WorldWideScience

Sample records for dusty disk orbiting

  1. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  2. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  3. STELLAR MEMBERSHIP AND DUSTY DEBRIS DISKS IN THE α PERSEI CLUSTER

    International Nuclear Information System (INIS)

    Zuckerman, B.; Melis, Carl; Rhee, Joseph H.; Schneider, Adam; Song, Inseok

    2012-01-01

    Because of its proximity to the Galactic plane, reliable identification of members of the α Persei cluster is often problematic. Based primarily on membership evaluations contained in six published papers, we constructed a mostly complete list of high-fidelity members of spectral type G and earlier that lie within 3 arc degrees of the cluster center. α Persei was the one nearby, rich, young open cluster not surveyed with the Spitzer Space Telescope. We examined the first and final data releases of the Wide-field Infrared Survey Explorer and found 11, or perhaps 12, α Per cluster members that have excess mid-infrared emission above the stellar photosphere attributable to an orbiting dusty debris disk. The most unusual of these is V488 Per, a K-type star with an excess IR luminosity 16% (or more) of the stellar luminosity; this is a larger excess fraction than that of any other known dusty main-sequence star. Much of the dust that orbits V488 Per is at a temperature of ∼800 K; if these grains radiate like blackbodies, then they lie only ∼0.06 AU from the star. The dust is probably the aftermath of a collision of two planetary embryos or planets with small semimajor axes; such orbital radii are similar to those of many of the transiting planets discovered by the Kepler satellite.

  4. FAST MODES AND DUSTY HORSESHOES IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Tushar; Chiang, Eugene [Department of Earth and Planetary Science, 307 McCone Hall, University of California, Berkeley, CA 94720-4767 (United States)

    2015-01-01

    The brightest transitional protoplanetary disks are often azimuthally asymmetric: their millimeter-wave thermal emission peaks strongly on one side. Dust overdensities can exceed ∼100:1, while gas densities vary by factors less than a few. We propose that these remarkable ALMA observations—which may bear on how planetesimals form—reflect a gravitational global mode in the gas disk. The mode is (1) fast—its pattern speed equals the disk's mean Keplerian frequency; (2) of azimuthal wavenumber m = 1, displacing the host star from the barycenter; and (3) Toomre-stable. We solve for gas streamlines including the indirect stellar potential in the frame rotating with the pattern speed, under the drastic simplification that gas does not feel its own gravity. Near corotation, the gas disk takes the form of a horseshoe-shaped annulus. Dust particles with aerodynamic stopping times much shorter or much longer than the orbital period are dragged by gas toward the horseshoe center. For intermediate stopping times, dust converges toward a ∼45° wide arc on the corotation circle. Particles that do not reach their final accumulation points within disk lifetimes, either because of gas turbulence or long particle drift times, conform to horseshoe-shaped gas streamlines. Our mode is not self-consistent because we neglect gas self-gravity; still, we expect that trends between accumulation location and particle size, similar to those we have found, are generically predicted by fast modes and are potentially observable. Unlike vortices, global modes are not restricted in radial width to the pressure scale height; their large radial and azimuthal extents may better match observations.

  5. Occurrence of giant planets around stars with dusty debris disks

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta; Hinkley, Sasha; Bowler, Brendan; Stapelfeldt, Karl; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa; serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy; Wahhaj, Zahed

    2018-01-01

    Debris disks may be the signposts of recent planet formation. The dust, which is generated in collisional cascades of asteroids and comets, is enhanced by the gravitational stirring of gas giant planets. Thus bright debris disk systems are natural targets for imaging searches for planets, as it indicates that the host star likely possesses some kind of planetary system. In this work, we describe a joint high contrast imaging survey for planetary mass companions at Keck and VLT of the last significant sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of Spitzer-selected targets. We combine these observations with from three published surveys, to put constraints on the frequency of planets around debris disk stars in the largest sample to date. We also obtained published data on stars that do not show infrared excesses for a control sample. We assume a double power law distribution of the form f(m,a) = Cm^alpha a^beta for this population of companions. We find that the frequency of giant planets with masses 5-20 MJup and separations 10-1000 au around stars with debris disks is 6.3% (68% confidence interval 3.7-9.8%), compared to 0.7% (68% confidence interval 0.2-1.8%) for the control sample of stars without disks. For the first time, we show that the occurrence of young giant planets around stars with debris disks is higher than those without debris disks at the 88% confidence level, tentatively suggesting that these distributions are distinct.

  6. The Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks

    Science.gov (United States)

    Zuckerman, Ben

    2018-01-01

    The Argus Association (AA) defined by Torres et al. (2008) is distinguished from other nearby young moving groups by virtue of its unusual Galactic U-velocity. As defined by Torres et al, their initial AA consisted of 35 members of the IC 2391 open cluster (~135 pc from Earth) and 29 “field members”, 15 of which are within 100 pc of Earth. The spectral types range from F through K with the exception of two M-type members of IC 2391. Zuckerman et al. (2011 & 2012) proposed 13 additional field members – 12 A-type and one F-type -- all of which lie within 80 pc of Earth. Additional AA members have been proposed, typically a few at a time, by other researchers. Deduced ages of the AA (via various techniques) lie, typically, between 40 and 60 Myr. Bell et al (2015) consider the membership and age of a subset of proposed AA stars via color-magnitude diagrams combined with a Bayesian analysis (following Malo et al 2013 & 2014). For the sample of AA stars that they considered, the group age, membership status of individual stars, and even the reality of a coeval moving group were in some doubt. The purpose of the present communication is to consider all proposed AA members – including the frequency of dusty debris disks -- in an attempt to bring some clarity to what is going on.

  7. Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuri I.; Gressel, Oliver [Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø (Denmark); Kobayashi, Hiroshi [Department of Physics, Nagoya University, Furo-cho, Showa-ku, Nagoya, Aichi, 464-8602 (Japan); Takahashi, Sanemichi Z., E-mail: yuri.fujii@nbi.ku.dk [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, 980-8578 (Japan)

    2017-04-01

    We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find, in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.

  8. ORBITAL MIGRATION OF PROTOPLANETS IN A MARGINALLY GRAVITATIONALLY UNSTABLE DISK

    International Nuclear Information System (INIS)

    Boss, Alan P.

    2013-01-01

    Core accretion and disk instability require giant protoplanets to form in the presence of disk gas. Protoplanet migration models generally assume disk masses low enough that the disk's self-gravity can be neglected. However, disk instability requires a disk massive enough to be marginally gravitationally unstable (MGU). Even for core accretion, an FU Orionis outburst may require a brief MGU disk phase. We present a new set of three-dimensional, gravitational radiation hydrodynamics models of MGU disks with multiple protoplanets, which interact gravitationally with the disk and with each other, including disk gas mass accretion. Initial protoplanet masses are 0.01 to 10 M ⊕ for core accretion models, and 0.1 to 3 M Jup for Nice scenario models, starting on circular orbits with radii of 6, 8, 10, or 12 AU, inside a 0.091 M ☉ disk extending from 4 to 20 AU around a 1 M ☉ protostar. Evolutions are followed for up to ∼4000 yr and involve phases of relative stability (e ∼ 0.1) interspersed with chaotic phases (e ∼ 0.4) of orbital interchanges. The 0.01 to 10 M ⊕ cores can orbit stably for ∼1000 yr: monotonic inward or outward orbital migration of the type seen in low mass disks does not occur. A system with giant planet masses similar to our solar system (1.0, 0.33, 0.1, 0.1 M Jup ) was stable for over 1000 yr, and a Jupiter-Saturn-like system was stable for over 3800 yr, implying that our giant planets might well survive an MGU disk phase.

  9. ORBITAL MIGRATION OF PROTOPLANETS IN A MARGINALLY GRAVITATIONALLY UNSTABLE DISK

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P., E-mail: boss@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-02-20

    Core accretion and disk instability require giant protoplanets to form in the presence of disk gas. Protoplanet migration models generally assume disk masses low enough that the disk's self-gravity can be neglected. However, disk instability requires a disk massive enough to be marginally gravitationally unstable (MGU). Even for core accretion, an FU Orionis outburst may require a brief MGU disk phase. We present a new set of three-dimensional, gravitational radiation hydrodynamics models of MGU disks with multiple protoplanets, which interact gravitationally with the disk and with each other, including disk gas mass accretion. Initial protoplanet masses are 0.01 to 10 M {sub Circled-Plus} for core accretion models, and 0.1 to 3 M {sub Jup} for Nice scenario models, starting on circular orbits with radii of 6, 8, 10, or 12 AU, inside a 0.091 M {sub Sun} disk extending from 4 to 20 AU around a 1 M {sub Sun} protostar. Evolutions are followed for up to {approx}4000 yr and involve phases of relative stability (e {approx} 0.1) interspersed with chaotic phases (e {approx} 0.4) of orbital interchanges. The 0.01 to 10 M {sub Circled-Plus} cores can orbit stably for {approx}1000 yr: monotonic inward or outward orbital migration of the type seen in low mass disks does not occur. A system with giant planet masses similar to our solar system (1.0, 0.33, 0.1, 0.1 M {sub Jup}) was stable for over 1000 yr, and a Jupiter-Saturn-like system was stable for over 3800 yr, implying that our giant planets might well survive an MGU disk phase.

  10. Herschel/SPIRE observations of the dusty disk of NGC 4244

    NARCIS (Netherlands)

    Holwerda, B. W.; Bianchi, S.; Boker, T.; Radburn-Smith, D.; de Jong, R. S.; Baes, M.; van der Kruit, P. C.; Xilouris, M.; Gordon, K. D.; Dalcanton, J. J.

    We present Herschel/SPIRE images at 250, 350, and 500 mu m of NGC 4244, a typical low-mass, disk-only and edge-on spiral galaxy. The dust disk is clumpy and shows signs of truncation at the break radius of the stellar disk. This disk coincides with the densest part of the Hi disk. We compare the

  11. Physical properties of dusty protoplanetary disks in Lupus: evidence for viscous evolution?

    Science.gov (United States)

    Tazzari, M.; Testi, L.; Natta, A.; Ansdell, M.; Carpenter, J.; Guidi, G.; Hogerheijde, M.; Manara, C. F.; Miotello, A.; van der Marel, N.; van Dishoeck, E. F.; Williams, J. P.

    2017-10-01

    Context. The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. Aims: We aim to analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 μm, aiming to determine physical properties such as the dust surface density, the disk mass and size, and to provide a constraint on the temperature profile. Methods: We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 μm emission by solving the energy balance at each disk radius. Results: For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between 0.1 and 2 M⊙, and we find no trend in the relationship between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga and Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass-size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.

  12. The TWA 3 Young Triple System: Orbits, Disks, Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Kendra [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Prato, L.; Avilez, I.; Wasserman, L. H.; Levine, S. E.; Bosh, A. S. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Ruíz-Rodríguez, D. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, 15236 Penteli (Greece); Guenther, E. W. [Thüringer Landessternwarte Tautenburg, D-07778 Tautenburg (Germany); Neuhäuser, R. [Astrophysikalisches Institut und Universitäts-Sternwarte, FSU Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Morzinski, Katie M.; Close, Laird; Hinz, Phil; Males, Jared R. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Bailey, Vanessa, E-mail: kkellogg@uwo.ca, E-mail: lprato@lowell.edu [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA, 94305 (United States)

    2017-08-01

    We have characterized the spectroscopic orbit of the TWA 3A binary and provide preliminary families of probable solutions for the TWA 3A visual orbit, as well as for the wide TWA 3A–B orbit. TWA 3 is a hierarchical triple located at 34 pc in the ∼10 Myr old TW Hya association. The wide component separation is 1.″55; the close pair was first identified as a possible binary almost 20 years ago. We initially identified the 35-day period orbital solution using high-resolution infrared spectroscopy that angularly resolved the A and B components. We then refined the preliminary orbit by combining the infrared data with a reanalysis of our high-resolution optical spectroscopy. The orbital period from the combined spectroscopic solution is ∼35 days, the eccentricity is ∼0.63, and the mass ratio is ∼0.84; although this high mass ratio would suggest that optical spectroscopy alone should be sufficient to identify the orbital solution, the presence of the tertiary B component likely introduced confusion in the blended optical spectra. Using millimeter imaging from the literature, we also estimate the inclinations of the stellar orbital planes with respect to the TWA 3A circumbinary disk inclination and find that all three planes are likely misaligned by at least ∼30°. The TWA 3A spectroscopic binary components have spectral types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as a triple, is bound, and that its properties were shaped by dynamical interactions between the inclined orbits and disk.

  13. Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST-STIS Multi-roll Coronagraphy

    Science.gov (United States)

    Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall; Weinberger, Alycia; Wisniewski, John P.; hide

    2014-01-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST

  14. Probing for exoplanets hiding in dusty debris disks: Disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Glenn; Hinz, Phillip M. [Steward Observatory and the Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hines, Dean C.; Debes, John H.; Perrin, Marshall D.; Moro-Martin, Amaya [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Stark, Christopher C.; Kuchner, Marc J.; Woodgate, Bruce E. [NASA/Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Carson, Joe [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Weinberger, Alycia J.; Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Branch Road, NW, Washington, DC 20015 (United States); Wisniewski, John P. [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Silverstone, Murray D. [Department of Physics and Astronomy, University of Alabama, P.O. Box 870324, Tuscaloosa, AL 35487-0324 (United States); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Serabyn, Eugene [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tamura, Motohide, E-mail: gschneider@as.arizona.edu [The University of Tokyo, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-10-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved

  15. THE GRAVITATIONAL INTERACTION BETWEEN PLANETS ON INCLINED ORBITS AND PROTOPLANETARY DISKS AS THE ORIGIN OF PRIMORDIAL SPIN–ORBIT MISALIGNMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Matsakos, Titos; Königl, Arieh [Department of Astronomy and Astrophysics and The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States)

    2017-02-01

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.

  16. A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS

    International Nuclear Information System (INIS)

    Stark, Christopher C.; Kuchner, Marc J.

    2009-01-01

    We present a new 'collisional grooming' algorithm that enables us to model images of debris disks where the collision time is less than the Poynting-Robertson (PR) time for the dominant grain size. Our algorithm uses the output of a collisionless disk simulation to iteratively solve the mass flux equation for the density distribution of a collisional disk containing planets in three dimensions. The algorithm can be run on a single processor in ∼1 hr. Our preliminary models of disks with resonant ring structures caused by terrestrial mass planets show that the collision rate for background particles in a ring structure is enhanced by a factor of a few compared to the rest of the disk, and that dust grains in or near resonance have even higher collision rates. We show how collisions can alter the morphology of a resonant ring structure by reducing the sharpness of a resonant ring's inner edge and by smearing out azimuthal structure. We implement a simple prescription for particle fragmentation and show how PR drag and fragmentation sort particles by size, producing smaller dust grains at smaller circumstellar distances. This mechanism could cause a disk to look different at different wavelengths, and may explain the warm component of dust interior to Fomalhaut's outer dust ring seen in the resolved 24 μm Spitzer image of this system.

  17. Dusty OB Stars in the Small Magellanic Cloud. II. Extragalactic Disks or Examples of the Pleiades Phenomenon?

    Science.gov (United States)

    Adams, Joshua J.; Simon, Joshua D.; Bolatto, Alberto D.; Sloan, G. C.; Sandstrom, Karin M.; Schmiedeke, Anika; van Loon, Jacco Th.; Oliveira, Joana M.; Keller, Luke D.

    2013-07-01

    We use mid-infrared Spitzer spectroscopy and far-infrared Herschel photometry for a sample of 20 main sequence O9-B2 stars in the Small Magellanic Cloud (SMC) with strong 24 μm excesses to investigate the origin of the mid-IR emission. Either debris disks around the stars or illuminated patches of dense interstellar medium (ISM) can cause such mid-IR emission. In a companion paper, Paper I, we use optical spectroscopy to show that it is unlikely for any of these sources to be classical Be stars or Herbig Ae/Be stars. We focus our analysis on debris disks and cirrus hot spots. The local, prototype objects for these models are the debris disk around Vega and the heated dust cloud surrounding the stars in the Pleiades, also known as a cirrus hot spot. These two cases predict different dust masses, radii, origins, and structures, but the cleanest classification tools are lost by the poor physical resolution at the distance of the SMC. We also consider transition disks, which would have observable properties similar to debris disks. We begin classification by measuring angular extent in the highest resolution mid-IR images available. We find 3 out of 20 stars to be significantly extended, establishing them as cirrus hot spots. We then fit the IR spectral energy distributions to determine dust temperatures and masses. Analysis yields minimum grain sizes, thermal equilibrium distances, and the resultant dust mass estimates. We find the dust masses in the SMC stars to be larger than for any known debris disks. The difference in inferred properties is driven by the SMC stars being hotter and more luminous than known debris disk hosts and not in any directly observed dust properties, so this evidence against the debris disk hypothesis is circumstantial. Finally, we created a local comparison sample of bright mid-IR OB stars in the Milky Way (MW) by cross-matching the Wide-field Infrared Survey Explorer (WISE) and Hipparcos catalogs. We find that of the thousands of nearby

  18. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  19. A Disk of Young Stars at the Galactic Center as Determined by Individual Stellar Orbits

    Science.gov (United States)

    Lu, J. R.; Ghez, A. M.; Hornstein, S. D.; Morris, M. R.; Becklin, E. E.; Matthews, K.

    2009-01-01

    We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within 3farcs5 (0.14 pc) of the supermassive black hole at the Galactic center. Our proper motion measurements have uncertainties of only 0.07 mas yr-1 (3 km s-1), which is gsim 7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr-2 (7 km s-1 yr-1). Using these measurements, line-of-sight velocities from the literature, and three-dimensional velocities for additional young stars in the central parsec, we constrain the true orbit of each individual star and directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one of the previously proposed disks of young stars using a method that is capable of detecting disks containing at least seven stars. The detected disk contains 50% of the young stars, is inclined by ~115° from the plane of the sky, and is oriented at a position angle of ~100° east of north. Additionally, the on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as vpropr -2. The disk has an out-of-the-disk velocity dispersion of 28 ± 6 km s-1, which corresponds to a half-opening angle of 7° ± 2°, and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple, thin circular disk.

  20. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  1. Test of the periodic-orbit approximation in n-disk systems

    International Nuclear Information System (INIS)

    Wirzba, A.

    1993-01-01

    The scattering of a point particle in two dimensions from two (or three) equally-sized (and spaced) circular hard disks is one of the simplest classically hyperbolic scattering problems. Because of this simplicity such systems are well suited for the study of the semiclassical periodic-orbit approximation in the cycle expansion of the dynamical zeta function applied to a quantum-mechanical scattering problem. Especially the predictions of the semiclassical cycle expansion for the quantum-mechanical resonances can be tested in these n-disk systems. Whereas for high wave numbers the cycle expansion gives quite accurate results, there are systematic deviations for low wave numbers from the exact quantum-mechanical values. The low-lying quantum-mechanical resonance poles of the 2- and 3-disk problem are constructed and compared to the cycle-expansion results. The characteristic determinant of the scattering matrix is expanded in terms of simple traces which in turn are related to the classical periodic orbits and possible creeping contributions. It will be shown that for large separations of the disks the correct resonance-pole positions can be extracted just from the knowledge of the lowest traces whose semiclassical limit are the fundamental periodic orbits. Creeping-orbit corrections are shown to be small. (orig.)

  2. ''Dusty plasmas''

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bingham, R.; Angelis, U. de

    1989-09-01

    The field of ''dusty plasmas'' promises to be a very rewarding topic of research for the next decade or so, not only from the academic point of view where the emphasis is on developing the theory of the often complex collective and non-linear processes, but also from the point of view of applications in astrophysics, space physics, environmental and energy research. In this ''comment'' we should like to sketch the current development of this fast growing and potentially very important research area. We will discuss the new features of ''dusty'' plasmas in the most general terms and then briefly mention some successful applications and effects which have already been examined. (author)

  3. The analytic theory of fluid disks orbiting the Kerr black hole

    International Nuclear Information System (INIS)

    Kozlowski, M.; Jaroszynski, M.; Abramowicz, M.A.

    1978-01-01

    Abramowicz et al. (1977) have recently shown that a sharp cusp exists on the inner edge of the accretion fisk (with constant angular momentum), orbiting the Kerr black hole. The cusp resembles very much a similar cusp located on the Roche lobe in the close binary case (Lagrange L 1 point) and therefore its existence is very important from the physical point of view. In this paper we will show that the existence of the cusp is a typical phenomenon for any angular momentum distribution. We will also discuss the physical importance of the cusps. It is proved that the inner edge of any stable disk cannot be closer to the black hole than the marginally bound circular orbit, r = rsub(mb). (orig.) [de

  4. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  5. ON THE INTERACTION BETWEEN A PROTOPLANETARY DISK AND A PLANET IN AN ECCENTRIC ORBIT: APPLICATION OF DYNAMICAL FRICTION

    International Nuclear Information System (INIS)

    Muto, Takayuki; Takeuchi, Taku; Ida, Shigeru

    2011-01-01

    We present a new analytic approach to the disk-planet interaction that is especially useful for planets with eccentricity larger than the disk aspect ratio. We make use of the dynamical friction formula to calculate the force exerted on the planet by the disk, and the force is averaged over the period of the planet. The resulting migration and eccentricity damping timescale agree very well with previous works in which the planet eccentricity is moderately larger than the disk aspect ratio. The advantage of this approach is that it is possible to apply this formulation to arbitrary large eccentricity. We have found that the timescale of the orbital evolution depends largely on the adopted disk model in the case of highly eccentric planets. We discuss the possible implication of our results for the theory of planet formation.

  6. On the Diversity in Mass and Orbital Radius of Giant Planets Formed via Disk Instability

    Science.gov (United States)

    Müller, Simon; Helled, Ravit; Mayer, Lucio

    2018-02-01

    We present a semi-analytical population synthesis model of protoplanetary clumps formed by disk instability at radial distances of 80–120 au. Various clump density profiles, initial mass functions, protoplanetary disk models, stellar masses, and gap opening criteria are considered. When we use more realistic gap opening criteria, we find that gaps open only rarely, which strongly affects clump survival rates and their physical properties (mass, radius, and radial distance). The inferred surviving population is then shifted toward less massive clumps at smaller radial distances. We also find that populations of surviving clumps are very sensitive to the model assumptions and used parameters. Depending on the chosen parameters, the protoplanets occupy a mass range between 0.01 and 16 M J and may either orbit close to the central star or as far out as 75 au, with a sweet spot at 10–30 au for the massive ones. However, in all of the cases we consider, we find that massive giant planets at very large radial distances are rare, in qualitative agreement with current direct imaging surveys. We conclude that caution should be taken in deriving population synthesis models as well as when comparing the models’ results with observations.

  7. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  8. THE WELL-ALIGNED ORBIT OF WASP-84b: EVIDENCE FOR DISK MIGRATION OF A HOT JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D. R.; Triaud, A. H. M. J.; Turner, O. D.; Brown, D. J. A.; Clark, B. J. M.; Smalley, B.; Cameron, A. Collier; Doyle, A. P.; Gillon, M.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pollacco, D.; Queloz, D.; Smith, A. M. S., E-mail: d.r.anderson@keele.ac.uk [N. Copernicus Astronomical Centre, Polish Academy of Sciences, Bartycka 18, 00-716, Warsaw (Poland)

    2015-02-10

    We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69M{sub Jup} planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P<10 d) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (T{sub eff} < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.

  9. A Trend Between Cold Debris Disk Temperature and Stellar Type: Implications for the Formation and Evolution of Wide-Orbit Planets

    OpenAIRE

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.; Montiel, Edward

    2013-01-01

    Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both Spitzer IRS and MIPS. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of t...

  10. A TREND BETWEEN COLD DEBRIS DISK TEMPERATURE AND STELLAR TYPE: IMPLICATIONS FOR THE FORMATION AND EVOLUTION OF WIDE-ORBIT PLANETS

    International Nuclear Information System (INIS)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.; Montiel, Edward

    2013-01-01

    Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processes (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion

  11. A DISK AROUND THE PLANETARY-MASS COMPANION GSC 06214-00210 b: CLUES ABOUT THE FORMATION OF GAS GIANTS ON WIDE ORBITS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W.; Ireland, Michael J.

    2011-01-01

    We present Keck OSIRIS 1.1-1.8 μm adaptive optics integral field spectroscopy of the planetary-mass companion to GSC 06214-00210, a member of the ∼5 Myr Upper Scorpius OB association. We infer a spectral type of L0 ± 1, and our spectrum exhibits multiple signs of youth. The most notable feature is exceptionally strong Paβ emission (EW = –11.4 ± 0.3 Å), which signals the presence of a circumplanetary accretion disk. The luminosity of GSC 06214-00210 b combined with its age yields a model-dependent mass of 14 ± 2 M Jup , making it the lowest-mass companion to show evidence of a disk. With a projected separation of 320 AU, the formation of GSC 06214-00210 b and other very low mass companions on similarly wide orbits is unclear. One proposed mechanism is formation at close separations followed by planet-planet scattering to much larger orbits. Since that scenario involves a close encounter with another massive body, which is probably destructive to circumplanetary disks, it is unlikely that GSC 06214-00210 b underwent a scattering event in the past. This implies that planet-planet scattering is not solely responsible for the population of gas giants on wide orbits. More generally, the identification of disks around young planetary companions on wide orbits offers a novel method to constrain the formation pathway of these objects, which is otherwise notoriously difficult to do for individual systems. We also refine the spectral type of the primary from M1 to K7 and detect a mild (2σ) excess at 22 μm using Wide-Field Infrared Survey Explorer photometry.

  12. Chemo-orbital evidence from SDSS/SEGUE G dwarf stars for a mixed origin of the Galactic thick disk

    Directory of Open Access Journals (Sweden)

    van de Ven G.

    2012-02-01

    Full Text Available About 13,000 G dwarf within 7disk. Combining [α/Fe] and [Fe/H] measurements with six-dimensional position-velocity parameters, we find that the sample is composed of two distinct stellar populations. The metal-rich population encompasses the thin disk with α-deficient stars and smoothly extends into a thick disk with α-enhanced stars, consistent with an in-situ formation through radial migration. On the other hand, the metal-poor population with enhanced α-abundance, higher scale height, and disperse kinematical properties, is difficult to explain with radial migration but might have originated from gas-rich mergers. The thick disk of the Milky Way seems to have a mixed origin.

  13. Molecular Gas Clumps from the Destruction of Icy Bodies in the beta Pictoris Debris Disk

    Science.gov (United States)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J. -C.; Casassus, S.; Corder, S.; Greaves, J. S.; DeGregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; hide

    2014-01-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at sub-mm wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 AU from the star, in a plane closely aligned with the orbit of the inner planet, beta Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.

  14. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  15. PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Valerie A.; Kastner, Joel H. [School of Physics and Astronomy and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623-5603 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Dong, Ruobing, E-mail: var5998@rit.edu [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States)

    2015-12-20

    We present Gemini Planet Imager (GPI) adaptive optics near-infrared images of the giant-planet-forming regions of the protoplanetary disk orbiting the nearby (D = 54 pc), pre-main-sequence (classical T Tauri) star TW Hydrae. The GPI images, which were obtained in coronagraphic/polarimetric mode, exploit starlight scattered off small dust grains to elucidate the surface density structure of the TW Hya disk from ∼80 AU to within ∼10 AU of the star at ∼1.5 AU resolution. The GPI polarized intensity images unambiguously confirm the presence of a gap in the radial surface brightness distribution of the inner disk. The gap is centered near ∼23 AU, with a width of ∼5 AU and a depth of ∼50%. In the context of recent simulations of giant-planet formation in gaseous, dusty disks orbiting pre-main-sequence stars, these results indicate that at least one young planet with a mass ∼0.2 M{sub J} could be present in the TW Hya disk at an orbital semimajor axis similar to that of Uranus. If this (proto)planet is actively accreting gas from the disk, it may be readily detectable by GPI or a similarly sensitive, high-resolution infrared imaging system.

  16. Orbital

    OpenAIRE

    Yourshaw, Matthew Stephen

    2017-01-01

    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  17. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit

    Science.gov (United States)

    Burns, A. G.; Eastes, R.

    2017-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  18. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    Science.gov (United States)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  19. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Walsh, Kevin J. [Southwest Research Institute, Boulder, CO (United States); Stark, Christopher [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States)

    2012-03-10

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  20. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    International Nuclear Information System (INIS)

    Debes, John H.; Walsh, Kevin J.; Stark, Christopher

    2012-01-01

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  1. Electrostatic twisted modes in multi-component dusty plasmas

    International Nuclear Information System (INIS)

    Ayub, M. K.; Ali, S.; Ikram, M.

    2016-01-01

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas

  2. Dustiness testing of engineered nanomaterials

    International Nuclear Information System (INIS)

    Ogura, Isamu; Sakurai, Hiromu; Gamo, Masashi

    2009-01-01

    We investigated the dustiness (the propensity of a material to generate airborne dust during its handling) of various nanomaterials, including carbon nanotubes and metal oxides, by the vortex shaker method. The number concentrations and size distributions (∼10->10 000 nm) of aerosol particles released during agitation were measured. It was found that the modal diameter was greater than 100 nm for all tested nanomaterials, and for most of them some sub-100 nm particles were observed. The dustiness differed by two (or three) orders of magnitude among the test nanomaterials.

  3. Herschel detects oxygen in the β Pictoris debris disk

    Science.gov (United States)

    Brandeker, A.; Cataldi, G.; Olofsson, G.; Vandenbussche, B.; Acke, B.; Barlow, M. J.; Blommaert, J. A. D. L.; Cohen, M.; Dent, W. R. F.; Dominik, C.; Di Francesco, J.; Fridlund, M.; Gear, W. K.; Glauser, A. M.; Greaves, J. S.; Harvey, P. M.; Heras, A. M.; Hogerheijde, M. R.; Holland, W. S.; Huygen, R.; Ivison, R. J.; Leeks, S. J.; Lim, T. L.; Liseau, R.; Matthews, B. C.; Pantin, E.; Pilbratt, G. L.; Royer, P.; Sibthorpe, B.; Waelkens, C.; Walker, H. J.

    2016-06-01

    The young star β Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20 × higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent withthat previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Clearing Residual Planetesimals by Sweeping Secular Resonances in Transitional Disks: A Lone-planet Scenario for the Wide Gaps in Debris Disks around Vega and Fomalhaut

    Science.gov (United States)

    Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.; Mao, Shude; Zhang, Xiaojia

    2017-11-01

    Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent “lone-planet” scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. With a series of numerical simulations, we show that the gravitational potential of the natal disk induces the planet to precess. At the locations where its precession frequency matches the precession frequency the planet imposes on the residual planetesimals, their eccentricity is excited by its resonant perturbation. Due to the hydrodynamic drag by the residual disk gas, the planetesimals undergo orbital decay as their excited eccentricities are effectively damped. During the depletion of the disk gas, the planet’s secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring

  5. Dustiness of 14 carbon nanotubes using the vortex shaker method

    Science.gov (United States)

    Dazon, Claire; Witschger, Olivier; Bau, Sébastien; Payet, Raphaël; Beugnon, Karine; Petit, Geneviève; Garin, Thibaut; Martinon, Laurent

    2017-06-01

    The handling of carbon nanotube (CNT) powders is a plausible scenario during the course of the CNT life-cycle. However, related exposure data remain limited. In this context, information about the dustiness of CNT is therefore of great interest, for example for control banding or exposure modelling. Here, we investigate the dustiness of fourteen CNT powders using the Vortex Shaker (VS) method. The central component of the VS method is a stainless steel cylindrical tube, continuously shaken in a circular orbital motion, in which a small volume (0.5 cm3) of the powder to be tested is placed. All samples were obtained through the NANoREG Nanomaterials Information and Web-Order system. The test procedure that we have developed is based on four principal components: (i) a respirable cyclone for gravimetric sampling, (ii) a CPC as a reference instrument for number concentration measurement, (iii) an MPS for collection of particles for EM observations/analysis, and (iv) an ELPI for size-resolved aerosol measurement. In this paper, the data were evaluated using two parameters: (i) the mass-based dustiness index in the respirable fraction; and (ii) the number-based dustiness index in the respirable fraction. The results indicate that the method leads to relatively accurate mass- and number-based dustiness indices. The indices obtained span wide ranges, of 2 and 3 orders of magnitude variation for mass and number respectively, suggesting a corresponding significant difference in terms of potential exposure. EM observations reveal that airborne CNTs are mostly released as bundles of different shapes ranging from a few tens of nanometers up to tens of micrometers in size.

  6. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  7. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    Science.gov (United States)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  8. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  9. THE MINERALOGY AND STRUCTURE OF THE INNER DEBRIS DISK OF β PICTORIS

    International Nuclear Information System (INIS)

    Li Dan; Telesco, Charles M.; Wright, Christopher M.

    2012-01-01

    We observed the edge-on, planet-bearing disk of β Pictoris using T-ReCS at Gemini to clarify and extend previous observations and conclusions about this unique system. Our spectroscopy and spectral modeling of the 10 μm silicate feature constrain the spatial distributions of three representative dust components (0.1 μm/2.0 μm glassy olivine and crystalline forsterite) across the inner 20 AU of the disk. We confirm that the 2.0 μm glassy olivine is strongly peaked in the disk center and that the 0.1 μm glassy olivine does not show this concentration, but rather is double peaked, with the peaks on either side of the star. However, we do not see the strong difference in brightness between those two peaks reported in a previous study. Although the spatial distribution of the 0.1 μm dust is consistent with the scenario of a dust-replenishing planetesimal belt embedded in the disk, we note an alternative interpretation that can explain the spatial distributions of the 0.1 μm and 2.0 μm grains simultaneously and does not require the planetesimal belt. In addition to the spectroscopy, we also obtained a new 11.7 μm image of the β Pic disk. By comparing this image with that acquired in 2003, we confirm the existence and overall shape of the dusty clump at 52 AU in the SW disk. We speculate that the clump's projected spatial displacement of ∼2.0 AU, a 3.6σ result, between two epochs separated by seven years is due to the Keplerian motion of the clump at an orbital radius of 54.3 +2.0 –1.2 AU.

  10. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  11. Dusty star-forming galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Caitlin M., E-mail: cmcasey.astro@gmail.com [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Narayanan, Desika [Department of Physics and Astronomy, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2014-08-10

    Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest of these galaxies have infrared luminosities in excess of 10{sup 13}L{sub ⊙} with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the Universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wavelengths. The bulk of this infrared extragalactic background light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrared instrumentation in recent years, both space-based and ground-based, has led to the detection of nearly a million DSFGs, yet our understanding of the underlying astrophysics that govern the start and end of the dusty starburst phase is still in nascent stage. This review is aimed at summarizing the current status of DSFG studies, focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies, who were summarized in the last review of this field over a decade ago, Blain et al., 2002), but also the selection and characterization of more recently discovered DSFG populations. We review DSFG population statistics, their physical properties including dust, gas and stellar contents, their environments, and current theoretical models related to the formation and evolution of these galaxies.

  12. Exploring Our Galaxy's Thick Disk

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and

  13. Mineral magnetism of dusty olivine

    DEFF Research Database (Denmark)

    Lappe, Sophie-Charlotte L. L.; Church, Nathan S.; Kasama, Takeshi

    2011-01-01

    The magnetic properties of olivine-hosted Fe-Ni particles have been studied to assess the potential of "dusty olivine" to retain a pre-accretionary remanence in chondritic meteorites. Both body-centered (bcc) and face-centered cubic (fcc) Fe-Ni phases were formed by reduction of a terrestrial...... olivine precursor. The presence of Ni complicates the magnetic properties during heating and cooling due to the fcc-bcc martensitic transition. First-order reversal curve (FORC) diagrams contain a central ridge with a broad coercivity distribution extending to 600 mT, attributed to non-interacting single...... a credible recorder of pre-accretionary magnetic fields. Copyright 2011 by the American Geophysical Union....

  14. Screening length in dusty plasma crystals

    International Nuclear Information System (INIS)

    Nikolaev, V S; Timofeev, A V

    2016-01-01

    Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)

  15. Relativistic, accreting disks

    International Nuclear Information System (INIS)

    Abramowicz, M.A; Jaroszynski, M.; Sikora, M.

    1978-01-01

    An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de

  16. Theory of Space Dusty Plasma

    Science.gov (United States)

    Mendis, A.

    2012-12-01

    Ionized gases, contaminated with fine (nanometer to micrometer-sized) charged dust, loosely referred to a dusty plasmas, occur in a wide variety of cosmic and laboratory environments. In this topical review I will discuss the underlying theory of such plasmas, with emphasis on the space environment. Central to the discussion is the electrostatic charging of the dust grains by the various currents that they experience in the plasma and radiative environment in which they are immersed. This charging could lead to both physical and dynamical consequences for the dust as well as for the plasma. Among the physical effects for the dust are electrostatic disruption and electrostatic levitation from charged surfaces. The dynamics of the charged dust is affected by the Lorentz force they experience, since space plasmas are generally magnetized. The physical effects for plasma result from the fact that the dust can act both as a sink and as a source of electrons in different space environments. The dynamical effects on the plasma arise from the fact that the charged dust can alter the phase velocity of normal wave modes (e.g., the Ion acoustic mode) by changing the charge equilibrium in the plasma. Additionally the charged dust can also participate in the wave dynamics, leading, for example, to the very low frequency, novel, "dust-acoustic" wave that has been observed in the laboratory. Finally the possibility that charged dust in a space plasma, may indirectly influence the propagation of electromagnetic radiation through it, will also be, briefly, discussed.

  17. WISE and the Dusty Universe

    Science.gov (United States)

    Benford, Dominic J.

    2010-01-01

    The Wide-field Infrared Survey is a medium class Explorer mission that was launched onl4Dec 2009. WISE should detect hundreds of millions of stars and galaxies, including millions of ULIRGS and QSOs; hundreds of thousands of asteroids; and hundreds of cold brown dwarfs. The telescope cover was ejected on 29 Dec 2009 and the all-sky survey started on 14 Jan 2010. WISE takes more the 7000 framesets per day, with each frameset covering 0.6 square degrees in four bands centered at 3.4, 4.6, 12 and 22 microns. WISE is well-suited to the discovery of brown dwarfs, ultraluminous infrared galaxies, and near-Earth objects. With an angular resolution of 6 arcsecouds at 12 microns, a 5(sigma) point-source sensitivity of around 1 mJy at 12 microns and 6 mJy at 22 microns, and coverage of over 99% of the sky, WISE also provides a powerful database for the study of the dusty ISM in our own galaxy. A preliminary release of WISE data will be made available to the community 6 months after the end of the cryogenic survey, or about May 2011. The final data release will be 11 months later, about April 2012.

  18. COMPLEX VARIABILITY OF THE Hα EMISSION LINE PROFILE OF THE T TAURI BINARY SYSTEM KH 15D: THE INFLUENCE OF ORBITAL PHASE, OCCULTATION BY THE CIRCUMBINARY DISK, AND ACCRETION PHENOMENA

    International Nuclear Information System (INIS)

    Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard; Herbst, William; Winn, Joshua N.

    2012-01-01

    We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e ∼ 0.6, M A = 0.6 M ☉ , M B = 0.7 M ☉ ). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingress and egress events. The Hα line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the Hα emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Günther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.

  19. An Exploration of Dusty Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    Submillimeter galaxies i.e., galaxies that we detect in the submillimeter wavelength range are mysterious creatures. Its only within the last couple decades that weve had telescope technology capable of observing them, and were only now getting to the point where angular resolution limits allow us to examine them closely. A new study has taken advantage of new capabilities to explore the properties of a sample of 52 of thesegalaxies.Dusty Star FormationSubmillimeter galaxies are generally observed in the early universe. Though theyre faint in other wavebands, theyre extremely luminous in infrared and submillimeter their infrared luminosities are typically trillions of times the Suns luminosity. This is thought to be because these galaxies are very actively forming stars at rates of hundreds of times that of the Milky Way!Example 10 10 true-color images of ten submillimeter galaxies in the authors ALMA-identified sample. [Simpson et al. 2017]Submillimeter galaxies are also extremely dusty, so we dont see their star formation directly in optical wavelengths. Instead, we see the stellar light after its been absorbed and reemitted by interstellar dust lanes were indirectly observing heavily obscured star formation.Why look for submillimeter galaxies? Studying them can help us to learn about galaxy and star formation early in our universes history, and help us to understand how the universe has evolved into what we see locally today.Submillimeter StrugglesDue to angular resolution limitations in the past, we often couldnt pin down the exact locations of submillimeter galaxies, preventing us from examining them properly. But now a team of scientists has used the Atacama Large Millimeter/submillimeter array (ALMA) to precisely locate 52 submillimeter galaxies identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey field.The precise locations made possible by ALMA allowed the team led by James Simpson (University of Edinburgh

  20. Magnetorotational Instability in Eccentric Disks

    Science.gov (United States)

    Chan, Chi-Ho; Krolik, Julian H.; Piran, Tsvi

    2018-03-01

    Eccentric disks arise in such astrophysical contexts as tidal disruption events, but it is unknown whether the magnetorotational instability (MRI), which powers accretion in circular disks, operates in eccentric disks as well. We examine the linear evolution of unstratified, incompressible MRI in an eccentric disk orbiting a point mass. We consider vertical modes of wavenumber k on a background flow with uniform eccentricity e and vertical Alfvén speed {v}{{A}} along an orbit with mean motion n. We find two mode families, one with dominant magnetic components, the other with dominant velocity components. The former is unstable at {(1-e)}3 {f}2≲ 3, where f\\equiv {{kv}}{{A}}/n, and the latter at e ≳ 0.8. For f 2 ≲ 3, MRI behaves much like in circular disks, but the growth per orbit declines slowly with increasing e; for f 2 ≳ 3, modes grow by parametric amplification, which is resonant for 0 energy transport happen chiefly near pericenter, where orbital shear dominates magnetic tension.

  1. Herniated Disk

    Science.gov (United States)

    ... It is often caused by natural aging and deterioration. To keep your disks and back in good ... Injury Prevention Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and ...

  2. Size selective dustiness and exposure; simulated workplace comparisons

    NARCIS (Netherlands)

    Brouwer, D.H.; Links, I.H.M.; Vreede, S.A.F. de; Christopher, Y.

    2006-01-01

    A simulated workplace study was conducted to investigate the relation between inhalation exposure and dustiness determined with a rotating drum dustiness tester. Three powders were used in the study, i.e. magnesium stearate, representing a very dusty powder, and aluminium oxide and calcium

  3. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  4. HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Vanessa; Reiter, Megan; Morzinski, Katie; Males, Jared; Su, Kate Y. L.; Hinz, Philip M.; Stark, Daniel; Close, Laird M.; Follette, Katherine B.; Rodigas, Timothy [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Meshkat, Tiffany; Kenworthy, Matthew [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Mamajek, Eric [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Briguglio, Runa; Puglisi, Alfio; Xompero, Marco [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Weinberger, Alycia J., E-mail: vbailey@as.arizona.edu [Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road NW, Washington, DC 20015 (United States)

    2014-01-01

    We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: J, K{sub S} , and L', and lies at a projected separation of 7.''1 (650 AU). It is confirmed to be comoving with its 13 ± 2 Myr F5 host using Hubble Space Telescope Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict that the companion's luminosity corresponds to a mass of 11 ± 2 M {sub Jup}, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette J/H/K spectrum as L2.5 ± 1; the triangular H-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric (e > 0.65) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations >35 AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at <1%, is unusually small.

  5. ICPP: Introduction to Dusty Plasma Physics

    Science.gov (United States)

    Kant Shukla, Padma

    2000-10-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some

  6. A survey of dusty plasma physics

    Science.gov (United States)

    Shukla, P. K.

    2001-05-01

    Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as

  7. Protoplanetary disks and exoplanets in scattered light

    NARCIS (Netherlands)

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  8. Spectral energy distributions of T Tauri stars - disk flaring and limits on accretion

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution. 85 references

  9. Breathing-mode resonance of a complex plasma disk

    International Nuclear Information System (INIS)

    Sheridan, T.E.; Buckey, C.R.; Cox, D.J.; Merrill, R.J.; Theisen, W.L.

    2004-01-01

    We have experimentally characterized the breathing mode oscillation of a strongly-coupled, dusty plasma disk. Steady-state oscillations are excited by sinusoidally modulating the plasma density, creating a single-frequency, in-plane driving force. Resonance curves agree well with damped harmonic oscillator theory. A response at the second harmonic is observed and found to increase with the square of the driving force, indicating a quadratic nonlinearity

  10. The complexity of parsec-scaled dusty tori in AGN

    Science.gov (United States)

    Tristram, K. R. W.; Schartmann, M.; Burtscher, L.; Meisenheimer, K.; Jaffe, W.; Kishimoto, M.; Hönig, S. F.; Weigelt, G.

    2012-07-01

    Warm gas and dust surround the innermost regions of active galactic nuclei (AGN). They provide the material for accretion onto the super-massive black hole and they are held responsible for the orientation-dependent obscuration of the central engine. The AGN-heated dust distributions turn out to be very compact with sizes on scales of about a parsec in the mid-infrared. Only infrared interferometry currently provides the necessary angular resolution to directly study the physical properties of this dust. Size estimates for the dust distributions derived from interferometric observations can be used to construct a size-luminosity relation for the dust distributions. The large scatter about this relation suggests significant differences between the dust tori in the individual galaxies, even for nuclei of the same class of objects and with similar luminosities. This questions the simple picture of the same dusty doughnut in all AGN. The Circinus galaxy is the closest Seyfert 2 galaxy. Because its mid-infrared emission is well resolved interferometrically, it is a prime target for detailed studies of its nuclear dust distribution. An extensive new interferometric data set was obtained for this galaxy. It shows that the dust emission comes from a very dense, disk-like structure which is surrounded by a geometrically thick, similarly warm dust distribution as well as significant amounts of warm dust within the ionisation cone.

  11. The magnetized dusty plasma experiment (MDPX)

    Science.gov (United States)

    Thomas, E.; Konopka, U.; Artis, D.; Lynch, B.; Leblanc, S.; Adams, S.; Merlino, R. L.; Rosenberg, M.

    2015-04-01

    The magnetized dusty plasma experiment (MDPX) is a newly commissioned plasma device that started operations in late spring, 2014. The research activities of this device are focused on the study of the physics, highly magnetized plasmas, and magnetized dusty plasmas. The design of the MDPX device is centered on two main components: an open bore, superconducting magnet that is designed to produce, in a steady state, both uniform magnetic fields up to 4 Tesla and non-uniform magnetic fields with gradients of 1-2 T m-1 and a flexible, removable, octagonal vacuum chamber that provides substantial probe and optical access to the plasma. This paper will provide a review of the design criteria for the MDPX device, a description of the research objectives, and brief discussion of the research opportunities offered by this multi-institution, multi-user project.

  12. FROM DUSTY FILAMENTS TO MASSIVE STARS: THE CASE OF NGC 7538 S

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo-Romero, Raul; Zapata, Luis A.; Vazquez-Semadeni, Enrique [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58090 (Mexico); Takahashi, Satoko [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Palau, Aina [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, E-08193 Bellaterra (Spain); Schilke, Peter [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Strasse 77, D-50937 Koeln (Germany)

    2012-09-20

    We report on high-sensitivity and high angular resolution archival Submillimeter Array observations of the large ({approx}15,000 AU) putative circumstellar disk associated with the O-type protostar NGC 7538 S. Observations of the continuum resolve this putative circumstellar disk into five compact sources, with sizes {approx}3000 AU and masses {approx}10 M{sub Sun }. This confirms the results of recent millimeter observations made with CARMA/BIMA toward this object. However, we find that most of these compact sources eject collimated bipolar outflows, revealed by our silicon monoxide (SiO J = 5-4) observations, and confirm that these sources have a (proto)stellar nature. All outflows are perpendicular to the large and rotating dusty structure. We propose therefore that, rather than being a single massive circumstellar disk, NGC 7538 S could instead be a large and massive contracting or rotating filament that is fragmenting at scales of 0.1-0.01 pc to form several B-type stars, via the standard process involving outflows and disks. As in recent high spatial resolution studies of dusty filaments, our observations also suggest that thermal pressure does not seem to be sufficient to support the filament, so that either additional support needs to be invoked or else the filament must be in the process of collapsing. A smoothed particle hydrodynamics numerical simulation of the formation of a molecular cloud by converging warm neutral medium flows produces contracting filaments whose dimensions and spacings between the stars forming within them, as well as their column densities, strongly resemble those observed in the filament reported here.

  13. IONIZATION AND DUST CHARGING IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, A. V.; Caselli, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstr. 1, D-85748 Garching (Germany); Akimkin, V. V., E-mail: ivlev@mpe.mpg.de [Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya Street 48, 119017 Moscow (Russian Federation)

    2016-12-10

    Ionization–recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance of the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.

  14. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-08-20

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  15. A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  16. A Primer on Unifying Debris Disk Morphologies

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  17. A dusty ringlet with connections to both Prometheus and the F ring

    Science.gov (United States)

    Hedman, Matthew M.; Carter, Brian

    2016-05-01

    Prometheus is a small satellite of Saturn that orbits between the planet's main rings and the narrow and dusty F ring. Prometheus' complex interactions with the F-ring material have been investigated in some detail using data from the Cassini and Voyager spacecraft, but the moon's influences on other nearby dusty rings are still largely unexplored. Here we examine a very faint ringlet that can be seen in high-phase images of the region around Prometheus' orbit taken by the Cassini spacecraft. These data reveal that the mean radius of this ringlet is close to Prometheus' semi-major axis, suggesting that it consists of material co-orbiting with that moon. However, images taken at different times and longitudes also reveal that the ringlet is eccentric, and its apsidal precession rate is not that expected for material close to Prometheus' orbit (semi-major axis of 139,380 km). Instead, the ringlet appears to be precessing at the same rate as the F-ring (mean radius around 140,200 km). The structure and dynamics of this ringlet therefore probably involve interactions with both Prometheus and the F ring.

  18. MIPS Observations of the Fabulous Four Debris Disks

    Science.gov (United States)

    Su, K. Y. L.; Stansberry, J. A.; Rieke, G. H.; Trilling, D. E.; Stapelfeldt, K. R.; Werner, M. W.; Beichman, C.; Chen, C.; Marengo, M.; Megeath, T.; Backman, D.; van Cleve, J.

    2004-12-01

    The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability with imaging bands at 24, 70, and 160 um. We will present the MIPS images of the Fabulous Four Debris Disks: Beta Pictoris (A5 V), Epsilon Eridani (K2 V), Fomalhaut (A3 V) and Vega (A0 V). These systems discovered by IRAS possess large far-infrared excess emission above photosphere, indicating the existence of a circumstellar dusty disk. Given the main-sequence ages of these stars ( ˜12 Myr for Beta Pictoris, ˜730 Myr for Epsilon Eridani, ˜200 Myr for Fomalhaut, and ˜350 Myr for Vega), the dust in the systems could not be primordial as it would have been removed by radiation pressure and Poynting-Robertson drag on relatively short time scales ( ˜1E4 yr). The second-generation dust in such debris disks is thought to arise primarily from collisions between planetesimals (asteroids) and from cometary activity; however, details about the debris formation and evolution are not well understood. With the sensitivity and angular resolution of the Spitizer Space Telescope, the structures of these nearby debris disks were mapped in great detail to study the disks' spatial structures at mid- to far-infrared wavelengths. These high spatial resolution images provide unprecedented new constraints on the the dust properties in the systems and limits on the origin of dusty debris. Support for this work was provided by NASA through Contract Number 960785 issued by JPL/Caltech.

  19. Dusty Skies over Southern California

    Science.gov (United States)

    2002-01-01

    Southern California's 'Santa Anas' are dry, north-easterly winds having speeds in excess of 25 knots (46 kilometers/hour). Santa Ana conditions are commonly associated with gusts of more than twice this level. These offshore winds usually occur in late fall and winter when a high pressure system forms in the Great Basin between the Sierra Nevadas and the Rocky Mountains. The air warms as it flows downslope from the high plateau, and its speed increases dramatically when forced through narrow canyons and mountain passes. Due to Southern California's uneven terrain, the strength of the winds varies greatly from place to place, and the Santa Anas can be sufficiently strong to pick up surface dust.This view from the Multi-angle Imaging SpectroRadiometer shows the pattern of airborne dust stirred up by Santa Ana winds on February 9, 2002. The image is from MISR's 70-degree forward-viewing camera, and airborne particulates are especially visible due to the camera's oblique viewing angle. Southeast of the Los Angeles Basin, a swirl of dust, probably blown through the Banning Pass, curves toward the ocean near Dana Point. The largest dust cloud occurs near Ensenada, in Baja California, Mexico. Also visible in this image is a blue-gray smoke plume from a small fire located near the southern flank of Palomar Mountain in Southern California.This image was acquired during Terra orbit 11423, and represents an area of about 410 kilometers x 511 kilometers.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  20. CONSTRAINTS ON THE LIFETIMES OF DISKS RESULTING FROM TIDALLY DESTROYED ROCKY PLANETARY BODIES

    International Nuclear Information System (INIS)

    Girven, J.; Gänsicke, B. T.; Marsh, T. R.; Brinkworth, C. S.; Hoard, D. W.; Farihi, J.; Koester, D.

    2012-01-01

    Spitzer IRAC observations of 15 metal-polluted white dwarfs reveal infrared excesses in the spectral energy distributions of HE 0110–5630, GD 61, and HE 1349–2305. All three of these stars have helium-dominated atmospheres, and their infrared emissions are consistent with warm dust produced by the tidal destruction of (minor) planetary bodies. This study brings the number of metal-polluted, helium and hydrogen atmosphere white dwarfs surveyed with IRAC to 53 and 38, respectively. It also nearly doubles the number of metal-polluted helium-rich white dwarfs found to have closely orbiting dust by Spitzer. From the increased statistics for both atmospheric types with circumstellar dust, we derive a typical disk lifetime of log [t disk (yr)] = 5.6 ± 1.1 (ranging from 3 × 10 4 to 5 × 10 6 yr). This assumes a relatively constant rate of accretion over the timescale where dust persists, which is uncertain. We find that the fraction of highly metal-polluted helium-rich white dwarfs that have an infrared excess detected by Spitzer is only 23%, compared to 48% for metal-polluted hydrogen-rich white dwarfs, and we conclude from this difference that the typical lifetime of dusty disks is somewhat shorter than the diffusion timescales of helium-rich white dwarf. We also find evidence for higher time-averaged accretion rates onto helium-rich stars compared to the instantaneous accretion rates onto hydrogen-rich stars; this is an indication that our picture of evolved star-planetary system interactions is incomplete. We discuss some speculative scenarios that can explain the observations.

  1. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  2. Progress in the study of dusty plasmas

    International Nuclear Information System (INIS)

    Mendis, D A

    2002-01-01

    While the study of dust-plasma interactions is by no means new, early progress in the field was slow and uneven. It received a major boost in the early 1980s with the Voyager spacecraft observations of peculiar features in the Saturnian ring system (e.g. the 'radial spokes') which could not be explained by gravitation alone and led to the development of the gravito-electrodynamic theory of dust dynamics. This theory scored another major success more recently in providing the only possible explanation of collimated high-speed beams of fine dust particles observed to sporadically emanate from Jupiter by the Ulysses and Galileo spacecrafts. These dynamical studies were complimented in the early 1990s by the study of collective processes in dusty plasmas. Not only has this led to the discovery of a whole slew of new wave modes and instabilities with wide ranging consequences for the space environment, it also spurred laboratory studies leading to the observation of several of them, including the very low frequency dust acoustic mode, which can be made strikingly visual by laser light scattering off the dust. The most fascinating new development in dusty plasmas, which occurred about 7 years ago, was the crystallization of dusty plasmas in several laboratories. In these so-called 'plasma crystals', micrometre-sized dust, which are either externally introduced or internally grown in the plasma, acquire large negative charges and form Coulomb lattices as was theoretically anticipated for some time. This entirely new material, whose crystalline structure is so strikingly observed by laser light scattering, could be a valuable tool for studying physical processes in condensed matter, such as melting, annealing and lattice defects. Recognizing the crucial role of gravity on the crystal structure, microgravity experiments have already been performed in aircraft, sounding rockets, the Mir Space Station, and most recently in the International Space Station, leading to

  3. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  4. Electron "bite-outs" in Dusty Plasmas

    Science.gov (United States)

    Horanyi, M.; Hsu, S.; Kempf, S.

    2012-12-01

    The study of dusty plasmas is still an emerging new field that bridges a number of traditionally separate subjects, including for example, celestial mechanics, and plasma physics. Dust particles immersed in plasmas and UV radiation collect electrostatic charges and respond to electromagnetic forces in addition to all the other forces acting on uncharged grains. Simultaneously, dust can alter its plasma environment. Dust particles in plasmas are unusual charge carriers. They are many orders of magnitude heavier than any other plasma particles, and they can have many orders of magnitude larger (negative or positive) time-dependent charges. Dust particles can communicate non-electromagnetic effects (gravity, drag, radiation pressure) to the plasma that can represent new free energy sources. Their presence can influence the collective plasma behavior, for example, by altering the traditional plasma wave modes and by triggering new types of waves and instabilities. Dusty plasmas represent the most general form of space, laboratory, and industrial plasmas. Interplanetary space, comets, planetary rings, asteroids, the Moon, aerosols in the atmosphere, are all examples where electrons, ions, and dust particles coexist. This talk will focus on "electron bite-outs", the apparent reduction of the electron density due to dust charging in a plasma comprised of electrons, ions and dust particles We will compare the recent observations of the plasma conditions near Enceladus at Saturn to the decades old measurements in the Earth's mesosphere. We present model calculations of dust charging in a region where plasma is maintained by UV radiation, and present the time-dependent charge distribution of grains as function of dust density and size distribution. We will also make estimates for possible dusty plasma wave activities as function of the magnitude of the electron "bite-outs".

  5. Constraints on Exoplanet System Architectures from Debris Disks

    Science.gov (United States)

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Nesvold, Erika; Kuchner, Marc J.; Manoj, P.; Watson, Dan; Lisse, Carey M.

    2015-12-01

    Debris disks are dusty disks around main sequence stars. Terrestrial planets may be forming in young debris disks with ages structure of debris disks could be an indicator of where planets have formed. We present an analysis of several members of the Scorpius-Centaurus OB Association (Sco Cen) that host both debris disks and planets, including HD 95086, HD 106906, and HD 133803. These objects are about 15-17 Myr old. The thermal emission from the debris disks constrains the locations of the dust. The dust is typically interior to the directly imaged planets in the systems. If additional planets reside in these systems, their locations are constrained by the positions of the dust belts. Many debris disk systems in Sco Cen appear to be two-belt systems. The gap between the belts in each system is a likely location for additional planets. The detection of planets in debris disk systems provide clues about the planet formation process, giving insights into where, when and how planets form.

  6. Nanodiamonds in dusty low-pressure plasmas

    International Nuclear Information System (INIS)

    Vandenbulcke, L.; Gries, T.; Rouzaud, J. N.

    2009-01-01

    Dusty plasmas composed of carbon, hydrogen, and oxygen have been evidenced by optical emission spectroscopy and microwave interferometry, due to the increase in electron energy and the decrease in electron density. These plasmas allow homogeneous synthesis of nanodiamond grains composed of either pure diamond nanocrystals only (2-10 nm in size) or of diamond nanocrystals and some sp 2 -hybridized carbon entities. The control of their size and their microstructure could open ways for a wide range of fields. Their formation from a plasma-activated gaseous phase is also attractive because the formation of nanodiamonds in the universe is still a matter of controversy

  7. Collisional Effect On Magnetosonic Solitons In A Dusty Plasma Slab ...

    African Journals Online (AJOL)

    An analytical investigation of collisional effect on magnetosonic solitons in a dusty plasma slab is presented. We have derived and presented solutions of nonlinear magetohydrodynamic equations for a warm dusty magnetoplasma. It is observed that, our work could be considered a general case for magnetosonic solutions ...

  8. Kadomstev–Petviashvili (KP) equation in warm dusty plasma with ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with ... Mamun et al [7] have also derived rarefactive solitary waves in low-temperature dusty plasmas such as those in laboratory and astrophysical environments. ... plasma environments that clearly indicate the presence of nonthermal electron pop-.

  9. Particle size distribution: A key factor in estimating powder dustiness.

    Science.gov (United States)

    López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo

    2017-12-01

    A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however

  10. RF attenuation as a dusty plasma diagnostic

    Science.gov (United States)

    Doyle, Brandon; Konopka, Uwe; Thomas, Edward

    2017-10-01

    When a dusty plasma is formed by adding dust to a plasma environment, the electron density of the background plasma is depleted as the dust particles acquire their negative charge. The magnitude of the electron depletion depends on the dust particle charge, and thus its properties, as well as the dust number density. A direct measurement of the electron density in a dusty plasma therefore contains information about the charging state of the dust particles. This measurement is difficult to obtain without influencing the system. For example, Langmuir probes influence the system by creating voids, or they become unreliable due to their potential contamination with dust. A less invasive diagnostic tool might be realized using plasma chamber electrodes for a plasma impedance measurement as it depends on the excitation frequency: the spatially averaged electron density is derived from the electron plasma frequency, which is related to the radio frequency attenuation characteristic. We present preliminary experiments using two impedance probe designs: probes immersed in a plasma and electrodes located at the edge of the plasma. We evaluate the potential application of this method for ground-based laboratory experiments and future microgravity experiment facilities aboard the ISS. This work was supported by JPL/NASA (JPL-RSA 1571699) the US Dept. of Energy (DE-SC0016330) and NSF (PHY-1613087).

  11. NUMERICAL SIMULATIONS OF NATURALLY TILTED, RETROGRADELY PRECESSING, NODAL SUPERHUMPING ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  12. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  13. Patterns In Debris Disks: No Planets Required?

    Science.gov (United States)

    Kuchner, Marc

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  14. Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi; Shang, Hsien [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Zhang, Qizhou, E-mail: cflee@asiaa.sinica.edu.tw [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-07-01

    HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanol (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.

  15. A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou

    2018-03-01

    HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.

  16. Reading the Signatures of Extrasolar Planets in Debris Disks

    Science.gov (United States)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  17. Investigations on isotopic composition of dusty mist of southern Tajikistan

    International Nuclear Information System (INIS)

    Abdullaev, S.F.; Abdurasulova, N.A.; Maslov, V.A.; Madvaliev, U.; Juraev, A.A.; Davlatshoev, T. S.U.

    2012-01-01

    Atmosphere physics laboratory under S.U. Umarov Physical and Technical Institute Academy of Sciences of the Republic of Tajikistan have carried out investigations on optical and micro physical properties of arid zone aerosols from 1982. Traces of man-made radioactive isotopes were revealed in sands and dust compositions taken in arid zone of Tajikistan during Soviet-American tests on investigation of arid aerosol. Produced result was the basis for further investigation of element composition for dusty haze distributed from south till central part of the country. We investigated samples of soil collected by natural sedimentation along dusty haze distribution and samples of dusty aerosol (in total 80 samples).

  18. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  19. Ion-acoustic solitons in dusty plasma

    Science.gov (United States)

    Losseva, T. V.; Popel, S. I.; Golub', A. P.

    2012-09-01

    The dynamics of dust ion-acoustic solitons is analyzed in a wide range of dusty plasma parameters. The cases of both a positive dust grain charge arising due to the photoelectric effect caused by intense electromagnetic radiation and a negative grain charge established in the absence of electromagnetic radiation are considered. The ranges of plasma parameters and Mach numbers in which "conservative" (nondissipative) solitons can exist are determined. It is shown that, in dusty plasma with negatively charged dust grains, both compression and rarefaction solitons can propagate, whereas in plasma with positively charged dust grains, only compression solitons can exist. The evolution of soliton-like compression and rarefaction perturbations is studied by numerically solving the hydrodynamic equations for ions and dust grains, as well as the equation for dust grain charging. The main dissipation mechanisms, such as grain charging, ion absorption by dust grains, momentum exchange between ions and dust grains, and ion-neutral collisions are taken into account. It is shown that the amplitudes of soliton-like compression and rarefaction perturbations decrease in the course of their evolution and their velocities (the Mach numbers) decrease monotonically in time. At any instant of time, the shape of an evolving soliton-like perturbation coincides with the shape of a conservative soliton corresponding to the current value of the Mach number. It is shown that, after the interaction between any types of soliton-like perturbations, their velocities and shapes are restored (with a certain phase shift) to those of the corresponding perturbations propagating without interaction; i.e., they are in fact weakly dissipative solitons.

  20. The Birth of Disks Around Protostars

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    The dusty disks around young stars make the news regularly due to their appeal as the birthplace of early exoplanets. But how do disks like these first form and evolve around their newly born protostars? New observations from the Atacama Large Millimeter/submillimeter Array (ALMA) are helping us to better understand this process.Formation from CollapseStars are born from the gravitational collapse of a dense cloud of molecular gas. Long before they start fusing hydrogen at their centers when they are still just hot overdensities in the process of contracting we call them protostars. These low-mass cores are hidden at the hearts of the clouds of molecular gas from which they are born.Aerial image of the Atacama Large Millimeter/submillimeter Array. [EFE/Ariel Marinkovic]During this contraction phase, before a protostar transitions to a pre-main-sequence star (which it does by blowing away its outer gas envelope, halting the stars growth), much of the collapsing material will spin into a centrifugally supported Keplerian disk that surrounds the young protostar. Later, these circumstellar disks will become the birthplace for young planets something for which weve seen observational evidence in recent years.But how do these Keplerian disks which eventually have scales of hundreds of AU first form and grow around protostars? We need observations of these disks in their early stages of formation to understand their birth and evolution a challenging prospect, given the obscuring molecular gas that hides them at these stages. ALMA, however, is up to the task: it can peer through to the center of the gas clouds to see the emission from protostellar cores and their surroundings.ALMA observations of the protostar Lupus 3 MMS. The molecular outflows from the protostar are shown in panel a. Panel b shows the continuum emission, which has a compact component that likely traces a disk surrounding the protostar. [Adapted from Yen et al. 2017]New Disks Revealed?In a recent

  1. Modelling of dusty plasma properties by computer simulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Baimbetov, F B [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Ramazanov, T S [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Dzhumagulova, K N [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Kadyrsizov, E R [Institute for High Energy Densities of RAS, Izhorskaya 13/19, Moscow 125412 (Russian Federation); Petrov, O F [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan); Gavrikov, A V [IETP, Al Farabi Kazakh National University, 96a, Tole bi St, Almaty 050012 (Kazakhstan)

    2006-04-28

    Computer simulation of dusty plasma properties is performed. The radial distribution functions, the diffusion coefficient are calculated on the basis of the Langevin dynamics. A comparison with the experimental data is made.

  2. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    -ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  3. Evidence for accreted component in the Galactic disks

    Science.gov (United States)

    Xing, Q. F.; Zhao, G.

    2018-02-01

    We analyze the distribution of [Mg/Fe] abundance in the Galactic disks with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disk. A few of metal-poor stars in the thick disk exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disk sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disk stars. The orbital parameters and chemical components of low-α stars in the thick disk suggests that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic center, such as infalling dwarf spheroidal galaxies.

  4. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  5. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2010-01-01

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  6. Thermal condensation mode in a dusty plasma

    Indian Academy of Sciences (India)

    associated emission nebula, escapes without being absorbed by the in-falling matter from the accretion disk, the dust grain, depending upon the thermal velocities of the background plasma particles, may pick up between 10 to 100 electronic charges from the ionized gas. [5]. Interstellar dust is heated by the absorption of ...

  7. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  8. Capture of Planetesimals by Gas Drag from Circumplanetary Disks

    Science.gov (United States)

    Fujita, Tetsuya; Ohtsuki, K.; Tanigawa, T.

    2012-10-01

    The regular satellites of the giant planets (e.g. Galilean satellites) have nearly circular and coplanar prograde orbits, and are thought to have formed by accretion of solid particles in the circumplanetary disk. Because a significant amount of gas and solids are likely to be supplied to growing giant planets through the circumplanetary disk, the amount of solid material in circumplanetary disks is important not only for satellite formation but also for the growth and the origin of the heavy element content of giant planets. Solid particles smaller than meter-scale are strongly coupled with the gas flow from the protoplanetary disk and delivered into the disk with the gas. On the other hand, trajectories of large planetesimals are decoupled from the gas. When these large planetesimals approach a growing giant planet, their orbits can be perturbed by gas drag from the circumplanetary disk depending on their size and random velocity, and some of them would be captured by the disk. In the present work, we examine orbital evolution of planetesimals approaching a growing giant planet with a circumplanetary disks by integrating Hill’s equation including the gas drag term. We assume that the gas in the disk rotates in circular orbits around the planet. We found that the condition for capture of planetesimals approaching in the prograde direction (i.e., trajectory in the same direction as the circular motion of the gas) is different from that for those approaching in the retrograde trajectories. We obtained analytic expressions for energy dissipation, critical approach distance from the planet for capture, and capture probability for prograde and retrograde orbits in the coplanar case. We will discuss results of orbital integration for capture rates, including the cases of inclined orbits of planetesimals.

  9. Grain charging in dusty plasmas (Invited)

    Science.gov (United States)

    Horanyi, M.

    2013-12-01

    Dusty plasmas represent the most general form of space, laboratory, and industrial plasmas. Interplanetary space, comets, planetary rings, asteroids, and aerosols in the atmosphere, are all examples where electrons, ions, and dust particles coexist. Dust particles immersed in plasmas and UV radiation collect electrostatic charges and respond to electromagnetic forces in addition to all the other forces acting on uncharged grains. Simultaneously, dust can alter its plasma environment. Dust particles in plasmas are unusual charge carriers. They are many orders of magnitude heavier than any other plasma particles, and they can have many orders of magnitude larger (negative or positive) time-dependent charges. The presence of dust can influence the collective plasma behavior, for example, by altering the traditional plasma wave modes and by triggering new types of waves and instabilities. This talk will focus on the charging processes, including the collection of electrons and ions in multi-species plasmas, and discuss the expected charge distribution on the dust particles as function of their size, and the dust density itself. Examples where these effects could result in novel plasma physics phenomena include Noctilucent clouds, and comets.

  10. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  11. Effects of inclined star-disk encounter on protoplanetary disk size

    Science.gov (United States)

    Bhandare, Asmita; Breslau, Andreas; Pfalzner, Susanne

    2016-10-01

    Most, if not all, young stars are initially surrounded by protoplanetary disks. Owing to the preferential formation of stars in stellar clusters, the protoplanetary disks around these stars may potentially be affected by the cluster environment. Various works have investigated the influence of stellar fly-bys on disks, although many of them consider only the effects due to parabolic, coplanar encounters often for equal-mass stars, which is only a very special case. We perform numerical simulations to study the fate of protoplanetary disks after the impact of parabolic star-disk encounter for the less investigated case of inclined up to coplanar, retrograde encounters, which is a much more common case. Here, we concentrate on the disk size after such encounters because this limits the size of the potentially forming planetary systems. In addition, with the possibilities that ALMA offers, now a direct comparison to observations is possible. Covering a wide range of periastron distances and mass ratios between the mass of the perturber and central star, we find that despite the prograde, coplanar encounters having the strongest effect on the disk size, inclined and even the least destructive retrograde encounters mostly also have a considerable effect, especially for close periastron passages. Interestingly, we find a nearly linear dependence of the disk size on the orbital inclination for the prograde encounters, but not for the retrograde case. We also determine the final orbital parameters of the particles in the disk such as eccentricities, inclinations, and semi-major axes. Using this information the presented study can be used to describe the fate of disks and also that of planetary systems after inclined encounters.

  12. Disk Storage Server

    CERN Multimedia

    This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.

  13. Debris disks in open stellar clusters

    Science.gov (United States)

    Gorlova, Nadiya Igorivna

    Indirect searches for planets (such as radial velocity studies) show that their formation may be quite common. The planets are however too small and faint to be seen against the glare of their host stars; therefore, their direct detection is limited to the nearest systems. Alternatively one can study planets by studying their "by-product"---dust. We see raw material available for planets around young stars, and debris dust around old stars betraying planet-induced activity. Dust has a larger surface area per unit mass compared with a large body; it can be spread over a larger solid angle, intercepting more starlight and emitting much more light via reprocessing. By studying dusty disks we can infer the presence of planets at larger distances. Here we present results of a survey conducted with the Spitzer Space Telescope of debris disks in three open clusters. With ages of 30--100 Myrs, these clusters are old enough that the primordial dust should have accreted into planetesimals, fallen onto the star, or been blown away due to a number of physical processes. The dust we observe must come from collisions or sublimation of larger bodies. The purpose of this study is to investigate the dust evolution in the terrestrial planet zone, analogous to the Zodiacal cloud in our Solar system. We are most sensitive to this zone because the peak of a 125 K black body radiation falls into the primary pass-band of our survey---24mm. We investigate the fraction and amount of the infra-red excesses around intermediate- to solar-mass stars in open stellar clusters with well defined ages. The results are analyzed in the context of disk studies at other wavelengths and ages, providing an understanding of the time-scale for disk dissipation and ultimately planet building and frequency.

  14. RESONANT CLUMPING AND SUBSTRUCTURE IN GALACTIC DISKS

    International Nuclear Information System (INIS)

    Molloy, Matthew; Smith, Martin C.; Shen, Juntai; Evans, N. Wyn

    2015-01-01

    We describe a method to extract resonant orbits from N-body simulations, exploiting the fact that they close in frames rotating with a constant pattern speed. Our method is applied to the N-body simulation of the Milky Way by Shen et al. This simulation hosts a massive bar, which drives strong resonances and persistent angular momentum exchange. Resonant orbits are found throughout the disk, both close to the bar and out to the very edges of the disk. Using Fourier spectrograms, we demonstrate that the bar is driving kinematic substructure even in the very outer parts of the disk. We identify two major orbit families in the outskirts of the disk, one of which makes significant contributions to the kinematic landscape, namely, the m:l = 3:−2 family, resonating with the bar. A mechanism is described that produces bimodal distributions of Galactocentric radial velocities at selected azimuths in the outer disk. It occurs as a result of the temporal coherence of particles on the 3:−2 resonant orbits, which causes them to arrive simultaneously at pericenter or apocenter. This resonant clumping, due to the in-phase motion of the particles through their epicycle, leads to both inward and outward moving groups that belong to the same orbital family and consequently produce bimodal radial velocity distributions. This is a possible explanation of the bimodal velocity distributions observed toward the Galactic anticenter by Liu et al. Another consequence is that transient overdensities appear and dissipate (in a symmetric fashion), resulting in a periodic pulsing of the disk’s surface density

  15. Effect of the raw materials processing on their dustiness

    International Nuclear Information System (INIS)

    López Lilaoa, A.; Juárezb, M.; Sanfelix Fornera, V.; Mallol Gascha, G.; Monfort Gimeno, E.

    2017-01-01

    During the handling and/or processing of powdered materials in the CERAMICS INDUSTRY, one of the most important risks regarding the environmental and occupational health is the potential generation of dust. In this regard, a parameter of great interest is the dustiness of the processed materials; this parameter quantifies the tendency of the powdered materials to generate dust when handled. In this study, to determine the dustiness of a ceramic raw material composition (mixture of the body raw materials), the continuous drop method has been used. This test apparatus was selected because it is considered to better simulate how ceramic materials are handled in the CERAMICS INDUSTRY. The obtained results show that the dustiness of the same ceramic composition exhibits significant changes during the manufacturing process, depending on the presentation form. In this regard, the dry milling sample presents the highest dustiness, which can be significantly reduced (>75%) applying the the moisturization and agglomeration. The obtained results also shown that the best presentation form, regarding the minimization of the dust generation, is achieved in the spray-drying process, where the dustiness is reduced by 95%. [es

  16. Planet formation, orbital evolution and planet-star tidal interaction

    OpenAIRE

    Lin, D. N. C.; Papaloizou, J. C. B.; Bryden, G.; Ida, S.; Terquem, C.

    1998-01-01

    We consider several processes operating during the late stages of planet formation that can affect observed orbital elements. Disk-planet interactions, tidal interactions with the central star, long term orbital instability and the Kozai mechanism are discussed.

  17. Evidence for Companion-induced Secular Changes in the Turbulent Disk of a Be Star in the Large Magellanic Cloud MACHO Database

    Science.gov (United States)

    Struble, Mitchell F.; Galatola, Anthony; Faccioli, Lorenzo; Alcock, Charles; Cruz, Kelle

    2006-04-01

    The light curve of a blue variable in the MACHO LMC database (FTS ID 78.5979.72) appeared nearly unvarying for about 4 yr (the quasi-flat segment) but then rapidly changed to become periodic with noisy minima for the remaining 4 yr (the periodic segment); there are no antecedent indications of a gradual approach to this change. Lomb periodogram analyses indicate the presence of two distinct periods of ~61 and 8 days in both the quasi-flat and the periodic segments. Minima of the periodic segment cover at least 50% of the orbital period and contain spikes of light with the 8 day period; maxima do not show this short period. The system typically shows maxima to be redder than minima. The most recent OGLE-III light curve shows only a 30 day periodicity. The variable's V and R magnitudes and color are those of a Be star, and recent sets of near-infrared spectra 4 days apart, secured during the time of the OGLE-III data, show Hα emission near and at a maximum, confirming its Be star characteristics. The model that best fits the photometric behavior consists of a thin ringlike circumstellar disk of low mass with four obscuring sectors orbiting the central B star in unison at the 61 day period. The central star peers through the three equispaced separations between the four sectors producing the 8 day period. These sectors could be dusty vortices comprised of particles larger than typical interstellar dust grains that dim but selectively scatter the central star's light, while the remainder of the disk contains hydrogen in emission, making maxima appear redder. A companion star of lower mass in an inclined and highly eccentric orbit produces an impulsive perturbation near its periastron to change the disk's orientation, changing eclipses from partial to complete within ~10 days. The most recent change to a 30 day period observed in the OGLE-III data may be caused by obscuring sectors that have coalesced into larger ones and spread out along the disk.

  18. MID-INFRARED SPECTRA OF TRANSITIONAL DISKS IN THE CHAMAELEON I CLOUD

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Sargent, B.; McClure, M. K.; Green, J. D.; Harrold, Samuel T.; Furlan, E.; Najita, J.; Espaillat, C.; Calvet, N.; Luhman, K. L.

    2009-01-01

    We present 5-40 μm Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleon I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.

  19. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    Science.gov (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  20. Dust acoustic solitons in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity

    Energy Technology Data Exchange (ETDEWEB)

    Benzekka, Moufida; Tribeche, Mouloud [Faculty of Sciences-Physics, Theoretical Physics Laboratory (TPL), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2013-08-15

    Dust acoustic (DA) solitons are addressed in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity. A physically meaningful nonthermal nonextensive ion distribution is outlined. The correct non-Maxwellian ion charging current is derived based on the orbit-limited motion theory. Under grain-current balance, the variable dust charge is expressed in terms of the Lambert function. It is found that nonthermality and its nonextensive nature may act concurrently and influence the restoring force and hence the soliton profile. Due to the flexibility provided by the nonextensive parameter, we think that our model should provide a better fit of the space observations.

  1. Jeans instability with exchange effects in quantum dusty magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M., E-mail: jamil.gcu@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rasheed, A. [Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Rozina, Ch. [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Jung, Y.-D. [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Salimullah, M. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2015-08-15

    Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems.

  2. Driven transverse shear waves in a strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2008-01-01

    The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1 c ) where Γ is the Coulomb coupling parameter and Γ c is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results

  3. Are dusty galaxies blue? Insights on UV attenuation from dust-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C. M.; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 (United States); Scoville, N. Z. [California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Sanders, D. B.; Lee, N. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Finkelstein, S. L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Capak, P. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); De Zotti, G. [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Le Floc' h, E. [CEA-Saclay, Orme des Merisiers, bât. 709, F-91191 Gif-sur-Yvette Cedex (France); Ilbert, O. [Aix Marseille Université, CNRS, Laboratoire d' Astrophysique de marseille, UMR 7326, F-13388 Marseille (France); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Takeuchi, T. T. [Nagoya University, Division of Particle and Astrophysical Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2014-12-01

    Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates (SFRs). While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-z, here we investigate attenuation in dusty, star forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15-500 μm in the COSMOS field, in particular making use of Herschel imaging, and a rich data set on local galaxies, we find an empirical variation in the relationship between the rest-frame UV slope (β) and the ratio of infrared-to-ultraviolet emission (L {sub IR}/L {sub UV} ≡ IRX) as a function of infrared luminosity, or total SFR. Both locally and at high-z, galaxies above SFR ≳ 50 M {sub ☉} yr{sup –1} deviate from the nominal IRX-β relation toward bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-z dropout searches of <<1% at z ≲ 4-10, providing independent verification that contamination from very dusty foreground galaxies is low in Lyman-break galaxy searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g., galaxies with >50 M {sub ☉} yr{sup –1}, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at z ∼ 2 exhibit steady-state star formation in secular disks.

  4. MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Xu, X.; Walker, C.; Narayanan, D.

    2010-01-01

    We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast- to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a 'wet merger' rather than a 'dry merger'. We compare the physical properties from our simulated disks (e.g., size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

  5. A DWARF TRANSITIONAL PROTOPLANETARY DISK AROUND XZ TAU B

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Mayra; Macías, Enrique; Anglada, Guillem; Gómez, José F. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Carrasco-González, Carlos; Galván-Madrid, Roberto; Zapata, Luis; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Calvet, Nuria [Department of Astronomy, University of Michigan, 825 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Nagel, Erick [Departamento de Astronomía, Universidad de Guanajuato, Guanajuato, Gto 36240 (Mexico); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC)-Institut de Ciències del Cosmos (UB)/IEEC, Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: osorio@iaa.es [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-01

    We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ∼3.4 au and presents a central cavity of ∼1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months) than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.

  6. A DWARF TRANSITIONAL PROTOPLANETARY DISK AROUND XZ TAU B

    International Nuclear Information System (INIS)

    Osorio, Mayra; Macías, Enrique; Anglada, Guillem; Gómez, José F.; Carrasco-González, Carlos; Galván-Madrid, Roberto; Zapata, Luis; Rodríguez, Luis F.; Calvet, Nuria; Nagel, Erick; Torrelles, José M.; Zhu, Zhaohuan

    2016-01-01

    We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ∼3.4 au and presents a central cavity of ∼1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months) than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.

  7. [OI] in circumstellar disks

    Science.gov (United States)

    Sandell, Goran

    2018-01-01

    In the far-infrared, [OI] 63 micron is the most sensitive probe of gas in protoplanetary disks and has even been detected in several young debris disks.We have now obtained velocity resolved spectra (velocity resolution 0.1 km/s) using the heterodyne receiver GREAT on the Stratospheric Observatory for Infrared Astronomy (SOFIA) of five of the brightest circumstellar disks in the [OI] 63 micron line. Four of these are protoplanetary disks (AB Aur, HL Tau, HD 100546 and HD 97048), while one is a disk around an FS CMa star, HD 50138. Since all the stars are surrounded by disks in Keplerian rotation, our observations allow us to explore where the [OI] emission originates and the physical conditions of the [OI] emitting layers. In this presentation we present preliminary results of our findings.

  8. Jeans instability of an inhomogeneous streaming dusty plasma

    Indian Academy of Sciences (India)

    Abstract. The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear flow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma may grow at the expense of the ...

  9. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    Email: n.cramer@physics.usyd.edu.au. MS received 1 April 2003; accepted 31 July 2003. Abstract. The excitation of low frequency modes of oscillations in a magnetized bi-ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and ...

  10. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    The excitation of low frequency modes of oscillations in a magnetized bi-ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  11. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear ...

  12. Application of tomographic particle image velocimetry to complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Williams, Jeremiah

    2011-01-01

    Over the past decade, particle image velocimetry (PIV) techniques have been used to obtain detailed measurements of the thermal and transport properties of weakly-coupled dusty plasmas. This paper reports on the application of an extension of these techniques, tomographic PIV (tom-PIV), which provides an instantaneous volumetric measurement of the particle transport.

  13. Jeans instability of an inhomogeneous streaming dusty plasma

    Indian Academy of Sciences (India)

    The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear flow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma may grow at the expense of the density ...

  14. Sub-arcsecond dusty environment of Eta Carinae

    NARCIS (Netherlands)

    Chesneau, O.; Min, M.; et al., [Unknown; Comber, F.; Barret, D.; Contini, F.; Meynadier, F.; Pagini, L.

    2004-01-01

    The core of the nebula surrounding Eta Carinae has been observed with the VLT Adaptive Optics system NACO and with the interferometer VLTI/MIDI. Narrow-band images at 3.74 and 4.05 micron reveal the butterfly shaped dusty environment with an unprecedented spatial resolution. A void region around the

  15. The Bohm criterion for a dusty plasma sheath

    Indian Academy of Sciences (India)

    Abstract. The formation of the sheath in a dusty plasma is investigated. The Bohm criterion is derived for two different cases: (a) when electrons are in thermodynamic equilibrium and dust grains provide the immobile, stationary background and (b) when both electrons and ions are in thermodynamic equilibrium and dust ...

  16. Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    Abstract. Considering the Boltzmann response of the ions and electrons in plasma dynamics and inertial dynamics of the dust charged grains in a highly collisional dusty plasma, the nature of the electrostatic potential near a boundary is investigated. Based on the fluid approximation, the forma- tion as well as the ...

  17. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  18. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Cylindrical and dust-acoustic wave modulations in dusty plasmas. PQ is required for wave amplitude (modulational) stability. On the other hand, a positive sign of PQ allows for a random perturbation to grow and may thus lead to wave collapse or blow-up. To investigate the stability profile, we have determined in various ...

  19. Dusty Relic to Shining Treasure: Embedded in a Multicultural Environment

    Science.gov (United States)

    Avery, Beth Fuseler; Batman, Cindy

    2014-01-01

    Far from being dusty old relics who are guardians of the book, embedded librarians need to be proactively leading students through the digital maze of the virtual library. Working with students more than 7,000 miles away changed perceptions of how to teach and learn, and how people interact online. We will share how as embedded librarians we…

  20. Three-dimensional wake potential in a streaming dusty plasma

    Indian Academy of Sciences (India)

    £School of Studies in Physics, Vikram University, Ujjain 456 010, India. MS received 27 December ... to be streaming with uniform velocities u0 and v0, respectively in the presence of a self- consistent constant ... static mode (ω,k) in a uniform dusty plasma whose response function is given by ε(ω,k). (eq. (1)), is given by [17 ...

  1. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  2. Electrostatic sheath at the boundary of a collisional dusty plasma

    Indian Academy of Sciences (India)

    Department of Physics, Cotton College, Guwahati 781 001, India. Abstract. Considering the Boltzmann response of the ions ... respect to normal electronic charge (q ~105. –106e). The mass of the dust grains can have very high value too, up to ... degrees of plasma dynamics. Thus, the theoretical modeling of a dusty plasma ...

  3. Dust acoustic solitary and shock waves in strongly coupled dusty ...

    Indian Academy of Sciences (India)

    mal vortex-like ion distribution and strongly correlated grains in a liquid-like state and discussed about the properties of shock ... shock waves in coupled dusty plasma with Boltzmann distribution of ions. Ghosh et al have studied the effect of ... ues of parameters where the nonlinear term is zero. Also new kind of shock wave.

  4. Complex and Dusty Plasmas From Laboratory to Space

    CERN Document Server

    Fortov, Vladimir E

    2009-01-01

    Dusty or complex plasmas are plasmas containing solid or liquid charged particles referred to as dust. Naturally occurring in space, on earth dust plays a key role in plasma applications associated with etching technologies in microelectronics. International in scope, this volume covers theoretical and application research.

  5. Kadomstev–Petviashvili (KP) equation in warm dusty plasma with ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained ...

  6. Reprocessing in Luminous Disks

    Science.gov (United States)

    Bell, K. Robbins; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, black body spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles considerably shallower than r(sup -3/4). Including the disk as a radiation source (as in the case of actively secreting disks) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance ("decreasing curvature" disks) exhibit nearly power-law temperature profiles which result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally show this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the disk itself. The details of the reprocessing depend sensitively on the assumed disk shape and emitted temperature profile. The thermal instability outburst models of Bell Lin reproduce trends in the observed SEDs of Fuors with T varies as r(sup -3/4) in the inner disk (r approx. less than 0.25au corresponding to lambda approx. less than 10 microns) and T varies as r(sup -1/2) in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1 - 10 au). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass

  7. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    Science.gov (United States)

    Land, V.

    2007-12-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of

  8. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  9. Tidal Disruption Events from Eccentric Nuclear Disks

    Science.gov (United States)

    Wernke, Heather N.; Madigan, Ann-Marie

    2018-04-01

    Stars that get too close to a supermassive black hole are in danger of being tidally disrupted. Stellar two-body relaxation is commonly assumed to be the main driver of these events. Recent work has shown, however, that secular gravitational torques from eccentric nuclear disks can push stars to extreme eccentricities at much higher rates than predicted by two-body relaxation. This work did not include the effects of general relativity, however, which could quench secular torques via rapid apsidal precession. Here we show that, for a star in danger of disruption, general relativity acts on a timescale of less than an orbital period. This short timescale means that general relativity does not have enough time to have a major effect on the orbit. When driven by secular torques from eccentric nuclear disks, tidal disruption event rates are not affected by general relativity.

  10. Dead Zone Accretion Flows in Protostellar Disks

    Science.gov (United States)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  11. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  12. Stripping a debris disk by gravitational interaction with an inner planet

    Science.gov (United States)

    Morey, E.; Lestrade, J.-F.

    2011-12-01

    Debris disks are detected through scattered light or thermal emission of their dust, produced by collisions or erosion of planetesimals. The rate of collisions depends on the number density of planetesimals and on the dynamical excitation and geometry of the disk. We have studied a debris disk gravitationally perturbed by a single inner planet, by using a numerical integration over a large parameter space for both the orbital elements of the planet and the disk geometry. We discuss our findings in the context of observed orbital elements for exoplanets and plausible disk geometries. We have studied whether or not a disk can be significantly disrupted, and stripped of its planetesimals, because of this interaction. We have focused on how the depletion of the disk depends on the masses of the central star and planet. We have found that this dependence is not monotonous, except for low mass stars.

  13. PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL UNSTRATIFIED DISKS

    International Nuclear Information System (INIS)

    Yang, Chao-Chin; Mac Low, Mordecai-Mark; Menou, Kristen

    2009-01-01

    The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations driven by magneto-rotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model shows turbulent accretion characterized by a Shakura-Sunyaev viscosity parameter of α ∼ 10 -2 , with rms density perturbations of ∼10%. We measure the statistical evolution of particle orbital properties in our simulations including mean radius, eccentricity, and velocity dispersion. We confirm random walk growth in time of all three properties, the first time that this has been done with direct orbital integration in a local model. We find that the growth rate increases with the box size used at least up to boxes of eight scale heights in horizontal size. However, even our largest boxes show velocity dispersions sufficiently low that collisional destruction of planetesimals should be unimportant in the inner disk throughout its lifetime. Our direct integrations agree with earlier torque measurements showing that type I migration dominates over diffusive migration by stochastic torques for most objects in the planetary core and terrestrial planet mass range. Diffusive migration remains important for objects in the mass range of kilometer-sized planetesimals. Discrepancies in the derived magnitude of turbulence between local and global simulations of magneto-rotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.

  14. The Dusty Disc of NGC 247

    Science.gov (United States)

    2011-03-01

    This image of NGC 247, taken by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, reveals the fine details of this highly inclined spiral galaxy and its rich backdrop. Astronomers say this highly tilted orientation, when viewed from Earth, explains why the distance to this prominent galaxy was previously overestimated. The spiral galaxy NGC 247 is one of the closest spiral galaxies of the southern sky. In this new view from the Wide Field Imager on the MPG/ESO 2.2-metre telescope in Chile large numbers of the galaxy's component stars are clearly resolved and many glowing pink clouds of hydrogen, marking regions of active star formation, can be made out in the loose and ragged spiral arms. NGC 247 is part of the Sculptor Group, a collection of galaxies associated with the Sculptor Galaxy (NGC 253, also shown in eso0902 and eso1025). This is the nearest group of galaxies to our Local Group, which includes the Milky Way, but putting a precise value on such celestial distances is inherently difficult. To measure the distance from the Earth to a nearby galaxy, astronomers have to rely on a type of variable star called a Cepheid to act as a distance marker. Cepheids are very luminous stars, whose brightness varies at regular intervals. The time taken for the star to brighten and fade can be plugged into a simple mathematical relation that gives its intrinsic brightness. When compared with the measured brightness this gives the distance. However, this method isn't foolproof, as astronomers think this period-luminosity relationship depends on the composition of the Cepheid. Another problem arises from the fact that some of the light from a Cepheid may be absorbed by dust en route to Earth, making it appear fainter, and therefore further away than it really is. This is a particular problem for NGC 247 with its highly inclined orientation, as the line of sight to the Cepheids passes through the galaxy's dusty disc. However, a

  15. Studies of Gas Disks in Binary Systems

    Science.gov (United States)

    de Val-Borro, Miguel

    There are over 300 exoplanets detected through radial velocity surveys and photometric studies showing a tremendous variety of masses, compositions and orbital parameters. Understanding the way these planets formed and evolved within the circumstellar disks they were initially embedded in is a crucial issue. In the first part of this thesis we study the physical interaction between a gaseous protoplanetary disk and an embedded planet using numerical simulations. In order to trust the results from simulations it is important to compare different methods. However, the standard test problems for hydrodynamic codes differ considerably from the case of a protoplanetary disk interacting with an embedded planet. We have carried out a code comparison in which the problem of a massive planet in a protoplanetary disk was studied with various numerical schemes. We compare the surface density, potential vorticity and azimuthally averaged density profiles at several times. There is overall good agreement between our codes for Neptune and Jupiter-sized planets. We performed simulations for each planet in an inviscid disk and including physical viscosity. The surface density profiles agree within about 5% for the grid-based schemes while the particle codes have less resolution in the low density regions and weaker spiral wakes. In Paper II, we study hydrodynamical instabilities in disks with planets. Vortices are generated close to the gap in our numerical models in agreement with the linear modal analysis. The vortices exert strong perturbations on the planet as they move along the gap and can change its migration rate. In addition, disk viscosity can be modified by the presence of vortices. The last part of this thesis studies the mass transfer in symbiotic binaries and close T Tauri binary systems. Our simulations of gravitationally focused wind accretion in binary systems show the formation of stream flows and enhanced accretion rates onto the compact component.

  16. GEMINI PLANET IMAGER OBSERVATIONS OF THE AU MICROSCOPII DEBRIS DISK: ASYMMETRIES WITHIN ONE ARCSECOND

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jason J.; Graham, James R.; De Rosa, Robert J.; Kalas, Paul; Chiang, Eugene; Duchêne, Gaspard [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Pueyo, Laurent; Chen, Christine; Greenbaum, Alexandra Z. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Nielsen, Eric L. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Millar-Blanchaer, Max [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Bulger, Joanna [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Cardwell, Andrew; Goodsell, Stephen J. [Gemini Observatory, Casilla 603, La Serena (Chile); Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Doyon, René [Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Esposito, Thomas M.; Fitzgerald, Michael P. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095 (United States); and others

    2015-10-01

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M{sub Jup} planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.

  17. PROTOPLANETARY DISKS IN THE ORION OMC1 REGION IMAGED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, J. A.; Sheehan, P. D. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bally, J. M. [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, A., E-mail: jeisner@email.arizona.edu [ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany)

    2016-07-20

    We present ALMA observations of the Orion Nebula that cover the OMC1 outflow region. Our focus in this paper is on compact emission from protoplanetary disks. We mosaicked a field containing ∼600 near-IR-identified young stars, around which we can search for sub-millimeter emission tracing dusty disks. Approximately 100 sources are known proplyds identified with the Hubble Space Telescope . We detect continuum emission at 1 mm wavelengths toward ∼20% of the proplyd sample, and ∼8% of the larger sample of near-IR objects. The noise in our maps allows 4 σ detection of objects brighter than ∼1.5 mJy, corresponding to protoplanetary disk masses larger than 1.5 M {sub J} (using standard assumptions about dust opacities and gas-to-dust ratios). None of these disks are detected in contemporaneous CO(2-1) or C{sup 18}O(2-1) observations, suggesting that the gas-to-dust ratios may be substantially smaller than the canonical value of 100. Furthermore, since dust grains may already be sequestered in large bodies in Orion Nebula cluster (ONC) disks, the inferred masses of disk solids may be underestimated. Our results suggest that the distribution of disk masses in this region is compatible with the detection rate of massive planets around M dwarfs, which are the dominant stellar constituent in the ONC.

  18. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  19. Disk Defect Data

    Data.gov (United States)

    National Aeronautics and Space Administration — How Data Was Acquired: The data presented is from a physical simulator that simulated engine disks. Sample Rates and Parameter Description: All parameters are...

  20. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    International Nuclear Information System (INIS)

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P.

    2013-01-01

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) ≈35°. We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14.°3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus

  1. Verbatim Floppy Disk

    CERN Multimedia

    1976-01-01

    Introduced under the name "Verbatim", Latin for "literally", these disks that sized more than 5¼ inches have become almost universal on dedicated word processing systems and personal computers. This format was replaced more slowly by the 3½-inch format, introduced for the first time in 1982. Compared to today, these large format disks stored very little data. In reality, they could only contain a few pages of text.

  2. Selections from 2016: Gaps in HL Tau's Protoplanetary Disk

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Gas Gaps in the Protoplanetary Disk Around the Young Protostar HL TauPublished March 2016The dust (left) and gas (right) emission from HL Tau show that the gaps in its disk match up. [Yen et al. 2016]Main takeaway:At the end of last year, the Atacama Large Millimeter/Submillimeter Array released some of its first data including a spectacular observation of a dusty protoplanetary disk around the young star HL Tau. In this follow-up study, a team led by Hsi-Wei Yen (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan) analyzed the ALMA data and confirmed the presence of two gaps in the gas of HL Taus disk, at radii of 28 and 69 AU.Why its interesting:The original ALMA image of HL Taus disk suggests the presence of gaps in disk, but scientists werent sure if they were caused by effects like gravitational instabilities or dust clumping, or if the gaps were created by the presence of young planets. Yen and collaborators showed that gaps in the disks gas line up with gaps in its dust, supporting the model in which these gaps have been carved out by newly formed planets.Added intrigue:The evidence for planets in this disk came as a bit of a surprise, since it was originally believed that it takes tens of millions of years to form planets from the dust of protoplanetary disks but HL Tau is only a million years old. These observations therefore suggest that planets start to form much earlier than we thought.CitationHsi-Wei Yen et al 2016 ApJL 820 L25. doi:10.3847/2041-8205/820/2/L25

  3. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  4. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  5. The Dusty Dynamics Within a Regional Mars Dust Storm

    Science.gov (United States)

    Rafkin, Scot C. R.; Pla-Garcia, Jorge; Leung, Cecilia

    2017-10-01

    There have never been in situ observations at or near the active lifting center of a regional dust storm on Mars. In the absence of in situ data, it is common to employ numerical models to provide guidance on the physical processes and conditions operating in an unobserved location or weather system. Consequently, the Mars Regional Atmospheric Modeling System (MRAMS) is employed to study the structure and dynamics of a simulated large regional storm using a fully interactive dust cycle. The simulations provide the first ever glimpse of the conditions that might occur inside one of these storms.The simulated storm shows extremely complex structure with narrow lifting centers and a variety of deep dust transport circulations. The active lifting centers are broadly into a mesoscale system in much the same way that thunderstorms on Earth can organize into mesoscale convective structures. In many of the active dusty plumes, the mixing ratio of dust peaks near the surface and drops off with height. Once lifted, the largest dust tends to sediment out while the smaller dust continues to be advected upward by the plume. This size-sorting process combined with entrainment of less dusty air tends to drive the mixing ratio profile to a maximum near the surface. In dusty plumes near the surface, the air temperature is as much as 20K colder than nearby areas. This is due to solar absorption higher in the dust column limiting direct heating deeper into the atmosphere. Overall, within the plume, there is an inversion, and although the top of the plume is warmer than below, it is near neutral buoyancy compared to the less dusty air on either side. Apparently, adiabatic cooling nearly offsets the expected positive heating perturbation at the top of the dusty plume. A very strong low level just forms in the vicinity of the storm, accompanied by system-wide negative pressure deficits and circulation patterns strongly suggestive of the wind-enhanced interaction of radiation and dust

  6. 2TB hard disk drive

    CERN Multimedia

    This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.

  7. Dustiness of chopped straw as affected by lignosulfonate as a dust suppressant.

    Science.gov (United States)

    Breum, N O; Nielsen, B H; Lyngbye, M; Midtgård, U

    1999-01-01

    Many sources add to the concentration of bioaerosols in livestock buildings, and source control is the number one priority for keeping a low concentration. Straw is a common but dusty bedding material in livestock buildings and the present study is focused on the dustiness of chopped straw (barley) as affected by lignosulfonate (LS) as a dust suppressant. A LS-solution was aerosolized in a spray chamber fitted to an existing bedding chopper to allow the chopped straw to adsorb the LS-solution. The dustiness of straw treated with LS was compared to non-treated straw. As storage conditions may affect dustiness, the study included treated straw kept for 4 weeks in sealed plastic bags. Dustiness of the chopped straw was measured in terms of the potential of the straw to emit bioaerosols in a rotating drum. The LS-treated straw proved low in dustiness compared to the non-treated straw. The dustiness with respect to the mass of dust was reduced by at least a factor of 6, and for fungi and endotoxin the factors of reduction were 4 and 3, respectively. Dustiness of LS-treated straw kept in plastic bags was reduced by a factor of 2 for mass of dust and by a factor of 4 for endotoxin, but dustiness for fungi was increased by a factor of 3. It is concluded that lignosulfonate has potential as a dust suppressant for chopped straw.

  8. Long-Wavelength Excesses of FU Orionis Objects: Flared Outer Disks or Infalling Envelopes?

    Science.gov (United States)

    Zhu, Zhaohuan; Hartmann, Lee; Calvet, Nuria; Hernandez, Jesus; Tannirkulam, Ajay-Kumar; D'Alessio, Paola

    2008-09-01

    The mid- to far-infrared emission of the outbursting FU Orionis objects has been attributed either to a flared outer disk or to an infalling envelope. We revisit this issue using detailed radiative transfer calculations to model the recent, high signal-to-noise ratio data from the IRS instrument on the Spitzer Space Telescope. In the case of FU Ori, we find that a physically plausible flared disk irradiated by the central accretion disk matches the observations. Building on our previous work, our accretion disk model with outer disk irradiation by the inner disk reproduces the spectral energy distribution between ~4000 Å and ~40 μm. Our model is consistent with near-infrared interferometry, but there are some inconsistencies with mid-infrared interferometric results. Including the outer disk allows us to refine our estimate of the outer radius of the outbursting, high mass accretion rate disk in FU Ori as ~0.5 AU, which is a crucial parameter in assessing theories of the FU Orionis phenomenon. We are able to place an upper limit on the mass infall rate of any remnant envelope infall rate to ~7 × 10-7 M⊙ yr -1 assuming a centrifugal radius of 200 AU. The FUor BBW 76 is also well modeled by a 0.6 AU inner disk and a flared outer disk. However, V1515 Cyg requires an envelope with an outflow cavity to adequately reproduce the IRS spectrum. In contrast with the suggestion by Green et al., we do not require a flattened envelope to match the observations; the inferred cavity shape is qualitatively consistent with typical protostellar envelopes. This variety of dusty structures suggests that the FU Orionis phase can be present at either early or late stages of protostellar evolution.

  9. 3D ADAPTIVE MESH REFINEMENT SIMULATIONS OF THE GAS CLOUD G2 BORN WITHIN THE DISKS OF YOUNG STARS IN THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Schartmann, M.; Ballone, A.; Burkert, A. [Universitäts-Sternwarte München, Scheinerstraße 1, D-81679 München (Germany); Gillessen, S.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Plewa, P. M.; Ott, T.; George, E. M.; Habibi, M., E-mail: mschartmann@swin.edu.au [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany)

    2015-10-01

    The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtained results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position–velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.

  10. Source to Accretion Disk Tilt

    OpenAIRE

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...

  11. Comparison of Disk Diffusionand

    Directory of Open Access Journals (Sweden)

    Mohsen Rezazadeh

    2014-08-01

    Full Text Available Background: Increasing prevalence of Methicillin-resistant Staphylococcus aureus (MRSA in different communities is clearly visible. Because of this, treatment of patients with infections caused by those bacteria has fallen into critical troubles .Current study, therefore, is aimed to compare phenotypic (disk diffusion and genotypic (PCR methods for fast diagnosis of methicillin-resistant strains, isolated from patients of Arak Central Hospital Materials and Methods:In a cross sectional study whithin one year of period , a total of 100 samples were taken and tested from the patients of Arak hospital (located in the central part of Iran . Isolates' sensitivity to Cefoxitin Disk and Oxacillin was confirmed through disk diffusion. Using PCR , the isolates were tested for the presence of mecA gene. Results were compared from the points of sensitivity and specificity by application of chi square test in SPSS software.. Results: Seventy five 75% out of the total 100 samples (through oxacillin disk diffusion method , already isolated from patients were resistant to oxacillin. Meanwhile, 83(83% of cefoxitin disk diffusion method samples’ were resistant to cefoxitin. Three resistant samples to cefoxitin were negative for mecA gene and 80 (80% samples were positive for mecA gene using PCR. Sensitivity were respectively 93.75% , 100% , and specificity were 100% and 100% , 85% , 100 Conclusion: Findings indicate that oxacillin disk diffusion method is a simple phenotypic method, however, it has lower sensitivity compared to cefoxitin disk diffusion and polymerase chain reaction (PCR methods. Therfore, it is not recommended for detection of Methicillin-resistant Staphylococcus aureus (MRSA. Existence of strains resistant to cefoxitin without mecA gene, shows the outset of another type of resistance or mutation in Methicillin-resistant Staphylococcus aureus (MRSA .

  12. The Effects of Accretion Disk Geometry on AGN Reflection Spectra

    Science.gov (United States)

    Taylor, Corbin James; Reynolds, Christopher S.

    2017-08-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.

  13. PLANETESIMAL DISK MICROLENSING

    International Nuclear Information System (INIS)

    Heng, Kevin; Keeton, Charles R.

    2009-01-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  14. Unstable Planetary Systems Emerging Out of Gas Disks

    Science.gov (United States)

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-05-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  15. Hydrodynamical processes in planet-forming accretion disks

    Science.gov (United States)

    Lin, Min-Kai

    Understanding the physics of accretion flows in circumstellar disk provides the foundation to any theory of planet formation. The last few years have witnessed dramatic a revision in the fundamental fluid dynamics of protoplanetary accretion disks. There is growing evidence that the key to answering some of the most pressing questions, such as the origin of disk turbulence, mass transport, and planetesimal formation, may lie within, and intimately linked to, purely hydrodynamical processes in protoplanetary disks. Recent studies, including those from the proposal team, have discovered and highlighted the significance of several new hydrodynamical instabilities in the planet-forming regions of these disks. These include, but not limited to: the vertical shear instability, active between 10 to 100 AU; the zombie vortex instability, operating in regions interior to about 1AU; and the convective over-stability at intermediate radii. Secondary Rossbywave and elliptic instabilities may also be triggered, feeding off the structures that emerge from the above primary instabilities. The result of these hydrodynamic processes range from small-scale turbulence that transports angular momentum, to large-scale vortices that concentrate dust particles and enhance planetesimal formation. Hydrodynamic processes pertain to a wide range of disk conditions, meaning that at least one of these processes are active at any given disk location and evolutionary epoch. This remains true even after planet formation, which affects their subsequent orbital evolution. Hydrodynamical processes also have direct observable consequences. For example, vortices have being invoked to explain recent ALMA images of asymmetric `dust-traps' in transition disks. Hydrodynamic activities thus play a crucial role at every stage of planet formation and disk evolution. We propose to develop theoretical models of the above hydrodynamic processes under physical disk conditions by properly accounting for disk

  16. Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, B.; Panda, S.; Wildy, C.; Sniegowska, M. [Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Li, Yan-Rong; Wang, J.-M. [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Hryniewicz, K.; Sredzinska, J. [Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw (Poland); Karas, V., E-mail: bcz@cft.edu.pl [Astronomical Institute, Academy of Sciences, Bocni II 1401, CZ-141 00 Prague (Czech Republic)

    2017-09-10

    The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.

  17. A study of the inner parts of protoplanetary disks observed by interferometry

    International Nuclear Information System (INIS)

    Anthonioz, Fabien

    2015-01-01

    Observing gas and dusty disks around young stars are of utmost importance for our knowledge about planetary formation. Observations of these disks bring unprecedented details about their structure and composition, and provide stronger and stronger constrains on planetary formation models. However, the inner parts of these disk are still barely known. Indeed, a 100 m diameter telescope would be required in order to resolve these inner region, for the closest young stars; nowadays, the construction of such telescope is impossible technologically and financially. By combining the light of pairs of telescopes, the interferometry technique is able to reach the sufficient resolving power, and permits us to observe the inner parts of circumstellar disks. My thesis has been focused on the observation and study of the inner part of TTauri's circumstellar disks. I present in this manuscript a statistical study on the environment around these stars, along with its modeling by taking into account thermal emission and light scattering of the disk. Finally, I present a more complete modelling for some of these stars, done by constraining spectroscopic, interferometric and photometric datasets with a radiative transfer code. (author)

  18. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  19. Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...

    Indian Academy of Sciences (India)

    heat transfer of a dusty fluid through a rectangular channel under the influence of pulsatile pres- sure gradient and uniform magnetic field. Prakash et al (2011) investigated MHD free convective flow of a viscoelastic (Kuvshinski type) dusty gas through a porous medium induced by the motion of a semi-infinite flat plate under ...

  20. Low-frequency dust-lower-hybrid modes in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1995-10-01

    The existence of low-frequency dust-lower-hybrid modes in a magnetized dusty plasma has been examined. These modes arise on account of the inequalities of charge and number densities of electrons, ions, and dust particles, and finite Larmor radius effects in a dusty plasma. (author). 14 refs

  1. Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations

    Science.gov (United States)

    Nowak, Michael A.; Wagoner, Robert V.

    1991-01-01

    The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.

  2. The effect of a dust size distribution on electrostatic sheaths in unmagnetized dusty plasmas

    International Nuclear Information System (INIS)

    Benlemdjaldi, D.; Tahraoui, A.; Hugon, R.; Bougdira, J.

    2013-01-01

    In this work, the structure of plasma sheaths in presence of dust particles with different sizes is investigated numerically in a multifluid framework, where the dust size distribution is modeled by Gauss' law. For this, we have established a 1D, stationary, unmagnetized, and weakly collisional electronegative dusty plasma sheath model. The electrons and negative ions are considered in a local thermodynamic equilibrium, therefore, described by a Boltzmann distribution. On the other hand, positive ions and dust grains are described by fluid equations. The charging process is described by the orbit motion limited model. It is shown that taking into account dust grains with different sizes reduces considerably the sheath thickness. The behavior of dust surface potential is not affected, but the dust charge number is reduced, as well as the electrostatic force. It results in a decrease of layered structure. The presence of negative ions makes the structure of the electrostatic potential more oscillatory. The other physical parameters are also analyzed and discussed.

  3. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    International Nuclear Information System (INIS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2014-01-01

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function

  4. Strongly coupled dusty plasmas: crystals, liquids, clusters and waves

    International Nuclear Information System (INIS)

    Jeng-Mei Liu; Wen-Tau Juan; Ju-Wang Hsu; Zen-Hong Huang; Lin I

    1999-01-01

    The dusty plasma is a system that consists of many strongly-charged fine dust particles suspended in a plasma background. The slow dynamics and strong coupling due to the large mass and charges lead to the formation of highly-ordered dust crystal structures suspended in the plasma background, which can be directly observed. The dusty plasma forms a link to the area of condensed matter physics for the study of many interesting microscopic phenomena from order to disorder. In this paper, we introduce the special properties of this system from the viewpoint of conventional plasma physics, then we briefly review past works on the structure and dynamical behaviour from the highly-ordered state, through the melting and liquid states with associated vortex-type excitation and anomalous diffusion, to the state with self-organized macroscopic dust waves after losing microscopic order. The first observation of strongly-coupled dust Coulomb clusters with small numbers of particles from a few to a few hundred, which resemble classical atoms, is also demonstrated. (author)

  5. Quantifying Dustiness, Specific Allergens, and Endotoxin in Bulk Soya Imports

    Directory of Open Access Journals (Sweden)

    Howard J. Mason

    2017-11-01

    Full Text Available Soya is an important bulk agricultural product often transported by sea as chipped beans and/or the bean husks after pelletisation. There are proven allergens in both forms. Bulk handling of soya imports can generate air pollution containing dust, allergens, and pyrogens, posing health risks to dockside workers and surrounding populations. Using an International Organization for Standardization (ISO standardised rotating drum dustiness test in seven imported soya bulks, we compared the generated levels of dust and two major soya allergens in three particle sizes related to respiratory health. Extractable levels of allergen and endotoxin from the bulks showed 30–60 fold differences, with levels of one allergen (hydrophobic seed protein and endotoxin higher in husk. The generated levels of dust and allergens in the three particle sizes also showed very wide variations between bulks, with aerolysed levels of allergen influenced by both the inherent dustiness and the extractable allergen in each bulk. Percentage allergen aerolysed from pelletized husk—often assumed to be of low dustiness—after transportation was not lower than that from chipped beans. Thus, not all soya bulks pose the same inhalation health risk and reinforces the importance of controlling dust generation from handling all soya bulk to as low as reasonably practicable.

  6. Electrostatic solitary waves in dusty pair-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A. P. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India); Adhikary, N. C. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam (India)

    2013-10-15

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.

  7. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  8. [Orbital cellulitis].

    Science.gov (United States)

    Mouriaux, F; Rysanek, B; Babin, E; Cattoir, V

    2012-01-01

    Orbital cellulitis is uncommon in ophthalmologic practice. The majority of cases arise from direct spread of sinus infection or eyelid infection. Clinically, orbital cellulitis is divided into two forms: the preseptal form, anterior to the orbital septum, and the retroseptal form, posterior to the orbital septum. Management and prognosis differ widely between the two types. The retroseptal form or "true" orbital cellulitis is a severe disease with potentially disastrous consequences for vision and survival. Clinical examination and urgent CT scanning are indispensable for correct diagnosis, evaluation of severity, surgical planning and antibiotic selection. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Nonlinear screening of dust grains and structurization of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V. N., E-mail: tsytov@lpi.ru; Gusein-zade, N. G. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-07-15

    A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the

  10. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  11. Identifying Likely Disk-hosting M dwarfs with Disk Detective

    Science.gov (United States)

    Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration

    2018-01-01

    M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.

  12. Brown dwarf disks with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: lricci@astro.caltech.edu [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  13. Instabilities at planetary gap edges in 3D self-gravitating disks

    Directory of Open Access Journals (Sweden)

    Lin Min-Kai

    2013-04-01

    Full Text Available Numerical simulations are presented to study the stability of gaps opened by giant planets in 3D self-gravitating disks. In weakly self-gravitating disks, a few vortices develop at the gap edge and merge on orbital time-scales. The result is one large but weak vortex with Rossby number -0.01. In moderately self-gravitating disks, more vortices develop and their merging is resisted on dynamical time-scales. Self-gravity can sustain multi-vortex configurations, with Rossby number -0.2 to -0.1, over a time-scale of order 100 orbits. Self-gravity also enhances the vortex vertical density stratification, even in disks with initial Toomre parameter of order 10. However, vortex formation is suppressed in strongly self-gravitating disks and replaced by a global spiral instability associated with the gap edge which develops during gap formation.

  14. Binary pulsars as probes of a Galactic dark matter disk

    Science.gov (United States)

    Caputo, Andrea; Zavala, Jesús; Blas, Diego

    2018-03-01

    As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.

  15. ORBITAL INJURIES

    Directory of Open Access Journals (Sweden)

    Andrej Kansky

    2002-12-01

    Full Text Available Background. Orbit is involved in 40% of all facial fractures. There is considerable variety in severity, ranging from simple nondisplaced to complex comminuted fractures. Complex comminuted fractures (up to 20% are responsible for the majority of complications and unfavorable results. Orbital fractures are classified as internal orbital fractures, zygomatico-orbital fractures, naso-orbito-ethmoidal fractures and combined fractures. The ophtalmic sequelae of midfacial fractures are usually edema and ecchymosis of the soft tissues, subconjuctival hemorrhage, diplopia, iritis, retinal edema, ptosis, enophthalmos, ocular muscle paresis, mechanical restriction of ocular movement and nasolacrimal disturbances. More severe injuries such as optic nerve trauma and retinal detachments have also been reported. Within the wide range of orbital fractures small group of complex fractures causes most of the sequelae. Therefore identification of severe injuries and adequate treatment is of major importance. The introduction of craniofacial techniques made possible a wide exposure even of large orbital wall defects and their reconstruction by bone grafts. In spite of significant progress, repair of complex orbital wall defects remains a problem even for the experienced surgeons.Results. In 1999 121 facial injuries were treated at our department (Clinical Centre Ljubljana Dept. Of Maxillofacial and Oral Surgery. Orbit was involved in 65% of cases. Isolated inner orbital fractures presented 4% of all fractures. 17 (14% complex cases were treated, 5 of them being NOE, 5 orbital (frame and inner walls, 3 zygomatico-orbital, 2 FNO and 2 maxillo-orbital fractures.Conclusions. Final result of the surgical treatment depends on severity of maxillofacial trauma. Complex comminuted fractures are responsable for most of the unfavorable results and ocular function is often permanently damaged (up to 75% in these fractures.

  16. Shadows and cavities in protoplanetary disks: HD 163296, HD 141569A, and HD 150193A in polarized light

    Science.gov (United States)

    Garufi, A.; Quanz, S. P.; Schmid, H. M.; Avenhaus, H.; Buenzli, E.; Wolf, S.

    2014-08-01

    Context. The morphological evolution of dusty disks around young (a few Myr old) stars is pivotal for a better understanding of planet formation. Since both dust grains and the global disk geometry evolve on short timescales, high-resolution imaging of a sample of objects may provide important indications about this evolution. Aims: We enlarge the sample of protoplanetary disks imaged in polarized light with high-resolution imaging (≲0.2″) by observing the Herbig Ae/Be stars HD 163296, HD 141569A, and HD 150193A. We combine our data with previous datasets to understand the larger context of their morphology. Methods: Polarimetric differential imaging is an attractive technique with which to image at near-IR wavelengths a significant fraction of the light scattered by the circumstellar material. The unpolarized stellar light is canceled out by combining two simultaneous orthogonal polarization states. This allowed us to achieve an inner working angle and an angular resolution as low as ~0.1″. Results: We report a weak detection of the disk around HD 163296 in the H and KS bands. The disk is resolved as a broken ring structure with a significant surface brightness drop inward of 0.6″. No sign of extended polarized emission is detected from the disk around HD 141569A and HD 150193A. Conclusions: We propose that the absence of scattered light in the inner 0.6″ around HD 163296 and the non-detection of the disk around HD 150193A may be due to similar geometric factors. Since these disks are known to be flat or only moderately flared, self-shadowing by the disk inner wall is the favored explanation. We show that the polarized brightness of a number of disks is indeed related to their flaring angle. Other scenarios (such as dust grain growth or interaction with icy molecules) are also discussed. On the other hand, the non-detection of HD 141569A is consistent with previous datasets that revealed a huge cavity in the dusty disk. Based on observations collected at

  17. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Arnold, Laura [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Najita, Joan; Furlan, Elise [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, Benjamin [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Espaillat, Catherine [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Megeath, S. T. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Green, Joel D., E-mail: khkim@pas.rochester.edu [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States)

    2013-06-01

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' age 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.

  18. DVD - digital versatile disks

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  19. New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region

    Science.gov (United States)

    van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.

    2018-02-01

    Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.

  20. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2017-05-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.

  1. Effect of polarization force on the Jeans instability in collisional dusty plasmas

    Science.gov (United States)

    A, ABBASI; M, R. RASHIDIAN VAZIRI

    2018-03-01

    The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.

  2. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    International Nuclear Information System (INIS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R K

    2017-01-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma. (paper)

  3. RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, C.; Garufi, A.; Quanz, S. P.; Daemgen, S.; Engler, N. [ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Janson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Boccaletti, A. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, UPMC Paris 6, Sorbonne Université, 5 place Jules Janssen, F-92195 Meudon CEDEX (France); Sissa, E.; Gratton, R.; Desidera, S. [INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Salter, G.; Langlois, M. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Benisty, M.; Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Lannier, J. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Dominik, C. [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Feldt, M.; Henning, T., E-mail: thalmann@phys.ethz.ch [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); and others

    2016-09-10

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures in the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.

  4. Propagation of dust electro-acoustic modes in dusty plasma

    International Nuclear Information System (INIS)

    Avinash, K.

    2001-01-01

    The propagation of the dust electro-acoustic (DEA) mode in dusty plasma with different electron and ion temperatures T e and T i and different ion species is studied. The critical ratio of the dust space charge to the ion space charge ε for the excitation of DEA mode is found to decrease with increasing T e /T i and increase with m i /m e (m i and m e are the ion and electron masses). Thus experiments with hydrogen plasma where electrons are sufficiently hotter than ions and where the reduction in the dust charge with ε is more than 50% are essential for the observation of self-shielding and the DEA mode

  5. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  6. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  7. Dusty plasma processes in Earth's polar summer mesosphere

    Science.gov (United States)

    Popel, S. I.; Dubinsky, A. Yu.; Dubinsky

    2013-08-01

    A self-consistent model for the description of dusty plasma structures, such as noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE), which are frequently grouped together under the common term polar mesospheric clouds, is presented. The model takes into account the processes of condensation of water vapor, ionization, recombination, action of solar radiation, sedimentation, dust particle growth, dust particle charging, electric fields, etc. Using the model, we explain the basic data of observations on the behavior of charged component in polar summer mesosphere. Furthermore, we show the influence of initial distributions of fine particles as well as that of the processes of condensation and water molecule absorption by fine particles on the formation of NLC and PMSE. We also illustrate the possibility of the formation of layered structure and sharp boundaries of NLC.

  8. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-01-01

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M tot ∼> 1 M J the final eccentricity distribution remains broad, whereas for M tot ∼ J a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a ≅ 5-10 AU.

  9. Experiments in Ice Contaminant Remanent Magnetization of Dusty Frost Deposits

    Science.gov (United States)

    Grossman, Y.; Aharonson, O.; Shaar, R.

    2017-12-01

    Sedimentary rocks can acquire magnetization in the presence of an external field as grains settle out of suspension in a water column - a process known as Depositional Remanent Magnetization (DRM). In analogy with this, here we propose and experimentally demonstrate a new mechanism for acquisition of magnetization by ice and particulate mixtures which we term Ice Contaminant Remanent Magnetization (ICRM). This phenomenon results from the settling of atmospheric dust containing magnetic particles (e.g. magnetite or other iron oxides). Upon freezing, magnetic dust particles assume a preferential orientation that depends on the external planetary field, resulting in bulk magnetization of the dusty ice. Hence over geologic timescales, the ice stratigraphy is expected to record the geomagnetic history. To test this hypothesis, we designed a set of experiments in which mixtures of ice and dust were deposited in a controlled ambient magnetic field environment. We measured the ratio between the volume normalized magnetization of the dusty ice (m) and the applied field (H) during deposition of the mixture, which is expressed as the effective ICRM susceptibility: m=χICRMH. A magnetic field was applied by a 3-axis Helmholtz coil at the Weizmann Simulating Planetary Ices & Environments Laboratory, and the frozen samples were analyzed in a 2G-Entreprises SQUID Rock Magnetometer at the Hebrew University Institute for Earth Sciences. We measured a clear correlation in amplitude and direction between the ambient magnetic field applied during deposition and the remanent magnetic moment of the resulting samples. We studied various concentrations and particle sizes (diameters 5 µm to 50 µm) of iron and magnetite particles. Effective bulk susceptibilities show a range of values, starting from 10-3 and up to values that saturate the analytical instrument. Our preliminary results indicate that natural ice deposits may acquire variable magnetization due to ICRM, which may in turn be

  10. FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS

    International Nuclear Information System (INIS)

    Hyodo, Ryuki; Ohtsuki, Keiji; Takeda, Takaaki

    2015-01-01

    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets

  11. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  12. ORBITAL, CELLULITIS

    African Journals Online (AJOL)

    Aim: The purpose of this study was to assess the prevalence of paranasal sinusitis as a cause of orbital cellulitis and to identify the commonest sinus(es) involved in our setting. Methods: A retrospective review of the case notes of 47 patients with orbital cellulitis admitted into the ophthalmic ward of the University College ...

  13. Molecular Gas in Disks around Young Stars with ALMA

    Science.gov (United States)

    Hughes, A. Meredith; Factor, Samuel; Lieman-Sifry, Jesse; Flaherty, Kevin; Daley, Cail; Mann, Rita; Roberge, Aki; Di Francesco, James; Williams, Jonathan; Ricci, Luca; Matthews, Brenda; Bally, John; Johnstone, Doug; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David; Andrews, Sean; Kastner, Joel H.; Abraham, Peter

    2018-01-01

    Molecular gas is a critical component of the planet formation process. In this poster, we present two analyses of the molecular gas component of circumstellar disks at extremes (young, old) of the pre-main sequence phase.(1) We characterize the molecular gas content of the disk around d216-0939, a pre-main sequence star in the Orion Nebula Cluster, using ALMA observations of CO(3-2), HCO+(4-3), and HCN(4-3) observed at 0.5" resolution. We model the density and temperature structure of the disk, returning abundances generally consistent with chemical modeling of protoplanetary disks, and obtain a dynamical mass measurement of the central star of 2.2+/-0.4 M_sun, which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable position offset from the central star, consistent with an object in Keplerian orbit at 60+/-20 au. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk, providing evidence that planet formation is ongoing within this massive and relatively isolated Orion proplyd. This work is published in Factor et al. (2017). (2) We present ~0.4" resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with ALMA. We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The radial extent of the gas disk (~220 au) is smaller than that of the dust disk (~300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly

  14. Audit: Automated Disk Investigation Toolkit

    Directory of Open Access Journals (Sweden)

    Umit Karabiyik

    2014-09-01

    Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.

  15. Nonlinear propagation of dust-acoustic solitary waves in a dusty ...

    Indian Academy of Sciences (India)

    component unmag- netized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian elec- tron distribution to a vortex-like ...

  16. PLANETARY CONSTRUCTION ZONES IN OCCULTATION: DISCOVERY OF AN EXTRASOLAR RING SYSTEM TRANSITING A YOUNG SUN-LIKE STAR AND FUTURE PROSPECTS FOR DETECTING ECLIPSES BY CIRCUMSECONDARY AND CIRCUMPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Kenworthy, Matthew A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Cameron, Andrew Collier; Parley, Neil R. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2012-03-15

    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of {approx}10{sup 4} young ({approx}10 million year old) post-accretion pre-main-sequence stars monitored for {approx}10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low-mass companion stars. We present photometric and spectroscopic data for a pre-main-sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered {approx}0.9 M{sub Sun} member of the {approx}16 Myr old Upper Centaurus-Lupus subgroup of Sco-Cen at a kinematic distance of 128 {+-} 13 pc. This star exhibited a remarkably long, deep, and complex eclipse event centered on 2007 April 29 (as discovered in Super Wide Angle Search for Planets (SuperWASP) photometry, and with portions of the dimming confirmed by All Sky Automated Survey (ASAS) data). At least five multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of {approx}1 mag eclipses symmetrically occurring {+-}12 days and {+-}26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a {approx}54 day period in 2007, and a strong >1 mag dimming event occurring over a {approx}12 day span. We place a firm lower limit on the period of 850 days (i.e., the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km s{sup -1}). The shape of the light curve is similar to the lopsided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, further girded by at least three dusty rings of optical depths near unity. Between these rings are at least two annuli of near-zero optical depth (i.e., gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the

  17. STRUCTURE AND EVOLUTION OF CIRCUMBINARY DISKS AROUND SUPERMASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2013-01-01

    We explore properties of circumbinary disks around supermassive black hole (SMBH) binaries in centers of galaxies by reformulating standard viscous disk evolution in terms of the viscous angular momentum flux F J . If the binary stops gas inflow and opens a cavity in the disk, then the inner disk evolves toward a constant-F J (rather than a constant M-dot ) state. We compute disk properties in different physical regimes relevant for SMBH binaries, focusing on the gas-assisted evolution of systems starting at separations 10 –4 – 10 –2 pc, and find the following. (1) Mass pileup at the inner disk edge caused by the tidal barrier accelerates binary inspiral. (2) Binaries can be forced to merge even by a disk with a mass below that of the secondary. (3) Torque on the binary is set non-locally, at radii far larger than the binary semi-major axis; its magnitude does not reflect disk properties in the vicinity of the binary. (4) Binary inspiral exhibits hysteresis—it depends on the past evolution of the disk. (5) The Eddington limit can be important for circumbinary disks even if they accrete at sub-Eddington rates, but only at late stages of the inspiral. (6) Gas overflow across the orbit of the secondary can be important for low secondary mass, high- M-dot systems, but mainly during the inspiral phase dominated by the gravitational wave emission. (7) Circumbinary disks emit more power and have harder spectra than constant M-dot disks; their spectra are very sensitive to the amount of overflow across the secondary orbit

  18. IBM 3390 Hard Disk Platter

    CERN Multimedia

    1991-01-01

    The 3390 disks rotated faster than those in the previous model 3380. Faster disk rotation reduced rotational delay (ie. the time required for the correct area of the disk surface to move to the point where data could be read or written). In the 3390's initial models, the average rotational delay was reduced to 7.1 milliseconds from 8.3 milliseconds for the 3380 family.

  19. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  20. Disk storage at CERN

    CERN Document Server

    Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D

    2015-01-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  1. [Disk calcifications in children].

    Science.gov (United States)

    Schmit, P; Fauré, C; Denarnaud, L

    1985-05-01

    It is not unusual for intervertebral disk calcifications to be detected in pediatric practice, the 150 or so cases reported in the literature probably representing only a small proportion of lesions actually diagnosed. Case reports of 33 children with intervertebral disk calcifications were analyzed. In the majority of these patients (31 of 33) a diagnosis of "idiopathic" calcifications had been made, the cervical localization of the lesions being related to repeated ORL infections and/or trauma. A pre-existing pathologic factor was found in two cases (one child with juvenile rheumatoid arthritis treated by corticoids and one child with Williams and Van Beuren's syndrome). An uncomplicated course was noted in 31 cases, the symptomatology (pain, spinal stiffness and febricula) improving after several days. Complications developed in two cases: one child had very disabling dysphagia due to an anteriorly protruding cervical herniated disc and surgery was necessary; the other child developed cervicobrachial neuralgia due to herniated disc protrusion into the cervical spinal canal, but symptoms regressed within several days although calcifications persisted unaltered. These findings and the course of the rare complications documented in the literature suggest the need for the most conservative treatment possible in cases of disc calcifications in children.

  2. Disk MHD generator study

    Science.gov (United States)

    Retallick, F. D.

    1980-10-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  3. The Hot Orbit: Orbital Cellulitis

    Science.gov (United States)

    Chaudhry, Imtiaz A.; Al-Rashed, Waleed; Arat, Yonca O.

    2012-01-01

    Orbital cellulitis is an uncommon condition previously associated with severe complications. If untreated, orbital cellulitis can be potentially sight and life threatening. It can affect both adults and children but has a greater tendency to occur in the pediatric age group. The infection most commonly originates from sinuses, eyelids or face, retained foreign bodies, or distant soources by hematogenous spread. It is characterized by eyelid edema, erythema, chemosis, proptosis, blurred vision, fever, headache, and double vision. A history of upper respiratory tract infection prior to the onset is very common especially in children. In the era prior to antibiotics, vision loss from orbital cellulitis was a dreaded complication. Currently, imaging studies for detection of orbital abcess, the use of antibiotics and early drainage have mitigated visual morbidity significantly. The purpose of this review is to describe current investigative strategies and management options in the treatment of orbital cellulitis, establish their effectiveness and possible complications due to late intervention. PMID:22346113

  4. A Case Study on Idiopathic Orbital Pseudotumor: Surgery and ...

    African Journals Online (AJOL)

    This is a case study of five isolated orbital nerve inflammatory pseudotumor cases presenting with protrusion and visual acuity of the right eye. Optic disk edema was observed by ophthalmoscopy. Plain and contrast-enhanced magnetic resonance imaging (MRI) were used to examine the orbital fat and enlargement of the ...

  5. Jeans instability of an inhomogeneous streaming dusty plasma

    Indian Academy of Sciences (India)

    associated emission nebula, escapes without being absorbed by the in-falling matter from the accretion disk, dust grain may pick up, depending on the thermal velocities of the background plasma particles, between 10 to 100 electronic charges [1]. These charged grains are not monochromatic in size. The size distribution ...

  6. Equatorial circular orbits in the Kerr-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Slany, Petr

    2004-01-01

    Equatorial motion of test particles in Kerr-de Sitter spacetimes is considered. Circular orbits are determined, their properties are discussed for both black-hole and naked-singularity spacetimes, and their relevance for thin accretion disks is established. The circular orbits constitute two families that coalesce at the so-called static radius. The orientation of the motion along the circular orbits is, in accordance with case of asymptotically flat Kerr spacetimes, defined by relating the motion to the locally nonrotating frames. The minus-family orbits are all counterrotating, while the plus-family orbits are usually corotating relative to these frames. However, the plus-family orbits become counterrotating in the vicinity of the static radius in all Kerr-de Sitter spacetimes, and they become counterrotating in the vicinity of the ring singularity in Kerr-de Sitter naked-singularity spacetimes with a low enough rotational parameter. In such spacetimes, the efficiency of the conversion of the rest energy into heat energy in the geometrically thin plus-family accretion disks can reach extremely high values exceeding the efficiency of the annihilation process. The transformation of a Kerr-de Sitter naked singularity into an extreme black hole due to accretion in the thin disks is briefly discussed for both the plus-family and minus-family disks. It is shown that such a conversion leads to an abrupt instability of the innermost parts of the plus-family accretion disks that can have strong observational consequences

  7. Driving of Accretion Disk Variability by the Disk Dynamo

    Science.gov (United States)

    Hogg, J. Drew; Reynolds, Christopher S.

    2016-04-01

    Variability is a ubiquitous feature of emission from accreting objects, but many questions remain as to how the variability is driven and how it relates to the underlying accretion physics. In this talk I will discuss recent results from a long, semi-global MHD simulation of a thin accretion disk around a black hole used to perform a detailed study of the fluctuations in the internal disk stress and the influence these fluctuations have on the accretion flow. In the simulation, low frequency fluctuations of the effective α-parameter in the disk are linked to oscillations of the disk dynamo. These fluctuations in the effective alpha parameter drive “propagating fluctuations” in mass accretion rate through the disk that qualitatively resemble the variability from astrophysical black hole systems. The mass accretion rate has several of the ubiquitous phenomenological properties of black hole variability, including log-normal flux distributions, RMS-flux relationships, and radial coherence.

  8. Giant Planets Can Act as Stabilizing Agents on Debris Disks

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. postal 70-264 Ciudad Universitaria, México (Mexico)

    2017-07-01

    We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total mass of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.

  9. Debris Disk Studies with the ngVLA

    Science.gov (United States)

    Wilner, David; Matthews, Brenda; Matra, Luca; Kennedy, Grant; Wyatt, Mark; Greaves, Jane

    2018-01-01

    We discuss the potential for the ngVLA to advance understanding of debris disks around main-sequence stars. Since the dust-producing planetesimals that replenish these disks through collisions persist only in stable regions like belts and resonances, their locations and physical properties encode essential information about the formation of exoplanetary systems and their dynamical evolution. Observations at long millimeter wavelengths can play a special role because the large grains that dominate the emission are faithful tracers of the dust-producing planetesimals, unlike small grains seen at shorter wavelengths that are rapidly redistributed by stellar radiation and winds. Sensitive observations of debris disks with the ngVLA can (1) reveal structures resulting from otherwise inaccessible planets on wide orbits, (2) test collisional models using spectral slopes to constrain mm/cm grain size distributions, and (3) for select sources, probe the water content of exocomets using the 21 cm HI line.

  10. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    DEFF Research Database (Denmark)

    Zhou, G.; Rappaport, S.; Nelson, L.

    2018-01-01

    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass in a 72-day orbit around ...

  11. Confusing Binaries: The Role of Stellar Binaries in Biasing Disk Properties in the Galactic Center

    Science.gov (United States)

    Naoz, Smadar; Ghez, Andrea M.; Hees, Aurelien; Do, Tuan; Witzel, Gunther; Lu, Jessica R.

    2018-02-01

    The population of young stars near the supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematic measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues regarding the origin of these mysterious young stars. However, many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here, we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus, neglecting the contribution of binaries can significantly vary the inferred stars’ orbital properties. While the disk orientation is unaffected, the apparent disk’s 2D width will be increased to about 11.°2, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23. This is consistent with the observed average eccentricity of the stars’ in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally, our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.

  12. THE MIGRATION OF GAP-OPENING PLANETS IS NOT LOCKED TO VISCOUS DISK EVOLUTION

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.; Farris, Brian D.; Haiman, Zoltan; D'Orazio, Daniel J.

    2014-01-01

    Most standard descriptions of Type II migration state that massive, gap-opening planets must migrate at the viscous drift rate. This is based on the idea that the disk is separated into an inner and outer region and gas is considered unable to cross the gap. In fact, gas easily crosses the gap on horseshoe orbits, nullifying this necessary premise which would set the migration rate. In this work, it is demonstrated using highly accurate numerical calculations that the actual migration rate is dependent on disk and planet parameters, and can be significantly larger or smaller than the viscous drift rate. In the limiting case of a disk much more massive than the secondary, the migration rate saturates to a constant that is sensitive to disk parameters and is not necessarily of the order of the viscous rate. In the opposite limit of a low-mass disk, the migration rate decreases linearly with disk mass. Steady-state solutions in the low disk mass limit show no pile-up outside the secondary's orbit, and no corresponding drainage of the inner disk

  13. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    International Nuclear Information System (INIS)

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-01-01

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m P ∼ + ) and/or close orbits (r ∼< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P ∼ 4 days. Planets with shorter periods, P ∼ 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  14. Variable Circumstellar Extinction in a Protoplanetary Disk with an Embedded Low-Mass Companion

    Science.gov (United States)

    Demidova, T. V.; Grinin, V. P.

    2017-06-01

    The motion of the low-mass companion embedded in a protoplanetary disk perturbs the disk matter periodically. It leads to the large-scale inhomogenity formation. Such structures in the disk have to influence on the propagation of the radiation from a star to an observer. If the protoplanetary disk is observed almost edge-on the structures will intersect the line of sight periodically. We use the hydrodynamic simulations of such disks to explore how an invisible low-mass companions in protoplanetary disks can affect on the circumstellar extinction and the light curves of the young star. The models with circular and eccentric, inclined and coplanar companions orbits were calculated. Our modification of the GADGET-2 code is used for the calculations. The column density of the test particles on the line of sight was calculated as a function of phase of the orbital period. If we propose the dust is well mixed with gas in the ratio 1:100 the column density function determines the behaviour the circumstellar extinction. Our calculations show the periodic variations of the circumstellar extinction can originate in the CB-disk as well in the CS-disk. The results can be used for the explanation of the cyclic activity of UX Ori type stars.

  15. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  16. THE STABILITY OF LOW SURFACE BRIGHTNESS DISKS BASED ON MULTI-WAVELENGTH MODELING

    International Nuclear Information System (INIS)

    MacLachlan, J. M.; Wood, K.; Matthews, L. D.; Gallagher, J. S.

    2011-01-01

    To investigate the structure and composition of the dusty interstellar medium (ISM) of low surface brightness (LSB) disk galaxies, we have used multi-wavelength photometry to construct spectral energy distributions for three low-mass, edge-on LSB galaxies (V rot = 88-105 km s -1 ). We use Monte Carlo radiation transfer codes that include the effects of transiently heated small grains and polycyclic aromatic hydrocarbon molecules to model and interpret the data. We find that, unlike the high surface brightness galaxies previously modeled, the dust disks appear to have scale heights equal to or exceeding their stellar scale heights. This result supports the findings of previous studies that low-mass disk galaxies have dust scale heights comparable to their stellar scale heights and suggests that the cold ISM of low-mass, LSB disk galaxies may be stable against fragmentation and gravitational collapse. This may help to explain the lack of observed dust lanes in edge-on LSB galaxies and their low current star formation rates. Dust masses are found in the range (1.16-2.38) x 10 6 M sun , corresponding to face-on (edge-on), V-band, optical depths 0.034 ∼ face ∼ eq ∼< 1.99).

  17. Disks around young stellar objects

    Indian Academy of Sciences (India)

    flattened disk around the central young stellar object and planets form in these disks by processes that involve growth of dust grains and their sedimentation, collisions and coag- ulation of planetesimals, accretion of gaseous material and gravitational instabilities on various time-scales as proposed in different models.

  18. Stochastic disks that roll

    Science.gov (United States)

    Holmes-Cerfon, Miranda

    2016-11-01

    We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.

  19. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  20. Initial Results from the Magnetized Dusty Plasma Experiment (MDPX)

    Science.gov (United States)

    Thomas, Edward; Konopka, Uwe; Lynch, Brian; Adams, Stephen; Leblanc, Spencer; Artis, Darrick; Dubois, Ami; Merlino, Robert; Rosenberg, Marlene

    2014-10-01

    The MDPX device is envisioned as a flexible, multi-user, research instrument that can perform a wide range of studies in fundamental and applied plasma physics. The MDPX device consists of two main components. The first is a four-coil, open bore, superconducting magnet system that is designed to produce uniform magnetic fields of up to 4 Tesla and non-uniform magnetic fields with gradients up to up to 2 T/m configurations. Within the warm bore of the magnet is placed an octagonal vacuum chamber that has a 46 cm outer diameter and is 22 cm tall. The primary missions of the MDPX device are to: (1) investigate the structural, thermal, charging, and collective properties of a plasma as the electrons, ions, and finally charged microparticles become magnetized; (2) study the evolution of a dusty plasma containing magnetic particles (paramagnetic, super-paramagnetic, or ferromagnetic particles) in the presence of uniform and non-uniform magnetic fields; and, (3) explore the fundamental properties of strongly magnetized plasmas (``i.e., dust-free'' plasmas). This presentation will summarize the initial characterization of the magnetic field structure, initial plasma parameter measurements, and the development of in-situ and optical diagnostics. This work is supported by funding from the NSF and the DOE.

  1. Performance Evaluation of PV Panel Under Dusty Condition

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Tripathi

    2017-11-01

    Full Text Available The performance of PV panel depends on the incoming sunlight on its surface. The accumulated airborne dust particles on panel surface creates a barrier in the path of sunlight and panel surface, which significantly reduces the amount of solar radiation falling on the panel surface. The present study shows a significant reduction in short circuit current and power output of PV panel due to dust deposition on its surface, whereas the reduction in open circuit voltage is not much prominent. This study has been carried in the field as well as in the laboratory. The reduction in maximum power output of PV panel for both the studies ensures a linear relation with the dust deposition on its surface. In the field study, the reduction in the power output due to 12.86gm of dust deposition on the panel surface was 43.18%, whereas in the laboratory study it was 44.75% due to 11gm of dust deposition Article History: Received July 10th 2017; Received in revised form Sept 15th 2017x; Accepted 1st Oct 2017; Available online How to Cite This Article: Tripathi, A.K., Aruna, M. and Murthy, Ch.,S.N. (2017. Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Develeopment, 6(3, 225-233. https://doi.org/10.14710/ijred.6.3.225-233

  2. Analog Experiments on Tensile Strength of Dusty and Cometary Matter

    Science.gov (United States)

    Musiolik, Grzegorz; de Beule, Caroline; Wurm, Gerhard

    2017-11-01

    The tensile strength of small dusty bodies in the solar system is determined by the interaction between the composing grains. In the transition regime between small and sticky dust (μm) and non cohesive large grains (mm), particles still stick to each other but are easily separated. In laboratory experiments we find that thermal creep gas flow at low ambient pressure generates an overpressure sufficient to overcome the tensile strength. For the first time it allows a direct measurement of the tensile strength of individual, very small (sub)-mm aggregates which consist of only tens of grains in the (sub)-mm size range. We traced the disintegration of aggregates by optical imaging in ground based as well as microgravity experiments and present first results for basalt, palagonite and vitreous carbon samples with up to a few hundred Pa. These measurements show that low tensile strength can be the result of building loose aggregates with compact (sub)-mm units. This is in favour of a combined cometary formation scenario by aggregation to compact aggreates and gravitational instability of these units.

  3. Effect of random charge fluctuation on strongly coupled dusty Plasma

    Science.gov (United States)

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-01

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  4. Dusty plasmas in the lunar exosphere: Effects of meteoroids

    Science.gov (United States)

    Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.

    2018-01-01

    A possibility of the formation in the lunar exosphere of dust cloud due to meteoroid impacts onto the lunar surface is studied. The main attention is paid to the high altitudes over the lunar surface including the range of the altitudes between 30 and 110 km where the measurements of dust were performed within the NASA LADEE mission. From the viewpoint of the formation of dust cloud at high altitudes over the Moon, the most important zone formed by the meteoroid impact is the zone of melting of substance. Only the droplets originated from this zone have the speeds between the first and second astronautical velocities (for the Moon). Correspondingly, only such droplets can perform finite movement around the Moon. The liquid droplets harden when rising over the lunar surface. Furthermore, they aquire electric charges due to the action, in particular, of the solar wind electrons and ions, as well as of the solar radiation. Thus dusty plasmas exist in the lunar exosphere with the characteristic number density ≲ 10-2 m-3 of dust particles with the sizes from 300 nm to 1 μm which is in accordance with the results of measurements performed by LADEE.

  5. Equation of state for two-dimensional dusty plasma liquids and its applications

    Science.gov (United States)

    Feng, Yan

    2017-10-01

    Laboratory dusty plasma consists of free electrons, free ions, and micro-sized dust particles with thousands of negative elementary charges. Due to their extremely low charge-to-mass ratio, these dust particles are strongly coupled, arranging themselves like atoms in liquids or solids. Due to the shielding effects of electrons and ions, dust particles interact with each other through the Yukawa potential, so that simulations of Yukawa liquids or solids are used to study properties of dusty plasmas. In the past two decades, the properties of liquid 2D dusty plasmas have been widely studied from experiments to theories and simulations. However, from our literature search, we have not found a quantitative and comprehensive study of properties of 2D liquid dusty plasmas over a wide range of plasma conditions. Here, from molecular-dynamics simulations of Yukawa liquids, we have obtained a concise equation of state (EOS) for the 2D liquid dusty plasmas from empirical fitting, which contains three quantities of the internal pressure, the coupling parameter, and the screening parameter. From this EOS, different thermodynamical processes can be directly derived, such as isotherms, isobars and isochores. Also, various physical properties of 2D liquid dusty plasmas, like the bulk modulus of elasticity, can be analytically derived, so that the sound speeds can be obtained. Finally, an analytical expression of the specific heat for 2D liquid dusty plasmas has been achieved. Work supported by the National Natural Science Foundation of China under Grant No. 11505124, the 1000 Youth Talents Plan, and the startup funds from Soochow University.

  6. GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Nesvold, Erika R. [Department of Physics, University of Maryland Baltimore County 1000 Hilltop Circle Baltimore, MD 21250 (United States); Kuchner, Marc J., E-mail: Erika.Nesvold@umbc.edu, E-mail: Marc.Kuchner@nasa.gov [NASA Goddard Space Flight Center Exoplanets and Stellar Astrophysics Laboratory, Code 667 Greenbelt, MD 21230 (United States)

    2015-01-10

    We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t {sub coll} of the disk by α = 0.32(t/t {sub coll}){sup –0.04}, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M {sub Jup}. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.

  7. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    International Nuclear Information System (INIS)

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C.

    2012-01-01

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s –1 , and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick angle with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk θ ∼ 45°, matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60° from the vertical.

  8. DYNAMICAL EVOLUTION OF THIN DISPERSION-DOMINATED PLANETESIMAL DISKS

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Slepian, Zachary S.

    2010-01-01

    We study the dynamics of a vertically thin, dispersion-dominated disk of planetesimals with eccentricities e-tilde and inclinations i-tilde (normalized in Hill units) satisfying e-tilde >> 1, i-tilde -2 << 1. This situation may be typical (even if only temporarily) for, e.g., a population of protoplanetary cores in the end of the oligarchic phase of planet formation. In this regime of orbital parameters, planetesimal scattering has an anisotropic character and strongly differs from scattering in thick (i-tilde ∼ e-tilde) disks. We derive analytical expressions for the planetesimal scattering coefficients and compare them with numerical calculations. We find significant discrepancies in the inclination scattering coefficients obtained by the two approaches and ascribe this difference to the effects not accounted for in the analytical calculation: multiple scattering events (temporary captures, which may be relevant for the production of distant planetary satellites outside the Hill sphere) and distant interaction of planetesimals prior to their close encounter. Our calculations show that the inclination of a thin, dispersion-dominated planetesimal disk grows exponentially on a very short timescale implying that (1) such disks must be very short-lived and (2) planetesimal accretion in this dynamical phase is insignificant. Our results are also applicable to the dynamics of shear-dominated disks switching to the dispersion-dominated regime.

  9. Hydrogen Cyanide In Protoplanetary Disks

    Science.gov (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  10. Barium nucleosynthesis in the disk

    Energy Technology Data Exchange (ETDEWEB)

    Twarog, B.A.

    1981-11-15

    The history of Ba production in the disk is discussed, particularly with regard to the apparent constancy of the production rate of Ba relative to Fe over the lifetime of the disk. An infall model of the chemical evolution of Ba/Fe within the disk is constructed under the assumption that the mass function and star formation rate are independent of time and Ba is produced as purely a secondary element. The model not only satisfies the present constraints for the disk, but produces a (Ba/H)-(Fe/H) relation which is consistent with the available observational data. It is shown that the apparent constancy of the Ba/Fe ratio is an artifact of (1) an inadequate and insufficiently accurated data sample, and (2) secondary production of Ba within the disk which is 20 to 80 times less efficient relative to Fe than the production ratio for the halo. The model predicts that stars formed during the transition period between halo and disk should show a Ba/Fe excess relative to the Sun of about a factor of 2. It is concluded that the possible sources of the Ba/Fe overproduction in the halo relative to the disk are incompatible with present theoretical limits on the mass ranges for iron and barium production by stars.

  11. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    Science.gov (United States)

    Desai, Karna M.; Steiman-Cameron, Thomas Y.; Durisen, Richard H.

    2018-01-01

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are more prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In my dissertation work, I performed radiative 3D hydrodynamics simulations (by employing the code, CHYMERA) and extensively studied GIs by inserting different objects in the ‘control disk’ (a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star).Studying planetary migration helps us better constrain planet formation models. To study the migration of Jovian planets, in 9 separate simulations, each of the 0.3 MJ, 1 MJ, and 3 MJ planets was inserted near the Inner and Outer Lindblad Resonances and the Corotation Radius (CR) of the dominant GI-induced two-armed spiral density wave in the disk. I found the migration timescales to be longer in a GI-active disk when compared to laminar disks. The 3 MJ planet controls its own orbital evolution, while the migration of a 0.3 MJ planet is stochastic in nature. I defined a ‘critical mass’ as the mass of an arm of the dominant two-armed spiral density wave within the planet’s Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks.To understand the stochastic migration of low-mass planets, I performed a simulation of 240 zero-mass planet-tracers (hereafter, planets) by inserting these at a range of locations in the control disk (an equivalent of 240 simulations of Saturn-mass or lower-mass objects). I calculated a Diffusion Coefficient (3.6 AU2/ 1000 yr) to characterize the stochastic migration of planets. I analyzed the increase in the eccentricity dispersion and compared it with the observed exoplanet eccentricities. The diffusion of planets can be a slow process, resulting in the survival of small planetary cores. Stochastic migration of planets is

  12. Shadows and spirals in the protoplanetary disk HD 100453

    Science.gov (United States)

    Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.

    2017-01-01

    Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and

  13. Resonantly driven nonlinear density waves in protostellar disks

    Science.gov (United States)

    Yuan, Chi; Cassen, Pat

    1994-01-01

    Recent observations of binary, pre-main-sequence, solar-type stars provide evidence that such systems may coexist with circumstellar disks. The binary disk systems, besides being of general interest for the study of star formation, potentially provide useful tests of companion-disk interaction theories prominent in current hypotheses of planet formation. In this paper, we apply an asymptotic analysis of the nonlinear, resonant interaction of a stellar companion with a disk to understand the dependence of such interactions on the properties of the system: the binary mass ratio, the physical properties of the disk, and the effective dissipation (treated herein as viscosity). The method is based on a WKBJ approximation and exploits the conditions that the disk is thin and much less massive than the primary, but does not require that the companion-induced disturbance be small. Both isothermal and adiabatic responses are treated. Only circular orbit resonances are considered in this paper. It is demonstrated that the temperature of the disk as well as the relative mass of the companion affects the degree of nonlinearity, and that nonlinearity promotes high wave compression ratios, long wavelengths, and increased propagation distances. Nevertheless, the total torque exerted between the companion and the disk is well represented by linear theory. The amplitudes of density disturbances are reduced by viscosity and nonisothermality. Because resonant interactions are generally strong and capable of driving rapid evolution, one might expect observations of systems undergoing strong, resonant-driven evolution to be rare. In this connection, it is pointed out that the m = 1 resonance is distinguished by being anomalously weaker than the others and is therefore of observational interest. It is speculated that, in conditions of intrinsically small dissipation, the propagation of resonant-driven density waves is limited by the tendency of their wavelength to diminish with distance

  14. THE STRUCTURE OF THE ACCRETION DISK IN THE ACCRETION DISK CORONA X-RAY BINARY 4U 1822-371 AT OPTICAL AND ULTRAVIOLET WAVELENGTHS

    International Nuclear Information System (INIS)

    Bayless, Amanda J.; Robinson, Edward L.; Cornell, Mark E.; Hynes, Robert I.; Ashcraft, Teresa A.

    2010-01-01

    The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel on the Hubble Space Telescope and new V- and J-band photometry with the 1.3 m SMARTS telescope at Cerro Tololo Inter-American Observatory. We use the new data to construct its UV/optical spectral energy distribution and its orbital light curve in the UV, V, and J bands. We derive an improved ephemeris for the optical eclipses and confirm that the orbital period is changing rapidly, indicating extremely high rates of mass flow in the system, and we show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km s -1 . We show that the disk has a vertically extended, optically thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to ∼0.5 of the disk radius. As it has a low brightness temperature, we identify it as the optically thick base of a disk wind, not as the optical counterpart of the ADC. Like previous models of 4U 1822-371, ours needs a tall obscuring wall near the edge of the accretion disk, but we interpret the wall as a layer of cooler material at the base of the disk wind, not as a tall, luminous disk rim.

  15. 8-inch IBM floppy disk

    CERN Multimedia

    1971-01-01

    The 8-inch floppy disk was a magnetic storage disk for the data introduced commercially by IBM in 1971. It was designed by an IBM team as an inexpensive way to load data into the IBM System / 370. Plus it was a read-only bare disk containing 80 KB of data. The first read-write version was introduced in 1972 by Memorex and could contain 175 KB on 50 tracks (with 8 sectors per track). Other improvements have led to various coatings and increased capacities. Finally, it was surpassed by the mini diskette of 5.25 inches introduced in 1976.

  16. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    International Nuclear Information System (INIS)

    Levin, Marcus; Rojas, Elena; Vanhala, Esa; Vippola, Minnamari; Liguori, Biase; Kling, Kirsten I.; Koponen, Ismo K.; Mølhave, Kristian; Tuomi, Timo; Gregurec, Danijela; Moya, Sergio; Jensen, Keld A.

    2015-01-01

    Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical respirable dustiness index and particle size distributions. Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes. Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool NanoSafer. Drastic material-specific effects on powder respirable dustiness index were observed with the change in TiO 2 from 30 % RH (639 mg/kg) to 50 % RH (1.5 mg/kg). All five tested materials indicate a decreasing dustiness index with relative humidity increasing from 30 to 70 % RH. Test of powder water uptake showed an apparent link with the decreasing dustiness index. Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction. Tests of control banding exposure models using the measured dustiness indices in three different exposure scenarios showed that in two of the tested materials, one 20 % change in RH changed the exposure banding from the lowest level to the highest. The study shows the importance of powder storage conditions prior to tests for classification of material dustiness indices. It also highlights the importance of correct storage information and relative humidity and expansion of the dustiness test conditions specifically, when using dustiness indices as a primary parameter for source strength in exposure assessment

  17. Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

    Science.gov (United States)

    Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; hide

    2014-01-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions

  18. [Orbital exenteration].

    Science.gov (United States)

    Benazzou, S; Arkha, Y; Boulaadas, M; Essakalli, L; Kzadri, M

    2011-04-01

    Orbital exenteration is a disfiguring surgery. The surgery is mostly performed for advanced neoplasms of the eyelid in an attempt to achieve cure with tumor free margins. Reconstruction is a real challenge, especially in elderly patients with significant comorbidities. We operated 15 patients presenting with palpebral and orbital tumors, between January 2000 and December 2007. We collected the clinical data concerning patients, tumor, treatment, and recurrences. Ten male and five female patients with a mean age of 56 years at diagnosis presented with ulcerative palpebral malignant tumor, and impaired ocular motility. Basal cell carcinoma was the most common (80%). All patients underwent exenteration, (subtotal three, total eight, and extended four patients). The cavity was filled with a temporal muscle flap in ten cases, Mustardé flap in three cases, latissimus dorsi myocutaneous free flap in one case, and a jugal V-Y flap in one case. The mean follow-up was 23 months with good healing without radiotherapy tissue alteration. Four patients had a recurrence and one patient died from metastases. The goals of reconstruction are functional and esthetic. Given the initial tumoral extension, we choose to use a regional or microsurgical flap for functional reconstruction. The flap provides a good cutaneous coverage, rapid healing, closure of orbital nasal and sinus communications, or of orbital and cranial communications. It is not damaged by radiotherapy. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Orbit analysis

    International Nuclear Information System (INIS)

    Michelotti, L.

    1995-01-01

    We take an overview of recently developed methods for studying single particle orbits in accelerators and discuss some physics underlying those which involve Lie operators. It will be further argued that object-oriented programming provides the appropriate computing strategy in which to model accelerators and to implement these techniques

  20. Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum

    Science.gov (United States)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-03-01

    The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.

  1. Accretion Disk Assembly During Common Envelope Evolution: Implications for Feedback and LIGO Binary Black Hole Formation

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea; Macias, Phillip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); MacLeod, Morgan, E-mail: armurgui@ucsc.edu [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-08-20

    During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for disk formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.

  2. ON THE SIZE EVOLUTION OF A GALACTIC DISK IN HIERARCHICAL MERGING OF COLD DARK MATTER HALOS

    International Nuclear Information System (INIS)

    Hayashi, Hirohito; Chiba, Masashi

    2009-01-01

    We investigate the dynamical effects of dark matter subhalos on the structure and evolution of a galactic disk, using the semi-analytic method that includes approximated and empirical relations as achieved in detailed numerical simulations of the cold dark matter model. We calculate the upper limit for the size of a galactic disk at a specific redshift z, based on the orbital properties of subhalos characterized by their pericentric distances from the center of a host halo. We find that this possibly largest size of a disk as determined by the smallest pericentric distances of subhalos shows the characteristic properties, which are basically in agreement with an observed galactic disk at low and high z. Namely, it is found that a massive disk can have a larger size than a less massive one, because of its stability against the destruction effect of subhalos. Also, with fixed mass, the size of a galactic disk at low z can be larger than that at high z, reflecting the orbital evolution of subhalos with respect to a host halo. These results suggest that the presence and structure of a galactic disk may be dynamically limited by the interaction with dark matter substructures, especially at high z.

  3. Extreme Contrast Direct Imaging of Planets and Debris disks with the Palomar P3K Adaptive Optics System and the Vector Vortex Coronagraph

    Science.gov (United States)

    Wahl, Matthew; Metchev, S. A.; Patel, R.; Serabyn, G.; PALM-3000 Adaptive Optics Team

    2013-01-01

    We present first results from using the PALM-3000 extreme adaptive optics system and imaging camera on the Hale 5m telescope. Observations using the vector vortex coronagraph have given us direct detections of the planets in the HR8799 system and the dusty debris disk around the star HD141569A. Due to the unprecedented inner working angle of the VVC, the data show a clearing within the inner ring inwards to ~20AU along the projected semi-major axis. Our observations of the disk in the K band (2.2 μm) demonstrate the power of the next generation of adaptive optics systems coupled with phase mask coronagraphy. We also show a comparison of the data reduction techniques currently being implemented in the direct imaging field. Specifically, the Locally Optimized Combination of Images (LOCI) and the Karhunen-Loeve Image Processing (KLIP) algorithms, the latter being a more robust method for resolving debris disks.

  4. Local study of helical magnetorotational instability in viscous Keplerian disks

    Science.gov (United States)

    MahdaviGharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-03-01

    In this paper, regarding the recent detection of significant azimuthal magnetic field in some accretion disks such as protostellar (Donati et al. in Nature 438:466, 2005), the multi-fluid model has been employed to analysis the stability of Keplerian rotational viscous dusty plasma system in a current-free helical magnetic field structure. Using the fluid-Maxwell equations, the general dispersion relation of the excited modes in the system has been obtained by applying the local approximation method in the linear perturbation theory. The typical numerical analysis of the obtained dispersion relation in the high-frequency regime shows that the presence of azimuthal magnetic field component in Keplerian flow has a considerable role in the stability conditions of the system. It also shows that the magnetic field helicity has a stabilization role against the magnetorotational instability (MRI) in the system due to contraction of the unstable wavelength region and decreasing the maximum growth rate of the instability. In this sense, the stabilization role of the viscosity term is more considerable for HMRI (instability in the presence of azimuthal magnetic field component) than the corresponding MRI (instability in the absence of azimuthal magnetic field component). Moreover, considering the discovered azimuthal magnetic field in these systems, the MRI can be arisen in the over-all range of dust grains construction values in contract with traditional MRI. This investigation can greatly contribute to better understanding the physics of some astrophysical phenomena, such as the main source of turbulence and angular momentum transport in protostellar and the other sufficiently ionized astrophysical disks, where the azimuthal magnetic field component in these systems can play a significant role.

  5. The Fabulous Four Debris Disks

    Science.gov (United States)

    Werner, Michael; Stapelfeldt, Karl

    2004-09-01

    This program is a comprehensive study of the four bright debris disks that were spatially resolved by IRAS: Beta Pictoris, Epsilon Eridani, Fomalhaut, and Vega. All SIRTF instruments and observing modes will be used. The program has three major objectives: (1) Study of the disk spatial structure from MIPS and IRAC imaging; (2) Study of the dust grain composition using the IRS and MIPS SED mode; and (3) companion searches using IRAC. The data from this program should lead to a detailed understanding of these four systems, and will provide a foundation for understanding all of the debris disks to be studied with SIRTF. Images and spectra will be compared with models for disk structure and dust properties. Dynamical features indicative of substellar companions' effects on the disks will be searched for. This program will require supporting observations of PSF stars, some of which have been included explicitly. In the majority of cases, the spectral observations require a preferred orientation to align the slits along the disk position angles. Detector saturation issues are still being worked for this program, and will lead to AOR modifications in subsequent submissions. The results from this program will be analyzed collaboratively by the IRAC, IRS, and MIPS teams and by general GTOs Jura and Werner.

  6. Exposure Assessment of Four Pharmaceutical Powders Based on Dustiness and Evaluation of Damaged HEPA Filters

    DEFF Research Database (Denmark)

    Levin, Marcus; Koponen, Ismo K.; Jensen, Keld A.

    2014-01-01

    In this study, we show the different dustiness characteristics of four molecular pharmaceutical powder candidates and evaluate the performance of HEPA filters damaged with three different pinhole sizes and exposed to dust using real industrial powders in a miniaturized EN15051 rotating drum...... number time-series of a complete dustiness test. It provides information on the HEPA-filter used including a scanning electron microscopy image of it. It also provides APS-measurements of particles penetrating the damaged HEPA-filter.]...... modeling in a 5times 20kg powder pouring scenario, suggests that excessive dust concentrations may be reached during use of powders with the highest dustiness levels. By number, filter-damage by three pinhole sizes resulted in damage-dependent penetration of 70-80nm-size particles, but by volume and mass...

  7. THERMODYNAMIC REASONS OF AGGLOMERATION OF DUST PARTICLES IN THE THERMAL DUSTY PLASMA

    Directory of Open Access Journals (Sweden)

    V.I.Vishnyakov

    2003-01-01

    Full Text Available The thermodynamic equilibrium of thermal dusty plasmas consisting of ionized gas (plasma and solid particles (dust grains, which interact with each other, is studied. The tendency of grains in dusty plasmas to agglomerate corresponds to the tendency of dusty plasmas to balanced states. When grains agglomerate, electrical perturbations generated by each grain concentrate inside the agglomerate. The plasma is perturbed only by the agglomerate's exterior surface. The greater number of possible states for electrons and ions in plasma depends on the volume of perturbation of grains. The fewer are the perturbations the greater is the amount of possible states for electrons and ions in plasma. If the grains collected from a distance smaller than 8 Debye lengths, the total volume of perturbations is minimized; the free energy of the plasma is also minimized.

  8. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field.

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M S

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  9. Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment

    DEFF Research Database (Denmark)

    Levin, Marcus; Rojas, Elena; Vanhala, Esa

    2015-01-01

    Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials. The tests consisted of measurements of gravimetrical...

  10. Tracing the evolution of protoplanetary disks

    NARCIS (Netherlands)

    Maaskant, Koen Maarten

    2014-01-01

    This thesis presents new insights of protoplanetary disk evolution. It focuses on the characterisation of several elements in the earliest phases of planet formation in protoplanetary disks: the connection between the SED and disk gaps (Chapters 2, 3 and 4), PAHs in the gas flows in disk gaps

  11. A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap

    Science.gov (United States)

    Pinilla, P.; Klarmann, L.; Birnstiel, T.; Benisty, M.; Dominik, C.; Dullemond, C. P.

    2016-01-01

    Context. Transition disks are circumstellar disks that show evidence of a dust cavity, which may be related to dynamical clearing by embedded planet(s). Most of these objects show signs of significant accretion, indicating that the inner disks are not truly empty, but that gas is still streaming through to the star. A subset of transition disks, sometimes called pre-transition disks, also shows a strong near-infrared excess, interpreted as an optically thick dusty belt located close to the dust sublimation radius within the first astronomical unit. Aims: We study the conditions for the survival and maintenance of such an inner disk in the case where a massive planet opens a gap in the disk. In this scenario, the planet filters out large dust grains that are trapped at the outer edge of the gap, while the inner regions of the disk may or may not be replenished with small grains. Methods: We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Results: Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myr within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1 MJup), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down

  12. Decay instability of an upper hybrid wave in a magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Gahlot, Ajay; Walia, Ritu; Sharma, Jyotsna; Sharma, Suresh C.; Sharma, Rinku

    2013-01-01

    The decay instability of an upper hybrid wave into an upper hybrid sideband wave and low frequency ion-cyclotron wave are studied in a magnetized dusty plasma cylinder. The growth rate and ion-cyclotron mode frequencies were evaluated based on existing dusty plasma parameters. It is found that the unstable mode frequency increases linearly with δ (ion-to-electron density ratio). In addition, the growth rate of the unstable ion-cyclotron mode decreases sharply for lower values of δ in the presence of dust charge fluctuations, i.e., the dust grains increases the damping effect in three wave interaction process.

  13. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  14. Variable Dynamics in the Inner Disk of HD 135344B Revealed with Multi-epoch Scattered Light Imaging

    Science.gov (United States)

    Stolker, Tomas; Sitko, Mike; Lazareff, Bernard; Benisty, Myriam; Dominik, Carsten; Waters, Rens; Min, Michiel; Perez, Sebastian; Milli, Julien; Garufi, Antonio; de Boer, Jozua; Ginski, Christian; Kraus, Stefan; Berger, Jean-Philippe; Avenhaus, Henning

    2017-11-01

    We present multi-epoch Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE) observations of the protoplanetary disk around HD 135344B (SAO 206462). The J-band scattered light imagery reveal, with high spatial resolution (˜41 mas, 6.4 au), the disk surface beyond ˜20 au. Temporal variations are identified in the azimuthal brightness distributions of all epochs, presumably related to the asymmetrically shading dust distribution in the inner disk. These shadows manifest themselves as narrow lanes, cast by localized density enhancements, and broader features which possibly trace the larger scale dynamics of the inner disk. We acquired visible and near-infrared photometry which shows variations up to 10% in the JHK bands, possibly correlated with the presence of the shadows. Analysis of archival Very Large Telescope Interferometer/Precision Integrated-Optics Near-infrared Imaging ExpeRiment (VLTI/PIONIER) H-band visibilities constrain the orientation of the inner disk to I=18\\buildrel{\\circ}\\over{.} {2}-4.1+3.4 and {PA}=57\\buildrel{\\circ}\\over{.} 3+/- 5\\buildrel{\\circ}\\over{.} 7, consistent with an alignment with the outer disk or a minor disk warp of several degrees. The latter scenario could explain the broad, quasi-stationary shadowing in north-northwest direction in case the inclination of the outer disk is slightly larger. The correlation between the shadowing and the near-infrared excess is quantified with a grid of radiative transfer models. The variability of the scattered light contrast requires extended variations in the inner disk atmosphere (H/r≲ 0.2). Possible mechanisms that may cause asymmetric variations in the optical depth ({{Δ }}τ ≲ 1) through the atmosphere of the inner disk include turbulent fluctuations, planetesimal collisions, or a dusty disk wind, possibly enhanced by a minor disk warp. A fine temporal sampling is required to follow day-to-day changes of the shadow patterns which may be a face

  15. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike

    2012-01-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age ∼<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics—namely, Hα emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess—the first unambiguous evidence of a dusty circumstellar disk—around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

  16. SDMS-based Disk Encryption Method

    OpenAIRE

    An, Dokjun; Ri, Myongchol; Choe, Changil; Han, Sunam; Kim, Yongmin

    2012-01-01

    We propose a disk encryption method, called secure disk mixed system (SDMS) in this paper, for data protection of disk storages such as USB flash memory, USB hard disk and CD/DVD. It is aimed to solve temporal and spatial limitation problems of existing disk encryption methods and to control security performance flexibly according to the security requirement of system. SDMS stores data by encrypting with different encryption key per sector and updates sector encryption keys each time data is ...

  17. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.

  18. Covering and piercing disks with two centers

    KAUST Repository

    Ahn, Heekap

    2013-04-01

    We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.

  19. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg [Mansoura University, Physics Department, Faculty of Science (Egypt); El-Shewy, E. K. [Taibah University Al-Madinah Al-Munawarah, Department of Physics (Saudi Arabia); Darweesh, H. F. [Mansoura University, Physics Department, Faculty of Science (Egypt)

    2015-10-15

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.

  20. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    Science.gov (United States)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  1. The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum

    Science.gov (United States)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-01-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.

  2. SDP_golofs01_3: Stellar Disk Evolution

    Science.gov (United States)

    Olofsson, G.

    2010-03-01

    n a collaboration between the HSC, P. Harvey (Mission Scientist) and the three instrument consortia we propose to apply the full power of Herschel to investigate the properties of circum-stellar disks. The versatility of Herschel allows us to address several key questions: How do the disks evolve with time? Planets clearly form out of circum-stellar disks and there is growing evidence that the time scale is short, 1 - 10 Myr, for the main accretion phase. During this time period, the stellar radiation and stellar winds clean the disks from most of their dust and gas, eventually making them transparent. However, collisions and evaporation from comet- like bodies will continue to produce dust and gas. This activity declines with time, and we will pursue this scenario by observing a sample of IR excess stars of known age, ranging from a few million years to the age of the sun. Are there analogues to our Kuiper belt around nearby stars? The Kuiper belt is a dust belt surrounding the Sun, located outside the orbit of Neptune, which has a key role in stabilizing orbits of the KE-objects and this dynamical aspect makes it particularly interesting to search for stars that may host KE-belt analogues. Herschel offers a unique sensitivity beyond 100 m and we propose an extensive survey of nearby stars seeking cold dust emission. What will a closer IR look at the "Fabulous Four" (and some other resolved disks) reveal? Several nearby MS stars with IR excesses have circumstellar dust structures that can be resolved by Herschel. Imaging these structures in the six PACS+SPIRE bands will enable us to explore the dust properties, notably the size distribution and albedo.. What is the composition of young disks? We propose a detailed spectroscopic investigation of four bright disks, including a full spectral scan with PACS, an FTS scan at full resolution and HIFI observations of selected frequencies. The aim is to constrain the properties of both the dust and gas components.

  3. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  4. Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka

    Science.gov (United States)

    Middleton, Jennifer L.; Mukhopadhyay, Sujoy; Langmuir, Charles H.; McManus, Jerry F.; Huybers, Peter J.

    2018-01-01

    Sedimentary records of dust deposition in the subtropical Atlantic provide important constraints on millennial- and orbital-scale variability in atmospheric circulation and North African aridity. Constant flux proxies, such as extraterrestrial helium-3, yield dust flux records that are independent of the biases caused by lateral sediment transport and limited resolution that may be associated with age-model-derived mass accumulation rates. However, Atlantic dust records constrained using constant flux proxies are sparsely distributed and generally limited to the past 20 ka. Here we extend the Atlantic record of North African dust deposition to 70 ka using extraterrestrial helium-3 and measurements of titanium, thorium, and terrigenous helium-4 in two sediment cores collected at 26°N and 29°N on the Mid-Atlantic Ridge and compare results to model estimates for dust deposition in the subtropical North Atlantic. Dust proxy fluxes between 26°N and 29°N are well correlated, despite variability in lateral sediment transport, and underscore the utility of extraterrestrial helium-3 for constraining millennial-scale variability in dust deposition. Similarities between Mid-Atlantic dust flux trends and those observed along the Northwest African margin corroborate previous interpretations of dust flux variability over the past 20 ka and suggest that long distance transport and depositional processes do not overly obscure the signal of North African dust emissions. The 70 ka Mid-Atlantic record reveals a slight increase in North African dustiness from Marine Isotope Stage 4 through the Last Glacial Maximum and a dramatic decrease in dustiness associated with the African Humid Period. On the millennial-scale, the new records exhibit brief dust maxima coincident with North Atlantic cold periods such as the Younger Dryas, and multiple Heinrich Stadials. The correlation between Mid-Atlantic dust fluxes and previous constraints on North African aridity is high. However

  5. Orbit analysis

    International Nuclear Information System (INIS)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators

  6. Orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  7. Inflammation of the Orbit

    Science.gov (United States)

    ... Glaucoma (Video) Macular Degeneration Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...

  8. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Abstract. Formation of large-amplitude double layers in a dusty plasma whose con- stituents are electrons, ions, warm dust grains and positive ion beam are studied using. Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam ...

  9. Dust-acoustic solitary waves in a dusty plasma with two-temperature ...

    Indian Academy of Sciences (India)

    acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of small but ...

  10. Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model ...

    Indian Academy of Sciences (India)

    Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model-B) stratified fluid in porous medium under variable viscosity. Om Prakash ... Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various ...

  11. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  12. The effect of surface coatings on the dustiness of a calcium carbonate nanopowder

    International Nuclear Information System (INIS)

    Burdett, Garry; Bard, Delphine; Kelly, Alexandra; Thorpe, Andrew

    2013-01-01

    Six calcium carbonate nanopowders that had been functionalized (coated) to enhance their use in a range of industrial applications were compared to the uncoated nanopowder (15–30-nm size range) from which they were made. The nanopowders were first characterized using the standard gravimetric rotating drum dustiness test (EN 15051 2006). All the functionalized powders showed a substantial increase in dustiness compared with the uncoated sample. The largest increase was some ×45, ×90 and ×331 higher for the inhalable, thoracic and respirable fractions, respectively, and would potentially give rise to much higher exposures to workers handling these powders. This article also investigated a range of additional measurement methods to extend the standard dustiness test to measure the particle size distribution and particle number concentrations. Several online instruments were compared in two sets of tests, as well as, offline transmission electron microscopy analysis. The results of these tests are discussed to assess the suitability and limitations of the measurement methods and to assess the best approach for extending the current gravimetric standard to include number concentration and size distribution measurements. It was concluded that questions remain over the performance characteristics of online charge detection instruments such as the FMPS and ELPI for dustiness testing, and such issues need to be resolved before a standardized test can be finalized.

  13. EXTINCTION LAWS TOWARD STELLAR SOURCES WITHIN A DUSTY CIRCUMSTELLAR MEDIUM AND IMPLICATIONS FOR TYPE IA SUPERNOVAE

    International Nuclear Information System (INIS)

    Nagao, Takashi; Maeda, Keiichi; Nozawa, Takaya

    2016-01-01

    Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on the properties of CS grains, especially the total-to-selective extinction ratio R V , which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R V as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.

  14. EXTINCTION LAWS TOWARD STELLAR SOURCES WITHIN A DUSTY CIRCUMSTELLAR MEDIUM AND IMPLICATIONS FOR TYPE IA SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Takashi; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Nozawa, Takaya, E-mail: nagao@kusastro.kyoto-u.ac.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-06-01

    Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on the properties of CS grains, especially the total-to-selective extinction ratio R{sub V}, which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R{sub V} as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.

  15. Nonlinear propagation of dust-acoustic solitary waves in a dusty ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 6. Nonlinear propagation of dust-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and trapped electrons. O Rahman A A Mamun. Volume 80 Issue 6 June 2013 pp ...

  16. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature ...

  17. Dust-ion-acoustic Gardner double layers in a dusty plasma with two ...

    Indian Academy of Sciences (India)

    Abstract. The properties of dust-ion-acoustic Gardner double layers (DIA GDLs) in an unmag- netized dusty plasma, whose constituents are negatively-charged stationary dust, inertial ions, and. Boltzmann electrons of two distinct temperatures, are rigorously investigated by employing the reductive perturbation method: ...

  18. Dust-acoustic solitary waves in a dusty plasma with two-temperature ...

    Indian Academy of Sciences (India)

    Abstract. By using reductive perturbation method, the nonlinear propagation of dust-acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of ...

  19. A miniature sensor for electrical field measurements in dusty planetary atmospheres

    International Nuclear Information System (INIS)

    Renno, N O; Rogacki, S; Kok, J F; Kirkham, H

    2008-01-01

    Dusty phenomena such as regular wind-blown dust, dust storms, and dust devils are the most important, currently active, geological processes on Mars. Electric fields larger than 100 kV/m have been measured in terrestrial dusty phenomena. Theoretical calculations predict that, close to the surface, the bulk electric fields in martian dusty phenomena reach the breakdown value of the isolating properties of thin martian air of about a few 10 kV/m. The fact that martian dusty phenomena are electrically active has important implications for dust lifting and atmospheric chemistry. Electric field sensors are usually grounded and distort the electric fields in their vicinity. Grounded sensors also produce large errors when subject to ion currents or impacts from clouds of charged particles. Moreover, they are incapable of providing information about the direction of the electric field, an important quantity. Finally, typical sensors with more than 10 cm of diameter are not capable of measuring electric fields at distances as small as a few cm from the surface. Measurements this close to the surface are necessary for studies of the effects of electric fields on dust lifting. To overcome these shortcomings, we developed the miniature electric-field sensor described in this article.

  20. Quartz dustiness: A key factor in controlling exposure to crystalline silica in the workplace.

    Science.gov (United States)

    López-Lilao, A; Escrig, A; Orts, M J; Mallol, Gustavo; Monfort, E

    2016-11-01

    The classification of Respirable Crystalline Silica (RCS) as carcinogenic for humans has drawn greater attention to crystalline silica exposure in the workplace in recent years, leading to recommendations by safety and health bodies in Europe and the U.S. for lower occupational exposure limits. In view of this new scenario, the present study examined quartz dustiness, as quartz handling is a major source of crystalline silica in the workplace. The study was conducted on test samples with different mean particle sizes, prepared from several commercial quartzes. The quartz particle samples were characterised and the influence of certain quartz particle parameters on quartz dustiness was determined. The results indicate that quartz dustiness may be significantly affected by mean particle size, specific surface area, the Hausner ratio, and fine particle content. The study shows that, in order to minimise the adverse health effects associated with the inhalation of crystalline silica, quartz dustiness may be deemed a key factor in controlling the generation of fugitive quartz emissions during quartz processing, both into the outside atmosphere (air pollution) and inside the facilities (occupational health).

  1. Effect of radiative cooling on a hot charged dusty grains with charging fluctuation

    International Nuclear Information System (INIS)

    ElWakil, S.A.; El-Shewy, E.K.; El-Basyouny, S.T.

    2005-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of hot dust grains with fluctuating electric charge is investigated. Propagation of linear solitary radiation in an unmagnetized collisionless dusty plasma is studied. The standard normal-mode analysis is used to study the stability condition of linear wave

  2. Heat transfer in MHD flow of dusty viscoelastic (Walters' liquid model ...

    Indian Academy of Sciences (India)

    December 2012 physics pp. 1457–1470. Heat transfer in MHD flow of dusty viscoelastic. (Walters' liquid model-B) stratified fluid in porous medium under variable viscosity ... in chemical technology and industry. Walters [1] ... treating environment pollution, in the petroleum industry, in the purification of rain water etc. Several ...

  3. (KP) equation in warm dusty plasma with variable dust charge, two ...

    Indian Academy of Sciences (India)

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained ...

  4. Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah D.; Silver, Jennifer

    2004-01-01

    Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented

  5. APEX (Air Pollution Exercise) Volume 10: Industrialist's Manual No. 6, Dusty Rhodes' Cement Company.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Industrialist's Manual No. 6, Dusty Rhodes' Cement Company is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The first two…

  6. Collisional effect on lower hybrid waves instability in a dusty plasma ...

    African Journals Online (AJOL)

    The effect of particle collisions on lower hybrid modes in a dusty plasma is studied. The dispersion relation derived from fluid theory is numerically solved for plasma parameters relevant to determine the modification in wave propagation due to collisions. This study is relevant to the earth's lower atmosphere, in particular, the ...

  7. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  8. Near-IR spectral evolution of dusty starburst galaxies

    Science.gov (United States)

    Lançon, Ariane; Rocca-Volmerange, Brigitte

    1996-11-01

    We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ≃ 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration. We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the

  9. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  10. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Veras, Dimitri; Ford, Eric B.; Beichman, C. A.

    2009-01-01

    The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms-core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a ∼> 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (∼10 M Jup ) in their disks.

  11. Fast-moving features in the debris disk around AU Microscopii

    NARCIS (Netherlands)

    Boccaletti, A.; Thalmann, C.; Lagrange, A.-M.; Janson, M.; Augereau, J.-C.; Schneider, G.; Milli, J.; Grady, C.; Debes, J.; Langlois, M.; Mouillet, D.; Henning, T.; Dominik, C.; Maire, A.L.; Beuzit, J.-L.; Carson, J.; Dohlen, K.; Engler, N.; Feldt, M.; Fusco, T.; Ginski, C.; Girard, J.H.; Hines, D.; Kasper, M.; Mawet, D.; Ménard, F.; Meyer, M.R.; Moutou, C.; Olofsson, J.; Rodigas, T.; Sauvage, J.-F.; Schlieder, J.; Schmid, H.M.; Turatto, M.; Udry, S.; Vakili, F.; Vigan, A.; Wahhaj, Z.; Wisniewski, J.

    2015-01-01

    In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source1. These ‘debris disks’ were thought to be by-products of planet formation because they often exhibited morphological and

  12. Orbital flower

    Science.gov (United States)

    Szucs-Csillik, Iharka

    2017-11-01

    The regularizing techniques known as Kustaanheimo-Stiefel (KS) transformation have investigated. It has proved that it is very useful in n-body simulations, where it helps to handle close encounters. This paper shows how the basic transformation is a starting point for a family of polynomial coupled function. This interpretation becomes simply on writing KS transformations in quaternion form, which also helps to derive concise expressions for regularized equations of motion. Even if the KS regularization method is more easy to use, it is interesting to encapsulate the KS transformation in a family of methods, which all conserve the KS transformations' properties. Further, an interesting point of view is considering, the orbital shapes of the restricted three-body problem (also regularized restricted three-body problem) for different initial conditions has compared with flower pattern.

  13. Disks around young stellar objects

    Indian Academy of Sciences (India)

    Keywords. Star formation; young stellar objects; circumstellar disks; exoplanets. Abstract. By 1939, when Chandrasekhar's classic monograph on the theory of Stellar Structure was published, although the need for recent star formation was fully acknowledged, no one had yet recognized an object that could be called a star ...

  14. Three types of galaxy disks

    NARCIS (Netherlands)

    Pohlen, M.; Erwin, P.; Trujillo, I.; Beckman, J. E.; Knapen, JH; Mahoney, TJ; Vazdekis, A

    2008-01-01

    We present our new scheme for the classification of radial stellar surface brightness profiles for disk galaxies. We summarize the current theoretical attempts to understand their origin and give an example of an application by comparing local galaxies with their counterparts at high redshift (z

  15. Disk Operating System User's Guide

    Science.gov (United States)

    1972-05-01

    This document serves the purpose of bringing together in one place most of the information a user needs to use the DDP-516 Disk Operating System, (DOS). DOS is a core resident, one user, console-oriented operating system which allows the user to cont...

  16. A Role of Proto-Accretion Disk Heating Proto-Planets to Evaporation

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2002-09-01

    Full Text Available We study a role of the proto-accretion disk during the formation of the planetary system, which is motivated with recent X-ray observations. There is an observational correlation of the mass of extrasolar planets with their orbital period, which also shows the minimum orbital period. This is insufficiently accounted for by the selection effect alone. Besides, most of planetary formation theories predict the lower limit of semimajor axes of the planetary orbits around 0.01 AU. While the migration theory involving the accretion disk is the most favorable theory, it causes too fast migration and requires the braking mechanism to halt the planet ~ 0.01 AU. The induced gap in the accretion disk due to the planet and/or the truncated disk are desperately required to stop the planet. We explore the planetary evaporation in the accretion disk as another possible scenario to explain the servational lack of massive close-in planets. We calculate the location where the planet is evaporated when the mass and the radius of the planet are given, and find that the evaporation location is approximately proportional to the mass of the planet as mp-1.3 and the radius of the planet as rp1.3. Therefore, we conclude that even the standard cool accretion disk becomes marginally hot to make the small planet evaporate at ~ 0.01 AU. We discuss other auxiliary mechanisms which may provide the accretion disk with extra heats other than the viscous friction, which may consequently make a larger planet evaporate.

  17. DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING

    International Nuclear Information System (INIS)

    Turner, N. J.; Carballido, A.; Sano, T.

    2010-01-01

    We apply ionization balance and magnetohydrodynamical (MHD) calculations to investigate whether magnetic activity moderated by recombination on dust grains can account for the mass accretion rates and the mid-infrared spectra and variability of protostellar disks. The MHD calculations use the stratified shearing-box approach and include grain settling and the feedback from the changing dust abundance on the resistivity of the gas. The two-decade spread in accretion rates among solar-mass T Tauri stars is too large to result solely from variations in the grain size and stellar X-ray luminosity, but can plausibly be produced by varying these parameters together with the disk magnetic flux. The diverse shapes and strengths of the mid-infrared silicate bands can come from the coupling of grain settling to the distribution of the magnetorotational turbulence, through the following three effects. First, recombination on grains 1 μm or smaller yields a magnetically inactive dead zone extending more than two scale heights from the midplane, while turbulent motions in the magnetically active disk atmosphere overshoot the dead zone boundary by only about one scale height. Second, grains deep in the dead zone oscillate vertically in wave motions driven by the turbulent layer above, but on average settle at the rates found in laminar flow, so that the interior of the dead zone is a particle sink and the disk atmosphere will become dust-depleted unless resupplied from elsewhere. Third, with sufficient depletion, the dead zone is thinner and mixing dredges grains off the midplane. The last of these processes enables evolutionary signatures such as the degree of settling to sometimes decrease with age. The MHD results also show that the magnetic activity intermittently lifts clouds of small grains into the atmosphere. Consequently the photosphere height changes by up to one-third over timescales of a few orbits, while the extinction along lines of sight grazing the disk surface

  18. Accretion disk viscosity and internal waves in disks

    Science.gov (United States)

    Huang, Min

    1992-01-01

    Recently, Vishniac, Jin and Diamond suggested that internal waves in accretion disks play a critical role in generating magnetic fields, and consequently are indirectly responsible for angular momentum transfer in thin, conducting, and non-self-gravitational disk systems. A project in which we will construct a quantitative model of the internal wave spectrum in accretion disks is started. It includes two aspects of work. The physical properties of the waves in a thin, non-self-gravitational, and non-magnetized accretion disk with realistic vertical structure is cataloged and examined. Besides the low frequency internal waves discovered by Vishniac and Diamond, it was found that sound waves with low frequency and low axisymmetry (with small absolute value of m) are capable of a driving dynamo because they are (1) well confined in a layer with thickness 2(absolute value of m)H where H is the disk scale height; (2) highly dispersive so they may survive the strong dissipation caused by the coherent nonlinear interaction their high frequency partners experience; and (3) elliptically polarized because they are confined in the z-direction. As a first step towards constructing a quantitative theory of this dynamo effect, a framework of calculating resonant nonlinear interaction among waves in disk is established. We are developing a numerical code which will compute the steady spectrum of the wave field in this framework. For simplicity, we only include the low frequency internal waves suggested by Vishniac and Diamond in the present stage. In the vicinity of the static state, the time step whose length is determined by the evolution of the modes with the largest amplitudes is too large for the modes with smaller amplitudes and overshooting occurs. Through nonlinear coupling, this overshooting is amplified and appears as a numerical instability affecting the evolution of the large amplitude modes. Shorter time steps may delay the appearance of the instability but not cure

  19. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Science.gov (United States)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  20. Modeling the η Corvi debris disk from the sub-AU scale to its outermost regions

    Science.gov (United States)

    Lebreton, J.; Beichman, C. A.; Bryden, G.; Defrère, D.; Mennesson, Bertr; Millan-Gabet, R.

    2014-03-01

    Dusty debris disks surrounding main sequence stars are thought to be analogues to thepopulations of small bodies of the Solar System (asteroids, comets/icy bodies and dust grains), however with often much higher masses and associated dust production rates. Mecanisms such as massive collisions or LHB-like events must therefore be invoked to justify their existence. This is especially striking for the nearby F2V star η Corvi that shows a very strong mid- and far-infrared excess despite an estimated age of ~1.4 Gyr (Lisse et al. 2012, Wyatt et al. 2005). We present new observations of the η Crv debris disk obtained in the far-infrared with Herschel/PACS and SPIRE and in the mid-infrared with the Keck Interferometer Nuller (Millan-Gabet et al. 2011). The Herschel/PACS images at 70, 100 and 160 μm reveal a well resolved belt of cold material at ~130 AU, as well as an unresolved component in the innermost parts of the system. This warmer counterpart is resolved in the mid-infrared as a strong null excess originating from within the ~2x4 AU field-of-view of the interferometer, which is reminiscent of the architecture of the Fomalhaut debris disk (Mennesson et al. 2012, Lebreton et al. 2013). The signature of warm silicate dust is also very clear in Spitzer/IRS high-resolution spectra (Chen et al. 2006) at intermediate wavelengths (10-35 μm). We undertake to establish a consistent model of the debris disk from the sub-AU scale to its outermost regions using the GRaTer radiative transfer code (Augereau et al. 1999a, Lebreton et al. 2013) by adjusting simultaneously the interferometric nulls, the resolved Herschel images and the spectro-photometric data against a large parameter space. Our analysis providesaccurate estimates of the fundamental parameters of the disk: its surface density profile, grain size distribution and mass, making it possible to unveil the origin of the dust and the relation between the cold (~50 K) Kuiper-like belt and the warm (~500 K) exo

  1. Optimization of the Processing of Mo Disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Harvey, James [NorthStar Medical Technologies, LLC, Madison, WI (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  2. Linear and nonlinear stability of periodic orbits in annular billiards.

    Science.gov (United States)

    Dettmann, Carl P; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  3. Growing and moving planets in disks

    NARCIS (Netherlands)

    Paardekooper, Sijme-Jan

    2006-01-01

    Planets form in disks that are commonly found around young stars. The intimate relationship that exists between planet and disk can account for a lot of the exotic extrasolar planetary systems known today. In this thesis we explore disk-planet interaction using numerical hydrodynamical simulations.

  4. A COMMON SOURCE OF ACCRETION DISK TILT

    International Nuclear Information System (INIS)

    Montgomery, M. M.; Martin, E. L.

    2010-01-01

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  5. Formation of isothermal disks around protoplanets. I. Introductory three-dimensional global simulations for sub-Neptune-mass protoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiang-Hsu; Shang, Hsien; Gu, Pin-Gao [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bu, Defu, E-mail: hhwang@asiaa.sinica.edu.tw [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatories, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-07-20

    The regular satellites found around Neptune (≈17 M{sub ⊕}) and Uranus (≈14.5 M{sub ⊕}) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets (<17 M{sub ⊕}). These disks have been shown to be cool, optically thin, and quiescent, with low surface densities and low viscosities. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for Uranus. The protoplanetary gas accretes onto the circumplanetary disk vertically from high altitude and returns to the protoplanetary disk again near the midplane. This implies an open system in which the circumplanetary disk constantly exchanges angular momentum and material with its surrounding prenatal protoplanetary gas.

  6. Exposure assessment of four pharmaceutical powders based on dustiness and evaluation of damaged HEPA filters.

    Science.gov (United States)

    Levin, Marcus; Koponen, Ismo K; Jensen, Keld A

    2014-01-01

    In this study, we show the different dustiness characteristics of four molecular pharmaceutical powder candidates and evaluate the performance of HEPA filters damaged with three different pinhole sizes and exposed to dust using real industrial powders in a miniaturized EN15051 rotating drum dustiness tester. We then demonstrate the potential use of such data using first-order exposure modeling to assess the potential worker exposure and transmission of active powder ingredients into ventilation systems. The four powders had highly variable inhalable dustiness indices (1,036 - 14,501 mg/kg). Dust particle size-distributions were characterized by three peaks; the first occurred around 60-80 nm, the second around 250 nm, and the third at 2-3 μm. The second and third peaks are often observed in dustiness test studies, but peaks in the 60-80 nm range have not been previously reported. Exposure modeling in a 5 times 20 kg powder pouring scenario, suggests that excessive dust concentrations may be reached during use of powders with the highest dustiness levels. By number, filter-damage by three pinhole sizes resulted in damage-dependent penetration of 70-80 nm-size particles, but by volume and mass the penetration is still dominated by particles larger than 100 nm. Whereas the exposure potential was evident, the potential dust concentrations in air ducts following the pouring scenario above were at pg/m(3) levels. Hence, filter penetration at these damage levels was assumed to be only critical, if the active ingredients were associated with high hazard or unique product purity is required. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: An example of a typical particle number time-series of a complete dustiness test. It provides information on the HEPA-filter used including a scanning electron microscopy image of it. It also

  7. Orbital Signatures from Observed Light Curves of Blazars A ...

    Indian Academy of Sciences (India)

    Possible extents of this inner region and a break frequency as an orbital sig- nature are presented in Section 2. We briefly review existing models in Section 3 and present our preliminary results from disk-jet models. Time series analysis of observed light curves (LCs) can detect Quasi-Periodic Oscillations (QPOs), provide.

  8. Orbital Signatures from Observed Light Curves of Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Variability in active galactic nuclei is observed in UV to X-ray emission based light curves. This could be attributed to orbital signatures of the plasma that constitutes the accretion flow on the putative disk or in the developing jet close to the inner region of the central black hole. We discuss some theoretical ...

  9. When may unstable gravitating disk be considered an infinitely thin gravitating disk

    Energy Technology Data Exchange (ETDEWEB)

    Polyachenko, V.L.; Fridman, A.M. (AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln; AN SSSR, Moscow. Astronomicheskij Sovet)

    1981-03-01

    It is shown that the model of an infinitely thin gravitating disk is valid for investigation of its stability only if a massive halo is present. Conditions for main parameters of the disk and halo are obtained when, firstly, most unstable wavelengths are much larger than the disk thickness (approximation of an infinitely thin disk) and, secondary, the contribution of a halo to the perturbed gravitational potential can be neglected. Density distributions of the disk and halo are obtained.

  10. EXTREMELY LARGE AND HOT MULTILAYER KEPLERIAN DISK AROUND THE O-TYPE PROTOSTAR W51N: THE PRECURSORS OF THE HCH II REGIONS?

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Tang, Ya-Wen; Leurini, Silvia

    2010-01-01

    We present sensitive high angular resolution (0.''57-0.''78) SO, SO 2 , CO, C 2 H 5 OH, HC 3 N, and HCOCH 2 OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array. We report the presence of a large (about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures is found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0.''7. We modeled all lines with a local thermodynamic equilibrium (LTE) synthetic spectrum. A detailed study of the kinematics of the molecular gas together with an LTE model of a circumstellar disk shows that the innermost parts of the disk are also Keplerian plus a contracting velocity. The emission of the HCOCH 2 OH reveals the possible presence of a warm 'companion' located to the northeast of the disk, however its nature is unclear. The emission of the SO and SO 2 is observed in the circumstellar disk as well as in the outflow. We suggest that the massive protostar W51 North appears to be in a phase before the presence of a hypercompact or an ultracompact H II (HC/UCH II) region and propose a possible sequence on the formation of the massive stars.

  11. Extremely Large and Hot Multilayer Keplerian Disk Around the O-type Protostar W51N: The Precursors of the HCH II Regions?

    Science.gov (United States)

    Zapata, Luis A.; Tang, Ya-Wen; Leurini, Silvia

    2010-12-01

    We present sensitive high angular resolution (0farcs57-0farcs78) SO, SO2, CO, C2H5OH, HC3N, and HCOCH2OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array. We report the presence of a large (about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures is found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0farcs7. We modeled all lines with a local thermodynamic equilibrium (LTE) synthetic spectrum. A detailed study of the kinematics of the molecular gas together with an LTE model of a circumstellar disk shows that the innermost parts of the disk are also Keplerian plus a contracting velocity. The emission of the HCOCH2OH reveals the possible presence of a warm "companion" located to the northeast of the disk, however its nature is unclear. The emission of the SO and SO2 is observed in the circumstellar disk as well as in the outflow. We suggest that the massive protostar W51 North appears to be in a phase before the presence of a hypercompact or an ultracompact H II (HC/UCH II) region and propose a possible sequence on the formation of the massive stars.

  12. MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures

  13. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  14. Electron energy probability function in the temporal afterglow of a dusty plasma

    Science.gov (United States)

    Denysenko, I. B.; Azarenkov, N. A.; Ostrikov, K.; Yu, M. Y.

    2018-01-01

    The kinetic description of the electron energy probability function (EEPF) in a dusty afterglow plasma is considered for two typical cases: when the rate of electron-neutral momentum-transfer collisions is independent of the electron energy and when it is a power function of the electron energy. The electron Boltzmann equation is solved using the method of characteristics and analytical expressions for the EEPF are obtained for different initial EEPFs (including both Maxwellian and Druyvesteyn distributions) at electron energies larger than the dust-surface potential. The analytical EEPF functions are then used to analyze several experimental parameter regimes of the dust radius and density, the dust-charge decay time, the afterglow duration, etc. It is also found that absorption of electrons by the dust particles plays an important role in determining the EEPF in a dusty afterglow.

  15. Regression of lumbar disk herniation

    Directory of Open Access Journals (Sweden)

    G. Yu Evzikov

    2015-01-01

    Full Text Available Compression of the spinal nerve root, giving rise to pain and sensory and motor disorders in the area of its innervation is the most vivid manifestation of herniated intervertebral disk. Different treatment modalities, including neurosurgery, for evolving these conditions are discussed. There has been recent evidence that spontaneous regression of disk herniation can regress. The paper describes a female patient with large lateralized disc extrusion that has caused compression of the nerve root S1, leading to obvious myotonic and radicular syndrome. Magnetic resonance imaging has shown that the clinical manifestations of discogenic radiculopathy, as well myotonic syndrome and morphological changes completely regressed 8 months later. The likely mechanism is inflammation-induced resorption of a large herniated disk fragment, which agrees with the data available in the literature. A decision to perform neurosurgery for which the patient had indications was made during her first consultation. After regression of discogenic radiculopathy, there was only moderate pain caused by musculoskeletal diseases (facet syndrome, piriformis syndrome that were successfully eliminated by minimally invasive techniques. 

  16. Fullerenes and disk-fullerenes

    International Nuclear Information System (INIS)

    Deza, M; Dutour Sikirić, M; Shtogrin, M I

    2013-01-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles

  17. HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Dodson-Robinson, Sarah E. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Su, Kate Y. L. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bryden, Geoff [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harvey, Paul; Green, Joel D., E-mail: sdr@udel.edu [Astronomy Department, University of Texas, 2515 Speedway Drive C1400, Austin, TX 78712 (United States)

    2016-12-20

    Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R  > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R  > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μ m infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a {sub min} ∼ 3 μ m, although a {sub min} is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10{sup −5} ⩽  L / L {sub ⊙} ⩽ 2 × 10{sup −4}, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

  18. Application of tomographic particle image velocimetry to studies of transport in complex (dusty) plasma

    International Nuclear Information System (INIS)

    Williams, Jeremiah D.

    2011-01-01

    Over the past twelve years, two-dimensional and stereoscopic particle image velocimetry (PIV) techniques have been used to obtain detailed measurements of the thermal and transport properties of the microparticle component of dusty plasma systems. This letter reports on an extension of these techniques to obtain a volumetric, three-dimensional velocity vector measurement using tomographic PIV. Initial measurements using the tomographic PIV diagnostic are presented.

  19. Propagation of ion-acoustic waves in a warm dusty plasma with electron inertia

    Science.gov (United States)

    Barman, S. N.; Talukdar, A.

    2011-08-01

    The KdV equation is derived for weakly nonlinear ion-acoustic waves in an unmagnetized warm dusty plasma with electron inertia. It has been shown that the inclusion of electron inertia and pressure variation of the species not only significantly modifies the basic features (width and amplitude) of dust ion-acoustic solitions, but also introduces a new parametric regime for the existence of positive and negative solitons.

  20. Acoustic Wave in a Dusty Plasma with Frequent Grain Charging Collisions

    International Nuclear Information System (INIS)

    Lee, Hee J.; Cho, Sang-Hoon

    2003-01-01

    The sink terms in the electron and ion continuity equations and the frictional terms in the momentum equations of a dusty plasma are obtained by taking moments of a kinetic equation which takes into account the grain charging collisions by electrons and ions. We show that an acoustic wave can propagate as a normal mode in the parameter regime where the frequencies of charging collisions are much greater than the wave frequency

  1. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  2. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  3. A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pascucci, Ilaria [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Manara, Carlo Felice [Scientific Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2016-12-20

    In this work, we report the discovery of a candidate planetary-mass object with a photoevaporating protoplanetary disk, Proplyd 133-353, which is near the massive star θ {sup 1} Ori C at the center of the Orion Nebula Cluster (ONC). The object was known to have extended emission pointing away from θ {sup 1} Ori C, indicating ongoing external photoevaporation. Our near-infrared spectroscopic data and the location on the H–R diagram suggest that the central source of Proplyd 133-353 is substellar (∼M9.5) and has a mass probably less than 13 Jupiter mass and an age younger than 0.5 Myr. Proplyd 133-353 shows a similar ratio of X-ray luminosity to stellar luminosity to other young stars in the ONC with a similar stellar luminosity and has a similar proper motion to the mean one of confirmed ONC members. We propose that Proplyd 133-353 formed in a very low-mass dusty cloud or an evaporating gas globule near θ {sup 1} Ori C as a second generation of star formation, which can explain both its young age and the presence of its disk.

  4. Non-linear development of secular gravitational instability in protoplanetary disks

    Science.gov (United States)

    Tominaga, Ryosuke T.; Inutsuka, Shu-ichiro; Takahashi, Sanemichi Z.

    2018-01-01

    We perform non-linear simulation of secular gravitational instability (GI) in protoplanetary disks, which has been proposed as a mechanism of planetesimal and multiple ring formation. Since the timescale of the growth of the secular GI is much longer than the Keplerian rotation period, we develop a new numerical scheme for a long-term calculation utilizing the concept of symplectic integration. With our new scheme, we first investigate the non-linear development of the secular GI in a disk without a pressure gradient in the initial state. We find that the surface density of dust increases by more than a factor of 100 while that of gas does not increase even by a factor of 2, which results in the formation of dust-dominated rings. A line mass of the dust ring tends to be very close to the critical line mass of a self-gravitating isothermal filament. Our results indicate that the non-linear growth of the secular GI provides a powerful mechanism to concentrate the dust. We also find that the dust ring formed via the non-linear growth of the secular GI migrates inward with a low velocity, which is driven by the self-gravity of the ring. We give a semi-analytical expression for the inward migration speed of the dusty ring.

  5. A 5 Micron of beta Pictoris B at a Sub-Jupiter Projected Separation: Evidence for a Misalignment Between the Planet and the Inner, Warped Disk

    Science.gov (United States)

    Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc

    2011-01-01

    We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk

  6. Infrared study of new star cluster candidates associated to dusty globules

    Science.gov (United States)

    Soto King, P.; Barbá, R.; Roman-Lopes, A.; Jaque, M.; Firpo, V.; Nilo, J. L.; Soto, M.; Minniti, D.

    2014-10-01

    We present results from a study of a sample of small star clusters associated to dusty globules and bright-rimmed clouds that have been observed under ESO/Chile public infrared survey Vista Variables in the Vía Láctea (VVV). In this short communication, we analyse the near-infrared properties of a set of four small clusters candidates associated to dark clouds. This sample of clusters associated to dusty globules are selected from the new VVV stellar cluster candidates developed by members of La Serena VVV Group (Barbá et al. 2014). Firstly, we are producing color-color and color-magnitude diagrams for both, cluster candidates and surrounding areas for comparison through PSF photometry. The cluster positions are determined from the morphology on the images and also from the comparison of the observed luminosity function for the cluster candidates and the surrounding star fields. Now, we are working in the procedures to establish the full sample of clusters to be analyzed and methods for subtraction of the star field contamination. These clusters associated to dusty globules are simple laboratories to study the star formation relatively free of the influence of large star-forming regions and populous clusters, and they will be compared with those clusters associated to bright-rimmed globules, which are influenced by the energetic action of nearby O and B massive stars.

  7. Dust Acoustic Solitons in the Dusty Plasma of the Earth's Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Kosarev, I.N.; Popel, S.I.; Yu, M.Y.

    2005-01-01

    Stratified structures that are observed at heights of 80-95 km in the lower part of the Earth's ionosphere are known as noctilucent clouds and polar mesosphere summer echoes. These structures are thought to be associated with the presence of vast amounts of charged dust or aerosols. The layers in the lower ionosphere where there are substantial amounts of dust are called the dusty ionosphere. The dust grains can carry a positive or a negative charge, depending on their constituent materials. As a rule, the grains are ice crystals, which may contain metallic inclusions. A grain with a sufficiently large metallic content can acquire a positive charge. Crystals of pure ice are charged negatively. The distribution of the dust grains over their charges has a profound impact on the ionizational and other properties of dust structures in the dusty ionosphere. In the present paper, a study is made of the effect of the sign of the dust charge on the properties of dust acoustic solitons propagating in the dusty ionosphere. It is shown that, when the dust charge is positive, dust acoustic solitons correspond to a hill in the electron density and a well in the ion density. When the dust is charged negatively, the situation is opposite. These differences in the properties of dust acoustic solitons can be used to diagnose the plasmas of noctilucent clouds and polar mesosphere summer echoes

  8. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2016-03-01

    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  9. Dynamical aspects of various solitary waves and double layers in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.C. [Plasma Physics Division, Institute of Advanced Study in Science Technology, Khanapara, Guwahati-781022, Assam (India); Sarma, J. [Department of Mathematics, R. G. Baruah College, Guwahati-781025, Assam (India); Talukdar, M. [Computer Science Division, Institute of Advanced Study in Science Technology, Khanapara, Guwahati-781022, Assam (India)

    1998-01-01

    Employing quasipotential analysis, the Sagdeev potential equation has been derived in a multicomponent plasma consisting of free and trapped electrons and contaminated by the dust charged grains forming therein by the attachment of electrons to finite-size dust particles. Because of the free and trapped electrons in the dusty plasma, the plasma-acoustic wave exhibits the different features of various solitary waves. The Sagdeev potential equation, at a small-amplitude approximation, leads to the evaluation, by a proposed new formalism of a simple wave solution technique, of the new scenario of solitary wave propagation in a dusty plasma. It has been shown that the ordering of the nonisothermality in the dusty plasma also plays a unique role. In the case of a plasma with first-order nonisothermality, the Sagdeev potential equation derives the compressive solitary wave propagation, while for plasma with higher-order nonisothermality the method might fail to solve the Sagdeev potential equation and, thus, an alternate method is used to reveal the coexistence of compressive and rarefactive solitary waves. In addition, for certain plasma parameters, the solitary waves disappear and a double layer is expected. Again, with the better approximation in the Sagdeev potential, more features of solitary waves, known as spiky and explosive, along with the double layers, are also highlighted. The observations made of the solitary waves could be of further interest in the understanding of laboratory and space plasmas.{copyright} {ital 1998 American Institute of Physics.}

  10. SEM/EDS characterisation of dusty deposits in precipitation and assessment of their origin

    Directory of Open Access Journals (Sweden)

    Miloš Miler

    2014-07-01

    Full Text Available Detailed scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS analysis of dusty material in rainfall residue, deposited and collected on February 19th 2014 in Ljubljana, was carried out with the intention to characterise it according to its chemical and mineral composition and to assess its origin. The material consists of poorly sorted and sharp-edged particles of mostly very fine-grained silt and clay fractions, which is consistent with long-range aerial transport. Particles are represented by illite, chlorite and kaolinite group clay minerals, quartz, feldspars, carbonates, accessory minerals and secondary Fe-oxy-hydroxide minerals. Quantities of minerals and illite/ kaolinite ratio (4.5 correspond to dusts in rainfall residues originating from Moroccan Atlas, while chlorite/kaolinite ratio (2.8 agrees better with dust from central Libya. The element ratios Al/Si, Ca/Al, K/Ca, Mg/Al, Fe/Al and (Ca+Mg/Fe in the studied dusty deposit are in good agreement with ratios in dusts from rainfall residues originating from Morocco and northern Mauritania. This was also confirmed by the trajectories of cloud movement that caused precipitation with dusty deposit, although the back trajectory HYSPLIT simulation of air masses indicated northern Mauritania, central Niger, southern Algeria, southwestern and central Libya as the most possible source regions.

  11. Dippers and dusty disc edges: new diagnostics and comparison to model predictions

    Science.gov (United States)

    Bodman, Eva H. L.; Quillen, Alice C.; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S.; Mamajek, Eric E.; Blackman, Eric G.; Rizzuto, Aaron; Kastner, Joel H.

    2017-09-01

    We revisit the nature of large dips in flux from extinction by dusty circumstellar material that is observed by Kepler for many young stars in the Upper Sco and ρ Oph star formation regions. These young, low-mass 'dipper' stars are known to have low accretion rates and primarily host moderately evolved dusty circumstellar discs. Young low-mass stars often exhibit rotating starspots that cause quasi-periodic photometric variations. We found no evidence for periods associated with the dips that are different from the starspot rotation period in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disc temperatures computed at the disc corotation radius are cool enough that dust should not sublime. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotation radius. Magnetospheric truncation models can explain why the dips are associated with material near corotation and how dusty material is lifted out of the mid-plane to obscure the star that would account for the large fraction of young low-mass stars that are dippers. We propose that variations in disc orientation angle, stellar magnetic field dipole tilt axis and disc accretion rate are underlying parameters accounting for differences in the dipper light curves.

  12. Thermal Marangoni convection in two-phase flow of dusty Casson fluid

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    2018-03-01

    Full Text Available This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle’s temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid. Keywords: Marangoni convection, Dusty fluid, Casson fluid, Two-phase flow, Runge-Kutta-Fehlberg method

  13. Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies

    Science.gov (United States)

    Daniel, Kathryne J.

    2018-01-01

    Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.

  14. Disks around Failed Stars - a Question of Age

    Science.gov (United States)

    2002-08-01

    First Ground-Based Mid-Infrared Observations of Brown Dwarfs [1] Summary A team of European astronomers [2] have observed eight Brown Dwarfs, i.e., small and faint objects also known as "failed stars", with the TIMMI2 infrared sensitive instrument at the ESO 3.6-m telescope on La Silla. From two of these, mid-infrared radiation is detected - for the first time ever from such objects with a ground-based telescope . While the younger Brown Dwarf, aged a few million years, is found to be surrounded by a dusty disk, no warm dust is present around the older ones. The new observations support the following formation hypothesis for Brown Dwarfs: they are born in the same way as "real" stars, by contraction in interstellar clouds of gas and dust . During the later stages of this process, the infalling material is transferred onto the star via a gas and dust disk . This disk - in which planets may possibly form - then disperses with time. PR Photo 17a/02 : Image of Brown Dwarf LP 944-20 PR Photo 17b/02 : Models of the disk around Brown Dwarf Cha HA 2 Brown Dwarfs are faint and cool objects Astronomical objects known as "Brown Dwarfs" are "failed stars" . Their comparatively small mass, less than about 7% of that of our Sun (or about 75 times the mass of planet Jupiter), is too small to achieve sufficiently high pressure and temperature at their centre to ignite energy-producing nuclear processes. Some astronomers also refer to Brown Dwarfs as a "missing link" between planets and stars, being neither one nor the other, yet with similarities to both. They do not burn hydrogen to helium as "real" stars do, but continue to emit faint light as they slowly contract and cool during millions of years. They end their inglorious life with a whimper and finally fade into eternal insignificance. Although Brown Dwarfs were theoretically predicted already in 1963, astronomers had to wait until 1995 for the first one to be discovered. This was mainly due to their extreme faintness as

  15. Monitoring the Dusty S-cluster Object (DSO/G2) on its Orbit toward the Galactic Center Black Hole

    Czech Academy of Sciences Publication Activity Database

    Valencia-S, M.; Eckart, A.; Zajaček, Michal; Peissker, F.; Parsa, M.; Grosso, N.; Mossoux, E.; Porquet, D.; Jalali, B.; Karas, Vladimír; Yazici, S.; Shahzamanian, B.; Sabha, N.; Saalfeld, R.; Smajic, S.; Grellmann, R.; Moser, L.; Horrobin, M.; Borkar, A.; García-Marín, M.; Dovčiak, Michal; Kunneriath, Devaky; Karssen, G.; Bursa, Michal; Straubmeier, C.; Bushouse, H.

    2015-01-01

    Roč. 800, č. 2 (2015), 125/1-125/21 ISSN 0004-637X R&D Projects: GA ČR(CZ) GC13-00070J Grant - others:EU(XE) COST Action MP0905 Institutional support: RVO:67985815 Keywords : black holes * galactic center * Milky way Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  16. The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations

    Science.gov (United States)

    Ward-Duong, K.; Patience, J.; Bulger, J.; van der Plas, G.; Ménard, F.; Pinte, C.; Jackson, A. P.; Bryden, G.; Turner, N. J.; Harvey, P.; Hales, A.; De Rosa, R. J.

    2018-02-01

    We report 885 μm ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0 to 55.7 mJy. The two nondetections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from ∼0.3 to 20 M ⊕. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in M dust to M star, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early-M stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas-to-dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M dwarfs.

  17. RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Flock, M.; Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Fromang, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Benisty, M., E-mail: mflock@caltech.edu [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France)

    2016-08-20

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating; silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density; and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  18. Contribution to the study of perturbed planetary and protoplanetary disks

    International Nuclear Information System (INIS)

    Charnoz, Sebastien

    2000-01-01

    We studied some dynamical and photometric aspects of perturbed planetary and protoplanetary disks. In the first part of this work, using simple numerical models, the thermodynamic evolution of a colliding planetesimal disk perturbed by a giant planet core was studied. As soon as a giant planet embryo (- 15 earth masses) appears, a heat transfer is triggered in the disk, increasing strongly random velocities over a few astronomical units. The long term evolution of this transitory mechanism was investigated as well as its dependence to the perturber's mass. This is a generic mechanism that may have played an important role during the accretion of both terrestrial and giant planet embryos. Consequences concerning the origin of the Asteroid Belt are discussed, as well as the effect of fragmentation that could not been considered, because of numerical limitations. The second part of this work is a photometric study of Saturn's F ring, that is perturbed by its two nearby shepherding satellites. A 300 images data set, obtained at CFH telescope, was used. We put in evidence the presence of some elongated structures in the F ring, which origin is still a matter of debate. By combining our data set with some other spatial telescope images, new accurate orbital solutions for the F ring were derived, yielding a new radius of 140060 Angstroms ±60 km, that is 150 km smaller than the orbit derived in 1980-81. This may be the sign that the F ring suffered an important radial re-structuration during the last twenty years, which possible cause is also discussed. (author) [fr

  19. Gas, Dust, and Quenching of Dusty Galaxies in the Early Universe

    Science.gov (United States)

    Spilker, Justin Scott

    In this dissertation, I study various aspects related to the gas and star formation in dusty star-forming galaxies in the distant universe. My dissertation is heavily based on observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), observing a sample of gravitationally lensed high-redshift dusty galaxies originally discovered by the South Pole Telescope (SPT). In addition to the introductions to the individual chapters, Chapter 1 provides a broader background to the study of these objects and places them in the overall context of galaxy evolution. In Chapter 2 I describe a technique designed to search for faint molecular lines in the spectrum of high-redshift dusty galaxies. The brightest molecular lines in the spectra of these objects are due to carbon monoxide, but a host of other species are present in the interstellar media. These other molecules trace gas of a wide range of temperatures and densities, but are generally ten times fainter than the brighter CO lines. I detected several other molecular lines, and used them to characterize the conditions of the interstellar gas. This work was published in Spilker et al. (2014). In Chapter 3, I describe a technique for modeling the effects of gravitational lensing which is optimized for data from interferometers such as ALMA. Using these models and data for a large sample of objects from ALMA, I studied the intrinsic properties of the sample such as the source sizes and luminosities. I used these intrinsic properties to revisit topics from the literature which benefit from the additional size information I determined. This work was published in Spilker et al. (2016). In Chapter 4, I use the modeling technique I developed to investigate the relationship between the star formation and the cold molecular gas from which stars form in two objects selected from the SPT sample. Using the models of the source, I was able to determine the mass of molecular gas in these objects using several independent

  20. A Complete ALMA Map of the Fomalhaut Debris Disk

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, Meredith A.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matrà, Luca; Kennedy, Grant M.; Wyatt, Mark C.; Shannon, Andrew [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Kalas, Paul; Duchene, Gaspard; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Pan, Margaret [MIT Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, MA 02139 (United States); Hughes, A. Meredith [Department of Astronomy, Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Rieke, George H.; Su, Kate [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Clampin, Mark [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Fitzgerald, Michael P. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Holland, Wayne S. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Institute for Astronomy, Royal Observatory, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Panić, Olja [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-10

    We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μ Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12 ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65.°6 ± 0.°3, position angle 337.°9 ± 0.°3, and argument of periastron 22.°5 ± 4.°3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope , SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.

  1. Resolved Millimeter Observations of the HR 8799 Debris Disk

    Science.gov (United States)

    Wilner, David J.; MacGregor, Meredith A.; Andrews, Sean M.; Hughes, A. Meredith; Matthews, Brenda; Su, Kate

    2018-03-01

    We present 1.3 mm observations of the debris disk surrounding the HR 8799 multi-planet system from the Submillimeter Array to complement archival ALMA observations that spatially filtered away the bulk of the emission. The image morphology at 3.″8 (150 au) resolution indicates an optically thin circumstellar belt, which we associate with a population of dust-producing planetesimals within the debris disk. The interferometric visibilities are fit well by an axisymmetric radial power-law model characterized by a broad width, ΔR/R ≳ 1. The belt inclination and orientation parameters are consistent with the planet orbital parameters within the mutual uncertainties. The models constrain the radial location of the inner edge of the belt to {R}in}={104}-12+8 au. In a simple scenario where the chaotic zone of the outermost planet b truncates the planetesimal distribution, this inner edge location translates into a constraint on the planet b mass of {M}pl}={5.8}-3.1+7.9 M Jup. This mass estimate is consistent with infrared observations of the planet luminosity and standard hot-start evolutionary models, with the uncertainties allowing for a range of initial conditions. We also present new 9 mm observations of the debris disk from the Very Large Array and determine a millimeter spectral index of 2.41 ± 0.17. This value is typical of debris disks and indicates a power-law index of the grain size distribution q = 3.27 ± 0.10, close to predictions for a classical collisional cascade.

  2. Vacuum birefringence and the x-ray polarization from black-hole accretion disks

    Science.gov (United States)

    Caiazzo, Ilaria; Heyl, Jeremy

    2018-04-01

    In the next decade, x-ray polarimetry will open a new window on the high-energy Universe, as several missions that include an x-ray polarimeter are currently under development. Observations of the polarization of x rays coming from the accretion disks of stellar-mass and supermassive black holes are among the new polarimeters' major objectives. In this paper, we show that these observations can be affected by the quantum electrodynamic (QED) effect of vacuum birefringence: after an x-ray photon is emitted from the accretion disk, its polarization changes as the photon travels through the accretion disk's magnetosphere, as a result of the vacuum becoming birefringent in the presence of a magnetic field. We show that this effect can be important for black holes in the energy band of the upcoming polarimeters and has to be taken into account in a complete model of the x-ray polarization that we expect to detect from black-hole accretion disks, both for stellar mass and for supermassive black holes. We find that, for a chaotic magnetic field in the disk, QED can significantly decrease the linear polarization fraction of edge-on photons, depending on the spin of the hole and on the strength of the magnetic field. This effect can provide, for the first time, a direct way to probe the magnetic field strength close to the innermost stable orbit of black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  3. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  4. Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    Science.gov (United States)

    Yang, Yi; Hashimoto, Jun; Hayashi, Saeko S.; Tamura, Motohide; Mayama, Satoshi; Rafikov, Roman; Akiyama, Eiji; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; hide

    2016-01-01

    By performing non-masked polarization imaging with Subaru HiCIAO, polarized scattered light from the inner region of the disk around the GGTau A system was successfully detected in the H band, with a spatial resolution of approximately0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, these mimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies,the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation 100 au) young binary systems.

  5. Orbital Advection with Magnetohydrodynamics and Vector Potential

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Wladimir [Department of Physics and Astronomy, California State University Northrige, 18111 Nordhoff Street, Northridge CA 91130 (United States); McNally, Colin P. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Heinemann, Tobias [Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø (Denmark); Masset, Frédéric, E-mail: wlyra@csun.edu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210 Cuernavaca, Mor. (Mexico)

    2017-10-01

    Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.

  6. CONGENITAL ORBITAL TERATOMA

    African Journals Online (AJOL)

    was done without contrast and 3mm/5mm/10mm slices were obtained to cover the orbit, skull base and brain. The findings included a soft tissue mass arising from the orbit. The left eye ball was extra orbital. There was no defect .... love's Short Practice of Surgery. 7 Edition,. Levis London, 1997; 45-64. 2. Orbital tumor Part 1, ...

  7. Erasing Data and Recycling of Optical Disks

    Directory of Open Access Journals (Sweden)

    T Fujita

    2007-03-01

    Full Text Available Optical disks, DVDs and CDs, are convenient recording media on which to safely store data for a long period of time. However, the complete data erasure from recorded media is also important for the security of the data. After erasure of data from optical disks, recycling the material is needed in order to recover the valuable components of the optical disks. Here, data erasure methods for optical disks are discussed in the view of material recycling. The main finding of the study is that the explosion of optical disks in water is a very suitable method for complete erasure of data on the disks as well as recycling of their materials.

  8. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  9. MONOLITHIC DISK FOR THE FAST CHROMATOGRAPHIC SEPARATION

    Directory of Open Access Journals (Sweden)

    Nurul Hidayat Aprilita

    2010-06-01

    Full Text Available Poly(styrene/divinylbenzene (PS/DVB monolithic disk was prepared by in situ free-radical copolymerization of styrene and divinylbenzene in the presence of decanol and tetrahydrofuran as porogens. PS/DVB monolithic disks were produced in two different lengths 1.5 mm and 3 mm. The disks were used in reversed phase chromatography of proteins with 0.2 % trifuoroacetic acid (TFA and 0.2 % TFA in acetonitrile as mobile phase A and B, respectively. The effect of gradient rate, flow rate, temperature and disk length on the separation of proteins were also studied. PS/DVB monolithic disks allow the rapid separation of proteins in reversed phase chromatography. Keywords: monolithic disk, poly(styrene/divinylbenzene, proteins

  10. Grain surface chemistry in protoplanetary disks

    International Nuclear Information System (INIS)

    Reboussin, Laura

    2015-01-01

    Planetary formation occurs in the protoplanetary disks of gas and dust. Although dust represents only 1% of the total disk mass, it plays a fundamental role in disk chemical evolution since it acts as a catalyst for the formation of molecules. Understanding this chemistry is therefore essential to determine the initial conditions from which planets form. During my thesis, I studied grain-surface chemistry and its impact on the chemical evolution of molecular cloud, initial condition for disk formation, and protoplanetary disk. Thanks to numerical simulations, using the gas-grain code Nautilus, I showed the importance of diffusion reactions and gas-grain interactions for the abundances of gas-phase species. Model results combined with observations also showed the effects of the physical structure (in temperature, density, AV) on the molecular distribution in disks. (author)

  11. THE LONG-TERM DYNAMICAL EVOLUTION OF DISK-FRAGMENTED MULTIPLE SYSTEMS IN THE SOLAR NEIGHBORHOOD

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China); Kouwenhoven, M. B. N. [Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123 (China); Stamatellos, D. [Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Goodwin, Simon P., E-mail: t.kouwenhoven@xjtlu.edu.cn [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-11-10

    The origin of very low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) at the low-mass end of the initial mass function is not yet fully understood. Gravitational fragmentation of circumstellar disks provides a possible mechanism for the formation of such low-mass objects. The kinematic and binary properties of very low-mass objects formed through disk fragmentation at early times (<10 Myr) were discussed in our previous paper. In this paper we extend the analysis by following the long-term evolution of disk-fragmented systems up to an age of 10 Gyr, covering the ages of the stellar and substellar populations in the Galactic field. We find that the systems continue to decay, although the rates at which companions escape or collide with each other are substantially lower than during the first 10 Myr, and that dynamical evolution is limited beyond 1 Gyr. By t = 10 Gyr, about one third of the host stars are single, and more than half have only one companion left. Most of the other systems have two companions left that orbit their host star in widely separated orbits. A small fraction of companions have formed binaries that orbit the host star in a hierarchical triple configuration. The majority of such double-companion systems have internal orbits that are retrograde with respect to their orbits around their host stars. Our simulations allow a comparison between the predicted outcomes of disk fragmentation with the observed low-mass hydrogen-burning stars, BDs, and PMOs in the solar neighborhood. Imaging and radial velocity surveys for faint binary companions among nearby stars are necessary for verification or rejection of the formation mechanism proposed in this paper.

  12. Geostationary orbit capacity study

    Science.gov (United States)

    Hansell, P. S.; Norris, P.; Walton, R.

    1982-04-01

    Factors influencing the communications satellite capacity of the geostationary orbit were analyzed to derive an interference model of the orbit environment. Comparison of the total orbit arc length required by each proposed planning method or by using different technology developments indicates that the orbit arc of most interest to Western Europe will not be saturated by the year 2000. The orbit arc occupied in the year 2000 by the satellites in the West European arc of interest can be approximately halved by using digital modulation techniques for TV program transfers which use FM at present, or by adopting an orbital planning method which assigns FM TV services to predefined orbit or spectrum segments.

  13. Radiovolumetry of the orbit

    International Nuclear Information System (INIS)

    Abujamra, S.

    1983-01-01

    The authors present a method called ''Radiovolumetry of the orbit'' that permits the evaluation of the orbital volume from anteroposterior skull X-Rays (CALDWELL 30 0 position). The research was based in the determination of the orbital volume with lead spheres, in 1010 orbits of 505 dry skulls of Anatomy Museums. After the dry skulls was X-rayed six frontal orbital diameters were made, with care to correct the radiographic amplification. PEARSON correlation coeficient test was applied between the mean orbital diameter and the orbital volume. The result was r = 0,8 with P [pt

  14. ON THE FORMATION OF GALACTIC THICK DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Minchev, I.; Streich, D.; Scannapieco, C.; De Jong, R. S.; Steinmetz, M. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Martig, M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-05-01

    Recent spectroscopic observations in the Milky Way suggest that the chemically defined thick disk (stars that have high [α/Fe] ratios and are thus old) has a significantly smaller scale-length than the thin disk. This is in apparent contradiction with observations of external edge-on galaxies, where the thin and thick components have comparable scale-lengths. Moreover, while observed disks do not flare (scale-height does not increase with radius), numerical simulations suggest that disk flaring is unavoidable, resulting from both environmental effects and secular evolution. Here we address these problems by studying two different suites of simulated galactic disks formed in the cosmological context. We show that the scale-heights of coeval populations always increase with radius. However, the total population can be decomposed morphologically into thin and thick disks, which do not flare. We relate this to the disk inside-out formation, where younger populations have increasingly larger scale-lengths and flare at progressively larger radii. In this new picture, thick disks are composed of the imbedded flares of mono-age stellar populations. Assuming that disks form inside out, we predict that morphologically defined thick disks must show a decrease in age (or [α/Fe] ratios) with radius and that coeval populations should always flare. This also explains the observed inversion in the metallicity and [α/Fe] gradients for stars away from the disk midplane in the Milky Way. The results of this work are directly linked to, and can be seen as evidence of, inside-out disk growth.

  15. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  16. THE GROWTH AND MIGRATION OF JOVIAN PLANETS IN EVOLVING PROTOSTELLAR DISKS WITH DEAD ZONES

    International Nuclear Information System (INIS)

    Matsumura, Soko; Pudritz, Ralph E.; Thommes, Edward W.

    2009-01-01

    The growth of Jovian mass planets during migration in their protoplanetary disks is one of the most important problems that needs to be solved in light of observations of the small orbital radii of exosolar planets. Studies of the migration of planets in standard gas disk models routinely show that the migration speeds are too high to form Jovian planets, and that such migrating planetary cores generally plunge into their central stars in less than a million years. In previous work, we have shown that a poorly ionized, less viscous region in a protoplanetary disk called a dead zone slows down the migration of fixed-mass planets. In this paper, we extend our numerical calculations to include dead zone evolution along with the disk, as well as planet formation via accretion of rocky and gaseous materials. Using our symplectic integrator-gas dynamics code, we find that dead zones, even in evolving disks wherein planets grow by accretion as they migrate, still play a fundamental role in saving planetary systems. We demonstrate that Jovian planets form within 2.5 Myr for disks that are 10 times more massive than a minimum-mass solar nebula (MMSN) with an opacity reduction and without slowing down migration artificially. Our simulations indicate that protoplanetary disks with an initial mass comparable to the MMSN only produce Neptunian mass planets. We also find that planet migration does not help core accretion as much in the oligarchic planetesimal-accretion scenario as was expected in the runaway planetesimal-accretion scenario. Therefore, we expect that an opacity reduction (or some other mechanisms) is needed to solve the formation timescale problem even for migrating protoplanets, as long as we consider the oligarchic growth. We also point out a possible role of a dead zone in explaining long-lived, strongly accreting gas disks.

  17. Contribution to the pathogenesis of slipped disk

    International Nuclear Information System (INIS)

    Kohlbach, W.

    1981-01-01

    The article describes the various types of slipped disk, such as spondylolisthesis, pseudo-spondylolisthesis and retrolisthesis, and their widely different basic features of anatomic pathology. (orig.) [de

  18. The Stability of Galaxy Disks

    Science.gov (United States)

    Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.

    2014-03-01

    We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo sampling of the Bayesian posterior. Marginalizing over all galaxies, we find a median value of QRW = 2.0±0.9 at 1.5 scale lengths. We also find that QRW is anti-correlated with the star-formation rate surface density (Σ*), which can be predicted using a closed set of empirical scaling relations. Finally, we find that the star-formation efficiency (Σ*/Σg) is correlated with Σ* and weakly anti-correlated with QRW. The former is consistent with an equilibrium prediction of Σ*/Σg ∝ Σ*1/2. Despite its order-of-magnitude range, we find no correlation of Σ*/ΣgΣ*1/2 with any other physical quantity derived by our study.

  19. Hard disks with SCSI interface

    CERN Document Server

    Denisov, O Yu

    1999-01-01

    The testing of 20 models of hard SCSI-disks is carried out: the Fujitsu MAE3091LP; the IBM DDRS-39130, DGHS-318220, DNES-318350, DRHS-36V and DRVS-18V; the Quantum Atlas VI 18.2; the Viking 11 9.1; the Seagate ST118202LW, ST118273LW, ST118273W, ST318203LW, ST318275LW, ST34520W, ST39140LW and ST39173W; and the Western Digital WDE9100-0007, WDE9100-AV0016, WDE9100-AV0030 and WDE9180-0048. All tests ran under the Windows NT 4.0 workstation operating system with Service Pack 4, under video mode with 1024*768 pixel resolution, 32- bit colour depth and V-frequency equal to 85 Hz. The detailed description and characteristics of SCSI stores are presented. Test results (ZD Winstone 99 and ZD WinBench 99 tests) are given in both table and diagram (disk transfer rate) forms. (0 refs).

  20. The VLA view of the HL Tau Disk - Disk Mass, Grain Evolution, and Early Planet Formation

    OpenAIRE

    Carrasco-Gonzalez, Carlos; Henning, Thomas; Chandler, Claire J.; Linz, Hendrik; Perez, Laura; Rodriguez, Luis F.; Galvan-Madrid, Roberto; Anglada, Guillem; Birnstiel, Til; van Boekel, Roy; Flock, Mario; Klahr, Hubert; Macias, Enrique; Menten, Karl; Osorio, Mayra

    2016-01-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expec...

  1. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Martha L.; Sonneborn, George [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street SE, University of Minnesota, Minneapolis, MN 55455 (United States); Barmby, Pauline [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece); Gordon, Karl D.; Meixner, Margaret [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Groenewegen, M. A. T. [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels (Belgium); Lagadec, Eric [Laboratoire Lagrange, UMR7293, Univ. Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06300 Nice (France); Lennon, Daniel [ESA-European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Marengo, Massimo [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDonald, Iain; Zijlstra, Albert [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Sloan, G. C. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Van Loon, Jacco Th., E-mail: martha.boyer@nasa.gov [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2015-02-10

    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  2. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    International Nuclear Information System (INIS)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernández, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J.

    2012-01-01

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  3. Featured Image: Mini-Disks in a Black-Hole Binary

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    This image shows a snapshot from a simulation of a relativistic binary black hole system. A recent study led by Dennis Bowen (Rochester Institute of Technology) presents the first exploration of gas dynamics in relativistic binary black hole systems in which each black hole is surrounded by its own small accretion disk. Bowen and collaborators use their 2D hydrodynamical simulations to explore how gas is passed back and forth between the two mini-disks as the black holes orbit each other. They also examine what kind of distinctive observable signals might be caused by this sloshing and by tidally driven spiral waves in the disks. To read more about their outcomes, check out the article below!CitationDennis B. Bowen et al 2017 ApJ 838 42. doi:10.3847/1538-4357/aa63f3

  4. The parametric resonance features for theory of energy transfer in dusty plasma

    Science.gov (United States)

    Semyonov, V. P.; Timofeev, A. V.

    2015-11-01

    One of the mechanisms of energy transfer between degrees of freedom of dusty plasma system can be described by equations similar to Mathieu equation with account of stochastic forces. Such equation is studied by analytical approach. The solutions for higher order of accuracy are obtained. The method for numerical solution and resonance zone detection is proposed. The solution for the extended Mathieu equation is obtained for wide range of parameter values. The results of numerical solution are compared with analytical solutions of different order and known analytical results for Mathieu equation.

  5. Wake potential in a nonuniform self-gravitating dusty magnetoplasma in the presence of ion streaming

    International Nuclear Information System (INIS)

    Salimullah, M.; Ehsan, Z.; Zubia, K.; Shah, H. A.; Murtaza, G.

    2007-01-01

    A detailed investigation of the electrostatic asymmetric shielding potential and consequent generation of the dynamical oscillatory wake potential has been examined analytically in an inhomogeneous self-gravitating dusty magnetoplasma in the presence of uniform ion streaming. It is found that the wake potential depends significantly on the test particle speed, ambient magnetic field, ion streaming velocity, and the plasma inhomogeneity. The periodic oscillatory potential might lead to an alternative approach to the Jeans instability for the formation of dust agglomeration leading to gravitational collapse of the self-gravitating systems

  6. Nonlinear propagation of dust-acoustic solitary waves in a dusty ...

    Indian Academy of Sciences (India)

    Dust-acoustic solitary waves in a dusty plasma. Now, using eqs (13)–(15) one can easily eliminate (∂n(2) d /∂ξ), (∂u(2) d /∂ξ), and. (∂φ(2)/∂ξ), and obtain. ∂φ(1). ∂τ. + A. √ φ(1). ∂φ(1). ∂ξ. + B. ∂3φ(1). ∂ξ3. = 0,. (16) where. A = 3γ. 4 vp. (μe + αμi). ,. (17). B = vp. 2(μe + αμi) . (18). Equation (16) is a mKdV equation for ...

  7. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  8. Scaling Ratios and Triangles in Siegel Disks

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    1999-01-01

    Let f(z)=e^{2i\\pi \\theta} + z^2, where \\theta is a quadratic irrational. McMullen proved that the Siegel disk for f is self-similar about the critical point, and we show that if \\theta = (\\sqrt{5}-1)/2 is the golden mean, then there exists a triangle contained in the Siegel disk, and with one...

  9. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  10. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  11. 10 MB disk platter from CDC 7638

    CERN Multimedia

    1974-01-01

    This magnetic disk was one of three which interfaced with various Control Data machines. This single platter came from a Control Data 7638 Disk Storage Subsystem and could contain up to 10MB - about the size of a few MP4's on your iPod.

  12. Recent development of disk lasers at TRUMPF

    Science.gov (United States)

    Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Ackermann, Matthias; Bauer, Dominik; Scharun, Michael; Killi, Alexander

    2016-03-01

    The disk laser is one of the most important laser concepts for today's industrial laser market. Offering high brilliance at low cost, high optical efficiency and great application flexibility the disk laser paved the way for many industrial laser applications. Over the past years power and brightness increased and the disk laser turned out to be a very versatile laser source, not only for welding but also for cutting. Both, the quality and speed of cutting are superior to CO2-based lasers for a vast majority of metals, and, most important, in a broad thickness range. In addition, due to the insensitivity against back reflections the disk laser is well suited for cutting highly reflective metal such as brass or copper. These advantages facilitate versatile cutting machines and explain the high and growing demand for disk lasers for applications besides welding applications that can be observed today. From a today's perspective the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over fiber lasers or direct diode lasers. This paper will give insight in the latest progress in kilowatt class cw disk laser technology at TRUMPF and will discuss recent power scaling results as well.

  13. Preseptal Cellulitis, Orbital Cellulitis, Orbital Abscess

    Directory of Open Access Journals (Sweden)

    Rana Altan Yaycıoğlu

    2012-12-01

    Full Text Available Patients with orbital infections present to our clinic usually with unilateral pain, hyperemia, and edema of the eyelids. The differentiation between preseptal and orbital cellulitis is utmost important in that the second requires hospitalization. Since in orbital cellulitis, the tissues posterior to the orbital septum are involved, signs such as conjunctival chemosis, limited eye movement, decreased vision, as well as afferent pupil defect secondary to optic nerve involvement may also be observed. Prompt intravenous antibiotic treatment should be started, and surgical drainage may be performed if patient shows failure to improve in 48 hours despite optimal management. Without treatment, the clinical course may progress to subperiosteal or orbital abscess, and even to cavernous sinus thrombosis. (Turk J Ophthalmol 2012; 42: Supplement 52-6

  14. Simulations of the Solar System's Early Dynamical Evolution with a Self-gravitating Planetesimal Disk

    Science.gov (United States)

    Fan, Siteng; Batygin, Konstantin

    2017-12-01

    Over the course of the last decade, the Nice model has dramatically changed our view of the solar system’s formation and early evolution. Within the context of this model, a transient period of planet–planet scattering is triggered by gravitational interactions between the giant planets and a massive primordial planetesimal disk, leading to a successful reproduction of the solar system’s present-day architecture. In typical realizations of the Nice model, self-gravity of the planetesimal disk is routinely neglected, as it poses a computational bottleneck to the calculations. Recent analyses have shown, however, that a self-gravitating disk can exhibit behavior that is dynamically distinct, and this disparity may have significant implications for the solar system’s evolutionary path. In this work, we explore this discrepancy utilizing a large suite of Nice model simulations with and without a self-gravitating planetesimal disk, taking advantage of the inherently parallel nature of graphic processing units. Our simulations demonstrate that self-consistent modeling of particle interactions does not lead to significantly different final planetary orbits from those obtained within conventional simulations. Moreover, self-gravitating calculations show similar planetesimal evolution to non-self-gravitating numerical experiments after dynamical instability is triggered, suggesting that the orbital clustering observed in the distant Kuiper Belt is unlikely to have a self-gravitational origin.

  15. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints

    Science.gov (United States)

    Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard

    2017-12-01

    Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.

  16. Critical state in disk-shaped superconductors

    Science.gov (United States)

    Däumling, M.; Larbalestier, D. C.

    1989-11-01

    We have calculated the magnetic fields and currents occurring in a disk-shaped superconductor (radius >>thickness) in the critical state in a self-consistent way using finite-element analysis. We find that the field shielded (or trapped) in the center of the disk is roughly equal to Jcd, where d is the thickness of the disk. The shielding currents also create radial fields which are or order Jcd/2 on the disk surface. For low applied fields Happltelsa applied field. The field dependence of the calculated magnetic moment in the self-field dominated regime is independent of whether Jc is weakly or strongly (~1/H) dependent on field. The calculations were validated by comparison to both magnetic and resistive measurements on a disk-shaped section in Nb3Sn tape.

  17. Time Domain Astrochemistry in Protoplanetary Disks

    Science.gov (United States)

    Cleeves, Lauren Ilsedore

    2018-01-01

    The chemistry of protoplanetary disks sets the initial composition of newly formed planets and may regulate the efficiency by which planets form. Disk chemical abundances typically evolve over timescales spanning thousands if not millions of years. Consequently, it was a surprise when ALMA observations taken over the course of a single year showed significantly variable emission in H13CO+ relative to the otherwise constant thermal dust emission in the IM Lup protoplanetary disk. HCO+ is a known X-ray sensitive molecule, and by using simple time-evolving chemical models including stellar activity, we demonstrate that stellar X-ray flares are a viable explanation for the observed H13CO+ variability. If this link between chemistry and stellar activity is confirmed, simultaneous observations can provide a new tool to measure (and potentially map) fundamental disk parameters, such as electron density, as the light from X-ray flares propagates across the disk.

  18. Observational constraints on black hole accretion disks

    Science.gov (United States)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  19. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  20. Disk Evolution and the Fate of Water

    Science.gov (United States)

    Hartmann, Lee; Ciesla, Fred; Gressel, Oliver; Alexander, Richard

    2017-10-01

    We review the general theoretical concepts and observational constraints on the distribution and evolution of water vapor and ice in protoplanetary disks, with a focus on the Solar System. Water is expected to freeze out at distances greater than 1-3 AU from solar-type central stars; more precise estimates are difficult to obtain due to uncertainties in the complex processes involved in disk evolution, including dust growth, settling, and radial drift, and the level of turbulence and viscous dissipation within disks. Interferometric observations are now providing constraints on the positions of CO snow lines, but extrapolation to the unresolved regions where water ice sublimates will require much better theoretical understanding of mass and angular momentum transport in disks as well as more refined comparison of observations with sophisticated disk models.

  1. Development of Powered Disk Type Sugar Cane Stubble Saver

    Directory of Open Access Journals (Sweden)

    Radite P.A.S.

    2009-04-01

    Full Text Available The objective of this research was to design, fabricate and test a prototype of sugar cane stubble saver based on powered disk mechanism. In this research, a heavy duty disk plow or disk harrow was used as a rotating knife to cut the sugarcane stubble. The parabolic disk was chosen because it is proven reliable as soil working tools and it is available in the market as spare part of disk plow or disk harrow unit. The prototype was mounted on the four wheel tractor’s three point hitch, and powered by PTO of the tractor. Two kinds of disks were used in these experiments, those were disk with regular edge or plain disk and disk with scalloped edge or scalloped disk. Both disks had diameter of 28 inch. Results of field test showed that powered disk mechanism could satisfy cut sugar cane’s stubble. However, scalloped disk type gave smoother stubble cuts compared to that of plain disk. Plain disk type gave broken stubble cut. Higher rotation (1000 rpm resulted better cuts as compared to lower rotation (500 rpm both either on plain disk and scalloped disk. The developed prototype could work below the soil surface at depth of 5 to 10 cm. With tilt angle setting 20O and disk angle 45O the width of cut was about 25 cm.

  2. THE ORBIT OF THE ORPHAN STREAM

    International Nuclear Information System (INIS)

    Newberg, Heidi Jo; Willett, Benjamin A.; Yanny, Brian; Xu Yan

    2010-01-01

    We use recent Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopy and the Sloan Digital Sky Survey (SDSS) and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the 'Orphan Stream'. We fit orbital parameters to the data and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc, and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud has velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253 0 , 49 0 ), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g - r) 0 = 0.22. The BHB stars have a low metallicity of [Fe/H] WBG = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10 11 M sun , integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v halo = 73 ± 24 km s -1 , a disk+bulge mass of M(R 11 M sun , and a halo mass of M(R 11 M sun . However, we can find similar fits to the data that use a Navarro-Frenk-White halo profile or that have smaller disk masses and correspondingly larger

  3. THE DARK DISK OF THE MILKY WAY

    International Nuclear Information System (INIS)

    Purcell, Chris W.; Bullock, James S.; Kaplinghat, Manoj

    2009-01-01

    Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. In agreement with previous results, we find that the Milky Way's merger history must have been unusually quiescent compared to median Λ cold dark matter expectations and, therefore, its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km s -1 , is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct detection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.

  4. In-situ formation of Uranian satellites from debris disk formed by Giant Impact

    Science.gov (United States)

    Ishizawa, Y.; Sasaki, T.; Hosono, N.

    2017-12-01

    Uranus has a 98° tilt of the rotational axis with respect to the plane of Solar System, whereas the regular satellites of Uranus orbit in the plane of its equator. Several scenarios have been proposed so far to explain the large tilt and the origin of the satellites respectively (e.g., Slattery et al., 1992; Canup & Ward, 2006; Crida & Charnoz, 2012). In this study, we adapt the so-called giant impact scenario, which could explain both the large tilt of Uranus and the formation of the regular satellites simultaneously. The hydrodynamic simulations of the giant impact have been carried out using the smoothed particle hydrodynamics (SPH) method (Slattery et al, 1992; Ueta et al., in prep.). They suggested that the giant impact of an Earth-sized protoplanet with proto-Uranus could tilt the rotational axis, and a circum-planetary debris disk would be produced throughout the current Uranian satellites orbits by the impact. However, it is still unknown whether the Uranian satellites can be actually formed from the debris disk. Here we perform N-body simulations to investigate the in-situ satellites formation from the debris disk. We used a 4th order Hermite scheme for the numerical integration, and considered the gravity, collision and merger between each particle (Kokubo et al., 2000). We found that satellites with the similar orbital radius and mass to the current satellite were formed from the debris disk as a preliminary result. We also found that orbital decays of the satellites due to the tidal torque of the planet would play a key role to explain the inner satellite distribution.

  5. Helical Tomography of an Accretion Disk by Superhump Light Curves of the 2001 Outburst of WZ Sagittae

    Science.gov (United States)

    Osaki, Yoji

    2003-06-01

    A new method for analyzing complex superhump light curves for the 2001 outburst of WZ Sagittae is proposed. The complexity arises because intrinsically time-varying and non-axisymmetric distributions of superhump light sources are coupled with the aspect effects around the binary orbital phase because of its high orbital inclination. The new method can disentangle these complexities by separating the non-axisymmetric spatial distribution in the disk from the time variation with the superhump period. It may be called a helical tomography of an accretion disk because it can reconstruct a series of disk images (i.e., disk's azimuthal structures) at different superhump phases. The power spectral data of superhump light curves of the 2001 outburst of WZ Sge by Patterson et al. (2002, PASP, 114, 721) are now interpreted under a new light based on the concept of helical tomography, and the azimuthal wave numbers of various frequency modes are identified. In particular, a frequen! cy component, nω0 - Ω, where ω0 and Ω are the orbital frequency and a low frequency of the apsidal precession of the eccentric disk, is understood as an (n - 1)-armed traveling wave in the disk. A vigorous excitation of a wave component of cos(2Θ - 3ω0t) in the first week of the superhump era of WZ Sge, where Θ is the azimuthal angle, supports Lubow's (1991, AAA 54.064.175) theory of non-linear wave coupling of the eccentric Lindblad resonance for the superhump phenomenon. This method can in principle be applied to other SU UMa stars with high orbital inclination if light curves are fully covered over the beat cycle.

  6. Unsteady hydromagnetic flow of dusty fluid and heat transfer over a vertical stretching sheet with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Sharena Mohamad; Ali, Anati [Department of Mathematical Sciences, Faculty of Science Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia sharena-ina@yahoo.com, anati@utm.my (Malaysia)

    2015-10-22

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  7. Lunar Orbiter Photo Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  8. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  9. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Casassus, S.; Marino, S.; Pérez, S.; Plas, G. van der; Christiaens, V.; Montesinos, Matías [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Roman, P.; Dunhill, A.; Cuadra, J.; Cieza, L.; Moral, Victor [Millennium Nucleus “Protoplanetary Disks,” Chile (Chile); Armitage, P. J. [JILA, University of Colorado and NIST, UCB 440, Boulder, CO 80309 (United States); Wootten, A., E-mail: scasassus@u.uchile.cl [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains the depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.

  10. Traumatic transconjunctival orbital emphysema.

    OpenAIRE

    Stroh, E M; Finger, P T

    1990-01-01

    Orbital emphysema can be produced by trans-conjunctival migration of air from a high pressure airgun. In an industrial accident an 8 mm conjunctival laceration was produced in the superior fornix which acted as a portal of entry for air into the subconjunctival, subcutaneous, and retrobulbar spaces. Computed tomography revealed no evidence of orbital fracture and showed that traumatic orbital emphysema occurred without a broken orbital bone.

  11. STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING

    International Nuclear Information System (INIS)

    Miller, J. M.; Reynolds, C. S.; Fabian, A. C.; Miniutti, G.; Gallo, L. C.

    2009-01-01

    Accretion disk reflection spectra, including broad iron emission lines, bear the imprints of the strong Doppler shifts and gravitational redshifts close to black holes. The extremity of these shifts depends on the proximity of the innermost stable circular orbit to the black hole, and that orbit is determined by the black hole spin parameter. Modeling relativistic spectral features, then, gives a means of estimating black hole spin. We report on the results of fits made to archival X-ray spectra of stellar-mass black holes and black hole candidates, selected for strong disk reflection features. Following recent work, these spectra were fit with reflection models and disk continuum emission models (where required) in which black hole spin is a free parameter. Although our results must be regarded as preliminary, we find evidence for a broad range of black hole spin parameters in our sample. The black holes with the most relativistic radio jets are found to have high spin parameters, though jets are observed in a black hole with a low spin parameter. For those sources with constrained binary system parameters, we examine the distribution of spin parameters versus black hole mass, binary mass ratio, and orbital period. We discuss the results within the context of black hole creation events, relativistic jet production, and efforts to probe the innermost relativistic regime around black holes.

  12. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  13. DETECTION OF SHARP SYMMETRIC FEATURES IN THE CIRCUMBINARY DISK AROUND AK Sco

    Energy Technology Data Exchange (ETDEWEB)

    Janson, Markus; Asensio-Torres, Ruben [Department of Astronomy, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Thalmann, Christian; Meyer, Michael R.; Garufi, Antonio [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Boccaletti, Anthony [LESIA, Observatoire de Paris—Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Didierot, 5 Place Jules Janssen, F-92195 Meudon (France); Maire, Anne-Lise; Henning, Thomas; Pohl, Adriana [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Zurlo, Alice [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Marzari, Francesco [Dipartimento di Fisica, University of Padova, Via Marzolo 8, I-35131 Padova (Italy); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Augereau, Jean-Charles [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Desidera, Silvano [INAF—Osservatorio Astromonico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2016-01-01

    The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (<300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK Sco, at projected separations in the ∼13–40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.

  14. SCATTERED LIGHT FROM DUST IN THE CAVITY OF THE V4046 Sgr TRANSITION DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Valerie A.; Kastner, Joel H. [School of Physics and Astronomy, Rochester Institute of Technology, 1 Lomb Memorial Drive, Rochester, NY 14623-5603 (United States); Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD (United States); Macintosh, Bruce [Physics Department, Stanford University, Stanford, CA 94305 (United States); Millar-Blanchaer, Max [Department of Astronomy and Astrophysics, University of Toronto, ON, M5S 3H4 (Canada); Tamura, Motohide, E-mail: var5998@rit.edu [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-10

    We report the presence of scattered light from dust grains located in the giant planet formation region of the circumbinary disk orbiting the ∼20 Myr old close (∼0.045 AU separation) binary system V4046 Sgr AB based on observations with the new Gemini Planet Imager (GPI) instrument. These GPI images probe to within ∼7 AU of the central binary with a linear spatial resolution of ∼3 AU, and are therefore capable of revealing the dust disk structure within a region corresponding to the giant planets in our solar system. GPI imaging reveals a relatively narrow (FWHM ∼ 10 AU) ring of polarized near-infrared flux whose brightness peaks at ∼14 AU. This ∼14 AU radius ring is surrounded by a fainter outer halo of scattered light extending to ∼45 AU, which coincides with previously detected millimeter-wave thermal dust emission. The presence of small grains that efficiently scatter starlight well inside the millimeter-wavelength disk cavity supports current models of planet formation which suggest that planet–disk interactions can generate pressure traps that impose strong radial variations in the particle size distribution throughout the disk.

  15. Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations

    Science.gov (United States)

    van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea

    2016-01-01

    Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.

  16. Eye and orbital cavity

    International Nuclear Information System (INIS)

    Panfilova, G.V.; Koval', G.Yu.

    1984-01-01

    Radioanatomy of eyes and orbit is described. Diseases of the orbit (developmental anomalies, inflammatory diseases, lacrimal apparatus deseases, toxoplasmosis, tumors and cysts et al.), methods of foreign body localization in the eye are considered. Roentgenograms of the orbit and calculation table for foreign body localization in spherical eyes of dissimilar diameter are presented

  17. Idiopathic granulomatous orbital inflammation

    NARCIS (Netherlands)

    Mombaerts, I.; Schlingemann, R. O.; Goldschmeding, R.; Koornneef, L.

    1996-01-01

    PURPOSE: Granulomatous orbital inflammation may occur as an isolated condition of unknown origin. These idiopathic granulomatous lesions are believed to belong to the orbital pseudotumor group by some authors, whereas others consider them sarcoidosis limited to the orbit. The aim of this study is to

  18. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  19. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Visscher, Channon [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Fegley, Bruce Jr. [Planetary Chemistry Laboratory, Department of Earth and Planetary Sciences and McDonnell Center for Space Sciences, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2013-04-10

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  20. In-depth study of moderately young but extremely red, very dusty substellar companion HD 206893B

    Science.gov (United States)

    Delorme, P.; Schmidt, T.; Bonnefoy, M.; Desidera, S.; Ginski, C.; Charnay, B.; Lazzoni, C.; Christiaens, V.; Messina, S.; D'Orazi, V.; Milli, J.; Schlieder, J. E.; Gratton, R.; Rodet, L.; Lagrange, A.-M.; Absil, O.; Vigan, A.; Galicher, R.; Hagelberg, J.; Bonavita, M.; Lavie, B.; Zurlo, A.; Olofsson, J.; Boccaletti, A.; Cantalloube, F.; Mouillet, D.; Chauvin, G.; Hambsch, F.-J.; Langlois, M.; Udry, S.; Henning, T.; Beuzit, J.-L.; Mordasini, C.; Lucas, P.; Marocco, F.; Biller, B.; Carson, J.; Cheetham, A.; Covino, E.; De Caprio, V.; Delboulbe, A.; Feldt, M.; Girard, J.; Hubin, N.; Maire, A.-L.; Pavlov, A.; Petit, C.; Rouan, D.; Roelfsema, R.; Wildi, F.

    2017-12-01

    Context. The substellar companion HD 206893b has recently been discovered by direct imaging of its disc-bearing host star with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument. Aims: We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. Methods: We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multi-instrument follow-up of its host star. We obtain a R = 30 spectrum from 0.95 to 1.64 μm of the companion and additional photometry at 2.11 and 2.25 μm. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. Results: We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6 MJup (2 MJup) at 0.5'' for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Conclusions: Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12 MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf. Even though this companion is extremely red, we note that it is more probable that it has an intermediate gravity rather than the very low gravity that is often associated with

  1. Modification of TOUGH2 to Include the Dusty Gas Model for Gas Diffusion; TOPICAL

    International Nuclear Information System (INIS)

    WEBB, STEPHEN W.

    2001-01-01

    The GEO-SEQ Project is investigating methods for geological sequestration of CO(sub 2). This project, which is directed by LBNL and includes a number of other industrial, university, and national laboratory partners, is evaluating computer simulation methods including TOUGH2 for this problem. The TOUGH2 code, which is a widely used code for flow and transport in porous and fractured media, includes simplified methods for gas diffusion based on a direct application of Fick's law. As shown by Webb (1998) and others, the Dusty Gas Model (DGM) is better than Fick's Law for modeling gas-phase diffusion in porous media. In order to improve gas-phase diffusion modeling for the GEO-SEQ Project, the EOS7R module in the TOUGH2 code has been modified to include the Dusty Gas Model as documented in this report. In addition, the liquid diffusion model has been changed from a mass-based formulation to a mole-based model. Modifications for separate and coupled diffusion in the gas and liquid phases have also been completed. The results from the DGM are compared to the Fick's law behavior for TCE and PCE diffusion across a capillary fringe. The differences are small due to the relatively high permeability (k= 10(sup -11) m(sup 2)) of the problem and the small mole fraction of the gases. Additional comparisons for lower permeabilities and higher mole fractions may be useful

  2. Thermal Marangoni convection in two-phase flow of dusty Casson fluid

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle's temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid.

  3. Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Arnab; Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)

    2014-07-15

    The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg-de Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids 12, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive ion to dust density ratio (μ{sub pd}) as well as the ratios of positive to negative ion temperatures (σ) and masses (m)

  4. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    Science.gov (United States)

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  5. Design of new dusty plasma apparatus to view 3D particle dynamics of fluorescent dust clouds

    Science.gov (United States)

    Thome, Kathreen; Fontanetta, Alexandra; Zwicker, Andrew

    2008-11-01

    Particles suspended in dusty plasmas represent both contamination in industrial plasmas and a primary interstellar medium component. Typically, dusty plasma behavior is studied by laser scattering techniques that provide 2D dust cloud images. However, the 3D structure of the dust cloud is essential to understand the waves, group dynamics, and stabilities of the cloud. Techniques used to study this structure include stereoscopic particle image velocimetry and rapid laser scanning. Our UV illumination technique reveals translational and rotational velocities of fluorescent dust particles as a function of UV intensity. The new argon DC glow discharge experiment designed to study the 3D aspects of fluorescent dust consists of a 13.25'' diameter chamber, two 8'' window ports for CCD cameras, one along the plasma and another transverse to it, two additional 8'' window ports transverse to the plasma for laser or UV light illumination of the dust cloud, and a diagnostic probe port. Results from different electrodes--including mesh and ring--observations and imaging will be presented.

  6. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  7. A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing

    Science.gov (United States)

    Zavala, Jorge A.; Montaña, Alfredo; Hughes, David H.; Yun, Min S.; Ivison, R. J.; Valiante, Elisabetta; Wilner, David; Spilker, Justin; Aretxaga, Itziar; Eales, Stephen; Avila-Reese, Vladimir; Chávez, Miguel; Cooray, Asantha; Dannerbauer, Helmut; Dunlop, James S.; Dunne, Loretta; Gómez-Ruiz, Arturo I.; Michałowski, Michał J.; Narayanan, Gopal; Nayyeri, Hooshang; Oteo, Ivan; Rosa González, Daniel; Sánchez-Argüelles, David; Schloerb, F. Peter; Serjeant, Stephen; Smith, Matthew W. L.; Terlevich, Elena; Vega, Olga; Villalba, Alan; van der Werf, Paul; Wilson, Grant W.; Zeballos, Milagros

    2018-01-01

    Since their discovery, submillimetre-selected galaxies1,2 have revolutionized the field of galaxy formation and evolution. From the hundreds of square degrees mapped at submillimetre wavelengths3-5, only a handful of sources have been confirmed to lie at z > 5 (refs 6-10) and only two at z ≥ 6 (refs 11,12). All of these submillimetre galaxies are rare examples of extreme starburst galaxies with star formation rates of ≳1,000 M⊙ yr-1 and therefore are not representative of the general population of dusty star-forming galaxies. Consequently, our understanding of the nature of these sources, at the earliest epochs, is still incomplete. Here, we report the spectroscopic identification of a gravitationally amplified (μ = 9.3 ± 1.0) dusty star-forming galaxy at z = 6.027. After correcting for gravitational lensing, we derive an intrinsic less-extreme star formation rate of 380 ± 50 M⊙ yr-1 for this source and find that its gas and dust properties are similar to those measured for local ultra luminous infrared galaxies, extending the local trends to a poorly explored territory in the early Universe. The star-formation efficiency of this galaxy is similar to those measured in its local analogues13, despite a 12 Gyr difference in cosmic time.

  8. Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas

    Science.gov (United States)

    Ali, S.; Naeem, Ismat; Mirza, Arshad M.

    2017-10-01

    The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.

  9. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  10. Chondrules and the Protoplanetary Disk

    Science.gov (United States)

    Hewins, R. H.; Jones, Rhian; Scott, Ed

    2011-03-01

    Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV

  11. Orbits and origins of the young stars in the central parsec of the galaxy

    Science.gov (United States)

    Lu, J. R.; Ghez, A. M.; Morris, M.; Hornstein, S. D.; Matthews, K.

    2008-10-01

    We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas yr-1 (3 km s-1), which is gtrsim 7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr-2 (7 km s-1 yr-1). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% (38 of 73) of the young stars, is inclined by thicksim 115° from the plane of the sky, and is oriented at a position angle of thicksim 100° East of North. The on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as ∞ r-2. The disk has an out-of-the-disk velocity dispersion of 28 ± 6 km s-1, which corresponds to a half-opening angle of 7° ± 2°, and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple thin circular disk.

  12. Chemical analysis of ancient relicts in the Milky Way disk

    Directory of Open Access Journals (Sweden)

    Tautvaišienė G.

    2012-02-01

    Full Text Available We present detailed analysis of two groups of F- and G- type stars originally found to have similarities in their orbital parameters. The distinct kinematic properties suggest that they might originate from ancient accretion events in the Milky Way. From high resolution spectra taken with the spectrograph FIES at the Nordic Optical Telescope, La Palma, we determined abundances of oxygen, alpha- and r-process elements. Our results indicate that the sample of investigated stars is chemically homogeneous and the abundances of oxygen, alpha and r-process elements are overabundant in comparison with Galactic disk dwarfs. This provides the additional evidence that those stellar groups had the common formation and possible origin from disrupted satellites.

  13. Chemical analysis of ancient relicts in the Milky Way disk

    Science.gov (United States)

    Stonkutė, E.; Ženovienė, R.; Tautvaišienė, G.; Nordström, B.

    2012-02-01

    We present detailed analysis of two groups of F- and G- type stars originally found to have similarities in their orbital parameters. The distinct kinematic properties suggest that they might originate from ancient accretion events in the Milky Way. From high resolution spectra taken with the spectrograph FIES at the Nordic Optical Telescope, La Palma, we determined abundances of oxygen, alpha- and r-process elements. Our results indicate that the sample of investigated stars is chemically homogeneous and the abundances of oxygen, alpha and r-process elements are overabundant in comparison with Galactic disk dwarfs. This provides the additional evidence that those stellar groups had the common formation and possible origin from disrupted satellites.

  14. A black hole nova obscured by an inner disk torus.

    Science.gov (United States)

    Corral-Santana, J M; Casares, J; Muñoz-Darias, T; Rodríguez-Gil, P; Shahbaz, T; Torres, M A P; Zurita, C; Tyndall, A A

    2013-03-01

    Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.

  15. Lunar and Meteorite Sample Disk for Educators

    Science.gov (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.

    2015-01-01

    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  16. Time-Dependent Variations of Accretion Disk

    Directory of Open Access Journals (Sweden)

    Hye-Weon Na

    1987-06-01

    Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.

  17. The CDF Run II disk inventory manager

    International Nuclear Information System (INIS)

    Hubbard, Paul; Lammel, Stephan

    2001-01-01

    The Collider Detector at Fermilab (CDF) experiment records and analyses proton-antiproton interactions at a center-of-mass energy of 2 TeV. Run II of the Fermilab Tevatron started in April of this year. The duration of the run is expected to be over two years. One of the main data handling strategies of CDF for Run II is to hide all tape access from the user and to facilitate sharing of data and thus disk space. A disk inventory manager was designed and developed over the past years to keep track of the data on disk, to coordinate user access to the data, and to stage data back from tape to disk as needed. The CDF Run II disk inventory manager consists of a server process, a user and administrator command line interfaces, and a library with the routines of the client API. Data are managed in filesets which are groups of one or more files. The system keeps track of user access to the filesets and attempts to keep frequently accessed data on disk. Data that are not on disk are automatically staged back from tape as needed. For CDF the main staging method is based on the mt-tools package as tapes are written according to the ANSI standard

  18. DYNAMICS OF CIRCUMSTELLAR DISKS. III. THE CASE OF GG Tau A

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Andrew F. [XCP-2, Mailstop T082, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marzari, F., E-mail: andy.nelson@lanl.gov, E-mail: francesco.marzari@pd.infn.it [Università di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova (Italy)

    2016-08-20

    We present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from a measure of the radiation intercepted by the disk at its photosphere. We simulate a suite of systems configured with semimajor axes of either a = 62 AU (“wide”) or a = 32 AU (“close”), and with assumed orbital eccentricity of either e = 0 or e = 0.3. Each simulation follows the evolution for ∼6500–7500 yr, corresponding to about three orbits of the torus around the center of mass. Our simulations show that strong, sharply defined spiral structures are generated from the stirring action of the binary and that, in some cases, these structures fragment into 1–2 massive clumps. The torus quickly fragments into several dozen such fragments in configurations in which either the binary is replaced by a single star of equal mass, or radiative heating is neglected. The spiral structures extend inwards to the circumstellar environment as large scale material streams for which most material is found on trajectories that return it to the torus on a timescale of 1–200 yr, with only a small fraction accreting into the circumstellar environment. The spiral structures also propagate outwards through the torus, generating net outwards mass flow, and eventually losing coherence at large distances from the stars. The torus becomes significantly eccentric in shape over most of its evolution. In all configurations, accretion onto the

  19. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. II. THE SPATIAL DISTRIBUTION AND DEMOGRAPHICS OF DUSTY YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Megeath, S. T.; Kryukova, E.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Myers, P. C.; Fazio, G. G.; Allen, L. E.; Flaherty, K.; Hartmann, L.; Pipher, J. L.; Stauffer, J.; Young, E. T.

    2016-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc −2 to over 10,000 pc −2 , with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities ≥10 pc −2 , we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions

  20. Latest advances in high brightness disk lasers

    Science.gov (United States)

    Kuhn, Vincent; Gottwald, Tina; Stolzenburg, Christian; Schad, Sven-Silvius; Killi, Alexander; Ryba, Tracey

    2015-02-01

    In the last decade diode pumped solid state lasers have become an important tool for many industrial materials processing applications. They combine ease of operation with efficiency, robustness and low cost. This paper will give insight in latest progress in disk laser technology ranging from kW-class CW-Lasers over frequency converted lasers to ultra-short pulsed lasers. The disk laser enables high beam quality at high average power and at high peak power at the same time. The power from a single disk was scaled from 1 kW around the year 2000 up to more than 10 kW nowadays. Recently was demonstrated more than 4 kW of average power from a single disk close to fundamental mode beam quality (M²=1.38). Coupling of multiple disks in a common resonator results in even higher power. As an example we show 20 kW extracted from two disks of a common resonator. The disk also reduces optical nonlinearities making it ideally suited for short and ultrashort pulsed lasers. In a joint project between TRUMPF and IFSW Stuttgart more than 1.3 kW of average power at ps pulse duration and exceptionally good beam quality was recently demonstrated. The extremely low saturated gain makes the disk laser ideal for internal frequency conversion. We show >1 kW average power and >6 kW peak power in multi ms pulsed regime from an internally frequency doubled disk laser emitting at 515 nm (green). Also external frequency conversion can be done efficiently with ns pulses. >500 W of average UV power was demonstrated.

  1. Nontraumatic orbital roof encephalocele.

    Science.gov (United States)

    Hoang, Amber; Maugans, Todd; Ngo, Thang; Ikeda, Jamie

    2017-02-01

    Intraorbital meningoencephaloceles occur most commonly as a complication of traumatic orbital roof fractures. Nontraumatic congenital orbital meningoncephaloceles are very rare, with most secondary to destructive processes affecting the orbit and primary skull defects. Treatment for intraorbital meningoencephaloceles is surgical repair, involving the excision of herniated brain parenchyma and meninges and reconstruction of the osseous defect. Most congenital lesions present in infancy with obvious globe and orbital deformities; we report an orbital meningoencephalocele in a 3-year-old girl who presented with ptosis. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  2. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Okuzumi, Satoshi, E-mail: yasuhiro@caltech.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan)

    2017-08-10

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  3. Deadly Sunflower Orbits

    Science.gov (United States)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  4. On the signatures of companion formation in the spectral energy distributions of Sz54 and Sz59—the young stars with protoplanetary disks

    Science.gov (United States)

    Zakhozhay, O. V.

    2017-07-01

    We study spectral energy distributions of two young systems Sz54 and Sz59, that belong to Chameleon II star forming region. The results of the modeling indicate that protoplanetary disks of these systems contain gaps in the dust component. These gaps could be a result of a planetary or brown dwarf companion formation, because the companion would accumulate a disk material, moving along its orbit. In a present work we have determined physical characteristics of the disks. We also discuss possible companion characteristics, based on the geometrical parameters of the gaps.

  5. Discovery of Candidate H2O Disk Masers in Active Galactic Nuclei and Estimations Of Centripetal Accelerations

    Science.gov (United States)

    Greenhill, Lincoln J.; Kondratko, Paul T.; Moran, James M.; Tilak, Avanti

    2009-12-01

    Based on spectroscopic signatures, about one-third of known H2O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These "disk maser candidates" are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v sys rotation speeds are 130-500 km s-1. Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) ×107 M sun) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s-1 motion of the galaxies, would be small. As signposts of highly inclined geometries at galactocentric radii of ~0.1-1 pc, disk masers also provide robust orientation references that allow analysis of (mis)alignment between AGNs and surrounding galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not correlated.

  6. Spontaneous rotation of a melting ice disk

    Science.gov (United States)

    Dorbolo, Stephane; Vandewalle, Nicolas; Darbois-Texier, Baptiste; Grasp Team

    Ice disks were released at the surface of a thermalised aluminium plate. The fusion of the ice creates a lubrication film between the ice disk and the plate. The situation is similar to the Leidenfrost effect reported for liquid droplet evaporating at the surface of a plate which temperature is above the boiling temperature of the liquid. An analogy is depicted between the Leidenfrost phenomenon and the rapid fusion of a solid at the contact of a hot plate. Similarly to Leidenfrost droplet, we observe that, while the ice disks were melting, the disks were very mobile: translation and rotation. SD acknowledges support from FNRS as Senior Research Associate. This research has been funded by the Interuniversity Attraction Pole Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  7. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  8. Ocular ultrasound findings in optic disk melanocytoma

    OpenAIRE

    Andrés Lisker-Cervantes; David Arturo Ancona-Lezama; Luis Javier Arroyo-Garza; Jaime D. Martinez; Roberta Gomez Diaz Barreiro; Victor Daniel Valdepeña-López-Velarde; Virgilio Morales-Canton; Eduardo Moragrega-Adame

    2017-01-01

    Purpose: To describe the echographic characteristics of optic disk melanocytoma using a high resolution 10–20 MHz ophthalmic ultrasound. Methods: We conducted a 10-year retrospective review finding 9 cases with optic disk melanocytoma. The echographic studies were performed by the same experienced ophthalmologist. The form and density of the tumors were evaluated with B-scan ultrasound. Internal reflectivity and vascularity of the tumors were assessed with a standardized A-scan. Base (vert...

  9. CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2016-09-01

    To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the disk size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.

  10. Scaling Ratios and Triangles in Siegel Disks

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    1999-01-01

    Let f(z)=e^{2i\\pi \\theta} + z^2, where \\theta is a quadratic irrational. McMullen proved that the Siegel disk for f is self-similar about the critical point, and we show that if \\theta = (\\sqrt{5}-1)/2 is the golden mean, then there exists a triangle contained in the Siegel disk, and with one ver...

  11. Synthesis of disk-on-rod antennas

    Science.gov (United States)

    Dubrovka, F. F.; Lenivenko, V. A.

    1993-05-01

    The analysis and synthesis of disk-on-rod antennas (DORAs) with canonical and stepwise disk shapes are considered. A comparison of theoretical and experimental results shows that mathematical models and software developed by solving the appropriate boundary value problems can be used for the design of optimal DORAs. A broadband centimeter-wave DORA is considered as an example of the application of the proposed method for the constructive synthesis of DORAs using multicriterial optimization.

  12. Variational thermodynamics of relativistic thin disks

    Science.gov (United States)

    Gutiérrez-Piñeres, Antonio C.; Lopez-Monsalvo, Cesar S.; Quevedo, Hernando

    2015-12-01

    We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multifluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behavior of these quantities indicates that the single fluid interpretation should be abandoned in favor of a two-fluid model.

  13. Linear stability of magnetized massive protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min-Kai, E-mail: mklin924@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 Saint George Street, Toronto, ON M5S 3H8 (Canada)

    2014-07-20

    Magnetorotational instability (MRI) and gravitational instability (GI) are the two principle routes to turbulent angular momentum transport in accretion disks. Protoplanetary disks (PPDs) may develop both. This paper aims to reinvigorate interest in the study of magnetized massive PPDs, starting from the basic issue of stability. The local linear stability of a self-gravitating, uniformly magnetized, differentially rotating, three-dimensional stratified disk subject to axisymmetric perturbations is calculated numerically. The formulation includes resistivity. It is found that the reduction in the disk thickness by self-gravity (SG) can decrease MRI growth rates; the MRI becomes global in the vertical direction, and MRI modes with small radial length scales are stabilized. The maximum vertical field strength that permits the MRI in a strongly self-gravitating polytropic disk with polytropic index Γ = 1 is estimated to be B{sub z,max}≃c{sub s0}Ω√(μ{sub 0}/16πG), where c{sub s0} is the midplane sound speed and Ω is the local angular velocity. In massive disks with layered resistivity, the MRI is not well localized to regions where the Elsasser number exceeds unity. For MRI modes with radial length scales on the order of the disk thickness, SG can enhance density perturbations, an effect that becomes significant in the presence of a strong toroidal field, and which depends on the symmetry of the underlying MRI mode. In gravitationally unstable disks where GI and MRI growth rates are comparable, the character of unstable modes can transition smoothly between MRI and GI. Implications for nonlinear simulations are discussed briefly.

  14. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    Science.gov (United States)

    Sahai, R.; Vlemmings, W.; Nyman, L. A.

    2014-01-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001 solar mass M yr (exp -1) and low-luminosity (300L ) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle O data, and reveal heretofore unseen distant regions of the ultra-cold outflow reheated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4 in). The waist shows a core-halo structure in the thermal dust emission at 0.88 millimeter, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 millimeter fluxes support the presence of about 5 x 10 (exp -4) solar mass of very large (approximately millimeter-sized), cold (approximately 30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  15. On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution

    Science.gov (United States)

    Hyodo, Ryuki; Rosenblatt, Pascal; Genda, Hidenori; Charnoz, Sébastien

    2017-12-01

    Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J 2 term of its gravity field and particle–particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA’s Martian Moons eXploration mission.

  16. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    Science.gov (United States)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R; Bosch, Milton

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 microns, is a likely member (approx.90% BANYAN II probability) of the approx.45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  17. YottaYotta announces new world record set for TCP disk-to-disk bulk transfer

    CERN Document Server

    2002-01-01

    The Yottabyte NetStorage(TM) Company, today announced a new world record for TCP disk-to-disk data transfer using the company's NetStorager(R) System. The record-breaking demonstration transferred 5 terabytes of data between Chicago, Il. to Vancouver, BC and Ottawa, ON, at a sustained average throughput of 11.1 gigabits per second. Peak throughput exceeded 11.6 gigabits per second, more than 15-times faster than previous records for TCP transfer from disk-to-disk (1 page).

  18. Instability of counter-rotating stellar disks

    Science.gov (United States)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  19. Empirical Temperature Measurement in Protoplanetary Disks

    Science.gov (United States)

    Weaver, Erik; Isella, Andrea; Boehler, Yann

    2018-02-01

    The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.

  20. Power Spectrum Density of Stochastic Oscillating Accretion Disk GB ...

    Indian Academy of Sciences (India)

    radius in the disk, Rout is the outer radius of the disk, and the surface density index η is either 3/5 or 3/4 (Shakura & Sunyaev 1973). We assume that the restoring force of the disk oscillation is caused by gravitational attraction of the central compact object. We can deduce the characteristic frequency of the disk using ...

  1. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Khalil M Al-Salem

    2014-01-01

    Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.

  2. Head-Disk Interface Technology: Challenges and Approaches

    Science.gov (United States)

    Liu, Bo

    Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.

  3. Occultations from an Active Accretion Disk in a 72-day Detached Post-Algol System Detected by K2

    Science.gov (United States)

    Zhou, G.; Rappaport, S.; Nelson, L.; Huang, C. X.; Senhadji, A.; Rodriguez, J. E.; Vanderburg, A.; Quinn, S.; Johnson, C. I.; Latham, D. W.; Torres, G.; Gary, B. L.; Tan, T. G.; Johnson, M. C.; Burt, J.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Schwengeler, H. M.; Terentev, I.; Bieryla, A.; Esquerdo, G. A.; Berlind, P.; Calkins, M. L.; Bento, J.; Cochran, W. D.; Karjalainen, M.; Hatzes, A. P.; Karjalainen, R.; Holden, B.; Butler, R. P.

    2018-02-01

    Disks in binary systems can cause exotic eclipsing events. MWC 882 (BD –22 4376, EPIC 225300403) is such a disk-eclipsing system identified from observations during Campaign 11 of the K2 mission. We propose that MWC 882 is a post-Algol system with a B7 donor star of mass 0.542+/- 0.053 {M}ȯ in a 72-day orbit around an A0 accreting star of mass 3.24+/- 0.29 {M}ȯ . The 59.9+/- 6.2 {R}ȯ disk around the accreting star occults the donor star once every orbit, inducing 19-day long, 7% deep eclipses identified by K2 and subsequently found in pre-discovery All-Sky Automated Survey and All Sky Automated Survey for Supernovae observations. We coordinated a campaign of photometric and spectroscopic observations for MWC 882 to measure the dynamical masses of the components and to monitor the system during eclipse. We found the photometric eclipse to be gray to ≈1%. We found that the primary star exhibits spectroscopic signatures of active accretion, and we observed gas absorption features from the disk during eclipse. We suggest that MWC 882 initially consisted of a ≈3.6 M ⊙ donor star transferring mass via Roche lobe overflow to a ≈2.1 M ⊙ accretor in a ≈7-day initial orbit. Through angular momentum conservation, the donor star is pushed outward during mass transfer to its current orbit of 72 days. The observed state of the system corresponds with the donor star having left the red giant branch ∼0.3 Myr ago, terminating active mass transfer. The present disk is expected to be short-lived (102 yr) without an active feeding mechanism, presenting a challenge to this model.

  4. Dependence of average inter-particle distance upon the temperature of neutrals in dusty plasma crystals

    Science.gov (United States)

    Nikolaev, V. S.; Timofeev, A. V.

    2018-01-01

    It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1–8.0 mbar and for the currents range 0.1–1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.

  5. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  6. Periodic long-range transport in a large volume dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David

    2003-01-01

    In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given

  7. Improving Galactic foregrounds with dusty, multiphase gas from GALFA-HI

    Science.gov (United States)

    Murray, Claire; Peek, Joshua

    2018-01-01

    Resolving the initial conditions for star formation and removing foregrounds from cosmological measurements both rely on precise accounting for the structure of multiphase, dusty interstellar gas in the Milky Way. Our aim is to differentiate between distinct thermal phases of Galactic HI and their dust-bearing properties. Using machine vision techniques, we autonomously decompose spectra from GALFA-HI at the Arecibo Observatory: the highest angular (4') and velocity resolution (0.18 km/s) large-area (13,000 deg^2) survey of 21 cm emission to date. We compute temperatures for millions of spectral features, and extract coherent structures corresponding to cold and warm HI. Via comparison with far infrared emission surveys, we analyze variations in dust reddening as a function of the cold gas fraction at high Galactic latitudes, and demonstrate how this effect can be used to improve the resolution and fidelity of standard dust reddening maps.

  8. Linear and nonlinear dust acoustic waves in an inhomogeneous magnetized dusty plasma with nonextensive electrons

    Energy Technology Data Exchange (ETDEWEB)

    El-Taibany, W. F., E-mail: eltaibany@du.edu.eg, E-mail: eltaibany@hotmail.com; Selim, M. M.; Al-Abbasy, O. M. [Department of Physics, Faculty of Science, Damietta University, New Damietta P. O. 34517 (Egypt); El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com [Department of Mathematics, Faculty of Science, Damietta University, New Damietta P. O. 34517 (Egypt)

    2014-07-15

    The propagation of both linear and nonlinear dust acoustic waves (DAWs) in an inhomogeneous magnetized collisional and warm dusty plasma (DP) consisting of Boltzmann ions, nonextensive electrons, and inertial dust particles is investigated. The number density gradients of all DP components besides the inhomogeneities of electrostatic potential and the initial dust fluid velocity are taken into account. The linear dispersion relation and a nonlinear modified Zakharov-Kusnetsov (MZK) equation governing the propagation of the three-dimensional DAWs are derived. The analytical solution of the MZK reveals the creation of both compressive and rarefactive DAW solitons in the proposed model. It is found that the inhomogeneity dimension parameter and the electron nonextensive parameter affect significantly the nonlinear DAW's amplitude, width, and Mach number. The relations of our findings with some astrophysical situations have been given.

  9. A new mathematical approach for shock-wave solution in a dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.C.; Dwivedi, C.B. [Plasma Physics Division, Institute of Advanced Study in Science and Technology, Khanapara, Guwahati-781022, Assam (India); Talukdar, M. [Computer Science Division, Institute of Advanced Study in Science and Technology, Khanapara, Guwahati-781022, Assam (India); Sarma, J. [Department of Mathematics, R. G. Baruah College, Guwahati-781025, Assam (India)

    1997-12-01

    The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust charge fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}

  10. Cooperative microexcitations in 2+1D chain-bundle dusty plasma liquids

    International Nuclear Information System (INIS)

    Io, C.-W.; Chan, C.-L.; Lin I

    2010-01-01

    Through direct visualization at the discrete level, the microexcitations in cold 2+1D dusty plasma liquids formed by negatively charged dusts suspended in low pressure gaseous discharges were experimentally investigated, in which the downward ion flow wake field induces strong vertical coupling and chain bundle structure. It is found that the horizontal structure and motion are similar to those of the two-dimensional liquid. Different types of basic cooperative chain excitations: straight vertical chains with small amplitude jittering, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection, are observed. The region with good (poor) horizontal structural order prefers the straight (tilted or broken) chains with little (large) titling and tilting rate.

  11. Excitation of an acoustic pulse by an impulsive shear flow in a dusty plasma

    Science.gov (United States)

    Liu, Bin; Goree, John; Dusty plasma Team

    2017-10-01

    A dusty plasma is a strongly-coupled plasma that contains micron-sized particles. These particles, also called dust particles, are highly charged by ambient plasma; they interact with each other, sustaining collective wave motion. Both longitudinal and transverse waves can in general be excited. Here we use an electrostatic three-dimensional (3D) simulation to reveal a wave excitation mechanism that is due to viscous heating. In the simulation, an impulsive force was applied to drive a shear flow motion with a sudden onset. After a delay, a longitudinal acoustic pulse wave was observed, propagating outwards from the edge of the flow. We found that the viscous heating due to shear motion can result in a brief localized rarefaction in the dust cloud, leading to the excitation of a longitudinal acoustic wave. The simulation parameters were motivated by the PK-4 instrument on the International Space Station (ISS). Work was supported by NASA.

  12. Probing a dusty magnetized plasma with self-excited dust-density waves

    Science.gov (United States)

    Tadsen, Benjamin; Greiner, Franko; Piel, Alexander

    2018-03-01

    A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.

  13. Two-phase dusty fluid flow along a cone with variable properties

    Science.gov (United States)

    Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy

    2017-05-01

    In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).

  14. Scattering and extinction of ion beams in a dusty plasma device

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2001-01-01

    Collisions of ions with charged dust grains are important for the propagation of low frequency waves such as dust acoustic waves and dust ion-acoustic waves. The collision cross-sectional area of charged dust grains depends on the velocity of an ion beam. The collision cross-sectional area of charged dust grains with beam ions is measured. It is compared with the geometrical cross-sectional area of the grain. The experiment is performed in a dusty double-plasma device with glass beads of 8.9 μm in average diameter. The ion beam current and energy are measured with a directional retarding potential analyzer. It is observed that, when dust density inside the system is increased, the beam current ratio is reduced. From the reduction of the ion beam current, the effective cross-sectional area of the dust particle is estimated as a function of the beam energy

  15. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2014-01-01

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient

  16. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  17. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Sharma, Sumita K.; Boruah, A.; Nakamura, Y.; Bailung, H.

    2016-01-01

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and the spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.

  18. Dust ion acoustic solitary waves in a magnetized dusty plasma with anisotropic ion pressure

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, D.-Y.; Lee, Nam C.; Kim, Y.-H.

    2007-01-01

    The influence of anisotropic ion pressure on the dust ion acoustic solitary wave (DIASW) and the double layer (DL) obliquely propagating to a magnetic field are investigated by using the Sagdeev potential. The anisotropic ion pressure is defined by applying the Chew-Goldberger-Low (CGL) theory, p-perpendicular=p-perpendicular 0 n and p-parallel=p-parallel 0 n 3 , where n is the normalized ion density. The solutions of DIASWs and DLs obliquely propagating to an external magnetic field are obtained in the small amplitude limit. It is found that the perpendicular component of anisotropic ion pressure works differently from that of the parallel component on the DIASWs in a magnetized dusty plasma, deviating from a straight extension of the isotropic pressure effect

  19. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  20. Theoretical study of laser-excited Mach cones in dusty plasmas

    International Nuclear Information System (INIS)

    Hou Lujing; Wang Younian; Miskovic, Z.L.

    2004-01-01

    A two-dimensional hydrodynamic model for a monolayer of dust particles is used to study the Mach cones excited by a moving laser beam through dusty plasmas. Numerical results for the density perturbation and the velocity distribution of dust particles exhibit both compressional and shear-wave Mach cones. It is found that the compressional Mach cones exist in cases of both supersonic and subsonic excitations, and that they consist of multiple lateral or transverse wakes. On the other hand, realization of single shear-wave Mach cones depends closely on the excitation technique, the laser scanning speed, and the discharge pressures. It is found that, when the scanning direction of the laser beam is perpendicular to the laser force, a transition from multiple compressional Mach cones to a single shear Mach cone can be achieved either by lowering the scanning speed or by increasing the discharge pressures

  1. The inner circumstellar disk of the UX Orionis star V1026 Scorpii

    Science.gov (United States)

    Vural, J.; Kreplin, A.; Kishimoto, M.; Weigelt, G.; Hofmann, K.-H.; Kraus, S.; Schertl, D.; Dugué, M.; Duvert, G.; Lagarde, S.; Massi, F.

    2014-04-01

    Context. The UX Ori type variables (named after the prototype of their class) are intermediate-mass pre-main sequence objects. One of the most likely causes of their variability is the obscuration of the central star by orbiting dust clouds. Aims: We investigate the structure of the circumstellar environment of the UX Ori star V1026 Sco (HD 142666) and test whether the disk inclination is large enough to explain the UX Ori variability. Methods: We observed the object in the low-resolution mode of the near-infrared interferometric VLTI/AMBER instrument and derived H- and K-band visibilities and closure phases. We modeled our AMBER observations, published Keck Interferometer observations, archival MIDI/VLTI visibilities, and the spectral energy distribution using geometric and temperature-gradient models. Results: Employing a geometric inclined-ring disk model, we find a ring radius of 0.15 ± 0.06 AU in the H band and 0.18 ± 0.06 AU in the K band. The best-fit temperature-gradient model consists of a star and two concentric, ring-shaped disks. The inner disk has a temperature of 1257+133-53 K at the inner rim and extends from 0.19 ± 0.01 AU to 0.23 ± 0.02 AU. The outer disk begins at 1.35+0.19-0.20 AU and has an inner temperature of 334+35-17 K. The derived inclination of 48.6+2.9-3.6° approximately agrees with the inclination derived with the geometric model (49 ± 5° in the K band and 50 ± 11° in the H band). The position angle of the fitted geometric and temperature-gradient models are 163 ± 9° (K band; 179 ± 17° in the H band) and 169.3+4.2-6.7°, respectively. Conclusions: The narrow width of the inner ring-shaped model disk and the disk gap might be an indication for a puffed-up inner rim shadowing outer parts of the disk. The intermediate inclination of ~50° is consistent with models of UX Ori objects where dust clouds in the inclined disk obscure the central star. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  2. Orbital glass in HTSC

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  3. A Slowly Precessing Disk in the Nucleus of M31 as the Feeding Mechanism for a Central Starburst

    Science.gov (United States)

    Lockhart, K. E.; Lu, J. R.; Peiris, H. V.; Rich, R. M.; Bouchez, A.; Ghez, A. M.

    2018-02-01

    We present a kinematic study of the nuclear stellar disk in M31 at infrared wavelengths using high spatial resolution integral field spectroscopy. The spatial resolution achieved, FWHM = 0.″12 (0.45 pc at the distance of M31), has only previously been equaled in spectroscopic studies by space-based long-slit observations. Using adaptive-optics-corrected integral field spectroscopy from the OSIRIS instrument at the W. M. Keck Observatory, we map the line-of-sight kinematics over the entire old stellar eccentric disk orbiting the supermassive black hole (SMBH) at a distance of r starburst as suggested in Chang et al.

  4. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2013-07-20

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffs it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in

  5. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H. [Korea Astronomy and Space Science Institute (KASI), 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Watson, Dan M.; Manoj, P.; Forrest, W. J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Furlan, Elise [Infrared Processing and Analysis Center, Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, Benjamin [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY 14623 (United States); Hernández, Jesús [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Adame, Lucía [Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, C.P. 66451, México (Mexico); Espaillat, Catherine [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Megeath, S. T. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Muzerolle, James, E-mail: quarkosmos@kasi.re.kr [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.

  6. A High-mass Protobinary System with Spatially Resolved Circumstellar Accretion Disks and Circumbinary Disk

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, S.; Kluska, J.; Kreplin, A.; Bate, M.; Harries, T. J.; Hone, E.; Anugu, A. [School of Physics, Astrophysics Group, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Hofmann, K.-H.; Weigelt, G. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Monnier, J. D. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); De Wit, W. J. [ESO, Alonso de Cordova 3107, Vitacura, Santiago 19 (Chile); Wittkowski, M., E-mail: skraus@astro.ex.ac.uk [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2017-01-20

    High-mass multiples might form via fragmentation of self-gravitational disks or alternative scenarios such as disk-assisted capture. However, only a few observational constraints exist on the architecture and disk structure of high-mass protobinaries and their accretion properties. Here, we report the discovery of a close (57.9 ± 0.2 mas = 170 au) high-mass protobinary, IRAS17216-3801, where our VLTI/GRAVITY+AMBER near-infrared interferometry allows us to image the circumstellar disks around the individual components with ∼3 mas resolution. We estimate the component masses to ∼20 and ∼18 M {sub ⊙} and find that the radial intensity profiles can be reproduced with an irradiated disk model, where the inner regions are excavated of dust, likely tracing the dust sublimation region in these disks. The circumstellar disks are strongly misaligned with respect to the binary separation vector, which indicates that the tidal forces did not have time to realign the disks, pointing toward a young dynamical age of the system. We constrain the distribution of the Br γ and CO-emitting gas using VLTI/GRAVITY spectro-interferometry and VLT/CRIRES spectro-astrometry and find that the secondary is accreting at a higher rate than the primary. VLT/NACO imaging shows L ′-band emission on (3–4)× larger scales than the binary separation, matching the expected dynamical truncation radius for the circumbinary disk. The IRAS17216-3801 system is ∼3× more massive and ∼5× more compact than other high-mass multiplies imaged at infrared wavelength and the first high-mass protobinary system where circumstellar and circumbinary dust disks could be spatially resolved. This opens exciting new opportunities for studying star–disk interactions and the role of multiplicity in high-mass star formation.

  7. Adding disk effects to N-body simulations with REBOUNDx: Application to overstability of resonances in exoplanet pairs

    Science.gov (United States)

    Tamayo, Daniel; Rein, Hanno; Chen, Alice; bennett, morgan

    2015-12-01

    Mean-motion resonances (MMRs) are typically stable configurations for pairs of planets. Given that planets should migrate relative to one another in their natal disk, one might expect to have found most planets locked in such MMRs. The fact that most Kepler planets are not observed in MMRs therefore requires an explanation. Goldreich and Schlichting (2014) recently argued that, in fact, due to interactions with the protoplanetary disk, planets below a threshold mass should break out of the strongest MMRs, i.e., the MMRs become overstable.While follow-up work has studied the robustness of this result to varying orbital architectures, we focus on the specific numerical implementation of the disk effects, which translates into differing physical interpretations of the planet-disk interactions. We will present how these physical choices affect the parameter space in which overstability sets in, and how certain choices can generate spurious results. We will then extend our results to general cases of broad applicability, and summarize the merits and pitfalls of these different numerical implementations of perturbations from the protoplanetary disk, particularly in tightly packed systems.We have packaged these numerical implementations into REBOUNDx, an open-source C and Python package for incorporating planet-disk interactions, as well as additional effects (like post-newtonian corrections), into N-body simulations using REBOUND. We will give a brief demo that highlights its ease of installation and use, as well as its synergy with Python's powerful plotting and scientific analysis libraries.

  8. The CIDA-QUEST large-scale survey of Orion OB1: evidence for rapid disk dissipation in a dispersed stellar population.

    Science.gov (United States)

    Briceño, C; Vivas, A K; Calvet, N; Hartmann, L; Pacheco, R; Herrera, D; Romero, L; Berlind, P; Sánchez, G; Snyder, J A; Andrews, P

    2001-01-05

    We are conducting a large-scale, multiepoch, optical photometric survey [Centro de Investigaciones de Astronomia-Quasar Equatorial Survey Team (CIDA-QUEST)] covering about 120 square degrees to identify the young low-mass stars in the Orion OB1 association. We present results for an area of 34 square degrees. Using photometric variability as our main selection criterion, as well as follow-up spectroscopy, we confirmed 168 previously unidentified pre-main sequence stars that are about 0.6 to 0.9 times the mass of the sun (Mo), with ages of about 1 million to 3 million years (Ori OB1b) and about 3 million to 10 million years (Ori OB1a). The low-mass stars are spatially coincident with the high-mass (at least 3 Mo) members of the associations. Indicators of disk accretion such as Halpha emission and near-infrared emission from dusty disks fall sharply from Ori OB1b to Ori OB1a, indicating that the time scale for disk dissipation and possibly the onset of planet formation is a few million years.

  9. Equilibrium configuration of a stratus floating above accretion disks: Full-disk calculation

    Science.gov (United States)

    Itanishi, Yusuke; Fukue, Jun

    2017-06-01

    We examine floating strati above a luminous accretion disk, supported by the radiative force from the entire disk, and calculate the equilibrium locus, which depends on the disk luminosity and the optical depth of the stratus. Due to the radiative transfer effect (albedo effect), the floating height of the stratus with a finite optical depth generally becomes high, compared with the particle case. In contrast to the case of the near-disk approximation, moreover, the floating height becomes yet higher in the present full-disk calculation, since the intense radiation from the inner disk is taken into account. As a result, when the disk luminosity normalized by the Eddington luminosity is ˜0.3 and the stratus optical depth is around unity, the stable configuration disappears at around r ˜ 50 rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind consisting of many strati with appropriate conditions. This luminosity is sufficiently smaller than the Eddington one, and the present results suggest that the radiation-driven cloudy wind can be easily blown off from the sub-Eddington disk, and this can explain various outflows observed in ultra-fast outflow objects as well as in broad-absorption-line quasars.

  10. A novel rotating disk electrode cell design; The inverted rotating disk electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zdunek, A.D.; Selman, J.R. (Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering)

    1992-09-01

    In this paper a new cell configuration for use with the rotating disk electrode (RDE), the inverted rotating disk electrode (IRDE), is outlined. The IRDE faces upwards in solution and rotates without electrolyte leakage, even in highly corrosive solutions. This facilitates gas evolution and free convection studies. Mass transfer characteristics obtained by limiting current measurements agree well with literature for the RDE.

  11. A Resolved and Asymmetric Ring of PAHs within the Young Circumstellar Disk of IRS 48

    Energy Technology Data Exchange (ETDEWEB)

    Schworer, Guillaume; Lacour, Sylvestre; Du Foresto, Vincent Coudé [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France); Huélamo, Nuria [Dpto. Astrofísica, Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691, Villanueva de la Cañada (Spain); Pinte, Christophe; Chauvin, Gaël [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France CNRS, IPAG, F-38000 Grenoble (France); Ehrenreich, David [Observatoire de l’Université de Genève, 51 chemin des Maillettes, 1290 Versoix (Switzerland); Girard, Julien [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura, Santiago 19 (Chile); Tuthill, Peter [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-06-20

    For one decade, the spectral type and age of the ρ Oph object IRS-48 were subject to debate and mystery. Modeling its disk with mid-infrared to millimeter observations led to various explanations to account for the complex intricacy of dust holes and gas-depleted regions. We present multi-epoch high-angular-resolution interferometric near-infrared data of spatially resolved emissions in the first 15 au of IRS-48, known to have very strong polycyclic aromatic hydrocarbon (PAH) emissions within this dust-depleted region. We make use of new Sparse-Aperture-Masking data to instruct a revised radiative-transfer model, where spectral energy distribution fluxes and interferometry are jointly fitted. Neutral and ionized PAH, very small grains (VSG), and classical silicates are incorporated into the model; new stellar parameters and extinction laws are explored. A bright (42 L {sub ⊙}) and hence large (2.5 R {sub ⊙}) central star with A {sub v} = 12.5 mag and R {sub v} = 6.5 requires less near-infrared excess: the inner-most disk at ≈1 au is incompatible with the interferometric data. The revised stellar parameters place this system on a 4 Myr evolutionary track, four times younger than the previous estimations, which is in better agreement with the surrounding ρ Oph region and disk-lifetime observations. The disk-structure solution converges to a classical-grain outer disk from 55 au combined with an unsettled and fully resolved VSG and PAH ring, between 11 and 26 au. We find two overluminosities in the PAH ring at color-temperatures consistent with the radiative transfer simulations; one follows a Keplerian circular orbit at 14 au. We show a depletion of a factor of ≈5 of classical dust grains up to 0.3 mm compared to very small particles: the IRS-48 disk is nearly void of dust grains in the first 55 au. A 3.5 M {sub Jup} planet on a 40 au orbit can qualitatively explain the new disk structure.

  12. Structure, stability, and evolution of 3D Rossby vortices in protoplanetary disks

    Science.gov (United States)

    Richard, S.; Barge, P.; Le Dizès, S.

    2013-11-01

    Context. Large-scale persistent vortices could play a key role in the evolution of protoplanetary disks, particularly in the dead zone where no turbulence associated with a magnetic field is expected. These vortices are known to form easily in 2D disks via the Rossby wave or the baroclinic instability. In three dimensions, however, their formation and stability is a complex problem and still a matter of debate. Aims: We study the formation of vortices by the Rossby wave instability in a stratified inviscid disk and describe their 3D structure, stability, and long-term evolution. Methods: Numerical simulations were performed using a fully compressible hydrodynamical code based on a second-order finite volume method. We assumed a perfect-gas law and a non-homentropic adiabatic flow. Results: The Rossby wave instability is found to proceed in 3D in a similar way as in 2D. Vortices produced by the instability look like columns of vorticity in the whole disk thickness; the weak vertical motions are related to the weak inclination of the vortex axis that appears during the development of the RWI. Vortices with aspect ratios higher than 6 are unaffected by the elliptical instability. They relax into a quasi-steady columnar structure that survives hundreds of rotations while slowly migrating inward toward the star at a rate that reduces with the vortex aspect ratio. Vortices with a lower aspect ratio are by contrast affected by the elliptic instability. Short aspect ratio vortices (χ < 4) are completely destroyed in a few orbital periods. Vortices with an intermediate aspect ratio (4 < χ < 6) are partially destroyed by the elliptical instability in a region away from the midplane where the disk stratification is sufficiently strong. Conclusions: Elongated Rossby vortices can survive many orbital periods in protoplanetary disks in the form of vorticity columns. They could play a significant role in the evolution of the gas and the gathering of solid particles to form

  13. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  14. Ram Pressure Stripping and Galaxy Orbits: The Case of the Virgo Cluster

    Science.gov (United States)

    Vollmer, B.; Cayatte, V.; Balkowski, C.; Duschl, W. J.

    2001-11-01

    We investigate the role of ram pressure stripping in the Virgo Cluster using N-body simulations. Radial orbits within the Virgo Cluster's gravitational potential are modeled and analyzed with respect to ram pressure stripping. The N-body model consists of 10,000 gas cloud complexes that can have inelastic collisions. Ram pressure is modeled as an additional acceleration on the clouds located at the surface of the gas distribution in the direction of the galaxy's motion within the cluster. We made several simulations, changing the orbital parameters in order to recover different stripping scenarios using realistic temporal ram pressure profiles. We investigate systematically the influence of the inclination angle between the disk and the orbital plane of the galaxy on the gasdynamics. We show that ram pressure can lead to a temporary increase of the central gas surface density. In some cases a considerable part of the total atomic gas mass (several 108 Msolar) can fall back onto the galactic disk after the stripping event. A quantitative relation between the orbit parameters and the resulting H I deficiency is derived containing explicitly the inclination angle between the disk and the orbital plane. The comparison between existing H I observations and the results of our simulations shows that the H I deficiency depends strongly on galaxy orbits. It is concluded that the scenario in which ram pressure stripping is responsible for the observed H I deficiency is consistent with all H I 21 cm observations in the Virgo Cluster.

  15. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  16. MRI of orbital schwannomas

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T.; Kawamura, N.; Homma, H.; Sasaki, K.; Izumimaya, H.; Matsumoto, K. [Department of Neurosurgery, Showa University School of Medicine, 5-8 Hatanodai 1, Shinagawa-ku, Tokyo 142-8666 (Japan)

    2000-06-01

    The literature on MRI of orbital schwannomas is limited. The appearances in three patients with an orbital schwannoma were reviewed. A superior orbitotomy through a subfrontal craniotomy revealed a schwannoma in all cases. MRI characteristics of very low signal on T 1-weighted images and homogeneous postcontrast enhancement may be helpful for differentiating schwannomas from other intraconal masses. (orig.)

  17. Probing Protoplanetary Disks: From Birth to Planets

    Science.gov (United States)

    Cox, Erin Guilfoil

    2018-01-01

    Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of

  18. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    Science.gov (United States)

    Cannizzo, John K.; Nelemans, Gijs

    2015-01-01

    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate approximately 5 x 10(exp -9) solar mass yr(exp -1) ((P(sub orb)/1000 s)(exp -5.2)). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  19. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  20. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    Science.gov (United States)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.