT: a computing system for solving eddy current problems in a multi-torus system

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Ozeki, Takahisa

    1989-03-01

    A new computing system EDDYMULT based on the finite element circuit method has been developed to solve actual eddy current problems in a multi-torus system, which consists of many torus-conductors and various kinds of axisymmetric poloidal field coils. The EDDYMULT computing system can deal three-dimensionally with the modal decomposition of eddy current in a multi-torus system, the transient phenomena of eddy current distributions and the resultant magnetic field. Therefore, users can apply the computing system to the solution of the eddy current problems in a tokamak fusion device, such as the design of poloidal field coil power supplies, the mechanical stress design of the intensive electromagnetic loading on device components and the control analysis of plasma position. The present report gives a detailed description of the EDDYMULT system as an user's manual: 1) theory, 2) structure of the code system, 3) input description, 4) problem restrictions, 5) description of the subroutines, etc. (author)

  14. Overview of Results from the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.; Ahn, J.; Allain, R.; Andre, R.; Bastasz, R.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.

    2009-01-01

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l i ∼ 0.4 with strong shaping (κ ∼ 2.7, (delta) ∼ 0.8) with β N approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f NI ∼ 71%. Instabilities driven by super-Alfvenic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. The impact of n > 1 error fields on stability is a important result for ITER. RWM/RFA feedback combined with n=3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are: results of lithium coating

  15. Electromagnetic diagnostic system for the Keda Torus eXperiment

    Science.gov (United States)

    Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2017-09-01

    A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on

  16. The Coulomb gas representation of critical RSOS models on the sphere and the torus

    International Nuclear Information System (INIS)

    Foda, O.; Nienhuis, B.

    1989-01-01

    We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.)

  17. The Coulomb gas representation of critical RSOS models on the sphere and the torus

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica); Nienhuis, B. (Rijksuniversiteit Leiden (Netherlands). Inst. Lorentz voor Theoretische Natuurkunde)

    1989-10-02

    We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.).

  18. Design and implementation of fast charging circuit for repetitive compact torus injector

    International Nuclear Information System (INIS)

    Onchi, T.; McColl, D.; Dreval, M.; Wolfe, S.; Xiao, C.; Hirose, A.

    2014-01-01

    A novel circuit for compact torus (CT) injector operated at high repetition rates has been developed. The core technology adopted in the present work is to charge a large storage capacitor bank and quickly charge the CT capacitor bank through a stack of insulated-gate bipolar transistors (IGBTs). A system consisting of IGBTs and slow banks for the repetitive operation has been developed and installed for each discharge circuit of the University of Saskatchewan Compact Torus Injector (USCTI). A repetition rate up to 1.7 Hz and a burst of 8 CTs have been achieved

  19. Influence of globalmagnetic perturbations on plasma behavior in Elmo Bumpy Torus

    International Nuclear Information System (INIS)

    Quon, B.H.; Dandl, R.A.; Colestock, P.L.; Bieniosek, F.M.; Ikegami, H.

    1979-02-01

    The sensitivity of plasma confinement to magnetic field error effects has been tested experimentally using externally introduced global field errors on the ELMO Bumpy Torus (EBT). Below a critical error field (deltaB/sub r//B)/sub cr/ of approx. = to 0.6-1 x 10 -3 the plasma was observed to be essentially free from convective cells, toroidal currents, and instabilities. This observed critical value is comparable to a neoclassical critical field error (deltaB/sub r//B)/sub cr/ approx. = rho/R, the ratio of the ion Larmor radius to the major radius of the torus

  20. Automatic path-planning for a multilink articulated boom within the torus of a fusion reactor

    International Nuclear Information System (INIS)

    Smidt, D.

    1986-08-01

    For in-torus maintenance of fusion machines a manipulator is conveyed to the working area by a multilink-transporter, also called 'articulated boom'. Systems of this type have in general four to five links and move in the midplane of the torus. They are kinematically redundant and have a very restricted working space. In this paper automatic methods for the collision free approach of any position of the final joint within the reach of the transporter are presented, including insertion and removal. By automatic teach-in with the CAD-simulation a table of safe configurations can be generated and supplemented by a fine-positioning algorithm. (orig.) [de

  1. Tripolar vortices of dust-drift waves in dusty plasma with shear flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge

    2002-01-01

    Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content

  2. (KP) equation in warm dusty plasma with variable dust charge, two ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained ...

  3. Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...

    Indian Academy of Sciences (India)

    In this paper, we examine the combined effects of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting optically thin dusty fluid through a vertical channel filled with a saturated porous medium. The governing partial differential equations are obtained and solved analytically by variable ...

  4. A miniature sensor for electrical field measurements in dusty planetary atmospheres

    International Nuclear Information System (INIS)

    Renno, N O; Rogacki, S; Kok, J F; Kirkham, H

    2008-01-01

    Dusty phenomena such as regular wind-blown dust, dust storms, and dust devils are the most important, currently active, geological processes on Mars. Electric fields larger than 100 kV/m have been measured in terrestrial dusty phenomena. Theoretical calculations predict that, close to the surface, the bulk electric fields in martian dusty phenomena reach the breakdown value of the isolating properties of thin martian air of about a few 10 kV/m. The fact that martian dusty phenomena are electrically active has important implications for dust lifting and atmospheric chemistry. Electric field sensors are usually grounded and distort the electric fields in their vicinity. Grounded sensors also produce large errors when subject to ion currents or impacts from clouds of charged particles. Moreover, they are incapable of providing information about the direction of the electric field, an important quantity. Finally, typical sensors with more than 10 cm of diameter are not capable of measuring electric fields at distances as small as a few cm from the surface. Measurements this close to the surface are necessary for studies of the effects of electric fields on dust lifting. To overcome these shortcomings, we developed the miniature electric-field sensor described in this article.

  5. EXTINCTION LAWS TOWARD STELLAR SOURCES WITHIN A DUSTY CIRCUMSTELLAR MEDIUM AND IMPLICATIONS FOR TYPE IA SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Takashi; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Nozawa, Takaya, E-mail: nagao@kusastro.kyoto-u.ac.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-06-01

    Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on the properties of CS grains, especially the total-to-selective extinction ratio R{sub V}, which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R{sub V} as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.

  6. EXTINCTION LAWS TOWARD STELLAR SOURCES WITHIN A DUSTY CIRCUMSTELLAR MEDIUM AND IMPLICATIONS FOR TYPE IA SUPERNOVAE

    International Nuclear Information System (INIS)

    Nagao, Takashi; Maeda, Keiichi; Nozawa, Takaya

    2016-01-01

    Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on the properties of CS grains, especially the total-to-selective extinction ratio R V , which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R V as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.

  7. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  8. Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas

    International Nuclear Information System (INIS)

    Eliasson, B.; Shukla, P.K.

    2005-01-01

    Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments

  9. Estimation of Dusty Days Using the Model of Time Series: A Case Study of Hormozgan Province

    Directory of Open Access Journals (Sweden)

    Mohsen Farahi

    2016-04-01

    Full Text Available Dust storm is one of the climatic hazards in the arid and semi-arid regions. Southern Iran with its hot and dry climate is more likely affected by the adverse consequences of dust storms due to the proximity to the dusty deserts of Saudi Arabia and Iraq, on one hand, and the synoptic situation for the occurrence of the dust storms in the Persian Gulf, on the other hand. In this study, the frequency of dusty days in Hormozgan Province was investigated and predicted. To this end, data were collected from the three synoptic stations in Bandar Abbas, Bandar Lengeh and Bandar-e Jask from the Iran Meteorological Organization during the statistical period of 1968-2008. Then, using the non-seasonal ARIMA (p, d, q, were analyzed in 16Minitab and the frequency of the dusty days in the region were predicted. Results of the study show that the ARIMA (1, 1, 1noc was the most appropriate pattern for predicting the frequency of dusty days in Hormozgan Province. The results showed that the predictions for Bandar-e Jask, compared to those of Bandar Abbas and Bandar Lengeh are more accurate in terms of continuous increasing trend and the interval stability of the time series prediction and the smaller difference between the observed values with the predicted values.

  10. MHD flow of a dusty viscoelastic liquid through a porous medium between two inclined parallel plates

    International Nuclear Information System (INIS)

    Singh, A.K.; Singh, N.P.

    1996-01-01

    Magnetohydrodynamic flow of a dusty viscoelastic liquid (Oldroyd B-liquid) through a porous medium between two parallel plates inclined to the horizon has been studied. The liquid velocity, dust particle velocity and flux of flow have been obtained. Earlier results have been deduced as particular cases of the present investigation. The physical situation of the motion has been discussed graphically. (author)

  11. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature ...

  12. Revisiting coupled Shukla-Varma and convective cell mode in classical and quantum dusty magnetoplasmas

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Nargis, Shahida

    2010-08-01

    The coupled Shukla-Varma (SV) and convective cell mode is revisited in classical and quantum dusty magnetoplasmas. It is shown that the inclusion of electron thermal effects modifies the original coupled SV and convective cell mode. It is also discussed how the quantum effects can be incorporated in the coupled SV and convective cell mode.

  13. On the Shukla-Nambu-Salimullah potential in a streaming dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Rizwan, A.M.; Nitta, H.; Nambu, M.; Shukla, P.K.

    2004-01-01

    Detailed properties of a recently found effective potential have been examined in a streaming and uniform dusty magnetoplasma. The modification of the symmetric Debye-Hueckel potential in the presence of the static magnetic field may lead to the manipulation of the robust dust crystal parameters in laboratory experiments

  14. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.

    2015-12-01

    > ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.

  15. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  16. Collisional effect on lower hybrid waves instability in a dusty plasma ...

    African Journals Online (AJOL)

    The effect of particle collisions on lower hybrid modes in a dusty plasma is studied. The dispersion relation derived from fluid theory is numerically solved for plasma parameters relevant to determine the modification in wave propagation due to collisions. This study is relevant to the earth's lower atmosphere, in particular, the ...

  17. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  18. The effect of dust size distribution on the damping of the solitary waves in a dusty plasma

    International Nuclear Information System (INIS)

    Yang, Xue; Xu, Yan-Xia; Qi, Xin; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    The effect of the dust size distribution on the damping rate of the solitary wave in a dusty plasma is investigated in the present paper. It is found that the damping rate increases as either the mean radius of dust grains increases or as the total number density of the dust grains increases. The damping rate is less for usual dusty plasma (about which the number density of the smaller dust grains is larger than that of the larger dust grains) than that of the unusual dusty plasma (about which the number density of the larger dust grains is larger than that of the smaller dust grains)

  19. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    International Nuclear Information System (INIS)

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-01-01

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity

  20. Controlled thermonuclear fusion in TOKAMAK type reactors, the European example: Joint European Torus (JET)

    International Nuclear Information System (INIS)

    Paris, P.J.; Yassen, F.; Assis, A.S. de; Raposo, C.

    1988-07-01

    The development of controlled thermonuclear reaction in TOKAMAK type reactors, and the main projects in the world are presented. The main characteristics of the JET (Joint European Torus) program, the perspectives for energy production, and the international cooperation for viable use of the TOKAMAK are analysed. (M.C.K.) [pt

  1. Special Lagrangian torus fibrations of complete intersection Calabi–Yau manifolds: A geometric conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, David R., E-mail: drm@physics.ucsb.edu [Departments of Mathematics and Physics, U.C. Santa Barbara, Santa Barbara, CA 93106 (United States); Ronen Plesser, M. [Center for Geometry and Theoretical Physics, Duke University, Durham NC 27708 (United States)

    2015-09-15

    For complete intersection Calabi–Yau manifolds in toric varieties, Gross and Haase–Zharkov have given a conjectural combinatorial description of the special Lagrangian torus fibrations whose existence was predicted by Strominger, Yau and Zaslow. We present a geometric version of this construction, generalizing an earlier conjecture of the first author.

  2. EW[OIII] as an Orientation Indicator for Quasars: Implications for the Torus

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, Susanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Osservatorio Astrofisico di Arcetri, INAF, Florence (Italy); Marconi, Alessandro; Risaliti, Guido [Osservatorio Astrofisico di Arcetri, INAF, Florence (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Florence (Italy); Lusso, Elisabeta, E-mail: susanna.bisogni@cfa.harvard.edu [Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom)

    2017-11-21

    We present an analysis of the average spectral properties of 12,000 SDSS quasars as a function of accretion disc inclination, as measured from the equivalent width of the [OIII] 5007Å line. The use of this indicator on a large sample of quasars from the SDSS DR7 has proven the presence of orientation effects on the features of UV/optical spectra, confirming the presence of outflows in the NLR gas and that the geometry of the BLR is disc-like. Relying on the goodness of this indicator, we are now using it to investigate other bands/components of AGN. Specifically, the study of the UV/optical/IR SED of the same sample provides information on the obscuring “torus.” The SED shows a decrease of the IR fraction moving from face-on to edge-on sources, in agreement with models where the torus is co-axial with the accretion disc. Moreover, the fact we are able to observe the broad emission lines also in sources in an edge-on position, suggests that the torus is rather clumpy than smooth as in the Unified Model. The behavior of the SED as a function of EW[OIII] is in agreement with the predictions of the clumpy torus models as well.

  3. Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces II: Technical results on gradient flow construction

    OpenAIRE

    Ruan, Wei-Dong

    2004-01-01

    This paper is the sequel to my recent paper [10]. It will provide technical details of our gradient flow construction and related problems, which are essential for our construction of Lagrangian torus fibrations in [10] and subsequent papers [11, 13, 14].

  4. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  5. The European Communities (Privileges of the Joint European Torus) Order 1978 (S.I. no. 1033)

    International Nuclear Information System (INIS)

    1978-01-01

    This Order confers privileges on the Joint European Torus, as required by Decision 78/472/Euratom of 30 May 1978 of the Council of the European Communities and by the Exchange of Letters of 3 May 1978 between the Government of the United Kingdom and the European Atomic Energy Community [fr

  6. Equilibrium and stability of high-beta plasma in Modified Bumpy Torus (MBT)

    International Nuclear Information System (INIS)

    Todoroki, J.; Shiina, S.; Saito, K.; Osanai, Y.; Nogi, Y.; Gesso, H.; Yagi, I.; Yokoyama, K.; Yoshimura, H.; Nihon Univ., Tokyo. Atomic Energy Research Inst.)

    1977-01-01

    The equilibrium and stability properties of the plasma in Modified Bumpy Torus, which is an asymmetric system with closed magnetic lines of force, is reported. For small beta value, the growth rate of m=1 mode instability in MBT can be smaller than that of Scyllac configuration. The results of 1/4 toroidal sector experiment are reported. (author)

  7. Dustiness risk in the mine of Nižná Slaná

    Directory of Open Access Journals (Sweden)

    Milan Bobro

    2005-11-01

    Full Text Available The fibrogeneous dust is considered as a specific harmful substance in mine working sites. Such a kind of dust cumulates in lungs and this fact usually results in the lungs dusting, the so – called pneumoconiosis. Thus, the dustiness risk poses a probability of the lungs damage by pneumoconiosis. For the calculation of the dustiness risk it is necessary to know the following data: the value of average dustiness kc in the working site per a definite time period, the dispersivity of dust “D” (it determines a portion of dust particles with a diameter under 5 μm, the so – called respirable particles and the percentage content of quartz Qr in the respirable grain size fraction. The contribution presents a calculation of the dustiness risk “R” according to the equation (1, where “R” is in percentage, “ša” is the analytically specific harmfulness and “KDc” is the total cumulative dust dose received by a worker in the time of his dust exposure. The total cumulative dust dose is calculated on the basis of the equation (4, where “kc” is the average dust concentration in the assessed time period, t is the time of exposure, V is the average amount of air anspired by the exposed worker per a time unit (standardized at the value of 1,2 m3h-1. 10-6- recalculation from mg to kg for “KDc”. If the values of “Qr”, “D” and “kc” during the worker exposure on a definite workplace are constant, the dustiness risk “R” is calculated according to the equation (1 and (5 respectively. In the case of “n” time intervals for which the values “Qr”, “D” and “kc” are known, the dustiness risk “R” is calculated according to the equation (7. The total personal risk of the worker is given by the equation (8.

  8. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    International Nuclear Information System (INIS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil 5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm 2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil 5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil 5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil 5) as well as one (Nanofil 5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil 5), constant rate (compacted Nanofil 5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil 5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant

  9. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Science.gov (United States)

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-01

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  10. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)

    2012-09-15

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  11. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  12. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  13. Ultra-low-frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Amin, M.R.; Roy Chowdhury, A.R.; Salahuddin, M.

    1997-11-01

    A study on the extremely low-frequency possible electrostatic modes in a finite temperature magnetized dusty plasma taking the charged dust grains as the third component has been carried out using the appropriate Vlasov-kinetic theory for the dynamics of the electrons, ions and the dust particles. It is found that the inequalities of charge and number density of plasma species, and the finite-Larmor-radius thermal kinetic effects of the mobile charged dust grains, introduce the existence of very low-frequency electrostatic eigenmodes in the three-component homogeneous magnetized dusty plasma. The relevance of the present investigation to space and astrophysical situations as well as laboratory experiments for dust Coulomb crystallization has been pointed out. (author)

  14. Screening in weakly ionized dusty plasmas; effect of dust density perturbations

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.

    2013-01-01

    The screening of the charge of a non-emitting dust grain immersed in a weakly ionized dusty plasma is studied on the basis of a self-consistent hydrodynamic description. The dust number density is considered large enough so that the test grain is not isolated from other grains and dust collective effects are important. Not only dust charge perturbations but also dust density perturbations are taken into account, the latter are shown to have a strong effect on both the short and long range part of the potential. The realization of collective attraction via the newly obtained potential is discussed, a mechanism that could be central to the understanding of phase-transitions and self-organization processes in dusty plasmas.

  15. Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, Nam C.; Lee, D.-Y.

    2005-01-01

    The nonlinear ion acoustic solitary wave in a magnetized dusty plasma, obliquely propagating to the embedding external magnetic field, is revisited. It is found that when the charge density of dust particles is high, the Sagdeev potential needs to be expanded up to δn 4 near n=1. In this case, it is shown that there could exist rarefactive ion acoustic solitary waves as well as the kink-type double layer solutions, in addition to the conventional hump-type ones found in the δn 3 expansion. The amplitude variations of ion acoustic solitary waves in a magnetized dusty plasma are also examined with respect to the change of the dust charge density and the wave directional angle

  16. Arbitrary amplitude dust-acoustic solitary structures in a three-component dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A rigorous theoretical investigation has been made of arbitrary amplitude dust-acoustic solitary structures in an unmagnetized three-component dusty plasma whose constituents are an inertial charged dust fluid and Boltzmann distributed ions and electrons. The pseudo-potential approach and the reductive perturbation technique are employed for this study. It is found from both weakly and highly nonlinear analyses that the dusty plasma model can support solitary waves only with negative potential but not with positive potential. The effects of equilibrium free electron density and its temperature on these solitary structures are discussed. The implications of these results to some astrophysical and space plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  17. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of two new ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of both of these two electrostatic modes. It is also found that under certain conditions, this self-gravitational effect can destabilize these ultra-low-frequency electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  18. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  19. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    International Nuclear Information System (INIS)

    Song, Y.L.; Huang, F.; Chen, Z.Y.; Liu, Y.H.; Yu, M.Y.

    2016-01-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  20. Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

    Energy Technology Data Exchange (ETDEWEB)

    Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com; Amirov, R. Kh.; Kirillin, A. V.; Nikolaev, V. S.; Bedran, Z. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawa potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.

  1. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  2. A New Cross-By-Pass-Torus Architecture Based on CBP-Mesh and Torus Interconnection for On-Chip Communication.

    Directory of Open Access Journals (Sweden)

    Usman Ali Gulzari

    Full Text Available A Mesh topology is one of the most promising architecture due to its regular and simple structure for on-chip communication. Performance of mesh topology degraded greatly by increasing the network size due to small bisection width and large network diameter. In order to overcome this limitation, many researchers presented modified Mesh design by adding some extra links to improve its performance in terms of network latency and power consumption. The Cross-By-Pass-Mesh was presented by us as an improved version of Mesh topology by intelligent addition of extra links. This paper presents an efficient topology named Cross-By-Pass-Torus for further increase in the performance of the Cross-By-Pass-Mesh topology. The proposed design merges the best features of the Cross-By-Pass-Mesh and Torus, to reduce the network diameter, minimize the average number of hops between nodes, increase the bisection width and to enhance the overall performance of the network. In this paper, the architectural design of the topology is presented and analyzed against similar kind of 2D topologies in terms of average latency, throughput and power consumption. In order to certify the actual behavior of proposed topology, the synthetic traffic trace and five different real embedded application workloads are applied to the proposed as well as other competitor network topologies. The simulation results indicate that Cross-By-Pass-Torus is an efficient candidate among its predecessor's and competitor topologies due to its less average latency and increased throughput at a slight cost in network power and energy for on-chip communication.

  3. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  4. Spitzer Imaging of Planck-Herschel Dusty Proto-Clusters at z=2-3

    Science.gov (United States)

    Cooray, Asantha; Ma, Jingzhe; Greenslade, Joshua; Kubo, Mariko; Nayyeri, Hooshang; Clements, David; Cheng, Tai-An

    2018-05-01

    We have recently introduced a new proto-cluster selection technique by combing Herschel/SPIRE imaging data and Planck/HFIk all-sky survey point source catalog. These sources are identified as Planck point sources with clumps of Herschel source over-densities with far-IR colors comparable to z=0 ULIRGS redshifted to z=2 to 3. The selection is sensitive to dusty starbursts and obscured QSOs and we have recovered couple of the known proto-clusters and close to 30 new proto-clusters. The candidate proto-clusters selected from this technique have far-IR flux densities several times higher than those that are optically selected, such as using LBG selection, implying that the member galaxies are in a special phase of heightened dusty starburst and dusty QSO activity. This far-IR luminous phase may be short but likely to be necessary piece to understand the whole stellar mass assembly history of clusters. Moreover, our photo-clusters are missed in optical selections, suggesting that optically selected proto-clusters alone do not provide adequate statistics and a comparison of the far-IR and optical selected clusters may reveal the importance of the dusty stellar mass assembly. Here, we propose IRAC observations of six of the highest priority new proto-clusters, to establish the validity of the technique and to determine the total stellar mass through SED models. For a modest observing time the science program will have a substantial impact on an upcoming science topic in cosmology with implications for observations with JWST and WFIRST to understand the mass assembly in the universe.

  5. Acoustic Wave in a Dusty Plasma with Frequent Grain Charging Collisions

    International Nuclear Information System (INIS)

    Lee, Hee J.; Cho, Sang-Hoon

    2003-01-01

    The sink terms in the electron and ion continuity equations and the frictional terms in the momentum equations of a dusty plasma are obtained by taking moments of a kinetic equation which takes into account the grain charging collisions by electrons and ions. We show that an acoustic wave can propagate as a normal mode in the parameter regime where the frequencies of charging collisions are much greater than the wave frequency

  6. SEM/EDS characterisation of dusty deposits in precipitation and assessment of their origin

    Directory of Open Access Journals (Sweden)

    Miloš Miler

    2014-07-01

    Full Text Available Detailed scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS analysis of dusty material in rainfall residue, deposited and collected on February 19th 2014 in Ljubljana, was carried out with the intention to characterise it according to its chemical and mineral composition and to assess its origin. The material consists of poorly sorted and sharp-edged particles of mostly very fine-grained silt and clay fractions, which is consistent with long-range aerial transport. Particles are represented by illite, chlorite and kaolinite group clay minerals, quartz, feldspars, carbonates, accessory minerals and secondary Fe-oxy-hydroxide minerals. Quantities of minerals and illite/ kaolinite ratio (4.5 correspond to dusts in rainfall residues originating from Moroccan Atlas, while chlorite/kaolinite ratio (2.8 agrees better with dust from central Libya. The element ratios Al/Si, Ca/Al, K/Ca, Mg/Al, Fe/Al and (Ca+Mg/Fe in the studied dusty deposit are in good agreement with ratios in dusts from rainfall residues originating from Morocco and northern Mauritania. This was also confirmed by the trajectories of cloud movement that caused precipitation with dusty deposit, although the back trajectory HYSPLIT simulation of air masses indicated northern Mauritania, central Niger, southern Algeria, southwestern and central Libya as the most possible source regions.

  7. Effect of polarization force on the Jeans instability of self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2011-01-01

    The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system. -- Highlights: → Jeans instability of gravitating dusty plasma with polarization force is investigated. → The fundamental Jeans instability criterion is modified due to polarization effect. → The critical Jeans length decreases due to increase in polarization force. → Polarization force destabilizes the unstable Jeans mode. → The collapsing of interstellar dusty cloud is discussed.

  8. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-01-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B 0 . It is noted that the growth rate is proportional to the unperturbed electron number density n oe and is independent of inhomogeneity beyond L e =2 cm. An extraordinary growth rate is observed with the quantum effect.

  9. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2016-03-01

    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  10. Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101 (India); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Lavanya, C.; Senthil Kumar, V. [Department of Physics, Periyar University, Salem, Tamil Nadu 636 011 (India); Gopi, D. [Department of Chemistry, Periyar University, Salem 636 011 (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem, Tamil Nadu 636 011 (India); Pasqua, A. [Department of Physics, University of Trieste, Trieste (Italy)

    2016-04-15

    We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales much shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.

  11. Infrared study of new star cluster candidates associated to dusty globules

    Science.gov (United States)

    Soto King, P.; Barbá, R.; Roman-Lopes, A.; Jaque, M.; Firpo, V.; Nilo, J. L.; Soto, M.; Minniti, D.

    2014-10-01

    We present results from a study of a sample of small star clusters associated to dusty globules and bright-rimmed clouds that have been observed under ESO/Chile public infrared survey Vista Variables in the Vía Láctea (VVV). In this short communication, we analyse the near-infrared properties of a set of four small clusters candidates associated to dark clouds. This sample of clusters associated to dusty globules are selected from the new VVV stellar cluster candidates developed by members of La Serena VVV Group (Barbá et al. 2014). Firstly, we are producing color-color and color-magnitude diagrams for both, cluster candidates and surrounding areas for comparison through PSF photometry. The cluster positions are determined from the morphology on the images and also from the comparison of the observed luminosity function for the cluster candidates and the surrounding star fields. Now, we are working in the procedures to establish the full sample of clusters to be analyzed and methods for subtraction of the star field contamination. These clusters associated to dusty globules are simple laboratories to study the star formation relatively free of the influence of large star-forming regions and populous clusters, and they will be compared with those clusters associated to bright-rimmed globules, which are influenced by the energetic action of nearby O and B massive stars.

  12. Dippers and dusty disc edges: new diagnostics and comparison to model predictions

    Science.gov (United States)

    Bodman, Eva H. L.; Quillen, Alice C.; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S.; Mamajek, Eric E.; Blackman, Eric G.; Rizzuto, Aaron; Kastner, Joel H.

    2017-09-01

    We revisit the nature of large dips in flux from extinction by dusty circumstellar material that is observed by Kepler for many young stars in the Upper Sco and ρ Oph star formation regions. These young, low-mass 'dipper' stars are known to have low accretion rates and primarily host moderately evolved dusty circumstellar discs. Young low-mass stars often exhibit rotating starspots that cause quasi-periodic photometric variations. We found no evidence for periods associated with the dips that are different from the starspot rotation period in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disc temperatures computed at the disc corotation radius are cool enough that dust should not sublime. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotation radius. Magnetospheric truncation models can explain why the dips are associated with material near corotation and how dusty material is lifted out of the mid-plane to obscure the star that would account for the large fraction of young low-mass stars that are dippers. We propose that variations in disc orientation angle, stellar magnetic field dipole tilt axis and disc accretion rate are underlying parameters accounting for differences in the dipper light curves.

  13. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-01-01

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes

  14. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  15. Nuclear

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)

  16. Gas, Dust, and Quenching of Dusty Galaxies in the Early Universe

    Science.gov (United States)

    Spilker, Justin Scott

    In this dissertation, I study various aspects related to the gas and star formation in dusty star-forming galaxies in the distant universe. My dissertation is heavily based on observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), observing a sample of gravitationally lensed high-redshift dusty galaxies originally discovered by the South Pole Telescope (SPT). In addition to the introductions to the individual chapters, Chapter 1 provides a broader background to the study of these objects and places them in the overall context of galaxy evolution. In Chapter 2 I describe a technique designed to search for faint molecular lines in the spectrum of high-redshift dusty galaxies. The brightest molecular lines in the spectra of these objects are due to carbon monoxide, but a host of other species are present in the interstellar media. These other molecules trace gas of a wide range of temperatures and densities, but are generally ten times fainter than the brighter CO lines. I detected several other molecular lines, and used them to characterize the conditions of the interstellar gas. This work was published in Spilker et al. (2014). In Chapter 3, I describe a technique for modeling the effects of gravitational lensing which is optimized for data from interferometers such as ALMA. Using these models and data for a large sample of objects from ALMA, I studied the intrinsic properties of the sample such as the source sizes and luminosities. I used these intrinsic properties to revisit topics from the literature which benefit from the additional size information I determined. This work was published in Spilker et al. (2016). In Chapter 4, I use the modeling technique I developed to investigate the relationship between the star formation and the cold molecular gas from which stars form in two objects selected from the SPT sample. Using the models of the source, I was able to determine the mass of molecular gas in these objects using several independent

  17. Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions

    Science.gov (United States)

    Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly

    The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in

  18. Riemann-Hilbert treatment of Liouville theory on the torus: the general case

    International Nuclear Information System (INIS)

    Menotti, Pietro

    2011-01-01

    We extend the previous treatment of Liouville theory on the torus to the general case in which the distribution of charges is not necessarily symmetric. This requires the concept of Fuchsian differential equation on Riemann surfaces. We show through a group theoretic argument that the Heun parameter and a weight constant are sufficient to satisfy all monodromy conditions. We then apply the technique of differential equations on a Riemann surface to the two-point function on the torus in which one source is arbitrary and the other small. As a byproduct, we give in terms of quadratures the exact Green function on the square and on the rhombus with opening angle 2π/6 in the background of the field generated by an arbitrary charge.

  19. On the location of the Io plasma torus: Voyager 1 observations

    Directory of Open Access Journals (Sweden)

    M. Volwerk

    2018-06-01

    Full Text Available The Voyager 1 outbound ultraviolet observations of the Io plasma torus are used to determine the location of the ansae, to obtain a third viewing angle of this structure in the Jovian magnetosphere. At an angle of −114° with respect to the Sun–Jupiter line, or a Jovian local time of 04:30 LT, the Voyager 1 data deliver a distance of 5.74±0.10 RJ for the approaching and 5.83±0.15 RJ for the receding ansa. Various periodicities in the radial distance, brightness and width of the ansae are seen with respect to system III longitude and Io phase angle. The torus ribbon feature does not appear in all ansa scans.

  20. Lagrange multiplier and Wess-Zumino variable as extra dimensions in the torus universe

    Science.gov (United States)

    Nejad, Salman Abarghouei; Dehghani, Mehdi; Monemzadeh, Majid

    2018-01-01

    We study the effect of the simplest geometry which is imposed via the topology of the universe by gauging non-relativistic particle model on torus and 3-torus with the help of symplectic formalism of constrained systems. Also, we obtain generators of gauge transformations for gauged models. Extracting corresponding Poisson structure of existed constraints, we show the effect of the shape of the universe on canonical structure of phase-spaces of models and suggest some phenomenology to prove the topology of the universe and probable non-commutative structure of the space. In addition, we show that the number of extra dimensions in the phase-spaces of gauged embedded models are exactly two. Moreover, in classical form, we talk over modification of Newton's second law in order to study the origin of the terms appeared in the gauged theory.

  1. Characterization and parametric dependencies of low wavenumber pedestal turbulence in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.

  2. Characteristics and performance of a superconducting bumpy-torus magnet facility for plasma research

    Science.gov (United States)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1973-01-01

    The NASA Lewis bumpy-torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T on its axis. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m; they are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The design value of the maximum magnetic field on the magnetic axis, 3.0 T, was reached and exceeded. A maximum magnetic field of 3.23 T was held for a period of 60 minutes. When the coils were charged to a maximum magnetic field of 3.35 T, the coil system went normal without apparent damage or degradation of performance.

  3. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume IX. Support structure

    International Nuclear Information System (INIS)

    Conlee, J.L.

    1982-01-01

    The EBT-P support structure provides structural support for the 36 mirror coil magnets, magnet protection system, the toroidal vessel, and much of the device ancillary equipment. The structure is comprised of a primary support and a superstructure. The primary support is a reinforced concrete ring located directly inboard of the torus and is supported by nine columns. The toroidal vessel and the mirror coil magnets are cantilevered from the ring with the centerline of the torus located eight feet above the floor. The superstructure is an aluminum truss structure that rests on the concrete ring. The superstructure provides support for the device ancillary equipment. Engineering drawings of the support structure are given

  4. Tightness of the Ising-Kac Model on the Two-Dimensional Torus

    Science.gov (United States)

    Hairer, Martin; Iberti, Massimo

    2018-05-01

    We consider the sequence of Gibbs measures of Ising models with Kac interaction defined on a periodic two-dimensional discrete torus near criticality. Using the convergence of the Glauber dynamic proven by Mourrat and Weber (Commun Pure Appl Math 70:717-812, 2017) and a method by Tsatsoulis and Weber employed in (arXiv:1609.08447 2016), we show tightness for the sequence of Gibbs measures of the Ising-Kac model near criticality and characterise the law of the limit as the Φ ^4_2 measure on the torus. Our result is very similar to the one obtained by Cassandro et al. (J Stat Phys 78(3):1131-1138, 1995) on Z^2, but our strategy takes advantage of the dynamic, instead of correlation inequalities. In particular, our result covers the whole critical regime and does not require the large temperature/large mass/small coupling assumption present in earlier results.

  5. On the runaway instability of self-gravitating torus around black holes

    International Nuclear Information System (INIS)

    Font, Jose A; Montero, Pedro J; Shibata, Masaru

    2010-01-01

    Black holes surrounded by self-gravitating tori are astrophysical systems which may naturally form following the core collapse of a massive star or the merger of two neutron stars. We present here results from fully general relativistic numerical simulations of such systems in order to assess the influence of the torus self-gravity on the onset of the so-called runaway instability. This instability, which might drive the rapid accretion of the disk on shorter timescales than those required to power a relativistic fireball, potentially challenges current models of gamma-ray bursts. Our simulations indicate that the self-gravity of the torus does not actually favour the onset of the instability.

  6. Vertical injection of compact torus into the STOR-M tokamak

    International Nuclear Information System (INIS)

    Liu, D.; Singh, A.K.; Hirose, A.; Xiao, C.

    2005-01-01

    Vertical compact torus injection into the STOR-M tokamak has been conducted with the University of Saskatchewan Compact Torus Injector (USCTI). The injector stayed at the horizontal position and the CT was bent by 90 deg. using a curved conducting drift tube. The curved drift tube did not have significant effects on the CT velocity. Furthermore, the curved drift tube did not change the magnetic field topology. Preliminary vertical CT injection experiments have been carried out on the STOR-M tokamak. CT injection induced prompt increase in the electron density and in the soft x-ray radiation level. Further modifications of the 90 deg. are underway to improve the CT parameters and to further study the effects of CT injection on the tokamak plasma parameters. (author)

  7. Hopf bifurcation and chaos from torus breakdown in voltage-mode controlled DC drive systems

    International Nuclear Information System (INIS)

    Dai Dong; Ma Xikui; Zhang Bo; Tse, Chi K.

    2009-01-01

    Period-doubling bifurcation and its route to chaos have been thoroughly investigated in voltage-mode and current-mode controlled DC motor drives under simple proportional control. In this paper, the phenomena of Hopf bifurcation and chaos from torus breakdown in a voltage-mode controlled DC drive system is reported. It has been shown that Hopf bifurcation may occur when the DC drive system adopts a more practical proportional-integral control. The phenomena of period-adding and phase-locking are also observed after the Hopf bifurcation. Furthermore, it is shown that the stable torus can breakdown and chaos emerges afterwards. The work presented in this paper provides more complete information about the dynamical behaviors of DC drive systems.

  8. Mechanical design assessments of structural components and auxiliaries of the Joint European Torus

    International Nuclear Information System (INIS)

    Sonnerup, L.

    1985-01-01

    The general design of the Joint European Torus (JET) is briefly described. The loads on its major structural components, at normal operation, and in cases of plasma instability and/or disruption, are discussed. The way these components have been assessed and optimised in relation to their loads is presented. A short account of mechanical design problems of auxiliary equipment is given. Finally, the state of operation of JET and its implications for the mechanical design at the time of the conference will be summarized. The mechanically most important components of the JET device are the support structure of the toroidal magnet, th vacuum vessel, the coils of the magnets and the pedestals supporting the weight of the torus. These components all participate in resisting and transmitting the primary forces during operation. (orig.)

  9. Mechanical design assessments of structural components and auxiliaries of the Joint European Torus

    International Nuclear Information System (INIS)

    Sonnerup, L.

    1986-01-01

    The general design of the Joint European Torus (JET) is briefly described. The loads on its major structural components, at normal operation, and in cases of plasma instability and/or disruption, are discussed. The way these components have been assessed and optimised in relation to their loads is presented. A short account of mechanical design problems of auxiliary equipment is given. Finally, the state of operation of JET and its implications for the mechanical design is summarized. The mechanically most important components of the JET device are the support structure of the toroidal magnet, the vacuum vessel, the coils of the magnets and the pedestals supporting the weight of the torus. These components all participate in resisting and transmitting the primary forces during operation. (orig.)

  10. Numerical study of the Columbia high-beta device: Torus-II

    International Nuclear Information System (INIS)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes

  11. Numerical study of the Columbia high-beta device: Torus-II

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R.

    1981-01-01

    The ionization, heating and subsequent long-time-scale behavior of the helium plasma in the Columbia fusion device, Torus-II, is studied. The purpose of this work is to perform numerical simulations while maintaining a high level of interaction with experimentalists. The device is operated as a toroidal z-pinch to prepare the gas for heating. This ionization of helium is studied using a zero-dimensional, two-fluid code. It is essentially an energy balance calculation that follows the development of the various charge states of the helium and any impurities (primarily silicon and oxygen) that are present. The code is an atomic physics model of Torus-II. In addition to ionization, we include three-body and radiative recombination processes.

  12. Analysis of 2D Torus and Hub Topologies of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    Science.gov (United States)

    Pedretti, Kevin T.; Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    A variety of different network technologies and topologies are currently being evaluated as part of the Whitney Project. This paper reports on the implementation and performance of a Fast Ethernet network configured in a 4x4 2D torus topology in a testbed cluster of 'commodity' Pentium Pro PCs. Several benchmarks were used for performance evaluation: an MPI point to point message passing benchmark, an MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2). Our results show that for point to point communication on an unloaded network, the hub and 1 hop routes on the torus have about the same bandwidth and latency. However, the bandwidth decreases and the latency increases on the torus for each additional route hop. Collective communication benchmarks show that the torus provides roughly four times more aggregate bandwidth and eight times faster MPI barrier synchronizations than a hub based network for 16 processor systems. Finally, the SOAPBOX benchmarks, which simulate real-world CFD applications, generally demonstrated substantially better performance on the torus than on the hub. In the few cases the hub was faster, the difference was negligible. In total, our experimental results lead to the conclusion that for Fast Ethernet networks, the torus topology has better performance and scales better than a hub based network.

  13. Measurements of Prompt and MHD-Induced Fast Ion Loss from National Spherical Torus Experiment Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod' ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij

    2002-10-15

    A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.

  14. Confinement of Neutral Beam Ions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Darrow, D.S.; Medley, S.S.; Roquemore, A.L.; Rosenberg, A.

    2001-01-01

    The loss of neutral-beam ions to the wall has been measured in the National Spherical Torus Experiment (NSTX) by means of thermocouples, an infrared (IR) camera, and a Faraday cup probe. The losses tend to exhibit the expected dependences on plasma current, tangency radius of the injector, and plasma outer gap. However, the thermocouples and the Faraday cups indicate substantially different levels of loss and this difference has yet to be understood

  15. Quantum-Mechanical Particle Confined to Surfaces of Revolution - Truncated Cone and Elliptic Torus Case Studies

    DEFF Research Database (Denmark)

    Gravesen, Jens; Willatzen, Morten; Voon, L.C. Lew Yan

    2005-01-01

    The theory of a quantum-mechanical particle confined to a surface of revolution is described using differential geometry methods including the derivation of a general set of three ordinary differential equations in curved coordinates. The problem is shown to be completely separable with the present...... hard-wall boundary conditions. Two case studies of recent experimental interest. the nanocone and torus-shaped nanoring structures. are analyzed in terms of eigenstates, energies. and symmetry characteristics based on the theory presented....

  16. Remote handling of JET in-torus components. A practical experience

    International Nuclear Information System (INIS)

    Mills, S.; Brade, R.; Edwards, P.

    2000-01-01

    This paper summarises the experiences gained from the extensive handling of JET components inside the torus. The problems involved with handling components not designed to be remotely handled and the methods used to overcome them are described and discussed with specific examples from recent JET remote operations. The method employed for remotely producing structural TIG welds is explained. The problems of dextrous manipulation in an inverted attitude are discussed and the methods of amelioration are described

  17. Descent of line bundles to GIT quotients of flag varieties by maximal torus

    OpenAIRE

    Kumar, Shrawan

    2007-01-01

    Let L be a homogeneous ample line bundle on any flag variety G/P and let T be a maximal torus of G. We prove a general necessary and sufficient condition for L to descend as a line bundle on the GIT quotient of G/P by T. We use this result to explicitly determine exactly which L descend to the GIT quotient for any simple complex algebraic group G and any parabolic subgroup P.

  18. Proposal of a torus pumping and fuel recycling system for ITER

    International Nuclear Information System (INIS)

    Perinic, D.; Mack, A.; Perinic, G.; Murdoch, D.

    1995-01-01

    A universal torus pumping and fuel recycling system is proposed for all operation modes of ITER. It comprises primary cryopumps and secondary fuel separating cryopumps located inside the cryostat and a common mechanical forepump station located outside the cryostat. In this paper two different primary cryopump options are compared. The results of Monte Carlo calculations of pumping probabilities for helium show a significant difference leading to a distinct preference for the concept of a co-pumping cryopump. (orig.)

  19. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  20. CPRF/ZTH front-end torus design and fabrication status

    International Nuclear Information System (INIS)

    Ballard, E.O.; Baker, C.; Gomez, T.; Prince, P.P.; Smith, R.L.

    1989-01-01

    Design of the ZTH front-end torus has been completed for a new generation Reversed Field Pinch (RFP) machine to be assembled at Los Alamos National Laboratory during FY 92. The Confinement Physics Research Facility (CPRF) houses the ZTH front-end torus. The ZTH torus consists of an Inconel 625 vacuum vessel supported by an external electrically conducting 304L stainless steel shell. Interspace support rings support the vacuum vessel to the shell and also provide accurate radial support for the interspace electrical diagnostics. The shell also supports 48 toroidal field coils that are mounted to the shell's external surface. The shell consists of an explosion bonded stainless steel-copper composite with water-cooling tube assemblies attached to the outer surface. The 0.135-in. thick copper is on the inside surface of the shell, and provides an electrically conducting path with the required electrical time constant of 50 ms. The shell plate will be formed to the required toroidal configuration, after which the poloidal and toroidal flanges will be welded to the structure and machined. The Inconel vacuum vessel consists of bellows segments, armor support rings, and diagnostic stations welded together to form the complete vacuum vessel assembly. The necessity for accurate positioning of the vacuum vessel within the shell requires that the shell and vacuum vessel be fabricated with major diameter tolerances within 0.050-in. true position of the nominal diameters of 188.0-in. and 188.820-in., respectively. 7 figs

  1. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  2. Two intervals Rényi entanglement entropy of compact free boson on torus

    International Nuclear Information System (INIS)

    Liu, Feihu; Liu, Xiao

    2016-01-01

    We compute the N=2 Rényi entanglement entropy of two intervals at equal time in a circle, for the theory of a 2D compact complex free scalar at finite temperature. This is carried out by performing functional integral on a genus 3 ramified cover of the torus, wherein the quantum part of the integral is captured by the four point function of twist fields on the worldsheet torus, and the classical piece is given by summing over winding modes of the genus 3 surface onto the target space torus. The final result is given in terms of a product of theta functions and certain multi-dimensional theta functions. We demonstrate the T-duality invariance of the result. We also study its low temperature limit. In the case in which the size of the intervals and of their separation are much smaller than the whole system, our result is in exact agreement with the known result for two intervals on an infinite system at zero temperature http://dx.doi.org/10.1088/1742-5468/2009/11/P11001. In the case in which the separation between the two intervals is much smaller than the interval length, the leading thermal corrections take the same universal form as proposed in http://dx.doi.org/10.1103/PhysRevLett.112.171603, http://dx.doi.org/10.1103/PhysRevD.91.105013 for Rényi entanglement entropy of a single interval.

  3. A 12 coil superconducting bumpy torus magnet facility for plasma research

    Science.gov (United States)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1972-01-01

    A summary is presented of the performance of the two-coil superconducting pilot rig which preceded the NASA Lewis bumpy torus. This pilot rig was operated for 550 experimental runs over a period of 7 years. The NASA Lewis bumpy torus facility consists of 12 superconducting coils, each with a 19 cm in diameter and capable of producing magnetic field strengths of 3.0 teslas on their axes. The magnets are equally spaced around a major circumference 1.52 m in diameter, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.59 m in diameter. The design value of maximum magnetic field on the magnetic axis (3.0 teslas) was reached and exceeded. A maximum magnetic field of 3.23 teslas was held for a period of 60 minutes, and the coils did not go to normal. When the coils were charged to a maximum magnetic field of 3.35 teslas, the coil system was driven normal without damage to the facility.

  4. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    Science.gov (United States)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  5. Injerto óseo en bloque usando como donante torus mandibular. Reporte de caso

    Directory of Open Access Journals (Sweden)

    Oswaldo Cantillo Pallares

    2014-01-01

    Full Text Available Actualmente los materiales empleados para regeneración a través de injertos óseos están basados en compuestos sintéticos con propiedades en ocasiones poco predecibles para los pacientes. Los torus son exostosis óseas de etiología desconocida y pueden ser utilizados como injertos óseos con resultados clínicos exitosos. Así, el objetivo de este reporte de caso es describir la técnica quirúrgica de injerto óseo en bloque utilizando como donante torus mandibulares. Los resultados clínicos a 8 semanas postoperatorias evidenciaron tejidos en cicatrización y pocas molestias referidas por el paciente. Los injertos óseos provenientes de torus mandibulares son técnicas quirúrgicas de mediana complejidad que pueden ser empleados y permiten la obtención de resultados clínicos similares a los de otros materiales.

  6. A Deep Chandra ACIS Study of NGC 4151. I. The X-ray Morphology of the 3 kpc Diameter Circum-nuclear Region and Relation to the Cold Interstellar Medium

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-03-01

    We report on the imaging analysis of ~200 ks sub-arcsecond resolution Chandra Advanced CCD Imaging Spectrometer (ACIS-S) observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the southwest from the nucleus, much farther than seen in earlier X-ray studies. The terminus of the northeastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r < 200 pc region, the subpixel processing of the ACIS data recovers the morphological details on scales of <30 pc (<0farcs5) first discovered in Chandra High Resolution Camera images. The X-ray emission is more absorbed toward the boundaries of the ionization cone, as well as perpendicular to the bicone along the direction of a putative torus in NGC 4151. The innermost region where X-ray emission shows the highest hardness ratio is spatially coincident with the near-infrared-resolved H2 emission and dusty spirals we find in an Hubble Space Telescope V - H color image. The agreement between the observed H2 line flux and the value predicted from X-ray-irradiated molecular cloud models supports photo-excitation by X-rays from the active nucleus as the origin of the H2 line, although contribution from UV fluorescence or collisional excitation cannot be ruled out with current data. The discrepancy between the mass of cold molecular gas inferred from recent CO and near-infrared H2 observations may be explained by the anomalous CO abundance in this X-ray-dominated region. The total H2 mass derived from the X-ray observation agrees with the recent measurement by Storchi-Bergmann et al.

  7. A DEEP CHANDRA ACIS STUDY OF NGC 4151. I. THE X-RAY MORPHOLOGY OF THE 3 kpc DIAMETER CIRCUM-NUCLEAR REGION AND RELATION TO THE COLD INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-01-01

    We report on the imaging analysis of ∼200 ks sub-arcsecond resolution Chandra Advanced CCD Imaging Spectrometer (ACIS-S) observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the southwest from the nucleus, much farther than seen in earlier X-ray studies. The terminus of the northeastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r 2 emission and dusty spirals we find in an Hubble Space Telescope V - H color image. The agreement between the observed H 2 line flux and the value predicted from X-ray-irradiated molecular cloud models supports photo-excitation by X-rays from the active nucleus as the origin of the H 2 line, although contribution from UV fluorescence or collisional excitation cannot be ruled out with current data. The discrepancy between the mass of cold molecular gas inferred from recent CO and near-infrared H 2 observations may be explained by the anomalous CO abundance in this X-ray-dominated region. The total H 2 mass derived from the X-ray observation agrees with the recent measurement by Storchi-Bergmann et al.

  8. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    Science.gov (United States)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  9. A near-infrared, optical, and ultraviolet polarimetric and timing investigation of complex equatorial dusty structures

    Science.gov (United States)

    Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.

    2018-05-01

    Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized

  10. Transient induced tungsten melting at the Joint European Torus (JET)

    Science.gov (United States)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET

    2017-12-01

    successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.

  11. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  12. The nonlinear dustgrain-charging on large amplitude electrostatic waves in a dusty plasma with trapped ions

    Directory of Open Access Journals (Sweden)

    Y.-N. Nejoh

    1998-01-01

    Full Text Available The nonlinear dustgrain-charging and the influence of the ion density and temperature on electrostatic waves in a dusty plasma having trapped ions are investigated by numerical calculation. This work is the first approach to the effect of trapped ions in dusty plasmas. The nonlinear variation of the dust-charge is examined, and it is shown that the characteristics of the dustcharge number sensitively depend on the plasma potential, Mach number, dust mass-to-charge ratio, trapped ion density and temperature. The fast and slow wave modes are shown in this system. An increase of the ion temperature decreases the dust-charging rate and the propagation speed of ion waves. It is found that the existence of electrostatic ion waves sensitively depends on the ion to electron density ratio. New findings of the variable-charge dust grain particles, ion density and temperature in a dusty plasma with trapped ions are predicted.

  13. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Directory of Open Access Journals (Sweden)

    Asad Rehman

    Full Text Available An upwind space-time conservation element and solution element (CE/SE scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme. Keywords: Dusty gas flow, Solid particles, Upwind schemes, Rarefaction wave, Shock wave, Contact discontinuity

  14. Overview of physics results from the conclusive operation of the National Spherical Torus Experiment

    Science.gov (United States)

    Sabbagh, S. A.; Ahn, J.-W.; Allain, J.; Andre, R.; Balbaky, A.; Bastasz, R.; Battaglia, D.; Bell, M.; Bell, R.; Beiersdorfer, P.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyle, D.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D'Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Indireshkumar, K.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Kramer, G.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R. J.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Lore, J.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McLean, A.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, H.; Park, J.; Park, Y. S.; Paul, S.; Peebles, W.; Penaflor, B.; Perkins, R. J.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Raman, R.; Ren, Y.; Rewoldt, G.; Rognlien, T.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C. H.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, J.; Untergberg, E.; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K. L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S. J.

    2013-10-01

    Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τE, scaling unified for varied wall conditions exhibits a strong improvement of BTτE with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower Ti gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high βN/li > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater

  15. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    Science.gov (United States)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  16. Effect of secondary electron emission on the Jeans instability in a dusty plasma

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Roy, Banamali; Maity, Saumyen; Khan, Manoranjan; Gupta, M. R.

    2007-01-01

    In this paper the effect of secondary electron emission on Jeans instability in a dusty plasma has been investigated. Due to secondary electron emission, dust grains may have two stable equilibrium states out of which one is negative and the other is positive. Here both cases have been considered separately. It has been shown that secondary electron emission enhances Jeans instability when equilibrium dust charge is negative. It has also been shown that growth rate of Jeans instability reduces with increasing secondary electron emission when equilibrium dust charge is positive

  17. Microdynamics of dusty plasma liquids in narrow channel: from disorder to order

    CERN Document Server

    Woon Wei Yen; Deng L Iwen; Lin, I

    2003-01-01

    We report direct observations on the microscopic dynamics of dusty plasma liquid confined in a narrow gap. We measure the horizontal and transverse displacement histograms as well as the transverse particle density distributions from particle trajectories. Under confinement, the liquid forms a layer structure. The dust particle motion at boundaries show anisotropy and three outermost layers is found due to the pinching effect of the boundaries. When the gap width is reduced to below 7d (d = inter-layer width), the dust particle motion in the central region shows a transition from isotropic motion to anisotropic discrete hopping motion, leading to a slower dynamics and layer structure through the whole liquid.

  18. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  19. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  20. A time-dependent dusty gas dynamic model of axisymmetric cometary jets

    International Nuclear Information System (INIS)

    Korosmezey, A.; Gombosi, T.I.

    1990-01-01

    The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs

  1. Cross-field dust acoustic instability in a dusty negative ion plasma

    International Nuclear Information System (INIS)

    Rosenberg, M

    2010-01-01

    A cross-field dust acoustic instability in a dusty negative ion plasma in a magnetic field is studied using kinetic theory. The instability is driven by the ExB drifts of the ions. It is assumed that the negative ions are much heavier than the positive ions, and that the dust is negatively charged. The case where the positive ions and electrons are magnetized, the negative ions are marginally unmagnetized, and the dust is unmagnetized is considered. The focus is on a situation where Doppler resonances near harmonics of the positive ion gyrofrequency can affect the spectrum of unstable dust acoustic waves. Application to possible laboratory experimental parameters is discussed.

  2. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  3. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)

    2015-07-15

    Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.

  4. Debye shielding in a dusty plasma with nonextensively distributed electrons and ions

    International Nuclear Information System (INIS)

    Liu, Y.; Xu, K.; Liu, S. Q.

    2012-01-01

    The phenomenon of Debye shielding in dusty plasmas is investigated within the framework of nonextensively distributed electrons and ions. The effects of dust grain charge fluctuation are considered. It shows that the increase of the nonextensive parameters of electrons and ions will lead to the decrease of the shielding distance and it is due to that the effective temperature of nonextensively distributed particles drops with the increase of nonextensive parameters. There is a rather interesting result that the Debye shielding effects may vanish in a certain condition when the fluctuation of the dust grain charges is taken into account.

  5. Zonal flow excitation by Shukla-Varma modes in a nonuniform dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.; Stenflo, L.

    2002-01-01

    The nonlinear coupling between the Shukla-Varma (SV) modes and the zonal flows in a nonuniform dusty magnetoplasma is considered. By using a two-fluid model and the guiding center particle drifts, a pair of coupled mode equations is obtained. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the SV modes. The increment of the parametrically excited zonal flows is presented. The relevance of our investigation to laboratory and space plasmas is discussed

  6. Langmuir wave phase-mixing in warm electron-positron-dusty plasmas

    Science.gov (United States)

    Pramanik, Sourav; Maity, Chandan

    2018-04-01

    An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.

  7. Wake potential in a nonuniform self-gravitating dusty magnetoplasma in the presence of ion streaming

    International Nuclear Information System (INIS)

    Salimullah, M.; Ehsan, Z.; Zubia, K.; Shah, H. A.; Murtaza, G.

    2007-01-01

    A detailed investigation of the electrostatic asymmetric shielding potential and consequent generation of the dynamical oscillatory wake potential has been examined analytically in an inhomogeneous self-gravitating dusty magnetoplasma in the presence of uniform ion streaming. It is found that the wake potential depends significantly on the test particle speed, ambient magnetic field, ion streaming velocity, and the plasma inhomogeneity. The periodic oscillatory potential might lead to an alternative approach to the Jeans instability for the formation of dust agglomeration leading to gravitational collapse of the self-gravitating systems

  8. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Smith, M. A.; Goodrich, J.; Mohideen, U.; Rahman, H. U.; Rosenberg, M.; Mendis, D. A.

    1998-01-01

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal

  9. Unsteady hydromagnetic flow of dusty fluid and heat transfer over a vertical stretching sheet with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)

    2015-10-22

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  10. Instability of dust ion-acoustic waves in a dusty plasma containing elongated and rotating charged dust grains

    International Nuclear Information System (INIS)

    Shukla, P.K.; Tskhakaya, D.D.

    2001-01-01

    The dispersion properties of the dust ion-acoustic waves (DIAWs) in an unmagnetized dusty plasma is examined when the plasma constituents are electrons, ions, and charged dust grains which are elongated and rotating. Since the dipole moment of elongated and rotating dust grains is nonzero, significant modifications of the DIAW spectrum emerge. It is found that the DIAWs are subjected to an instability when the DIAW frequency approximately equals the angular rotation frequency of the elongated dust grains. The relevance of our investigation to enhanced fluctuations in space and laboratory dusty plasmas is pointed out

  11. Method to prevent ejecta from damaging the Compact Torus Accelerator driver of an inertial fusion energy power plant

    International Nuclear Information System (INIS)

    Mattingly, S.E.K.; Moir, R.W.

    1992-01-01

    Concern has been expressed about the conceptual design of fusion reactors using a Compact Torus Accelerator (CTA). A CTA accelerates a plasma torus toward a fusion target. When the torus nears the target, it is compressed and focused down to a small volume, creating a very high energy density and initiating a fusion micro explosion. The focusing cone is destroyed with each shot due to the stress from the passage of the torus as well as from the force of the explosion (1 800 MJ of yield, ∼0.5 Ton TNT equivalent). The focusing cone could be made of solidified Li 2 BeF 4 ; the same material used in liquid state to protect the reaction chamber from the micro explosion and to transport heat away to a power plant. The problem with this design is that when the focusing cone is shattered, the resulting small pieces of solid and liquid debris (ejecta) might be carded along by the expanding vapor of the explosion and might enter the CTA itself, causing damage and shortening the life of the CTA. The proposed solution for this possible problem is to bend the focusing cone so that the ejecta no longer have a clear path to the CTA. Calculations show that the plasma torus may be sent through a radius of curvature of less than 0.5 m just after the focusing cone, without significantly disturbing the plasma

  12. Dynamics of magnetic fields in Maxwell, Yang-Mills and Chern-Simons theories on the torus

    International Nuclear Information System (INIS)

    Burgess, M.; McLachlan, A.; Toms, D.J.

    1992-01-01

    The problem of uniform magnetic fields passing perpendicularly through a 2-torus, Abelian and Non-Abelian, is considered. Focus is on dynamical effects of non-integrable phases on the torus at non zero B and from magnetic fields themselves in the vacuum. The spectrum is computed and is shown to be always independent of the non-integrable phases on the torus. It is concluded that a Chern-Simons term will always be induced by radiative corrections to fermions on the torus when B ≠ 0. The special case of an electromagnetically uncharged anyon gas in noted and shown to be a system whose spectrum can depend on the non-integrable phases in the two torus directions, subject to a consistency requirement. In three and four dimensions, dynamical symmetry breaking of non-Abelian fields and associated condensate formation is possible by radiative corrections. The classification on non-Abelian magnetic fields in terms of ''flux integers'' is discussed, and a method for obtaining such integers for an arbitrary gauge algebra is presented. This provides a rigorous generalisation of Hooft's su (2) classification. 72 refs., 5 figs

  13. Summary of calculations of dynamic response characteristics and design stress of the 1/5 scale PSE torus

    International Nuclear Information System (INIS)

    Arthur, D.

    1977-01-01

    The Lawrence Livermore Laboratory is currently involved in a 1/5 scale testing program on the Mark I BWR pressure suppression system. A key element of the test setup is a pressure vessel that is a 90 0 sector of a torus. Proper performance of the 90 0 torus depends on its structural integrity and structural dynamic characteristics. It must sustain the internal pressurization of the planned tests, and its dynamic response to the transient test loads should be minimal. If the structural vibrations are too great, interpretation of important load cell and pressure transducer data will be difficult. The purpose of the report is to bring together under one cover calculations pertaining to the structural dynamic characteristics and structural integrity of 90 0 torus. The report is divided into the following sections: (1) system description in which the torus and associated hardware are briefly described; (2) structural dynamics in which calculations of natural frequency and dynamic response are presented; and (3) structural integrity in which stress calculations for design purposes are presented; and an appendix which contains an LLL internal report comparing the expected load cell response for a three and four-point supported torus

  14. Initial Results from the Lost Alpha Diagnostics on Joint European Torus

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Doug; Cecil, Ed; Ellis, Bob; Fullard, Keith; Hill, Ken; Horton, Alan; Kiptily, Vasily; Pedrick, Les; Reich, Matthias

    2007-07-25

    Two devices have been installed in the Joint European Torus (JET) vacuum vessel near the plasma boundary to investigate the loss of energetic ions and fusion products in general and alpha particles in particular during the upcoming JET experiments. These devices are (i) a set of multichannel thin foil Faraday collectors, and (ii) a well collimated scintillator which is optically connected to a charge-coupled device. Initial results, including the radial energy and poloidal dependence of lost ions from hydrogen and deuterium plasmas during the 2005–06 JET restart campaign, will be presented.

  15. Topological Invariants and Ground-State Wave functions of Topological Insulators on a Torus

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    2014-01-01

    Full Text Available We define topological invariants in terms of the ground-state wave functions on a torus. This approach leads to precisely defined formulas for the Hall conductance in four dimensions and the topological magnetoelectric θ term in three dimensions, and their generalizations in higher dimensions. They are valid in the presence of arbitrary many-body interactions and disorder. These topological invariants systematically generalize the two-dimensional Niu-Thouless-Wu formula and will be useful in numerical calculations of disordered topological insulators and strongly correlated topological insulators, especially fractional topological insulators.

  16. On the geometry of certain irreducible non-torus plane sextics

    DEFF Research Database (Denmark)

    Eyral, Christophe; Oka, Mutsuo

    2009-01-01

    An irreducible non-torus plane sextic with simple singularities is said to be special if its fundamental group factors to a dihedral group. There exist (exactly) ten configurations of simple singularities that are realizable by such curves. Among them, six are realizable by non-special sextics...... as well. We conjecture that for each of these six configurations there always exists a non-special curve whose fundamental group is abelian, and we prove this conjecture for three configurations (another one has already been treated in one of our previous papers). As a corollary, we obtain new explicit...

  17. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    Science.gov (United States)

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  18. Partition function of a chiral boson on a 2-torus from the Floreanini–Jackiw Lagrangian

    International Nuclear Information System (INIS)

    Chen, Wei-Ming; Ho, Pei-Ming; Kao, Hsien-chung; Khoo, Fech Scen; Matsuo, Yutaka

    2014-01-01

    We revisit the problem of quantizing a chiral boson on a torus. The conventional approach is to extract the partition function of a chiral boson from the path integral of a non-chiral boson. Instead we compute it directly from the chiral boson Lagrangian of Floreanini and Jackiw modified by topological terms involving an auxiliary field. A careful analysis of the gauge-fixing condition for the extra gauge symmetry reproduces the correct results for the free chiral boson, and has the advantage of being applicable to a wider class of interacting chiral boson theories

  19. Initial Results from the Lost Alpha Diagnostics on Joint European Torus

    International Nuclear Information System (INIS)

    Darrow, Doug; Baeumel, Stefan; Cecil, Ed; Ellis, Bob; Fullard, Keith; Hill, Ken; Horton, Alan; Kiptily, Vasily; Pedrick, Les; Reich, Matthias; Werner, Andreas

    2007-01-01

    Two devices have been installed in the Joint European Torus (JET) vacuum vessel near the plasma boundary to investigate the loss of energetic ions and fusion products in general and alpha particles in particular during the upcoming JET experiments. These devices are (i) a set of multichannel thin foil Faraday collectors, and (ii) a well collimated scintillator which is optically connected to a charge-coupled device. Initial results, including the radial energy and poloidal dependence of lost ions from hydrogen and deuterium plasmas during the 2005-06 JET restart campaign, will be presented.

  20. Suppression of tilting instability of a compact torus by energetic particle beams

    International Nuclear Information System (INIS)

    Nomura, Yasuyuki.

    1984-11-01

    It is shown that the tilting instability of a compact torus can be suppressed by toroidally circulating energetic particle beams. The stabilizing mechanism is based on the properties of the forced oscillation in the motion of beam particles in a plasma ring. The required beam current for the stabilization is estimated to be sufficiently small compared to the plasma current in the case that the angular velocity of beam particles is close to the betatron frequency. This stabilizing method is applied to a field reversed configuration. Effects of the plasma surface current and beam divergences are also examined. (author)