WorldWideScience

Sample records for dust size distribution

  1. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  2. Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long

    2011-01-01

    Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.

  3. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  4. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  5. Does the size distribution of mineral dust aerosols depend on the wind speed at emission?

    Directory of Open Access Journals (Sweden)

    J. F. Kok

    2011-07-01

    Full Text Available The size distribution of mineral dust aerosols greatly affects their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical dust emission models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. This finding is consistent with the recently formulated brittle fragmentation theory of dust emission, but inconsistent with other theoretical dust emission models. The independence of the emitted dust size distribution with wind speed simplifies both the parameterization of dust emission in atmospheric circulation models as well as the interpretation of geological records of dust deposition.

  6. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the particles

  7. Does the size distribution of mineral dust aerosols depend on the wind speed at emission?

    CERN Document Server

    Kok, Jasper F

    2011-01-01

    The size distribution of mineral dust aerosols partially determines their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. The recently formulated brittle fragmentation theory of dust emission is consistent with this finding, whereas other theoretical dust emission models are not. The independence of the emitted dust size distribution with wind speed simplifies both the interpretation of geological records of dust deposition and the parameterization of dust emission in atmospheric circulation models.

  8. Spherical Kadomtsev–Petviashviliequation for dust acoustic waves with dust size distribution and two-charges-ions

    Indian Academy of Sciences (India)

    K Annou; S Bahamida; R Annou

    2011-03-01

    The nonlinear dust acoustic waves in dusty plasmas with negative as well as positive ions and the combined effects of bounded spherical geometry and the transverse perturbation and the size distribution of dust grains are studied. Using the perturbation method, a spherical Kadomtsev–Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.

  9. RESUSPENSION METHOD FOR ROAD SURFACE DUST COLLECTION AND AERODYNAMIC SIZE DISTRIBUTION CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    Jianhua Chen; Hongfeng Zheng; Wei Wang; Hongjie Liu; Ling Lu; Linfa Bao; Lihong Ren

    2006-01-01

    Traffic-generated fugitive dust is a source of urban atmospheric particulate pollution in Beijing. This paper introduces the resuspension method, recommended by the US EPA in AP-42 documents, for collecting Beijing road-surface dust. Analysis shows a single-peak distribution in the number size distribution and a double-peak mode for mass size distribution of the road surface dust. The median diameter of the mass concentration distribution of the road dust on a high-grade road was higher than that on a low-grade road. The ratio of PM2.5 to PM10 was consistent with that obtained in a similar study for Hong Kong. For the two selected road samples, the average relative deviation of the size distribution was 10.9% and 11.9%. All results indicate that the method introduced in this paper can effectively determine the size distribution of fugitive dust from traffic.

  10. Distribution of polybrominated diphenyl ethers and dust particle size fractions adherent to skin in indoor dust, Pretoria, South Africa.

    Science.gov (United States)

    Kefeni, Kebede Keterew; Okonkwo, Jonathan O

    2014-03-01

    In order to determine human exposure to the indoor toxicant, selection of dust fraction and understanding dust particle size distribution in settled indoor dust are very important. This study examined the influence of dust particle size on the concentration of polybrominated diphenyl ethers (PBDEs) congeners, assessed the distribution of dust particle size and characterized the main indoor emission sources of PBDEs. Accordingly, the concentrations of PBDE congeners determined in different indoor dust fractions were found to be relatively higher in the order of dust particle size: 45-106 μm>(106-150 μm. The finding shows arbitrary selection of dust fractions for exposure determination may result in wrong conclusions. Statistically significant moderate correlation between the concentration of Σ9PBDEs and organic matter content calculated with respect to the total dust mass was also observed (r=0.55, p=0.001). On average, of total dust particle size <250 μm, 93.4 % (m/m%) of dust fractions was associated with less than 150 μm. Furthermore, of skin adherent dust fractions considered (<150 μm), 86 % (v/v%) is in the range of particle size 9.25-104.7 μm. Electronic materials treated with PBDEs were found the main emission sources of PBDE congeners in indoor environment. Based on concentrations of PBDEs determined and mass of indoor dust observed, 150 μm metallic sieve is adequate for human exposure risk assessment. However, research in this area is very limited and more research is required to generalize the fact.

  11. Effect of dust size distribution and dust charge fluctuation on dust ion-acoustic shock waves in a multi-ion dusty plasma

    Indian Academy of Sciences (India)

    WANG HONGYAN; ZHANG KAIBIAO

    2016-07-01

    The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary solutions are obtained by using the reductive perturbation method. The analytical and numerical results show that the height with polynomial dust size distribution is larger than that of the monosized dusty plasmas with the same dustgrains, but the thickness in the case of different dust grains is smaller than that of the monosized dusty plasmas. Furthermore, the moving speed of the shock waves also depend on different dust size distributions.

  12. Particle size distribution of brominated flame retardants in house dust from Japan

    Directory of Open Access Journals (Sweden)

    Natsuko Kajiwara

    2016-06-01

    Full Text Available The present study was conducted to examine the concentrations, profiles, and mass distributions of polybrominated diphenyl ethers (PBDEs, hexabromocyclododecanes (HBCDs, and polybrominated dibenzo-p-dioxins/furans (PBDD/Fs based on the particle sizes of house dust samples from five homes in Japan. After removal of impurities from house dust from vacuum cleaner bags, selected indoor dust samples were size fractionated (>2 mm, 1–2 mm, 0.5–1 mm, 250–500 μm, 106–250 μm, 53–106 μm, and 250 μm in size and fluffy dust were included. The conclusion is that particulate dust <250 μm in size without fluffy dust should be used to analyze dust for brominated flame retardants.

  13. Dust acoustic waves in an inhomogeneous plasma having dust size distribution

    Science.gov (United States)

    Banerjee, Gadadhar; Maitra, Sarit

    2017-07-01

    Propagations of nonlinear dust acoustic solitary waves in an inhomogeneous unmagnetized dusty plasma having power law dust distribution are investigated. Using a reductive perturbation technique, a variable coefficient deformed Korteweg-deVries (VCdKdV) equation is derived from the basic set of hydrodynamic equations. The generalized expansion method is employed to obtain a solitary wave solution for the VCdKdV equation. The different propagation characteristics of the solitary waves are studied in the presence of both plasma inhomogeneity and dust distribution.

  14. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Science.gov (United States)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  15. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-01-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust--laden Saharan Air Layer (SAL) over the equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. To understand the formation mechanisms of SAL, we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM--I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF--Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground--based observations show that WRF--Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest

  16. Electrostatic Barrier Against Dust Growth in Protoplanetary Disks. I. Classifying the Evolution of Size Distribution

    CERN Document Server

    Okuzumi, Satoshi; Takeuchi, Taku; Sakagami, Masa-aki

    2010-01-01

    Collisional growth of submicron-sized dust grains into macroscopic aggregates is the first step of planet formation in protoplanetary disks. These aggregates are considered to carry nonzero negative charges in the weakly ionized gas disks, but its effect on their collisional growth has not been fully understood so far. In this paper, we investigate how the charging of dust aggregates affects the evolution of their size distribution properly taking into account the charging mechanism in a weakly ionized gas. To clarify the role of the size distribution, we divide our analysis into two steps. First, we analyze the collisional growth of charged aggregates assuming a monodisperse (i.e., narrow) size distribution. We show that the monodisperse growth stalls due to the electrostatic repulsion when a certain condition is met, as is already expected in the previous work. Second, we numerically simulate dust coagulation using Smoluchowski's method to see how the outcome changes when the size distribution is allowed to...

  17. Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jizheng; Wang Canglong; Zhang Jianrong; Ma Shengqian; Hong Xueren; Sun Jianan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Duan Wenshan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Yang Lei [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2012-08-15

    The effects of dust size distribution and charging process of dust grains on the complex electric conductivity of dusty plasmas have been investigated in the present paper. Comparisons are made between real dusty plasma in which there are many different dust grain species and the mono-sized dusty plasma (MDP) in which there is only one kind of dust grain whose size is the average dust size. In some cases the complex electric conductivity of real dusty plasma is larger than that of MDP, while in other cases it is smaller than that of MDP, it depends on the dust size distribution function.

  18. Size distribution and optical properties of African mineral dust after intercontinental transport

    Science.gov (United States)

    Denjean, Cyrielle; Formenti, Paola; Desboeufs, Karine; Chevaillier, Servanne; Triquet, Sylvain; Maillé, Michel; Cazaunau, Mathieu; Laurent, Benoit; Mayol-Bracero, Olga L.; Vallejo, Pamela; Quiñones, Mariana; Gutierrez-Molina, Ian E.; Cassola, Federico; Prati, Paolo; Andrews, Elisabeth; Ogren, John

    2016-06-01

    The transatlantic transport of mineral dust from Africa is a persistent atmospheric phenomenon, clue for understanding the impacts of dust at the global scale. As part of the DUST Aging and Transport from Africa to the Caribbean (Dust-ATTACk) intensive field campaign, the size distribution and optical properties of mineral dust were measured in June-July 2012 on the east coast of Puerto Rico, more than 5000 km from the west coast of Africa. During the recorded dust events, the PM10 (particulate matter 10 micrometers or less in diameter) concentrations increased from 20 to 70 µg m-3. Remote sensing observations and modeling analysis were used to identify the main source regions, which were found in the Western Sahara, Mauritania, Algeria, Niger, and Mali. The microphysical and optical properties of the dust plumes were almost independent of origin. The size distribution of mineral dust after long-range transport may have modal diameters similar to those on the eastern side of the Atlantic short time after emission, possibly depending on height of transport. Additional submicron particles of anthropogenic absorbing aerosols (likely from regional marine traffic activities) can be mixed within the dust plumes, without affecting in a significant way the PM10 absorption properties of dust observed in Puerto Rico. The Dust-ATTACk experimental data set may be useful for modeling the direct radiative effect of dust. For accurate representation of dust optical properties over the Atlantic remote marine region, we recommend mass extinction efficiency (MEE) and single-scattering albedo values in the range 1.1-1.5 m2 g-1 and 0.97-0.98, respectively, for visible wavelengths.

  19. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-11-27

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL) over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size distributions with

  20. How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    Science.gov (United States)

    Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.

    2015-01-01

    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null

  1. From Source to City: Particulate Matter Concentration and Size Distribution Data from an Icelandic Dust Storm

    Science.gov (United States)

    Thorsteinsson, T.; Mockford, T.; Bullard, J. E.

    2015-12-01

    Dust storms are the source of particulate matter in 20%-25% of the cases in which the PM10health limit is exceeded in Reykjavik; which occurred approximately 20 times a year in 2005-2010. Some of the most active source areas for dust storms in Iceland, contributing to the particulate matter load in Reykjavik, are on the south coast of Iceland, with more than 20 dust storm days per year (in 2002-2011). Measurements of particle matter concentration and size distribution were recorded at Markarfljot in May and June 2015. Markarfljot is a glacial river that is fed by Eyjafjallajokull and Myrdalsjokull, and the downstream sandur areas have been shown to be significant dust sources. Particulate matter concentration during dust storms was recorded on the sandur area using a TSI DustTrak DRX Aerosol Monitor 8533 and particle size data was recorded using a TSI Optical Particle Sizer 3330 (OPS). Wind speed was measured using cup anemometers at five heights. Particle size measured at the source area shows an extremely fine dust creation, PM1 concentration reaching over 5000 μg/m3 and accounting for most of the mass. This is potentially due to sand particles chipping during saltation instead of breaking uniformly. Dust events occurring during easterly winds were captured by two permanent PM10 aerosol monitoring stations in Reykjavik (140 km west of Markarfljot) suggesting the regional nature of these events. OPS measurements from Reykjavik also provide an interesting comparison of particle size distribution from source to city. Dust storms contribute to the particular matter pollution in Reykjavik and their small particle size, at least from this source area, might be a serious health concern.

  2. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle.

    Science.gov (United States)

    Kok, Jasper F

    2011-01-18

    Mineral dust aerosols impact Earth's radiation budget through interactions with clouds, ecosystems, and radiation, which constitutes a substantial uncertainty in understanding past and predicting future climate changes. One of the causes of this large uncertainty is that the size distribution of emitted dust aerosols is poorly understood. The present study shows that regional and global circulation models (GCMs) overestimate the emitted fraction of clay aerosols (climate predictions in dusty regions. On a global scale, the dust cycle in most GCMs is tuned to match radiative measurements, such that the overestimation of the radiative cooling of a given quantity of emitted dust has likely caused GCMs to underestimate the global dust emission rate. This implies that the deposition flux of dust and its fertilizing effects on ecosystems may be substantially larger than thought.

  3. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle

    CERN Document Server

    Kok, Jasper F

    2010-01-01

    Mineral dust aerosols impact Earth's radiation budget through interactions with clouds, ecosystems, and radiation, which constitutes a substantial uncertainty in understanding past and predicting future climate changes. One of the causes of this large uncertainty is that the size distribution of emitted dust aerosols is poorly understood. The present study shows that regional and global circulation models (GCMs) overestimate the emitted fraction of clay aerosols (< 2 {\\mu}m diameter) by a factor of ~2 - 8 relative to measurements. This discrepancy is resolved by deriving a simple theoretical expression of the emitted dust size distribution that is in excellent agreement with measurements. This expression is based on the physics of the scale-invariant fragmentation of brittle materials, which is shown to be applicable to dust emission. Because clay aerosols produce a strong radiative cooling, the overestimation of the clay fraction causes GCMs to also overestimate the radiative cooling of a given quantity o...

  4. The morphology of cometary dust: Subunit size distributions down to tens of nanometres

    Science.gov (United States)

    Mannel, Thurid; Bentley, Mark; Boakes, Peter; Jeszenszky, Harald; Levasseur-Regourd, Anny-Chantal; Schmied, Roland; Torkar, Klaus

    2017-04-01

    The Rosetta orbiter carried a dedicated analysis suite for cometary dust. One of the key instruments was MIDAS (Micro-Imaging Dust Analysis System), an atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre particles in 3D with resolutions down to nanometres. This provided the opportunity to study the morphology of the smallest cometary dust; initial investigation revealed that the particles are agglomerates of smaller subunits [1] with different structural properties [2]. To understand the (surface-) structure of the dust particles and the origin of their smallest building blocks, a number of particles were investigated in detail and the size distribution of their subunits determined [3]. Here we discuss the subunit size distributions ranging from tens of nanometres to a few micrometres. The differences between the subunit size distributions for particles collected pre-perihelion, close to perihelion, and during a huge outburst are examined, as well as the dependence of subunit size on particle size. A case where a particle was fragmented in consecutive scans allows a direct comparison of fragment and subunit size distributions. Finally, the small end of the subunit size distribution is investigated: the smallest determined sizes will be reviewed in the context of other cometary missions, interplanetary dust particles believed to originate from comets, and remote observations. It will be discussed if the smallest subunits can be interpreted as fundamental building blocks of our early Solar System and if their origin was in our protoplanetary disc or the interstellar material. References: [1] M.S. Bentley, R. Schmied, T. Mannel et al., Aggregate dust particles at comet 67P/Chruyumov-Gerasimenko, Nature, 537, 2016. doi:10.1038/nature19091 [2] T. Mannel, M.S. Bentley, R. Schmied et al., Fractal cometary dust - a window into the early Solar system, MNRAS, 462, 2016. doi:10.1093/mnras/stw2898 [3] R. Schmied, T. Mannel, H. Jeszenszky, M

  5. The Size-Frequency Distribution of the Zodiacal Cloud Evidence from the Solar System Dust Bands

    CERN Document Server

    Grogan, K; Durda, D D

    2000-01-01

    Recent observations of the size-frequency distribution of zodiacal cloud particles obtained from the cratering record on the LDEF satellite (Love and Brownlee 1993) reveal a significant large particle population (100 micron diameter or greater) near 1 AU. Our previous modeling of the Solar System dust bands (Grogan et al 1997), features of the zodiacal cloud associated with the comminution of Hirayama family asteroids, has been limited by the fact that only small particles (25 micron diameter or smaller) have been considered. This was due to the prohibitively large amount of computing power required to numerically analyze the dynamics of larger particles. The recent availability of cheap, fast processors has finally made this work possible. Models of the dust bands are created, built from individual dust particle orbits, taking into account a size-frequency distribution of the material and the dynamical history of the constituent particles. These models are able to match both the shapes and amplitudes of the ...

  6. Laboratory simulation and modeling of size, shape distributed interstellar graphite dust analogues: A comparative study

    Science.gov (United States)

    Boruah, Manash J.; Gogoi, Ankur; Ahmed, Gazi A.

    2016-06-01

    The computation of the light scattering properties of size and shape distributed interstellar graphite dust analogues using discrete dipole approximation (DDA) is presented. The light scattering properties of dust particles of arbitrary shapes having sizes ranging from 0.5 to 5.0 μm were computed using DDSCAT 7.3.0 software package and an indigenously developed post-processing tool for size and shape averaging. In order to model realistic samples of graphite dust and compute their light scattering properties using DDA, different target geometries were generated to represent the graphite particle composition in terms of surface smoothness, surface roughness and aggregation or their combination, for using as the target for DDSCAT calculations. A comparison of the theoretical volume scattering function at 543.5 nm and 632.8 nm incident wavelengths with laboratory simulation is also presented in this paper.

  7. Planar dust-acoustic waves in electron–positron–ion–dust plasmas with dust-size distribution under higher-order transverse perturbations

    Indian Academy of Sciences (India)

    Hong-Yan Wang; Kai-Biao Zhang

    2015-01-01

    Propagation of small but finite nonlinear dust-acoustic solitary waves are investigated in a planar unmagnetized dusty plasma, which consists of electrons, positrons, ions and negatively charged dust particles with different sizes and masses. A Kadomtsev–Petviashvili (KP) equation is obtained by using reductive perturbation method. The effect of positron density and positron–electron temperature ratio on dust-acoustic solitary structures are studied. Numerical results show that the increase in positron number density increases the amplitude of hump-like solitons but decreases the dip-like solitary waves. Furthermore, increase in the positron–electron temperature ratio results in the decrease of the amplitude of dip-like solitary waves. It seems that both the dipand hump-like solitary waves can exist in this system. Our results also suggest that the dust-size distribution has a significant role on the amplitude of the solitary waves.

  8. Coagulation and Fragmentation in molecular clouds. II. The opacity of the dust aggregate size distribution

    CERN Document Server

    Ormel, C W; Tielens, A G G M; Dominik, C; Paszun, D

    2011-01-01

    The dust size distribution in molecular clouds can be strongly affected by ice-mantle formation and (subsequent) grain coagulation. Following previous work where the dust size distribution has been calculated from a state-of-the art collision model for dust aggregates that involves both coagulation and fragmentation (Paper I), the corresponding opacities are presented in this study. The opacities are calculated by applying the effective medium theory assuming that the dust aggregates are a mix of 0.1{\\mu}m silicate and graphite grains and vacuum. In particular, we explore how the coagulation affects the near-IR opacities and the opacity in the 9.7{\\mu}m silicate feature. We find that as dust aggregates grow to {\\mu}m-sizes both the near-IR color excess and the opacity in the 9.7 {\\mu}m feature increases. Despite their coagulation, porous aggregates help to prolong the presence of the 9.7{\\mu}m feature. We find that the ratio between the opacity in the silicate feature and the near-IR color excess becomes lowe...

  9. Solitary waves in a dusty plasma with charge fluctuation and dust size distribution and vortex like ion distribution

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, K. [Department of Physics, J.C.C. College, Kolkata 700 033 (India); Mishra, Amar P. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India); Roy Chowdhury, A. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India)

    2006-07-15

    A modified KdV equation is derived for the propagation of non-linear waves in a dusty plasma, containing N different dust grains with a size distribution and charge fluctuation with electrons in the background. The ions are assumed to obey a vortex like distribution due to their non-isothermal nature. The standard distribution for the dust size is a power law. The variation of the soliton width is studied with respect to normalized size of the dust grains. A numerical solution of the equation is done by considering the soliton solution of the modified KdV as the initial pulse. It shows considerable broadening of the pulse variation of width with {beta} {sub 1} is shown.

  10. Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE)

    Science.gov (United States)

    Grini, Alf; Zender, Charles S.

    2004-04-01

    Recent field observations demonstrate that a significant discrepancy exists between models and measurements of large dust aerosol particles at remote sites. We assess the fraction of this bias explained by assumptions involving four different dust production processes. These include dust source size distribution (constant or dynamically changing according to saltation and sandblasting theory), wind speed distributions (using mean wind or a probability density function (PDF)), parent soil aggregate size distribution, and the discretization (number of bins) in the dust size distribution. The Dust Entrainment and Deposition global model is used to simulate the measurements from the Puerto Rican Dust Experiment (PRIDE) (2000). Using wind speed PDFs from observed National Centers for Environmental Prediction winds results in small changes in downwind size distribution for the production which neglects sandblasting, but it results in significant changes when production includes sandblasting. Saltation-sandblasting generally produces more large dust particles than schemes which neglect sandblasting. Parent soil aggregate size distribution is an important factor when calculating size-distributed dust emissions. Changing from a soil with large grains to a soil with smaller grains increases by 50% the fraction of large aerosols (D >5 μm) modeled at Puerto Rico. Assuming that the coarse medium sand typical of West Africa dominates all source regions produces the best agreement with PRIDE observations.

  11. Spiral Structure and Differential Dust Size Distribution in the LKHα 330 Disk

    Science.gov (United States)

    Akiyama, Eiji; Hashimoto, Jun; baobabu Liu, Hauyu; i-hsiu Li, Jennifer; Bonnefoy, Michael; Dong, Ruobing; Hasegawa, Yasuhiro; Henning, Thomas; Sitko, Michael L.; Janson, Markus; Feldt, Markus; Wisniewski, John; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Tsukagoshi, Takashi; Momose, Munetake; Muto, Takayuki; Taki, Tetsuo; Kuzuhara, Masayuki; Satoshi, Mayama; Takami, Michihiro; Ohashi, Nagayoshi; Grady, Carol A.; Kwon, Jungmi; Thalmann, Christian; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Knapp, Gillian R.; Kandori, Ryo; Matsuo, Taro; Mcelwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takato, Naruhisa; Terada, Hiroshi; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-12-01

    Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 μm) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkHα 330. As a result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (β) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (β =2.0+/- 0.5) but are much smaller in the west side β ={0.7}-0.4+0.5, indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.

  12. Particle size distribution and particle size-related crystalline silica content in granite quarry dust.

    Science.gov (United States)

    Sirianni, Greg; Hosgood, Howard Dean; Slade, Martin D; Borak, Jonathan

    2008-05-01

    Previous studies indicate that the relationship between empirically derived particle counts, particle mass determinations, and particle size-related silica content are not constant within mines or across mine work tasks. To better understand the variability of particle size distributions and variations in silica content by particle size in a granite quarry, exposure surveys were conducted with side-by-side arrays of four closed face cassettes, four cyclones, four personal environmental monitors, and a real-time particle counter. In general, the proportion of silica increased as collected particulate size increased, but samples varied in an inconstant way. Significant differences in particle size distributions were seen depending on the extent of ventilation and the nature and activity of work performed. Such variability raises concerns about the adequacy of silica exposure assessments based on only limited numbers of samples or short-term samples.

  13. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2010-04-01

    Full Text Available A fully coupled meteorology-chemistry-aerosol model (WRF-Chem is applied to simulate mineral dust and its shortwave (SW radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN and two aerosol models (MADE/SORGAM and MOSAIC are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted dust size distributions show that the difference of initial dust size distributions can result in significant difference (up to ~50% in simulating SW dust heating and SW dust radiative forcing at the surface over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius <1.25 μm but 8% less coarse dust particles (radius >1.25 μm than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that mineral dust heats the lower atmosphere (1–3 km with a maximum rate of 0.8±0.5 K day−1 below 1 km and reduces the downwelling SW radiation at the surface by up to 58 W m−2 over the Sahel region. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF-Chem simulations can

  14. Size distribution and element composition of dust aerosol in Chinese Otindag Sandland

    Institute of Scientific and Technical Information of China (English)

    CHENG Tiantao; L(U) Daren; CHEN Hongbin; WANG Gengchen

    2005-01-01

    Part physical and chemical characteristics of dust aerosol were determined for samples collected from Otindag Sandland of China in spring, 2001. Number concentration, mass concentration, chemical element concentration and size distribution of aerosol particles with 0.5 -m < Dp < 100.0 -m were examined. The average number and mass concentrations of aerosols were 274.8 cm-3 and 0.54 mg/m3 for the field period respectively, and 31.4 cm-3 and 0.07 mg/m3 for the non-dusty days. PM10 played a dominant role in the aerosol mass concentrations. The particles with Dp < 8.0 -m accounted for about 93.7% of total aerosol number loading in dusty days. The particle size distributions of aerosols were characterized by bi-modal logarithm normal function in heavy and moderate dusty days, and mono-modal in windblown and non-dusty days. Crustal elements such as Al, Fe, etc. in aerosols almost originated from soils. Pollutant elements of S, Pb, etc. associated with aerosols were affected by remote anthropogenic pollutant sources in upwind regions. Mo, V and Co in aerosols were possibly from other dust sources other than local soils. The aerosols over Otindag Sandland consisted of particles from local soils, upwind pollutant sources and other dust sources.

  15. The composition and size distribution of the dust in the coma of comet Hale-Bopp

    CERN Document Server

    Min, M; De Koter, A; Waters, L B F M; Dominik, C

    2005-01-01

    We discuss the composition and size distribution of the dust in the coma of comet Hale-Bopp. We do this by fitting simultaneously the infrared emission spectrum measured by the infrared space observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and 12 different wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be solar. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicron sized. We exclude the presence of large crystalline silicate grains in the coma. Because of this lack of large crystalline grains com...

  16. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2010-09-01

    Full Text Available A fully coupled meteorology-chemistry-aerosol model (WRF-Chem is applied to simulate mineral dust and its shortwave (SW radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN and two aerosol models (MADE/SORGAM and MOSAIC are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted dust size distributions require ~40% difference in total emitted dust mass to produce similar SW radiative forcing of dust over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius<1.25 μm but 8% less coarse dust particles (radius>1.25 μm than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that the mineral dust heats the lower atmosphere with an average rate of 0.8 ± 0.5 K day−1 over the Niamey vicinity and 0.5 ± 0.2 K day−1 over North Africa and reduces the downwelling SW radiation at the surface by up to 58 W m−2 with an average of 22 W m−2 over North Africa. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF

  17. [Particle Size Distribution, Seasonal Variation Characteristics and Human Exposure Assessment of Heavy Metals in Typical Settled Dust from Beijing].

    Science.gov (United States)

    Cao, Zhi-guo; Yu, Gang; Lü, Xiang-ying; Wang, Meng-lei; Li, Qi-lu; Feng, Jing-lan; Yan, Guang-xuan; Yu, Hao; Sun, Jian-hui

    2016-04-15

    Four types of dust from dormitories, offices, hotels and roads in Beijing were collected and fractionated into 9 fractions, respectively. Totally 36 samples were obtained and analyzed for heavy metals including Cu, Zn, Cr, Pb, Cd and Ni. Particle size distributions of those heavy metals in these four types of dust were investigated and the influencing mechanisms were discussed. Distribution patterns of the same heavy metal in different types of dust showed various characteristics. Also different metals in the same type of dust represented different distribution patterns. Heavy metals in road dust tended to concentrate in finer particles. Two offices from the same building, located in Beijing, China, were selected to study the seasonality of heavy metals in dust. Dust sampling from Office A was conducted at weekly intervals between March 2012 and August 2012, while dust from Office B was sampled fortnightly from March 2012 to December 2012. Generally, levels of all heavy metals remained stable among different seasons, however, Cr and Pb represented more significant fluctuations than other four heavy metals. Based on the geo-accumulation index method, the pollution of Zn, Cu and Pb was more serious in the investigated samples, and dust from offices and hotels were moderately polluted by Zn. According to the risk assessment results, the carcinogenic health risks of the six heavy metals in the four types of dust were negligible.

  18. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    Science.gov (United States)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  19. THE IMPORTANCE OF PHYSICAL MODELS FOR DERIVING DUST MASSES AND GRAIN SIZE DISTRIBUTIONS IN SUPERNOVA EJECTA. I. RADIATIVELY HEATED DUST IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea; Dwek, Eli, E-mail: tea.temim@nasa.gov [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-09-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 M{sub Sun }, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 {mu}m. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  20. Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust.

    Science.gov (United States)

    Murakami, Michio; Nakajima, Fumiyuki; Furumai, Hiroaki

    2005-11-01

    Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.

  1. Environmental factors controlling the seasonal variability in particle size distribution of modern Saharan dust deposited off Cape Blanc

    Science.gov (United States)

    Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.

    2016-09-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.

  2. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dalmora, Adilson C. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Institute for Environmental Assessment and Water Studies (IDÆA), Spanish National Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona (Spain); Ramos, Claudete G.; Oliveira, Marcos L.S. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Teixeira, Elba C. [Fundação Estadual de Proteção Ambiental Henrique Luis Roessler, Porto Alegre, RS (Brazil); Kautzmann, Rubens M.; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração. Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500. Bairro Agronomia. CEP: 91501-970 Porto Alegre, RS (Brazil); and others

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during “stonemeal” soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO{sub 2}, Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3,} with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano

  3. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    Science.gov (United States)

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  4. Evolution of grain size distribution in high-redshift dusty quasars: Integrating large amounts of dust and unusual extinction curves

    CERN Document Server

    Nozawa, Takaya; Hirashita, Hiroyuki; Takeuchi, Tsutomu T

    2014-01-01

    The discoveries of huge amounts of dust and unusual extinction curves in high-redshift quasars (z > 4) cast challenging issues on the origin and properties of dust in the early universe. In this Letter, we investigate the evolutions of dust content and extinction curve in a high-z quasar, based on the dust evolution model taking account of grain size distribution. First, we show that the Milky-Way extinction curve is reproduced by introducing a moderate fraction (~0.2) of dense molecular-cloud phases in the interstellar medium for a graphite-silicate dust model. Then we show that the peculier extinction curves in high-z quasars can be explained by taking a much higher molecular-cloud fraction (>0.5), which leads to more efficient grain growth and coagulation, and by assuming amorphous carbon instead of graphite. The large dust content in high-z quasar hosts is also found to be a natural consequence of the enhanced dust growth. These results indicate that grain growth and coagulation in molecular clouds are ke...

  5. Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delta

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongtao; YIN Chengqing; CHEN Meixue; WANG Weidong; Jefferies Chris; SHAN Baoqing

    2009-01-01

    Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams.This paper presents a comprehensive assessment of the size distribution of PAHs in street dust particles, the potential risks of the particles in urban streams, and the sources and sinks of PAHs in the stream network.This assessment is based on measurements of 16 PAHs from the USEPA priority list in street dust particles and river sediments in Xincheng, China.The content of total PAHs ranged from 1,629 to 8,986 μg/kg in street dust particles, where smaller particles have a higher concentrations.Approximately 55% of the total PAHs were associated with particles less than 250 μm which accounted for 40% of the total mass of street dust.The PAH quantities increased from 2.41 to 46.86 μg/m2 in the sequence of new residential, rising through main roads, old town residential, commercial and industrial areas.The sediments in stream reaches in town were found to be sinks for street dust particle PAHs.The research findings suggest that particle size, land use and the hydrological conditions in the stream network were the factors which most influenced the total loads of PAH in the receiving water bodies.

  6. Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delta.

    Science.gov (United States)

    Zhao, Hongtao; Yin, Chengqing; Chen, Meixue; Wang, Weidong; Jefferies, Chris; Shan, Baoqing

    2009-01-01

    Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs in street dust particles, the potential risks of the particles in urban streams, and the sources and sinks of PAHs in the stream network. This assessment was based on measurements of 16 PAHs from the USEPA priority list in street dust particles and river sediments in Xincheng, China. The content of total PAHs ranged from 1629 to 8986 microg/kg in street dust particles, where smaller particles have a higher concentrations. Approximately 55% of the total PAHs were associated with particles less than 250 microm which accounted for 40% of the total mass of street dust. The PAH quantities increased from 2.41 to 46.86 microg/m2 in the sequence of new residential, rising through main roads, old town residential, commercial and industrial areas. The sediments in stream reaches in town were found to be sinks for street dust particle PAHs. The research findings suggested that particle size, land use and the hydrological conditions in the stream network were the factors which most influenced the total loads of PAH in the receiving water bodies.

  7. The Physics of Protoplanetesimal Dust Agglomerates. Vi. Erosion of Large Aggregates and its Consequences for the Dust-Size Distribution

    CERN Document Server

    Schräpler, Rainer

    2011-01-01

    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik (2005) pointed out for the first time the difficulty in explaining the strong mid-IR excess of classical T-Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect the erosion halts within our error bars for impact velocities up to ~30 m/s. For larger velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a n...

  8. MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Andras; Psaltis, Dimitrios; Rieke, George H.; Oezel, Feryal, E-mail: agaspar@as.arizona.edu, E-mail: dpsaltis@as.arizona.edu, E-mail: grieke@as.arizona.edu, E-mail: fozel@as.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2012-07-20

    We explore the evolution of the mass distribution of dust in collision-dominated debris disks, using the collisional code introduced in our previous paper. We analyze the equilibrium distribution and its dependence on model parameters by evolving over 100 models to 10 Gyr. With our numerical models, we confirm that systems reach collisional equilibrium with a mass distribution that is steeper than the traditional solution by Dohnanyi. Our model yields a quasi-steady-state slope of n(m) {approx} m{sup -1.88} [n(a) {approx} a{sup -3.65}] as a robust solution for a wide range of possible model parameters. We also show that a simple power-law function can be an appropriate approximation for the mass distribution of particles in certain regimes. The steeper solution has observable effects in the submillimeter and millimeter wavelength regimes of the electromagnetic spectrum. We assemble data for nine debris disks that have been observed at these wavelengths and, using a simplified absorption efficiency model, show that the predicted slope of the particle-mass distribution generates spectral energy distributions that are in agreement with the observed ones.

  9. Importance of the surface size distribution of erodible material: an improvement of the Dust Entrainment And Deposition DEAD

    Science.gov (United States)

    Mokhtari, M.; Gomes, L.; Tulet, P.; Rezoug, T.

    2011-11-01

    This paper is based on dust aerosol cycle modelling in the atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled with the EXternalised SURFace scheme SURFEX. Its main goal is to create a global mineral dust emission parameterization compatible with the global database of land surface parameters ECOCLIMAP and the Food and Agriculture Organization (FAO) soil type database in SURFEX, based on both Shao (1993) and Marticorena and Bergametti (1995) parameterizations. An arrangement on the Dust Entrainment And Deposition scheme (DEAD) is proposed in this paper by introducing the geographic variation of surface size distribution, the Marticorena and Bergametti (1995) formulation of horizontal saltation flux and the Shao (2001) formulation of sandblasting efficiency α. To show the importance of the modifications introduced in the code DEAD, both sensitivity and comparative studies are realized in 0 dimensions (0-D) and then in 3 dimensions (3-D) between the old DEAD and that developed in this paper. The results in the 0-D simulations indicate that the developed DEAD scheme represents the dust source emission better, particularly in the Bodélé depression and provides a reasonable friction threshold velocity. In 3-D simulations, small differences are found between the DEAD and developed DEAD schemes for the simulated Aerosol Optical Depth (AOD) compared with the photometer AErosol RObotic NETwork (AERONET) measurements available in the African Monsoon Multidisciplinary Analyses (AMMA) databases. But, for the surface concentration a remarkable improvement is noted for the developed DEAD scheme.

  10. Importance of the surface size distribution of erodible material: an improvement on the Dust Entrainment And Deposition (DEAD) Model

    Science.gov (United States)

    Mokhtari, M.; Gomes, L.; Tulet, P.; Rezoug, T.

    2012-05-01

    This paper is based on dust aerosol cycle modelling in the atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled with the EXternalised SURFace scheme SURFEX. Its main goal is to create an appropriate mineral dust emission parameterization compatible with the global database of land surface parameters ECOCLIMAP, and the Food and Agriculture Organization (FAO) soil type database in SURFEX. An improvement on the Dust Entrainment And Deposition scheme (DEAD) is proposed in this paper by introducing the geographical variation of surface soil size distribution, the Marticorena and Bergametti (1995) formulation of horizontal saltation flux and the Shao et al. (1996) formulation of sandblasting efficiency α. To show the importance of the modifications introduced in the DEAD, both sensitivity and comparative studies are conducted in 0 dimensions (0-D) and then in 3 dimensions (3-D) between the old DEAD and the new DEAD. The results of the 0-D simulations indicate that the revised DEAD scheme represents the dust source emission better, particularly in the Bodélé depression, and provides a reasonable friction threshold velocity. In 3-D simulations, small differences are found between the DEAD and the revised DEAD for the simulated Aerosol Optical Depth (AOD) compared with the AErosol RObotic NETwork (AERONET) photometer measurements available in the African Monsoon Multidisciplinary Analyses (AMMA) databases. For the surface concentration, a remarkable improvement is noted for the revised DEAD scheme.

  11. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Denjean

    2015-08-01

    Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of tranport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1–3 km than at elevated altitude (> 3 km, resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations

  12. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    Science.gov (United States)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  13. Particle Size Distribution of Airborne Microorganisms and Pathogens during an Intense African Dust Event in the Eastern Mediterranean

    Science.gov (United States)

    Polymenakou, Paraskevi N.; Mandalakis, Manolis; Stephanou, Euripides G.; Tselepides, Anastasios

    2008-01-01

    Background The distribution of microorganisms, and especially pathogens, over airborne particles of different sizes has been ignored to a large extent, but it could have significant implications regarding the dispersion of these microorganisms across the planet, thus affecting human health. Objectives We examined the microbial quality of the aerosols over the eastern Mediterranean region during an African storm to determine the size distribution of microorganisms in the air. Methods We used a five-stage cascade impactor for bioaerosol collection in a coastal city on the eastern Mediterranean Sea during a north African dust storm. Bacterial communities associated with aerosol particles of six different size ranges were characterized following molecular culture–independent methods, regardless of the cell culturability (analysis of 16S rRNA genes). Results All 16S rDNA clone libraries were diverse, including sequences commonly found in soil and marine ecosystems. Spore-forming bacteria such as Firmicutes dominated large particle sizes (> 3.3 μm), whereas clones affiliated with Actinobacteria (found commonly in soil) and Bacteroidetes (widely distributed in the environment) gradually increased their abundance in aerosol particles of reduced size (< 3.3 μm). A large portion of the clones detected at respiratory particle sizes (< 3.3 μm) were phylogenetic neighbors to human pathogens that have been linked to several diseases. Conclusions The presence of aerosolized bacteria in small size particles may have significant implications to human health via intercontinental transportation of pathogens. PMID:18335093

  14. Impact of grain size distributions on the dust enrichment in high-redshift quasars

    OpenAIRE

    Kuo, Tzu-Ming; Hirashita, Hiroyuki

    2012-01-01

    In high-redshift ($z>5$) quasars, a large amount of dust ($\\textstyle\\sim 10^{8} \\mathrm{M}_{\\sun}$) has been observed. In order to explain the large dust content, we focus on a possibility that grain growth by the accretion of heavy elements is the dominant dust source. We adopt a chemical evolution model applicable to nearby galaxies but utilize parameters adequate to high-$z$ quasars. It is assumed that metals and dust are predominantly ejected by Type II supernovae (SNe). We have found th...

  15. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    OpenAIRE

    2016-01-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1–5 days) and height of transport were sampled. ...

  16. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    OpenAIRE

    2015-01-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1–5 days) and height of transport were sampl...

  17. On the size distribution of collision fragments of NLC dust particles and their relevance to meteoric smoke particles

    Science.gov (United States)

    Havnes, O.; Gumbel, J.; Antonsen, T.; Hedin, J.; La Hoz, C.

    2014-10-01

    We present the results from a new dust probe MUDD on the PHOCUS payload which was launched in July 2011. In the interior of MUDD all the incoming NLC/PMSE icy dust particles will collide, at an impact angle ~70° to the surface normal, with a grid constructed such that no dust particles can directly hit the bottom plate of the probe. Only collision fragments will continue down towards the bottom plate. We determine an energy distribution of the charged fragments by applying a variable electric field between the impact grid and the bottom plate of MUDD. We find that ~30% of the charged fragments have kinetic energies less than 10 eV, ~20% have energies between 10 and 20 eV while ~50% have energies above 20 eV. The transformation of limits in kinetic energy for ice or meteoric smoke particles (MSP) to radius is dependent on many assumptions, the most crucial being fragment velocity. We find, however, that the sizes of the charged fragments most probably are in the range of 1 to 2 nm if meteoric smoke particles (MSP), and slightly higher if ice particles. The observed high charging fraction and the dominance of fragment sizes below a few nm makes it very unlikely that the fragments can consist mainly of ice but that they must be predominantly MSP as predicted by Havnes and Næsheim (2007) and recently observed by Hervig et al. (2012). The MUDD results indicate that MSP are embedded in NLC/PMSE ice particles with a minimum volume filling factor of ~.05% in the unlikely case that all embedded MSP are released and charged. A few % volume filling factor (Hervig et al., 2012) can easily be reached if ~10% of the MSP are released and that their charging probability is ~0.1.

  18. Spiral Structure and Differential dust size Distribution in the LkHa 330 Disk

    CERN Document Server

    Akiyama, E; Liu, H B; Li, J I -H; Bonnefoy, M; Dong, R; Hasegawa, Y; Henning, T; Sitko, M L; Janson, M; Feldt, M; Wisniewski, J; Kudo, T; Kusakabe, N; Tsukagoshi, T; Momose, M; Muto, T; Taki, T; Kuzuhara, M; Mayama, S; Takami, M; Ohashi, N; Grady, C A; Kwon, J; Thalmann, C; Abe, L; Brandner, W; Brandt, T D; Carson, J C; Egner, S; Goto, M; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, S S; Hodapp, K W; Ishii, M; Iye, M; Knapp, G R; Kandori, R; Matsuo, T; McElwain, M W; Miyama, S; Morino, J -I; Moro-Martin, A; Nishimura, T; Pyo, T -S; Serabyn, E; Suenaga, T; Suto, H; Suzuki, R; Takahashi, Y H; Takato, N; Terada, H; Tomono, D; Turner, E L; Watanabe, M; Yamada, T; Takami, H; Usuda, T; Tamura, M

    2016-01-01

    Dust trapping accelerates the coagulation of dust particles, and thus it represents an initial step toward the formation of planetesimals. We report $H$-band (1.6 um) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkHa 330. As results, a pair of spiral arms were detected in the $H$-band emission and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure, and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed SED slope between 0.87 mm from our SMA observation and 1.3 mm from literature. The results imply that grains are indistinguishable from ISM-like dust in the east side ($beta = 2.0 pm 0.5$), but much smaller in the west side $beta = 0.7^{+0.5}_{-0.4...

  19. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect.

    Science.gov (United States)

    Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco

    2017-12-01

    Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Concentrations and size distribution of inhalable and respirable dust among sugar industry workers: a pilot study in Khon Kaen, Thailand.

    Science.gov (United States)

    Sakunkoo, Pornpun; Chaiear, Naesinee; Chaikittiporn, Chalermchai; Sadhra, Steven

    2011-11-01

    There has been very limited information regarding bagasse exposure among workers in sugar industries as well as on health outcomes. The authors determined the occupational exposure of sugar industry workers in Khon Kaen to airborne bagasse dust. The size of the bagasse dust ranged from 0.08 to 9 µm with the highest size concentration of 2.1 to 4.7 µm. The most common size had a geometric mean diameter of 5.2 µm, with a mass concentration of 6.89 mg/m(3)/log µm. The highest mean values of inhalable and respirable dust were found to be 9.29 mg/m(3) from February to April in bagasse storage, 5.12 mg/m(3) from May to September, and 4.12 mg/m(3) from October to January. Inhalable dust concentrations were 0.33, 0.47, and 0.41 mg/m(3), respectively. Workers are likely to be exposed to high concentrations of bagasse dust and are at risk of respiratory diseases. Preventive measures, both in the form of engineering designs and personal protective devices, should be implemented.

  1. Composition, size distribution, optical properties, and radiative effects of laboratory-resuspended PM10 from geological dust of the Rome area, by electron microscopy and radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, A.; Salzano, R.; Bassani, C.; Pareti, S.; Perrino, C.

    2015-11-01

    In this work, new information has been gained on the laboratory-resuspended PM10 fraction from geological topsoil and outcropped rocks representative of the Rome area (Latium). Mineralogical composition, size distribution, optical properties and the surface radiative forcing efficiency (RFE) of dust types representing the compositional end members of this geological area have been addressed. A multi-disciplinary approach was used, based on chamber resuspension of raw materials and sampling of the PM10 fraction, to simulate field sampling at dust source, scanning electron microscopy/X-ray energy-dispersive microanalysis (SEM XEDS) of individual mineral particles, X-ray diffraction (XRD) analysis of bulk dust samples, building of number and volume size distribution (SD) from microanalysis data of mineral particles and fitting to a log-normal curve, and radiative transfer modelling (RTM) to retrieve optical properties and radiative effects of the compositional end-member dust samples. The mineralogical composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals (from volcanics lithotypes), and one mostly composed of calcite (from travertine or limestones). Lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by rock weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are reflected in the diversity of volume distributions, either within dust types or mineral species. Differences are also observed between volume distributions of calcite from travertine (natural source; SD unimodal at 5 μm a.d.) and from road dust (anthropic source; SD bimodal at 3.8 and 1.8 μm a.d.). The volcanics and travertine dusts differently affect the single scattering albedo (SSA) and the asymmetry

  2. Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta

    Science.gov (United States)

    Merouane, Sihane; Zaprudin, Boris; Stenzel, Oliver; Langevin, Yves; Altobelli, Nicolas; Della Corte, Vincenzo; Fischer, Henning; Fulle, Marco; Hornung, Klaus; Silén, Johan; Ligier, Nicolas; Rotundi, Alessandra; Ryno, Jouni; Schulz, Rita; Hilchenbach, Martin; Kissel, Jochen; Cosima Team

    2016-12-01

    Context. The COmetary Secondary Ion Mass Analyzer (COSIMA) on board Rosetta is dedicated to the collection and compositional analysis of the dust particles in the coma of 67P/Churyumov-Gerasimenko (67P). Aims: Investigation of the physical properties of the dust particles collected along the comet trajectory around the Sun starting at a heliocentric distance of 3.5 AU. Methods: The flux, size distribution, and morphology of the dust particles collected in the vicinity of the nucleus of comet 67P were measured with a daily to weekly time resolution. Results: The particles collected by COSIMA can be classified according to their morphology into two main types: compact particles and porous aggregates. In low-resolution images, the porous material appears similar to the chondritic-porous interplanetary dust particles collected in Earth's stratosphere in terms of texture. We show that this porous material represents 75% in volume and 50% in number of the large dust particles collected by COSIMA. Compact particles have typical sizes from a few tens of microns to a few hundreds of microns, while porous aggregates can be as large as a millimeter. The particles are not collected as a continuous flow but appear in bursts. This could be due to limited time resolution and/or fragmentation either in the collection funnel or few meters away from the spacecraft. The average collection rate of dust particles as a function of nucleo-centric distance shows that, at high phase angle, the dust flux follows a 1/d2comet law, excluding fragmentation of the dust particles along their journey to the spacecraft. At low phase angle, the dust flux is much more dispersed compared to the 1/d2comet law but cannot be explained by fragmentation of the particles along their trajectory since their velocity, indirectly deduced from the COSIMA data, does not support such a phenomenon. The cumulative size distribution of particles larger than 150 μm follows a power law close to r- 0.8 ± 0

  3. Composition, size distribution, optical properties and radiative effects of re-suspended local mineral dust of Rome area by individual-particle microanalysis and radiative transfer modelling

    Directory of Open Access Journals (Sweden)

    A. Pietrodangelo

    2015-05-01

    Full Text Available New information on the PM10 mineral dust from site-specific (Rome area, Latium outcropped rocks, and on the microphysics, optical properties and radiative effects of mineral dust at local level were gained in this work. A multi-disciplinary approach was used, based on individual-particle scanning electron microscopy with X-ray energy-dispersive microanalysis (SEM XEDS, X-ray diffraction (XRD analysis of dust, size distribution of mineral particles, and radiative transfer modelling (RTM.The mineral composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals and one exclusively composed of calcite. The first is obtained from volcanic lithotypes, the second from travertine or limestones; lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones of Rome area. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are evidenced by the diversity of volume distributions, within either dust types, or mineral species. Further differences are observed between volume distributions of calcite from travertine (natural source and from road dust (anthropic source, specifically on the width, shape and enrichment of the fine fraction (unimodal at 5 μm a.d. for travertine, bimodal at 3.8 and 1.8 μm a.d. for road dust. Log-normal probability density functions of volcanics and travertine dusts affect differently the single scattering albedo (SSA and the asymmetry parameter (g in the VISible and Near Infrared (NIR regions, depending also on the absorbing/non-absorbing character of volcanics and travertine, respectively. The downward component of the BOA solar irradiance simulated by RTM for a volcanics-rich or travertine-rich atmosphere shows that volcanics contribution to the

  4. Composition, size distribution, optical properties and radiative effects of re-suspended local mineral dust of Rome area by individual-particle microanalysis and radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, A.; Salzano, R.; Bassani, C.; Pareti, S.; Perrino, C.

    2015-05-01

    New information on the PM10 mineral dust from site-specific (Rome area, Latium) outcropped rocks, and on the microphysics, optical properties and radiative effects of mineral dust at local level were gained in this work. A multi-disciplinary approach was used, based on individual-particle scanning electron microscopy with X-ray energy-dispersive microanalysis (SEM XEDS), X-ray diffraction (XRD) analysis of dust, size distribution of mineral particles, and radiative transfer modelling (RTM).The mineral composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals and one exclusively composed of calcite. The first is obtained from volcanic lithotypes, the second from travertine or limestones; lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones of Rome area. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are evidenced by the diversity of volume distributions, within either dust types, or mineral species. Further differences are observed between volume distributions of calcite from travertine (natural source) and from road dust (anthropic source), specifically on the width, shape and enrichment of the fine fraction (unimodal at 5 μm a.d. for travertine, bimodal at 3.8 and 1.8 μm a.d. for road dust). Log-normal probability density functions of volcanics and travertine dusts affect differently the single scattering albedo (SSA) and the asymmetry parameter (g) in the VISible and Near Infrared (NIR) regions, depending also on the absorbing/non-absorbing character of volcanics and travertine, respectively. The downward component of the BOA solar irradiance simulated by RTM for a volcanics-rich or travertine-rich atmosphere shows that volcanics contribution to the solar

  5. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    Airborne mineral dust plays a key role in the energy balance of the Earth - atmosphere coupled system. The microphysical and optical properties of dust drive the direct radiative effects and are in turn influenced by the dust mineralogical composition. The latter varies largely, depending on the geology of the source region. Knowledge gaps still exist about relationships between the scattering and absorption of solar and terrestrial radiation by mineral dust and its mineralogical, size distribution and particle morphology features; this also affects the reliability of radiative transfer (RT) modelling estimates (Hansell et al., 2011). In this study, these relationships were investigated focusing on the crustal suspended PM10 dust, sourced from outcropping rocks of the local geological domains around Rome (Latium, Italy). The mineral composition variability of the Latium rocks ranges from the silicate-dominated (volcanics domain) to the calcite-dominated (travertine), through lithological materials composed in different proportions by silicates, silica and calcite, mainly (limestone series, siliciclastic series) (Cosentino et al., 2009). This peculiarity of the Latium region was thus exploited to investigate the behavior of the size distribution, optical properties and radiative transfer at BOA (Bottom Of Atmosphere) of the suspended dust PM10 fraction with the variability of mineral composition. Elemental source profiles of the same dust samples were previously determined (Pietrodangelo et al., 2013). A multi-faceted analysis was performed, and outcomes from the following approaches were merged: individual-particle scanning electron microscopy combined with X-ray energy-dispersive microanalysis (SEM XEDS), bulk mineralogical analysis by X-ray diffraction (XRD), size distribution fit of the individual-particle data set and modelling of the dust optical and radiative properties. To this aim, the 6SV atmospheric radiative transfer code (Kotchenova et al., 2008

  6. Smaller desert dust cooling effect estimated from analysis of dust size and abundance

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-03-01

    Desert dust aerosols affect Earth's global energy balance through direct interactions with radiation, and through indirect interactions with clouds and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, or what the effects of potential future changes in dust loading will be. Here we present an analysis of the size and abundance of dust aerosols to constrain the direct radiative effect of dust. Using observational data on dust abundance, in situ measurements of dust optical properties and size distribution, and climate and atmospheric chemical transport model simulations of dust lifetime, we find that the dust found in the atmosphere is substantially coarser than represented in current global climate models. As coarse dust warms the climate, the global dust direct radiative effect is likely to be less cooling than the ~-0.4 W m-2 estimated by models in a current global aerosol model ensemble. Instead, we constrain the dust direct radiative effect to a range between -0.48 and +0.20 W m-2, which includes the possibility that dust causes a net warming of the planet.

  7. Particle Distribution Of A Moon-Fed Dust Torus

    Science.gov (United States)

    Jamrath, E.; Makuch, M.; Spahn, F.

    2008-09-01

    Enceladus' south-polar gey- sers support a huge gas-dust plume towering the south pole of the moon. It is considered to be the main source Saturns E-ring, the largest dust complex of the solar system. Contrary to the spherically sym- metric impactor ejecta dust cre- ation, the dust plume provides a directed particle outflow from the moon. Using a simple probabilistic model, we study the effects of this asymmetric dust ejection on Enceladus' dust torus. Dust con- figurations are described by par- ticle distribution functions and the dynamical properties of the system are adressed through a set of transformations. The re- sulting distribution function of orbital elements describes the unperturbed dust torus. We showcase the differences in the resulting particle distributions between impactor ejecta pro- cesses and dust production by Enceladus plume, modeled by a directed point-sized source. The obtained orbital element distri- bution is compared to the results of numerical simulations of the problem.

  8. Distribution pattern of legacy and "novel" brominated flame retardants in different particle size fractions of indoor dust in Birmingham, United Kingdom.

    Science.gov (United States)

    Al-Omran, Layla Salih; Harrad, Stuart

    2016-08-01

    This study investigates the particle size distribution of eight polybrominated diphenyl ethers (PBDEs) and five "novel" brominated flame retardants (NBFRs) in settled house dust. Elevated surface dust (ESD) and floor dust (FD) were collected from 5 homes in Birmingham, UK, yielding a total of 10 samples. Each sample was fractionated into three different particle sizes: 125-250 μm (P1), 63-125 μm (P2) and 25-63 μm (P3). Non-fractionated bulk dust samples (BD) were also analysed. BDE-209 predominated, comprising an average 74.3%, 77.3%, 69.2%, and 62.7% ΣBFRs of BD, P1, P2 and P3 respectively. Σ5NBFRs contributed 24.2%, 21.5%, 29.0% and 35.3% ΣBFRs, while Σ7tri-hepta-BDEs represented 1.5%, 1.2%, 1.7%, and 2.0% ΣBFRs. BEH-TEBP was the predominant NBFR contributing 76.9%, 75.1%, 83.1%, and 83.9% ΣNBFRs in BD, P1, P2 and P3 respectively; followed by DBDPE which contributed 20.1%, 21.9%, 14.1% and 13.9% ΣNBFRs. EH-TBB, BTBPE and PBEB were the least abundant NBFRs. Concentrations of Σ7tri-hepta-BDEs and BEH-TEBP in P3 exceeded significantly (P surface area to volume ratio, rather than by variations in organic carbon content. Copyright © 2016. Published by Elsevier Ltd.

  9. THE MEASUREMENT AND DISTRIBUTION OF WOOD DUST

    Directory of Open Access Journals (Sweden)

    Andrea Rosario Proto

    2010-03-01

    Full Text Available In Italy, the woodworking industry presents many issues in terms of occupational health and safety. This study on exposure to wood dust could contribute to the realization of a prevention model in order to limit exposure to carcinogenic agents to the worker. The sampling methodology illustrated the analysis of dust emissions from the woodworking machinery in operation throughout the various processing cycles. The quantitative and qualitative assessment of exposure was performed using two different methodologies. The levels of wood dust were determined according to EN indications and sampling was conducted using IOM and Cyclon personal samplers. The qualitative research of wood dust was performed using an advanced laser air particle counter. This allowed the number of particles present to be counted in real time. The results obtained allowed for an accurate assessment of the quality of the dust emitted inside the workplace during the various processing phases. The study highlighted the distribution of air particles within the different size classes, the exact number of both thin and ultra-thin dusts, and confirmed the high concentration of thin dust particles which can be very harmful to humans.

  10. Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning Experiment field campaign in Niger, January 2006

    Science.gov (United States)

    Chou, CéDric; Formenti, Paola; Maille, Michel; Ausset, Patrick; Helas, Günter; Harrison, Mark; Osborne, Simon

    2008-12-01

    Dust samples were collected onboard the UK community BAe-146 research aircraft of the Facility for Airborne Atmospheric Measurements (FAAM) operated over Niger during the winter Special Observation Period of the African Monsoon Multidisciplinary Analysis project (AMMA SOP0/DABEX). Particle size, morphology, and composition were assessed using single-particle analysis by analytical scanning and transmission electron microscopy. The aerosol was found to be composed of externally mixed mineral dust and biomass burning particles. Mineral dust consists mainly of aluminosilicates in the form of illite and kaolinite and quartz, accounting for up to 80% of the aerosol number. Fe-rich particles (iron oxides) represented 4% of the particle number in the submicron fraction. Diatoms were found on all the samples, suggesting that emissions from the Bodélé depression were also contributing to the aerosol load. Satellite images confirm that the Bodélé source was active during the period of investigation. Biomass burning aerosols accounted for about 15% of the particle number of 0.1-0.6 μm diameter and were composed almost exclusively of particles containing potassium and sulfur. Soot particles were very rare. The aspect ratio AR is a measure of particle elongation. The upper limit of the AR value distribution is 5 and the median is 1.7, which suggests that mineral dust particles could be described as ellipsoids whose major axis never exceeds 1.9 × Dp (the spherical geometric diameter). This is consistent with other published values for mineral dust, including the recent Aerosol Robotic Network retrieval results of Dubovik et al. (2006).

  11. Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere

    Directory of Open Access Journals (Sweden)

    G. H. Wang

    2013-01-01

    Full Text Available Composition and size distribution of atmospheric aerosols from Xi'an city (~400 m, altitude in inland China during the spring of 2009 including a massive dust event on 24 April were measured and compared with a parallel measurement at the summit (2060 m, altitude of Mt. Hua, an alpine site nearby Xi'an. EC (elemental carbon, OC (organic carbon and major ions in the city were 2–22 times higher than those on the mountaintop during the whole sampling period. Compared to that in the non-dust period a sharp increase in OC was observed at both sites during the dust period, which was mainly caused by an input of biogenic organics from the Gobi desert. However, adsorption/heterogeneous reaction of gaseous organics with dust was another important source of OC in the urban, contributing 22% of OC in the dust event. In contrast to the mountain atmosphere where fine particles were less acidic when dust was present, the urban fine particles became more acidic in the dust event than in the non-dust event, mainly due to enhanced heterogeneous formation of nitrate and diluted NH3. Cl and NO3 in the urban air during the dust event significantly shifted toward coarse particles. Such redistributions were further pronounced on the mountaintop when dust was present, resulting in both ions almost entirely staying in coarse particles. On the contrary, no significant spatial difference in size distribution of SO42− was found between the urban ground surface and the mountain atmosphere, which dominated in the fine mode (<2.1 μm during the nonevent and comparably distributed in the fine (<2.1 μm and coarse (>2.1 μm modes during the dust event.

  12. Variations in the composition of house dust by particle size.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2017-07-03

    In this study, the distribution of heavy metals and other components in the various size fractions of house dust is investigated. A house dust sample collected from a vacuum cleaner was separated into size fractions by sieving and air classification. The analysis of the size fractions showed that the heavy metals and other components are not uniformly distributed in the various size fractions. The highest total carbon concentrations were found in the size fractions with a mass median diameter of 18-95 µm, while in the coarser size fractions and in the finest size fraction, the total carbon concentration was lower. In contrast, for many heavy metals and other metals (Al, Fe, Ca, S, Mn, Ti, Ba, Sr, As, Co, and V), the maximum concentrations were found in the finest size fraction. With increasing size of the dust fractions, the concentrations decreased. For several of these components, the dependence of the concentration on the particle size can be approximately assessed well using a power function. The distribution of Zn, Cu, Mg and Na was different. While the concentration of Na and Mg was higher in the coarser size fractions, no distinct trend was found for the concentrations of Cu and Zn.

  13. Distribution of dust during two dust storms in Iceland

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  14. The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The average mass concentration of the aerosols in Beijing during the dust storm in the spring of 2000 was ~6000 mg·m-3, ~30 times as high as that in the non-dust storm days. The enrichment factors of the pollution elements As, Sb and Se were higher than those in the non-dust storm days. This indicated that As, Sb and Se resulted from the pollution sources of those areas, through which the dust storm passed during their long-range transport, in addition to the local pollution sources in Beijing. The enrichment factors of the Pb, Zn, Cd and Cu were much less than those in the non-dust storm days, suggesting that the local pollution sources in Beijing area contributed to them mostly. The enrichment factors of elements Al, Fe, Sc, Mn, Na, Ni, Cr, V and Co were close to 1, showing that these elements originated from crust. The concentration of S in the dust storm was ~10 mg·m-3, 4 times as high as that in non-dust storm. S in the aerosols resulted from the adsorption of gaseous SO2 and the conse-quent transformation on it. The aerosols of the dust storm contained 16.1% and 76.9% of fine particles with the sizes less than 2.1 and 9.0 mm, respectively, while it had a large number of coarse particles. It was noted that a considerable portion of Fe(Ⅱ) was detected from the dust storm. Fe(Ⅱ) could easily dissolve in seawater to be nutrient for phyto-plankton and would lead to the increase of the emission of dimethylsulfide (DMS) from the ocean. The feedbacks of Fe coupled with S in atmosphere might be the important mechanism that would affect the primary productivity in Pacific and/or the global climate change.

  15. Pore size distribution mapping

    OpenAIRE

    Strange, John H.; J. Beau W. WEBBER; Schmidt, S.D.

    1996-01-01

    Pore size distribution mapping has been demonstrated using NMR cryoporometry\\ud in the presence of a magnetic field gradient, This novel method is extendable to 2D and 3D mapping. It offers a unique nondestructive method of obtaining full pore-size distributions in the range 3 to 100 nm at any point within a bulk sample. \\ud

  16. Investigation of the dynamics of nanometer-size dust particles in the inner heliosphere

    Science.gov (United States)

    O'brien, L.

    2015-12-01

    The spatial and size distribution of submicron-sized interplanetary dust particles at 1 AU is highly variable due to the nature of its production and transport through the solar system. Nano-dust particles are thought to be produced by mutual collisions between interplanetary dust particles slowly spiraling toward the Sun and are accelerated outward to high velocities by interaction with the solar wind. The WAVES instruments on the two STEREO spacecraft reported the detection, strong temporal variation, and potentially high flux of these particles [Meyer-Vernet et al., 2009]. Simulations of nano-dust dynamics are performed to gain an understanding of their transport in the inner heliosphere and distribution near 1 AU where they can potentially be detected. Simulations show that the temporal variation in nano-dust detection, as suggested by the STEREO observations, can be described by the dust's interaction with the complex structure of the interplanetary magnetic field (IMF) [Juhasz and Horanyi, 2013]. The dust trajectories and their distribution near Earth's orbit is a function of the initial conditions of both nano-dust particles and the IMF. Le Chat et al. (2015) reported on the correlation between high nano-dust fluxes observed by STEREO and the observed Interplanetary Coronal Mass Ejections (ICMEs). We present the results from simulating nano-dust interaction with ICMEs that are modeled as magnetic clouds, and report that the dust trajectories and, thus, their distribution and velocities at 1 AU are significantly altered.

  17. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  18. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2013-07-01

    Full Text Available This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the dust size parameterization. Simulations are conducted quasi-globally (180° W–180° E and 60° S–70° N using the WRF-Chem model with three different approaches to represent dust size distribution (8-bin, 4-bin, and 3-mode. The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode approach retains more fine dust particles but fewer coarse dust particles due to its prescribed σg of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (∼6000 Tg yr-1, the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg and 25% (49.1 Tg higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (-2 and atmospheric warming (0.39∼0.96 W m-2 and in a tremendous difference of a factor of ∼10 in dust TOA cooling (-0.24∼-2.20 W m-2. An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size

  19. Distribution of dust from Kuiper belt objects

    CERN Document Server

    Gorkavyi, N N; Taidakova, T; Mather, J C; Gorkavyi, Nick N.; Ozernoy, Leonid M.; Taidakova, Tanya; Mather, John C.

    2000-01-01

    (Abridged) Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the `kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects ; the resulting 3-D grid consists of $1.9\\times 10^6$ cells containing $1.2\\times 10^{11}$ particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau betwee...

  20. Non-monotonic spatial distribution of the interstellar dust in astrospheres: finite gyroradius effect

    Science.gov (United States)

    Katushkina, O. A.; Alexashov, D. B.; Izmodenov, V. V.; Gvaramadze, V. V.

    2017-02-01

    High-resolution mid-infrared observations of astrospheres show that many of them have filamentary (cirrus-like) structure. Using numerical models of dust dynamics in astrospheres, we suggest that their filamentary structure might be related to specific spatial distribution of the interstellar dust around the stars, caused by a gyrorotation of charged dust grains in the interstellar magnetic field. Our numerical model describes the dust dynamics in astrospheres under an influence of the Lorentz force and assumption of a constant dust charge. Calculations are performed for the dust grains with different sizes separately. It is shown that non-monotonic spatial dust distribution (viewed as filaments) appears for dust grains with the period of gyromotion comparable with the characteristic time-scale of the dust motion in the astrosphere. Numerical modelling demonstrates that the number of filaments depends on charge-to-mass ratio of dust.

  1. Business size distributions

    Science.gov (United States)

    D'Hulst, R.; Rodgers, G. J.

    2001-10-01

    In a recent work, we introduced two models for the dynamics of customers trying to find the business that best corresponds to their expectation for the price of a commodity. In agreement with the empirical data, a power-law distribution for the business sizes was obtained, taking the number of customers of a business as a proxy for its size. Here, we extend one of our previous models in two different ways. First, we introduce a business aggregation rate that is fitness dependent, which allows us to reproduce a spread in empirical data from one country to another. Second, we allow the bankruptcy rate to take a different functional form, to be able to obtain a log-normal distribution with power-law tails for the size of the businesses.

  2. Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009 - Part 2: Impact of dust storm on organic aerosol composition and size distribution

    Science.gov (United States)

    Wang, G. H.; Li, J. J.; Cheng, C. L.; Zhou, B. H.; Xie, M. J.; Hu, S. Y.; Meng, J. J.; Sun, T.; Ren, Y. Q.; Cao, J. J.; Liu, S. X.; Zhang, T.; Zhao, Z. Z.

    2012-05-01

    PM10 and size-resolved particles (9-stage) were simultaneously collected at Mt. Hua and Mt. Tai in central and east China during the spring of 2009 including a massive dust storm occurring on 24 April (named as DS II), and determined for organic compounds to investigate the impact of dust storm on organic aerosols. High molecular weight (HMW) n-alkanes, fatty acids, and fatty alcohols and trehalose sharply increased and almost entirely stayed in coarse particles when dust storm was present, suggesting that high level of organic aerosols in the mountain atmospheres during the event largely originated from Gobi desert plants. However, most anthropogenic aerosols (e.g. PAHs, and aromatic and dicarboxylic acids) during the event significantly decreased due to a dilution effect, indicating that anthropogenic aerosols in the mountain atmospheres during the nonevent period largely originated from local/regional sources rather than from long-range transport. Trehalose, a metabolism product enriched in biota in dry conditions, was 62 ± 78 and 421 ± 181 ng m-3 at Mt. Hua and Mt. Tai during DS II, 10-30 times higher than that in the nonevent time, indicating that trehalose may be a tracer for dust emissions from Gobi desert regions. Molecular compositions of organic aerosols in the mountain samples demonstrate that domestic coal burning is still the major source of PAHs in China. n-Alkanes and fatty acids showed a bimodal size distribution during the nonevent with a major peak in fine mode (2.1 μm). The coarse mode significantly increased and even dominated over the whole size range when dust was present. Glucose and trehalose were also dominant in the coarse mode especially in the DS II time. PAHs and levoglucosan concentrated in fine particles with no significant changes in size distribution when dust storm occurred. However, phthalic and succinic acids showed bimodal size distribution pattern with an increase in coarse mode during the event, because both are formed via

  3. State of Mixing, Shape Factor, Number Size Distribution, and Hygroscopic Growth of the Saharan Anthropogenic and Mineral Dust Aerosol at Tinfou, Morocco

    OpenAIRE

    Kaaden, Nicole; Massling, Andreas; Schladitz, Alexander; Müller, Thomas; Kandler, Konrad; Schütz, Lothar; Weinzierl, Bernadett; Petzold, Andreas; Tesche, Matthias; Leinert, Stefan; Wiedensohler, Alfred

    2009-01-01

    The Saharan Mineral Dust Experiment (SAMUM) was conducted in May and June 2006 in Tinfou, Morocco. A H-TDMA system and a H-DMA-APS system were used to obtain hygroscopic properties of mineral dust particles at 85% RH. Dynamic shape factors of 1.11, 1.19 and 1.25 were determined for the volume equivalent diameters 720, 840 and 960 nm, respectively. During a dust event, the hydrophobic number fraction of 250 and 350 nm particles increased significantly from 30 and 65% to 53 and 75%, respect...

  4. Hail Size Distribution Mapping

    Science.gov (United States)

    2008-01-01

    A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at . 3DRadPlot plots Level III reflectivity data at four scan elevations (this software is available at Open Channel Software, ). By using spatial and temporal interpolation/extrapolation based on hydrometeor fall dynamics, we can merge the hail disdrometer array data coupled with local Weather Surveillance Radar-1988, Doppler (WSR-88D) radial velocity and reflectivity data into a 4-D (3-D space and time) picture of hail size distributions. Hail flux maps can then be generated and used for damage prediction and assessment over specific surfaces corresponding to structures within the disdrometer array volume. Immediately following a hail storm, specific damage areas and degree of damage can be identified for inspection crews.

  5. Tokamak dust particle size and surface area measurement

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J.; Smolik, G.R.; Anderl, R.A.; Pawelko, R.J.; Hembree, P.B.

    1998-07-01

    The INEEL has analyzed a variety of dust samples from experimental tokamaks: General Atomics` DII-D, Massachusetts Institute of Technology`s Alcator CMOD, and Princeton`s TFTR. These dust samples were collected and analyzed because of the importance of dust to safety. The dust may contain tritium, be activated, be chemically toxic, and chemically reactive. The INEEL has carried out numerous characterization procedures on the samples yielding information useful both to tokamak designers and to safety researchers. Two different methods were used for particle characterization: optical microscopy (count based) and laser based volumetric diffraction (mass based). Surface area of the dust samples was measured using Brunauer, Emmett, and Teller, BET, a gas adsorption technique. The purpose of this paper is to present the correlation between the particle size measurements and the surface area measurements for tokamak dust.

  6. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  7. Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere

    Directory of Open Access Journals (Sweden)

    G. H. Wang

    2012-08-01

    Full Text Available Composition and size distribution of atmospheric aerosols from Xi'an city (~400 m, altitude in inland China during the spring of 2009 including a massive dust event on 24 April were measured and compared with a parallel measurement at the summit (2060 m, altitude of Mt. Hua, an alpine site nearby Xi'an. EC, OC and major ions in the city were 2–22 times higher than those on the mountaintop during the whole sampling period. Sulfate was the highest species in the nonevent time in Xi'an and Mt. Hua, followed by nitrate, OC and NH4+. In contrast, OC was the most abundant in the event at both sites, followed by sulfate, nitrate and Ca2+. Compared to those on the urban ground surface aerosols in the elevated troposphere over Mt. Hua contain more sulfate and less nitrate, because HNO3 is formed faster than H2SO4 and thus long-range transport of HNO3 is less significant than that of H2SO4. An increased water-soluble organic nitrogen (WSON was observed for the dust samples from Xi'an, indicating a significant deposition of anthropogenic WSON onto dust and/or an input of biogenic WSON from Gobi desert.

    As far as we know, it is for the first time to perform a simultaneous observation of aerosol chemistry between the ground surface and the free troposphere in inland East Asia. Our results showed that fine particles are more acidic on the mountaintop than on the urban ground surface in the nonevent, mainly due to continuous oxidation of SO2 to produce H2SO4 during the transport from lowland areas to the alpine atmosphere. However, we found the urban fine particles became more acidic in the event than in the nonevent, in contrast to the mountain atmosphere, where fine particles were less acidic when dust was present. The opposite changes in acidity of fine particles at both sites during the event are mostly caused by

  8. Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies

    Science.gov (United States)

    McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.

    2010-01-01

    This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.

  9. Impact of dust size parameterizations on aerosol burden and radiative forcing in RegCM4

    Science.gov (United States)

    Tsikerdekis, Athanasios; Zanis, Prodromos; Steiner, Allison L.; Solmon, Fabien; Amiridis, Vassilis; Marinou, Eleni; Katragkou, Eleni; Karacostas, Theodoros; Foret, Gilles

    2017-01-01

    We investigate the sensitivity of aerosol representation in the regional climate model RegCM4 for two dust parameterizations for the period 2007-2014 over the Sahara and the Mediterranean. We apply two discretization methods of the dust size distribution keeping the total mass constant: (1) the default RegCM4 4-bin approach, where the size range of each bin is calculated using an equal, logarithmic separation of the total size range of dust, using the diameter of dust particles, and (2) a newly implemented 12-bin approach with each bin defined according to an isogradient method where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of transported dust size bins theoretically improves the representation of the physical properties of dust particles within the same size bin. Thus, more size bins improve the simulation of atmospheric processes. The radiative effects of dust over the area are discussed and evaluated with the CALIPSO dust optical depth (DOD). This study is among the first studies evaluating the vertical profile of simulated dust with a pure dust product. Reanalysis winds from ERA-Interim and the total precipitation flux from the Climate Research Unit (CRU) observational gridded database are used to evaluate and explain the discrepancies between model and observations. The new dust binning approach increases the dust column burden by 4 and 3 % for fine and coarse particles, respectively, which increases DOD by 10 % over the desert and the Mediterranean. Consequently, negative shortwave radiative forcing (RF) is enhanced by more than 10 % at the top of the atmosphere and by 1 to 5 % on the surface. Positive longwave RF locally increases by more than 0.1 W m-2 in a large portion of the Sahara, the northern part of the Arabian Peninsula and the Middle East. The four-bin isolog method is to some extent numerically efficient, nevertheless our work highlights that the simplified representation of the four

  10. Dynamics and distribution of Jovian dust ejected from the Galilean satellites

    Science.gov (United States)

    Liu, Xiaodong; Sachse, Manuel; Spahn, Frank; Schmidt, Jürgen

    2016-07-01

    In this paper, the dynamical analysis of the Jovian dust originating from the four Galilean moons is presented. High-accuracy orbital integrations of dust particles are used to determine their dynamical evolution. A variety of forces are taken into account, including the Lorentz force, solar radiation pressure, Poynting-Robertson drag, solar gravity, the satellites' gravity, plasma drag, and gravitational effects due to nonsphericity of Jupiter. More than 20,000 dust particles from each source moon in the size range from 0.05 μm to 1 cm are simulated over 8000 (Earth) years until each dust grain hits a sink (moons, Jupiter, or escape from the system). Configurations of dust number density in the Jovicentric equatorial inertial frame are calculated and shown. In a Jovicentric frame rotating with the Sun the dust distributions are found to be asymmetric. For certain small particle sizes, the dust population is displaced towards the Sun, while for certain larger sizes, the dust population is displaced away from the Sun. The average lifetime as a function of particle size for ejecta from each source moon is derived, and two sharp jumps in the average lifetime are analyzed. Transport of dust between the Galilean moons and to Jupiter is investigated. Most of the orbits for dust particles from Galilean moons are prograde, while, surprisingly, a small fraction of orbits are found to become retrograde mainly due to solar radiation pressure and Lorentz force. The distribution of orbital elements is also analyzed.

  11. Exploring the Role of Sub-micron Sized Dust Grains in the Atmospheres of Red L0 - L6 Dwarfs

    CERN Document Server

    Hiranaka, Kay; Douglas, Stephanie T; Marley, Mark S; Baldassare, Vivienne F

    2016-01-01

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a "dust haze" of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model which uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov-Chain Monte Carlo methods. We find that sub-micron range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large grain (1--100~$\\mu m$) dust clouds but not submicron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  12. Silica dust exposure: Effect of filter size to compliance determination

    Science.gov (United States)

    Amran, Suhaily; Latif, Mohd Talib; Khan, Md Firoz; Leman, Abdul Mutalib; Goh, Eric; Jaafar, Shoffian Amin

    2016-11-01

    Monitoring of respirable dust was performed using a set of integrated sampling system consisting of sampling pump attached with filter media and separating device such as cyclone or special cassette. Based on selected method, filter sizes are either 25 mm or 37 mm poly vinyl chloride (PVC) filter. The aim of this study was to compare performance of two types of filter during personal respirable dust sampling for silica dust under field condition. The comparison strategy focused on the final compliance judgment based on both dataset. Eight hour parallel sampling of personal respirable dust exposure was performed among 30 crusher operators at six quarries. Each crusher operator was attached with parallel set of integrated sampling train containing either 25 mm or 37 mm PVC filter. Each set consisted of standard flow SKC sampler, attached with SKC GS3 cyclone and 2 pieces cassette loaded with 5.0 µm of PVC filter. Samples were analyzed by gravimetric technique. Personal respirable dust exposure between the two types of filters indicated significant positive correlation (p arithmetic mean(AM) and geometric mean(GM). In overall we concluded that personal respirable dust exposure either based on 25mm or 37mm PVC filter will give similar compliance determination. Both filters are reliable to be used in respirable dust monitoring for silica dust related exposure.

  13. Mass size distribution of particle-bound water

    Science.gov (United States)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  14. Size distribution and influencing factors of road dust PAHs in Beijing, China%北京城市道路积尘多环芳烃的粒度分布特征及其影响因素

    Institute of Scientific and Technical Information of China (English)

    叶友斌; 张巍; 王学军

    2009-01-01

    Road dust for different types of traffic roads was collected monthly for 16 months in Beijing. Size distribution of PAHs and TOC of road dust were investigated. The size distribution of road dust showed a trimodal spectrum. The particles of214 μm constituted the highest and lowest percentage by volume, respectively. No significant difference was found for PAHs be-tween the fractions of214 μm fraction, 214 μm部分颗粒所占体积最小.>214 μm这部分颗粒中的多环芳烃质量分数最低,<75μm和75~214μm这两部分颗粒中多环芳烃的质量分数没有显著差异,但由于<75μm部分颗粒所占的体积和质量比例最大,这部分颗粒的多环芳烃累积量所占比例最高.不同道路的积尘粒径存在差异,海淀路和成府路机动车道的积尘颗粒相比自行车道和人行道的颗粒更粗.由于粒径分布的差异和多环芳烃质量分数的差异,不同类型道路的多环芳烃累积量的粒径分布呈现差异.多环芳烃质量分数和累积量的粒度分布也呈现季节差异,冬春季<75 μm颗粒中的多环芳烃质量分数最高,多环芳烃的累积量所占比例也较夏秋季高.在三个粒级中,TOC与多环芳烃质量分数均呈现显著的正相关.高比例的细颗粒及细颗粒中的多环芳烃使得道路积尘再悬浮进入大气以及随湿沉降进入地表径流的环境风险加大.

  15. The dust grain size - stellar luminosity trend in debris discs

    CERN Document Server

    Pawellek, Nicole

    2015-01-01

    The cross section of material in debris discs is thought to be dominated by the smallest grains that can still stay in bound orbits despite the repelling action of stellar radiation pressure. Thus the minimum (and typical) grain size $s_\\text{min}$ is expected to be close to the radiation pressure blowout size $s_\\text{blow}$. Yet a recent analysis of a sample of Herschel-resolved debris discs showed the ratio $s_\\text{min}/s_\\text{blow}$ to systematically decrease with the stellar luminosity from about ten for solar-type stars to nearly unity in the discs around the most luminous A-type stars. Here we explore this trend in more detail, checking how significant it is and seeking to find possible explanations. We show that the trend is robust to variation of the composition and porosity of dust particles. For any assumed grain properties and stellar parameters, we suggest a recipe of how to estimate the "true" radius of a spatially unresolved debris disc, based solely on its spectral energy distribution. The r...

  16. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    Science.gov (United States)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  17. Minor effect of physical size sorting on iron solubility of transported mineral dust

    Directory of Open Access Journals (Sweden)

    Z. B. Shi

    2011-05-01

    Full Text Available Observations show that the fractional solubility of Fe (FS-Fe, ratio of dissolved to total Fe in dust aerosol increases dramatically from ~0.1% in regions of high dust mass concentration to 80% in remote regions where concentrations are low. Here, we combined laboratory geochemical measurements with global aerosol model simulations to test the hypothesis that the increase in FS-Fe is due to physical size sorting during transport. We determined the FS-Fe and fractional solubility of Al (FS-Al in size-fractionated dust generated from two representative soil samples collected from known Saharan dust source regions using a customized dust re-suspension and collection system. The results show that the FS-Fe is size-dependent and ranges from 0.1–0.3 % in the coarse size fractions (>1 μm to ~0.2–0.8 % in the fine size fractions (<1 μm. The FS-Al shows a similar size distribution to that of FS-Fe. The size-resolved FS-Fe data were then combined with simulated dust mass concentration and size distribution data from a global aerosol model, GLOMAP, to calculate the FS-Fe of dust aerosol over the tropical and subtropical North Atlantic Ocean. We find that the calculated FS-Fe in the dust aerosol increases systematically from ~0.1 % at high dust mass concentrations (e.g., >100 μg m−3 to ~0.2 % at low concentrations (<100 μg m−3 due to physical size sorting (i.e., particle gravitational settling. These values are one to two orders of magnitude smaller than those observed on cruises across the tropical and sub-tropical North Atlantic Ocean under an important pathway of Saharan dust plumes for similar dust mass concentrations. Even when the FS-Fe of sub-micrometer size fractions (0.18–0.32 μm, 0.32–0.56 μm, and 0.56–1.0 μm in the model is increased by a factor of 10 over the measured values, the calculated FS-Fe of the dust is still more than an order of magnitude lower than that measured in the field. Therefore, the

  18. Minor effect of physical size sorting on iron solubility of transported mineral dust

    Directory of Open Access Journals (Sweden)

    Z. B. Shi

    2011-08-01

    Full Text Available Observations show that the fractional solubility of Fe (FS-Fe, percentage of dissolved to total Fe in dust aerosol increases considerably from 0.1 % in regions of high dust mass concentration to 80 % in remote regions where concentrations are low. Here, we combined laboratory geochemical measurements with global aerosol model simulations to test the hypothesis that the increase in FS-Fe is due to physical size sorting during transport. We determined the FS-Fe and fractional solubility of Al (FS-Al in size-fractionated dust generated from two representative soil samples collected from known Saharan dust source regions using a customized dust re-suspension and collection system. The results show that the FS-Fe is size-dependent and ranges from 0.1–0.3 % in the coarse size fractions (>1 μm to ~0.2–0.8 % in the fine size fractions (<1 μm. The FS-Al shows a similar size distribution to that of the FS-Fe. The size-resolved FS-Fe data were then combined with simulated dust mass concentration and size distribution data from a global aerosol model, GLOMAP, to calculate the FS-Fe of dust aerosol over the tropical and subtropical North Atlantic Ocean. We find that the calculated FS-Fe in the dust aerosol increases systematically from ~0.1 % at high dust mass concentrations (e.g., >100 μg m−3 to ~0.2 % at low concentrations (<100 μg m–3 due to physical size sorting (i.e., particle gravitational settling. These values are one to two orders of magnitude smaller than those observed on cruises across the tropical and sub-tropical North Atlantic Ocean under an important pathway of Saharan dust plumes for similar dust mass concentrations. Even when the FS-Fe of sub-micrometer size fractions (0.18–0.32 μm, 0.32–0.56 μm, and 0.56–1.0 μm in the model is increased by a factor of 10 over the measured values, the calculated FS-Fe of the dust is still more than an order of magnitude lower than that measured in the field

  19. The implications for dust emission modeling of spatial and vertical variations in horizontal dust flux and particle size in the Bodélé Depression, Northern Chad

    Science.gov (United States)

    Chappell, Adrian; Warren, Andrew; O'Donoghue, Alice; Robinson, Andrea; Thomas, Andrew; Bristow, Charlie

    2008-02-01

    The Bodélé Depression has been confirmed as the single largest source of atmospheric mineral dust on Earth. It is a distinctive source because of its large exposure of diatomite and the presence of mega-barchan dunes. Direct measurements of horizontal dust flux and particle size were made to investigate dust emission processes and for comparison with mechanisms of emission assumed in current dust models. More than 50 masts, with traps mounted on each, were located across and downwind of three barchans in 56 km2 study area of the eastern Bodélé. The size-distribution of surface material is bi-modal; there are many fine dust modes and a mixed mineralogy with a particle density three times smaller than quartz. Horizontal fluxes (up to 70 m above the playa) of particles, up to 1000 μm in diameter, are produced frequently from the accelerated flow over and around the barchans, even in below-threshold shear conditions on the diatomite playa. Our data on dust sizes do not conform to retrievals of dust size distributions from radiance measurements made in the same area. Dust emission models for the region may need to be revised to account for: saltators in the Bodélé, which are a mixture of quartz sand and diatomite flakes; the great spatial and vertical variation in the abundance, mass and density of dust and abraders; and the patterns of surface erodibility. All of these have important local effects on the vertical dust flux and its particle sizes.

  20. Kinetic narrowing of size distribution

    Science.gov (United States)

    Dubrovskii, V. G.

    2016-05-01

    We present a model that reveals an interesting possibility for narrowing the size distribution of nanostructures when the deterministic growth rate changes its sign from positive to negative at a certain stationary size. Such a behavior occurs in self-catalyzed one-dimensional III-V nanowires and more generally whenever a negative "adsorption-desorption" term in the growth rate is compensated by a positive "diffusion flux." By asymptotically solving the Fokker-Planck equation, we derive an explicit representation for the size distribution that describes either Poissonian broadening or self-regulated narrowing depending on the parameters. We show how the fluctuation-induced spreading of the size distribution can be completely suppressed in systems with size self-stabilization. These results can be used for obtaining size-uniform ensembles of different nanostructures.

  1. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Kashif [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad and University of Wah, Wah Cantt 47040 (Pakistan); Ehsan, Zahida, E-mail: Ehsan.zahida@gmail.com [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Universita degli Studi del Molise, 86090 Pesche - IS (Italy); INFN Sezione di Napoli, 80126 Napoli (Italy); Department of Physics, COMSATS Institute of Information Technology (CIIT), Defence Road, Off Raiwind Road, Lahore 86090 (Pakistan); Khan, S. A. [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division, PINSTEC, PO Box Nilore, Islamabad 44000 (Pakistan)

    2014-02-15

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  2. Centaur size distribution with DECam

    Science.gov (United States)

    Fuentes, Cesar; Trilling, David E.; Schlichting, Hilke

    2014-11-01

    We present the results of the 2014 centaur search campaign on the Dark Energy Camera (DECam) in Tololo, Chile. This is the largest debiased Centaur survey to date, measuring for the first time the size distribution of small Centaurs (1-10km) and the first time the sizes of planetesimals from which the entire Solar System formed are directly detected.The theoretical model for the coagulation and collisional evolution of the outer solar system proposed in Schlichting et al. 2013 predicts a steep rise in the size distribution of TNOs smaller than 10km. These objects are below the detection limit of current TNO surveys but feasible for the Centaur population. By constraining the number of Centaurs and this feature in their size distribution we can confirm the collisional evolution of the Solar System and estimate the rate at which material is being transferred from the outer to the inner Solar System. If the shallow power law behavior from the TNO size distribution at ~40km can be extrapolated to 1km, the size of the Jupiter Family of Comets (JFC), there would not be enough small TNOs to supply the JFC population (Volk & Malhotra, 2008), debunking the link between TNOs and JFCs.We also obtain the colors of small Centaurs and TNOs, providing a signature of collisional evolution by measuring if there is in fact a relationship between color and size. If objects smaller than the break in the TNO size distribution are being ground down by collisions then their surfaces should be fresh, and then appear bluer in the optical than larger TNOs that are not experiencing collisions.

  3. Coupling the Mars Dust and Water Cycles: Investigating the Role of Clouds in Controlling the Vertical Distribution of Dust During N. H. Summer

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.

    2014-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer

  4. Breaking through: The effects of a velocity distribution on barriers to dust growth

    CERN Document Server

    Windmark, Fredrik; Ormel, Chris; Dullemond, Cornelis P

    2012-01-01

    It is unknown how far dust growth can proceed by coagulation. Obstacles to collisional growth are the fragmentation and bouncing barriers. However, in all previous simulations of the dust-size evolution in protoplanetary disks, only the mean collision velocity has been considered, neglecting that a small but possibly important fraction of the collisions will occur at both much lower and higher velocities. We study the effect of the probability distribution of impact velocities on the collisional dust growth barriers. Assuming a Maxwellian velocity distribution for colliding particles to determine the fraction of sticking, bouncing, and fragmentation, we implement this in a dust-size evolution code. We also calculate the probability of growing through the barriers and the growth timescale in these regimes. We find that the collisional growth barriers are not as sharp as previously thought. With the existence of low-velocity collisions, a small fraction of the particles manage to grow to masses orders of magnit...

  5. The origin of bimodal grain-size distribution for aeolian deposits

    Science.gov (United States)

    Lin, Yongchong; Mu, Guijin; Xu, Lishuai; Zhao, Xue

    2016-03-01

    Atmospheric dust deposition is a common phenomenon in arid and semi-arid regions. Bimodal grain size distribution (BGSD) (including the fine component and coarse component) of aeolian deposits has been widely reported. But the origin of this pattern is still debated. Here, we focused on the sedimentary process of modern dust deposition, and analyzed the grain size distribution of modern dust deposition, foliar dust, and aggregation of the aeolian dust collected in Cele Oasis, southern margin of Tarim Basin. The results show that BGSD also appear in a dust deposition. The content of fine components (dust storm is significant less than that from subsequent floating dust. Fine component also varies with altitude. These indicate that modern dust deposition have experienced changing aerodynamic environment and be reworked during transportation and deposition, which is likely the main cause for BGSD. The dusts from different sources once being well-mixed in airflow are hard to form multiple peaks respectively corresponding with different sources. In addition, the dust deposition would appear BGSD whether aggregation or not. Modern dust deposition is the continuation of ancient dust deposition. They both may have the same cause of formation. Therefore, the origin of BGSD should provide a theoretical thinking for reconstructing the palaeo-environmental changes with the indicator of grain size.

  6. Dust Dynamics in Protoplanetary Disk Winds Driven by Magneto-Rotational Turbulence: A Mechanism for Floating Dust Grains with Characteristic Size

    CERN Document Server

    Miyake, Tomoya; Inutsuka, Shu-ichiro

    2015-01-01

    We investigate the dynamics of dust grains with various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate--size grains float at several scale heights from the midplane in time-averated force balance between the downward gravity and the upward gas drag. For the minimum mass solar nebula at 1 AU, dust grains with size of 20 -- 40 $\\mu m$ float at 5-10 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. This implies that the dust depletion is expected to take place in small-to-large and inside-out manners. We also discuss the implication of our result to the observat...

  7. A CONCENTRATION OF CENTIMETER-SIZED GRAINS IN THE OPHIUCHUS IRS 48 DUST TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Marel, N. van der; Pinilla, P.; Tobin, J.; Kempen, T. van [Leiden Observatory, P.O. Box 9513, 2300 RA Leiden (Netherlands); Andrews, S.; Ricci, L.; Birnstiel, T., E-mail: nmarel@strw.leidenuniv.nl [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-09-01

    Azimuthally asymmetric dust distributions observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in transition disks have been interpreted as dust traps. We present Very Large Array Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at a 0.″2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 ± 0.9 times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data are required for definitive confirmation.

  8. Urban aerosol number size distributions

    Directory of Open Access Journals (Sweden)

    T. Hussein

    2004-01-01

    Full Text Available Aerosol number size distributions have been measured since 5 May 1997 in Helsinki, Finland. The presented aerosol data represents size distributions within the particle diameter size range 8-400nm during the period from May 1997 to March 2003. The daily, monthly and annual patterns of the aerosol particle number concentrations were investigated. The temporal variation of the particle number concentration showed close correlations with traffic activities. The highest total number concentrations were observed during workdays; especially on Fridays, and the lowest concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were observed during winter and spring and lower concentrations were observed during June and July. More than 80% of the number size distributions had three modes: nucleation mode (30nm, Aitken mode (20-100nm and accumulation mode (}$'>90nm. Less than 20% of the number size distributions had either two modes or consisted of more than three modes. Two different measurement sites were used; in the first (Siltavuori, 5.5.1997-5.3.2001, the arithmetic means of the particle number concentrations were 7000cm, 6500cm, and 1000cm respectively for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6.3.2001-28.2.2003 they were 5500cm, 4000cm, and 1000cm. The total number concentration in nucleation and Aitken modes were usually significantly higher during workdays than during weekends. The temporal variations in the accumulation mode were less pronounced. The lower concentrations at Kumpula were mainly due to building construction and also the slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation at both sites.

  9. Dynamics of a Dust Crystal with Two Different Size Dust Species

    CERN Document Server

    Matthews, L S; Hyde, T W

    2005-01-01

    A self-consistent three-dimensional model for a complex (dusty) plasma is used to study the effects of multiple-sized dust grains in a dust crystal. In addition to the interparticle forces, which interact through a Yukawa potential, the model includes the effects of gravity, the variation of the sheath potential above the powered electrode, and a radial confining potential. Simulations studied various ratios of a mix of 6.5- and 8.9-micron monodisperse particles and compared their correlation functions, electric potential energy of the crystal formations, and the dispersion relations for in-plane and out-of-plane dust lattice wave (DLW) modes for two different sheath thicknesses. In the 7 mm sheath, the particles formed two layers in the vertical direction by size, and acted as a two-layer crystal with weak correlation between the layers. In the 3 mm sheath, the particles formed an essentially monolayer crystal; however the crystal dynamics showed some characteristics of a bilayer crystal.

  10. Colloidal Plasmas : Effect of nonthermal ion distribution and dust temperature on nonlinear dust acoustic solitary waves

    Indian Academy of Sciences (India)

    Tarsem Singh Gill; Harvinder Kaur

    2000-11-01

    The effects of nonthermal ion distribution and finite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the fixed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.

  11. Spatial Distributions of Multiple Dust Components in the PPN/PN Dust Shells

    CERN Document Server

    Ueta, T; Meixner, M; Dayal, A; Hora, J L; Fazio, G G; Deutsch, L K; Hoffmann, W F; Ueta, Toshiya; Speck, Angela K.; Meixner, Margaret; Dayal, Aditya; Hora, Joseph L.; Fazio, Giovanni G.; Deutsch, Lynne K.; Hoffmann, William F.

    2000-01-01

    We investigate spatial distributions of specific dust components in the circumstellar shells of a proto-planetary nebula candidate, HD 179821, and a planetary nebula, BD$+30^{\\circ}$3639, by means of spectral imaging. With high-resolution ground-based images and ISO spectra in the mid-infrared, we can derive ``dust feature only'' maps by subtracting synthesized continuum maps from the observed images at the feature wavelength. Such spatially detailed information will help to develop models for the evolution of dust grains around evolved stars.

  12. Downwind changes in grain size of aeolian dust; examples from marine and terrestrial archives

    Science.gov (United States)

    Stuut, Jan-Berend; Prins, Maarten

    2013-04-01

    Aeolian dust in the atmosphere may have a cooling effect when small particles in the high atmosphere block incoming solar energy (e.g., Claquin et al., 2003) but it may also act as a 'greenhouse gas' when larger particles in the lower atmosphere trap energy that was reflected from the Earth's surface (e.g., Otto et al., 2007). Therefore, it is of vital importance to have a good understanding of the particle-size distribution of aeolian dust in space and time. As wind is a very size-selective transport mechanism, the sediments it carries typically have a very-well sorted grain-size distribution, which gradually fines from proximal to distal deposition sites. This fact has been used in numerous paleo-environmental studies to both determine source-to-sink changes in the particle size of aeolian dust (e.g., Weltje and Prins, 2003; Holz et al., 2004; Prins and Vriend, 2007) and to quantify mass-accumulation rates of aeolian dust (e.g., Prins and Weltje 1999; Stuut et al., 2002; Prins et al., 2007; Prins and Vriend, 2007; Stuut et al., 2007; Tjallingii et al., 2008; Prins et al., 2009). Studies on modern wind-blown particles have demonstrated that particle size of dust not only is a function of lateral but also vertical transport distance (e.g., Torres-Padron et al., 2002; Stuut et al., 2005). Nonetheless, there are still many unresolved questions related to the physical properties of wind-blown particles like e.g., the case of "giant" quartz particles found on Hawaii (Betzer et al., 1988) that can only originate from Asia but have a too large size for the distance they travelled through the atmosphere. Here, we present examples of dust particle-size distributions from terrestrial (loess) as well as marine (deep-sea sediments) sedimentary archives and their spatial and temporal changes. With this contribution we hope to provide quantitative data for the modelling community in order to get a better grip on the role of wind-blown particles in the climate system. Cited

  13. Urban aerosol number size distributions

    Directory of Open Access Journals (Sweden)

    T. Hussein

    2003-10-01

    Full Text Available Aerosol number size distributions were measured continuously in Helsinki, Finland from 5 May 1997 to 28 February 2003. The daily, monthly and annual patterns were investigated. The temporal variation of the particle number concentration was seen to follow the traffic density. The highest total particle number concentrations were usually observed during workdays; especially on Fridays, and the lower concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were usually observed during winter and spring and the lowest during June and July. More than 80\\% of the particle number size distributions were tri-modal: nucleation mode (Dp < 30 nm, Aitken mode (20–100 nm and accumulation mode (Dp > 90 nm. Less than 20% of the particle number size distributions have either two modes or consisted of more than three modes. Two different measurement sites are used; in the first place (Siltavuori, 5 May 1997–5 March 2001, the overall means of the integrated particle number concentrations were 7100 cm−3, 6320 cm−3, and 960 cm−3, respectively, for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6 March 2001–28 February 2003 they were 5670 cm−3, 4050 cm−3, and 900 cm−3. The total number concentration in nucleation and Aitken modes were usually significantly higher during weekdays than during weekends. The variations in accumulation mode were less pronounced. The smaller concentrations in Kumpula were mainly due to building construction and also slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation in both sites.

  14. ON THE COMMONALITY OF 10–30 AU SIZED AXISYMMETRIC DUST STRUCTURES IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke; Bergin, Edwin A.; Schwarz, Kamber R. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Blake, Geoffrey A. [Division of Geological and Planetary Sciences, California Institute of Technology, MC 150-21, Pasadena, CA 91125 (United States); Cleeves, L. Ilsedore [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hogerheijde, Michiel; Salinas, Vachail, E-mail: kezhang@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2016-02-10

    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive millimeter-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small-scale structures. Here, we investigate dust structures in the (sub)millimeter continuum emission of four disks (TW Hya, HL Tau, HD 163296, and DM Tau), a sample of disks with the highest spatial resolution Atacama Large Millimeter/submillimeter Array observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ∼axisymmetric but rich in 10–30 AU-sized radial structures, possibly due to physical gaps, surface density enhancements, or localized dust opacity variations within the disks. These results suggest that small-scale axisymmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet formation. Compared with recent spatially resolved observations of CO snow lines in these same disks, all four systems show enhanced continuum emission from regions just beyond the CO condensation fronts, potentially suggesting a causal relationship between dust growth/trapping and snow lines.

  15. Exploring the Role of Sub-micron-sized Dust Grains in the Atmospheres of Red L0-L6 Dwarfs

    Science.gov (United States)

    Hiranaka, Kay; Cruz, Kelle L.; Douglas, Stephanie T.; Marley, Mark S.; Baldassare, Vivienne F.

    2016-10-01

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1-100 μm) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  16. Airborne Measurements of Aerosol Size Distributions During PACDEX

    Science.gov (United States)

    Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.

  17. Aerosol Size Distribution in the marine regions

    Science.gov (United States)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  18. Low-velocity collisions of centimeter-sized dust aggregates

    CERN Document Server

    Beitz, Eike; Blum, Jürgen; Meisner, Thorsten; Teiser, Jens; Wurm, Gerhard

    2011-01-01

    Collisions between centimeter- to decimeter-sized dusty bodies are important to understand the mechanisms leading to the formation of planetesimals. We thus performed laboratory experiments to study the collisional behavior of dust aggregates in this size range at velocities below and around the fragmentation threshold. We developed two independent experimental setups with the same goal to study the effects of bouncing, fragmentation, and mass transfer in free particle-particle collisions. The first setup is an evacuated drop tower with a free-fall height of 1.5 m, providing us with 0.56 s of microgravity time so that we observed collisions with velocities between 8 mm/s and 2 m/s. The second setup is designed to study the effect of partial fragmentation (when only one of the two aggregates is destroyed) and mass transfer in more detail. It allows for the measurement of the accretion efficiency as the samples are safely recovered after the encounter. Our results are that for very low velocities we found bounc...

  19. Knife mill operating factors effect on switchgrass particle size distributions.

    Science.gov (United States)

    Bitra, Venkata S P; Womac, Alvin R; Yang, Yuechuan T; Igathinathane, C; Miu, Petre I; Chevanan, Nehru; Sokhansanj, Shahab

    2009-11-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin-Rammler function fit the chopped switchgrass size distribution data with an R(2)>0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced 'strongly fine skewed mesokurtic' particles with 12.7-25.4 mm screens and 'fine skewed mesokurtic' particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.

  20. Radial distribution of stars, gas and dust in SINGS galaxies. II. Derived dust properties

    CERN Document Server

    Muñoz-Mateos, J C; Boissier, S; Zamorano, J; Dale, D A; Pérez-González, P G; Gallego, J; Madore, B F; Bendo, G; Thornley, M D; Draine, B T; Boselli, A; Buat, V; Calzetti, D; Moustakas, J; Kennicutt, R C; 10.1088/0004-637X/701/2/1965

    2009-01-01

    We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the TIR-to-FUV luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope beta, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. We have also derived radial profiles of the total dust mass surface density, the fraction of the dust mass contributed by PAHs, the fraction of the dust mass heated by very intense starlight and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale-length being constant from Sb to Sd galaxies (only ~10% larger than the stellar scale-length). Many S0/a-Sab galaxies ...

  1. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust.

    Science.gov (United States)

    Shen, Lazhen; Qiao, Yongsheng; Guo, Yong; Tan, Junru

    2010-05-15

    Blast furnace (BF) flue dust is one of pollutants emitted by iron and steel plants. The recycling of BF flue dust can not only reduce pollution but also bring social and environmental benefits. In this study, leaching technique was employed to the treatment of BF flue dust at first. A mixed solution of ferrous and ferric sulfate was obtained and used as raw material to prepare nanometer-sized black iron oxide pigment (Fe(3)O(4), magnetite) with NaOH as precipitant. The optimal technological conditions including total iron ion concentration, Fe(3+)/Fe(2+) mole ratio, precipitant concentration and reaction temperature were studied and discussed carefully. The spectral reflectance and oil absorption were used as major parameters to evaluate performance of pigment. Furthermore, Fe(3)O(4) particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Under optimized conditions obtained pigment has low average spectral reflectance (<4%), good oil absorption ( approximately 23%), high black intensity, and narrow size distribution 60-70 nm.

  2. On the Commonality of 10-30AU Sized Axisymmetric Dust Structures in Protoplanetary Disks

    CERN Document Server

    Zhang, Ke; Blake, Geoffrey A; Cleeves, L Ilsedore; Hogerheijde, Michiel; Salinas, Vachail; Schwarz, Kamber R

    2016-01-01

    An unsolved problem in step-wise core-accretion planet formation is that rapid radial drift in gas-rich protoplanetary disks should drive mm-/meter-sized particles inward to the central star before large bodies can form. One promising solution is to confine solids within small scale structures. Here we investigate dust structures in the (sub)mm continuum emission of four disks (TW Hya, HL Tau, HD 163296 and DM Tau), a sample of disks with the highest spatial resolution ALMA observations to date. We retrieve the surface brightness distributions using synthesized images and fitting visibilities with analytical functions. We find that the continuum emission of the four disks is ~axi-symmetric but rich in 10-30AU-sized radial structures, possibly due to physical gaps, surface density enhancements or localized dust opacity variations within the disks. These results suggest that small scale axi-symmetric dust structures are likely to be common, as a result of ubiquitous processes in disk evolution and planet format...

  3. Dust particle charge distribution in a stratified glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sukhinin, Gennady I [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Fedoseev, Alexander V [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Ramazanov, Tlekkabul S [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Dzhumagulova, Karlygash N [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Amangaliyeva, Rauan Zh [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan)

    2007-12-21

    The influence of a highly pronounced non-equilibrium characteristic of the electron energy distribution function in a stratified dc glow discharge on the process of dust particle charging in a complex plasma is taken into account for the first time. The calculated particle charge spatial distribution is essentially non-homogeneous and it can explain the vortex motion of particles at the periphery of a dusty cloud obtained in experiments.

  4. From flux to dust mass: Does the grain-temperature distribution matter for estimates of cold dust masses in supernova remnants?

    CERN Document Server

    Mattsson, Lars; Andersen, Anja C; Matsuura, Mikako

    2015-01-01

    The amount of dust estimated from infrared to sub-millimetre (submm) observations strongly depends on assumptions of different grain sizes, compositions and optical properties. Here we use a simple model of thermal emission from cold silicate/carbon dust at a range of dust grain temperatures and fit the spectral energy distribution (SED) of the Crab Nebula as a test. This can lower the derived dust mass for the Crab by ~50% and 30-40% for astronomical silicates and amorphous carbon grains compared to recently published values (0.25M_sun -> 0.12M_sun and 0.12M_sun -> 0.072M_sun, respectively), but the implied dust mass can also increase by as much as almost a factor of six (0.25M_sun -> 1.14M_sun and 0.12M_sun -> 0.71M_sun) depending on assumptions regarding the sizes/temperatures of the coldest grains. The latter values are clearly unrealistic due to the expected metal budget, though. Furthermore, we show by a simple numerical experiment that if a cold-dust component does have a grain-temperature distribution...

  5. Microbubble Size Distributions Data Collection and Analysis

    Science.gov (United States)

    2016-06-13

    ABSTRACT A technique for determining the size distribution of micron-size bubbles from underway measurements at sea is described. A camera...Blank TM 841204 INTRODUCTION Properties of micron-sized bubble aggregates in sea water were investigated to determine their influence on the...problem during this study. This paper will discuss bubble size and size distribution measurements in sea water while underway. A technique to detect

  6. Dust acoustic solitary structures in a multi-fluid dusty plasma in the presence of kappa distributed particles

    Science.gov (United States)

    Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika; Kaur, Nimardeep

    2016-07-01

    Dusty plasma is a fully or partially ionized gas which contain micron or sub-micron sized dust particles. These dust particles can be positively or negatively charged, depending upon the mechanism of charging . Dusty plasma is often observed in most of the space and astrophysical plasma environments. Presence of these dust particles can modify the dispersion properties of waves in the plasma and can introduce several new wave modes, e.g., dust acoustic (DA) waves, dust-ion acoustic (DIA) waves, dust-acoustic shock waves etc. In this investigation we have studied the small amplitude dust acoustic waves in an unmagnetized plasma comprising of electrons, positively charged ions, negatively charged hot as well as cold dust. Electrons and ions are described by superthermal distribution which is more appropriate for modeling space and astrophysical plasmas. Kadomtsev- Petviashvili (KP) equation has been derived using reductive perturbation technique. Positive as well as negative potential structures are observed, depending upon some critical values of parameters. Amplitude and width of dust acoustic solitary waves are modified by varying these parameters such as superthermality of electrons and ions, direction of propagation of the wave, relative concentration of hot and cold dust particles etc. This study may be helpful in understanding the formation and dynamics of nonlinear structures in various space and astrophysical plasma environments such Saturn's F-rings.

  7. Distribution of Platinum group elements in road dust in Beijing metropolitan area, China

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; ZHU Ruo-hua; SHI Yan-zhi

    2007-01-01

    Dust samples collected from the Beijing metropolitan area (China) were evaluated to determine the distribution and the concentration of platinum group elements (PGEs). The dust particles that were smaller than 100 mesh size fraction (150 μm) were analyzed after aqua regia digestion. Concentrations[RL2] of Pt, Rh, and Pd were found to be between 3.96 and 356.3 ng/g, 2.76 and 97.11 ng/g, and 0.1 and 124.9 ng/g, respectively, in the urban areas of Beijing, whereas for the background samples collected from the suburbs of Beijing, the concentration of Pt, Pd, and Rh were very low and ranged from 0.1 to 0.9 ng/g, 0.5 to 1.4 ng/g, and 0.8 to 2.2 ng/g, respectively. The[RL3] distributions of PGEs in road dust were an accurate reflection of the levels of pollution and were found to match with the local traffic conditions. A strong positive correlation was established among all the elements found in road dust. This suggests that emissions of abraded fragments from vehicle exhausts may be the source of the high concentration of Pt, Rh, and Pd in road dust along the main roads of Beijing.

  8. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    Science.gov (United States)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.

    2014-01-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances

  9. Radial Distribution of Dust Grains Around HR 4796A

    CERN Document Server

    Wahhaj, Z; Backman, D E; Werner, M W; Serabyn, E; Ressler, M E; Lis, D C

    2004-01-01

    We present high-dynamic-range images of circumstellar dust around HR 4796A that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3, 12.5 and 24.5 um. We also present a new continuum measurement at 350 um obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively, and confirms the presence of an outer ring centered at 70 AU. Unresolved excess infrared emission is also detected at the stellar position and must originate well within 13 AU of the star. A model of dust emission fit to flux densities at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from the star with effective size, 28+/-6 um, and an associated temperature of 260+/-40 K. We simulate all extant data with a simple model of exozodiacal dust and an outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck thermal infrared and HST scattered-light images. Bayesian parameter estimates yield a ...

  10. City-size distribution and the size of urban systems.

    Science.gov (United States)

    Thomas, I

    1985-07-01

    "This paper is an analysis of the city-size distribution for thirty-five countries of the world in 1975; the purpose is to explain statistically the regularity of the rank-size distribution by the number of cities included in the urban systems. The rank-size parameters have been computed for each country and also for four large urban systems in which several population thresholds have been defined. These thresholds seem to have more influence than the number of cities included in the urban system on the regularity of the distribution." The data are from the U.N. Demographic Yearbook. excerpt

  11. The Galactic IMF: origin in the combined mass distribution functions of dust grains and gas clouds

    CERN Document Server

    Casuso, E

    2011-01-01

    We present here a theoretical model to account for the stellar IMF as a result of the composite behaviour of the gas and dust distribution functions. Each of these has previously been modelled and the models tested against observations. The model presented here implies a relation between the characteristic size of the dust grains and the characteristic final mass of the stars formed within the clouds containing the grains, folded with the relation between the mass of a gas cloud and the characteristic mass of the stars formed within it. The physical effects of dust grain size are due to equilibrium relations between the efficiency of grains in cooling the clouds, which is a falling function of grain size, and the efficiency of grains in catalyzing the production of molecular hydrogen, which is a rising function of grain size. We show that folding in the effects of grain distribution can yield a reasonable quantitative account of the IMF, while gas cloud mass function alone cannot do so.

  12. How micron-sized dust particles determine the chemistry of our Universe

    NARCIS (Netherlands)

    Dulieu, Francois; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stephanie

    2013-01-01

    In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H-2) to the most complex (amino-acids) mol

  13. How micron-sized dust particles determine the chemistry of our Universe

    NARCIS (Netherlands)

    Dulieu, Francois; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stephanie

    2013-01-01

    In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H-2) to the most complex (amino-acids)

  14. Modeling particle size distributions by the Weibull distribution function

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang (Rogers Tool Works, Rogers, AR (United States)); Patterson, B.R.; Turner, M.E. Jr (Univ. of Alabama, Birmingham, AL (United States))

    1993-10-01

    A method is proposed for modeling two- and three-dimensional particle size distributions using the Weibull distribution function. Experimental results show that, for tungsten particles in liquid phase sintered W-14Ni-6Fe, the experimental cumulative section size distributions were well fit by the Weibull probability function, which can also be used to compute the corresponding relative frequency distributions. Modeling the two-dimensional section size distributions facilitates the use of the Saltykov or other methods for unfolding three-dimensional (3-D) size distributions with minimal irregularities. Fitting the unfolded cumulative 3-D particle size distribution with the Weibull function enables computation of the statistical distribution parameters from the parameters of the fit Weibull function.

  15. 城市植物叶面尘粒径和几种重金属(Cu、Zn、Cr、Cd、Pb、Ni)的分布特征%Distribution features of particle size and heavy metal elements in foliage-captured dust

    Institute of Scientific and Technical Information of China (English)

    王会霞; 石辉; 李秧秧; 张雅静; 杜红霞; 杜衡

    2012-01-01

    This paper takes as its target to reveal the distribution features of particle size and heavy metal elements (Cu, Zn, Cr, Cd, Pb, Ni) in foliage-captured dust, by using the foliar dust samples of ligustrum lucidum and liguslrum quihoui collected from different areas of Xi' an, including its industrial area (IA), commercial and service area (CSA), heavy-traffic area (HTA), residential and edupa-tional area ( REA) and comparatively pollution-free area ( CPFA). Size distribution of the collected samples was determined with a laser particle size analyzer, while the concentrations of heavy metals in the samples were measured with an atomic absorption spectrophotometer. We have also discussed the likely sources of the heavy metals in the dust. The paniculate size of the foliar dust proves to be less than SO fim, and PM10( participate matter with aerodynamic diameter less than 10 fun) makes up between 13.8% and 63.1% of the particles. There exist two peak values of the foliar dust for Ligustrum lucidum, with its mean and peak values of the dust size being highest in CPFA, and followed by 1A, RE A, HTA and CSA. For ligustrum quihoui, however, the size distribution of the foliar dust proves to be normal, with its mean and peak value in the increasing order of CPFA, CSA, HTA, REA, IA. Heavy metals are significantly enriched in foliar dust, with its mean concentrations being (32S.S ± 72.6) mg/kg for Cu, (3 965.6 ±1 112.9) mg/kg for Zn, (349.2 ± 149.3) mg/kg for Cr, (35.3 ±6.8) mg/kg for Cd, (1 182.0 ±355.1) mg/kg for Pb, (324.1 ± 129.5) mg/kg for Ni. Significant differences are found in heavy metals among different urban areas. By contrast, Cu, Zn, Cr, Cd, Pb and Ni concentrations in foliar dust prove no significant difference between Ligustrum lucidum and Ligustrum quihoui. The results of our investigation suggest that the contents of Zn, Pb, Ni and Cr in the foliar dust are the highest in IA with the greatest values observed in HTA for Cu and Cd. However, the

  16. Aggregate size distributions in hydrophobic flocculation

    Directory of Open Access Journals (Sweden)

    Chairoj Rattanakawin

    2003-07-01

    Full Text Available The evolution of aggregate (floc size distributions resulting from hydrophobic flocculation has been investigated using a laser light scattering technique. By measuring floc size distributions it is possible to distinguish clearly among floc formation, growth and breakage. Hydrophobic flocculation of hematite suspensions with sodium oleate under a variety of agitating conditions produces uni-modal size distributions. The size distribution of the primary particles is shifted to larger floc sizes when the dispersed suspension is coagulated by pH adjustment. By adding sodium oleate to the pre-coagulated suspension, the distribution progresses further to the larger size. However, prolonged agitation degrades the formed flocs, regressing the distribution to the smaller size. Median floc size derived from the distribution is also used as performance criterion. The median floc size increases rapidly at the initial stage of the flocculation, and decreases with the extended agitation time and intensity. Relatively weak flocs are produced which may be due to the low dosage of sodium oleate used in this flocculation study. It is suggested that further investigation should focus on optimum reagent dosage and non-polar oil addition to strengthen these weak flocs.

  17. Body size distribution of the dinosaurs.

    Directory of Open Access Journals (Sweden)

    Eoin J O'Gorman

    Full Text Available The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  18. Body size distribution of the dinosaurs.

    Science.gov (United States)

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  19. City size distributions and spatial economic change.

    Science.gov (United States)

    Sheppard, E

    1982-10-01

    "The concept of the city size distribution is criticized for its lack of consideration of the effects of interurban interdependencies on the growth of cities. Theoretical justifications for the rank-size relationship have the same shortcomings, and an empirical study reveals that there is little correlation between deviations from rank-size distributions and national economic and social characteristics. Thus arguments suggesting a close correspondence between city size distributions and the level of development of a country, irrespective of intranational variations in city location and socioeconomic characteristics, seem to have little foundation." (summary in FRE, ITA, JPN, ) excerpt

  20. Spread of the dust temperature distribution in circumstellar disks

    Science.gov (United States)

    Heese, S.; Wolf, S.; Dutrey, A.; Guilloteau, S.

    2017-07-01

    Context. Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on their radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. Aims: We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). Methods: The temperature distribution, the relative grain surface below a certain temperature, the freeze-out radius, and the SED were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Results: Within the considered parameter range, i.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: in optically thin disk regions, the temperature spread can be as large as 63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below 20 K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius (snowline) is a function of grain radius, spanning a radial range between the coldest and warmest grain species of 30 AU.

  1. City-size distribution and the size of urban systems

    OpenAIRE

    Thomas, I.

    1985-01-01

    This paper is an analysis of the city-size distribution for thirty-five countries of the world in 1975; the purpose is to explain statistically the regularity of the rank-size distribution by the number of cities included in the urban systems. The rank-size parameters have been computed for each country and also for four large urban systems in which several population thresholds have been defined. These thresholds seem to have more influence than the number of cities included in the urban sys...

  2. On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations

    Directory of Open Access Journals (Sweden)

    S. Otto

    2010-11-01

    Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from on in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10%. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5% at the TOA over ocean/land and 15% at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20%. Large dust particles significantly contribute to all the radiative effects reported.

  3. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic

    Science.gov (United States)

    van der Does, Michèlle; Korte, Laura F.; Munday, Chris I.; Brummer, Geert-Jan A.; Stuut, Jan-Berend W.

    2016-11-01

    Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 32 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also, the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

  4. Experimental determination of size distributions: analyzing proper sample sizes

    Science.gov (United States)

    Buffo, A.; Alopaeus, V.

    2016-04-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.

  5. Aggregate size distributions in sweep flocculation

    Directory of Open Access Journals (Sweden)

    Chairoj Rattanakawin

    2005-09-01

    Full Text Available The evolution of aggregate size distributions resulting from sweep flocculation has been investigated using laser light scattering technique. By measuring the (volume distributions of floc size, it is possible to distinguish clearly among floc formation, growth and breakage. Sweep flocculation of stable kaolin suspensions with ferric chloride under conditions of the rapid/slow mixing protocol produces uni-modal size distributions. The size distribution is shifted to larger floc size especially during the rapid mixing step. The variation of the distributions is also shown in the plot of cumulative percent finer against floc size. From this plot, the distributions maintain the same S-shape curves over the range of the mixing intensities/times studied. A parallel shift of the curves indicates that self-preserving size distribution occurred in this flocculation. It is suggested that some parameters from mathematical functions derived from the curves could be used to construct a model and predict the flocculating performance. These parameters will be useful for a water treatment process selection, design criteria, and process control strategies. Thus the use of these parameters should be employed in any further study.

  6. On the Deepwater Horizon drop size distributions

    Science.gov (United States)

    Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brock, C. A.; McKeen, S. A.

    2014-12-01

    Model simulations of the fate of gas and oil released following the Deepwater Horizon blowout in 2012 depend critically on the assumed drop size distributions. We use direct observations of surfacing time, surfacing location, and atmospheric chemical composition to infer an average drop size distribution for June 10, 2012, providing robust first-order constraints on parameterizations in models. We compare the inferred drop size distribution to published work on Deepwater Horizon and discuss the ability of this approach to determine the efficacy of subsurface dispersant injection.

  7. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  8. Two-size approximation: a simple way of treating the evolution of grain size distribution in galaxies

    CERN Document Server

    Hirashita, Hiroyuki

    2014-01-01

    Full calculations of the evolution of grain size distribution in galaxies are in general computationally heavy. In this paper, we propose a simple model of dust enrichment in a galaxy with a simplified treatment of grain size distribution by imposing a `two-size approximation'; that is, all the grain population is represented by small (grain radius a 0.03 micron) grains. We include in the model dust supply from stellar ejecta, destruction in supernova shocks, dust growth by accretion, grain growth by coagulation and grain disruption by shattering, considering how these processes work on the small and large grains. We show that this simple framework reproduces the main features found in full calculations of grain size distributions as follows. The dust enrichment starts with the supply of large grains from stars. At a metallicity level referred to as the critical metallicity of accretion, the abundance of the small grains formed by shattering becomes large enough to rapidly increase the grain abundance by acc...

  9. On the Size Distribution of Sand

    DEFF Research Database (Denmark)

    Sørensen, Michael

    2016-01-01

    -distribution, by taking into account that individual grains do not have the same travel time from the source to the deposit. The travel time is assumed to be random so that the wear on the individual grains vary randomly. The model provides an interpretation of the parameters of the NIG-distribution, and relates the mean......A model is presented of the development of the size distribution of sand while it is transported from a source to a deposit. The model provides a possible explanation of the log-hyperbolic shape that is frequently found in unimodal grain size distributions in natural sand deposits, as pointed out...

  10. The exponential age distribution and the Pareto firm size distribution

    OpenAIRE

    Coad, Alex

    2008-01-01

    Recent work drawing on data for large and small firms has shown a Pareto distribution of firm size. We mix a Gibrat-type growth process among incumbents with an exponential distribution of firm’s age, to obtain the empirical Pareto distribution.

  11. Bubble Size Distributions in Coastal Seas

    NARCIS (Netherlands)

    Leeuw, G. de; Cohen, L.H.

    1995-01-01

    Bubble size distributions have been measured with an optical system that is based on imaging of a small sample volume with a CCD camera system, and processing of the images to obtain the size of individual bubbles in the diameter range from 30 to lOOO^m. This bubble measuring system is deployed from

  12. Effects of particle optical properties on grain size measurements of aeolian dust deposits

    Science.gov (United States)

    Varga, György; Újvári, Gábor; Kovács, János; Szalai, Zoltán

    2015-04-01

    Particle size data are holding crucial information on the sedimentary environment at the time the aeolian dust deposits were accumulated. Various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed from proper grain size distribution data. Laser diffraction methods provide much more accurate and reliable information on the major granulometric properties of wind-blown sediments compared to the sieve and pipette methods. The Fraunhofer and Mie scattering theories are generally used for laser diffraction grain size measurements. () The two different approaches need different 'background' information on the medium measured. During measurements following the Fraunhofer theory, the basic assumption is that parcticles are relatively large (over 25-30 µm) and opaque. The Mie theory could offer more accurate data on smaller fractions (clay and fine silt), assuming that a proper, a'priori knowledge on refraction and absorption indices exists, which is rarely the case for polymineral samples. This study is aimed at determining the effects of different optical parameters on grain size distributions (e.g. clay-content, median, mode). Multiple samples collected from Hungarian red clay and loess-paleosol records have been analysed using a Malvern Mastersizer 3000 laser diffraction particle sizer (with a Hydro LV unit). Additional grain size measurements have been made on a Fritsch Analysette 22 Microtec and a Horiba Partica La-950 v2 instrument to investigate possible effects of the used laser sources with different wavelengths. XRF and XRD measurements have also been undertaken to gain insight into the geochemical/mineralogical compositions of the samples studied. Major findings include that measurements using the Mie theory provide more accurate data on the grain size distribution of aeolian dust deposits, when we use a proper optical setting. Significant

  13. Effect of nonthermal ion distribution and dust temperature on nonlinear dust-acoustic solitary waves

    Indian Academy of Sciences (India)

    K Annou; R Annou

    2012-01-01

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.

  14. The distribution of the interstellar dust in the galactic plane within 3 KPC

    Science.gov (United States)

    Krautter, J.

    1980-09-01

    Interstellar polarization data have been used to derive the spatial distribution of the interstellar dust within the galactic plane. The observed distribution shows a strongly irregular and cloudy structure. The correlation between the observed dust distribution and the spiral arm indicators (young open star clusters and R-associations) is found to be relatively poor.

  15. ALMA reveals VYCMa's sub-mm maser and dust distribution

    CERN Document Server

    Richards, A M S; Humphreys, E M; Vlahakis, C; Vlemmings, W; Baudry, A; De Beck, E; Decin, L; Etoka, S; Gray, M D; Harper, G M; Hunter, T R; Kervella, P; Kerschbaum, F; McDonald, I; Melnick, G; Muller, S; Neufeld, D; O'Gorman, E; Parfenov, S Yu; Peck, A B; Shinnaga, H; Sobolev, A M; Testi, L; Uscanga, L; Wootten, A; Yates, J A; Zijlstra, A

    2014-01-01

    Cool, evolved stars have copious, enriched winds. The structure of these winds and the way they are accelerated is not well known. We need to improve our understanding by studying the dynamics from the pulsating stellar surface to about 10 stellar radii, where radiation pressure on dust is fully effective. Some red supergiants have highly asymmetric nebulae, implicating additional forces. We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec precision and resolve the dusty continuum. The 658-, 321- and 325-GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells (and dust formation zone) overlap but avoid each other on tens-au scales. Their distribution is broadly consistent with excitation models...

  16. Attempt to detect diamagnetic anisotropy of dust-sized crystal orientated to investigate the origin of interstellar dust alignment

    Science.gov (United States)

    Takeuchi, T.; Hisayoshi, K.; Uyeda, C.

    2013-03-01

    Diamagnetic anisotropy Δ χ dia was detected on a submillimeter-sized calcite crystal by observing the rotational oscillation of its magnetically stable axis with respect to the magnetic field direction. The crystal was released in an area of microgravity generated by a 1.5-m-long drop shaft. When the oscillations are observable, the present method can measure Δ χ dia of crystal grains irrespective of how small they are without measuring the sample mass. In conventional Δ χ measurements, the background signal from the sample holder and the difficulty in measuring the sample mass prevent measurement of Δ χ dia for small samples. The present technique of observing Δ χ dia of a submillimeter-sized single crystal is a step toward realizing Δ χ dia measurements of micron-sized grains. The Δ χ dia values of single micron-sized grains can be used to assess the validity of a dust alignment model based on magnetic torque that originates from the Δ χ dia of individual dust particles.

  17. Size dependent pore size distribution of shales by gas physisorption

    Science.gov (United States)

    Roshan, Hamid; Andersen, Martin S.; Yu, Lu; Masoumi, Hossein; Arandian, Hamid

    2017-04-01

    Gas physisorption, in particular nitrogen adsorption-desorption, is a traditional technique for characterization of geomaterials including the organic rich shales. The low pressure nitrogen is used together with adsorption-desorption physical models to study the pore size distribution (PSD) and porosity of the porous samples. The samples are usually crushed to a certain fragment size to measure these properties however there is not yet a consistent standard size proposed for sample crushing. Crushing significantly increases the surface area of the fragments e.g. the created surface area is differentiated from that of pores using BET technique. In this study, we show that the smaller fragment sizes lead to higher cumulative pore volume and smaller pore diameters. It is also shown that some of the micro-pores are left unaccounted because of the correction of the external surface area. In order to illustrate this, the nitrogen physisorption is first conducted on the identical organic rich shale samples with different sizes: 20-25, 45-50 and 63-71 µm. We then show that such effects are not only a function of pore structure changes induced by crushing, but is linked to the inability of the physical models in differentiating between the external surface area (BET) and micro-pores for different crushing sizes at relatively low nitrogen pressure. We also discuss models currently used in nano-technology such as t-method to address this issue and their advantages and shortcoming for shale rock characterization.

  18. [Seasonal Provincial Characteristics of Vertical Distribution of Dust Loadings and Heavy Metals near Surface in City].

    Science.gov (United States)

    Li, Xiao-yan; Zhang, Shu-ting

    2015-06-01

    With the emergence of urban high-rise building, the vertical space of human daily life gradually extended upward. Seasonal characteristics of vertical distribution of dust loadings and heavy metals near surface are remarkable. In this study, we collected dust deposited on the windowsill at different space height (1th-8th floor) from three buildings in Guiyang city during spring, summer, autumn and winter, and analyzed the deposition fluxes of dust and elements including Ca, Fe, Cd, Cr, Cu, Ni, Pb and Zn. The results showed that: the total changing trend of vertical distribution of dust loadings was that the deposition fluxes of dust in winter were the highest, followed by those in spring, and the deposition fluxes of dust in summer were the lowest. The degree of variation on dust loadings dependent on the change of elevation was the highest in winter, followed by that in summer, and was relatively lower in spring and autumn. The effect on dust loadings by seasonal changing was relatively heavier on windowsill on the lower level than on the higher level. The levels of elements were the highest in spring dust, while those in autumn were relatively lower. Among the 8 elements, the variability of Zn in dust related to space time variation was the most obvious, and that of Ca was weaker. The atmospheric inversion condition might be one of the reasons that improved the deposition fluxes of dust and the contents of Ph and Zn in dust during winter and spring.

  19. Spatial distribution and temporal variability of Harmattan dust haze in sub-Sahel West Africa

    Science.gov (United States)

    Anuforom, Anthony C.

    southernmost and coastal stations) and decreases to an average of 0.30 (over six of the extreme northern stations). The observed patterns of TDH and LDH distribution are attributed to distance from dust source region, decrease in dust particle size and wind speed from north to south, increase in atmospheric humidity and vegetation cover from the Sahel in the north to the coastal zone in the south, as well as inter-annual variability of Sahel rainfall.

  20. Dust Temperature Distribution in the Diffuse Interstellar Medium: Modeling the CMB Dust Foreground to Sub-Percent Accuracy

    Science.gov (United States)

    Kogut, Alan

    Measurements of the linear polarization of the cosmic microwave background (CMB) provide a critical test of the inflationary paradigm. Gravity waves excited during an inflationary epoch in the early universe interact with the CMB to impart a characteristic signal in linear polarization. The distinctive spatial pattern and frequency dependence of the inflationary signal provide a unique signature to characterize physics at energies approaching Grand Unification, a trillion times beyond the energies accessible to particle accelerators. At millimeter wavelengths where the CMB is brightest, the dominant foreground is thermal emission from interstellar dust. As highlighted by the recent BICEP2 and Planck results, dust emission is brighter than the anticipated inflationary signal even in the cleanest regions of the sky, and is 1-2 orders of magnitude brighter over most of the sky. Robust detection and characterization of the primordial signal requires subtracting the dust foreground to sub-percent accuracy. Despite the importance of dust to CMB measurements, far-IR dust emission is poorly constrained. Popular phenomenological models treat the dust as a superposition of components at one or two temperatures although the actual temperature distribution must be more complex. Disturbingly, use of these models can bias the inflationary CMB results at levels large compared to planned sensitivities, despite fitting the combined sky emission to sub-percent precision. Foreground models must be accurate as well as precise. We propose to use archival data at millimeter through far-IR wavelengths to improve models of far-IR dust emission, explicitly deriving the temperature distribution within the diffuse dust cirrus to separate temperature effects from intrinsic emission effects (spectral index). The proposed analysis is tightly focused and likely to succeed. Simple toy models demonstrate that far-IR data such as FIRAS can distinguish the temperature distribution within the diffuse

  1. Numerical simulation of distribution regularities of dust concentration during the ventilation process of coal roadway driving

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Jiang, Z.; Wang, S.; Liu, Y. [University of Science and Technology Beijing, Beijing (China)

    2007-04-15

    The paper examined the distribution regularities of dust, based on the theory of two-phase flow of gas and solid, and the characteristics of the coal mine driving working face, using the discrete phase models of computational fluid mechanics to simulate the dust concentration during the ventilation process of coal roadway driving with forced ventilation. In a coal roadway driving with forced ventilation, the concentration of whole dust and respirable dust is higher in the area close to the working face, the concentration will decrease towards the exit of the roadway. It was found that exhaust ventilation is better than forced ventilation for dust removal. 7 refs., 5 figs., 1 tab.

  2. Determination of size distribution using neural networks

    NARCIS (Netherlands)

    Stevens, JH; Nijhuis, JAG; Spaanenburg, L; Mohammadian, M

    1999-01-01

    In this paper we present a novel approach to the estimation of size distributions of grains in water from images. External conditions such as the concentrations of grains in water cannot be controlled. This poses problems for local image analysis which tries to identify and measure single grains.

  3. Size from Specular Highlights for Analyzing Droplet Size Distributions

    Science.gov (United States)

    Jalba, Andrei C.; Westenberg, Michel A.; Grooten, Mart H. M.

    In mechanical engineering, heat-transfer models by dropwise condensation are under development. The condensation process is captured by taking many pictures, which show the formation of droplets, of which the size distribution and area coverage are of interest for model improvement. The current analysis method relies on manual measurements, which is time consuming. In this paper, we propose an approach to automatically extract the positions and radii of the droplets from an image. Our method relies on specular highlights that are visible on the surfaces of the droplets. We show that these highlights can be reliably extracted, and that they provide sufficient information to infer the droplet size. The results obtained by our method compare favorably with those obtained by laborious and careful manual measurements. The processing time per image is reduced by two orders of magnitude.

  4. The large scale dust distribution in the inner galaxy

    Science.gov (United States)

    Hauser, M. G.; Dwek, E.; Gezari, D.; Silverberg, R.; Kelsall, T.; Stier, M.; Cheung, L.

    1983-01-01

    Initial results are presented from a new large-scale survey of the first quadrant of the galactic plane at wavelengths of 160, 260, and 300 microns. The submillimeter wavelength emission, interpreted as thermal radiation by dust grains, reveals an optically thin disk of angular width about 0.09 deg (FWHM) with a mean dust temperature of 23 K and significant variation of the dust mass column density. Comparison of the dust column density with the gas column density inferred from CO survey data shows a striking spatial correlation. The mean luminosity per hydrogen atom is found to be 2.5 x 10 to the -30th W/H, implying a radiant energy density in the vicinity of the dust an order of magnitude larger than in the solar neighborhood. The data favor dust in molecular clouds as the dominant submillimeter radiation source.

  5. Comet C/2012 S1 (ISON)'s carbon-rich and micron-size-dominated coma dust

    Science.gov (United States)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.

    2014-07-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (r_h ˜ 1.15 au, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a steep (and therefor narrow) grain size distribution (GSD) dominated by ˜ micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 μ m and by a silicate feature strength of ˜1.1 and an 8-13 μ m continuum greybody color temperature of ˜275-280 K (using T_{bb}∝ {r}_h^{-0.5} and T_{bb}˜260-265 K from Subaru+COMICS, 2013-Oct-19 UT) [1,2]. Spectra of comet ISON with IRTF+BASS (2013-Nov-11-12 UT) also show a silicate feature strength of ˜1.1 as well as an 11.2 μ m forsterite peak [3]. Our thermal models [6], which employ 0.1-1000 μ m grains, yield constraints for the dust composition as well as GSD parameters of slope, peak grain size, porosity: ISON's dust has a low silicate-to-amorphous carbon ratio (˜1:9), the GSD has a steep slope (N≃4.5), a peak grain radius of ˜0.7 μ m, and moderately porous grains. Specifically, the 8-13 μ m continuum color temperature implies submicron- to micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the GSD to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A IR proxy for the dust production rate is ɛ f ρ ˜ 1500 cm [4], which is akin to but larger than Afρ in scattered light (2013-Oct-20 UT, Afρ=796 cm(±5 %) in V-band from Swift) [5]. Also, ISON had a moderate-to-low dust-to-gas ratio [6]. Comet ISON's dust composition and GSD properties are distinct from the few well-studied long-period Nearly Isotropic Comets (NICs) that all had 'typical' GSD slopes (3.4≤N≤3.7) and silicate-to-amorphous carbon ratios ≫1 as well as the following properties: C/1995 O1 (Hale-Bopp)[7,8,9,10] and C/2001 Q4

  6. Electrostatic Barrier Against Dust Growth in Protoplanetary Disks. II. Measuring the Size of the "Frozen" Zone

    CERN Document Server

    Okuzumi, Satoshi; Takeuchi, Taku; Sakagami, Masa-aki

    2010-01-01

    Coagulation of submicron-sized dust grains is the initial step of dust evolution in protoplanetary disks. This process can be significantly slowed down by the negative charging of dust aggregates in the weakly ionized disks. We apply the growth criteria obtained in Paper I to finding out a location where the charging stalls dust growth at the fractal growth stage, to which we will refer as the "frozen zone." We find that the frozen zone likely exists and covers a wide region of a disk, typically from a few AU to 100 AU from the central star. The maximum mass of the "frozen" fractal aggregates is approximately 10^-7 g at 1 AU and as small as a few monomer masses at 100 AU. The disk mass and the monomer size do not significantly affect the size of the frozen zone within a realistic range of these parameters. Strong turbulence can significantly reduce the size of the frozen zone, but such turbulence will cause the fragmentation of macroscopic aggregates made after the fractal stage. We consider the vertical mixi...

  7. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    Science.gov (United States)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  8. Constraints on the radial distribution of the dust properties in the CQ Tau protoplanetary disk

    CERN Document Server

    Trotta, F; Natta, A; Isella, A; Ricci, L

    2013-01-01

    Grain growth in protoplanetary disks is the first step towards the formation of the rocky cores of planets. Models predict that grains grow, migrate, and fragment in the disk and predict varying dust properties as a function of radius, age, and physical properties. High-angular resolution observations at more than one (sub-)mm wavelength are the essential tool for constraining grain growth and migration on the disk midplane. We developed a procedure to analyze self-consistently multi wavelength (sub-)mm continuum interferometric observations of protoplanetary disks to constrain the radial distribution of dust properties. We apply this technique to existing multi frequency continuum mm observations of the disk around CQ Tau, a A8 pre-main sequence star with a well-studied disk. We demonstrate that our models can be used to simultaneously constrain the disk and dust structure. In CQ Tau, the best-fitting model has a radial dependence of the maximum grain size, which decreases from a few cm in the inner disk (&l...

  9. Dust Aerosol Particle Size at the Mars Science Laboratory Landing Site

    Science.gov (United States)

    Vicente-Retortillo, Alvaro; Martínez, Germán; Renno, Nilton; Lemmon, Mark; de la Torre-Juárez, Manuel

    2017-04-01

    We have developed a new methodology to retrieve dust aerosol particle size from Mars Science Laboratory (MSL) observations [1]. We use photodiode output currents measured by the Rover Environmental Monitoring Station (REMS) UV sensor (UVS), ancillary data records (ADR) containing the geometry of the rover and the Sun, and values of the atmospheric opacity retrieved from Mastcam measurements. In particular, we analyze REMS UVS measurements when the Sun is blocked by the masthead and the mast of the rover since the behavior of the output currents during these shadow events depends on the dust phase function, which depends on particle size. The retrieved dust effective radii show a significant seasonal variability, ranging from 0.6 μm during the low opacity season (Ls = 60° - 140°) to 2 μm during the high opacity season (Ls = 180° - 360°). The relationship between atmospheric opacity and dust particle size indicates that dust-lifting events originate at various distances from Gale Crater. The external origin of high dust content events is consistent with the strong and persistent northerly and northwesterly winds at Gale Crater during the perihelion season centered around Ls = 270° [2]. From an interannual perspective, the general behavior of the particle size evolution in MY 31-32 is similar to that in MY 32-33, although some differences are noted. During the low opacity season (Ls = 60° - 140°), the retrieved dust effective radii in MY 33 are significantly lower than in MY 32. A larger contribution of water ice clouds to the total atmospheric opacity during the aphelion season of MY 33 can partially explain such a departure. Differences during the perihelion season are caused by interannual variability of enhanced opacity events. The determination of dust aerosol particle size is important to improve the accuracy of models in simulating the UV environment at the surface [3] and in predicting heating rates, which affect the atmospheric thermal and dynamical

  10. The size distribution of 'gold standard' nanoparticles.

    Science.gov (United States)

    Bienert, Ralf; Emmerling, Franziska; Thünemann, Andreas F

    2009-11-01

    The spherical gold nanoparticle reference materials RM 8011, RM 8012, and RM 8013, with a nominal radius of 5, 15, and 30 nm, respectively, have been available since 2008 from NIST. These materials are recommended as standards for nanoparticle size measurements and for the study of the biological effects of nanoparticles, e.g., in pre-clinical biomedical research. We report on determination of the size distributions of these gold nanoparticles using different small-angle X-ray scattering (SAXS) instruments. Measurements with a classical Kratky type SAXS instrument are compared with a synchrotron SAXS technique. Samples were investigated in situ, positioned in capillaries and in levitated droplets. The number-weighted size distributions were determined applying model scattering functions based on (a) Gaussian, (b) log-normal, and (c) Schulz distributions. The mean radii are 4.36 +/- 0.04 nm (RM 8011), 12.20 +/- 0.03 nm (RM 8012), and 25.74 +/- 0.27 nm (RM 8013). Low polydispersities, defined as relative width of the distributions, were detected with values of 0.067 +/- 0.006 (RM 8011), 0.103 +/- 0.003, (RM 8012), and 0.10 +/- 0.01 (RM 8013). The results are in agreement with integral values determined from classical evaluation procedures, such as the radius of gyration (Guinier) and particle volume (Kratky). No indications of particle aggregation and particle interactions--repulsive or attractive--were found. We recommend SAXS as a standard method for a fast and precise determination of size distributions of nanoparticles.

  11. Development of a practicable measuring method for continuous determination of the concentration and particle size distribution of dusts in air filter elements. Part project: Development of the scientific groundwork. Final report; Entwicklung eines feldtauglichen Messverfahrens zur kontinuierlichen Bestimmung der Konzentration und Groessenverteilung von Staeuben an Luftfiltereinsaetzen. Teilprojekt: Erarbeitung der wissenschaftlichen Grundlagen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, R.; Rulik, O.

    1997-06-01

    Filters may be used for reducing emissions of particulate pollutants from processing plants or for air cleaning in ventilation plants. The efficiency of a filter depends on its material, design, and operating conditions, notably the concentration and size of partciles, and on its load, i.e., its working hours. The purpose of the present project was to develop an inexpensive, easy-to-use, practicable measuring method for on-line measurement of the concentration and particle size distribution of dusts upstream (raw gas) and downstream (clean gas) of filters installed in processing plants, thus providing a means of continuously monitoring filter efficiency. The measuring principle of the developed method is based on the light scatter produced by individual particles passing through the measuring zone. The particle size measuring range is from 0.3 to 30 {mu}m, thus providing for the majority of all respirable dusts. The concentration measuring range is from a few mg/m{sup 3} on the clean gas side up to several g/m{sup 3} on the raw gas side. Special measures were needed to accomodate such a wide concentration range in a single measuring device. One of tasks of the study was to develop the technology required for this. (orig./SR) [Deutsch] Zur Minderung von Emissionen partikelfoermiger Schadstoffe aus verfahrenstechnischen Anlagen sowie zur Reinhaltung der Luft in Lueftungsanlagen werden Filter eingesetzt. Die Wirksamkeit dieser Filter haengt ab - von Material und Aufbau des Filters, von den Betriebsbedingungen des Filters, insbesondere von der Konzentration und der Groesse der Partikel und - von der Beladung des Filters, d.h. von seiner Betriebsdauer. Ziel des Vorhabens ist es, ein kostenguenstiges, handliches und feldtaugliches Messgeraet zu entwickeln, mit dem in technischen Anlagen die Konzentration und Groessenverteilung von Staeuben sowohl vor dem Filter (Rohgas) als auch hinter dem Filter (Reingas) on-line gemessen und so die Wirksamkeit des Filters

  12. Development of a practicable measuring method for continuous determination of the concentration and particle size distribution of dusts in air filter elements. Part project: Development of the scientific groundwork. Final report; Entwicklung eines feldtauglichen Messverfahrens zur kontinuierlichen Bestimmung der Konzentration und Groessenverteilung von Staeuben an Luftfiltereinsaetzen. Teilprojekt: Erarbeitung der wissenschaftlichen Grundlagen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, R.; Rulik, O.

    1997-06-01

    Filters may be used for reducing emissions of particulate pollutants from processing plants or for air cleaning in ventilation plants. The efficiency of a filter depends on its material, design, and operating conditions, notably the concentration and size of partciles, and on its load, i.e., its working hours. The purpose of the present project was to develop an inexpensive, easy-to-use, practicable measuring method for on-line measurement of the concentration and particle size distribution of dusts upstream (raw gas) and downstream (clean gas) of filters installed in processing plants, thus providing a means of continuously monitoring filter efficiency. The measuring principle of the developed method is based on the light scatter produced by individual particles passing through the measuring zone. The particle size measuring range is from 0.3 to 30 {mu}m, thus providing for the majority of all respirable dusts. The concentration measuring range is from a few mg/m{sup 3} on the clean gas side up to several g/m{sup 3} on the raw gas side. Special measures were needed to accomodate such a wide concentration range in a single measuring device. One of tasks of the study was to develop the technology required for this. (orig./SR) [Deutsch] Zur Minderung von Emissionen partikelfoermiger Schadstoffe aus verfahrenstechnischen Anlagen sowie zur Reinhaltung der Luft in Lueftungsanlagen werden Filter eingesetzt. Die Wirksamkeit dieser Filter haengt ab - von Material und Aufbau des Filters, von den Betriebsbedingungen des Filters, insbesondere von der Konzentration und der Groesse der Partikel und - von der Beladung des Filters, d.h. von seiner Betriebsdauer. Ziel des Vorhabens ist es, ein kostenguenstiges, handliches und feldtaugliches Messgeraet zu entwickeln, mit dem in technischen Anlagen die Konzentration und Groessenverteilung von Staeuben sowohl vor dem Filter (Rohgas) als auch hinter dem Filter (Reingas) on-line gemessen und so die Wirksamkeit des Filters

  13. Simulating SAL formation and aerosol size distribution during SAMUM-I

    KAUST Repository

    Khan, Basit Ali

    2015-04-01

    To understand the formation mechanisms of Saharan Air Layer (SAL), we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol spatial distribution across the entire region and along the airplane\\'s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground-based observations are generally good, but suggest that more detailed treatment of microphysics in the model is required to capture the full-scale effect of large aerosol particles.

  14. Inhalation risk and particle size in dust and mist

    Energy Technology Data Exchange (ETDEWEB)

    Davies, C.N.

    1949-01-01

    This paper presents a critical overview of particle uptake and retention from literature through 1949. Particles > 6-..mu..m are retained in nose, or by secondary bronchi with mouth breathing. Few > 2-..mu..m particles are exhaled, trapped mostly in bronchioles (some by alveoli) by sedimentation. Maximal deposition is 0.4- to 0.8-..mu..m size in bronchioles and alveoli. Minimim retention is at 0.1 to 0.15 ..mu..m; approx. 80% are exhaled. Brownian settling of smaller particles in alveoli occurs. Particles of low density penetrate farther. Slow breathing enhances retention. Soluble toxins may be absorbed at any point along respiratory tract, so deep penetration percentage is moot in most cases.

  15. Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions

    Institute of Scientific and Technical Information of China (English)

    LI Rui; ZHANG Duan-Ming; LI Zhi-Hao

    2011-01-01

    We study by numerical simulation the property of velocity distributions of granular gases with a power-law size distribution, driven by uniform heating and boundary heating. It is found that the form of velocity distribution is primarily controlled by the restitution coefficient -q and q, the ratio between the average number of heatings and the average number of collisions in the system. Furthermore, we show that uniform and boundary heating can be understood as different limits of q, with q ? 1 and q >1 and q≤1,respectively.

  16. Prediction of the size distribution of precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodovsky, A. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Werkstoffe und Verfahren der Energietechnik 2: Werkstoffstruktur und Eigenschaften

    2001-12-01

    Modelling has proven to be an efficient way of cutting the time and costs associated with the investigation of materials properties. A new mathematical model for the prediction of the particle size distribution of precipitates has been developed. The model allows the description of all stages of the precipitation process: nucleation, growth and Ostwald ripening of particles. The incorporation of existing thermodynamic databases allows the simulation of a formation of dispersed phases in commercial multicomponent alloys. The influence of the model parameters on the final particle size distribution was investigated with the example of NbC formation in austenite. It was shown that the interfacial energy of a particle-matrix interface has the most significant effect on the final particle arrangement. A pre-exponential factor, which is the subject of nucleation theories, plays a less significant role in the final particle arrangement. (orig.)

  17. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    CERN Document Server

    Pauly, Tyler

    2015-01-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry on dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote ...

  18. The great Sydney dust event: Size-resolved chemical composition and comparison

    Science.gov (United States)

    Box, Michael A.; Radhi, Majed; Box, Gail P.

    2010-08-01

    In September 2009, a major dust storm crossed eastern Australia, blanketing Sydney on two occasions. We collected size-resolved aerosol samples on both days, and have subjected them to Ion Beam Analysis at ANSTO. In this paper we present these results, and compare them with some of the analysis of similar samples obtained in field trips to the Lake Eyre Basin of central Australia, the primary source region of the dust. In particular, the Fe/Al ratios (~0.9) are similar to LEB values, and higher than northern hemisphere values (~0.55). Salt entrainment indicates a source near dry lakes.

  19. Radiation pressure forces on individual micron-size dust particles: a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Oliver [Institute for Planetology, University of Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)]. E-mail: okrauss@uni-muenster.de; Wurm, Gerhard [Institute for Planetology, University of Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)

    2004-12-15

    We present a newly developed experimental setup for the measurement of radiation pressure forces on individual dust particles. The principle of measurement is to observe the momentum transfer from a high-power laser pulse to a particle that is levitated in a quadrupole trap. Microscopic observation of the particle motion provides information on the forces that act on the particle in the directions parallel and perpendicular to the incident laser beam. First measurements with micron-size graphite grains that serve as analog particles for carbonaceous dust grains in various astrophysical environments reveal that such highly irregularly shaped particles show very high ratios of transversal to radial radiation pressure forces.

  20. Crystallite size distributions of marine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, S.A.; Bohrmann, G.; Abegg, F. [Bremen Univ., Bremen (Germany). Research Center of Ocean Margins; Hemes, S.; Klein, H.; Kuhs, W.F. [Gottingen Univ., Gottingen (Germany). Dept. of Crystallography

    2008-07-01

    Experimental studies were conducted to determine the crystallite size distributions of natural gas hydrate samples retrieved from the Gulf of Mexico, the Black Sea, and a hydrate ridge located near offshore Oregon. Synchrotron radiation technology was used to provide the high photon fluxes and high penetration depths needed to accurately analyze the bulk sediment samples. A new beam collimation diffraction technique was used to measure gas hydrate crystallite sizes. The analyses showed that gas hydrate crystals were globular in shape. Mean crystallite sizes ranged from 200 to 400 {mu}m for hydrate samples taken from the sea floor. Larger grain sizes in the hydrate ridge samples suggested differences in hydrate formation ages or processes. A comparison with laboratory-produced methane hydrate samples showed half a lognormal curve with a mean value of 40{mu}m. Results of the study showed that a cautious approach must be adopted when transposing crystallite-size sensitive physical data from laboratory-made gas hydrates to natural settings. It was concluded that crystallite size information may also be used to resolve the formation ages of gas hydrates when formation processes and conditions are constrained. 48 refs., 1 tab., 9 figs.

  1. Attraction of likely charged nano-sized grains in dust-electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net [Physical-Chemical Institute for Environmental and Human Protection, Odessa 65082 (Ukraine)

    2016-01-15

    Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. The equilibrium state between attraction and repulsion of grains is demonstrated.

  2. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  3. Dust charge fluctuation effects on Langmuir waves with kappa distributed electrons

    Science.gov (United States)

    Jamshidi, M.; Rouhani, M. R.; Hakimi Pajouh, H.

    2016-03-01

    Using a kinetic description, dust charge fluctuations due to the inelastic collisions between dust particles and plasma particles are studied in unmagnetized dusty plasmas. Most astrophysical and space plasmas are observed to have non-Maxwellian high energy tail. Therefore, a kappa distribution for electrons in the equilibrium is assumed. The dispersion relation and damping rates for Langmuir waves are obtained. Considering the dust charge fluctuations increases the damping rate of Langmuir waves. It is shown that the damping rate of Langmuir waves depends on the spectral index and the dust density parameter.

  4. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    Science.gov (United States)

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples.

  5. Quartz in coal dust deposited on internal surface of respirable size selective samplers.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Taekhee; Kashon, Michael; Kusti, Mohannad; Harper, Martin

    2014-01-01

    The objective of the present study is to quantify quartz mass in coal dust deposited on the internal cassette surface of respirable size-selective samplers. Coal dust was collected with four different respirable size-selective samplers (10 mm Dorr-Oliver nylon [Sensidyne, St. Petersburg, Fla.], SKC Aluminum [SKC Inc., Eighty Four, Pa.], BGI4L [BGI USA Inc., Waltham, Mass.], and GK2.69 cyclones [BGI USA Inc.]) with two different cassette types (polystyrene and static-dissipative polypropylene cassettes). The coal dust was aerosolized in a calm air chamber by using a fluidized bed aerosol generator without neutralization under the assumption that the procedure is similar to field sampling conditions. The mass of coal dust was measured gravimetrically and quartz mass was determined by Fourier transform infrared spectroscopy according to the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods, Method 7603. The mass fractions of the total quartz sample on the internal cassette surface are significantly different between polystyrene and static-dissipative cassettes for all cyclones (p quartz mass on cassette internal surface and coal dust filter mass was observed. The BGI4L cyclone showed a higher (but not significantly) and the GK2.69 cyclone showed a significantly lower (p quartz mass fraction for polystyrene cassettes compared to other cyclones. This study confirms previous observations that the interior surface deposits in polystyrene cassettes attached to cyclone pre-selectors can be a substantial part of the sample, and therefore need to be included in any analysis for accurate exposure assessment. On the other hand, the research presented here supports the position that the internal surface deposits in static-dissipative cassettes used with size-selective cyclones are negligible and that it is only necessary to analyze the filter catch.

  6. THE SPATIAL DISTRIBUTION OF DUST AND STELLAR EMISSION OF THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Skibba, Ramin A.; Engelbracht, Charles W.; Misselt, Karl; Montiel, Edward [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Aniano, Gonzalo [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Babler, Brian [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Bernard, Jean-Philippe [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Bot, Caroline [Universite de Strasbourg, Observatoire Astronomique de Strasbourg, F-67000 Strasbourg (France); Carlson, Lynn Redding; Israel, Frank [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Galametz, Maud [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney; Madden, Suzanne; Okumura, Koryo; Panuzzo, Pasquale [AIM, CEA/Saclay, L' Orme des Merisiers, 91191 Gif-sur-Yvette (France); Gordon, Karl; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Li, Aigen, E-mail: rskibba@ucsd.edu [314 Physics Building, Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); and others

    2012-12-10

    We study the emission by dust and stars in the Large and Small Magellanic Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially resolved spectral energy distributions. This project combines Herschel Space Observatory PACS and SPIRE far-infrared photometry with other data at infrared and optical wavelengths (the data were obtained as part of the HERschel Inventory of The Agents of Galaxy Evolution survey; PI: M. Meixner). We build maps of dust, stellar luminosity, and mass of both Magellanic Clouds, and analyze the spatial distribution of dust/stellar luminosity and mass ratios. These ratios vary considerably throughout the galaxies, generally between the range 0.01 {<=} L{sub dust}/L{sub *} {<=} 0.6 and 10{sup -4} {<=} M{sub dust}/M{sub *} {<=} 4 Multiplication-Sign 10{sup -3}. We observe that the dust/stellar ratios depend on the interstellar medium environment, such as the distance from currently or previously star-forming regions, and on the intensity of the interstellar radiation field. In addition, we construct star formation rate (SFR) maps, and find that the SFR is correlated with the dust/stellar luminosity and dust temperature in both galaxies, demonstrating the relation between star formation, dust emission, and heating, though these correlations exhibit substantial scatter.

  7. Constraining dust properties in Circumstellar Envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of Carbon dust

    CERN Document Server

    Nanni, Ambra; Groenewegen, Martin A T; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-01-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the TP-AGB, for which we compute spectra and colors. Then we compare our modeled colors in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduces several colors in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences i...

  8. Measurement of nonvolatile particle number size distribution

    Science.gov (United States)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA

  9. Landslide size distribution in seismic areas

    Science.gov (United States)

    Valagussa, Andrea; Frattini, Paolo; Crosta, Giovanni B.

    2015-04-01

    In seismic areas, the analysis of the landslides size distribution with the distance from the seismic source is very important for hazard zoning and land planning. From numerical modelling (Bourdeau et al., 2004), it has been observed that the area of the sliding mass tends to increase with the ground-motion amplitude up to a certain threshold input acceleration. This has been also observed empirically for the 1989 Loma Prieta earthquake (Keefer and Manson, 1998) and 1999 Chi Chi earthquake (Khazai and Sitar, 2003). Based on this, it possible to assume that the landslide size decreases with the increase of the distance from the seismic source. In this research, we analysed six earthquakes-induced landslides inventories (Papua New Guinea Earthquake, 1993; Northridge Earthquake, 1994; Niigata-Chuetsu Earthquake 2004; Iwate-Miyagi Nairiku Earthquake, 2008; Wenchuan Earthquake, 2008; Tohoku Earthquake, 2011) with a magnitude ranging between 6.6 and 9.0 Mw. For each earthquake, we first analysed the size of landslides as a function of different factors such as the lithology, the PGA, the relief, the distance from the seismic sources (both fault and epicentre). Then, we analysed the magnitude frequency curves for different distances from the source area and for each lithology. We found that a clear relationship between the size distribution and the distance from the seismic source is not evident, probably due to the combined effect of the different influencing factors and to the non-linear relationship between the ground-motion intensity and the distance from the seismic source.

  10. Charge and Size Distributions of Electrospray Drops

    Science.gov (United States)

    de Juan L; de la Mora JF

    1997-02-15

    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  11. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2011-08-01

    −1, and 1300 km in total. These rates of northward advance and southern retreat of the dust transport route are in accordance with the simultaneous shift of the Inter Tropical Front.

    Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the northwestern and southern Saharan dust source spatial distributions. Despite the vast difference in areas, the Bodélé Depression, located in Chad, appears to modulate transatlantic dust patterns about half the time. The proposed partition captures the essence of transatlantic dust climatology and may, therefore, supply a natural temporal framework for dust analysis via models and observations.

  12. Vertical profile and aerosol size distribution measurements in Iceland (LOAC)

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas

    2014-05-01

    Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in

  13. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo Metropolitan area.

    Science.gov (United States)

    Takada, H; Onda, T; Harada, M; Ogura, N

    1991-09-01

    Molecular distributions of polycyclic aromatic hydrocarbons (PAHs) in street dust samples collected from the Tokyo Metropolitan area were determined by capillary gas chromatography following HPLC fractionation. Three- to six-ring PAHs and sulfur-heterocyclics were detected. PAHs in the dusts were dominated by three and four unsubstituted ring systems with significant amounts of their alkyl homologues. PAHs were widely distributed in the streets, with concentrations (sigma COMB) of a few microgram/g dust. Automobile exhaust, asphalt, gasoline fuel, diesel fuel, tyre particles, automobile crankcase oils, and atmospheric fallout were also analysed. The PAH profile, especially the relative abundance of alkyl-PAHs and sulfur-containing heterocyclics, indicated that PAHs in the street dusts from roads carrying heavy traffic are mainly derived from automobile exhausts; dusts from residential areas have a more significant contribution from atmospheric fallout.

  14. TWO-POP-PY: Two-population dust evolution model

    Science.gov (United States)

    Birnstiel, T.; Klahr, H.; Ercolano, B.

    2017-08-01

    TWO-POP-PY runs a two-population dust evolution model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile and treats dust surface density, maximum particle size, small and large grain velocity, and fragmentation. It derives profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, in addition to the radial flux by solid material rain out.

  15. Fine structure of mass size distributions in an urban environment

    Science.gov (United States)

    Salma, Imre; Ocskay, Rita; Raes, Nico; Maenhaut, Willy

    As part of an urban aerosol research project, aerosol samples were collected by a small deposit area low-pressure impactor and a micro-orifice uniform deposit impactor in downtown Budapest in spring 2002. A total number of 23 samples were obtained with each device for separate daytime periods and nights. The samples were analysed by particle-induced X-ray emission spectrometry for 29 elements, or by gravimetry for particulate mass. The raw size distribution data were processed by the inversion program MICRON utilising the calibrated collection efficiency curve for each impactor stage in order to study the mass size distributions in the size range of about 50 nm to 10 μm in detail. Concentration, geometric mean aerodynamic diameter, and geometric standard deviation for each contributing mode were determined and further evaluated. For the crustal elements, two modes were identified in the mass size distributions: a major coarse mode and a (so-called) intermediate mode, which contained about 4% of the elemental mass. The coarse mode was associated with suspension, resuspension, and abrasion processes, whereby the major contribution likely came from road dust, while the particles of the intermediate mode may have originated from the same but also from the other sources. The typical anthropogenic elements exhibited usually trimodal size distributions including a coarse mode and two submicrometer modes instead of a single accumulation mode. The mode diameter of the upper submicrometer mode was somewhat lower for the particulate mass (PM) and S than for the anthropogenic metals, suggesting different sources and/or source processes. The different relative intensities of the two submicrometer modes for the anthropogenic elements and the PM indicate that the elements and PM have multiple sources. An Aitken mode was unambiguously observed for S, Zn, and K, but in a few cases only. The relatively large coarse mode of Cu and Zn, and the small night-to-daytime period

  16. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts

    Science.gov (United States)

    Apeagyei, Eric; Bank, Michael S.; Spengler, John D.

    2011-04-01

    Human exposures to particulate matter emitted from on-road motor vehicles include complex mixtures of metals from tires, brakes, parts wear and resuspended road dust. The aim of this study was to assess road dust for metals associated with motor vehicle traffic, particularly those metals coming from brake and tire wears. We hypothesized that the road dust would show significant difference in both composition and concentration by traffic type, road class and by location. X-ray fluorescence (XRF) analyses of 115 parked car tires showed Zn and Ca were likely associated with tire wear dust. XRF results of three used brake pads indicated high concentrations of Fe, Ti, Cu, Ba, Mo and Zr. To assess heavy metal exposures associated with tires and brake wear adjacent to roads of varying traffic and functional classes, 85 samples of road dust were collected from road surfaces adjacent to the curb and analyzed by XRF. Median concentrations for Fe, Ca and K were greater than Ti (1619 ppm), with concentration ratios of Fe: Ca: K: Ti [16:5:3:1]. Cumulative frequency distribution graphs showed distribution of Fe, Ba, Cu, and Mo were similar regardless of road traffic rating. However, Zn, Ti, and Zr varied significantly ( p moderate > low traffic). Fe, Ba, Cu, and Mo also had similar distributions regardless of road class while composition of Zn, Ti, and Zr varied significantly across road class ( p Minor roads > highway). In comparing urban road dust to rural road dust, we observed Fe, Ca, K, and Ti were significantly greater in urban road dust ( p < 0.05). In urban road dust the Fe: Ca: K: Ti relationship with median Ti of 2216 ppm was 12: 6: 3.5: 1. These results indicate that roadway dust may be important sources of metals for runoff water and localized resuspended particulate matter.

  17. Dust heating by Alfvén waves using non-Maxwellian distribution function

    Energy Technology Data Exchange (ETDEWEB)

    Zubia, K. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Lahore 54600 (Pakistan); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-08-15

    Quasilinear theory is employed in order to evaluate the resonant heating rate by Alfvén waves, of multiple species dust particles in a hot, collisionless, and magnetized plasma, with the underlying assumption that the dust velocity distribution function can be modeled by a generalized (r, q) distribution function. The kinetic linear dispersion relation for the electromagnetic dust cyclotron Alfvén waves is derived, and the dependence of the heating rate on the magnetic field, mass, and density of the dust species is subsequently investigated. The heating rate and its dependence on the spectral indices r and q of the distribution function are also investigated. It is found that the heating is sensitive to negative value of spectral index r.

  18. Bimodal micropore size distribution in active carbons

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetyan, R.S.; Voloshchuk, A.M.; Limonov, N.A.; Romanov, Y.A. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry)

    1993-03-01

    The porous structure of active carbon was compared with that of the original mineral coal and its carbonization products. The parameters of the porous structure were calculated from the adsorption isotherms of CO[sub 2] (298 K) and H[sub 2]O (293 K). It was shown that carbonization of the original coal at 1120 K causes changes in the chemical composition, consolidation of the part which is amorphous to X-rays, generation of an ordered defect-containing structure on its basis, an increase in the volume of the micropores, and a decrease in the mean diameter. Activation of the carbonized coal affords a microporous structure with a bimodal size distribution.

  19. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    Science.gov (United States)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  20. Particle size distributions in and exhausted from a poultry house

    Science.gov (United States)

    Here we describe a study looking at the full particulate size range of particles in a poultry house. Agricultural particulates are typically thought of as coarse mode dust. But recent emphasis of PM2.5 regulations on pre-cursors such as ammonia and volatile organic compounds increasingly makes it ne...

  1. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  2. THE VISUALIZATION METHOD OF THE 3D CONCENTRATION DISTRIBUTION OF ASIAN DUST IN THE GOOGLE EARTH

    Directory of Open Access Journals (Sweden)

    W. Okuda

    2012-07-01

    Full Text Available The Asian dust (called "Kosa" in Japan transported from desert areas in the northern China often covers over East Asia in the late winter and spring seasons. In this study, first of all, for dust events observed at various places in Japan on April 1, 2007 and March 21, 2010, the long-range transport simulation of Asian dust from desert areas in the northern China to Japan is carried out. Next, the method for representing 3D dust clouds by means of the image overlay functionality provided in the Google Earth is described. Since it is very difficult to display 3D dust clouds along the curvature of the Earth on the global scale, the 3D dust cloud distributed at the altitude of about 6300m was divided into many thin layers, each of which is the same thickness. After each of layers was transformed to the image layer, each image layer was displayed at the appropriate altitude in the Google Earth. Thus obtained image layers were displayed every an hour in the Google Earth. Finally, it is shown that 3D Asian dust clouds generated by the method described in this study are represented as smooth 3D cloud objects even if we looked at Asian dust clouds transversely in the Google Earth.

  3. Observed particle sizes and fluxes of Aeolian sediment in the near surface layer during sand-dust storms in the Taklamakan Desert

    Science.gov (United States)

    Huo, Wen; He, Qing; Yang, Fan; Yang, Xinghua; Yang, Qing; Zhang, Fuyin; Mamtimin, Ali; Liu, Xinchun; Wang, Mingzhong; Zhao, Yong; Zhi, Xiefei

    2016-08-01

    Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008-2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m-2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60-80 % of the samples collected, with 0.9-2.5 % for PM0-2.5, 3.5-7.0 % for PM0-10, 5.0-14.0 % for PM0-20 and 20.0-40.0 % for PM0-50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m-2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.

  4. Modeling Study of the Global Distribution of Radiative Forcing by Dust Aerosol

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; MA Jinghui; ZHENG Youfei

    2010-01-01

    To quantitatively understand the dust aerosol effects on climate change, we calculated the global dis-tribution of direct radiative forcing due to dust aerosol under clear and cloudy skies in both winter and summer, by using an improved radiative transfer model and the global distribution of dust mass concentra-tion given by GADS (Global Aerosol Data Set). The results show that the global means of the solar forcing due to dust aerosol at the tropopause for winter and summer are -0.48 and -0.50 W m-2, respectively; the corresponding values for the longwave forcing due to dust are 0.11 and 0.09 W m-2, respectively. At the surface, the global means of the solar forcing clue to dust are -1.36 W m-2 for winter and -1.56 W m-2 for summer, whereas the corresponding values for the longwave forcing are 0.27 and 0.23 W m-2, respectively. This work points out that the absolute values of the solar forcing due to dust aerosol at both the tropopause and surface increase linearly with the cosine of solar zenith angle and surface albedo. The solar zenith angle influences both the strength and distribution of the solar forcing greatly. Clouds exert great effects on the direct radiative forcing of dust, depending on many factors including cloud cover, cloud height, cloud water path, surface albedo, solar zenith angle, etc. The effects of low clouds and middle clouds are larger than those of high clouds. The existence of clouds reduces the longwave radiative forcing at the tropopause, where the influences of low clouds are the most obvious. Therefore, the impacts of clouds should not be ignored when estimating the direct radiative forcing due to dust aerosol.

  5. Sand-dust storms in China: temporal-spatial distribution and tracks of source lands

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sand-dust storm is a special natural disaster that frequentlyoccurs in deserts and their surrounding areas. With the data published on Surface Meteorological Monthly Bulletin and Surface Chart during 1971-1996, the temporal-spatial distribution and annual variation of sand-dust storms are analyzed on the basis of the case study of atmospheric processes. Furthermore, the tracks and source areas of sand-dust storms are determined with the aid of GIS. The results show that except some parts of Qinghai Province and Inner Mongolia as well as Beijing, sand-dust storms decrease apparently in time and space in recent decades in China. Sand-dust storms occur most frequently in spring, especially in April. According to their source areas, sand-dust storms are classified into two types, i.e., the inner-source and outer-source sand-dust storms. Most of the outer-source sand-dust storms move along the north and west tracks. The north-track outer-source sand-dust storms always intrude into China across the Sino-Mongolian border from Hami, a city in the eastern part of Xinjiang, to Xilin Gol, a league in Inner Mongolia, while the west-track ones intrude into China from both southern and northern Xinjiang. The source lands of inner-source sand-dust storms concentrate in the Taklimakan Desert and its surrounding areas in southern Xinjiang, southern part of the Junggar Basin in north of Xinjiang, the Hexi Corridor in western Gansu Province, the dry deserts of Inner Mongolia and the Qaidam Basin in Qinghai.

  6. Atmospheric Ion Clusters: Properties and Size Distributions

    Science.gov (United States)

    D'Auria, R.; Turco, R. P.

    2002-12-01

    Ions are continuously generated in the atmosphere by the action of galactic cosmic radiation. Measured charge concentrations are of the order of 103 ~ {cm-3} throughout the troposphere, increasing to about 5 x 103 ~ {cm-3} in the lower stratosphere [Cole and Pierce, 1965; Paltridge, 1965, 1966]. The lifetimes of these ions are sufficient to allow substantial clustering with common trace constituents in air, including water, nitric and sulfuric acids, ammonia, and a variety of organic compounds [e.g., D'Auria and Turco, 2001 and references cited therein]. The populations of the resulting charged molecular clusters represent a pre-nucleation phase of particle formation, and in this regard comprise a key segment of the over-all nucleation size spectrum [e.g., Castleman and Tang, 1972]. It has been suggested that these clusters may catalyze certain heterogeneous reactions, and given their characteristic crystal-like structures may act as freezing nuclei for supercooled droplets. To investigate these possibilities, basic information on cluster thermodynamic properties and chemical kinetics is needed. Here, we present new results for several relevant atmospheric ion cluster families. In particular, predictions based on quantum mechanical simulations of cluster structure, and related thermodynamic parameters, are compared against laboratory data. We also describe a hybrid approach for modeling cluster sequences that combines laboratory measurements and quantum predictions with the classical liquid droplet (Thomson) model to treat a wider range of cluster sizes. Calculations of cluster mass distributions based on this hybrid model are illustrated, and the advantages and limitations of such an analysis are summarized. References: Castelman, A. W., Jr., and I. N. Tang, Role of small clusters in nucleation about ions, J. Chem. Phys., 57, 3629-3638, 1972. Cole, R. K., and E. T. Pierce, Electrification in the Earth's atmosphere for altitudes between 0 and 100 kilometers, J

  7. Vertical distribution characteristics of dust aerosol mass concentration in the Taklimakan Desert hinterland

    Institute of Scientific and Technical Information of China (English)

    XinChun Liu; YuTing Zhong; Qing He; XingHua Yang; Ali Mamtimin; Wen Huo

    2013-01-01

    size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.

  8. Effects of photophoresis on the dust distribution in a 3D protoplanetary disc

    CERN Document Server

    Cuello, Nicolas; Pignatale, Francesco C

    2016-01-01

    Photophoresis is a physical process based on momentum exchange between an illuminated dust particle and its gaseous environment. Its net effect in protoplanetary discs (PPD) is the outward transport of solid bodies from hot to cold regions. This process naturally leads to the formation of ring-shaped features where dust piles up. In this work, we study the dynamical effects of photophoresis in PPD by including the photophoretic force in the two-fluid (gas+dust) smoothed particle hydrodynamics (SPH) code developed by Barri\\`ere-Fouchet et al. (2005). We find that the conditions of pressure and temperature encountered in the inner regions of PPD result in important photophoretic forces, which dramatically affect the radial motion of solid bodies. Moreover, dust particles have different equilibrium locations in the disc depending on their size and their intrinsic density. The radial transport towards the outer parts of the disc is more efficient for silicates than for iron particles, which has important implicat...

  9. Evaluation of Factors Affecting Size and Size Distribution of Chitosan-Electrosprayed Nanoparticles.

    Science.gov (United States)

    Abyadeh, Morteza; Karimi Zarchi, Ali Akbar; Faramarzi, Mohammad Ali; Amani, Amir

    2017-01-01

    Size and size distribution of polymeric nanoparticles have important effect on their properties for pharmaceutical application. In this study, Chitosan nanoparticles were prepared by electrospray method (electrohydrodynamic atomization) and parameters that simultaneously affect size and/or size distribution of chitosan nanoparticles were optimized. Effect of formulation/processing three independent formulation/processing parameters, namely concentration, flow rate and applied voltage was investigated on particle size and size distribution of generated nanoparticles using a Box-Behnken experimental design. All the studied factors showed important effects on average size and size distribution of nanoparticles. A decrease in size and size distribution was obtainable with decreasing flow rate and concentration and increasing applied voltage. Eventually, a sample with minimum size and polydispersity was obtained with polymer concentration, flow rate and applied voltage values of 0.5 %w/v, 0.05 ml/hr and 15 kV, respectively. The experimentally prepared nanoparticles, expected having lowest size and size distribution values had a size of 105 nm, size distribution of 36 and Zeta potential of 59.3 mV. Results showed that optimum condition for production of chitosan nanoparticles with the minimum size and narrow size distribution was a minimum value for flow rate and highest value for applied voltage along with an optimum chitosan concentration.

  10. Using Stellar Spectra to Constrain the Distribution of Galactic Dust

    Science.gov (United States)

    Jones, David; West, A. A.; Foster, J. B.

    2011-05-01

    We use stellar spectra from the Sloan Digital Sky Survey (SDSS) to create a high- latitude extinction map of the local Galaxy. Our technique compares spectra from SDSS stars in low-extinction lines of sight, as determined by Schlegel, Finkbeiner, & Davis, to other SDSS spectra in order to derive improved distance estimates and accurate line-of-sight extinctions. Unlike most previous studies, which have used a two-color method to determine extinction, we fit extinction curves to fluxes across a large spectral range. We apply this method to SDSS K dwarfs, nearby L dwarfs, and stars in the DR7 M dwarf sample. Our result is an extinction map that extends from tens of pc to several kpc away from the sun. We also use a similar technique to create a map of RV values within approximately 1 kpc of the sun, and find they are consistent with the widely accepted diffuse interstellar medium value of 3.1. Using our extinction data, we derive a dust scale height for the local galaxy of 119 ± 15 parsecs and find evidence for a local dust cavity.

  11. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  12. Dusty galaxies and the degeneracy between their dust distributions and the attenuation formula

    CERN Document Server

    Penner, Kyle; Weiner, Benjamin; Inami, Hanae; Kartaltepe, Jeyhan; Pforr, Janine; Nayyeri, Hooshang; Kassin, Susan; Papovich, Casey; Pope, Alexandra

    2015-01-01

    Do spatial distributions of dust grains in galaxies have typical forms, as do spatial distributions of stars? We investigate whether or not the distributions resemble uniform foreground screens, as commonly assumed by the high-redshift galaxy community. We use rest-frame infrared, ultraviolet, and H$\\alpha$ line luminosities of dust-poor and dusty galaxies at z ~ 0 and z ~ 1 to compare measured H$\\alpha$ escape fractions with those predicted by the Calzetti attenuation formula. The predictions, based on UV escape fractions, overestimate the measured H$\\alpha$ escape fractions for all samples. The interpretation of this result for dust-poor z ~ 0 galaxies is that regions with ionizing stars have more dust than regions with nonionizing UV-emitting stars. Dust distributions for these galaxies are nonuniform. The interpretation of the overestimates for dusty galaxies at both redshifts is less clear. If the attenuation formula is inapplicable to these galaxies, perhaps the disagreements are unphysical; perhaps dus...

  13. Density distribution of a dust cloud in three-dimensional complex plasmas

    Science.gov (United States)

    Naumkin, V. N.; Zhukhovitskii, D. I.; Molotkov, V. I.; Lipaev, A. M.; Fortov, V. E.; Thomas, H. M.; Huber, P.; Morfill, G. E.

    2016-09-01

    We propose a method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud, and it provides reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station. We find that the treated dust clouds are both anisotropic and inhomogeneous. One can isolate two regimes in which a stationary dust cloud can be observed. At low pressures, the particle density decreases monotonically with the increase of the distance from the discharge center; at higher pressures, the density distribution has a shallow minimum. Regardless of the regime, we detect a cusp of the distribution at the void boundary and a slowly varying density at larger distances (in the foot region). A theoretical interpretation of the obtained results is developed that leads to reasonable estimates of the densities for both the cusp and the foot. The modified ionization equation of state, which allows for violation of the local quasineutrality in the cusp region, predicts the spatial distributions of ion and electron densities to be measured in future experiments.

  14. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution

    Science.gov (United States)

    Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.; Huth, J.; Kearsley, A; Leroux, H.; Marhas, K.; Stadermann, F. J.; Teslich, N.

    2007-01-01

    Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.

  15. Early dust evolution in protostellar accretion disks

    OpenAIRE

    2000-01-01

    We investigate dust dynamics and evolution during the formation of a protostellar accretion disk around intermediate mass stars via 2D numerical simulations. Using three different detailed dust models, compact spherical particles, fractal BPCA grains, and BCCA grains, we find that even during the early collapse and the first 10,000 yr of dynamical disk evolution, the initial dust size distribution is strongly modified. Close to the disk's midplane coagulation produces dust particles of sizes ...

  16. Simulation of the spatial distribution of mineral dust and its direct radiative forcing over Australia

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh Choobari

    2013-05-01

    Full Text Available Direct radiative forcing by mineral dust is important as it significantly affects the climate system by scattering and absorbing short-wave and long-wave radiation. The multi-angle imaging spectro radiometer (MISR and cloud–aerosol lidar with orthogonal polarisation (CALIOP aerosol data are used to observe mineral dust distribution over Australia. In addition, the weather research and forecasting with chemistry (WRF/Chem model is used to estimate direct radiative forcing by dust. At the surface, the model domain clear-sky short-wave and long-wave direct radiative forcing by dust averaged for a 6-month period (austral spring and summer was estimated to be −0.67 W m−2 and 0.13 W m−2, respectively. The long-wave warming effect of dust therefore offsets 19.4% of its short-wave cooling effect. However, over Lake Eyre Basin where coarse particles are more abundant, the long-wave warming effect of dust offsets 60.9% of the short-wave cooling effect. At the top of the atmosphere (TOA, clear-sky short-wave and long-wave direct radiative forcing was estimated to be −0.26 W m−2 and −0.01 W m−2, respectively. This leads to a net negative direct radiative forcing of dust at the TOA, indicating cooling of the atmosphere by an increase in outgoing radiation. Short-wave and long-wave direct radiative forcing by dust is shown to have a diurnal variation due to changes in solar zenith angle and in the intensity of infrared radiation. Atmospheric heating due to absorption of short-wave radiation was simulated, while the interaction of dust with long-wave radiation was associated with atmospheric cooling. The net effect was cooling of the atmosphere near the surface (below 0.2 km, with warming of the atmosphere at higher altitudes.

  17. Comparison of airborne and surface particulate size distributions in specific Hanford Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ottley, D.B.

    1995-05-01

    Settled dust from nuclear operations may be contaminated with radionuclides and become resuspended and subsequently breathed. This is the predominate radionuclide inhalation hazard scenario in nuclear facilities that have been deactivated and no longer have liquid in their process systems that may become directly airborne in accident situations. Comparisons were made between indoor ambient airborne particulate size distribution and that of resuspended dust that could become contaminated and subsequently airborne during decommissioning operations at selected nuclear facilities on the Hanford Site. Results indicate that only 5% of the particles, by count, above the breathing zone are greater than ten (10) {mu}m in size and that the particulates that could be resuspended into the breathing zone had a mean aerodynamic equivalent diameter of four (4) {mu}m or less.

  18. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibo, E-mail: hbzhang@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Makino, Tomoyuki [National Institute for Agro-Environmental Sciences, Tsukuba 3058604 (Japan); Wu, Longhua [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Nanzyo, Masami [Tohoku University, Sendai 9808576 (Japan)

    2013-03-15

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil.

  19. Turbulence-Induced Relative Velocity of Dust Particles III: The Probability Distribution

    CERN Document Server

    Pan, Liubin; Scalo, John

    2014-01-01

    Motivated by its important role in the collisional growth of dust particles in protoplanetary disks, we investigate the probability distribution function (PDF) of the relative velocity of inertial particles suspended in turbulent flows. Using the simulation from our previous work, we compute the relative velocity PDF as a function of the friction timescales, tau_p1 and tau_p2, of two particles of arbitrary sizes. The friction time of particles included in the simulation ranges from 0.1 tau_eta to 54T_L, with tau_eta and T_L the Kolmogorov time and the Lagrangian correlation time of the flow, respectively. The relative velocity PDF is generically non-Gaussian, exhibiting fat tails. For a fixed value of tau_p1, the PDF is the fattest for equal-size particles (tau_p2~tau_p1), and becomes thinner at both tau_p2tau_p1. Defining f as the friction time ratio of the smaller particle to the larger one, we find that, at a given f in 1/2>T_L). These features are successfully explained by the Pan & Padoan model. Usin...

  20. Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on nonplanar dust-ion-acoustic solitary waves.

    Science.gov (United States)

    Mamun, A A; Shukla, P K

    2009-09-01

    Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.

  1. Temporal evolution of UV opacity and dust particle size at Gale Crater from MSL/REMS measurements

    Science.gov (United States)

    Vicente-Retortillo, Álvaro; Martinez, German; Renno, Nilton O.; Lemmon, Mark T.; Mason, Emily; De la Torre, Manuel

    2016-10-01

    A better characterization of the size, radiative properties and temporal variability of suspended dust in the Martian atmosphere is necessary to improve our understanding of the current climate of Mars. The REMS UV sensor onboard the Mars Science Laboratory (MSL) Curiosity rover has performed ground-based measurements of solar radiation in six different UV spectral bands for the first time on Mars.We developed a novel technique to retrieve dust opacity and particle size from REMS UV measurements. We use the electrical output current (TELRDR products) of the six photodiodes and the ancillary data (ADR products) to avoid inconsistencies found in the processed data (units of W/m2) when the solar zenith angle is above 30°. In addition, we use TELRDR and ADR data only in events during which the Sun is temporally blocked by the rover's masthead or mast to mitigate uncertainties associated to the degradation of the sensor due to the deposition of dust on it. Then we use a radiative transfer model with updated dust properties based on the Monte-Carlo method to retrieve the dust opacity and particle size.We find that the seasonal trend of UV opacity is consistent with opacity values at 880 nm derived from Mastcam images of the Sun, with annual maximum values in spring and in summer and minimum values in winter. The interannual variability is low, with two local maxima in mid-spring and mid-summer. Finally, dust particle size also varies throughout the year with typical values of the effective radius in the range between 0.5 and 2 μm. These variations in particle size occur in a similar way to those in dust opacity; the smallest sizes are found when the opacity values are the lowest.

  2. Density distribution of a dust cloud in three-dimensional complex plasmas

    CERN Document Server

    Naumkin, V N; Molotkov, V I; Lipaev, A M; Fortov, V E; Thomas, H M; Huber, P; Morfill, G E

    2016-01-01

    We propose a novel method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud and provides a reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station. We find that the treated dust clouds are both anisotropic and inhomogeneous. One can isolate two regimes, in which a stationary dust cloud can be observed. At low pressures, the particle density decreases monotonically with the increase of the distance from the discharge center; at higher pressures, the density distribution has a shallow minimum. Regardless of the regime, we detect a cusp of the distribution at the void boundary and a slowly varying density at larger distances (in the foot region). A theoretical interpretation of obtained results is d...

  3. Sources of aerosol as determined from elemental composition and size distributions in Beijing

    Science.gov (United States)

    Zhang, Wenjie; Zhuang, Guoshun; Guo, Jinghua; Xu, Dongqun; Wang, Wei; Baumgardner, Darrel; Wu, Zhiyuan; Yang, Wen

    2010-02-01

    Samples of PM 2.5, PM 10, and TSP from 2001 to 2003 have been collected in Beijing during spring (low-dust), spring (high dust), summer and winter. The concentration of TSP, PM 10, and PM 2.5 was most abundant in spring with high dust followed by winter, spring with little dust and summer. The average mass ratios of PM > 10 , PM 2.5-10 and PM 2.5 to TSP show that the large coarse fraction (PM > 10 ) and the fine fraction (PM 2.5) contribute most in spring with high dust while PM 2.5, PM 2.5-10, and PM > 10 contributed similar fractions to TSP in summer and PM 2.5 in winter. Sixteen cascade impaction samples were collected for elemental analysis in 2000 and 2001 and 16 major components were analyzed by PIXE. Based on the characteristics of the size distribution, three different patterns are observed: coarse mode, fine mode and bimodal mode. Different groups showed different characteristics. Crustal elements showed stable size shapes between different seasons, however, pollution elements showed complex and more variations, and the size distribution showed tendency to vary between unimodal fine modes and bimodal modes. Additionally, the concentration of aerosols and the temporal variation of the elements varied significantly according to different meteorological conditions especially on haze-fog weather conditions. Different elements showed different size distributions on haze-fog weather, i.e. crustal elements of Al, Si, Ca showed similar variation with those average days, pollution elements of S, As, Zn showed significantly higher level than those average values but mixed elements of K, Mn, Cu, Pb showed not so higher than those pollution elements. The high S in haze-fog weather was most from water soluble sulfate parts, the bimodal modes of elements showed unimodal variation and the peak of accumulation modes showed tendency variation to the larger sizes in haze-fog weather. However, most crustal elements showed not much increase during haze-fog condition, which is

  4. The global atmospheric loading of dust aerosols

    Science.gov (United States)

    Kok, J. F.; Ridley, D. A.; Haustein, K.; Miller, R. L.; Zhao, C.

    2015-12-01

    Mineral dust is one of the most ubiquitous aerosols in the atmosphere, with important effects on human health and the climate system. But despite its importance, the global atmospheric loading of dust has remained uncertain, with model results spanning about a factor of five. Here we constrain the particle size-resolved atmospheric dust loading and global emission rate, using a novel theoretical framework that uses experimental constraints on the optical properties and size distribution of dust to eliminate climate model errors due to assumed dust properties. We find that most climate models underestimate the global atmospheric loading and emission rate of dust aerosols.

  5. Can dust emission mechanisms be determined from field measurements?

    Science.gov (United States)

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  6. Annual distributions and variations of dust weather occurrence over the Tarim Basin, China

    Science.gov (United States)

    Zhao, Yong; Zhou, Yang; Wang, Minzhong; Huo, Wen; Huang, Anning; Yang, Xinhua; Yang, Fan

    2017-02-01

    The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of -0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.

  7. Infrared spectral energy distribution decomposition of WISE-selected, hyperluminous hot dust-obscured galaxies

    CERN Document Server

    Fan, Lulu; Nikutta, Robert; Drouart, Guillaume; Knudsen, Kirsten K

    2016-01-01

    We utilize a Bayesian approach to fit the observed mid-IR-to-submm/mm spectral energy distributions (SEDs) of 22 WISE-selected and submm-detected, hyperluminous hot dust-obscured galaxies. By adopting the Torus+GB model, we decompose the observed IR SEDs of Hot DOGs into torus and cold dust components. The main results are: 1) Hot DOGs in our submm-detected sample are hyperluminous, with torus emission dominating the IR energy output. However, cold dust emission is non-negligible, averagely contributing ~24% of total IR luminosity. 2) Compared to QSO and starburst SED templates, the median SED of Hot DOGs shows the highest luminosity ratio between mid-IR and submm at rest-frame, while it is very similar to that of QSOs at 10-50um suggesting that the heating sources of Hot DOGs should be buried AGNs. 3) Hot DOGs have both high dust temperatures ~73K and IR luminosity of cold dust. The T-L relation of Hot DOGs suggests that the increase in IR luminosity for Hot DOGs is mostly due to the increase of the dust tem...

  8. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    Science.gov (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  9. Evaluation of droplet size distributions using univariate and multivariate approaches.

    Science.gov (United States)

    Gaunø, Mette Høg; Larsen, Crilles Casper; Vilhelmsen, Thomas; Møller-Sonnergaard, Jørn; Wittendorff, Jørgen; Rantanen, Jukka

    2013-01-01

    Pharmaceutically relevant material characteristics are often analyzed based on univariate descriptors instead of utilizing the whole information available in the full distribution. One example is droplet size distribution, which is often described by the median droplet size and the width of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution. Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions. The multivariate data analysis was proven to be an efficient tool for evaluating the full information contained in a distribution.

  10. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  11. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  12. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes.

    Directory of Open Access Journals (Sweden)

    Yue Bin

    Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.

  13. The Distribution of Bubble Sizes During Reionization

    CERN Document Server

    Lin, Yin; Furlanetto, Steven R; Sutter, P M

    2015-01-01

    A key physical quantity during reionization is the size of HII regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm -- widely used for void finding in galaxy surveys -- which we show to be an unbiased method with the lowest dispersion and best performance on Monte-Carlo realizations of a known bubble size PDF. We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect those volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, HI...

  14. How dense can one pack spheres of arbitrary size distribution?

    Science.gov (United States)

    Reis, S. D. S.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, Hans J.

    2012-01-01

    We present the first systematic algorithm to estimate the maximum packing density of spheres when the grain sizes are drawn from an arbitrary size distribution. With an Apollonian filling rule, we implement our technique for disks in 2d and spheres in 3d. As expected, the densest packing is achieved with power-law size distributions. We also test the method on homogeneous and on empirical real distributions, and we propose a scheme to obtain experimentally accessible distributions of grain sizes with low porosity. Our method should be helpful in the development of ultra-strong ceramics and high-performance concrete.

  15. Planck intermediate results: XLIII. Spectral energy distribution of dust in clusters of galaxies

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.;

    2016-01-01

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degene...

  16. Detailed mass size distributions of atmospheric aerosol species in the Negev desert, Israel, during ARACHNE-96

    Science.gov (United States)

    Maenhaut, Willy; Ptasinski, Jacek; Cafmeyer, Jan

    1999-04-01

    As part of the 1996 summer intensive of the Aerosol, RAdiation and CHemistry Experiment (ARACHNE-96), the mass size distribution of various airborne particulate elements was studied at a remote site in the Negev Desert, Israel. Aerosol collections were made with 8-stage PIXE International cascade impactors (PCIs) and 12-stage small deposit area low pressure impactors (SDIs) and the samples were analyzed by PIXE for about 20 elements. The mineral elements (Al, Si, Ca, Ti, Fe) exhibited a unimodal size distribution which peaked at about 6 μm, but the contribution of particles larger than 10 μm was clearly more pronounced during the day than during night. Sulphur and Br had a tendency to exhibit two modes in the submicrometer size range, with diameters at about 0.3 and 0.6 μm, respectively. The elements V and Ni, which are indicators of residual fuel burning, showed essentially one fine mode (at 0.3 μm) in addition to a coarse mode which represented the mineral dust contribution. Overall, good agreement was observed between the mass size distributions from the PCI and SDI devices. The PCI was superior to the SDI for studying the size distribution in the coarse size range, but the SDI was clearly superior for unravelling the various modes in the submicrometer size range.

  17. Detailed mass size distributions of atmospheric aerosol species in the Negev desert, Israel, during ARACHNE-96

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy E-mail: maenhaut@inwchem.rug.ac.be; Ptasinski, Jacek; Cafmeyer, Jan

    1999-04-02

    As part of the 1996 summer intensive of the Aerosol, RAdiation and CHemistry Experiment (ARACHNE-96), the mass size distribution of various airborne particulate elements was studied at a remote site in the Negev Desert, Israel. Aerosol collections were made with 8-stage PIXE International cascade impactors (PCIs) and 12-stage small deposit area low pressure impactors (SDIs) and the samples were analyzed by PIXE for about 20 elements. The mineral elements (Al, Si, Ca, Ti, Fe) exhibited a unimodal size distribution which peaked at about 6 {mu}m, but the contribution of particles larger than 10 {mu}m was clearly more pronounced during the day than during night. Sulphur and Br had a tendency to exhibit two modes in the submicrometer size range, with diameters at about 0.3 and 0.6 {mu}m, respectively. The elements V and Ni, which are indicators of residual fuel burning, showed essentially one fine mode (at 0.3 {mu}m) in addition to a coarse mode which represented the mineral dust contribution. Overall, good agreement was observed between the mass size distributions from the PCI and SDI devices. The PCI was superior to the SDI for studying the size distribution in the coarse size range, but the SDI was clearly superior for unravelling the various modes in the submicrometer size range.

  18. Pareto tails and lognormal body of US cities size distribution

    Science.gov (United States)

    Luckstead, Jeff; Devadoss, Stephen

    2017-01-01

    We consider a distribution, which consists of lower tail Pareto, lognormal body, and upper tail Pareto, to estimate the size distribution of all US cities. This distribution fits the data more accurately than a distribution that comprises of only lognormal and the upper tail Pareto.

  19. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2008-08-01

    Full Text Available Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 11–12 km. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in Northwest India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar. Comparisons with the OMI and MODIS measurements show the unique capability of the CALIPSO lidar to provide unambiguous, altitude-resolved dust measurements.

  20. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations

    Directory of Open Access Journals (Sweden)

    Zhaoyan Liu

    2008-03-01

    Full Text Available Airborne dust is a major environmental hazard in Asia. Using an analysis of the first full year of CALIPSO lidar measurements, this paper derives unprecedented, altitude-resolved seasonal distributions of desert dust transported over the Tibetan Plateau (TP and the surrounding areas. The CALIPSO lidar observations include numerous large dust plumes over the northern slope and eastern part of the TP, with the largest number of dust events occurring in the spring of 2007, and some layers being lofted to altitudes of 10 km and higher. Generation of the Tibetan airborne dusts appears to be largely associated with source regions to the north and on the eastern part of the plateau. Examination of the CALIPSO time history reveals an "airborne dust corridor" due to the eastward transport of dusts originating primarily in these source areas. This corridor extends from west to east and shows a seasonality largely modulated by the TP through its dynamical and thermal forcing on the atmospheric flows. On the southern side, desert dust particles originate predominately in North India and Pakistan. The dust transport occurs primarily in dry seasons around the TP western and southern slopes and dust particles become mixed with local polluted aerosols. No significant amount of dust appears to be transported over the Himalayas. Extensive forward trajectory simulations are also conducted to confirm the dust transport pattern from the nearby sources observed by the CALIPSO lidar.

  1. Changes of firm size distribution: The case of Korea

    Science.gov (United States)

    Kang, Sang Hoon; Jiang, Zhuhua; Cheong, Chongcheul; Yoon, Seong-Min

    2011-01-01

    In this paper, the distribution and inequality of firm sizes is evaluated for the Korean firms listed on the stock markets. Using the amount of sales, total assets, capital, and the number of employees, respectively, as a proxy for firm sizes, we find that the upper tail of the Korean firm size distribution can be described by power-law distributions rather than lognormal distributions. Then, we estimate the Zipf parameters of the firm sizes and assess the changes in the magnitude of the exponents. The results show that the calculated Zipf exponents over time increased prior to the financial crisis, but decreased after the crisis. This pattern implies that the degree of inequality in Korean firm sizes had severely deepened prior to the crisis, but lessened after the crisis. Overall, the distribution of Korean firm sizes changes over time, and Zipf’s law is not universal but does hold as a special case.

  2. The distribution of bubble sizes during reionization

    Science.gov (United States)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  3. Effects of photophoresis on the dust distribution in a 3D protoplanetary disc

    Science.gov (United States)

    Cuello, N.; Gonzalez, J.-F.; Pignatale, F. C.

    2016-05-01

    Photophoresis is a physical process based on momentum exchange between an illuminated dust particle and its gaseous environment. Its net effect in protoplanetary discs (PPD) is the outward transport of solid bodies from hot to cold regions. This process naturally leads to the formation of ring-shaped features where dust piles up. In this work, we study the dynamical effects of photophoresis in PPD by including the photophoretic force in the two-fluid (gas+dust) smoothed particle hydrodynamics (SPH) code developed by Barrière-Fouchet et al. (2005). We find that the conditions of pressure and temperature encountered in the inner regions of PPD result in important photophoretic forces, which dramatically affect the radial motion of solid bodies. Moreover, dust particles have different equilibrium locations in the disc depending on their size and their intrinsic density. The radial transport towards the outer parts of the disc is more efficient for silicates than for iron particles, which has important implications for meteoritic composition. Our results indicate that photophoresis must be taken into account in the inner regions of PPD to fully understand the dynamics and the evolution of the dust composition.

  4. Radial distribution of gas and dust in the two spiral galaxies M99 and M100

    CERN Document Server

    Pohlen, M; Smith, M W L; Eales, S A; Boselli, A; Bendo, G J; Gomez, H L; Papageorgiou, A; Auld, R; Baes, M; Bock, J J; Bradford, M; Buat, V; Castro-Rodriguez, N; Chanial, P; Charlot, S; Ciesla, L; Clements, D L; Cooray, A; Cormier, D; Dwek, E; Eales, S A; Elbaz, D; Galametz, M; Galliano, F; Gear, W K; Glenn, J; Griffin, M; Hony, S; Isaak, K G; Levenson, L R; Lu, N; Madden, S; O'Halloran, B; Okumura, K; Oliver, S; Page, M J; Panuzzo, P; Parkin, T J; Perez-Fournon, I; Rangwala, N; Rigby, E E; Roussel, H; Rykala, A; Sacchi, N; Sauvage, M; Schulz, B; Schirm, M R P; Smith, M W L; Spinoglio, L; Stevens, J A; Srinivasan, S; Symeonidis, M; Trichas, M; Vaccari, M; Vigroux, L; Wilson, C D; Wozniak, H; Wright, G S; Zeiliner, W W

    2010-01-01

    By combining Herschel-SPIRE data with archival Spitzer, HI, and CO maps, we investigate the spatial distribution of gas and dust in the two famous grand-design spirals M99 and M100 in the Virgo cluster. Thanks to the unique resolution and sensitivity of the Herschel-SPIRE photometer, we are for the first time able to measure the distribution and extent of cool, submillimetre (submm)-emitting dust inside and beyond the optical radius. We compare this with the radial variation in both the gas mass and the metallicity. Although we adopt a model-independent, phenomenological approach, our analysis provides important insights. We find the dust extending to at least the optical radius of the galaxy and showing breaks in its radial profiles at similar positions as the stellar distribution. The colour indices f350/f500 and f250/f350 decrease radially consistent with the temperature decreasing with radius. We also find evidence of an increasing gas to dust ratio with radius in the outer regions of both galaxies.

  5. Planck intermediate results. XLIII. The spectral energy distribution of dust in clusters of galaxies

    CERN Document Server

    Adam, R; Aghanim, N; Ashdown, M; Aumont, J; Baccigalupi, C; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bersanelli, M; Bielewicz, P; Bikmaev, I; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Burenin, R; Burigana, C; Calabrese, E; Cardoso, J -F; Catalano, A; Chiang, H C; Christensen, P R; Churazov, E; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dole, H; Doré, O; Douspis, M; Ducout, A; Dupac, X; Elsner, F; Enßlin, T A; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Génova-Santos, R T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Harrison, D L; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Hornstrup, A; Hovest, W; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihänen, E; Keskitalo, R; Khamitov, I; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Macías-Pérez, J F; Maffei, B; Maggio, G; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Santos, D; Savelainen, M; Savini, G; Scott, D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Valenziano, L; Valiviita, J; Van Tent, F; Vielva, P; Villa, F; Wade, L A; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2016-01-01

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample; this procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which d...

  6. The size distribution of inhabited planets

    Science.gov (United States)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  7. Estimation of Nanoparticle Size Distributions by Image Analysis

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael; Hansen, Mikkel Fougt

    2000-01-01

    Knowledge of the nanoparticle size distribution is important for the interpretation of experimental results in many studies of nanoparticle properties. An automated method is needed for accurate and robust estimation of particle size distribution from nanoparticle images with thousands of particl...

  8. Effect of trapped ions and nonequilibrium electron-energy distribution function on dust-particle charging in gas discharges.

    Science.gov (United States)

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2009-03-01

    Dust-particles charging in a low-pressure glow discharge was investigated theoretically. The dust-particle charge was found on the basis of a developed self-consistent model taking into account the nonequilibrium character of electron distribution function and the formation of an ionic coat composed of bound or trapped ions around the dust particle. The dust-particle charge, the radial distributions of electron density, free and trapped ions densities, and the distribution of electrostatic potential were found. It was shown that the non-Maxwellian electron distribution function and collisional flux of trapped ions both reduce the dust-particle charge in comparison with that received with the help of the conventional orbital motion limited (OML) model. However, in rare collisional regimes in plasma when the collisional flux is negligible, the formation of ionic coat around a particle leads to a shielding of the proper charge of a dust particle. In low-pressure experiments, it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ions. The calculated effective dust particle charge is in fairly good agreement with the experimental measurements of dust-particle charge dependence on gas pressure.

  9. Droplet size distribution in homogeneous isotropic turbulence

    Science.gov (United States)

    Perlekar, Prasad; Biferale, Luca; Sbragaglia, Mauro; Srivastava, Sudhir; Toschi, Federico

    2012-06-01

    We study the physics of droplet breakup in a statistically stationary homogeneous and isotropic turbulent flow by means of high resolution numerical investigations based on the multicomponent lattice Boltzmann method. We verified the validity of the criterion proposed by Hinze [AIChE J. 1, 289 (1955)] for droplet breakup and we measured the full probability distribution function of droplets radii at different Reynolds numbers and for different volume fractions. By means of a Lagrangian tracking we could follow individual droplets along their trajectories, define a local Weber number based on the velocity gradients, and study its cross-correlation with droplet deformation.

  10. Dust processing in elliptical galaxies

    CERN Document Server

    Hirashita, Hiroyuki; Villaume, Alexa; Srinivasan, Sundar

    2015-01-01

    We reconsider the origin and processing of dust in elliptical galaxies. We theoretically formulate the evolution of grain size distribution, taking into account dust supply from asymptotic giant branch (AGB) stars and dust destruction by sputtering in the hot interstellar medium (ISM), whose temperature evolution is treated by including two cooling paths: gas emission and dust emission (i.e. gas cooling and dust cooling). With our new full treatment of grain size distribution, we confirm that dust destruction by sputtering is too efficient to explain the observed dust abundance even if AGB stars continue to supply dust grains, and that, except for the case where the initial dust-to-gas ratio in the hot gas is as high as $\\sim 0.01$, dust cooling is negligible compared with gas cooling. However, we show that, contrary to previous expectations, cooling does not help to protect the dust; rather, the sputtering efficiency is raised by the gas compression as a result of cooling. We additionally consider grain grow...

  11. Dust-acoustic solitons in quantum plasma with kappa-distributed ions

    Indian Academy of Sciences (India)

    Mehran Shahmansouri

    2013-02-01

    Arbitrary amplitude dust-acoustic (DA) solitary waves in an unmagnetized and collisionless quantum dusty plasma comprising cold dust particles, kappa ()-distributed ions and degenerate electrons are investigated. The influence of suprathermality and quantum effects on the linear dispersion relation of DA waves is investigated. Then, the effect of -distributed ions and degenerate electrons on the existence domain of solitons is discussed in the space of (, ). The comparison of the existence domain for higher and lower values of shows that suprathermality results in propagation of solitons with lower values of Mach number, and the quantum effects, lead to a higher values of Mach number. The existence domain of solitons for nondegenerate -distributed electrons is considered for comparison with effect of degenerate electrons. Also, we found that the Sagdeev potential well becomes deeper and wider as $_{F-i}$ decreases, as for lower values, the influence of quantum effects on the Sagdeev pseudopotential profile is smaller.

  12. Powder Size and Distribution in Ultrasonic Gas Atomization

    Science.gov (United States)

    Rai, G.; Lavernia, E.; Grant, N. J.

    1985-08-01

    Ultrasonic gas atomization (USGA) produces powder sizes dependent on the ratio of the nozzle jet diameter to the distance of spread dt/R, Powder size distribution is attributed to the spread of atomizing gas jets during travel from the nozzle exit to the metal stream. The spread diminishes at higher gas atomization pressures. In this paper, calculated powder sizes and distribution are compared with experimentally determined values.

  13. Vapor intrusion in soils with multimodal pore-size distribution

    OpenAIRE

    Alfaro Soto Miguel; Hung Kiang Chang

    2016-01-01

    The Johnson and Ettinger [1] model and its extensions are at this time the most widely used algorithms for estimating subsurface vapor intrusion into buildings (API [2]). The functions which describe capillary pressure curves are utilized in quantitative analyses, although these are applicable for porous media with a unimodal or lognormal pore-size distribution. However, unaltered soils may have a heterogeneous pore distribution and consequently a multimodal pore-size distribution [3], which ...

  14. Spatial distribution of interstellar dust in the Sun's vicinity. Comparison with neutral sodium-bearing gas

    Science.gov (United States)

    Vergely, J.-L.; Valette, B.; Lallement, R.; Raimond, S.

    2010-07-01

    Aims: 3D tomography of the interstellar dust and gas may be useful in many respects, from the physical and chemical evolution of the interstellar medium itself to foreground decontamination of the cosmic microwave background, or various studies of the environments of specific objects. However, while spectral data cubes of the galactic emission become increasingly precise, the information on the distance to the emitting regions has not progressed as well and relies essentially on the galactic rotation curve. Our goal here is to bring more precise information on the distance to nearby interstellar dust and gas clouds within 250 pc. Methods: We apply the best available calibration methods to a carefully screened set of stellar Strömgren photometry data for targets possessing a Hipparcos parallax and spectral type classification. We combine the derived interstellar extinctions and the parallax distances for about 6000 stars to build a 3D tomography of the local dust. We use an inversion method based on a regularized Bayesian approach and a least squares criterion, optimized for this specific data set. We apply the same inversion technique to a totally independent set of neutral sodium absorption data available for about 1700 target stars. Results: We obtain 3D maps of the opacity and the distance to the main dust-bearing clouds within 250 pc and identify in those maps well-known dark clouds and high galactic more diffuse entities. We calculate the integrated extinction between the Sun and the cube boundary and compare this with the total galactic extinction derived from infrared 2D maps. The two quantities reach similar values at high latitudes, as expected if the local dust content is satisfyingly reproduced and the dust is closer than 250 pc. Those maps show a larger high latitude dust opacity in the North compared to the South, reinforcing earlier evidences. Interestingly the gas maps do not show the same asymmetry, suggesting a polar asymmetry of the dust to gas

  15. Temporal and Spatial Distribution of Respirable Dust After Blasting of Coal Roadway Driving Faces: A Case Study

    Directory of Open Access Journals (Sweden)

    Shengyong Hu

    2015-10-01

    Full Text Available Coal roadway driving is an important part of the underground mining system, and very common in Chinese coal mines. However, the high concentration of respirable dust produced in the blasting operation poses a great hazard to miners’ health as well as the underground environment. In this paper, based on the direct simulation Monte Carlo method, the gas–solid two-phase flow model of particle movement is established to study the respirable dust distribution in blasting driving face. The results show that there is an obvious vortex region in which airflow velocity is lower than that close to the roadway wall and driving face. After blasting, respirable dust in the front of the dust group jet from the driving face cannot be discharged timely, with the result that its concentration is higher than the critical value until it is expelled from the roadway, whereas respirable dust concentration at the back of the dust group is gradually diluted and exhibits an alternate thin dense phase distribution. Meanwhile, respirable dust concentration in the breathing zone is relatively higher than that at the top and bottom of roadway. The accuracy of numerical simulation results is verified by field measurements. The research results are helpful for further understanding the evolution of respirable dust distribution after blasting, and are good for providing guidance for efficient controlling of respirable dust and improving the working environment for underground miners.

  16. Efficient radiative transfer in dust grain mixtures

    CERN Document Server

    Wolf, S

    2003-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially with increasing optical depth, converging towards the temperature distribution resulting from the approximation of mean dust grain parameters, and (2) the resulting spectral energy distributions do not differ by more than 10% if >= 2^5 grain sizes are considered which justifies the mean parameter approximation and the many results obtained under its assumption so far. Nevertheless, the dust grain temperature dispersion at the inner boundary of a dust shell may amount to >>100K and has therefore to be considered in the cor...

  17. eblur/dust: a modular python approach for dust extinction and scattering

    Science.gov (United States)

    Corrales, Lia

    2016-03-01

    I will present a library of python codes -- github.com/eblur/dust -- which calculate dust scattering and extinction properties from the IR to the X-ray. The modular interface allows for custom defined dust grain size distributions, optical constants, and scattering physics. These codes are currently undergoing a major overhaul to include multiple scattering effects, parallel processing, parameterized grain size distributions beyond power law, and optical constants for different grain compositions. I use eblur/dust primarily to study dust scattering images in the X-ray, but they may be extended to applications at other wavelengths.

  18. The Collisional Divot in the Kuiper belt Size Distribution

    CERN Document Server

    Fraser, Wesley C

    2009-01-01

    This paper presents the results of collisional evolution calculations for the Kuiper belt starting from an initial size distribution similar to that produced by accretion simulations of that region - a steep power-law large object size distribution that breaks to a shallower slope at r ~1-2 km, with collisional equilibrium achieved for objects r ~0.5 km. We find that the break from the steep large object power-law causes a divot, or depletion of objects at r ~10-20 km, which in-turn greatly reduces the disruption rate of objects with r> 25-50 km, preserving the steep power-law behavior for objects at this size. Our calculations demonstrate that the roll-over observed in the Kuiper belt size distribution is naturally explained as an edge of a divot in the size distribution; the radius at which the size distribution transitions away from the power-law, and the shape of the divot from our simulations are consistent with the size of the observed roll-over, and size distribution for smaller bodies. Both the kink r...

  19. The Cosmic DUNE dust astronomy mission

    Science.gov (United States)

    Grun, E.; Srama, R.; Cosmic Dune Team

    A dust astronomy mission aims at the simultaneous measurement of the origin and the chemical composition of individual dust grains in space. Interstellar dust traversing the solar system constitutes the galactic solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with Cosmic DUNE (Cosmic Dust Near Earth) will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Cosmic DUNE will prepare the way for effective collection in near-Earth space of interstellar and interplanetary dust for subsequent return to Earth and analysis in laboratories. Cosmic DUNE establishes the next logical step beyond NASA's Stardust mission, with four major advancements in cosmic dust research: (1) Analysis of the elemental and isotopic composition of individual cosmic dust grains, (2) determination of the size distribution of interstellar dust, (3) characterization of the interstellar dust flow through the planetary system, and (4) analysis of interplanetary dust of cometary and asteroidal origin. This mission goal will be reached with novel dust instrumentation. A dust telescope trajectory sensor has been developed which is capable of obtaining precision trajectories of sub-micron sized particles in space. A new high mass resolution dust analyzer of 0.1m2 impact area can cope with the low fluxes expected in interplanetary space. Cosmic DUNE will be proposed to ESA in response to its upcoming call for mission ideas.

  20. Evaluation of droplet size distributions using univariate and multivariate approaches

    DEFF Research Database (Denmark)

    Gauno, M.H.; Larsen, C.C.; Vilhelmsen, T.

    2013-01-01

    of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose....... Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions....... The multivariate data analysis was proven to be an efficient tool for evaluating the full information contained in a distribution. © 2013 Informa Healthcare USA, Inc....

  1. Simulation of dust statistical characteristics in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, R.D.; Pigarov, A.Yu.; Krasheninnikov, S.I.; Rosenberg, M.; Mendis, D.A. [University of California, San Diego, La Jolla, California, 92093 (United States)

    2008-03-15

    In this work we analyze the size (radius) distribution function of dust particles in tokamak plasmas during a steady state discharge. A relation between the radius distribution function of dust in the plasma and the radius distribution of dust injected from tokamak walls is obtained using a Green's function formalism. Numerical simulations of the dust radius distribution function in a tokamak plasma with the Dust Transport (DUSTT) code are used to obtain the analytical form of the Green's function semi-empirically. It is demonstrated that the Green's function obtained can be used to predict qualitatively the dust size distributions in the tokamak plasmas. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Size-segregated sugar composition of transported dust aerosols from Middle-East over Delhi during March 2012

    Science.gov (United States)

    Kumar, S.; Aggarwal, S. G.; Fu, P. Q.; Kang, M.; Sarangi, B.; Sinha, D.; Kotnala, R. K.

    2017-06-01

    During March 20-22, 2012 Delhi experienced a massive dust-storm which originated in Middle-East. Size segregated sampling of these dust aerosols was performed using a nine staged Andersen sampler (5 sets of samples were collected including before dust-storm (BDS)), dust-storm day 1 to 3 (DS1 to DS3) and after dust storm (ADS). Sugars (mono and disaccharides, sugar-alcohols and anhydro-sugars) were determined using GC-MS technique. It was observed that on the onset of dust-storm, total suspended particulate matter (TSPM, sum of all stages) concentration in DS1 sample increased by > 2.5 folds compared to that of BDS samples. Interestingly, fine particulate matter (sum of stages with cutoff size 2.5 folds as compared to that of BDS samples. Sugars analyzed in DS1 coarse mode (sum of stages with cutoff size > 2.1 μm) samples showed a considerable increase ( 1.7-2.8 folds) compared to that of other samples. It was further observed that mono-saccharides, disaccharides and sugar-alcohols concentrations were enhanced in giant (> 9.0 μm) particles in DS1 samples as compared to other samples. On the other hand, anhydro-sugars comprised 13-27% of sugars in coarse mode particles and were mostly found in fine mode constituting 66-85% of sugars in all the sample types. Trehalose showed an enhanced ( 2-4 folds) concentration in DS1 aerosol samples in both coarse (62.80 ng/m3) and fine (8.57 ng/m3) mode. This increase in Trehalose content in both coarse and fine mode suggests their origin to the transported desert dust and supports their candidature as an organic tracer for desert dust entrainments. Further, levoglucosan to mannosan (L/M) ratios which have been used to predict the type of biomass burning influences on aerosols are found to be size dependent in these samples. These ratios are higher for fine mode particles, hence should be used with caution while interpreting the sources using this tool.

  3. Inversion of spheroid particle size distribution in wider size range and aspect ratio range

    Directory of Open Access Journals (Sweden)

    Tang Hong

    2013-01-01

    Full Text Available The non-spherical particle sizing is very important in the aerosol science, and it can be determined by the light extinction measurement. This paper studies the effect of relationship of the size range and aspect ratio range on the inversion of spheroid particle size distribution by the dependent mode algorithm. The T matrix method and the geometric optics approximation method are used to calculate the extinction efficiency of the spheroids with different size range and aspect ratio range, and the inversion of spheroid particle size distribution in these different ranges is conducted. Numerical simulation indicates that a fairly reasonable representation of the spheroid particle size distribution can be obtained when the size range and aspect ratio range are suitably chosen.

  4. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  5. Pore-size-distribution of cationic polyacrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  6. Scale invariance of incident size distributions in response to sizes of their causes.

    Science.gov (United States)

    Englehardt, James D

    2002-04-01

    Incidents can be defined as low-probability, high-consequence events and lesser events of the same type. Lack of data on extremely large incidents makes it difficult to determine distributions of incident size that reflect such disasters, even though they represent the great majority of total losses. If the form of the incident size distribution can be determined, then predictive Bayesian methods can be used to assess incident risks from limited available information. Moreover, incident size distributions have generally been observed to have scale invariant, or power law, distributions over broad ranges. Scale invariance in the distributions of sizes of outcomes of complex dynamical systems has been explained based on mechanistic models of natural and built systems, such as models of self-organized criticality. In this article, scale invariance is shown to result also as the maximum Shannon entropy distribution of incident sizes arising as the product of arbitrary functions of cause sizes. Entropy is shown by simulation and derivation to be maximized as a result of dependence, diversity, abundance, and entropy of multiplicative cause sizes. The result represents an information-theoretic explanation of invariance, parallel to those of mechanistic models. For example, distributions of incident size resulting from 30 partially dependent causes are shown to be scale invariant over several orders of magnitude. Empirical validation of power law distributions of incident size is reviewed, and the Pareto (power law) distribution is validated against oil spill, hurricane, and insurance data. The applicability of the Pareto distribution, in particular, for assessment of total losses over a planning period is discussed. Results justify the use of an analytical, predictive Bayesian version of the Pareto distribution, derived previously, to assess incident risk from available data.

  7. Environmental control of natural gap size distribution in tropical forests

    Science.gov (United States)

    Goulamoussène, Youven; Bedeau, Caroline; Descroix, Laurent; Linguet, Laurent; Hérault, Bruno

    2017-01-01

    Natural disturbances are the dominant form of forest regeneration and dynamics in unmanaged tropical forests. Monitoring the size distribution of treefall gaps is important to better understand and predict the carbon budget in response to land use and other global changes. In this study, we model the size frequency distribution of natural canopy gaps with a discrete power law distribution. We use a Bayesian framework to introduce and test, using Monte Carlo Markov chain and Kuo-Mallick algorithms, the effect of local physical environment on gap size distribution. We apply our methodological framework to an original light detecting and ranging dataset in which natural forest gaps were delineated over 30 000 ha of unmanaged forest. We highlight strong links between gap size distribution and environment, primarily hydrological conditions and topography, with large gaps being more frequent on floodplains and in wind-exposed areas. In the future, we plan to apply our methodological framework on a larger scale using satellite data. Additionally, although gap size distribution variation is clearly under environmental control, variation in gap size distribution in time should be tested against climate variability.

  8. The distribution of dust mite allergen in the houses of patients with asthma

    Energy Technology Data Exchange (ETDEWEB)

    Tovey, E.R.; Chapman, M.D.; Wells, C.W.; Platts-Mills, T.A.

    1981-11-01

    Using an inhibition radioimmunoassay for the major allergen from Dermatophagoides pteronyssinus (antigen P1), we studied the distribution of this dust allergen in the houses of patients with asthma. Both bed and floor dust samples contained a wide range of antigen P1, 100 to 100,000 ng/g of fine dust, and this concentration correlated well with the number of mite bodies (r . 0.81, p less than 0.001). We were unable to detect antigen P1 in the air of undisturbed rooms. However, during domestic activity, between 1 and 30 ng were collected on a filter than sampled air for 45 min at 17 L/min. Using a cascade impactor it was shown that greater than 80% of the airborne antigen P1 was associated with particles greater than 10 mu in diameter. Some of the particles containing allergen could be identified because they formed precipitin rings when impacted onto agarose containing rabbit antimite antiserum. These particles had the physical appearance of mite feces, which are the major source of antigen P1 in mite cultures. The results suggested that natural exposure to this dust allergen allows occasional fecal particles to enter the lungs and that these particles contain very concentrated allergen.

  9. Effects of Data Frame Size Distribution on Wireless Lans | Aneke ...

    African Journals Online (AJOL)

    Effects of Data Frame Size Distribution on Wireless Lans. ... Nigerian Journal of Technology ... to replace cables and deploy mobile devices in the communications industry has led to very active research on the utilization of wireless networks.

  10. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  11. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    Science.gov (United States)

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  12. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions

    Institute of Scientific and Technical Information of China (English)

    LI Rui; ZHANG Duan-Ming; LI Zhi-Hao

    2012-01-01

    Two-dimensional numerical simulations are employed to gain insight into the segregation behavior of granular mixtures with a power-law particle size distribution in the presence of a granular temperature gradient.It is found that particles of all sizes move toward regions of low granular temperature.Species segregation is also observed.Large particles demonstrate a higher affinity for the low-temperature regions and accumulate in these cool regions to a greater extent than their smaller counterparts.Furthermore,the local particle size distribution maintains the same form as the overall (including all particles) size distribution.%Two-dimensional numerical simulations are employed to gain insight into the segregation behavior of granular mixtures with a power-law particle size distribution in the presence of a granular temperature gradient. It is found that particles of all sizes move toward regions of low granular temperature. Species segregation is also observed. Large particles demonstrate a higher affinity for the low-temperature regions and accumulate in these cool regions to a greater extent than their smaller counterparts. Furthermore, the local particle size distribution maintains the same form as the overall (including all particles) size distribution.

  13. Vapor intrusion in soils with multimodal pore-size distribution

    Directory of Open Access Journals (Sweden)

    Alfaro Soto Miguel

    2016-01-01

    Full Text Available The Johnson and Ettinger [1] model and its extensions are at this time the most widely used algorithms for estimating subsurface vapor intrusion into buildings (API [2]. The functions which describe capillary pressure curves are utilized in quantitative analyses, although these are applicable for porous media with a unimodal or lognormal pore-size distribution. However, unaltered soils may have a heterogeneous pore distribution and consequently a multimodal pore-size distribution [3], which may be the result of specific granulometry or the formation of secondary porosity related to genetic processes. The present paper was designed to present the application of the Vapor Intrusion Model (SVI_Model to unsaturated soils with multimodal pore-size distribution. Simulations with data from the literature show that the use of a multimodal model in soils with such pore distribution characteristics could provide more reliable results for indoor air concentration, rather than conventional models.

  14. Elemental tracers for Chinese source dust

    Institute of Scientific and Technical Information of China (English)

    张小曳; 张光宇; 朱光华; 张德二; 安芷生; 陈拓; 黄湘萍

    1996-01-01

    The mass-particle size distributions of 10 dust-carrying elements in aerosol particles were determined tor 12 sites in desert regions of northern China. The desert dust is proved to he of origin of eolian loess deposited on the Loess Plateau. Their transport to the loess was mainly attributable to the non-dust storm processes under the interglacial climate condition. The impact ot" dust storm on the accumulation of the loess increased in the glacial stage. On the basis of the signatures of 4 dust elements (Al. Fe, Mg and Sc). Chinese dust is believed to have 3 major desert sources (northwestern deserts, northern high dust deserts and northern low dust deserts). With a chemical element balance model, an elemental tracer system is established to proportion the export of China-source dust.

  15. A multivariate rank test for comparing mass size distributions

    KAUST Repository

    Lombard, F.

    2012-04-01

    Particle size analyses of a raw material are commonplace in the mineral processing industry. Knowledge of particle size distributions is crucial in planning milling operations to enable an optimum degree of liberation of valuable mineral phases, to minimize plant losses due to an excess of oversize or undersize material or to attain a size distribution that fits a contractual specification. The problem addressed in the present paper is how to test the equality of two or more underlying size distributions. A distinguishing feature of these size distributions is that they are not based on counts of individual particles. Rather, they are mass size distributions giving the fractions of the total mass of a sampled material lying in each of a number of size intervals. As such, the data are compositional in nature, using the terminology of Aitchison [1] that is, multivariate vectors the components of which add to 100%. In the literature, various versions of Hotelling\\'s T 2 have been used to compare matched pairs of such compositional data. In this paper, we propose a robust test procedure based on ranks as a competitor to Hotelling\\'s T 2. In contrast to the latter statistic, the power of the rank test is not unduly affected by the presence of outliers or of zeros among the data. © 2012 Copyright Taylor and Francis Group, LLC.

  16. Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México

    Science.gov (United States)

    Meza-Figueroa, Diana; De la O-Villanueva, Margarita; De la Parra, Maria Luisa

    The city of Hermosillo, Sonora in northern Mexico was investigated for its heavy metals content. Samples of sedimented dust in roofs from 25 elementary schools were analyzed for their contents of Ni, Cr, Zn, Cd, Co, Ba, V, Pb, Fe and Cu after digestion with nitric acid. The results of the analysis were used to determine spatial distribution and magnitude of heavy metals pollution. The results of this study reveal that heavy metals distribution is different in two areas of the city. The southern area contains higher concentrations of heavy metals than the northcentral area. The mean level of Cd in exterior dust is 5.65 mg kg -1 in the southern area whereas the mean level of Cd is 2.83 mg kg -1 in the northcentral area. Elevated concentrations of Zn (2012 mg kg -1), Pb (101.88 mg kg -1), Cr (38.13 mg kg -1) and Cd (28.38 mg kg -1) in roof dust were found in samples located near industrial areas. Principal component analysis (PCA) was applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. PCA shows two main sources: (1) Pb, Cd, Cr and Zn are mainly derived from industrial sources, combined with traffic sources; (2) Fe, Co and Ba are mainly derived from natural sources. V and Ni are highly correlated and possibly related to fuel combustion processes. Enrichment factors were calculated, which in turn further confirms the source identification. Ba and Co are dominantly crustal. Anthropogenically added Cd, Pb, Zn and Cr show maximum enrichment relative to the upper continental crustal component. The distribution of the heavy metals in dust does not seem to be controlled only by the topography of the city, but also by the location of the emission sources.

  17. ISM Properties in Low-Metallicity Environments III. The Dust Spectral Energy Distributions of II Zw 40, He 2-10 and NGC 1140

    CERN Document Server

    Galliano, F; Jones, A P; Wilson, C D; Bernard, J P

    2005-01-01

    We present new 450 and 850 micron SCUBA data and 1.3 mm MAMBO data of the dwarf galaxies II Zw 40, He 2-10 and NGC 1140. Additional ISOCAM, IRAS as well as ground based data are used to construct the observed mid-infrared to millimeter spectral energy distribution of these galaxies. These spectral energy distributions are modeled in a self-consistent way, as was achieved with NGC 1569 (Galliano et al., 2003), synthesizing both the global stellar radiation field and the dust emission, with further constraints provided by the photoionisation of the gas. Our study shows that low-metallicity galaxies have very different dust properties compared to the Galaxy. Our main results are: (i) a paucity of PAHs which are likely destroyed by the hard penetrating radiation field, (ii) a very small (3-4 nm) average size of grains, consistent with the fragmentation and erosion of dust particles by the numerous shocks, (iii) a significant millimetre excess in the dust spectral energy distribution which can be explained by the ...

  18. Modelling complete particle-size distributions from operator estimates of particle-size

    Science.gov (United States)

    Roberson, Sam; Weltje, Gert Jan

    2014-05-01

    Estimates of particle-size made by operators in the field and laboratory represent a vast and relatively untapped data archive. The wide spatial distribution of particle-size estimates makes them ideal for constructing geological models and soil maps. This study uses a large data set from the Netherlands (n = 4837) containing both operator estimates of particle size and complete particle-size distributions measured by laser granulometry. This study introduces a logit-based constrained-cubic-spline (CCS) algorithm to interpolate complete particle-size distributions from operator estimates. The CCS model is compared to four other models: (i) a linear interpolation; (ii) a log-hyperbolic interpolation; (iii) an empirical logistic function; and (iv) an empirical arctan function. Operator estimates were found to be both inaccurate and imprecise; only 14% of samples were successfully classified using the Dutch classification scheme for fine sediment. Operator estimates of sediment particle-size encompass the same range of values as particle-size distributions measured by laser analysis. However, the distributions measured by laser analysis show that most of the sand percentage values lie between zero and one, so the majority of the variability in the data is lost because operator estimates are made to the nearest 1% at best, and more frequently to the nearest 5%. A method for constructing complete particle-size distributions from operator estimates of sediment texture using a logit constrained cubit spline (CCS) interpolation algorithm is presented. This model and four other previously published methods are compared to establish the best approach to modelling particle-size distributions. The logit-CCS model is the most accurate method, although both logit-linear and log-linear interpolation models provide reasonable alternatives. Models based on empirical distribution functions are less accurate than interpolation algorithms for modelling particle-size distributions in

  19. Lost in Jupiter's Shadow: Can Resonant Charge Variations Explain Dust Grain Sizes in the Main Ring?

    Science.gov (United States)

    Jontof-Hutter, Daniel; Hamilton, D. P.

    2012-10-01

    Interplanetary impacts onto the tiny moons Metis and Adrastea replenish Jupiter's main ring with dusty ejecta of all sizes. The equilibrium size distribution present in the rings at a given time is a function of production and loss mechanisms, both of which may be vary with particle size. Loss mechanisms include collisions and dynamical processes. Here we explore some of the latter. Grains tend to pick up negative electric charges due to motion through Jupiter's plasma environment, and positive charges from the photoelectric effect of sunlight. The periodic interruption of sunlight in Jupiter's shadow causes the equilibrium electric charge, and hence the Lorentz force, to resonate with the Kepler orbital frequency. The eccentricity increases for grains moving radially inwards during the shadow transit, and decreases when grains move outward in the shadow, hence the azimuthal location of pericenter is important. For smaller grains, the eccentricity increases monotonically until they collide with Jupiter. For much larger grains, precession due to both the Lorentz force and planetary oblateness causes the eccentricity to oscillate periodically. We explore the shadow instability in the main ring for a variety of uniform plasma density models, comparing numerical data with a semi-analytic approximation. We find that the effect of the shadow dwindles in importance for plasma that is either too sparse or too dense. In sparse plasma, the charging timescale slows, limiting the change in electric potential from sunlight to shadow. In dense plasma, charging currents from the plasma overwhelm the photoelectric effect in sunlight, also resulting in a small change in electric potential. Between these two regimes, the shadow resonance efficiently removes grains up to a particular size threshold in the main ring. This size-dependent loss mechanism may contribute to the observed flattening in the size distribution index for smaller grains.

  20. Free Collisions in a Microgravity Many-Particle Experiment III: The Collision Behavior of sub-Millimeter-Sized Dust Aggregates

    CERN Document Server

    Kothe, Stefan; Weidling, René; Güttler, Carsten

    2013-01-01

    We conducted micro-gravity experiments to study the outcome of collisions between sub-mm-sized dust agglomerates consisting of \\mu m-sized SiO2 monomer grains at velocities of several cm/s. Prior to the experiments, we used X-ray computer tomography (nano-CT) imaging to study the internal structure of these dust agglomerates and found no rim compaction so that their collision behavior is not governed by preparation-caused artefacts. We found that collisions between these dust aggregates can lead either to sticking or to bouncing, depending mostly on the impact velocity. While previous collision models derived the transition between both regimes from contact physics, we used the available empirical data from these and earlier experiments to derive a power law relation between dust-aggregate mass and impact velocity for the threshold between the two collision outcomes. In agreement with earlier experiments, we show that the transition between both regimes is not sharp, but follows a shallower power law than pre...

  1. Multi-year model simulations of mineral dust distribution and transport over the Indian subcontinent during summer monsoon seasons

    Science.gov (United States)

    Sijikumar, S.; Aneesh, S.; Rajeev, K.

    2016-08-01

    Aerosol distribution over the Arabian Sea and the Indian subcontinent during the northern hemispheric summer is dominated by mineral dust transport from the West Asian desert regions. The radiative impact of these dust plumes is expected to have a prominent role in regulating the Asian Summer Monsoon circulation. While satellite observations have provided information in the spatial distribution of aerosols over the oceanic regions during the season, their utility over the land is rather limited. This study examines the transport of mineral dust over the West Asian desert, the Indian subcontinent and the surrounding oceanic regions during the summer monsoon season with the help of a regional scale model, WRF-Chem. Geographical locations of prominent dust sources, altitude ranges of mineral dust transport and their inter-annual variations are examined in detail. Multi-year model simulations were carried out during 2007 to 2012 with a model integration from 15 May to 31 August of each year. Six-year seasonal mean (June to August) vertically integrated dust amount from 1000 to 300 hPa level shows prominent dust loading over the eastern parts of Arabian desert and the northwestern part of India which are identified as two major sources of dust production. Large latitudinal gradient in dust amount is observed over the Arabian Sea with the largest dust concentration over the northwestern part and is primarily caused by the prevailing northwesterly wind at 925 hPa level from the Arabian desert. The model simulations clearly show that most of the dust distributed over the Indo-Gangetic plane originates from the Rajasthan desert located in the northwestern part of India, whereas dust observed over the central and south peninsular India and over the Arabian Sea are mainly transported from the Arabian desert. Abnormal dust loading is observed over the north Arabian Sea during June 2008. This has been produced as a result of the low pressure system (associated with the onset of

  2. Granule Size Distribution and Porosity of Granule Packing

    Institute of Scientific and Technical Information of China (English)

    DAI Shu-hua; SHEN Feng-man; YU Ai-bing

    2008-01-01

    The granule size distribution and the porosity of the granule packing process were researched.For realizing the optimizing control of the whole sintering production process,researchers must know the factors influencing the granule size distribution and the porosity.Therefore,tests were carried out in the laboratory with regard to the influences of the size and size distribution of raw materials and the total moisture content on the size and size distribution of granule.Moreover,tests for finding out the influences of the moisture content and the granule volume fraction on the porosity were also carried out.The results show that (1) the raw material has little influence on granulation when its size is in the range of 0.51 mm to 1.0 mm;(2) the influence of the material size on granule size plays a dominant role,and in contrast,the moisture content creates a minor effect on granule size;(3) in binary packing system,with the increase in the constituent volume fraction,the porosity initially increases and then decreases,and there is a minimum value on the porosity curve of the binary mixture system;(4) the minimum value of the porosity in binary packing system occurs at different locations for different moisture contents,and this value shifts from right to left on the porosity curve with increasing the moisture content;(5) the addition of small granules to the same size component cannot create a significant influence on the porosity,whereas the addition of large granules to the same system can greatly change the porosity.

  3. Particle size and shape distributions of hammer milled pine

    Energy Technology Data Exchange (ETDEWEB)

    Westover, Tyler Lott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Matthews, Austin Colter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christopher Luke [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, John Chadron Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  4. Particle size and shape distributions of hammer milled pine

    Energy Technology Data Exchange (ETDEWEB)

    Westover, Tyler Lott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Matthews, Austin Colter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christopher Luke [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, John Chadron Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  5. Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies

    CERN Document Server

    Chevallard, Jacopo; Wandelt, Benjamin; Wild, Vivienne

    2013-01-01

    [Abridged] We present a new approach to investigate the content and spatial distribution of dust in structurally unresolved star-forming galaxies from the observed dependence of integrated spectral properties on galaxy inclination. We develop an innovative combination of generic models of radiative transfer (RT) in dusty media with a prescription for the spectral evolution of galaxies, via the association of different geometric components of galaxies with stars in different age ranges. We show that a wide range of RT models all predict a quasi-universal relation between slope of the attenuation curve at any wavelength and V-band attenuation optical depth in the diffuse interstellar medium (ISM), at all galaxy inclinations. This relation predicts steeper (shallower) dust attenuation curves than both the Calzetti and MW curves at small (large) attenuation optical depths, which implies that geometry and orientation effects have a stronger influence on the shape of the attenuation curve than changes in the optica...

  6. Time-Dependent Photoionization in a Dusty Medium II Evolution of Dust Distributions and Optical Opacities

    CERN Document Server

    Perna, R; Fiore, F; Perna, Rosalba; Lazzati, Davide; Fiore, Fabrizio

    2003-01-01

    The interaction of a radiation field with a dusty medium is a relevant issue in several astrophysical contexts. We use the time-dependent photoionization code in a dusty medium developed by Perna & Lazzati (2002), to study the modifications in the dust distribution and the relative optical opacities when a strong X-ray UV radiation flux propagates into a medium. We find that silicates are preferentially destroyed with respect to graphite, and the extinction curve becomes significantly flatter (hence implying less reddening), with the characteristic bump at lambda 2175 A highly suppressed, due to the destruction of the small graphite grains. This could explain the observational lack of such a feature in GRB afterglow and AGN spectra. For a very intense and highly variable source irradiating a compact and dense region, time variability in the optical opacity resulting from dust destruction can be observed on a relatively short timescale. We show that, under these circumstances, monitoring the time variabili...

  7. Condition for the formation of micron-sized dust grains in dense molecular cloud cores

    CERN Document Server

    Hirashita, Hiroyuki

    2013-01-01

    We investigate the condition for the formation of micron-sized grains in dense cores of molecular clouds. This is motivated by the detection of the mid-infrared emission from deep inside a number of dense cores, the so-called `coreshine,' which is thought to come from scattering by micron-sized grains. Based on numerical calculations of coagulation starting from the typical grain size distribution in the diffuse interstellar medium, we obtain a conservative lower limit to the time $t$ to form micron-sized grains: $t/t_\\mathrm{ff}>3 (5/S) (n_\\mathrm{H}/10^5 \\mathrm{cm}^{-3})^{-1/4}$ (where $t_\\mathrm{ff}$ is the free-fall time at hydrogen number density $n_\\mathrm{H}$ in the core, and $S$ the enhancement factor to the grain-grain collision cross-section to account for non-compact aggregates). At the typical core density $n_\\mathrm{H}=10^5 \\mathrm{cm}^{-3}$, it takes at least a few free-fall times to form the micron-sized grains responsible for coreshine. The implication is that those dense cores observed in co...

  8. Packing fraction of particles with lognormal size distribution.

    Science.gov (United States)

    Brouwers, H J H

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  9. Packing fraction of particles with lognormal size distribution

    Science.gov (United States)

    Brouwers, H. J. H.

    2014-05-01

    This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  10. Cell-size distribution in epithelial tissue formation and homeostasis.

    Science.gov (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size.

  11. Recurrent frequency-size distribution of characteristic events

    Directory of Open Access Journals (Sweden)

    S. G. Abaimov

    2009-04-01

    Full Text Available Statistical frequency-size (frequency-magnitude properties of earthquake occurrence play an important role in seismic hazard assessments. The behavior of earthquakes is represented by two different statistics: interoccurrent behavior in a region and recurrent behavior at a given point on a fault (or at a given fault. The interoccurrent frequency-size behavior has been investigated by many authors and generally obeys the power-law Gutenberg-Richter distribution to a good approximation. It is expected that the recurrent frequency-size behavior should obey different statistics. However, this problem has received little attention because historic earthquake sequences do not contain enough events to reconstruct the necessary statistics. To overcome this lack of data, this paper investigates the recurrent frequency-size behavior for several problems. First, the sequences of creep events on a creeping section of the San Andreas fault are investigated. The applicability of the Brownian passage-time, lognormal, and Weibull distributions to the recurrent frequency-size statistics of slip events is tested and the Weibull distribution is found to be the best-fit distribution. To verify this result the behaviors of numerical slider-block and sand-pile models are investigated and the Weibull distribution is confirmed as the applicable distribution for these models as well. Exponents β of the best-fit Weibull distributions for the observed creep event sequences and for the slider-block model are found to have similar values ranging from 1.6 to 2.2 with the corresponding aperiodicities CV of the applied distribution ranging from 0.47 to 0.64. We also note similarities between recurrent time-interval statistics and recurrent frequency-size statistics.

  12. Attenuation law of normal disc galaxies with clumpy distributions of stars and dust

    CERN Document Server

    Inoue, A K

    2005-01-01

    We investigate the attenuation law seen through an interstellar medium (ISM) with clumpy spatial distributions of stars and dust. The clumpiness of the dust distribution is introduced by a multi-phase ISM model. We solve a set of radiative transfer equations with multiple anisotropic scatterings through the clumpy ISM in a 1-D plane-parallel geometry by using the mega-grain approximation, in which dusty clumps are regarded as very large particles (i.e. mega-grains). The clumpiness of the stellar distribution is introduced by the youngest stars embedded in the clumps. We assume a smooth spatial distribution for older stars. The youngest stars are surrounded by denser dusty gas and suffer stronger attenuation than diffuse older stars (i.e. age-selective attenuation). The apparent attenuation law is a composite of the attenuation laws for the clumpy younger stars and for the diffuse older stars with a luminosity weight. In general, the stellar population dominating the luminosity changes from older stars to youn...

  13. Size Distributions of Solar Proton Events: Methodological and Physical Restrictions

    Science.gov (United States)

    Miroshnichenko, L. I.; Yanke, V. G.

    2016-12-01

    Based on the new catalogue of solar proton events (SPEs) for the period of 1997 - 2009 (Solar Cycle 23) we revisit the long-studied problem of the event-size distributions in the context of those constructed for other solar-flare parameters. Recent results on the problem of size distributions of solar flares and proton events are briefly reviewed. Even a cursory acquaintance with this research field reveals a rather mixed and controversial picture. We concentrate on three main issues: i) SPE size distribution for {>} 10 MeV protons in Solar Cycle 23; ii) size distribution of {>} 1 GV proton events in 1942 - 2014; iii) variations of annual numbers for {>} 10 MeV proton events on long time scales (1955 - 2015). Different results are critically compared; most of the studies in this field are shown to suffer from vastly different input datasets as well as from insufficient knowledge of underlying physical processes in the SPEs under consideration. New studies in this field should be made on more distinct physical and methodological bases. It is important to note the evident similarity in size distributions of solar flares and superflares in Sun-like stars.

  14. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    Science.gov (United States)

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  15. A Monte Carlo Simulation for the Ion Transport in Glow Discharges with Dusts

    Institute of Scientific and Technical Information of China (English)

    SUN Ai-Ping; PU Wei; QIU Xiao-Ming

    2001-01-01

    We use the Monte Carlo method to simulate theion transport in the rf parallel plate glow discharge with a negative-voltage pulse connected to the electrode. It is found that self-consistent field, dust charge, dust concentration,and dust size influence the energy distribution and the density of the ions arriving at the target, and in particular, the latter two make significant influence. As dust concentration or dust size increases, the number of ions arriving at the target reduces greatly.

  16. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    Energy Technology Data Exchange (ETDEWEB)

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; Martinez-Inesta, Maria

    2017-04-13

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.

  17. Size Dependency of Income Distribution and Its Implications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiang; WANG You-Gui

    2011-01-01

    We systematically study the size dependency of income distributions, i.e. income distribution versus the population of a country. Using the generalized Lotka--Uolterra model to fit the empirical income data for 1996-2007 in the U.S.A,we find an important parameter A that can scale with a βpower of the size(population) of the U.S.A.in that year. We point out that the size dependency of income distributions, which is a very important property but seldom addressed in previous studies, has two non-trivial implications:(1) the allometric growth pattern,i.e. the power-law relationship between population and GDP in different years, can be mathematically derived from the size-dependent income distributions and also supported by the empirical data;(2)the connection with the anomalous scaling for the probability density function in critical phenomena, since the re-scaled form of the income distributions has asymptotically exactly the same mathematical expression for the limit distribution of the sum of many correlated random variables.

  18. Lognormal Behavior of the Size Distributions of Animation Characters

    Science.gov (United States)

    Yamamoto, Ken

    This study investigates the statistical property of the character sizes of animation, superhero series, and video game. By using online databases of Pokémon (video game) and Power Rangers (superhero series), the height and weight distributions are constructed, and we find that the weight distributions of Pokémon and Zords (robots in Power Rangers) follow the lognormal distribution in common. For the theoretical mechanism of this lognormal behavior, the combination of the normal distribution and the Weber-Fechner law is proposed.

  19. Particle size distribution in ferrofluid macro-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wah-Keat, E-mail: wklee@bnl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Ilavsky, Jan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States)

    2013-03-15

    Under an applied magnetic field, many commercial and concentrated ferrofluids agglomerate and form large micron-sized structures. Although large diameter particles have been implicated in the formation of these macro-clusters, the question of whether the particle size distribution of the macro-clusters are the same as the original fluid remains open. Some studies suggest that these macro-clusters consist of larger particles, while others have shown that there is no difference in the particle size distribution between the macro-clusters and the original fluid. In this study, we use X-ray imaging to aid in a sample (diluted EFH-1 from Ferrotec) separation process and conclusively show that the average particle size in the macro-clusters is significantly larger than those in the original sample. The average particle size in the macro-clusters is 19.6 nm while the average particle size of the original fluid is 11.6 nm. - Highlights: Black-Right-Pointing-Pointer X-ray imaging was used to isolate ferrofluid macro-clusters under an applied field. Black-Right-Pointing-Pointer Small angle X-ray scattering was used to determine particle size distributions. Black-Right-Pointing-Pointer Results show that macro-clusters consist of particles that are larger than average.

  20. Formation and size distribution of self-assembled vesicles

    Science.gov (United States)

    Huang, Changjin; Quinn, David; Suresh, Subra

    2017-01-01

    When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods. PMID:28265065

  1. Distribution, sources and health risk assessment of mercury in kindergarten dust

    Science.gov (United States)

    Sun, Guangyi; Li, Zhonggen; Bi, Xiangyang; Chen, Yupeng; Lu, Shuangfang; Yuan, Xin

    2013-07-01

    Mercury (Hg) contamination in urban area is a hot issue in environmental research. In this study, the distribution, sources and health risk of Hg in dust from 69 kindergartens in Wuhan, China, were investigated. In comparison with most other cities, the concentrations of total mercury (THg) and methylmercury (MeHg) were significantly elevated, ranging from 0.15 to 10.59 mg kg-1 and from 0.64 to 3.88 μg kg-1, respectively. Among the five different urban areas, the educational area had the highest concentrations of THg and MeHg. The GIS mapping was used to identify the hot-spot areas and assess the potential pollution sources of Hg. The emissions of coal-power plants and coking plants were the main sources of THg in the dust, whereas the contributions of municipal solid waste (MSW) landfills and iron and steel smelting related industries were not significant. However, the emission of MSW landfills was considered to be an important source of MeHg in the studied area. The result of health risk assessment indicated that there was a high adverse health effect of the kindergarten dust in terms of Hg contamination on the children living in the educational area (Hazard index (HI) = 6.89).

  2. The distribution of interstellar dust in CALIFA edge-on galaxies via oligochromatic radiative transfer fitting

    CERN Document Server

    De Geyter, Gert; Camps, Peter; Fritz, Jacopo; De Looze, Ilse; Hughes, Thomas M; Viaene, Sebastien; Gentile, Gianfranco

    2014-01-01

    We investigate the amount and spatial distribution of interstellar dust in edge-on spiral galaxies, using detailed radiative transfer modeling of a homogeneous sample of 12 galaxies selected from the CALIFA survey. Our automated fitting routine, FitSKIRT, was first validated against artificial data. This is done by simultaneously reproducing the SDSS $g$-, $r$-, $i$- and $z$-band observations of a toy model in order to combine the information present in the different bands. We show that this combined, oligochromatic fitting, has clear advantages over standard monochromatic fitting especially regarding constraints on the dust properties. We model all galaxies in our sample using a three-component model, consisting of a double exponential disc to describe the stellar and dust discs and using a S\\'ersic profile to describe the central bulge. The full model contains 19 free parameters, and we are able to constrain all these parameters to a satisfactory level of accuracy without human intervention or strong bounda...

  3. Ultraviolet through Infrared Spectral Energy Distributions from 1000 SDSS Galaxies: Dust Attenuation

    CERN Document Server

    Johnson, Benjamin D; Seibert, Mark; Treyer, Marie; Martin, D Christopher; Barlow, Tom A; Forster, Karl; Friedman, Peter G; Morrissey, Patrick; Neff, Susan G; Small, Todd; Wyder, Ted K; Bianchi, Luciana; Donas, Jose; Heckman, Timothy M; Lee, Young-Wook; Madore, Barry F; Milliard, Bruno; Rich, R Michael; Szalay, A S; Welsh, Barry Y; Yi, Sukyoung K

    2007-01-01

    The meaningful comparison of models of galaxy evolution to observations is critically dependent on the accurate treatment of dust attenuation. To investigate dust absorption and emission in galaxies we have assembled a sample of ~1000 galaxies with ultraviolet (UV) through infrared (IR) photometry from GALEX, SDSS, and Spitzer and optical spectroscopy from SDSS. The ratio of IR to UV emission (IRX) is used to constrain the dust attenuation in galaxies. We use the 4000A break as a robust and useful, although coarse, indicator of star formation history (SFH). We examine the relationship between IRX and the UV spectral slope (a common attenuation indicator at high-redshift) and find little dependence of the scatter on 4000A break strength. We construct average UV through far-IR spectral energy distributions (SEDs) for different ranges of IRX, 4000A break strength, and stellar mass (M_*) to show the variation of the entire SED with these parameters. When binned simultaneously by IRX, 4000A break strength, and M_*...

  4. Molecular theory of size exclusion chromatography for wide pore size distributions.

    Science.gov (United States)

    Sepsey, Annamária; Bacskay, Ivett; Felinger, Attila

    2014-02-28

    Chromatographic processes can conveniently be modeled at a microscopic level using the molecular theory of chromatography. This molecular or microscopic theory is completely general; therefore it can be used for any chromatographic process such as adsorption, partition, ion-exchange or size exclusion chromatography. The molecular theory of chromatography allows taking into account the kinetics of the pore ingress and egress processes, the heterogeneity of the pore sizes and polymer polydispersion. In this work, we assume that the pore size in the stationary phase of chromatographic columns is governed by a wide lognormal distribution. This property is integrated into the molecular model of size exclusion chromatography and the moments of the elution profiles were calculated for several kinds of pore structure. Our results demonstrate that wide pore size distributions have strong influence on the retention properties (retention time, peak width, and peak shape) of macromolecules. The novel model allows us to estimate the real pore size distribution of commonly used HPLC stationary phases, and the effect of this distribution on the size exclusion process. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Global patterns of city size distributions and their fundamental drivers.

    Directory of Open Access Journals (Sweden)

    Ethan H Decker

    Full Text Available Urban areas and their voracious appetites are increasingly dominating the flows of energy and materials around the globe. Understanding the size distribution and dynamics of urban areas is vital if we are to manage their growth and mitigate their negative impacts on global ecosystems. For over 50 years, city size distributions have been assumed to universally follow a power function, and many theories have been put forth to explain what has become known as Zipf's law (the instance where the exponent of the power function equals unity. Most previous studies, however, only include the largest cities that comprise the tail of the distribution. Here we show that national, regional and continental city size distributions, whether based on census data or inferred from cluster areas of remotely-sensed nighttime lights, are in fact lognormally distributed through the majority of cities and only approach power functions for the largest cities in the distribution tails. To explore generating processes, we use a simple model incorporating only two basic human dynamics, migration and reproduction, that nonetheless generates distributions very similar to those found empirically. Our results suggest that macroscopic patterns of human settlements may be far more constrained by fundamental ecological principles than more fine-scale socioeconomic factors.

  6. Production, depreciation and the size distribution of firms

    Science.gov (United States)

    Ma, Qi; Chen, Yongwang; Tong, Hui; Di, Zengru

    2008-05-01

    Many empirical researches indicate that firm size distributions in different industries or countries exhibit some similar characters. Among them the fact that many firm size distributions obey power-law especially for the upper end has been mostly discussed. Here we present an agent-based model to describe the evolution of manufacturing firms. Some basic economic behaviors are taken into account, which are production with decreasing marginal returns, preferential allocation of investments, and stochastic depreciation. The model gives a steady size distribution of firms which obey power-law. The effect of parameters on the power exponent is analyzed. The theoretical results are given based on both the Fokker-Planck equation and the Kesten process. They are well consistent with the numerical results.

  7. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  8. Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. I. Surface Photometry and Morphology

    Science.gov (United States)

    Muñoz-Mateos, J. C.; Gil de Paz, A.; Zamorano, J.; Boissier, S.; Dale, D. A.; Pérez-González, P. G.; Gallego, J.; Madore, B. F.; Bendo, G.; Boselli, A.; Buat, V.; Calzetti, D.; Moustakas, J.; Kennicutt, R. C., Jr.

    2009-10-01

    We present ultraviolet through far-infrared (FIR) surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes Galaxy Evolution Explorer UV data, optical images from Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and Sloan Digital Sky Survey, near-IR data from Two Micron All Sky Survey, and mid- and FIR images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several nonparametric indicators of galaxy morphology: the concentration index (C 42), the asymmetry (A), the Gini coefficient (G), and the normalized second-order moment of the brightest 20% of the galaxy's flux (\\overline{M}_{20}). In this paper, the first of a series, we describe the technical aspects regarding the surface photometry, and present a basic analysis of the global and structural properties of the SINGS galaxies at different wavelengths. The homogeneity in the acquisition, reduction, and analysis of the results presented here makes these data ideal for multiple unanticipated studies on the radial distribution of the properties of stars, dust, and gas in galaxies. Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C 42-A-G-\\overline{M}_{20} parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric, and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of polycyclic aromatic hydrocarbons at 8.0 μm and very hot dust at 24 μm). In an accompanying paper by Muñoz-Mateos et al., we focus on the radial

  9. Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2016-09-01

    The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.

  10. Particle size distributions in the Eastern Mediterranean troposphere

    Science.gov (United States)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-11-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter population was governed mainly by coagulation and that particle formation was absent during most days.

  11. Modal character of atmospheric black carbon size distributions

    Science.gov (United States)

    Berner, A.; Sidla, S.; Galambos, Z.; Kruisz, C.; Hitzenberger, R.; ten Brink, H. M.; Kos, G. P. A.

    1996-08-01

    Samples of atmospheric aerosols, collected with cascade impactors in the urban area of Vienna (Austria) and at a coastal site on the North Sea, were investigated for black carbon (BC) as the main component of absorbing material and for mass. The size distributions are structured. The BC distributions of these samples show a predominant mode, the accumulation aerosol, in the upper submicron size range, a less distinct finer mode attributable to fresh emissions from combustion sources, and a distinct coarse mode of unclear origin. It is important to note that some parameters of the accumulation aerosol are related statistically, indicating the evolution of the atmospheric accumulation aerosol.

  12. Correction of bubble size distributions from transmission electron microscopy observations

    Energy Technology Data Exchange (ETDEWEB)

    Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.

    1996-01-01

    Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs.

  13. Size distribution of Portuguese firms between 2006 and 2012

    Science.gov (United States)

    Pascoal, Rui; Augusto, Mário; Monteiro, A. M.

    2016-09-01

    This study aims to describe the size distribution of Portuguese firms, as measured by annual sales and total assets, between 2006 and 2012, giving an economic interpretation for the evolution of the distribution along the time. Three distributions are fitted to data: the lognormal, the Pareto (and as a particular case Zipf) and the Simplified Canonical Law (SCL). We present the main arguments found in literature to justify the use of distributions and emphasize the interpretation of SCL coefficients. Methods of estimation include Maximum Likelihood, modified Ordinary Least Squares in log-log scale and Nonlinear Least Squares considering the Levenberg-Marquardt algorithm. When applying these approaches to Portuguese's firms data, we analyze if the evolution of estimated parameters in both lognormal power and SCL is in accordance with the known existence of a recession period after 2008. This is confirmed for sales but not for assets, leading to the conclusion that the first variable is a best proxy for firm size.

  14. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    CERN Document Server

    Csengeri, T; Wyrowski, F; Menten, K M; Urquhart, J S; Leurini, S; Schuller, F; Beuther, H; Bontemps, S; Bronfman, L; Henning, Th; Schneider, N

    2015-01-01

    Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane. Here we use the 353 GHz maps from the Planck/HFI instrument to complement the ground-based APEX/LABOCA observations with information on larger angular scales. The resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We find examples of elongated structures extending over angular scales of 0.5 degree. Corresponding to >30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. Furthermore, we assess the fraction of dense gas ($f_{\\rm DG}$), and estimate 2-5% (above A$_{\\rm{v}}>$7 mag) on average in the Galactic plane. PDFs of the column density reveal the typically observed log-normal distribution for low- and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner G...

  15. Cylindrical and spherical dust-acoustic wave modulations in dusty plasmas with non-extensive distributions

    Indian Academy of Sciences (India)

    M Eghbali; B Farokhi

    2015-04-01

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear Schrödinger equation (NLSE) is derived. The presence of hot non-extensive -distributed ions and electron is shown to influence the modulational instability (MI) of the waves. It is shown that the properties of the MI of DAW in cylindrical and spherical geometries differ from those in a planar one-dimensional geometry. Furthermore, it is observed that the non-extensive distributed ions have more effect on the MI of the DAW than electrons. Also, it is found that there is a MI period for cylindrical and spherical wave modulations, which does not exist in the one-dimensional case.

  16. The degree distribution of fixed act-size collaboration networks

    Indian Academy of Sciences (India)

    Qinggui Zhao; Xiangxing Kong; Zhenting Hou

    2009-11-01

    In this paper, we investigate a special evolving model of collaboration net-works, where the act-size is fixed. Based on the first-passage probability of Markov chain theory, this paper provides a rigorous proof for the existence of a limiting degree distribution of this model and proves that the degree distribution obeys the power-law form with the exponent adjustable between 2 and 3.

  17. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    Science.gov (United States)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  18. Size distribution of native cytosolic proteins of Thermoplasma acidophilum.

    Science.gov (United States)

    Sun, Na; Tamura, Noriko; Tamura, Tomohiro; Knispel, Roland Wilhelm; Hrabe, Thomas; Kofler, Christine; Nickell, Stephan; Nagy, István

    2009-07-01

    We used molecular sieve chromatography in combination with LC-MS/MS to identify protein complexes that can serve as templates in the template matching procedures of visual proteomics approaches. By this method the sample complexity was lowered sufficiently to identify 464 proteins and - on the basis of size distribution and bioinformatics analysis - 189 of them could be assigned as subunits of macromolecular complexes over the size of 300 kDa. From these we purified six stable complexes of Thermoplasma acidophilum whose size and subunit composition - analyzed by electron microscopy and MALDI-TOF-MS, respectively - verified the accuracy of our method.

  19. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies.

    Science.gov (United States)

    Ito, Akihiko; Wagai, Rota

    2017-08-22

    Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences.

  20. Aerosol mobility imaging for rapid size distribution measurements

    Science.gov (United States)

    Wang, Jian; Hering, Susanne Vera; Spielman, Steven Russel; Kuang, Chongai

    2016-07-19

    A parallel plate dimensional electrical mobility separator and laminar flow water condensation provide rapid, mobility-based particle sizing at concentrations typical of the remote atmosphere. Particles are separated spatially within the electrical mobility separator, enlarged through water condensation, and imaged onto a CCD array. The mobility separation distributes particles in accordance with their size. The condensation enlarges size-separated particles by water condensation while they are still within the gap of the mobility drift tube. Once enlarged the particles are illuminated by a laser. At a pre-selected frequency, typically 10 Hz, the position of all of the individual particles illuminated by the laser are captured by CCD camera. This instantly records the particle number concentration at each position. Because the position is directly related to the particle size (or mobility), the particle size spectra is derived from the images recorded by the CCD.

  1. Quantifying the PAH Size Distribution in H II-Regions

    Science.gov (United States)

    Allamandola, Louis

    We propose to determine the astronomical PAH size distribution for 20 compact H II-regions from the ISO H II-regions spectroscopic archive (catalog). The selected sample includes H IIregions at a range of distances, all with angular sizes captured by the ISO aperture. This is the first time that the PAH size distribution will be put on an accurate, quantitative footing and that a breakdown of the overall PAH population into different size bins is possible. Since the PAH properties that influence the astronomical environment are PAH-size dependent, this new knowledge will provide a deeper understanding of the specific, and sometimes critical, roles that PAHs play in different astronomical environments. This research will be carried out using the PAH spectra and tools that are available through the NASA Ames PAH IR Spectroscopic Database (www.astrochemistry.org/pahdb/). The ISO compact, H II-regions spectroscopic catalog contains the 2.3 196 µm spectra from some 45 H II-regions. Of these, 20 capture the PAH spectrum with high enough quality between 2.5 15 µm to carry out the proposed work. From the outset of the PAH hypothesis it has been thought that the 3.3/11.2 µm PAH band strength ratio is a qualitative proxy for PAH size and a rough measure of variations in the astronomical PAH size distribution between objects or within extended objects. However, because of the intrinsic uncertainties for most of the observational data available for these two bands, and the very limited spectroscopic data available for PAHs representative of the astronomical PAH population, only very crude estimates of the astronomical PAH size distribution have been possible up to now. The work proposed here overcomes these two limitations, allowing astronomers to quantitatively and accurately determine the astronomical PAH size distribution for the first time. The spectra and tools from the NASA Ames PAH IR Spectroscopic Database will be used to determine the astronomical PAH size

  2. Selecting series size where the generalized Pareto distribution best fits

    Science.gov (United States)

    Ben-Zvi, Arie

    2016-10-01

    Rates of arrival and magnitudes of hydrologic variables are frequently described by the Poisson and the generalized Pareto (GP) distributions. Variations of their goodness-of-fit to nested series are studied here. The variable employed is depth of rainfall events at five stations of the Israel Meteorological Service. Series sizes range from about 50 (number of years on records) to about 1000 (total number of recorded events). The goodness-of-fit is assessed by the Anderson-Darling test. Three versions of this test are applied here. These are the regular two-sided test (of which the statistic is designated here by A2), the upper one-sided test (UA2) and the adaptation to the Poisson distribution (PA2). Very good fits, with rejection significance levels higher than 0.5 for A2 and higher than 0.25 for PA2, are found for many series of different sizes. Values of the shape parameter of the GP distribution and of the predicted rainfall depths widely vary with series size. Small coefficients of variation are found, at each station, for the 100-year rainfall depths, predicted through the series with very good fit of the GP distribution. Therefore, predictions through series of very good fit appear more consistent than through other selections of series size. Variations of UA2, with series size, are found narrower than those of A2. Therefore, it is advisable to predict through the series of low UA2. Very good fits of the Poisson distribution to arrival rates are found for series with low UA2. But, a reversed relation is not found here. Thus, the model of Poissonian arrival rates and GP distribution of magnitudes suits here series with low UA2. It is recommended to predict through the series, to which the lowest UA2 is obtained.

  3. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    Science.gov (United States)

    Panwar, Chhagan; Vyas, B. M.

    2016-05-01

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (Reff), integrated content of total aerosols (Nt), columnar content of accumulation and coarse size aerosols particles concentration (Na) (size modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 1013 m2 μm-1 at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 1010 to 1011 m2/μm-1 occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 1012 m2μm-3 is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0.4 to 0.6 µm) in cold months. Several other interesting features of changing nature of monthly spectral AOT, Reff, Nt, Na and NC (particles/m2) have been discussed in detail in this paper.

  4. The Evolution of Gas and Dust in Protoplanetary Accretion Disks

    CERN Document Server

    Birnstiel, T

    2011-01-01

    Dust constitutes only about one percent of the mass of circumstellar disks, yet it is of crucial importance for the modeling of planet formation, disk chemistry, radiative transfer and observations. The initial growth of dust from sub-micron sized grains to planetesimals and also the radial transport of dust in disks around young stars is the topic of this thesis. Circumstellar dust is subject to radial drift, vertical settling, turbulent mixing, collisional growth, fragmentation and erosion. We approach this subject from three directions: analytical calculations, numerical simulations, and comparison to observations. We describe the physical and numerical concepts that go into a model which is able to simulate the radial and size evolution of dust in a gas disk which is viscously evolving over several million years. The resulting dust size distributions are compared to our analytical predictions and a simple recipe for obtaining steady-state dust size distributions is derived. With the numerical model at han...

  5. On retrieving refractive index of dust-like particles using shape distributions of ellipsoids

    Directory of Open Access Journals (Sweden)

    O. Kemppinen

    2015-06-01

    Full Text Available Ellipsoid-based retrievals are widely used for investigating optical properties of non-ellipsoidal atmospheric particles, such as dust. In this work, the applicability of ellipsoids for retrieving the refractive index of dust-like target model particles from scattering data is investigated. This is a pure modeling study, where stereogrammetrically retrieved model dust shapes are used as targets. The primary objective is to study whether the refractive index of these target particles can be inverted from their scattering matrices using ellipsoidal model particles. To achieve this, first scattering matrices for the target model particles with known refractive indices are computed. On one hand, a non-negative least squares fitting is performed, separately for different scattering matrix elements, for a set of 46 differently shaped ellipsoids by using different assumed refractive indices. Then, the fitting error is evaluated to establish whether the ellipsoidal base best matches the target scattering matrix elements when the correct refractive index is assumed. On the other hand, we also test whether the ellipsoids best match the target data with the correct refractive index, if a predefined (uniform shape distribution for ellipsoids is assumed, instead of optimizing the shape distribution separately for each tested refractive index. The results show that for both of these approaches using the ellipsoids with the true refractive index produces good results, but also that for each element even better results are acquired by using wrong refractive indices. In addition, the best agreement is found for different scattering matrix elements using different refractive indices. The findings imply that the inversion of refractive index of non-ellipsoidal particles may not be reliable using ellipsoids. Furthermore, it is demonstrated that the differences in single-scattering albedo and asymmetry parameter between the best-match ellipsoid ensemble and the

  6. On retrieving refractive index of dust-like particles using shape distributions of ellipsoids

    Science.gov (United States)

    Kemppinen, O.; Nousiainen, T.; Merikallio, S.; Räisänen, P.

    2015-06-01

    Ellipsoid-based retrievals are widely used for investigating optical properties of non-ellipsoidal atmospheric particles, such as dust. In this work, the applicability of ellipsoids for retrieving the refractive index of dust-like target model particles from scattering data is investigated. This is a pure modeling study, where stereogrammetrically retrieved model dust shapes are used as targets. The primary objective is to study whether the refractive index of these target particles can be inverted from their scattering matrices using ellipsoidal model particles. To achieve this, first scattering matrices for the target model particles with known refractive indices are computed. On one hand, a non-negative least squares fitting is performed, separately for different scattering matrix elements, for a set of 46 differently shaped ellipsoids by using different assumed refractive indices. Then, the fitting error is evaluated to establish whether the ellipsoidal base best matches the target scattering matrix elements when the correct refractive index is assumed. On the other hand, we also test whether the ellipsoids best match the target data with the correct refractive index, if a predefined (uniform) shape distribution for ellipsoids is assumed, instead of optimizing the shape distribution separately for each tested refractive index. The results show that for both of these approaches using the ellipsoids with the true refractive index produces good results, but also that for each element even better results are acquired by using wrong refractive indices. In addition, the best agreement is found for different scattering matrix elements using different refractive indices. The findings imply that the inversion of refractive index of non-ellipsoidal particles may not be reliable using ellipsoids. Furthermore, it is demonstrated that the differences in single-scattering albedo and asymmetry parameter between the best-match ellipsoid ensemble and the target particles may

  7. Global abundance and size distribution of streams and rivers

    NARCIS (Netherlands)

    Downing, J.A.; Cole, J.J.; Duarte, C.M.; Middelburg, J.J.; Melack, J.M.; Prairie, Y.T.; Kortelainen, P.; Striegl, R.G.; McDowell, W.H.; Tranvik, L.J.

    2012-01-01

    To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 cont

  8. Comparison of aerosol size distribution in coastal and oceanic environments

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.T.; Eijk, A.M.J. van

    2006-01-01

    The results of applying the empirical orthogonal functions (EOF) method to decomposition and approximation of aerosol size distributions are presented. A comparison was made for two aerosol data sets, representing coastal and oceanic environments. The first data set includes measurements collected a

  9. Casein Micelles: Size Distribution in Milks from Individual Cows

    NARCIS (Netherlands)

    de Kruif, C.G.; Huppertz, T.

    2012-01-01

    The size distribution and protein composition of casein micelles in the milk of Holstein-Friesian cows was determined as a function of stage and number of lactations. Protein composition did not vary significantly between the milks of different cows or as a function of lactation stage. Differences i

  10. Global abundance and size distribution of streams and rivers

    NARCIS (Netherlands)

    Downing, J.A.; Cole, J.J.; Duarte, C.M.; Middelburg, J.J.; Melack, J.M.; Prairie, Y.T.; Kortelainen, P.; Striegl, R.G.; McDowell, W.H.; Tranvik, L.J.

    2012-01-01

    To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2

  11. Effects of Mixtures on Liquid and Solid Fragment Size Distributions

    Science.gov (United States)

    2016-05-01

    Bath of an Immiscible Liquid, Physical Review Letters, 110, 264503, 2013 X. Li and R. S. Tankin, Droplet Size Distribution: A Derivation of a...10), 811-823, 1969 C. R. Hoggatt and R. F. Recht, Fracture Behavior of Tubular Bombs , Journal of Applied Physics, 39(3), 1856-1862, 1968

  12. Modeling of Microporosity Size Distribution in Aluminum Alloy A356

    Science.gov (United States)

    Yao, Lu; Cockcroft, Steve; Zhu, Jindong; Reilly, Carl

    2011-12-01

    Porosity is one of the most common defects to degrade the mechanical properties of aluminum alloys. Prediction of pore size, therefore, is critical to optimize the quality of castings. Moreover, to the design engineer, knowledge of the inherent pore population in a casting is essential to avoid potential fatigue failure of the component. In this work, the size distribution of the porosity was modeled based on the assumptions that the hydrogen pores are nucleated heterogeneously and that the nucleation site distribution is a Gaussian function of hydrogen supersaturation in the melt. The pore growth is simulated as a hydrogen-diffusion-controlled process, which is driven by the hydrogen concentration gradient at the pore liquid interface. Directionally solidified A356 (Al-7Si-0.3Mg) alloy castings were used to evaluate the predictive capability of the proposed model. The cast pore volume fraction and size distributions were measured using X-ray microtomography (XMT). Comparison of the experimental and simulation results showed that good agreement could be obtained in terms of both porosity fraction and size distribution. The model can effectively evaluate the effect of hydrogen content, heterogeneous pore nucleation population, cooling conditions, and degassing time on microporosity formation.

  13. Collisional processes and size distribution in spatially extended debris discs

    CERN Document Server

    Thebault, Philippe

    2007-01-01

    We present a new multi-annulus code for the study of collisionally evolving extended debris discs. We first aim to confirm results obtained for a single-annulus system, namely that the size distribution in "real" debris discs always departs from the theoretical collisional equilibrium $dN\\proptoR^{-3.5}dR$ power law, especially in the crucial size range of observable particles (<1cm), where it displays a characteristic wavy pattern. We also aim at studying how debris discs density distributions, scattered light luminosity profiles, and SEDs are affected by the coupled effect of collisions and radial mixing due to radiation pressure affected small grains. The size distribution evolution is modeled from micron-sized grains to 50km-sized bodies. The model takes into account the crucial influence of radiation pressure-affected small grains. We consider the collisional evolution of a fiducial a=120AU radius disc with an initial surface density in $\\Sigma(a)\\propto a^{\\alpha}$. We show that the system's radial e...

  14. The Suborbital Particle Aggregation and Collision Experiment (SPACE): Studying the Collision Behavior of Submillimeter-Sized Dust Aggregates on the Suborbital Rocket Flight REXUS 12

    CERN Document Server

    Brisset, Julie; Kothe, Stefan; Weidling, René; Blum, Jürgen

    2013-01-01

    The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass contai...

  15. Ash dust co-centration in the vicinity of the ash disposal site depending on the size of the pond (“Water Mirror”

    Directory of Open Access Journals (Sweden)

    Zoran Gršić

    2010-09-01

    Full Text Available Thermal power plants Nikola Tesla “A” and “B” are large sources of ash from their ashes/slag deposit sites. Total sizes of ashes/slag depots are 600ha and 382ha, with active cassettes having dimensions ∼200 ha and ∼130 ha. The active cassettes of the disposal sites are covered by rather large waste ponds, the sizes of vary depending on the working condition of a sluice system and on meteorological conditions. Modeling of ash lifting was attempted using results from the dust lifting research. The relation between sizes of ponds and air dust concentration in the vicinity of ash disposal sites was analyzed. As expected, greater sizes of dried disposal site surfaces in combination with stronger winds gave greater dust emission and greater air dust concentration.

  16. The Detection and Measurement of the Activity Size Distributions

    Science.gov (United States)

    Ramamurthi, Mukund

    The infiltration of radon into the indoor environment may cause the exposure of the public to excessive amounts of radioactivity and has spurred renewed research interest over the past several years into the occurrence and properties of radon and its decay products in indoor air. The public health risks posed by the inhalation and subsequent lung deposition of the decay products of Rn-222 have particularly warranted the study of their diffusivity and attachment to molecular cluster aerosols in the ultrafine particle size range (0.5-5 nm) and to accumulation mode aerosols. In this research, a system for the detection and measurement of the activity size distributions and concentration levels of radon decay products in indoor environments has been developed. The system is microcomputer-controlled and involves a combination of multiple wire screen sampler -detector units operated in parallel. The detection of the radioactivity attached to the aerosol sampled in these units permits the determination of the radon daughter activity -weighted size distributions and concentration levels in indoor air on a semi-continuous basis. The development of the system involved the design of the detection and measurement system, its experimental characterization and testing in a radon-aerosol chamber, and numerical studies for the optimization of the design and operating parameters of the system. Several concepts of utility to aerosol size distribution measurement methods sampling the ultrafine cluster size range evolved from this study, and are discussed in various chapters of this dissertation. The optimized multiple wire screen (Graded Screen Array) system described in this dissertation is based on these concepts. The principal facet of the system is its ability to make unattended measurements of activity size distributions and concentration levels of radon decay products on a semi-continuous basis. Thus, the capability of monitoring changes in the activity concentrations and size

  17. Remnant lipoprotein size distribution profiling via dynamic light scattering analysis.

    Science.gov (United States)

    Chandra, Richa; Mellis, Birgit; Garza, Kyana; Hameed, Samee A; Jurica, James M; Hernandez, Ana V; Nguyen, Mia N; Mittal, Chandra K

    2016-11-01

    Remnant lipoproteins (RLP) are a metabolically derived subpopulation of triglyceride-rich lipoproteins (TRL) in human blood that are involved in the metabolism of dietary fats or triglycerides. RLP, the smaller and denser variants of TRL particles, are strongly correlated with cardiovascular disease (CVD) and were listed as an emerging atherogenic risk factor by the AHA in 2001. Varying analytical techniques used in clinical studies in the size determination of RLP contribute to conflicting hypotheses in regard to whether larger or smaller RLP particles contribute to CVD progression, though multiple pathways may exist. We demonstrated a unique combinatorial bioanalytical approach involving the preparative immunoseparation of RLP, and dynamic light scattering for size distribution analysis. This is a new facile and robust methodology for the size distribution analysis of RLP that in conjunction with clinical studies may reveal the mechanisms by which RLP cause CVD progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Size distribution and structure of Barchan dune fields

    Directory of Open Access Journals (Sweden)

    O. Durán

    2011-07-01

    Full Text Available Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009, we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  19. Casein micelles: size distribution in milks from individual cows.

    Science.gov (United States)

    de Kruif, C G Kees; Huppertz, Thom

    2012-05-09

    The size distribution and protein composition of casein micelles in the milk of Holstein-Friesian cows was determined as a function of stage and number of lactations. Protein composition did not vary significantly between the milks of different cows or as a function of lactation stage. Differences in the size and polydispersity of the casein micelles were observed between the milks of different cows, but not as a function of stage of milking or stage of lactation and not even over successive lactations periods. Modal radii varied from 55 to 70 nm, whereas hydrodynamic radii at a scattering angle of 73° (Q² = 350 μm⁻²) varied from 77 to 115 nm and polydispersity varied from 0.27 to 0.41, in a log-normal distribution. Casein micelle size in the milks of individual cows was not correlated with age, milk production, or lactation stage of the cows or fat or protein content of the milk.

  20. Size distribution and structure of Barchan dune fields

    DEFF Research Database (Denmark)

    Duran, O.; Schwämmle, Veit; Lind, P. G.;

    2011-01-01

    Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a co-operative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between...... dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well...... as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields...

  1. Thoron progeny size distribution in monazite storage facility.

    Science.gov (United States)

    Rogozina, Marina; Zhukovsky, Michael; Ekidin, Aleksey; Vasyanovich, Maksim

    2014-11-01

    Field experiments in the atmosphere of monazite warehouses with a high content of (220)Rn progeny concentration were conducted. Size distribution of aerosol particles was measured with the combined use of diffusion battery with varied capture elements and cascade impactor. Four (212)Pb aerosol modes were detected-three in the ultrafine region (aerosol median thermodynamic diameters ∼0.3, 1 and 5 nm) and one with an aerosol median aerodynamic diameter of 500 nm. The activity fraction of aerosol particles with the size <10 nm is nearly 20-25 %. The dose conversion factor for EEC₂₂₀Rn exposure, obtained on the basis of the aerosol size distribution and existing research data on lung absorption types of (212)Pb aerosols, is close to 180 nSv per Bq h m(-3).

  2. Thresholded Power Law Size Distributions of Instabilities in Astrophysics

    CERN Document Server

    Aschwanden, Markus J

    2015-01-01

    Power law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold $x_0$; (3) contamination by an event-unrelated background $x_b$; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in simplest terms with a "thresholded power law" distribution function (also called generalized Pareto [type II] or Lomax distribution), $N(x) dx \\propto (x+x_0)^{-a} dx$, where $x_0 > 0$ is positive for a threshold effect, while $x_0 < 0$ is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential-growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold $x_0$. We app...

  3. Physical properties of suspended dust in Iceland

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Skrabalova, Lenka; Sigurdardottir, Gudmunda; Branis, Martin; Hladil, Jindrich; Chadimova, Leona; Skala, Roman; Navratil, Tomas; Menar, Sibylle von Lowis of; Thorsteinsson, Throstur

    2014-05-01

    Atmospheric Dust Measurements (ADMI 2013) of one of the most active dust sources in Iceland (Mælifellsandur) were conducted during season with high precipitation on August 8th-18th, 2013. We measured mass concentrations (PM2.5 and PM10), particle size distributions in size range 0.3-10μm and number concentrations during rather small dust event. Dust samples of the event were analyzed (morpho-textural observations, optical and scanning-electron microscopy). Two TSI 8520 DustTrak Aerosol Monitors (light-scattering laser photometers that measure aerosol mass concentrations in range 0.001 to 100 mg/m3) and one TSI Optical Particle Sizer (OPS) 3330 (optical scattering from single particle up to 16 different channels - 0.3 to 10 μm - measuring particle size distribution) were used. We measured a dust event which occurred during wet and low wind/windless conditions as result of surface heating in August 2013. Maximum particle number concentration (PM~0.3-10 µm) reached 149954 particles cm-3 min-1 while mass concentration (PM1.5-5 µm in diameter. Close-to-ultrafine particle size distributions showed a significant increase in number with the severity of the dust event. Number concentrations were well correlated with mass concentrations. The mineralogy and geochemical compositions showed that glaciogenic dust contains sharp-tipped shards with bubbles and 80 % of the particulate matter is volcanic glass rich in heavy metals. Wet dust particles were mobilized within < 4 hours. Here we introduced a comprehensive study on physical properties of the Icelandic dust aerosol and the first scientific study of particle size distributions in an Icelandic dust event including findings on initiation of dust suspension.

  4. Size distributions and failure initiation of submarine and subaerial landslides

    Science.gov (United States)

    ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.

    2009-01-01

    Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area

  5. Background dust emission following grassland fire: a snapshot across the particle-size spectrum highlights how high-resolution measurements enhance detection

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Martin, Luis M [UNIV OF ARIZONA; Field, Jason P [UNIV OF ARIZONA; Villegas, Juan C [UNIV OF ARIZONA; Brehsears, David D [UNIV OF ARIZONA; Law, Darin J [UNIV OF ARIZONA; Urgeghe, Anna M [UNIV OF ARIZONA

    2009-01-01

    Dust emission rates vary temporally and with particle size. Many studies of dust emission focus on a particular temporal scale and the portion of the particle-size spectrum associated with a single instrument; fewer studies have assessed dust emission across the particle-size spectrum and associated temporal scales using multiple instruments. Particularly lacking are measurements following disturbances such as fire that are high-resolution and focused on finer particles - those with direct implications for human health and potential for long-distance biogeochemical transport - during less windy but more commonly occurring background conditions. We measured dust emissions in unburned and burned semiarid grassland using four different instruments spanning different combinations of temporal resolution and particle-size spectrum: Big Springs Number Eight (BSNE) and Sensit instruments for larger saltating particles, DustTrak instruments for smaller suspended particles, and Total Suspended Particulate (TSP) samplers for measuring the entire range of particle sizes. Unburned and burned sites differed in vegetation cover and aerodynamic roughness, yet surprisingly differences in dust emission rates were only detectable for saltation using BSNE and for smaller aerosols using DustTrak. Our results, surprising in the lack of consistently detected differences, indicate that high-resolution DustTrak measurements offered the greatest promise for detecting differences in background emission rates and that BSNE samplers, which integrate across height, were effective for longer intervals. More generally, our results suggest that interplay between particle size, temporal resolution, and integration across time and height can be complex and may need to be considered more explicitly for effective sampling for background dust emissions.

  6. The suborbital particle aggregation and collision experiment (SPACE): Studying the collision behavior of submillimeter-sized dust aggregates on the suborbital rocket flight REXUS 12

    Science.gov (United States)

    Brisset, Julie; Heißelmann, Daniel; Kothe, Stefan; Weidling, René; Blum, Jürgen

    2013-09-01

    The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built, and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model.

  7. The Suborbital Particle Aggregation and Collision Experiment (SPACE): studying the collision behavior of submillimeter-sized dust aggregates on the suborbital rocket flight REXUS 12.

    Science.gov (United States)

    Brisset, Julie; Heißelmann, Daniel; Kothe, Stefan; Weidling, René; Blum, Jürgen

    2013-09-01

    The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built, and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model.

  8. Packing fraction of particles with a Weibull size distribution

    Science.gov (United States)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  9. Raindrop size distribution: Fitting performance of common theoretical models

    Science.gov (United States)

    Adirosi, E.; Volpi, E.; Lombardo, F.; Baldini, L.

    2016-10-01

    Modelling raindrop size distribution (DSD) is a fundamental issue to connect remote sensing observations with reliable precipitation products for hydrological applications. To date, various standard probability distributions have been proposed to build DSD models. Relevant questions to ask indeed are how often and how good such models fit empirical data, given that the advances in both data availability and technology used to estimate DSDs have allowed many of the deficiencies of early analyses to be mitigated. Therefore, we present a comprehensive follow-up of a previous study on the comparison of statistical fitting of three common DSD models against 2D-Video Distrometer (2DVD) data, which are unique in that the size of individual drops is determined accurately. By maximum likelihood method, we fit models based on lognormal, gamma and Weibull distributions to more than 42.000 1-minute drop-by-drop data taken from the field campaigns of the NASA Ground Validation program of the Global Precipitation Measurement (GPM) mission. In order to check the adequacy between the models and the measured data, we investigate the goodness of fit of each distribution using the Kolmogorov-Smirnov test. Then, we apply a specific model selection technique to evaluate the relative quality of each model. Results show that the gamma distribution has the lowest KS rejection rate, while the Weibull distribution is the most frequently rejected. Ranking for each minute the statistical models that pass the KS test, it can be argued that the probability distributions whose tails are exponentially bounded, i.e. light-tailed distributions, seem to be adequate to model the natural variability of DSDs. However, in line with our previous study, we also found that frequency distributions of empirical DSDs could be heavy-tailed in a number of cases, which may result in severe uncertainty in estimating statistical moments and bulk variables.

  10. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  11. Particle size distributions in the Eastern Mediterranean troposphere

    Directory of Open Access Journals (Sweden)

    N. Kalivitis

    2008-04-01

    Full Text Available Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS and an aerodynamic particle sizer (APS and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  12. Particle size distributions in the Eastern Mediterranean troposphere

    Directory of Open Access Journals (Sweden)

    N. Kalivitis

    2008-11-01

    Full Text Available Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS and an aerodynamic particle sizer (APS and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  13. Dust aerosols over India and adjacent continents retrieved using METEOSAT infrared radiance Part I: sources and regional distribution

    Directory of Open Access Journals (Sweden)

    J. Srinivasan

    2006-03-01

    Full Text Available Mineral dust constitutes the single largest contributor to continental aerosols. To accurately assess the impact of dust aerosols on climate, the spatial and temporal distribution of dust radiative properties is essential. Regional characteristics of dust radiative properties, however, are poorly understood. The magnitude and even sign of dust radiative forcing is uncertain, as it depends on a number of parameters, such as vertical distribution of dust, cloud cover and albedo of the underlying surface. In this paper, infrared radiance (10.5-12.5 µm, acquired from the METEOSAT-5 satellite ( resolution, was used to retrieve regional characteristics of dust aerosols for all of 1999. The infrared radiance depression, due to the presence of dust in the atmosphere, has been used as an index of dust load, known as the Infrared Difference Dust Index (IDDI. There have been several studies in the past carried out over the Sahara using IDDI as a measure of dust load. Over the Indian region, however, studies on dust aerosols are sparse. Spatial and temporal variability in dust loading and its regional distribution over various arid and semiarid regions of India and adjacent continents (0-35° N; 30° E-100° E (excluding Sahara have been studied and the results are examined along with surface soil conditions (such as vegetation cover and soil moisture. The advantage of the IDDI method is that information on aerosol properties, such as chemical composition or microphysical properties, is not needed. A large day-to-day variation in IDDI was observed over the entire study region, with values ranging from 4 to 22 K. It was observed that dust activity starts by March over the Indian deserts, as well as over deserts of the Africa and Arabian regions. The IDDI reaches maximum during the period of May to August. Regional maps of IDDI, in conjunction with biomass burning episodes (using TERRA satellite fire pixel counts, suggest that large IDDI values observed

  14. Inferring the three-dimensional distribution of dust in the Galaxy with a non-parametric method: Preparing for Gaia

    CERN Document Server

    Kh., S Rezaei; Hanson, R J; Fouesneau, M

    2016-01-01

    We present a non-parametric model for inferring the three-dimensional (3D) distribution of dust density in the Milky Way. Our approach uses the extinction measured towards stars at different locations in the Galaxy at approximately known distances. Each extinction measurement is proportional to the integrated dust density along its line-of-sight. Making simple assumptions about the spatial correlation of the dust density, we can infer the most probable 3D distribution of dust across the entire observed region, including along sight lines which were not observed. This is possible because our model employs a Gaussian Process to connect all lines-of-sight. We demonstrate the capability of our model to capture detailed dust density variations using mock data as well as simulated data from the Gaia Universe Model Snapshot. We then apply our method to a sample of giant stars observed by APOGEE and Kepler to construct a 3D dust map over a small region of the Galaxy. Due to our smoothness constraint and its isotropy,...

  15. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  16. ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk

    Science.gov (United States)

    Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-11-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  17. Optical Properties of Nonspherical Particles of Size Comparable to the Wavelength of Light: Application to Comet Dust

    Science.gov (United States)

    Yanamandra-Fisher, Padmavati A.; Hanner, Martha S.

    1999-03-01

    Scattering calculations for nonspherical particles have been carried out in order to explain observed optical properties of cometary dust. We focused on two optical properties of cometary dust sensitive to particle shape: negative linear polarization at phase angles ≤21° and the 11.2-μm silicate emission feature. The discrete dipole approximation (DDA) method was employed to compute the scattering matrix for nonspherical silicate and absorbing particles of size comparable to the wavelength. Silicate particles with a variety of shapes and size parameterXeq∼2.5, corresponding to a linear dimension of 0.5-1.0 μm, can produce negative linear polarization at small phase angles, whereas carbon particles produce a strong positive maximum of polarization near phase angles of 90°. Mixtures of silicate and carbonaceous material, on a scale small compared to the wavelength, eliminate the negative polarization in this size range; however, macroscopic mixtures of silicate and carbon could yield the observed negative linear polarization at low phase angles (≤21°) and a maximum positive polarization at phase angle of 90°. The position of the 11.2-μm thermal emission peak observed in comets, attributed to crystalline olivine, depends strongly on particle shape even for particles much smaller than the wavelength and can be matched with anisotropic Mg-rich olivine for our model tetrahedra or moderately elongated bricks. Spheres and extreme shapes, such as disks or needles, appear to be ruled out. Approximately 20% crystalline olivine and 80% disordered olivine reproduces the observed spectra of comets with comparable peaks at 10 and 11.2μm, e.g., P/Halley, Bradfield 1987 XXIX, Mueller, Levy 1990 XX, and C/1995 O1 (Hale-Bopp). This study is an essential first step toward realistic modeling of comet dust as aggregates composed of nonspherical monomers having dimensions comparable to the wavelength of incident radiation.

  18. ALMA reveals the anatomy of the mm-sized dust and molecular gas in the HD 97048 disk

    CERN Document Server

    Walsh, Catherine; Meeus, Gwendolyn; Dent, William R F; Maud, Luke; Aikawa, Yuri; Millar, Tom J; Nomura, Hideko

    2016-01-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially-resolved observations at ~ mm wavelengths. We present the first spatially-resolved ~ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ~ 640 au. The ALMA data reveal a circular-symmetric dusty disk extending to ~ 350 au, and a molecular disk traced in CO J=3-2 emission, extending to ~ 750 au. The CO emission arises from a flared layer with an opening angle ~ 30 deg - 40 deg. HD 97048 is another source for which the large (~ mm-sized) dust grains are more centrally concentrated than the small (~ {\\mu}m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modelling suggests a decrement in continuum emission within ~ 50 au, consistent with the cavity size determined from mid-infrared imaging (34 +/- 4 au). The extracted continuum intensity profiles show ring-l...

  19. African and local wind-blown dist contributions at three rural sites in SE Spain: the aerosol size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Orza, J. A. G.; Cabello, M.; Lidon, V.; Martinez, J.

    2009-07-01

    The entrainment of particulate material into the atmosphere by wind action on surface soils both disturbed and natural, as well as directly due to human activities like agricultural practices, mineral industry operations, construction works and traffic, is a significant contribution to the aerosol load in Mediterranean semi-arid areas. A further crustal contribution in the region comes from the frequent arrival of African mineral dust plumes. We summarize some of the results obtained after 4-6 month campaigns at three rural sites in SE Spain where the aerosol number size distribution (31 size bins between 0.25 and 32 {mu}m) was continuously measured. The influence of both local wind speed and the arrival of air masses loaded with African dust on the airborne particulate distribution is assessed. Similarities and differences between the three locations give information that allows a better understanding of the influence of both local wind speed and African dust outbreaks (ADO), while highlight what is mostly related to local features. (Author)

  20. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    Science.gov (United States)

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Spatio-temporal distribution of Saharan dust source activations inferred from 15-minute MSG-SEVIRI observations and its links to meteorological processes (Invited)

    Science.gov (United States)

    Schepanski, K.; Tegen, I.

    2009-12-01

    Mineral dust aerosol emitted from arid and semi-arid areas impacts on the weather and climate system by affecting e.g. radiation fluxes and nutrient cycles. The emission of dust particles depend strongly on surface wind velocity and turbulent fluxes as well as on surface characteristics like surface texture and vegetation cover. To estimate the effect of dust aerosol, detailed knowledge on the spatio-temporal distribution of active dust sources is necessary. As dust sources are mostly located over remote areas satellite observations are suitable for localizing active dust sources. Thereby the accuracy of determining dust sources from such an indirect method is limited by the temporal resolution and the ambiguities of the retrieval. A 1°x1° map on the spatial and temporal (3-hourly) distribution of dust source activations (DSA) over North Africa is compiled starting in March 2006. For dust source identification 15-minute Meteosat Second Generation (MSG) infra-red (IR) dust index images are used based on brightness temperature measurements by the Spinning enhanced Visible and Infra-Red Imager (SEVIRI) at 8.7 µm, 10.8 µm and 12.0 µm. This data set has been used (1) to identify most active dust source areas, and (2) to investigate on the temporal distribution of occurring dust source activations. Over the Sahara Desert 65% of dust sources becomes active during 06-09 UTC pointing towards an important role of the break-down of the nocturnal low-level jet (LLJ) for dust mobilization besides other meteorological features like density currents, haboobs, and cyclones. Furthermore the role of the nocturnal LLJ for dust mobilization over the Sahara is investigated by weather observations and a modelling study. DSA observations of the last 3.5 years indicate an interannual variability in frequencies of local dust source activations. The causes of this variability will be analyzed with respect to corresponding atmospheric conditions.

  2. MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS

    Directory of Open Access Journals (Sweden)

    M. S. Santos

    Full Text Available Abstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical. We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions.

  3. Size distribution of FeNiB nanoparticles

    Directory of Open Access Journals (Sweden)

    Lackner P.

    2014-07-01

    Full Text Available Two samples of amorphous nanoparticles FeNiB, one of them with SiO2 sheath around the core and one without, were investigated by transmission electron microscopy and magnetic measurements. The coating gives mean particle diameters of 4.3 nm compared to 7.2 nm for the uncoated particles. Magnetic measurements prove superparamagnetic behaviour above 160 K (350 K for the coated (uncoated sample. With use of effective anisotropy constant Keff – determined from hysteresis loops – size distributions are determined both from ZFC curves, as well as from relaxation measurements. Both are in good agreement and are very similar for both samples. Comparison with the size distribution determined from TEM pictures shows that magnetic clusters consist of only few physical particles.

  4. Unusual Carbonaceous Dust Distribution in PN G095.2+00.7

    CERN Document Server

    Ohsawa, Ryou; Sakon, Itsuki; Mori, Tamami I; Miyata, Takashi; Asano, Kentaro; Matsuura, Mikako; Kaneda, Hidehiro; 10.1088/2041-8205/760/2/L34

    2012-01-01

    We investigate the polycyclic aromatic hydrocarbon features in the young Galactic planetary nebula PN G095.2+00.7 based on mid-infrared observations. The near- to mid-infrared spectra obtained with the AKARI/IRC and the Spitzer/IRS show the PAH features as well as the broad emission feature at 12 {\\mu}m usually seen in proto-planetary nebulae (pPNe). The spatially resolved spectra obtained with Subaru/COMICS suggest that the broad emission around 12 {\\mu}m is distributed in a shell-like structure, but the unidentified infrared band at 11.3 {\\mu}m is selectively enhanced at the southern part of the nebula. The variation can be explained by a difference in the amount of the UV radiation to excite PAHs, and does not necessarily require the chemical processing of dust grains and PAHs. It suggests that the UV self-extinction is important to understand the mid-infrared spectral features. We propose a mechanism which accounts for the evolutionary sequence of the mid-infrared dust features seen in a transition from p...

  5. UNUSUAL CARBONACEOUS DUST DISTRIBUTION IN PN G095.2+00.7

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Ryou; Onaka, Takashi; Sakon, Itsuki; Mori, Tamami I. [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Miyata, Takashi; Asano, Kentaro [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Matsuura, Mikako [Department of Physics and Astronomy, University College London, Kathleen Lonsdale Building, Gower Place, London WC1E 6BT (United Kingdom); Kaneda, Hidehiro, E-mail: ohsawa@astron.s.u-tokyo.ac.jp [Division of Particle and Astrophysical Sciences, G. Nagoya University, Chikusa-ku, Furo-cho, Nagoya 464-8602 (Japan)

    2012-12-01

    We investigate the polycyclic aromatic hydrocarbon (PAH) features in the young Galactic planetary nebula PN G095.2+00.7 based on mid-infrared observations. The near- to mid-infrared spectra obtained with the AKARI/IRC and the Spitzer/IRS show the PAH features as well as the broad emission feature at 12 {mu}m usually seen in proto-planetary nebulae (pPNe). The spatially resolved spectra obtained with Subaru/COMICS suggest that the broad emission around 12 {mu}m is distributed in a shell-like structure, but the unidentified infrared band at 11.3 {mu}m is selectively enhanced at the southern part of the nebula. The variation can be explained by a difference in the amount of the UV radiation to excite PAHs, and does not necessarily require the chemical processing of dust grains and PAHs. It suggests that the UV self-extinction is important to understand the mid-infrared spectral features. We propose a mechanism which accounts for the evolutionary sequence of the mid-infrared dust features seen in a transition from pPNe to PNe.

  6. Size-Resolved Dust and Aerosol Contaminants Associated with Copper and Lead Smelting Emissions: Implications for Emissions Management and Human Health

    Science.gov (United States)

    Csavina, Janae; Taylor, Mark P.; Félix, Omar; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (< 1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (< 1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emissions management and practices that minimize health risks associated with metal extraction and processing can be developed. PMID:24995641

  7. Energy conservation potential of Portland Cement particle size distribution control

    Energy Technology Data Exchange (ETDEWEB)

    Tresouthick, S.W.

    1985-01-01

    The main objective of Phase 3 is to develop practical economic methods of controlling the particle size distribution of portland cements using existing or modified mill circuits with the principal aim of reducing electrical energy requirements for cement manufacturing. The work of Phase 3, because of its scope, will be carried out in 10 main tasks, some of which will be handled simultaneously. Progress on each of these tasks is discussed in this paper.

  8. Power law olivine crystal size distributions in lithospheric mantle xenoliths

    Science.gov (United States)

    Armienti, P.; Tarquini, S.

    2002-12-01

    Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.

  9. An overview of aerosol particle sensors for size distribution measurement

    Directory of Open Access Journals (Sweden)

    Panich Intra

    2007-08-01

    Full Text Available Fine aerosols are generally referred to airborne particles of diameter in submicron or nanometer size range. Measurement capabilities are required to gain understanding of these particle dynamics. One of the most important physical and chemical parameters is the particle size distribution. The aim of this article is to give an overview of recent development of already existing sensors for particle size distribution measurement based on electrical mobility determination. Available instruments for particle size measurement include a scanning mobility particle sizer (SMPS, an electrical aerosol spectrometer (EAS, an engine exhaust particle sizer (EEPS, a bipolar charge aerosol classifier (BCAC, a fast aerosol spectrometer (FAS a differential mobility spectrometer (DMS, and a CMU electrical mobility spectrometer (EMS. The operating principles, as well as detailed physical characteristics of these instruments and their main components consisting of a particle charger, a mobility classifier, and a signal detector, are described. Typical measurements of aerosol from various sources by these instruments compared with an electrical low pressure impactor (ELPI are also presented.

  10. Estimation of coal particle size distribution by image segmentation

    Institute of Scientific and Technical Information of China (English)

    Zhang Zelin; Yang Jianguo; Ding Lihua; Zhao Yuemin

    2012-01-01

    Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter (EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5% and the errors were reduced as the size of the fraction increased.

  11. The Structure of Pre-transitional Protoplanetary Disks. II. Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS~70

    CERN Document Server

    Hashimoto, J; Brown, J M; Dong, R; Muto, Mr Takayuki; Zhu, Dr Zhaohuan; Wisniewski, Dr John P; Ohashi, N; kudo, T; Kusakabe, N; Abe, L; Akiyama, E; Brandner, Wolfgang; Brandt, T; Carson, J; Currie, Dr Thayne; Egner, S; Feldt, M; Grady, C A; Guyon, O; Hayano, Y; Hayashi, M; Hayashi, S; Henning, Thomas; Hodapp, K; Ishii, M; Iye, Dr Masanori; Janson, M; Kandori, R; Knapp, G; Kuzuhara, M; Kwon, J; Matsuo, T; McElwain, M W; Mayama, S; Mede, K; Miyama, S; Morino, J -I; Moro-Martin, A; Nishimura, T; Pyo, T -S; Serabyn, Dr Gene; Suenaga, T; Suto, H; Suzuki, R; Takahashi, Y; Takami, M; Takato, N; Terada, H; Thalmann, Dr Christian; Tomono, D; Turner, E L; Watanabe, M; Yamada, T; Takami, H; Usuda, T; Tamura, M

    2014-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-$\\mu$m size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report SMA observations of the dust continuum at 1.3~mm and $^{12}$CO~$J=2\\rightarrow1$ line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS~70. PDS~70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of $\\sim$65~AU at NIR wavelengths. However, we found a larger ga...

  12. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    Science.gov (United States)

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  13. The Lognormal Probability Distribution Function of the Perseus Molecular Cloud: A Comparison of HI and Dust

    CERN Document Server

    Burkhart, Blakesley; Murray, Claire; Stanimirovic, Snezana

    2015-01-01

    The shape of the probability distribution function (PDF) of molecular clouds is an important ingredient for modern theories of star formation and turbulence. Recently, several studies have pointed out observational difficulties with constraining the low column density (i.e. Av <1) PDF using dust tracers. In order to constrain the shape and properties of the low column density probability distribution function, we investigate the PDF of multiphase atomic gas in the Perseus molecular cloud using opacity-corrected GALFA-HI data and compare the PDF shape and properties to the total gas PDF and the N(H2) PDF. We find that the shape of the PDF in the atomic medium of Perseus is well described by a lognormal distribution, and not by a power-law or bimodal distribution. The peak of the atomic gas PDF in and around Perseus lies at the HI-H2 transition column density for this cloud, past which the N(H2) PDF takes on a powerlaw form. We find that the PDF of the atomic gas is narrow and at column densities larger than...

  14. Metal contamination in campus dust of Xi'an, China: A study based on multivariate statistics and spatial distribution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hao [School of Tourism and Environment, Shaanxi Normal University, Xi' an 710062 (China); Lu, Xinwei, E-mail: luxinwei@snnu.edu.cn [School of Tourism and Environment, Shaanxi Normal University, Xi' an 710062 (China); Li, Loretta Y., E-mail: lli@civil.ubc.ca [Department of Civil Engineering, University of British Columbia, Vancouver V6T 1Z4 (Canada); Gao, Tianning; Chang, Yuyu [School of Tourism and Environment, Shaanxi Normal University, Xi' an 710062 (China)

    2014-06-01

    The concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V and Zn in campus dust from kindergartens, elementary schools, middle schools and universities of Xi'an, China were determined by X-ray fluorescence spectrometry. Correlation coefficient analysis, principal component analysis (PCA) and cluster analysis (CA) were used to analyze the data and to identify possible sources of these metals in the dust. The spatial distributions of metals in urban dust of Xi'an were analyzed based on the metal concentrations in campus dusts using the geostatistics method. The results indicate that dust samples from campuses have elevated metal concentrations, especially for Pb, Zn, Co, Cu, Cr and Ba, with the mean values of 7.1, 5.6, 3.7, 2.9, 2.5 and 1.9 times the background values for Shaanxi soil, respectively. The enrichment factor results indicate that Mn, Ni, V, As and Ba in the campus dust were deficiently to minimally enriched, mainly affected by nature and partly by anthropogenic sources, while Co, Cr, Cu, Pb and Zn in the campus dust and especially Pb and Zn were mostly affected by human activities. As and Cu, Mn and Ni, Ba and V, and Pb and Zn had similar distribution patterns. The southwest high-tech industrial area and south commercial and residential areas have relatively high levels of most metals. Three main sources were identified based on correlation coefficient analysis, PCA, CA, as well as spatial distribution characteristics. As, Ni, Cu, Mn, Pb, Zn and Cr have mixed sources — nature, traffic, as well as fossil fuel combustion and weathering of materials. Ba and V are mainly derived from nature, but partly also from industrial emissions, as well as construction sources, while Co principally originates from construction. - Highlights: • Metal content in dust from schools was determined by XRF. • Spatial distribution of metals in urban dust was focused on campus samples. • Multivariate statistic and spatial distribution were used to identify metal

  15. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    Science.gov (United States)

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity.

  16. Flying Through Dust From Asteroids

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Explorer mission.From LDEXs measurements of the dust distribution around the Moon, Szalay and Hornyi next calculate how this distribution would change for different grain sizes if the body were instead much smaller i.e., a 10-km asteroid instead of the 1700-km Moon.Optimizing the Geometry for an EncounterThe authors find that the dust ejected from asteroids is distributed in an asymmetric shape around the body, with higher dust densities on the side of the asteroid facing its direction of travel. This is because meteoroid impacts arent isotropic: meteoroid showers tend to be directional, and amajority of meteoroids impact the asteroid from this apex side.Total number of impacts per square meter and predicted dust density for a family of potential trajectories for spacecraft flybys of a 10-km asteroid. [Szalay Hornyi 2016]Szalay and Hornyi therefore conclude that dust-analyzing missions would collect many times more dust impacts by transiting the apex side of the body. The authors evaluate a family of trajectories for a transiting spacecraft to determine the density of dust that the spacecraft will encounter and the impact rates expected from the dust particles.This information can help optimize the encounter geometry of a future mission to maximize the science return while minimizing the hazard due to dust impacts.CitationJamey R. Szalay and Mihly Hornyi 2016 ApJL 830 L29. doi:10.3847/2041-8205/830/2/L29

  17. SIZE AND DENSITY ESTIMATION FROM IMPACT TRACK MORPHOLOGY IN SILICA AEROGEL: APPLICATION TO DUST FROM COMET 81P/WILD 2

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Rei; Tsuchiyama, Akira [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kadono, Toshihiko [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Okudaira, Kyoko [Office for Planning and Management, The University of Aizu, Aizuwakamatsu, Fukushima 965-8580 (Japan); Hasegawa, Sunao; Tabata, Makoto [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Watanabe, Takayuki; Yagishita, Masahito [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8502 (Japan); Machii, Nagisa; Nakamura, Akiko M. [Department of Earth and Planetary Sciences, Kobe University, Nada, Kobe 657-8501 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa [Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Nakano, Tsukasa, E-mail: kadonot@ile.osaka-u.ac.jp [Geological Survey of Japan, Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567 (Japan)

    2012-01-01

    A large number of cometary dust particles were captured with low-density silica aerogel during the NASA Stardust mission. The dust particles penetrated into the aerogel and formed various track shapes. To estimate the properties of the dust particles, such as density and size, based on the morphology of the tracks, we carried out systematic experiments testing impacts into low-density aerogel at 6 km s{sup -1} using projectiles of various sizes and densities. We found that the maximum track diameter and the ratio of the track length to the maximum track diameter in aerogel are good indicators of projectile size and density, respectively. Based on these results, we estimated the size and density of individual dust particles from comet 81P/Wild 2. The average density of the 'fluffy' dust particles and the bulk density of all dust particles were obtained as 0.35 {+-} 0.07 and 0.49 {+-} 0.18 g cm{sup -3}, respectively. These statistical data provided the content of monolithic and coarse grains in the Stardust particles, {approx}30 wt%. Combining this result with some mid-infrared observational data, we found that the content of crystalline silicates is {approx}50 wt% or more of non-volatile material.

  18. Application of flower pollination algorithm for optimal placement and sizing of distributed generation in Distribution systems

    Directory of Open Access Journals (Sweden)

    P. Dinakara Prasad Reddy

    2016-05-01

    Full Text Available Distributed generator (DG resources are small, self contained electric generating plants that can provide power to homes, businesses or industrial facilities in distribution feeders. By optimal placement of DG we can reduce power loss and improve the voltage profile. However, the values of DGs are largely dependent on their types, sizes and locations as they were installed in distribution feeders. The main contribution of the paper is to find the optimal locations of DG units and sizes. Index vector method is used for optimal DG locations. In this paper new optimization algorithm i.e. flower pollination algorithm is proposed to determine the optimal DG size. This paper uses three different types of DG units for compensation. The proposed methods have been tested on 15-bus, 34-bus, and 69-bus radial distribution systems. MATLAB, version 8.3 software is used for simulation.

  19. Universal functional form of 1-minute raindrop size distribution?

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo

    2015-04-01

    Rainfall remains one of the poorly quantified phenomena of the hydrological cycle, despite its fundamental role. No universal laws describing the rainfall behavior are available in literature. This is probably due to the continuous description of rainfall, which is a discrete phenomenon, made by drops. From the statistical point of view, the rainfall variability at particle size scale, is described by the drop size distribution (DSD). With this term, it is generally indicated as the concentration of raindrops per unit volume and diameter, as the probability density function of drop diameter at the ground, according to the specific problem of interest. Raindrops represent the water exchange, under liquid form, between atmosphere and earth surface, and the number of drops and their size have impacts in a wide range of hydrologic, meteorologic, and ecologic phenomena. DSD is used, for example, to measure the multiwavelength rain attenuation for terrestrial and satellite systems, it is an important input for the evaluation of the below cloud scavenging coefficient of the aerosol by precipitation, and is of primary importance to make estimates of rainfall rate through radars. In literature, many distributions have been used to this aim (Gamma and Lognormal above all), without statistical supports and with site-specific studies. Here, we present an extensive investigation of raindrop size distribution based on 18 datasets, consisting in 1-minute disdrometer data, sampled using Joss-Waldvogel or Thies instrument in different locations on Earth's surface. The aim is to understand if an universal functional form of 1-minute drop diameter variability exists. The study consists of three main steps: analysis of the high order moments, selection of the model through the AIC index and test of the model with the use of goodness-of-fit tests.

  20. Fog-Influenced Submicron Aerosol Number Size Distributions

    Science.gov (United States)

    Zikova, N.; Zdimal, V.

    2013-12-01

    The aim of this work is to evaluate the influence of fog on aerosol particle number size distributions (PNSD) in submicron range. Thus, five-year continuous time series of the SMPS (Scanning Mobility Particle Sizer) data giving information on PNSD in five minute time step were compared with detailed meteorological records from the professional meteorological station Kosetice in the Czech Republic. The comparison included total number concentration and PNSD in size ranges between 10 and 800 nm. The meteorological records consist from the exact times of starts and ends of individual meteorological phenomena (with one minute precision). The records longer than 90 minutes were considered, and corresponding SMPS spectra were evaluated. Evaluation of total number distributions showed considerably lower concentration during fog periods compared to the period when no meteorological phenomenon was recorded. It was even lower than average concentration during presence of hydrometeors (not only fog, but rain, drizzle, snow etc. as well). Typical PNSD computed from all the data recorded in the five years is in Figure 1. Not only median and 1st and 3rd quartiles are depicted, but also 5th and 95th percentiles are plotted, to see the variability of the concentrations in individual size bins. The most prevailing feature is the accumulation mode, which seems to be least influenced by the fog presence. On the contrary, the smallest aerosol particles (diameter under 40 nm) are effectively removed, as well as the largest particles (diameter over 500 nm). Acknowledgements: This work was supported by the projects GAUK 62213 and SVV-2013-267308. Figure 1. 5th, 25th, 50th, 75th and 95th percentile of aerosol particle number size distributions recorded during fog events.

  1. Measuring Technique of Bubble Size Distributions in Dough

    Science.gov (United States)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Tsuta, Mizuki

    A novel technique to recognize bubbles in bread dough and analyze their size distribution was developed by using a Micro-Slicer Image Processing System (MSIPS). Samples were taken from the final stage of the mixing process of bread dough which generally consists of four distinctive stages. Also, to investigate the effect of freeze preservation on the size distribution of bubbles, comparisons were made between fresh dough and the dough that had been freeze preserved at .30°C for three months. Bubbles in the dough samples were identified in the images of MSIPS as defocusing spots due to the difference in focal distance created by vacant spaces. In case of the fresh dough, a total of 910 bubbles were recognized and their maximum diameter ranged from 0.4 to 70.5μm with an average of 11.1μm. On the other hand, a total of 1,195 bubbles were recognized from the freeze-preserved sample, and the maximum diameter ranged from 0.9 to 32.7μm with an average of 6.7μm. Small bubbles with maximum diameters less than 10μm comprised approximately 59% and 78% of total bubbles for fresh and freeze-preserved dough samples, respectively. The results indicated that the bubble size of frozen dough is smaller than that of unfrozen one. The proposed method can provide a novel tool to investigate the effects of mixing and preservation treatments on the size, morphology and distribution of bubbles in bread dough.

  2. Numerical Modeling of Topography-Modulated Dust Aerosol Distribution and Its Influence on the Onset of East Asian Summer Monsoon

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2016-01-01

    Full Text Available A regional climate model coupled with a dust module was used to simulate dust aerosol distribution and its effects on the atmospheric heat source over the TP, East Asian summer monsoon onset, and precipitation in East Asia modulated by the uplift of the northern TP. We carried out four experiments, including a modern (i.e., high-mountain experiment with (HMD and without (HM the major deserts in Northwest China and a low-mountain experiment with (LMD and without (LM the deserts. The results show that dust greatly increases in the Taklamakan Desert accompanied with the uplift of the northern TP, and the increase exceeds 150 µg kg−1 in spring. A strong cyclone in the Tarim Basin produced by the uplifted northern TP enhances dust emissions in the Taklamakan Desert in summer. Meanwhile, the dust loading over the TP also increases induced by the uplift of the northern TP, causing the heat source over the TP decreased. Under the condition of the northern TP uplift to present altitude, dust delays the East Asia summer monsoon onset by two pentads and one pentad, respectively, in the southern and northern monsoon regions and greatly suppresses precipitation in East Asia compared with results in the low terrain experiments.

  3. Universal scaling of grain size distributions during dislocation creep

    Science.gov (United States)

    Aupart, Claire; Dunkel, Kristina G.; Angheluta, Luiza; Austrheim, Håkon; Ildefonse, Benoît; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2017-04-01

    Grain size distributions are major sources of information about the mechanisms involved in ductile deformation processes and are often used as paleopiezometers (stress gauges). Several factors have been claimed to influence the stress vs grain size relation, including the water content (Jung & Karato 2001), the temperature (De Bresser et al., 2001), the crystal orientation (Linckens et al., 2016), the presence of second phase particles (Doherty et al. 1997; Cross et al., 2015), and heterogeneous stress distributions (Platt & Behr 2011). However, most of the studies of paleopiezometers have been done in the laboratory under conditions different from those in natural systems. It is therefore essential to complement these studies with observations of naturally deformed rocks. We have measured olivine grain sizes in ultramafic rocks from the Leka ophiolite in Norway and from Alpine Corsica using electron backscatter diffraction (EBSD) data, and calculated the corresponding probability density functions. We compared our results with samples from other studies and localities that have formed under a wide range of stress and strain rate conditions. All distributions collapse onto one universal curve in a log-log diagram where grain sizes are normalized by the mean grain size of each sample. The curve is composed of two straight segments with distinct slopes for grains above and below the mean grain size. These observations indicate that a surprisingly simple and universal power-law scaling describes the grain size distribution in ultramafic rocks during dislocation creep irrespective of stress levels and strain rates. Cross, Andrew J., Susan Ellis, and David J. Prior. 2015. « A Phenomenological Numerical Approach for Investigating Grain Size Evolution in Ductiley Deforming Rocks ». Journal of Structural Geology 76 (juillet): 22-34. doi:10.1016/j.jsg.2015.04.001. De Bresser, J. H. P., J. H. Ter Heege, and C. J. Spiers. 2001. « Grain Size Reduction by Dynamic

  4. Size distributions of secondary and primary aerosols in Asia: A 3-D modeling

    Science.gov (United States)

    Yu, F.; Luo, G.; Wang, Z.

    2009-12-01

    Asian aerosols have received increasing attention because of their potential health and climate effects and the rapid increasing of Asian emissions associated with accelerating economic expansion. Aerosol particles appear in the atmosphere due to either in-situ nucleation (i.e, secondary particles) or direct emissions (i.e., primary particles), and their environmental impacts depend strongly on their concentrations, sizes, compositions, and mixing states. A size-resolved (sectional) particle microphysics model with a number of computationally efficient schemes has been incorporated into a global chemistry transport model (GEOS-Chem) to simulate the number size distributions of secondary and primary particles in the troposphere (Yu and Luo, Atmos. Chem. Phys. Discuss., 9, 10597-10645, 2009). The growth of nucleated particles through the condensation of sulfuric acid vapor and equilibrium uptake of nitrate, ammonium, and secondary organic aerosol is explicitly simulated, along with the coating of primary particles (dust, black carbon, organic carbon, and sea salt) by volatile components via condensation and coagulation with secondary particles. Here we look into the spatiotemporal variations of the size distributions of secondary and primary aerosols in Asia. The annual mean number concentration of the accumulation mode particles (dry diameter > ~ 100 nm) in the lower troposphere over Asia (especially China) is very high and is dominated (~70-90%) by carbonaceous primary particles (with coated condensable species). Coagulation and condensation turn the primary particles into mixed particles and on average increase the dry sizes of primary particles by a factor of ~ 2-2.5. Despite of high condensation sink, sulfuric acid vapor concentration in many parts of Asian low troposphere is very high (annual mean values above 1E7/cm3) and significant new particle formation still occurs. Secondary particles generally dominate the particles small than 100 nm and the equilibrium

  5. Characterization of Particle Size Distributions of Powdery Building Material Aerosol Generated by Fluidization and Gravitation

    Directory of Open Access Journals (Sweden)

    Tadas Prasauskas

    2012-10-01

    Full Text Available This study aims to identify particle size distributions (PSD of aerosol of powdery building materials commonly used in construction work (cement, chalk, clay, wood sawdust, wood grinding dust, gypsum, hydrated lime, masonry grout, quartz sand, sand and structural lime by two aerosolization methods: fluidization and gravitation. Fluidization and gravitation methods represent industrial activities such as pneumotransportation and unloading. Both particle resuspension mechanisms have been modelled in laboratory conditions. The particle size distributions of resuspended particulate matter from powdery building materials were rather similar identified by both fluidization and gravitation methods, with an exception of wood sawdust and sand. The PM10 fraction ranged between 30% and 87%, PM2.5 from 7% to 28% and PM1.0 from 3% to 7% of the total mass of particulate matter. The highest PM10/PMtotal ratio was calculated for masonry grout - 0.87, and the lowest ratio for quartz sand - 0.30. The highest ratio of PM2.5/PMtotal was calculated for sand - 0.23, the lowest for quartz sand - 0.07. Substantial quantities of PM2.5 were found to be emitted implying a potential threat to human health.DOI: http://dx.doi.org/10.5755/j01.erem.61.3.1519

  6. An Investigation of Aerosol Size Distribution Properties at Dibrugarh: North-Eastern India

    Directory of Open Access Journals (Sweden)

    Mukunda Madhab Gogoi

    2009-01-01

    Full Text Available Columnaraerosol size distributions, retrieved from spectral AOD (aerosol optical depth esti mates over a northeastern location of India (Dibrugarh are, ingeneral, bimodal with the occurrence of primary (broad mode at 0.04 - 0.17 m and the secondary mode at 0.88 - 1.29 m. The physical parameters of size distributions representing the microphysical properties of aerosols show distinct sea sonal variations with the highest value of the effec tiveradii (~ 0.55 m during pre-mon soon (March to May season which, along with the highest value of AOD (~ 0.46 ¡__n0.09 during the same season, is attributed to the maxi mum abundance of coarsepa ticles. Examining the re sults in the light of the HYSPLIT back tra jectory analy sis and the peruliar to pogr phy of northeast India allowing advection only from the Indo-Gangetic plains or Bay-of-Ben gal, it appears that the strong presence of the coarse mode aerosols are associated with either mineral dust or marine aerosol components or both.

  7. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods.

    Science.gov (United States)

    Varenne, Fanny; Makky, Ali; Gaucher-Delmas, Mireille; Violleau, Frédéric; Vauthier, Christine

    2016-05-01

    Evaluation of particle size distribution (PSD) of multimodal dispersion of nanoparticles is a difficult task due to inherent limitations of size measurement methods. The present work reports the evaluation of PSD of a dispersion of poly(isobutylcyanoacrylate) nanoparticles decorated with dextran known as multimodal and developed as nanomedecine. The nine methods used were classified as batch particle i.e. Static Light Scattering (SLS) and Dynamic Light Scattering (DLS), single particle i.e. Electron Microscopy (EM), Atomic Force Microscopy (AFM), Tunable Resistive Pulse Sensing (TRPS) and Nanoparticle Tracking Analysis (NTA) and separative particle i.e. Asymmetrical Flow Field-Flow Fractionation coupled with DLS (AsFlFFF) size measurement methods. The multimodal dispersion was identified using AFM, TRPS and NTA and results were consistent with those provided with the method based on a separation step prior to on-line size measurements. None of the light scattering batch methods could reveal the complexity of the PSD of the dispersion. Difference between PSD obtained from all size measurement methods tested suggested that study of the PSD of multimodal dispersion required to analyze samples by at least one of the single size particle measurement method or a method that uses a separation step prior PSD measurement.

  8. Building predictive models of soil particle-size distribution

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-04-01

    Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.

  9. Size Distributions of Solar Flares and Solar Energetic Particle Events

    Science.gov (United States)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  10. Impact-Generated Dust Clouds Surrounding the Galilean Moons

    CERN Document Server

    Krüger, H; Grün, E; Kr\\"uger, Harald~; Krivov, Alexander V.; Gr\\"un, Eberhard

    2003-01-01

    Tenuous dust clouds of Jupiter's Galilean moons Io, Europa, Ganymede and Callisto have been detected with the in-situ dust detector on board the Galileo spacecraft. The majority of the dust particles have been sensed at altitudes below five radii of these lunar-sized satellites. We identify the particles in the dust clouds surrounding the moons by their impact direction, impact velocity, and mass distribution. Average particle sizes are 0.5 to $\\rm 1 \\mu m$, just above the detector threshold, indicating a size distribution with decreasing numbers towards bigger particles. Our results imply that the particles have been kicked up by hypervelocity impacts of micrometeoroids onto the satellites' surfaces. The measured radial dust density profiles are consistent with predictions by dynamical modeling for satellite ejecta produced by interplanetary impactors (Krivov et al., PSS, 2003, 51, 251--269), assuming yield, mass and velocity distributions of the ejecta from laboratory measurements. The dust clouds of the th...

  11. 16 Years of Ulysses Interstellar Dust Measurements in the Solar System: I. Mass Distribution and Gas-to-Dust Mass Ratio

    CERN Document Server

    Krüger, Harald; Gruen, Eberhard; Sterken, Veerle J

    2015-01-01

    In the early 1990s, contemporary interstellar dust (ISD) penetrating deep into the heliosphere was identified with the in-situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the ISD stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium surrounding our solar system. Earlier analyses of the Ulysses ISD data measured between 1992 and 1998 implied the existence of 'big' ISD grains [up to 10^-13kg]. The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of ISD in the very local interstellar medium. We analyse the entire data set from 16 yr of Ulysses ISD measurements in interplanetary space. This paper concentrates on the overall mass distribution of ISD. An accompanying paper investigates time-variable phenomena in the Ulysses ISD data, and in a third paper we present the results from dynamical modelling of the ISD flow applied to Ulysses. We...

  12. Grain size effects on He bubbles distribution and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Gao, X.; Gao, N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, M.H.; Wei, K.F.; Yao, C.F.; Sun, J.R.; Li, B.S.; Zhu, Y.B.; Pang, L.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Y.F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, E.Q. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-02-15

    Highlights: • SMAT treated T91 and conventional T91 were implanted by 200 keV He{sup 2+} to 1 × 10{sup 21} He m{sup −2} at room temperature and annealed at 450 °C for 3.5 h. • He bubbles in nanometer-size-grained T91 are smaller in as-implanted case. • The bubbles in the matrix of nanograins were hard to detect and those along the nanograin boundaries coalesced and filled with the grain boundaries after annealing. • Brownian motion and coalescence and Ostwald ripening process might lead to bubbles morphology presented in the nanometer-size-grained T91 after annealing. - Abstract: Grain boundary and grain size effects on He bubble distribution and evolution were investigated by He implantation into nanometer-size-grained T91 obtained by Surface Mechanical Attrition Treatment (SMAT) and the conventional coarse-grained T91. It was found that bubbles in the nanometer-size-grained T91 were smaller than those in the conventional coarse-grained T91 in as-implanted case, and bubbles in the matrix of nanograins were undetectable while those at nanograin boundaries (GBs) coalesced and filled in GBs after heat treatment. These results suggested that the grain size of structural material should be larger than the mean free path of bubble’s Brownian motion and/or denuded zone around GBs in order to prevent bubbles accumulation at GBs, and multiple instead of one type of defects should be introduced into structural materials to effectively reduce the susceptibility of materials to He embrittlement and improve the irradiation tolerance of structural materials.

  13. Comparison of WTC dust size on macrophage inflammatory cytokine release in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Michael D Weiden

    Full Text Available BACKGROUND: The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers' lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways. METHODOLOGY/PRINCIPAL FINDINGS: Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM(10-53 or WTC-PM(2.5 at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM(10-53 and PM(2.5. GM-CSF clustered with IL-6 and IL-12(p70 at baseline, after exposure to WTC-PM(10-53 and in sera of WTC dust-exposed subjects (n = 70 with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM(10-53 consistently induced more cytokine release than WTC-PM(2.5 at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC. CONCLUSIONS: WTC-PM(10-53 induced a stronger inflammatory response by human AM than WTC-PM(2.5. This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure.

  14. Comparison of WTC dust size on macrophage inflammatory cytokine release in vivo and in vitro.

    Science.gov (United States)

    Weiden, Michael D; Naveed, Bushra; Kwon, Sophia; Segal, Leopoldo N; Cho, Soo Jung; Tsukiji, Jun; Kulkarni, Rohan; Comfort, Ashley L; Kasturiarachchi, Kusali J; Prophete, Colette; Cohen, Mitchell D; Chen, Lung-Chi; Rom, William N; Prezant, David J; Nolan, Anna

    2012-01-01

    The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers' lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways. Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM(10-53) or WTC-PM(2.5) at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM(10-53) and PM(2.5). GM-CSF clustered with IL-6 and IL-12(p70) at baseline, after exposure to WTC-PM(10-53) and in sera of WTC dust-exposed subjects (n = 70) with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM(10-53) consistently induced more cytokine release than WTC-PM(2.5) at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC. WTC-PM(10-53) induced a stronger inflammatory response by human AM than WTC-PM(2.5). This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure.

  15. Smooth and Clumpy Dust Distribution in AGN: a Direct Comparison of two Commonly Explored Infrared Emission Models

    CERN Document Server

    Feltre, A; Fritz, J; Franceschini, A

    2012-01-01

    The geometry of the dust distribution within the inner regions of Active Galactic Nuclei (AGN) is still a debated issue and relates directly with the AGN unified scheme. Traditionally, models discussed in the literature assume one of two distinct dust distributions in what is believed to be a toroidal region around the Supermassive Black Holes: a continuous distribution, customarily referred to as smooth, and a concentration of dust in clumps or clouds, referred to as clumpy. In this paper we perform a thorough comparison between two of the most popular models in the literature, namely the smooth models by Fritz. et al. 2006 and the clumpy models by Nenkova et al. 2008a, in their common parameters space. Particular attention is paid to the silicate features at ~9.7 and ~18 micron, the width of the infrared bump, the near-infrared index and the luminosity at 12.3 micron, all previously reported as possible diagnostic tools to distinguish between the two dust distributions. We find that, due to the different du...

  16. Method for measuring the size distribution of airborne rhinovirus

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  17. Size distribution of wet crushed waste printed circuit boards

    Institute of Scientific and Technical Information of China (English)

    Tan Zhihai; He Yaqun; Xie Weining; Duan Chenlong; Zhou Enhui; Yu Zheng

    2011-01-01

    A wet impact crusher was used to breakdown waste printed circuit boards (PCB's) in a water medium.The relationship between the yield of crushed product and the operating parameters was established.The crushing mechanism was analyzed and the effects of hammerhead style,rotation speed,and inlet water volume on particle size distribution were investigated.The results show that the highest yield of -1 + 0.75 mm sized product was obtained with an inlet water volume flow rate of 5.97 m3/h and a smooth hammerhead turning at 1246.15 r/min.Cumulative undersize-product yield curves were fitted to a nonlinear function:the fitting correlation coefficient was greater than 0.998.These research results provide a theoretical basis for the highly effective wet crushing of PCB's.

  18. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  19. Measurement of non-volatile particle number size distribution

    Science.gov (United States)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  20. Simulation study of territory size distributions in subterranean termites.

    Science.gov (United States)

    Jeon, Wonju; Lee, Sang-Hee

    2011-06-21

    In this study, on the basis of empirical data, we have simulated the foraging tunnel patterns of two subterranean termites, Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar), using a two-dimensional model. We have defined a territory as a convex polygon containing a tunnel pattern and explored the effects of competition among termite territory colonies on the territory size distribution in the steady state that was attained after a sufficient simulation time. In the model, territorial competition was characterized by a blocking probability P(block) that quantitatively describes the ease with which a tunnel stops its advancement when it meets another tunnel; higher P(block) values imply easier termination. In the beginning of the simulation run, N=10, 20,…,100 territory seeds, representing the founding pair, were randomly distributed on a square area. When the territory density was less (N=20), the differences in the territory size distributions for different P(block) values were small because the territories had sufficient space to grow without strong competitions. Further, when the territory density was higher (N>20), the territory sizes increased in accordance with the combinational effect of P(block) and N. In order to understand these effects better, we introduced an interference coefficient γ. We mathematically derived γ as a function of P(block) and N: γ(N,P(block))=a(N)P(block)/(P(block)+b(N)). a(N) and b(N) are functions of N/(N+c) and d/(N+c), respectively, and c and d are constants characterizing territorial competition. The γ function is applicable to characterize the territoriality of various species and increases with both the P(block) values and N; higher γ values imply higher limitations of the network growth. We used the γ function, fitted the simulation results, and determined the c and d values. In addition, we have briefly discussed the predictability of the present model by comparing it with our previous lattice model

  1. Simulation of soot size distribution in an ethylene counterflow flame

    KAUST Repository

    Zhou, Kun

    2014-01-06

    Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic hydrocarbons (PAHs) condensation PAHs condensing on soot particle surface surface processes hydrogen-abstraction-C2H2-addition, oxidation coagulation two soot particles coagulating to form a bigger particle This simulation work investigates soot size distribution and morphology in an ethylene counterflow flame, using i). Chemkin with a method of moments to deal with the coupling between vapor consumption and soot formation; ii). Monte Carlo simulation of soot dynamics.

  2. A Maximum Entropy Modelling of the Rain Drop Size Distribution

    Directory of Open Access Journals (Sweden)

    Francisco J. Tapiador

    2011-01-01

    Full Text Available This paper presents a maximum entropy approach to Rain Drop Size Distribution (RDSD modelling. It is shown that this approach allows (1 to use a physically consistent rationale to select a particular probability density function (pdf (2 to provide an alternative method for parameter estimation based on expectations of the population instead of sample moments and (3 to develop a progressive method of modelling by updating the pdf as new empirical information becomes available. The method is illustrated with both synthetic and real RDSD data, the latest coming from a laser disdrometer network specifically designed to measure the spatial variability of the RDSD.

  3. PROPERTIES AND SPATIAL DISTRIBUTION OF DUST EMISSION IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea; Sonneborn, George; Dwek, Eli; Arendt, Richard G. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gehrz, Robert D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Roellig, Thomas L., E-mail: tea.temim@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000 (United States)

    2012-07-01

    Recent infrared (IR) observations of freshly formed dust in supernova remnants have yielded significantly lower dust masses than predicted by theoretical models and measured from high-redshift observations. The Crab Nebula's pulsar wind is thought to be sweeping up freshly formed supernova (SN) dust along with the ejected gas. The evidence for this dust was found in the form of an IR excess in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially resolved emission spectra of dust in the Crab Nebula acquired with the Infrared Spectrograph on board the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from S, Si, Ne, Ar, O, Fe, and Ni. We derived a synchrotron spectral map from the 3.6 and 4.5 {mu}m images, and subtracted this contribution from our data to produce a map of the residual continuum emission from dust. The dust emission appears to be concentrated along the ejecta filaments and is well described by an amorphous carbon or silicate grain compositions. We find a dust temperature of 55 {+-} 4 K for silicates and 60 {+-} 7 K for carbon grains. The total estimated dust mass is (1.2-12) Multiplication-Sign 10{sup -3} M{sub Sun }, well below the theoretical dust yield predicted for a core-collapse supernova. Our grain heating model implies that the dust grain radii are relatively small, unlike what is expected for dust grains formed in a Type IIP SN.

  4. Mass size distributions of elemental aerosols in industrial area

    Directory of Open Access Journals (Sweden)

    Mona Moustafa

    2015-11-01

    Full Text Available Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba to 89.62 ng/m3 (for Fe. The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources.

  5. Empirical Reference Distributions for Networks of Different Size

    CERN Document Server

    Smith, Anna; Browning, Christopher R

    2015-01-01

    Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although "normalized" versions of some network statistics exist, we demonstrate via simulation why direct comparison of raw and normalized statistics is often inappropriate. We examine a recent suggestion to normalize network statistics relative to Erdos-Renyi random graphs and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively ...

  6. Evolution of Pore Size Distribution and Mean Pore Size in Lotus-type Porous Magnesium Fabricated with Gasar Process

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yanxiang LI; Huawei ZHANG; Jiang WAN

    2006-01-01

    The effect of gas pressures on the mean pore size, the porosity and the pore size distribution of lotus-type porous magnesium fabricated with Gasar process were investigated. The theoretical analysis and the experimental results all indicate that there exists an optimal ratio of the partial pressures of hydrogen pH2 to argon pAr for producing lotus-type structures with narrower pore size distribution and smaller pore size. The effect of solidification mode on the pore size distribution and pore size was also discussed.

  7. Dust Evolution in Protoplanetary Disks

    Science.gov (United States)

    Testi, L.; Birnstiel, T.; Ricci, L.; Andrews, S.; Blum, J.; Carpenter, J.; Dominik, C.; Isella, A.; Natta, A.; Williams, J. P.; Wilner, D. J.

    In the core-accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow up to micrometer-sized particles in the dense regions of molecular clouds, the growth to pebbles and kilometer-sized bodies must occur at the high densities within protoplanetary disks. This critical step is the last stage of solids evolution that can be observed directly in extrasolar systems before the appearance of large planetary-sized bodies. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures of these processes are summarized. We briefly discuss grain growth in molecular cloud cores and in collapsing envelopes of protostars, as these likely provide the initial conditions for the dust in protoplanetary disks. We then review the observational constraints on grain growth in disks from millimeter surveys, as well as the very recent evidence for radial variations of the dust properties in disks. We also include a brief discussion on the small end of the grain size distribution and dust settling as derived from optical, near-, and mid-infrared observations. Results are discussed in the context of global dust-evolution models; in particular, we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of maximum grain sizes as the result of growth barriers. We also highlight the limits of the current models of dust evolution in disks, including the need to slow the radial drift of grains to overcome the migration/fragmentation barrier.

  8. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  9. Optimal placement and sizing of multiple distributed generating units in distribution

    Directory of Open Access Journals (Sweden)

    D. Rama Prabha

    2016-06-01

    Full Text Available Distributed generation (DG is becoming more important due to the increase in the demands for electrical energy. DG plays a vital role in reducing real power losses, operating cost and enhancing the voltage stability which is the objective function in this problem. This paper proposes a multi-objective technique for optimally determining the location and sizing of multiple distributed generation (DG units in the distribution network with different load models. The loss sensitivity factor (LSF determines the optimal placement of DGs. Invasive weed optimization (IWO is a population based meta-heuristic algorithm based on the behavior of weeds. This algorithm is used to find optimal sizing of the DGs. The proposed method has been tested for different load models on IEEE-33 bus and 69 bus radial distribution systems. This method has been compared with other nature inspired optimization methods. The simulated results illustrate the good applicability and performance of the proposed method.

  10. Vertical Raindrop Size Distribution in Central Spain: A Case Study

    Directory of Open Access Journals (Sweden)

    Roberto Fraile

    2015-01-01

    Full Text Available A precipitation event that took place on 12 October 2008 in Madrid, Spain, is analyzed in detail. Three different devices were used to characterize the precipitation: a disdrometer, a rain gauge, and a Micro Rain Radar (MRR. These instruments determine precipitation intensity indirectly, based on measuring different parameters in different sampling points in the atmosphere. A comparative study was carried out based on the data provided by each of these devices, revealing that the disdrometer and the rain gauge measure similar precipitation intensity values, whereas the MRR measures different rain fall volumes. The distributions of drop sizes show that the mean diameter of the particles varied considerably depending on the altitude considered. The level at which saturation occurs in the atmosphere is decisive in the distribution of drop sizes between 2,700 m and 3,000 m. As time passes, the maximum precipitation intensities are registered at a lower height and are less intense. The maximum precipitation intensities occurred at altitudes above 1,000 m, while the maximum fall speeds are typically found at altitudes below 700 m.

  11. Size Distribution of Main-Belt Asteroids with High Inclination

    CERN Document Server

    Terai, Tsuyoshi

    2010-01-01

    We investigated the size distribution of high-inclination main-belt asteroids (MBAs) to explore asteroid collisional evolution under hypervelocity collisions of around 10 km/s. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg^2 with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17 +/- 0.02 for low-inclination ( 15 deg) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with inclinatio...

  12. Dust Measurements in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  13. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M. [Department of Physics, M.L. Sukhadia University, Udaipur-313001 (India)

    2016-05-06

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0

  14. Ensemble filter based estimation of spatially distributed parameters in a mesoscale dust model: experiments with simulated and real data

    Directory of Open Access Journals (Sweden)

    V. M. Khade

    2013-03-01

    Full Text Available The ensemble adjustment Kalman filter (EAKF is used to estimate the erodibility fraction parameter field in a coupled meteorology and dust aerosol model (Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS over the Sahara desert. Erodibility is often employed as the key parameter to map dust source. It is used along with surface winds (or surface wind stress to calculate dust emissions. Using the Saharan desert as a test bed, a perfect model Observation System Simulation Experiments (OSSEs with 40 ensemble members, and observations of aerosol optical depth (AOD, the EAKF is shown to recover correct values of erodibility at about 80% of the points in the domain. It is found that dust advected from upstream grid points acts as noise and complicates erodibility estimation. It is also found that the rate of convergence is significantly impacted by the structure of the initial distribution of erodibility estimates; isotropic initial distributions exhibit slow convergence, while initial distributions with geographically localized structure converge more quickly. Experiments using observations of Deep Blue AOD retrievals from the MODIS satellite sensor result in erodibility estimates that are considerably lower than the values used operationally. Verification shows that the use of the tuned erodibility field results in better predictions of AOD over the west Sahara and the Arabian Peninsula.

  15. THE VISUALIZATION METHOD OF THE 3D CONCENTRATION DISTRIBUTION OF ASIAN DUST IN THE GOOGLE EARTH

    OpenAIRE

    W. Okuda; Kusaka, T

    2012-01-01

    The Asian dust (called "Kosa" in Japan) transported from desert areas in the northern China often covers over East Asia in the late winter and spring seasons. In this study, first of all, for dust events observed at various places in Japan on April 1, 2007 and March 21, 2010, the long-range transport simulation of Asian dust from desert areas in the northern China to Japan is carried out. Next, the method for representing 3D dust clouds by means of the image overlay functionality provided in ...

  16. Properties and Spatial Distribution of Dust Emission in the Crab Nebula

    Science.gov (United States)

    Sonneborn, G.; Temim, T.; Dwek, E.; Arendt, R.; Gehrz, R.; Slane, P.

    2011-01-01

    The nature and quantity of dust produced in supernovae (SNe) is still poorly understood. Recent IR observations of freshly-formed dust in supernova remnants (SNRs) have yielded significantly lower dust masses than predicted by theoretical models and observations high-redshift galaxies. The Crab Nebula's pulsar wind is thought to be sweeping up freshly-formed SN dust along with the SN ejecta. The evidence for this dust was found in the form of an IR bump in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially-resolved emission spectra of dust in the Crab Nebula acquired with the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from both sides of the expanding nebula, including emission from [S III], [Si II], [Ne II], [Ne III], [Ne V], [Ar III], [Ar V], [Fe II], and [Ni II]. We extrapolated a synchrotron spectral data cube from the Spitzer 3.6 and 4.5 micron images, and subtracted this contribution from our 15-40 micron spectral data to produce a map of the residual continuum emission from dust. The emission appears to be concentrated along the ejecta filaments and is well described by astronomical silicates at an average temperature of 65 K. The estimated mass of dust in the Crab Nebula is 0.008 solar masses.

  17. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications.

    Science.gov (United States)

    Kim, Jin Ah; Park, Jin Hee; Hwang, Won Ju

    2016-08-13

    Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu), lead (Pb) and zinc (Zn). Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker's mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker's health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans.

  18. Stereoscopy of dust density waves under microgravity: Velocity distributions and phase-resolved single-particle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Himpel, Michael, E-mail: himpel@physik.uni-greifswald.de; Killer, Carsten; Melzer, André [Institute of Physics, Ernst-Moritz-Arndt-University, 17489 Greifswald (Germany); Bockwoldt, Tim; Piel, Alexander [IEAP, Christian-Albrechts-Universität Kiel, D-24098 Kiel (Germany); Ole Menzel, Kristoffer [ABB Switzerland Ltd, Corporate Research Center, 5405 Dättwil (Switzerland)

    2014-03-15

    Experiments on dust-density waves have been performed in dusty plasmas under the microgravity conditions of parabolic flights. Three-dimensional measurements of a dust density wave on a single particle level are presented. The dust particles have been tracked for many oscillation periods. A Hilbert analysis is applied to obtain trajectory parameters such as oscillation amplitude and three-dimensional velocity amplitude. While the transverse motion is found to be thermal, the velocity distribution in wave propagation direction can be explained by harmonic oscillations with added Gaussian (thermal) noise. Additionally, it is shown that the wave properties can be reconstructed by means of a pseudo-stroboscopic approach. Finally, the energy dissipation mechanism from the kinetic oscillation energy to thermal motion is discussed and presented using phase-resolved analysis.

  19. Size Distribution of Chlorinated Polycyclic Aromatic Hydrocarbons in Atmospheric Particles.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Nakano, Takeshi; Hata, Mitsuhiko; Furuuchi, Masami; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira

    2017-01-01

    The particle size distribution of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) in particulate matter (PM) in Japan is examined for the first time. PM was collected using a PM0.1 air sampler with a six-stage filter. PM was collected in October 2014 and January 2015 to observe potential seasonal variation in the atmospheric behavior and size of PM, including polycyclic aromatic hydrocarbons (PAHs) and ClPAHs. We found that the concentration of PAHs and ClPAHs between 0.5-1.0 μm and 1.0-2.5 μm markedly increase in January (i.e., the winter season). Among the ClPAHs, 1-ClPyrene and 6-ClBenzo[a]Pyrene were the most commonly occurring compounds; further, approximately 15% of ClPAHs were in the nanoparticle phase (<0.1 μm). The relatively high presence of nanoparticles is a potential human health concern because these particles can easily be deposited in the lung periphery. Lastly, we evaluated the aryl hydrocarbon receptor (AhR) ligand activity of PM extracts in each size fraction. The result indicates that PM < 2.5 μm has the strong AhR ligand activity.

  20. Bble Size Distribution for Waves Propagating over A Submerged Breakwater

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r>0.8 mm, and a-1.11 power law for r<0.8 mm.

  1. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  2. The structure of the protoplanetary disk surrounding three young intermediate mass stars. II. Spatially resolved dust and gas distribution

    CERN Document Server

    Fedele, D; Acke, B; van der Plas, G; Van Boekel, R; Wittkowski, M; Henning, T; Bouwman, J; Meeus, G; Rafanelli, P

    2008-01-01

    [Abridged] We present the first direct comparison of the distribution of the gas, as traced by the [OI] 6300 AA emission, and the dust, as traced by the 10 micron emission, in the protoplanetary disk around three intermediate-mass stars: HD 101412, HD 135344 B and HD 179218. N-band visibilities were obtained with VLTI/MIDI. Simple geometrical models are used to compare the dust emission to high-resolution optical spectra in the 6300 AA [OI] line of the same targets. The disks around HD 101412 and HD 135344 B appear strongly flared in the gas, but self-shadowed in the dust beyond ~ 2 AU. In both systems, the 10 micron emission is rather compact (< 2 AU) while the [OI] brightness profile shows a double peaked structure. The inner peak is strongest and is consistent with the location of the dust, the outer peak is fainter and is located at 5-10 AU. Spatially extended PAH emission is found in both disks. The disk around HD 179218 is flared in the dust. The 10 micron emission emerges from a double ring-like str...

  3. Spatial distribution of dust's optical properties over the Sahara and Asia inferred from Moderate Resolution Imaging Spectroradiometer

    Directory of Open Access Journals (Sweden)

    M. Yoshida

    2012-12-01

    Full Text Available There is a great deal of uncertainty surrounding the role of mineral dust aerosols in the earth's climate system. One reason for this uncertainty is that the optical properties of mineral dust, such as its single scattering albedo (the ratio of scattering to total extinction, are poorly understood because ground observations are limited to several locations and the satellite standard products are not available due to the excessively bright surface of the desert in the visible wavelength. We develop a method in this paper to estimate the spatial distributions of the aerosol single scattering albedo (ω0 and optical depth (τa, with daily 1 degree latitude and 1 degree longitude resolution, using data from Moderate Resolution Imaging Spectroradiometer (MODIS, as well as model simulations of radiative transfer. This approach is based on the "critical surface reflectance" method developed in the literature, which estimates ω0 from the top of the atmospheric radiance. We confirm that the uncertainties in our estimation of ω0 and τa are suitably minor and that the characteristic spatial distributions estimated over the Sahara and Asia are significant. The results for the Sahara indicate good correlation between ω0 and the surface reflectance and between ω0 and τa. Therefore, ω0 is determined mainly by the mineral composition of surface dust and/or the optical depth of airborne dust in the Sahara. On the other hand, the relationships between ω0, τa, and the surface reflectance are less clear in Asia than in the Sahara, and the values of ω0 are smaller than those in the Sahara. The regions with small ω0 values are consistent with the regions where coal-burning smoke and carbonaceous aerosols are thought to be transported, as reported in previous studies. Because the coal-burning and carbonaceous

  4. Scale effects on the variability of the raindrop size distribution

    Science.gov (United States)

    Raupach, Timothy; Berne, Alexis

    2016-04-01

    The raindrop size distribution (DSD) is of utmost important to the study of rainfall processes and microphysics. All important rainfall variables can be calculated as weighted moments of the DSD. Qualitative precipitation estimation (QPE) algorithms and numerical weather prediction (NWP) models both use the DSD in order to calculate quantities such as the rain rate. Often these quantities are calculated at a pixel scale: radar reflectivities, for example, are integrated over a volume, so a DSD for the volume must be calculated or assumed. We present results of a study in which we have investigated the change of support problem with respect to the DSD. We have attempted to answer the following two questions. First, if a DSD measured at point scale is used to represent an area, how much error does this introduce? Second, how representative are areal DSDs calculated by QPE and NWP algorithms of the microphysical process happening inside the pixel of interest? We simulated fields of DSDs at two representative spatial resolutions: at the 2.1x2.1 km2 resolution of a typical NWP pixel, and at the 5x5 km2 resolution of a Global Precipitation Mission (GPM) satellite-based weather radar pixel. The simulation technique uses disdrometer network data and geostatistics to simulate the non-parametric DSD at 100x100 m2 resolution, conditioned by the measured DSD values. From these simulations, areal DSD measurements were derived and compared to point measurements of the DSD. The results show that the assumption that a point represents an area introduces error that increases with areal size and drop size and decreases with integration time. Further, the results show that current areal DSD estimation algorithms are not always representative of sub-grid DSDs. Idealised simulations of areal DSDs produced representative values for rain rate and radar reflectivity, but estimations of drop concentration and characteristic drop size that were often outside the sub-grid value ranges.

  5. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India.

    Science.gov (United States)

    Kang, Mingjie; Fu, Pingqing; Aggarwal, Shankar G; Kumar, Sudhanshu; Zhao, Ye; Sun, Yele; Wang, Zifa

    2016-12-01

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C19C33), n-fatty acids (C12C30) and n-alcohols (C16C32) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi.

  6. The Lognormal Probability Distribution Function of the Perseus Molecular Cloud: A Comparison of HI and Dust

    Science.gov (United States)

    Burkhart, Blakesley; Lee, Min-Young; Murray, Claire E.; Stanimirović, Snezana

    2015-10-01

    The shape of the probability distribution function (PDF) of molecular clouds is an important ingredient for modern theories of star formation and turbulence. Recently, several studies have pointed out observational difficulties with constraining the low column density (i.e., {A}V\\lt 1) PDF using dust tracers. In order to constrain the shape and properties of the low column density PDF, we investigate the PDF of multiphase atomic gas in the Perseus molecular cloud using opacity-corrected GALFA-HI data and compare the PDF shape and properties to the total gas PDF and the N(H2) PDF. We find that the shape of the PDF in the atomic medium of Perseus is well described by a lognormal distribution and not by a power-law or bimodal distribution. The peak of the atomic gas PDF in and around Perseus lies at the HI-H2 transition column density for this cloud, past which the N(H2) PDF takes on a power-law form. We find that the PDF of the atomic gas is narrow, and at column densities larger than the HI-H2 transition, the HI rapidly depletes, suggesting that the HI PDF may be used to find the HI-H2 transition column density. We also calculate the sonic Mach number of the atomic gas by using HI absorption line data, which yield a median value of Ms = 4.0 for the CNM, while the HI emission PDF, which traces both the WNM and CNM, has a width more consistent with transonic turbulence.

  7. Initial results for urban metal distributions in house dusts of Syracuse, New York, USA

    Institute of Scientific and Technical Information of China (English)

    D. L. Johnson; D. Prokhorova; L. Tidd; M. M. Millones; M. Vincent; J. Hager; A. Hunt; D. A. Griffith; S. Blount; S. Ellsworth; J. Hintz; R. Lucci; A. Mittiga

    2005-01-01

    A program of house dust sample collection and analysis has begun in Syracuse,New York, USA, in order to determine the feasibility of a geography-based exposure assessment for urban metals. The sampling program, and the protocols it employs, is described for two different types of wipe media, Ghost Wipes and Whatman Filters. Preliminary results show that strong spatial patterns of floor dust loading (mg dust per square foot) can be observed for data aggregated at a spatial scale of about 1600 m (~2.5 kin2). Floor dust metal concentrations were similar to those found in other urban environments, with some regional variation. The median floor dust Pb concentration was ~108 mg· kg-1 for this initial data set of ~264 sampled residential locations, and varied from 50 to 1100 mg Pb · kg-1.

  8. Bubble size distribution in surface wave breaking entraining process

    Institute of Scientific and Technical Information of China (English)

    HAN; Lei; YUAN; YeLi

    2007-01-01

    From the similarity theorem,an expression of bubble population is derived as a function of the air entrainment rate,the turbulent kinetic energy (TKE) spectrum density and the surface tension.The bubble size spectrum that we obtain has a dependence of a-2.5+nd on the bubble radius,in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range.To relate the bubble population with wave parameters,an expression about the air entrainment rate is deduced by introducing two statistical relations to wave breaking.The bubble population vertical distribution is also derived,based on two assumptions from two typical observation results.

  9. Raindrop size distributions and storm classification in Mexico City

    Science.gov (United States)

    Amaro-Loza, Alejandra; Pedrozo-Acuña, Adrián; Agustín| Breña-Naranjo, José

    2017-04-01

    Worldwide, the effects of urbanization and land use change have caused alterations to the hydrological response of urban catchments. This observed phenomenon implies high resolution measurements of rainfall patterns. The work provides the first dataset of raindrop size distributions and storm classification, among others, across several locations of Mexico City. Data were derived from a recent established network of laser optical disdrometers (LOD) and retrieving measurements of rainrate, reflectivity, number of drops, drop diameter & velocity, and kinetic energy, at a 1-minute resolution. Moreover, the comparison of hourly rainfall patterns revealed the origin and classification of storms into three types: stratiform, transition and convective, by means of its corresponding reflectivity and rainrate relationship (Z-R). Finally, a set of rainfall statistics was applied to evaluate the performance of the LOD disdrometer and weighing precipitation gauge (WPG) data at different aggregated timescales. It was found that WPG gauge estimates remain below the precipitation amounts measured by the LOD.

  10. Pore Size Distribution of High Performance Metakaolin Concrete

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5%,10% and 20% metakaolin were prepared at a water/cementitious material ratio (W/C) of 0.30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days, the compressive strength of the concrete with metakaolin and silica fume replacement increases.A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.

  11. Influence of particle size distribution on nanopowder cold compaction processes

    Science.gov (United States)

    Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.

    2017-06-01

    Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.

  12. Size distribution and seasonal variation of atmospheric cellulose

    Science.gov (United States)

    Puxbaum, Hans; Tenze-Kunit, Monika

    Atmospheric cellulose is a main constituent of the insoluble organic aerosol and a "macrotracer" for plant debris. A time series of the cellulose concentration at a downtown site in Vienna showed a maximum concentration during fall and a secondary maximum during spring. The fall maximum appears to be associated with leaf litter production, the spring maximum with increased biological activity involving repulsion of cellulose-containing particles, e.g. seed production. The grand average of the time series over 9 months was 0.374 μg m -3 cellulose, respectively, 0.75 μg m -3 plant debris. Compared to an annual average of 5.7 μg m -3 organic carbon as observed at a Vienna downtown site it becomes clear that plant debris is a major contributor to the organic aerosol and has to be considered in source attribution studies. Simultaneous measurements at the downtown and a suburban site indicated that particulate cellulose is obviously not produced within the city in notable amounts, at least during the campaign in December. Size distribution measurements with impactors showed the unexpected result that "fine aerosol" size particles (0.1- 1.6 μm aerodynamic diameter) contained 0.7% "free cellulose" on a mass basis, forming a wettable, but insoluble part of the accumulation mode aerosol.

  13. Passive acoustic inversion to estimate bedload size distribution in rivers

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Belleudy, Philippe; Gervaise, Cédric

    2016-04-01

    The knowledge of sediment transport rate in rivers is related to issues like changes in channel forms, inundation risks and river's ecological functions. The passive acoustic method introduced here measures the bedload processes by recording the noise generated by the inter-particle collisions. In this research, an acoustic inversion is proposed to estimate the size distribution of mobile particles. The theoretical framework of Hertz's impact between two solids rigid is used to model the sediment-generated noise. This model combined with the acoustical power spectrum density gives the information on the particle sizes. The sensitivity of the method is performed and finally the experimental validation is done through a series of tests in the laboratory as well in a natural stream. The limitations of the proposed inversion method are drawn assuming the wave propagation effects in the channel. It is stated that propagation effects limit the applicability of the method to large rivers, like fluvial channels, in the detriment of mountain torrents.

  14. Vesicle Size Distribution as a Novel Nuclear Forensics Tool

    Science.gov (United States)

    Simonetti, Antonio

    2016-01-01

    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40′38.28″N, 106°28′31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. PMID:27658210

  15. Dust ablation in Pluto's atmosphere

    Science.gov (United States)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  16. Rank-size Distributions of Chinese Cities: Macro and Micro Patterns

    Institute of Scientific and Technical Information of China (English)

    LI Shujuan

    2016-01-01

    A large number of studies have been conducted to find a better fit for city rank-size distributions in different countries.Many theoretical curves have been proposed,but no consensus has been reached.This study argues for the importance of examining city rank-size distribution across different city size scales.In addition to focusing on macro patterns,this study examines the micro patterns of city rank-size distributions in China.A moving window method is developed to detect rank-size distributions of cities in different sizes incrementally.The results show that micro patterns of the actual city rank-size distributions in China are much more complex than those suggested by the three theoretical distributions examined (Pareto,quadratic,and q-exponential distributions).City size distributions present persistent discontinuities.Large cities are more evenly distributed than small cities and than that predicted by Zipf's law.In addition,the trend is becoming more pronounced over time.Medium-sized cities became evenly distributed first and then unevenly distributed thereafter.The rank-size distributions of small cities are relatively consistent.While the three theoretical distributions examined in this study all have the ability to detect the overall dynamics of city rank-size distributions,the actual macro distribution may be composed of a combination of the three theoretical distributions.

  17. The mineral composition and spatial distribution of the dust ejecta of NGC 6302

    CERN Document Server

    Kemper, F; Jäger, C; Waters, L B F M

    2002-01-01

    We have analysed the full ISO spectrum of the planetary nebula NGC 6302 in order to derive the mineralogical composition of the dust in the nebula. We use an optically thin dust model in combination with laboratory measurements of cosmic dust analogues. We find two main temperature components at about 100 and 50 K respectively, with distinctly different dust compositions. The warm component contains an important contribution from dust without strong infrared resonances. In particular the presence of small warm amorphous silicate grains can be excluded. The detection of weak PAH bands also points to a peculiar chemical composition of the dust in this oxygen-rich nebula. The cool dust component contains the bulk of the mass and shows strong emission from crystalline silicates, which contain about 10 percent of the mass. In addition, we identify the 92 micron band with the mineral calcite, and argue that the 60 micron band contains a contribution from the carbonate dolomite. We present the mass absorption coeffi...

  18. Properties and Spatial Distribution of Dust Emission in the Crab Nebula

    CERN Document Server

    Temim, Tea; Dwek, Eli; Arendt, Richard G; Gehrz, Robert D; Slane, Patrick; Roellig, Thomas L

    2012-01-01

    Recent infrared (IR) observations of freshly-formed dust in supernova remnants (SNRs) have yielded significantly lower dust masses than predicted by theoretical models and measured from high redshift observations. The Crab Nebula's pulsar wind is thought to be sweeping up freshly-formed supernova (SN) dust along with the ejected gas. The evidence for this dust was found in the form of an IR excess in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially resolved emission spectra of dust in the Crab Nebula acquired with the Infrared Spectrograph aboard the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from from S, Si, Ne, Ar, O, Fe, and Ni. We derived a synchrotron spectral map from the 3.6 and 4.5 microns images, and subtracted this contribution from our data to produce a map of the residual continuum emission from dust. The du...

  19. Regular and quasi black hole solutions for spherically symmetric charged dust distributions in Einstein-Maxwell theory

    CERN Document Server

    Horvat, D; Narancic, Z; Horvat, Dubravko; Ilijic, Sasa; Narancic, Zoran

    2004-01-01

    Spherically symmetric distributions of electrically counterpoised dust (ECD) are used to construct solutions to Einstein-Maxwell equations in Majumdar-Papapetrou formalism. Unexpected bifurcating behavior of regular and singular solutions with regard to source strength is found for localized, as well as for the delta-function ECD distributions. Unified treatment of general ECD distributions is accomplished and it is shown that for certain source strengths one class of regular solutions approaches Minkowski spacetime, while the other comes arbitrarily close to black hole solutions.

  20. Crystal Size Distributions in Igneous rocks: Where are we now?

    Science.gov (United States)

    Higgins, M.

    2003-12-01

    Modern Crystal Size Distributions (CSD) studies started in 1988 and have expanded since then, albeit somewhat slowly. We have now measured CSDs in a variety of different compositions and for both plutonic and volcanic rocks. However, the subject still lags far behind chemical petrology and we need many more studies. CSD methodology has advanced considerably, both for 3D and 2D methods, but it is unfortunate that some 2D studies still do not use appropriate stereological conversions or publish their raw data. The nature of the lower size limit is very important, real or measurement artefact, but is not commonly stated. All this is especially important for comparing data with earlier studies. Individual CSDs of minerals are not always very informative. A much better approach is to look at suites of related CSDs. For instance, different minerals within a single sample, ensembles of related whole rock samples, comparison of late and early textures as preserved in oikocrysts, dykes or volcanic rocks. As more data become available it will be possible to compare usefully unrelated suites of rocks. Straight or nearly straight CSDs in volcanic rocks can be produced by steady-state crystallisation. If the growth rate is known then the residence time can be determined. In some rocks there is a good agreement with other chronometric techniques, but others show no such concordance. In the latter case another model may be more appropriate, such as textural coarsening. This model has been applied in some cases in inappropriate situations, which has cast doubt on the whole subject of CSDs. For plutonic rocks exponentially increasing undercooling can also produce straight CSDs. However, many CSDs are slightly curved and other models are possible, especially if no small crystals are present. Within ensembles of straight CSDs the slope and intercept are commonly correlated. This is mostly accounted for by closure and hence this correlation is not significant, although the variation

  1. Statistical properties of the normalized ice particle size distribution

    Science.gov (United States)

    Delanoë, Julien; Protat, Alain; Testud, Jacques; Bouniol, Dominique; Heymsfield, A. J.; Bansemer, A.; Brown, P. R. A.; Forbes, R. M.

    2005-05-01

    Testud et al. (2001) have recently developed a formalism, known as the "normalized particle size distribution (PSD)", which consists in scaling the diameter and concentration axes in such a way that the normalized PSDs are independent of water content and mean volume-weighted diameter. In this paper we investigate the statistical properties of the normalized PSD for the particular case of ice clouds, which are known to play a crucial role in the Earth's radiation balance. To do so, an extensive database of airborne in situ microphysical measurements has been constructed. A remarkable stability in shape of the normalized PSD is obtained. The impact of using a single analytical shape to represent all PSDs in the database is estimated through an error analysis on the instrumental (radar reflectivity and attenuation) and cloud (ice water content, effective radius, terminal fall velocity of ice crystals, visible extinction) properties. This resulted in a roughly unbiased estimate of the instrumental and cloud parameters, with small standard deviations ranging from 5 to 12%. This error is found to be roughly independent of the temperature range. This stability in shape and its single analytical approximation implies that two parameters are now sufficient to describe any normalized PSD in ice clouds: the intercept parameter N*0 and the mean volume-weighted diameter Dm. Statistical relationships (parameterizations) between N*0 and Dm have then been evaluated in order to reduce again the number of unknowns. It has been shown that a parameterization of N*0 and Dm by temperature could not be envisaged to retrieve the cloud parameters. Nevertheless, Dm-T and mean maximum dimension diameter -T parameterizations have been derived and compared to the parameterization of Kristjánsson et al. (2000) currently used to characterize particle size in climate models. The new parameterization generally produces larger particle sizes at any temperature than the Kristjánsson et al. (2000

  2. Are enhanced dust explosion hazards to be foreseen in production, processing and handling of powders consisting of nano-size particles?

    Science.gov (United States)

    Eckhoff, Rolf K.

    2011-07-01

    Based on experience with powders having particle sizes down to the range 1 - 0.1 μm one might expect that dust clouds from combustible nm-particle powders would exhibit extreme ignition sensitivities (very low MIEs) and extreme explosion rates (very high KSt-values). However, there are two basic physical reasons why this may not necessarily be the case. Firstly, the formation of clouds of well-dispersed primary particles from bulk powders consisting of nm-particles is extremely difficult to achieve, due to the comparatively very strong inter-particle cohesion forces. Secondly, should such a dispersion process nevertheless be fully successful, extremely fast coagulation processes in clouds within the explosive mass concentration range, would transform the primary nm-particles into much larger agglomerates within fractions of a second. Furthermore, for organic dusts and coal, the basic mechanism of flame propagation in the dust cloud is a further reason for not expecting extreme ignition sensitivities and explosion rates dust clouds from nm-particles. The overall conclusion is that dust clouds consisting of nm primary particles would not necessarily be expected to exhibit more severe MIE and KSt-values than those of dust clouds of μm primary particles. Recent experimental evidence confirms that this is in fact the case for KSt, whereas for MIE the values for some metals are significantly lower for nm primary particles than for μm ones.

  3. Are enhanced dust explosion hazards to be foreseen in production, processing and handling of powders consisting of nano-size particles?

    Energy Technology Data Exchange (ETDEWEB)

    Eckhoff, Rolf K, E-mail: rolf.eckhoff@ift.uib.no [University of Bergen (Norway)

    2011-07-06

    Based on experience with powders having particle sizes down to the range 1 - 0.1 {mu}m one might expect that dust clouds from combustible nm-particle powders would exhibit extreme ignition sensitivities (very low MIEs) and extreme explosion rates (very high K{sub St-}values). However, there are two basic physical reasons why this may not necessarily be the case. Firstly, the formation of clouds of well-dispersed primary particles from bulk powders consisting of nm-particles is extremely difficult to achieve, due to the comparatively very strong inter-particle cohesion forces. Secondly, should such a dispersion process nevertheless be fully successful, extremely fast coagulation processes in clouds within the explosive mass concentration range, would transform the primary nm-particles into much larger agglomerates within fractions of a second. Furthermore, for organic dusts and coal, the basic mechanism of flame propagation in the dust cloud is a further reason for not expecting extreme ignition sensitivities and explosion rates dust clouds from nm-particles. The overall conclusion is that dust clouds consisting of nm primary particles would not necessarily be expected to exhibit more severe MIE and K{sub St}{sup -}values than those of dust clouds of {mu}m primary particles. Recent experimental evidence confirms that this is in fact the case for K{sub St}, whereas for MIE the values for some metals are significantly lower for nm primary particles than for {mu}m ones.

  4. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

    Science.gov (United States)

    Kostadinov, Tihomir S.; Milutinović, Svetlana; Marinov, Irina; Cabré, Anna

    2016-04-01

    Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global text">SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ˜ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the

  5. Dust observations at orbital altitudes surrounding Mars.

    Science.gov (United States)

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  6. Submillimetre-sized dust aggregate collision and growth properties. Experimental study of a multi-particle system on a suborbital rocket

    Science.gov (United States)

    Brisset, J.; Heißelmann, D.; Kothe, S.; Weidling, R.; Blum, J.

    2016-08-01

    Context. In the very first steps of the formation of a new planetary system, dust agglomerates grow inside the protoplanetary disk that rotates around the newly formed star. In this disk, collisions between the dust particles, induced by interactions with the surrounding gas, lead to sticking. Aggregates start growing until their sizes and relative velocities are high enough for collisions to result in bouncing or fragmentation. With the aim of investigating the transitions between sticking and bouncing regimes for colliding dust aggregates and the formation of clusters from multiple aggregates, the Suborbital Particle and Aggregation Experiment (SPACE) was flown on the REXUS 12 suborbital rocket. Aims: The collisional and sticking properties of sub-mm-sized aggregates composed of protoplanetary dust analogue material are measured, including the statistical threshold velocity between sticking and bouncing, their surface energy and tensile strength within aggregate clusters. Methods: We performed an experiment on the REXUS 12 suborbital rocket. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes around 120 μm and 330 μm, respectively and volume filling factors around 0.37. During the experimental run of 150 s under reduced gravity conditions, the sticking of aggregates and the formation and fragmentation of clusters of up to a few millimetres in size was observed. Results: The sticking probability of the sub-mm-sized dust aggregates could be derived for velocities decreasing from ~22 to 3 cm s-1. The transition from bouncing to sticking collisions happened at 12.7+2.1-1.4 cm s-1 for the smaller aggregates composed of monodisperse particles and at 11.5+1.9-1.3 and 11.7+1.9-1.3 cm s-1 for the larger aggregates composed of mono- and polydisperse dust particles, respectively. Using the pull-off force of sub-mm-sized dust aggregates from the clusters, the surface energy of the

  7. [Distribution Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Dust of Xi'an City, China].

    Science.gov (United States)

    Wang, Li; Wang, Li-jun; Shi, Xing-min; Lu, Xin-wei

    2016-04-15

    A total of 58 surface dust samples were collected from Xi'an city. The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were analyzed by gas chromatography with a flame ionization detector (GC-FID). At the same time, the distribution and sources of PAHs in surface dust were studied. The results showed that the concentrations of individual PAH ranged from 14.69 to 6370. 48 microg x kg(-1), and the total concentrations of 16 PAHs (∑16 PAHs) ranged from 5039.67 to 47,738.50 microg x kg(-1), with a mean of 13,845.82 microg x kg(-1). Compared to the Y PAHs levels of other cities, the ∑16 PAHs in surface dust of Xi'an belonged to a relatively higher level. PAHs in surface dust were mainly dominated by high molecular weight PAHs with 4-6 rings and the concentration of 7 carcinogenic PAHs (1 CPAHs) accounted for 46.08% of 3 16PAHs. The mean of ∑16 PAHs in surface dust had the highest concentration at industrial area; followed by the educational area, traffic area, business and traffic area; residential area and parks showed relatively lower concentration. The average content of ∑16 PAHs in surface dust presented an increasing trend along the main urban area--the second ring road--the third ring road. ∑16 PAHs in surface dust had higher concentrations at the industrial areas of the east and west suburbs of Xi'an, the south suburb and the north section of the second ring road; ∑16 PAHs concentrations in the main urban area, north suburb and southeast part of Xi'an were relatively lower. The results of ratio, cluster analysis and principal component analysis showed that PAHs in surface dust were mainly originated from the combustion of fossil fuels and coal combustion. Among them, diesel combustion reached 36.07%, gasoline combustion accounted for 32.31%, and coal combustion was resposbe for 23.40%

  8. Determination of Size Distribution of Nano-particles by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Yan XUE; Hai Ying YANG; Yong Tan YANG

    2005-01-01

    A new method was developed for the determination of the size distribution of nano-particles by capillary zone electrophoresis (CZE). Scattering effect of nanoparticles was studied. This method for the determination of size distribution was statistical.

  9. Earliest phases of star formation (EPoS): Dust temperature distributions in isolated starless cores

    CERN Document Server

    Lippok, N; Henning, Th; Beuther, Z Balog H; Kainulainen, J; Krause, O; Linz, H; Nielbock, M; Ragan, S E; Robitaille, T P; Sadavoy, S I; Schmiedeke, A

    2016-01-01

    Constraining the temperature and density structure of dense molecular cloud cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal FIR dust emission from nearby isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless cloud cores. We employ self-consistent radiative transfer modeling to the derived density profiles, treating the ISRF as the only heating source. The best-fit values of local strength o...

  10. Assessment of particulate matter in the urban atmosphere: size distribution, metal composition and source characterization using principal component analysis.

    Science.gov (United States)

    Onat, Burcu; Alver Şahin, Ülkü; Bayat, Cuma

    2012-05-01

    In this study, the size distribution of airborne particles and related heavy metals Co, Cd, Sn, Cu, Ni, Cr, Pb and V in two urban areas in Istanbul: Yenibosna and Goztepe, were examined. The different inhalable particles were collected by using a cascade impactor in eight size fractions (9 μm) for six months at each station. Samples were collected on glass fiber filters and filters were extracted and analyzed using ICP-MS. Log-normal distributions showed that the particles collected at the Yenibosna site have a smaller size compared to the Goztepe samples and the size distribution of PM was represented the best by the tri-modal. The average total particle concentrations and standard deviations were obtained as 67.7 ± 17.0 μg m(-3) and 82.1 ± 21.2 μg m(-3), at the Yenibosna and Göztepe sites, respectively. The higher metal rate in fine and medium coarse PM showed that the anthropogenic sources were the most significant pollutant source. Principal component analysis identified five components for PM namely traffic, road dust, coal and fuel oil combustion, and industrial.

  11. Uranium mill ore dust characterization

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  12. Monte Carlo simulation of light scattering from size distributed homogenous and coated spherical particles

    Science.gov (United States)

    Gogoi, Ankur

    Light scattering is a subject of intensive research at the present time in diverse fields of research namely, physics, astronomy, meteorology, biology, nanotechnology, etc. Observation and theoretical calculation of the absorption and scattering properties of particles, whose size ranges from micrometer to nanometer, are not only essential to deduce their physical properties but also capable of giving useful information for better understanding of radiation transfer through a medium containing such scatterer. In addition to such experimental and theoretical studies on light scattering by particulate matter several other groups have been extensively using Monte Carlo (MC) method to simulate light (photon) propagation in scattering media. Importantly such methods of simulating light scattering properties of artificial particles are proving to be a very useful tool in verifying the experimental observations with real samples as well as providing new clues to improve the accuracy of the existing theoretical models. In this contribution we report a MC method developed by implementing Mie theory to simulate the light scattering pattern from size distributed homogenous and coated spherical particles in single scattering regime. The computer program was written in ANSI C-language. The accuracy, efficiency and reliability of the MC method were validated by comparing the results generated by using the MC method with other benchmark theoretical results and experimental results with standard samples. Notably the MC method reported here is found to be stable even for very large spherical particles (size parameters > 1000) with large values of real (= 10) and imaginary part (= 10) of the refractive index. The promising field of application of the reported MC method will be in simulating the light (or electromagnetic) scattering properties of different types of planetary and interplanetary dust particles.

  13. Analytical Approach for Loss Minimization in Distribution Systems by Optimum Placement and Sizing of Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bakshi Surbhi

    2016-01-01

    Full Text Available Distributed Generation has drawn the attention of industrialists and researchers for quite a time now due to the advantages it brings loads. In addition to cost-effective and environmentally friendly, but also brings higher reliability coefficient power system. The DG unit is placed close to the load, rather than increasing the capacity of main generator. This methodology brings many benefits, but has to address some of the challenges. The main is to find the optimal location and size of DG units between them. The purpose of this paper is distributed generation by adding an additional means to reduce losses on the line. This paper attempts to optimize the technology to solve the problem of optimal location and size through the development of multi-objective particle swarm. The problem has been reduced to a mathematical optimization problem by developing a fitness function considering losses and voltage distribution line. Fitness function by using the optimal value of the size and location of this algorithm was found to be minimized. IEEE-14 bus system is being considered, in order to test the proposed algorithm and the results show improved performance in terms of accuracy and convergence rate.

  14. ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS

    Directory of Open Access Journals (Sweden)

    Vincenzo Bagarello

    2009-09-01

    Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE <