WorldWideScience

Sample records for dust obscured galaxies

  1. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  2. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  3. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-01-01

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350μm = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10 7 M ⊙ and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  4. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chul [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of); Lee, Gwang-Ho, E-mail: jclee@kasi.re.kr [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-12-20

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S{sub 350μm} = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10{sup 7} M {sub ⊙} and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  5. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star

  6. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  7. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    International Nuclear Information System (INIS)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-01-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M ⊙ yr −1 . Deep polarimetry observations could confirm the reflection hypothesis

  8. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    Science.gov (United States)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  9. The most luminous heavily obscured quasars have a high merger fraction: morphological study of wise -selected hot dust-obscured galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lulu; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao [Shandong Provincial Key Lab of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Science, Shandong University, Weihai 264209 (China); Han, Yunkun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Fang, Guanwen, E-mail: llfan@sdu.edu.cn, E-mail: hanyk@ynao.ac.cn [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China)

    2016-05-10

    Previous studies have shown that Wide-field Infrared Survey Explorer -selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ∼ 3 using Hubble Space Telescope /WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (∼10{sup 14} L {sub ⊙}) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  10. STAR FORMATION AND DUST OBSCURATION AT z ∼ 2: GALAXIES AT THE DAWN OF DOWNSIZING

    International Nuclear Information System (INIS)

    Pannella, M.; Carilli, C. L.; Owen, F. N.; Strazzullo, V.; Daddi, E.; Aussel, H.; McCracken, H. J.; Mellier, Y.; Renzini, A.; Civano, F.; Koekemoer, A. M.; Schinnerer, E.; Scoville, N.; Smolcic, V.; Salvato, M.; Taniguchi, Y.; Kneib, J. P.; Ilbert, O.; Thompson, D.; Willott, C. J.

    2009-01-01

    We present first results of a study aimed to constrain the star formation rate (SFR) and dust content of galaxies at z ∼ 2. We use a sample of BzK-selected star-forming galaxies, drawn from the Cosmic Evolution Survey, to perform a stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after cleaning the sample from contamination by active galactic nuclei. Dust unbiased SFRs are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: (1) specific star formation rate (SSFR)s are constant over about 1 dex in stellar mass and up to the highest stellar mass probed, (2) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects, (3) a single value of the UV extinction applied to all galaxies would lead to a gross underestimate of the SFR in massive galaxies, (4) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provides results in very good agreement with the radio derived ones, (5) the mean SSFR of our sample steadily decreases by a factor of ∼4 with decreasing redshift from z = 2.3 to 1.4 and a factor of ∼40 down the local universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts; we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies.

  11. HerMES: THE FAR-INFRARED EMISSION FROM DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Calanog, J. A.; Wardlow, J.; Fu, Hai; Cooray, A.; Assef, R. J.; Bock, J.; Riechers, D.; Schulz, B.; Casey, C. M.; Conley, A.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Ibar, E.; Kartaltepe, J.; Magdis, G.; Rigopoulou, D.; Marchetti, L.; Pérez-Fournon, I.; Scott, Douglas

    2013-01-01

    Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ∼ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg 2 of the Cosmic Evolution Survey. The 3077 DOGs have (z) = 1.9 ± 0.3 and are selected from 24 μm and r + observations using a color cut of r + – [24] ≥ 7.5 (AB mag) and S 24 ≥ 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (≥3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 10 12 L ☉ and (0.77 ± 0.08) × 10 12 L ☉ , and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S 24 ≥ 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S 24 ≥ 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ∼ 2

  12. HerMES: THE FAR-INFRARED EMISSION FROM DUST-OBSCURED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Wardlow, J.; Fu, Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Assef, R. J. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bock, J.; Riechers, D.; Schulz, B. [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Casey, C. M. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Farrah, D.; Oliver, S. J.; Roseboom, I. G. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Ibar, E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Kartaltepe, J. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Magdis, G.; Rigopoulou, D. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Marchetti, L. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Pérez-Fournon, I. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2013-09-20

    Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ∼ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg{sup 2} of the Cosmic Evolution Survey. The 3077 DOGs have (z) = 1.9 ± 0.3 and are selected from 24 μm and r {sup +} observations using a color cut of r {sup +} – [24] ≥ 7.5 (AB mag) and S{sub 24} ≥ 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (≥3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 10{sup 12} L{sub ☉} and (0.77 ± 0.08) × 10{sup 12} L{sub ☉}, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S{sub 24} ≥ 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S{sub 24} ≥ 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ∼ 2.

  13. THE STAR FORMATION HISTORIES OF z ∼ 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Armus, L.; Desai, V.; Soifer, B. T.; Brown, M. J. I.; Gonzalez, A. H.; Melbourne, J.

    2012-01-01

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z ∼ 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M * ) of two populations of Spitzer-selected ULIRGs that have extremely red R – [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 μm associated with stellar emission ( b ump DOGs ) , while the other set of 51 DOGs have power-law mid-IR SEDs that are typical of obscured active galactic nuclei ( p ower-law DOGs ) . We measure M * by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M * values for SMGs, bump DOGs, and power-law DOGs are log(M * /M ☉ ) = 10.42 +0.42 –0.36 , 10.62 +0.36 –0.32 , and 10.71 +0.40 –0.34 , respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z ∼ 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z ∼ 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M * , a situation that arises more naturally in major mergers than in smooth accretion-powered systems.

  14. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    Science.gov (United States)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  15. Interferometric follow-up of WISE hyper-luminous hot, dust-obscured galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jingwen; Wright, Edward L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Bussmann, R. Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS78, Cambridge, MA 02138 (United States); Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Petric, Andreea [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Bridge, Carrie R. [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Assef, Roberto J. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av., Santiago, Ejército Libertador 441 (Chile); Gelino, Christopher R., E-mail: jingwen@astro.ucla.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-09-20

    The Wide-field Infrared Survey Explorer (WISE) has discovered an extraordinary population of hyper-luminous dusty galaxies that are faint in the two bluer passbands (3.4 μm and 4.6 μm) but are bright in the two redder passbands of WISE (12 μm and 22 μm). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the Combined Array for Research in Millimeter-wave Astronomy and the Submillimeter Array interferometer arrays at submillimeter/millimeter wavelengths. We report continuum detections at ∼1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1''-2'' and are consistent with single point sources. We estimate the masses of cold dust are 2.0 × 10{sup 8} M {sub ☉} for W0149+2350 and 3.9 × 10{sup 8} M {sub ☉} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ upper limits to the molecular gas masses traced by CO, which are 3.3 × 10{sup 10} M {sub ☉} and 2.3 × 10{sup 10} M {sub ☉} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with the WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.

  16. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Kyle [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Dickinson, Mark; Dey, Arjun; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Magnelli, Benjamin [Max Planck Institut fuer Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Pannella, Maurilio; Aussel, Herve; Daddi, Emanuele; Elbaz, David [Laboratoire AIM Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CEA-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Altieri, Bruno; Coia, Daniela [Herschel Science Center, European Space Astronomy Center, Villanueva de la Canada, E-28691 Madrid (Spain); Buat, Veronique [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-marseille, CNRS, 38 rue Frederic Joliot-Curie, F-13388 Marseille Cedex 13 (France); Bussmann, Shane; Hwang, Ho Seong [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Dannerbauer, Helmut [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Lin Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Morrison, Glenn, E-mail: kpenner@as.arizona.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-11-01

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {sub Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.

  17. VizieR Online Data Catalog: FIR data of IR-bright dust-obscured galaxies (DOGs) (Toba+, 2017)

    Science.gov (United States)

    Toba, Y.; Nagao, T.; Wang, W.-H.; Matsuhara, H.; Akiyama, M.; Goto, T.; Koyama, Y.; Ohyama, Y.; Yamamura, I.

    2017-11-01

    We investigate the star-forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, (i-[22])AB>7.0. Combining an IR-bright DOG sample with the flux at 22μm>3.8mJy discovered by Toba & Nagao (2016ApJ...820...46T) with the IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of seven IR-bright DOGs with spectroscopic redshifts (0.07DOGs and (2) the contribution of the active galactic nucleus to IR luminosity increases with IR luminosity. By comparing the stellar mass and SFR relation for our DOG sample and the literature, we found that most of the IR-bright DOGs lie significantly above the main sequence of star-forming galaxies at similar redshift, indicating that the majority of IRAS- or AKARI-detected IR-bright DOGs are starburst galaxies. (1 data file).

  18. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-01-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2σ upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M ☉ yr –1 , respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  19. Heavy X-ray obscuration in the most luminous galaxies discovered by WISE

    Science.gov (United States)

    Vito, F.; Brandt, W. N.; Stern, D.; Assef, R. J.; Chen, C.-T. J.; Brightman, M.; Comastri, A.; Eisenhardt, P.; Garmire, G. P.; Hickox, R.; Lansbury, G.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.

    2018-03-01

    Hot dust-obscured galaxies (DOGs) are hyperluminous (L8-1000 μm > 1013 L⊙) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most luminous (Lbol ≳ 1014 L⊙) known hot DOGs at z = 2-4.6. Five of them are covered by long-exposure (10-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116-0505) is a Compton-thick candidate, with column density NH = (1.0-1.5) × 1024 cm-2 derived from X-ray spectral fitting. The remaining 15 hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 are individually detected; therefore, we applied a stacking analysis to investigate their average emission. From hardness ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be log NH (cm-2) > 23.5 and LX ≳ 1044 erg s-1, which are consistent with results for individually detected sources. We also investigated the LX-L6 μm and LX-Lbol relations, finding hints that hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured quasi-stellar objects are needed to derive solid conclusions.

  20. Star formation at high redshift and the importance of dust obscuration

    DEFF Research Database (Denmark)

    Michalowski, Michal

    One of the aspects of the understanding of the Universe evolution is its star formation history. In order to gain a complete picture of the Universe evolution it is important to know when the stars we see today were formed. One of the method to study this problem is to use far-infrared and radio...... emission of galaxies. In this way it is possible to investigate the sites of star formation that are totally obscured by dust and therefore invisible at the optical wavelengths. It is because the energy absorbed by dust in the optical is re-emitted in the infrared, whereas radio emission is unaffected...... and/or radio, namely their enhanced submillimeter / radio emission combined with optical faintness and blue colors. I find that these four galaxies are young, highly star-forming, low-mass and dusty....

  1. NuSTAR observations of WISE J1036+0449, a galaxy at z ∼ 1 obscured by hot dust

    DEFF Research Database (Denmark)

    Ricci, C.; Assef, R. J.; Stern, D.

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer’s all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part...... to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z ~ 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding...... the mid-infrared/X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z ≲ 1 could be excellent laboratories to probe the characteristics...

  2. THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, J. A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Riechers, D. [Department of Astronomy, Cornell University, Ithaca, New York, NY 14853 (United States); Decarli, R.; Walter, F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Carilli, C. L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801-0387 (United States); Daddi, E. [CEA, Laboratoire AIM-CNRS-Université Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Dannerbauer, H., E-mail: jhodge@nrao.edu [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, 1180 Wien (Austria)

    2015-01-01

    We present high-resolution observations of the 880 μm (rest-frame FIR) continuum emission in the z = 4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation (SF) in this unlensed galaxy on scales of 0.''3 × 0.''2 (∼2.1 × 1.3 kpc). The observations reveal a bright (16 ± 1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the Hubble Space Telescope/Wide Field Camera 3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended SF, and the peak star formation rate surface density (119 ± 8 M {sub ☉} yr{sup –1} kpc{sup –2}) implies that the SF in GN20 remains sub-Eddington on scales down to 3 kpc{sup 2}. We find that the SF efficiency (SFE) is highest in the central regions of GN20, leading to a resolved SF law with a power-law slope of Σ{sub SFR} ∼ Σ{sub H{sub 2}{sup 2.1±1.0}}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the SF law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed SFE per free-fall time to include the star-forming medium on ∼kiloparsec scales in a galaxy 12 Gyr ago.

  3. RR Tel: Determination of Dust Properties During Minimum Obscuration

    Directory of Open Access Journals (Sweden)

    Jurkić T.

    2012-06-01

    Full Text Available the ISO infrared spectra and the SAAO long-term JHKL photometry of RR Tel in the epochs during minimum obscuration are studied in order to construct a circumstellar dust model. the spectral energy distribution in the near- and the mid-IR spectral range (1–15 μm was obtained for an epoch without the pronounced dust obscuration. the DUSTY code was used to solve the radiative transfer through the dust and to determine the circumstellar dust properties of the inner dust regions around the Mira component. Dust temperature, maximum grain size, dust density distribution, mass-loss rate, terminal wind velocity and optical depth are determined. the spectral energy distribution and the long-term JHKL photometry during an epoch of minimum obscuration show almost unattenuated stellar source and strong dust emission which cannot be explained by a single dust shell model. We propose a two-component model consisting of an optically thin circmustellar dust shell and optically thick dust outside the line of sight in some kind of a flattened geometry, which is responsible for most of the observed dust thermal emission.

  4. Are dusty galaxies blue? Insights on UV attenuation from dust-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C. M.; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 (United States); Scoville, N. Z. [California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Sanders, D. B.; Lee, N. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Finkelstein, S. L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Capak, P. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); De Zotti, G. [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Le Floc' h, E. [CEA-Saclay, Orme des Merisiers, bât. 709, F-91191 Gif-sur-Yvette Cedex (France); Ilbert, O. [Aix Marseille Université, CNRS, Laboratoire d' Astrophysique de marseille, UMR 7326, F-13388 Marseille (France); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Takeuchi, T. T. [Nagoya University, Division of Particle and Astrophysical Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2014-12-01

    Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates (SFRs). While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-z, here we investigate attenuation in dusty, star forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15-500 μm in the COSMOS field, in particular making use of Herschel imaging, and a rich data set on local galaxies, we find an empirical variation in the relationship between the rest-frame UV slope (β) and the ratio of infrared-to-ultraviolet emission (L {sub IR}/L {sub UV} ≡ IRX) as a function of infrared luminosity, or total SFR. Both locally and at high-z, galaxies above SFR ≳ 50 M {sub ☉} yr{sup –1} deviate from the nominal IRX-β relation toward bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-z dropout searches of <<1% at z ≲ 4-10, providing independent verification that contamination from very dusty foreground galaxies is low in Lyman-break galaxy searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g., galaxies with >50 M {sub ☉} yr{sup –1}, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at z ∼ 2 exhibit steady-state star formation in secular disks.

  5. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    Melbourne, J.; Matthews, K.; Soifer, B. T.

    2009-01-01

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f ν (24 μm)/f ν (R) ∼> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ∼ 2 ± 0.5. Extreme mid-IR luminosities (L IR > 10 12-14 ) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ∼1 kpc, circumstantial evidence for ongoing mergers.

  6. GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.; Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States); Elbaz, D.; Daddi, E.; Magdis, G.; Aussel, H.; Dannerbauer, H.; Dasyra, K.; Hwang, H. S. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CE-Saclay, F-91191, Gif-sur-Yvette (France); Morrison, G. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, Amherst, MA 01003 (United States); Ivison, R. [UK Astronomy Technology Centre, Science and Technology Facilities Council, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Papovich, C. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Buat, V.; Burgarella, D. [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-Marseille, CNRS, 38 Rue Frederic Joliot-Curie, 13388 Marseille Cedex 13 (France); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Murphy, E. [Spitzer Science Center, MC 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, 28691 Madrid (Spain); and others

    2012-01-10

    We take advantage of the sensitivity and resolution of the Herschel Space Observatory at 100 and 160 {mu}m to directly image the thermal dust emission and investigate the infrared luminosities (L{sub IR}) and dust obscuration of typical star-forming (L*) galaxies at high redshift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5 {<=} z{sub spec} < 2.6 in the GOODS-North field. Supplemented with deep Very Large Array and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 {mu}m, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L{sub UV} {approx}> 10{sup 10} L{sub Sun} at z {approx} 2 are luminous infrared galaxies with a median L{sub IR} = (2.2 {+-} 0.3) Multiplication-Sign 10{sup 11} L{sub Sun }. Their median ratio of L{sub IR} to rest-frame 8 {mu}m luminosity (L{sub 8}) is L{sub IR}/L{sub 8} = 8.9 {+-} 1.3 and is Almost-Equal-To 80% larger than that found for most star-forming galaxies at z {approx}< 2. This apparent redshift evolution in the L{sub IR}/L{sub 8} ratio may be tied to the trend of larger infrared luminosity surface density for z {approx}> 2 galaxies relative to those at lower redshift. Typical galaxies at 1.5 {<=} z < 2.6 have a median dust obscuration L{sub IR}/L{sub UV} = 7.1 {+-} 1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2 {+-} 0.6. This result is similar to that inferred from previous investigations of the UV, H{alpha}, 24 {mu}m, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope ({beta}) implies that L* galaxies with redder spectral slopes are also dustier and that the correlation between {beta} and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame {approx_equal} 30 and

  7. High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    Science.gov (United States)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.

    2009-05-01

    Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.

  8. Optical colours and spectral indices of z = 0.1 eagle galaxies with the 3D dust radiative transfer code skirt

    Science.gov (United States)

    Trayford, James W.; Camps, Peter; Theuns, Tom; Baes, Maarten; Bower, Richard G.; Crain, Robert A.; Gunawardhana, Madusha L. P.; Schaller, Matthieu; Schaye, Joop; Frenk, Carlos S.

    2017-09-01

    We present mock optical images, broad-band and H α fluxes, and D4000 spectral indices for 30 145 galaxies from the eagle hydrodynamical simulation at redshift z = 0.1, modelling dust with the skirt Monte Carlo radiative transfer code. The modelling includes a subgrid prescription for dusty star-forming regions, with both the subgrid obscuration of these regions and the fraction of metals in diffuse interstellar dust calibrated against far-infrared fluxes of local galaxies. The predicted optical colours as a function of stellar mass agree well with observation, with the skirt model showing marked improvement over a simple dust-screen model. The orientation dependence of attenuation is weaker than observed because eagle galaxies are generally puffier than real galaxies, due to the pressure floor imposed on the interstellar medium (ISM). The mock H α luminosity function agrees reasonably well with the data, and we quantify the extent to which dust obscuration affects observed H α fluxes. The distribution of D4000 break values is bimodal, as observed. In the simulation, 20 per cent of galaxies deemed 'passive' for the skirt model, I.e. exhibiting D4000 >1.8, are classified 'active' when ISM dust attenuation is not included. The fraction of galaxies with stellar mass greater than 1010 M⊙ that are deemed passive is slightly smaller than observed, which is due to low levels of residual star formation in these simulated galaxies. Colour images, fluxes and spectra of eagle galaxies are to be made available through the public eagle data base.

  9. DISCOVERY OF 'WARM DUST' GALAXIES IN CLUSTERS AT z {approx} 0.3: EVIDENCE FOR STRIPPING OF COOL DUST IN THE DENSE ENVIRONMENT?

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Rex, M.; Egami, E.; Walth, G.; Pereira, M. J. [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Chung, S. M.; Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Perez-Gonzalez, P. G. [Departamento de Astrofisica, Facultad de CC. Fisicas,Universidad Complutense de Madrid, E-28040 Madrid (Spain); Smail, I. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Altieri, B.; Valtchanov, I. [Herschel Science Centre, ESAC, ESA, P.O. Box 78, Villanueva de la Canada, E-28691 Madrid (Spain); Appleton, P.; Fadda, D. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Alba, A. Berciano [ASTRON, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo (Netherlands); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Dessauges-Zavadsky, M. [Observatoire de Geneve, Universite de Geneve, 51 Ch. des Maillettes, CH-1290 Sauverny (Switzerland); Van der Werf, P. P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Zemcov, M., E-mail: trawle@as.arizona.edu [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-09-10

    Using far-infrared imaging from the 'Herschel Lensing Survey', we derive dust properties of spectroscopically confirmed cluster member galaxies within two massive systems at z {approx} 0.3: the merging Bullet Cluster and the more relaxed MS2137.3-2353. Most star-forming cluster sources ({approx}90%) have characteristic dust temperatures similar to local field galaxies of comparable infrared (IR) luminosity (T{sub dust} {approx} 30 K). Several sub-luminous infrared galaxy (LIRG; L{sub IR} < 10{sup 11} L{sub Sun }) Bullet Cluster members are much warmer (T{sub dust} > 37 K) with far-infrared spectral energy distribution (SED) shapes resembling LIRG-type local templates. X-ray and mid-infrared data suggest that obscured active galactic nuclei do not contribute significantly to the infrared flux of these 'warm dust' galaxies. Sources of comparable IR luminosity and dust temperature are not observed in the relaxed cluster MS2137, although the significance is too low to speculate on an origin involving recent cluster merging. 'Warm dust' galaxies are, however, statistically rarer in field samples (>3{sigma}), indicating that the responsible mechanism may relate to the dense environment. The spatial distribution of these sources is similar to the whole far-infrared bright population, i.e., preferentially located in the cluster periphery, although the galaxy hosts tend toward lower stellar masses (M{sub *} < 10{sup 10} M{sub Sun }). We propose dust stripping and heating processes which could be responsible for the unusually warm characteristic dust temperatures. A normal star-forming galaxy would need 30%-50% of its dust removed (preferentially stripped from the outer reaches, where dust is typically cooler) to recover an SED similar to a 'warm dust' galaxy. These progenitors would not require a higher IR luminosity or dust mass than the currently observed normal star-forming population.

  10. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  11. NuSTAR Observations of WISE J1036+0449, A Galaxy at zeta approx 1 Obscured by Hot Dust

    Science.gov (United States)

    Ricci, C.; Assef, R. J.; Stern, Daniel K.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A.W.; Zhang, William W.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(sub BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(sub Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(sub H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  12. NuSTAR Observations of WISE J1036+0449, A Galaxy at Z Approx. 1 Obscured by Hot Dust

    Science.gov (United States)

    Ricci, C.; Assef, R. J.; Stern, D.; Nikutta, R.; Alexander, D. M.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Blain, A. W.; Boggs, S.; hide

    2017-01-01

    Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z > 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z < or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.

  13. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    International Nuclear Information System (INIS)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison; Montaña, Alfredo; Aretxaga, Itziar; Hughes, David; Limousin, Marceau; Marchesini, Danilo; Kado-Fong, Erin; Alberts, Stacey; Avila-Reese, Vladimir; Bermejo-Climent, José Ramón; Brammer, Gabriel; Bravo-Alfaro, Hector; Chary, Ranga-Ram; Keller, Erica

    2017-01-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10 10 L ⊙ and an obscured star formation rate of 14.6 ± 4.5 M ⊙ yr −1 . The unobscured star formation rate from the UV is only 4.1 ± 0.3 M ⊙ yr −1 , which means the total star formation rate (18.7 ± 4.5 M ⊙ yr −1 ) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10 9 M ⊙ , MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  14. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Montaña, Alfredo; Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840 Puebla (Mexico); Limousin, Marceau [Aix Marseille Univ, CNRS, LAM, Laboratoire d' Astrophysique de Marseille, Marseille (France); Marchesini, Danilo; Kado-Fong, Erin [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Alberts, Stacey [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Avila-Reese, Vladimir [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, CDMX (Mexico); Bermejo-Climent, José Ramón [Departamento de Astrofísica, Universidad de La Laguna. Vía Láctea s/n, La Laguna 38200, Tenerife (Spain); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bravo-Alfaro, Hector [Departamento de Astronomia, Universidad de Guanajuato, Apdo. Postal 144, Guanajuato 36000 (Mexico); Chary, Ranga-Ram [Infrared Processing and Analysis Center, MS314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Keller, Erica, E-mail: pope@astro.umass.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2017-04-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate from the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  15. THE SPECTRAL ENERGY DISTRIBUTIONS AND INFRARED LUMINOSITIES OF z ≈ 2 DUST-OBSCURED GALAXIES FROM Herschel AND Spitzer

    International Nuclear Information System (INIS)

    Melbourne, J.; Soifer, B. T.; Desai, Vandana; Armus, Lee; Pope, Alexandra; Alberts, Stacey; Dey, Arjun; Jannuzi, B. T.; Bussmann, R. S.

    2012-01-01

    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ≈ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L IR > 10 12 L ☉ ). We present new far-infrared photometry, at 250, 350, and 500 μm (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10 11.6 L ☉ IR (8-1000 μm) 13.6 L ☉ . 90% of the Herschel-detected DOGs in this sample are ULIRGs and 30% have L IR > 10 13 L ☉ . The rest-frame near-IR (1-3 μm) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with 'power-law' SEDs in the rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar 'bump' in their rest-frame near-IR show observed-frame 250/24 μm flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 μm flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 μm flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ∼25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 μm luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 μm luminosity (the IR8 = L IR (8-1000 μm)/νL ν (8 μm) parameter of Elbaz et al.). Instead of lying on the z = 1-2 'infrared main sequence' of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up

  16. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  17. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    International Nuclear Information System (INIS)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn; Van Dokkum, Pieter; Momcheva, Ivelina; Nelson, Erica; Brammer, Gabriel; Da Cunha, Elisabete; Rix, Hans-Walter; Maseda, Michael; Schreiber, Natascha M. Förster; Kriek, Mariska; Quadri, Ryan; Wake, David; Lundgren, Britt; Whitaker, Katherine E.; Marchesini, Danilo; Pacifici, Camilla; Skelton, Rosalind E.

    2014-01-01

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10 –12 yr –1 ). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10 –11.9 × (1 + z) 4 yr –1 . These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  18. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van Dokkum, Pieter; Momcheva, Ivelina; Nelson, Erica [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Da Cunha, Elisabete; Rix, Hans-Walter; Maseda, Michael [Max Planck Institute for Astronomy (MPIA), Konigstuhl 17, D-69117 Heidelberg (Germany); Schreiber, Natascha M. Förster [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Kriek, Mariska [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Quadri, Ryan [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Wake, David; Lundgren, Britt [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Whitaker, Katherine E. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa)

    2014-11-20

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  19. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    Science.gov (United States)

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  20. Galaxy Zoo: A Catalog of Overlapping Galaxy Pairs for Dust Studies

    Science.gov (United States)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Mezzoprete, Massimo; Lintott, Chris J.; Schawinski, Kevin; Gay, Pamela; Masters, Karen L.

    2013-01-01

    Analysis of galaxies with overlapping images offers a direct way to probe the distribution of dust extinction and its effects on the background light. We present a catalog of 1990 such galaxy pairs selected from the Sloan Digital Sky Survey (SDSS) by volunteers of the Galaxy Zoo project. We highlight subsamples which are particularly useful for retrieving such properties of the dust distribution as UV extinction, the extent perpendicular to the disk plane, and extinction in the inner parts of disks. The sample spans wide ranges of morphology and surface brightness, opening up the possibility of using this technique to address systematic changes in dust extinction or distribution with galaxy type. This sample will form the basis for forthcoming work on the ranges of dust distributions in local disk galaxies, both for their astrophysical implications and as the low-redshift part of a study of the evolution of dust properties. Separate lists and figures show deep overlaps, where the inner regions of the foreground galaxy are backlit, and the relatively small number of previously-known overlapping pairs outside the SDSS DR7 sky coverage.

  1. Dust formation in a galaxy with primitive abundances.

    Science.gov (United States)

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  2. UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Ford, H.; Conselice, C. J.; Giavalisco, M.; Van Dokkum, P.

    2009-01-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ∼ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z= 3 ) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi 'dropout' Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ∼ 2-4 than it is at z ∼ 5-6 (from ∼-2.4 at z ∼ 6 to ∼-1.5 at z ∼ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ∼ 2.5 and z ∼ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ∼ 4, and particularly at z ∼> 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ∼ 4). This suggests that star-forming galaxies at z ∼> 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z ∼> 5 that are missed in 'dropout' searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ∼ 0 and z ∼ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (∼ 4.

  3. Extended dust in dwarf galaxies - solving an energy-budget paradox?

    Science.gov (United States)

    Keel, William C.; Holwerda, Benne; Lintott, Chris; Schawinski, Kevin

    2012-02-01

    The role of dust in shaping the emerging spectral energy distributions of galaxies remains poorly understood; recent Herschel results suggest large amounts of cold dust coupled with only modest optical extinction for much of the galaxy population. Previous work has used the discovery of a silhouetted-galaxy pair of a backlit dwarf galaxy with dust features extending beyond the de Vaucouleurs radius to investigate this question. We propose to examine a larger set of galaxies of this type drawn from the Galaxy Zoo catalog of silhouetted-galaxy pairs, to see whether a significant fraction of dwarfs have such extensive dust distributions. The catalog contains ~ 150 candidate backlit dwarfs; if such dust distributions are common enough to account for the Herschel results, we would see many additional cases of silhouetted dust beyond their stellar disks.

  4. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2015-01-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H 2 ) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H 2 gas fraction (f H 2 ), and gas-phase chemical abundances (e.g., A O = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f H 2 can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A O -D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A O is smaller. The simulated galaxies with larger total dust masses show larger H 2 and stellar masses and higher f H 2 . Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z

  5. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2015-02-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H{sub 2}) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H{sub 2} gas fraction (f{sub H{sub 2}}), and gas-phase chemical abundances (e.g., A {sub O} = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f{sub H{sub 2}} can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A {sub O}-D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A {sub O} is smaller. The simulated galaxies with larger total dust masses show larger H{sub 2} and stellar masses and higher f{sub H{sub 2}}. Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z.

  6. New radiative transfer models for obscuring tori in active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Dullemond, CP

    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed

  7. UV Continuum Slope and Dust Obscuration from z ~ 6 to z ~ 2: The Star Formation Rate Density at High Redshift

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Conselice, C. J.; Ford, H.; Giavalisco, M.; van Dokkum, P.

    2009-11-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ~ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z = 3) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi "dropout" Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ~ 2-4 than it is at z ~ 5-6 (from ~-2.4 at z ~ 6 to ~-1.5 at z ~ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ~ 2.5 and z ~ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ~ 4, and particularly at z gsim 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ~ 4). This suggests that star-forming galaxies at z gsim 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z gsim 5 that are missed in "dropout" searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ~ 0 and z ~ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (lsim2 times) at all times for lower luminosity galaxies. Because these same lower luminosity galaxies

  8. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    Science.gov (United States)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  9. Infrared Selection of Obscured Active Galactic Nuclei in the COSMOS Field

    Science.gov (United States)

    Chang, Yu-Yen; Le Floc'h, Emeric; Juneau, Stéphanie; da Cunha, Elisabete; Salvato, Mara; Civano, Francesca; Marchesi, Stefano; Ilbert, Olivier; Toba, Yoshiki; Lim, Chen-Fatt; Tang, Ji-Jia; Wang, Wei-Hao; Ferraro, Nicholas; Urry, Megan C.; Griffiths, Richard E.; Kartaltepe, Jeyhan S.

    2017-12-01

    We present a study of the connection among black hole accretion, star formation, and galaxy morphology at z≤slant 2.5. We focus on active galactic nuclei (AGNs) selected by their mid-IR power-law emission. By fitting optical to far-IR photometry with state-of-the-art spectral energy distribution (SED) techniques, we derive stellar masses, star formation rates, dust properties, and AGN contributions in galaxies over the whole COSMOS field. We find that obscured AGNs lie within or slightly above the star-forming sequence. We confirm our previous finding about compact host galaxies of obscured AGNs at z˜ 1, and find that galaxies with 20%-50% AGN contributions tend to have smaller sizes, by ˜25%-50%, compared to galaxies without AGNs. Furthermore, we find that a high merger fraction of up to 0.5 is appropriate for the most luminous ({log}({L}{IR}/{L}⊙ )˜ 12.5) AGN hosts and non-AGN galaxies, but not for the whole obscured AGN sample. Moreover, the merger fraction depends on the total and star-forming IR luminosity, rather than on the decomposed AGN infrared luminosity. Our results suggest that major mergers are not the main driver of AGN activity, and therefore obscured AGNs might be triggered by internal mechanisms, such as secular processes, disk instabilities, and compaction in a particular evolutionary stage. We make the SED modeling results publicly available.

  10. X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Ajello, M. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Comastri, A. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Cusumano, G.; Parola, V. La; Segreto, A., E-mail: smarche@clemson.edu [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2017-02-10

    We present the combined Chandra and Swift -BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog. We selected nearby ( z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3–10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3–150 keV energy range allows us to determine that all the objects are significantly obscured, with N{sub H} ≥ 10{sup 23} cm{sup −2} at a >99% confidence level. Moreover, one to three sources are candidate Compton-thick Active Galactic Nuclei (CT-AGNs; i.e., N{sub H}≥10{sup 24} cm{sup −2}). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.

  11. Galaxy Zoo: A Catalog of Overlapping Galaxy Pairs for Dust Studies

    OpenAIRE

    Keel, William C.; Manning, Anna; Holwerda, Benne W.; Mezzoprete, Massimo; Lintott, Chris J.; Schawinski, Kevin; Gay, Pamela; Masters, Karen L.

    2012-01-01

    Analysis of galaxies with overlapping images offers a direct way to probe the distribution of dust extinction and its effects on the background light. We present a catalog of 1990 such galaxy pairs selected from the Sloan Digital Sky Survey (SDSS) by volunteers of the Galaxy Zoo project. We highlight subsamples which are particularly useful for retrieving such properties of the dust distribution as UV extinction, the extent perpendicular to the disk plane, and extinction in the inner parts of...

  12. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  13. An Inclination-Dependent IRX-beta Relation for Galaxies at z~1.5

    Science.gov (United States)

    Wang, Weichen; Kassin, Susan A.; Pacifici, Camilla; de la Vega, Alexander; Simons, Raymond C.; Barro, Guillermo; Gordon, Karl D.; Snyder, Gregory

    2018-01-01

    Star-forming galaxies near cosmic noon are substantially obscured by dust. Therefore, to measure galaxy star-formation rates (SFRs), it is crucial to accurately account for dust obscuration. This is usually done by measuring the slopes of spectra in the rest-frame ultraviolet (i.e., β). Another independent method is to measure the infrared excess IRX, defined as the ratio between infrared and ultraviolet luminosity. In this work, we present the discovery that the relation between IRX and β varies systematically with galaxy inclination at z~1.5. Edge-on galaxies are on average ~0.5 dex higher in IRX than face-on galaxies at fixed β. Furthermore, we find that the difference between SFR(UV+IR) and β-corrected SFR(UV) is correlated with inclination. Our finding is consistent with the study of local galaxies (Wild et al. 2011), where the dust attenuation curve is found to flatten with increasing inclination. We interpret our results using a picture where dust and young stars are spatially mixed. In this case, β is more sensitive to the optically-thin regions near the surface of galaxy disks. Therefore, compared to the case of face-on galaxies, β measures a smaller fraction of the total dust optical depth for the edge-on galaxies, whereas IRX always probes the total optical depth. We conclude that inclination must be taken into account when evaluating dust attenuation with β at high redshift.

  14. Jekyll & Hyde: quiescence and extreme obscuration in a pair of massive galaxies 1.5 Gyr after the Big Bang

    Science.gov (United States)

    Schreiber, C.; Labbé, I.; Glazebrook, K.; Bekiaris, G.; Papovich, C.; Costa, T.; Elbaz, D.; Kacprzak, G. G.; Nanayakkara, T.; Oesch, P.; Pannella, M.; Spitler, L.; Straatman, C.; Tran, K.-V.; Wang, T.

    2018-03-01

    We obtained ALMA spectroscopy and deep imaging to investigate the origin of the unexpected sub-millimeter emission toward the most distant quiescent galaxy known to date, ZF-COSMOS-20115 at z = 3.717. We show here that this sub-millimeter emission is produced by another massive (M* 1011 M⊙), compact (r1/2 = 0.67 ± 0.14 kpc) and extremely obscured galaxy (AV 3.5), located only 0.43'' (3.1 kpc) away from the quiescent galaxy. We dub the quiescent and dusty galaxies Jekyll and Hyde, respectively. No dust emission is detected at the location of the quiescent galaxy, implying SFR < 13 M⊙ yr-1 which is the most stringent upper limit ever obtained for a quiescent galaxy at these redshifts. The two sources are spectroscopically confirmed to lie at the same redshift thanks to the detection of [C II]158 in Hyde (z = 3.709), which provides one the few robust redshifts for a highly-obscured "H-dropout" galaxy (H - [4.5] = 5.1 ± 0.8). The [C II] line shows a clear rotating-disk velocity profile which is blueshifted compared to the Balmer lines of Jekyll by 549 ± 60 km s-1, demonstrating that it is produced by another galaxy. Careful de-blending of the Spitzer imaging confirms the existence of this new massive galaxy, and its non-detection in the Hubble images requires extremely red colors and strong attenuation by dust. Full modeling of the UV-to-far-IR emission of both galaxies shows that Jekyll has fully quenched at least 200Myr prior to observation and still presents a challenge for models, while Hyde only harbors moderate star-formation with SFR ≲ 120 M⊙ yr-1, and is located at least a factor 1.4 below the z 4 main sequence. Hyde could also have stopped forming stars less than 200 Myr before being observed; this interpretation is also suggested by its compactness comparable to that of z 4 quiescent galaxies and its low [C II]/FIR ratio, but significant on-going star-formation cannot be ruled out. Lastly, we find that despite its moderate SFR, Hyde hosts a dense

  15. Spatial distribution of dust in galaxies from the Integral field unit data

    Science.gov (United States)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  16. The effects of host obscuration on searches for tidal disruption events

    Science.gov (United States)

    Roth, Nathaniel; Mushotzky, Richard; Gezari, Suvi; van Velzen, Sjoert

    2018-01-01

    Tidal disruptions of stars by super-massive black holes (TDEs) offer opportunities to learn about black hole demographics and stellar dynamics. However, matching the observed TDE rate to that predicted by theory has remained a challenge, as most surveys to-date have found fewer flares than expected. Some of this discrepancy may relate to nuclear obscuration in host galaxies. This includes the effects of dust at optical and ultraviolet wavelengths, and the effects of neutral gas at x-ray wavelengths. I will discuss procedures to correct the observed TDE rate within existing and upcoming surveys to the intrinsic per-galaxy rate by accounting for host obscuration. I will also discuss how reddening might affect TDE selection criteria, and I will make predictions for the population of infrared TDE light echoes.

  17. Optical analysis of dust complexes in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.A.M.

    1979-01-01

    A method for quantitatively investigating properties of dust regions in external galaxies is presented. The technique involves matching radiative transfer models (with absorption plus scattering) to multicolor photographic and photometric observations. Dust features in each galaxy are modeled with two configurations; one is rectangular with a Gaussian distribution perpendicular to the plane of the galaxy, and the other is a uniform oblate spheroid with an arbitrary height from the midplane. It is found that it is possible to determine the intrinsic opacities in the clouds and in the nearby comparison regions, and that differention between high opacity low-lying clouds and low opacity clouds that are above the midplane can be made. This technique was used to study dust complexes in the late-type spiral galaxies NGC 628 (M74), NGC 5194 (M51), NGC 5457 (M101), and NGC 7793. Most of the features in the prominent dust lanes were found to have internal visual extinctions corresponding to 10 to 15 mag kpc -1 , while the adjacent comparison regions typically contained 4 mag kpc -1 . Thus the opacity through a dust lane is about 1.5 mag greater than the 0.5 to 1.0 mag of extinction through a comparison region. A noticeable deviation from this result was found for all of the dust lanes that occurred on the inner edges of the spiral arm branches. These features had internal densities that were approx. 10 times larger than in their comparison regions, in contrast to the normal dust lanes which had density enhancements of a factor of approx. 3. Dust features which were on the outer sides of spiral arms appeared to be no different than main inner dust lane features

  18. Dust Evolution in Galaxy Cluster Simulations

    Science.gov (United States)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  19. Probing the impact of metallicity on the dust properties in galaxies

    International Nuclear Information System (INIS)

    Remy-Ruyer, Aurelie

    2013-01-01

    As galaxies evolve, their Interstellar Medium (ISM) becomes continually enriched with metals, and this metal enrichment influences the subsequent star formation. Low metallicity dwarf galaxies of the local Universe are ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies and gives us insight into the enrichment process and star formation under ISM conditions that may provide clues to conditions in early universe metal-poor systems. Previous studies have shown that the ISM of dwarf galaxies poses a number of interesting puzzles in terms of the abundance of dust grains, the dust composition and even the FIR emission processes. However these studies were limited to the warmer dust emitting at wavelengths shorter than 200 microns and were done only on a small number of dwarf galaxies. Thanks to its increased sensitivity and resolution in FIR and submillimeter (sub-mm) wavelengths, Herschel gives us a new view on the cold dust properties in galaxies and enables us to study the lowest metallicity galaxies in a systematic way. In this work, I carry out a study of the dust properties in dwarf galaxies and compare with more metal rich environments, in order to address the question of the impact of metallicity on the dust properties. The novelty of this work lays in the fact that dwarf galaxies are studied here in a systematic way, enabling us to derive and quantify the general properties that are representative of these systems. This study is conducted over the full IR-to-sub-mm range, using new FIR/sub-mm Herschel observations, Spitzer, WISE, IRAS and 2MASS data. We complete this set of data with longer sub-mm measurements from ground-based facilities such as APEX and JCMT to study the presence and characteristics of the sub-mm excess in my sample of galaxies. I also collect Hi and CO data to access the gas properties of the galaxies and study the evolution of the G/D with metallicity. Our study reveal different dust properties in

  20. New radiative transfer models for obscuring tori in active galaxies

    OpenAIRE

    van Bemmel, I. M.; Dullemond, C. P.

    2003-01-01

    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed for different orientations of the toroid. Colour-colour comparisons with observational data are consistent with previous observations that the emission longward of 60 micron is produced by star-fo...

  1. MEASUREMENTS OF DUST EXTINCTION IN HIGHLY INCLINED SPIRAL GALAXIES

    NARCIS (Netherlands)

    JANSEN, RA; KNAPEN, JH; BECKMAN, JE; PELETIER, RF; HES, R

    1994-01-01

    We study the extinction properties of dust in the well-defined dust lanes of four highly inclined galaxies, using U-, B-, V-, R- and I-band CCD and J- and K'-band near-infrared array images. For three of these galaxies, we could use the symmetry of the underlying light profile to obtain absolute

  2. Production, Processing, and Consumption of Dust in the Galaxy

    Science.gov (United States)

    Gontcharov, G.

    2017-06-01

    The recent results obtained by the modern telescopes and spacecrafts allow us for the first time to compare directly the mass, spatial density and size distribution of the dust grains in the regions of their production, processing and consumption in our Galaxy. The ALMA and VLT/SPHERE telescopes allow us to estimate the production of the dust by supergiants and collapsing core supernovae. The 2MASS, WISE, SDSS, Planck and other telescopes allow us to estimate the processing of the dust in the interstellar medium. After renewed Besançon Galaxy model the medium appears to contain about half the local mass of matter (both baryonic and dark) in the Galactic neighborhood of the Sun. The Helios, Ulysses, Galileo, Cassini and New Horizons spacecrafts allow us to estimate the consumption of the dust by large solid bodies. The results are consistent assuming the local mean spatial density of the dust is about of 3.5×10-26 g/cm3, mean density of the grain is about 1 g/cm3, and the dust production rate is about of 0.015 Solar mass per year for whole the Galaxy.

  3. Dust extinction in the first galaxies

    Science.gov (United States)

    Jaacks, Jason; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    Using cosmological volume simulations and a custom built sub-grid model for Population III (Pop III) star formation, we examine the baseline dust extinction in the first galaxies due to Pop III metal enrichment in the first billion years of cosmic history. We find that although the most enriched, high-density lines of sight in primordial galaxies can experience a measurable amount of extinction from Pop III dust [E(B - V)max = 0.07, AV, max ≈ 0.28], the average extinction is very low with ≲ 10-3. We derive a power-law relationship between dark matter halo mass and extinction of E(B-V)∝ M_halo^{0.80}. Performing a Monte Carlo parameter study, we establish the baseline reddening of the ultraviolet spectra of dwarf galaxies at high redshift due to Pop III enrichment only. With this method, we find - 2.51 ± 0.07, which is both nearly halo mass and redshift independent.

  4. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  5. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Roussel, H. [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS UMR 7095, F-75014 Paris (France); Sauvage, M.; Lebouteiller, V.; Madden, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot DAPNIA/Service d' Astrophysique, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Smith, M. W. L.; Gear, W. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; De Looze, I. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, G. [UK ALMA Regional Centre Node, Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Boquien, M.; Boselli, A.; Ciesla, L. [Aix-Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 × 10{sup 6} M {sub ☉}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ≥10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  6. The Role of the Most Luminous Obscured AGNs in Galaxy Assembly at z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Petty, Sara [Green Science Policy Institute, Berkeley, CA 94709 (United States); Connolly, Brian [Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Efstathiou, Andreas [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Lacy, Mark [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stern, Daniel; Bridge, Carrie; Eisenhardt, Peter; Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lake, Sean; Tsai, Chao-Wei [Physics and Astronomy Department, University of California, Los Angeles, CA 90095 (United States); Jarrett, Tom [Department of Astronomy, University of Cape Town, 7700 Rondebosch, Capetown 7700 (South Africa); Benford, Dominic [Observational Cosmology Lab., Code 665, NASA at Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jones, Suzy [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Wu, Jingwen [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012 (China)

    2017-08-01

    We present Hubble Space Telescope WFC3 F160W imaging and infrared spectral energy distributions for 12 extremely luminous, obscured active galactic nuclei (AGNs) at 1.8 < z < 2.7 selected via “hot, dust-obscured” mid-infrared colors. Their infrared luminosities span (2–15) × 10{sup 13} L {sub ⊙}, making them among the most luminous objects in the universe at z ∼ 2. In all cases, the infrared emission is consistent with arising at least for the most part from AGN activity. The AGN fractional luminosities are higher than those in either submillimeter galaxies or AGNs selected via other mid-infrared criteria. Adopting the G , M {sub 20}, and A morphological parameters, together with traditional classification boundaries, infers that three-quarters of the sample are mergers. Our sample does not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, the asymmetries and effective radii of our sample are distributed identically to those of massive galaxies at z ∼ 2. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample includes examples of the massive galaxy population at z ∼ 2 that harbor a briefly luminous, “flickering” AGN and in which the G and M {sub 20} values have been perturbed due to either the AGN and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represents a small fraction of the immediate antecedents of compact star-forming galaxies at z ∼ 2.

  7. Comparative study of dust and young stars in three small galaxies

    International Nuclear Information System (INIS)

    Price, J.S.

    1984-01-01

    A comparative study is presented of dust and young stars in the central regions of the three small galaxies NGC 205, NGC 185, and NGC 3077 in the U, B, V, and K filters, and at six additional optical wavelengths. All three program galaxies have been successfully modeled with the empirical models of Oemler (1976); NGC 205 and NGC 3077 were also modeled with unsharp mask models. Subtracting model galaxies from the data enabled the authors to isolate clusters of young stars and dust clouds in the central regions of each galaxy. A comparison of the colors of the young clusters in NGC 3077 and those in NGC 205 reveals that the colors of the clusters in these two small galaxies are different. In NGC 185, diffuse emission after subtracting an Oemler model was discovered. NGC 205 also showed this remnant emission, with very similar colors to those of the remnant in NGC 185, but NGC 3077 did not. The colors of this diffuse remnant emission in NGC 205 and NGC 185 are interpreted as being due to previous episodes of star formation in the two dwarf ellipticals. A comparison of the author's data with that of Caldwell (1983) on a sample of 33 dwarf elliptical galaxies in Virgo indicates that star formation in dwarf elliptical galaxies is a common phenomenon. The study of dust in NGC 185 and NGC 205 at optical wavelengths shows that the properties of dust in NGC 205 are very similar to those of galactic dust, while the dust in NGC 185 is distinctly different. The optical and 2.2 micron centers of NGC 3077 are found to be different. From comparison of the three galaxies studied here, the author concludes that it is unlikely that NGC 205 and NGC 185 tidally interacted with M31

  8. Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies using LEGUS

    Science.gov (United States)

    Kahre, Lauren; Walterbos, Rene; Kim, Hwihyun; Thilker, David; Lee, Janice; LEGUS Team

    2018-01-01

    Dust is commonly used as a tracer for cold dense gas, either through IR and NIR emission maps or through extinction mapping, and dust abundance and gas metallicity are critical constraints for chemical and galaxy evolution models. Extinction mapping has been used to trace dust column densities in the Milky Way, the Magellanic Clouds, and M31. The maps for M31 use IR and NIR photometry of red giant branch stars, which is more difficult to obtain for more distant galaxies. Work by Kahre et al. (in prep) uses the extinctions derived for individual massive stars using the isochrone-matching method described by Kim et al. (2012) to generate extinction maps for these more distant galaxies.Isochrones of massive stars lie in the same location on a color-color diagram with little dependence on metallicity and luminosity class, so the extinction can be directly derived from the observed photometry. We generate extinction maps using photometry of massive stars from the Hubble Space Telescope for several of the nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps will allow us to correct ground-based and HST Halpha maps for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation, metallicity and morphological environments. Previous studies have found links between galaxy metallicity and the dust-to-gas mass ratio. We present a study of LEGUS galaxies spanning a range of distances, metallicities, and galaxy morphologies, expanding on our previous study of metal-poor dwarfs Holmberg I and II and giant spirals NGC 6503 and NGC 628. We see clear evidence for changes in the dust-to-gas mass ratio with changing metallicity. We also examine changes in the dust-to-gas mass ratio with galactocentric radius. Ultimately, we will provide constraints on the dust-to-gas mass ratio across a wide range of galaxy environments.

  9. Dust extinction and X-ray emission from the starburst galaxy NGC 1482

    Science.gov (United States)

    Vagshette, N. D.; Pandge, M. B.; Pandey, S. K.; Patil, M. K.

    2012-07-01

    We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ˜11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ˜2.7 × 105 M⊙, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event. Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s-1 and 9.34 × 1039 erg s-1, and are in excess of the Eddington-limit of 1.5 M⊙ accreting source. Spectral analysis of these

  10. Mapping the gas-to-dust ratio in the edge-on spiral galaxy IC2531

    Science.gov (United States)

    Baes, Maarten; Gentile, Gianfranco; Allaert, Flor; Kuno, Nario; Verstappen, Joris

    2012-04-01

    The gas-to-dust ratio is an important diagnostic of the chemical evolution of galaxies, but unfortunately, there are only a few unbiased studies of the gas-to-dust ratio within galaxies and among different galaxies. We want to take advantage of the revolutionary capabilities of the Herschel Space Observatory and the special geometry of edge-on spiral galaxies to derive accurate gas and dust mass profiles in the edge-on spiral galaxy IC2531, the only southern galaxy from a sample of large edge-on spirals observed with Herschel. We already have a wealth of ancillary data and detailed radiative transfer modelling at our disposal for this galaxy, and now request CO observations to map the molecular gas distribution. With our combined dataset, we will investigate the radial behaviour of the gas-to-dust ratio, compare it with the properties of the stellar population and the dark matter distribution, and test the possibility to use the far-infrared emission from dust to determine the total ISM mass in galaxies.

  11. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    Science.gov (United States)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  12. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    International Nuclear Information System (INIS)

    Faisst, Andreas L.; Capak, Peter L.; Masters, Daniel C.; Yan, Lin; Pavesi, Riccardo; Riechers, Dominik A.; Barišić, Ivana; Cooke, Kevin C.; Kartaltepe, Jeyhan S.

    2017-01-01

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope ( β UV ) and the infrared excess (IRX; L IR / L UV ) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX− β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX− β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX− β diagram.

  13. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    Energy Technology Data Exchange (ETDEWEB)

    Faisst, Andreas L.; Capak, Peter L.; Masters, Daniel C. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Yan, Lin [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Pavesi, Riccardo; Riechers, Dominik A. [Department of Astronomy, Cornell University, Space Sciences Building, Ithaca, NY 14853 (United States); Barišić, Ivana [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Cooke, Kevin C.; Kartaltepe, Jeyhan S., E-mail: afaisst@ipac.caltech.edu [School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2017-09-20

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope ( β {sub UV}) and the infrared excess (IRX; L {sub IR}/ L {sub UV}) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX− β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX− β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX− β diagram.

  14. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  15. Infrared emission from dust in the Coma cluster of galaxies

    International Nuclear Information System (INIS)

    Dwek, E.; Rephaeli, Y.; Mather, J.C.

    1990-01-01

    Detailed calculations of the infrared emission from collisionally heated dust in the Coma cluster are presented. The proposed model includes continuous dust injection from galaxies, grain destruction by sputtering, and transient grain heating by the hot plasma. The computed infrared fluxes are in agreement with the upper limits obtained from the IRAS. The calculations, and constraints implied by the IRAS observations, suggest that the intracluster dust in the central region of the cluster must be significantly depleted compared to interstellar abundances. The observed visual extinction can therefore not be attributed to the presence of dust in that region. Extinction due to cluster galaxies or their haloes is ruled out as well. The only alternative explanation is that the extinction is caused by dust at great distances from the cluster center. 30 refs

  16. Is the Milky Way an interacting galaxy?

    International Nuclear Information System (INIS)

    Verschuur, G.L.

    1988-01-01

    The Milky Way Galaxy is an interacting galaxy, according to radio astronomers. The disk of stars we live in is linked to the Magellanic Clouds, our Galaxy's satellites, by an enormous arc of neutral hydrogen called the Magellanic Stream. These startling facts have recently been established by piecing together many seemingly unrelated bits of evidence into a new picture of our Milky Way Galaxy. The discoveries that led up to this grand picture of the Milky Way's interaction data back over fifty years to create one of the best detective stories in modern astronomy. The realization that ours is an interacting galaxy is only the latest result of an intensive effort to map the Milky Way. Since the 1930s, astronomers have tried to discover just how our Galaxy is built. Charting the Milky Way hasn't been easy, because we are inside it and our view of the Milky Way is obscured by cosmic dust. This dust creates a region called the zone of avoidance, a band centered along the galactic plane that blocks visible light from objects beyond nearby objects in the Galaxy. Thus radio astronomers have become the Milky Way mappers because cosmic radio waves penetrate the dust and reveal the grand scheme of our Galaxy

  17. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-01-01

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using ∼150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses 10 M ☉ . There is a sharp transition in the relation at a stellar mass of 10 10 M ☉ . At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10 10 M ☉ is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  18. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  19. Imaging the Obscuring Torus in Nearby Active Galaxies

    Science.gov (United States)

    Wilson, Andrew S.; Storchi Bergmann, Thaisa; Morris, Simon

    2000-02-01

    We propose to study a sample of Seyfert galaxies with the aim of resolving spatially the torus of dense molecular gas and dust which is believed to surround the nuclei of these objects. The galaxies, selected to have strong molecular hydrogen emission and jet-like radio continuum sources, will be imaged in various molecular hydrogen lines and in [Fe II] or Br (gamma). The goals are to a) confirm the existence of such tori, b) determine whether the extended molecular gas is excited thermally or through fluorescence, and c) compare with the distribution of ionized gas, which may show an ionization cone structure from polar escape of ionizing photons. The availability of IR imaging capabilities with tip-tilt and narrow-band filters, which allow imaging in the H_2(lambda) 2.122(micron) line up to a recession velocity of 6,000 km s^-1, makes the Blanco 4m telescope very well suited to this project.

  20. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  1. DUST EXTINCTION IN NGC-4594, THE SOMBRERO GALAXY

    NARCIS (Netherlands)

    KNAPEN, JH; HES, R; BECKMAN, JE; PELETIER, RF

    We have studied the extinction law in the well-defined dust lane of the Sombrero galaxy, NGC4594. In the R,I,J,H, and K bands we find good agreement between values for the extinction ratios A-lambda/A(v) in NGC4594 and those reported for our own Galaxy. We can explain the apparently somewhat lower

  2. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  3. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); Cao, Chen [School of Space Science and Physics, Shandong University, Weihai, Weihai, Shandong 264209 (China); Xu, C. Kevin [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Jarrett, Thomas H. [University of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa (South Africa)

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K {sub s} magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  4. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    International Nuclear Information System (INIS)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.

    2016-01-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  5. Variable dust obscuration in the symbiotic Mira and very slow Nova, HM Sge

    International Nuclear Information System (INIS)

    Munari, U.; Whitelock, P.A.

    1989-01-01

    New infrared photometry is presented for the symbiotic Mira, HM Sge. Using this and published data a pulsation period of 527 day is derived. In addition to the normal pulsational modulation, the light curve for HM Sge has shown a distinct fading and reddening, starting in 1985. This is interpreted as a dust-obscuration event, and its possible association with the binary orbit is discussed. (author)

  6. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  7. Far-infrared constraints on the contamination by dust-obscured galaxies of high-z dropout searches.

    OpenAIRE

    Boone, F.; Schaerer, D.; Pelló, R.; Lutz, D.; Weiss, A.; Egami, E.; Smail, I.; Rex, M.; Rawle, T.; Ivison, R.; Laporte, N.; Beelen, A.; Combes, F.; Blain, A.W.; Richard, J.

    2011-01-01

    The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high-redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high-redshift galaxy searches based on broad-band optical/NIR photometry by lower redshift dusty galaxies because both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. This work shows how the far-infrared (FIR) domain can help to recognize like...

  8. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Dicken, Daniel [Institut de Astrophysique Spatiale, Paris (France); Storchi-Bergmann, Thaisa [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  9. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    Science.gov (United States)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  10. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Edgar A.; Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Tadhunter, Clive N. [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Lopez-Rodriguez, Enrique [NASA Ames Research Center, SOFIA Science Center, SOFIA/USRA, Mountain View, CA (United States); Department of Astronomy, University of Texas at Austin, Austin, TX (United States); McDonald Observatory, University of Texas at Austin, Austin, TX (United States); Packham, Chris, E-mail: e.ramirez@inaoep.mx [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); National Astronomical Observatory of Japan, Tokyo (Japan)

    2017-11-22

    We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11) optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  11. Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS

    Science.gov (United States)

    Kahre, L.; Walterbos, R. A.; Kim, H.; Thilker, D.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Aloisi, A.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sacchi, E.; Smith, L. J.; Tosi, M.; Adamo, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Herrero, A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Messa, M.; Nair, P.; Nota, A.; Pellerin, A.; Ryon, J. E.; Schaerer, D.; Shabani, F.; Van Dyk, S. D.; Whitmore, B. C.; Wofford, A.

    2018-03-01

    We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H I and CO gas maps from the literature, including the H I Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of {N}{{{H}}2} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching.

  12. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-01-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  13. MILLIMETER OBSERVATIONS OF A SAMPLE OF HIGH-REDSHIFT OBSCURED QUASARS

    International Nuclear Information System (INIS)

    Martinez-Sansigre, Alejo; Karim, Alexander; Schinnerer, Eva

    2009-01-01

    We present observations at 1.2 mm with Max-Planck Millimetre Bolometer Array (MAMBO-II) of a sample of z ∼> 2 radio-intermediate obscured quasars, as well as CO observations of two sources with the Plateau de Bure Interferometer. The typical rms noise achieved by the MAMBO observations is 0.55 mJy beam -1 and five out of 21 sources (24%) are detected at a significance of ≥3σ. Stacking all sources leads to a statistical detection of (S 1.2mm ) = 0.96 ± 0.11 mJy and stacking only the non-detections also yields a statistical detection, with (S 1.2mm ) = 0.51 ± 0.13 mJy. At the typical redshift of the sample, z = 2, 1 mJy corresponds to a far-infrared luminosity L FIR ∼4 x 10 12 L sun . If the far-infrared luminosity is powered entirely by star formation, and not by active galactic nucleus heated dust, then the characteristic inferred star formation rate is ∼700 M sun yr -1 . This far-infrared luminosity implies a dust mass of M d ∼3 x 10 8 M sun , which is expected to be distributed on ∼kpc scales. We estimate that such large dust masses on kpc scales can plausibly cause the obscuration of the quasars. Combining our observations at 1.2 mm with mid- and far-infrared data, and additional observations for two objects at 350 μm using SHARC-II, we present dust spectral energy distributions (SEDs) for our sample and derive a mean SED for our sample. This mean SED is not well fitted by clumpy torus models, unless additional extinction and far-infrared re-emission due to cool dust are included. This additional extinction can be consistently achieved by the mass of cool dust responsible for the far-infrared emission, provided the bulk of the dust is within a radius ∼2-3 kpc. Comparison of our sample to other samples of z ∼ 2 quasars suggests that obscured quasars have, on average, higher far-infrared luminosities than unobscured quasars. There is a hint that the host galaxies of obscured quasars must have higher cool-dust masses and are therefore often

  14. Pixel-based dust-extinction mapping in nearby galaxies: A new approach to lifting the veil of dust

    Science.gov (United States)

    Tamura, Kazuyuki

    In the first part of this dissertation, I explore a new approach to mapping dust extinction in galaxies, using the observed and estimated dust-free flux- ratios of optical V -band and mid-IR 3.6 micro-meter emission. Inferred missing V -band flux is then converted into an estimate of dust extinction. While dust features are not clearly evident in the observed ground-based images of NGC 0959, the target of my pilot study, the dust-map created with this method clearly traces the distribution of dust seen in higher resolution Hubble images. Stellar populations are then analyzed through various pixel Color- Magnitude Diagrams and pixel Color-Color Diagrams (pCCDs), both before and after extinction correction. The ( B - 3.6 microns) versus (far-UV - U ) pCCD proves particularly powerful to distinguish pixels that are dominated by different types of or mixtures of stellar populations. Mapping these pixel- groups onto a pixel-coordinate map shows that they are not distributed randomly, but follow genuine galactic structures, such as a previously unrecognized bar. I show that selecting pixel-groups is not meaningful when using uncorrected colors, and that pixel-based extinction correction is crucial to reveal the true spatial variations in stellar populations. This method is then applied to a sample of late-type galaxies to study the distribution of dust and stellar population as a function of their morphological type and absolute magnitude. In each galaxy, I find that dust extinction is not simply decreasing radially, but that is concentrated in localized clumps throughout a galaxy. I also find some cases where star-formation regions are not associated with dust. In the second part, I describe the application of astronomical image analysis tools for medical purposes. In particular, Source Extractor is used to detect nerve fibers in the basement membrane images of human skin-biopsies of obese subjects. While more development and testing is necessary for this kind of work

  15. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  16. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    Science.gov (United States)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA

  17. Dust in High-Redshift Galaxies

    Science.gov (United States)

    Pettini, Max; King, David L.; Smith, Linda J.; Hunstead, Richard W.

    1997-03-01

    Measurements of Zn and Cr abundances in 18 damped Lyα systems (DLAs) at absorption redshifts zabs = 0.692-3.390 (but mostly between zabs ~= 2 and 3) show that metals and dust are much less abundant in high-redshift galaxies than in the Milky Way today. Typically, [Zn/H] ~= -1.2 as Zn tracks Fe closely in Galactic stars of all metallicities and is only lightly depleted onto interstellar grains, we conclude that the overall degree of metal enrichment of damped Lyα galaxies ~13.5 Gyr ago (H0 = 50 km s-1 Mpc-1, q0 = 0.05) was ~1/15 solar. Values of [Cr/Zn] span the range from ~=0 to account correctly, it is possible to misinterpret the clues to early nucleosynthesis provided by nonsolar element ratios.

  18. Infrared astronomy and the galactic dust

    International Nuclear Information System (INIS)

    Pecker, J.C.

    1977-01-01

    The existence, in the Galaxy, of small absorbing dust grains has been known for a long time, as they redden the light of stars located behind them, and obscure by amounts which can often even be several magnitudes... In the infrared, where absorption is smaller, one can see through the dust, while at the same time, one can observe the emission of cold dust clouds. After a brief review of technical developments, the reasons for studying the infrared, and the principles of diagnostics, are given. The analysis of the spectral features leads to identification of ice, graphite, and various silicates, as main constituents of the dust. In the fifth section, examples are given of the various sources that one meets when travelling in the Galaxy: protostars, cold and dilute, dense envelopes of young stars (cold or hot), dilute envelopes of not so young stars, and ejected clouds surrounding evolved objects... The simultaneous observation of dust, molecules and atoms, in the same regions, shows that the knowledge of the circumstellar dense regions might be of a great interest, in the study of the origin of life, and of the evolution of the Universe. (Auth.)

  19. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence...

  20. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: jingwen.wu@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  1. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto; Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas; Sayers, Jack; Bridge, Carrie; Benford, Dominic; Blain, Andrew; Petty, Sara; Lake, Sean; Bussmann, Shane; Comerford, Julia M.; Evans, Neal J. II; Lonsdale, Carol; Rho, Jeonghee; Stanford, S. Adam

    2012-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (∼1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 μm, yet are clearly detected at 12 and 22 μm. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 μm, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 μm, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10 13 L ☉ . These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  2. Submillimeter Follow-up of Wise-Selected Hyperluminous Galaxies

    Science.gov (United States)

    Wu, Jingwen; Tsai, Chao-Wei; Sayers, Jack; Benford, Dominic; Bridge, Carrie; Blain, Andrew; Eisenhardt, Peter R. M.; Stern, Daniel; Petty, Sara; Assef, Roberto; hide

    2013-01-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare (approximately 1000 all-sky) population of galaxies at high redshift (peaks at zeta = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 micrometers, yet are clearly detected at 12 and 22 micrometers. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (zeta greater than 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 micrometers, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 micrometers, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature.We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10(exp 13) solar luminosity. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe.We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  3. THE NATURE OF EXTREMELY RED H - [4.5] > 4 GALAXIES REVEALED WITH SEDS AND CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Caputi, K. I.; Dunlop, J. S.; McLure, R. J.; Cirasuolo, M. [SUPA, Institute for Astronomy, The University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Huang, J.-S.; Fazio, G. G.; Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Castellano, M.; Fontana, A. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Almaini, O. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Donley, J. L.; Ferguson, H. C.; Grogin, N. A.; Koekemoer, A. M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Faber, S. M.; Kocevski, D. D.; Koo, D. C. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Giavalisco, M., E-mail: karina@astro.rug.nl [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2012-05-01

    We have analyzed a sample of 25 extremely red H - [4.5] > 4 galaxies, selected using 4.5 {mu}m data from the Spitzer SEDS survey and deep H-band data from the Hubble Space Telescope CANDELS survey, over {approx}180 arcmin{sup 2} of the UKIDSS Ultra-Deep Survey field. Our aim is to investigate the nature of this rare population of mid-infrared (mid-IR) sources that display such extreme near-to-mid-IR colors. Using up to 17-band photometry (U through 8.0 {mu}m), we have studied in detail their spectral energy distributions, including possible degeneracies in the photometric redshift/internal extinction (z{sub phot}-A{sub V} ) plane. Our sample appears to include sources of very different nature. Between 45% and 75% of them are dust-obscured, massive galaxies at 3 < z{sub phot} < 5. All of the 24 {mu}m detected sources in our sample are in this category. Two of these have S(24 {mu}m)>300 {mu}Jy, which at 3 < z{sub phot} < 5 suggests that they probably host a dust-obscured active galactic nucleus. Our sample also contains four highly obscured (A{sub V} > 5) sources at z{sub phot} < 1. Finally, we analyze in detail two z{sub phot} {approx} 6 galaxy candidates, and discuss their plausibility and implications. Overall, our red galaxy sample contains the tip of the iceberg of a larger population of z > 3 galaxies to be discovered with the future James Webb Space Telescope.

  4. Interstellar matter in Shapley-Ames elliptical galaxies. IV. A diffusely distributed component of dust and its effect on colour gradients.

    Science.gov (United States)

    Goudfrooij, P.; de Jong, T.

    1995-06-01

    We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of

  5. Direct Measurements of Dust Attenuation in z ~ 1.5 Star-forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2014-06-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 =5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  6. RADIAL DISTRIBUTION OF STARS, GAS AND DUST IN SINGS GALAXIES. I. SURFACE PHOTOMETRY AND MORPHOLOGY

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Gil de Paz, A.; Zamorano, J.

    2009-01-01

    We present ultraviolet through far-infrared (FIR) surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes Galaxy Evolution Explorer UV data, optical images from Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and Sloan Digital Sky Survey, near-IR data from Two Micron All Sky Survey, and mid- and FIR images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several nonparametric indicators of galaxy morphology: the concentration index (C 42 ), the asymmetry (A), the Gini coefficient (G), and the normalized second-order moment of the brightest 20% of the galaxy's flux (M-bar 20 ). In this paper, the first of a series, we describe the technical aspects regarding the surface photometry, and present a basic analysis of the global and structural properties of the SINGS galaxies at different wavelengths. The homogeneity in the acquisition, reduction, and analysis of the results presented here makes these data ideal for multiple unanticipated studies on the radial distribution of the properties of stars, dust, and gas in galaxies. Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C 42 -A-G-M-bar 20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric, and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of polycyclic aromatic hydrocarbons at 8.0 μm and very hot dust at 24 μm). In an accompanying paper by Munoz-Mateos et al., we focus on the radial distribution of dust

  7. Gathering dust: A galaxy-wide study of dust emission from cloud complexes in NGC 300

    Science.gov (United States)

    Riener, M.; Faesi, C. M.; Forbrich, J.; Lada, C. J.

    2018-05-01

    Aims: We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods: We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of 170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results: Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from 1.1 × 103 to 1.4 × 104 M⊙. The GDCs have effective temperatures of 13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes 16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 106 M⊙. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds. The catalogue is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  8. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  9. SHARDS: constraints on the dust attenuation law of star-forming galaxies at z ˜ 2

    Science.gov (United States)

    Tress, Mónica; Mármol-Queraltó, Esther; Ferreras, Ignacio; Pérez-González, Pablo G.; Barro, Guillermo; Pampliega, Belén Alcalde; Cava, Antonio; Domínguez-Sánchez, Helena; Eliche-Moral, Carmen; Espino-Briones, Néstor; Esquej, Pilar; Hernán-Caballero, Antonio; Rodighiero, Giulia; Rodriguez-Muñoz, Lucía

    2018-04-01

    We make use of the Survey of High-z Absorption Red and Dead Sources, an ultradeep (sample of 1753 galaxies. By comparing the data with a set of population synthesis models coupled to a parametric dust attenuation law, we constrain RV and B, as well as the colour excess, E(B - V). We find a correlation between RV and B, which can be interpreted either as a result of the grain size distribution, or a variation of the dust geometry among galaxies. According to the former, small dust grains are associated with a stronger NUV bump. The latter would lead to a range of clumpiness in the distribution of dust within the interstellar medium of star-forming galaxies. The observed wide range of NUV bump strengths can lead to a systematic in the interpretation of the UV slope β typically used to characterize the dust content. In this study, we quantify these variations, concluding that the effects are Δβ ˜ 0.4.

  10. Direct measurements of dust attenuation in z ∼ 1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    International Nuclear Information System (INIS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Schreiber, Natascha M. Förster; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2014-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star ). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star , and find that A V, H II = 1.86 A V, star , with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M * ). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  11. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

    Energy Technology Data Exchange (ETDEWEB)

    Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Spitler, Lee R. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Allen, Rebecca; Glazebrook, Karl; Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Altieri, Bruno [European Space Astronomy Centre (ESAC)/ESA, Villanueva de la Cañada, 28691, Madrid (Spain); Brammer, Gabriel B. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago (Chile); Dickinson, Mark; Inami, Hanae [National Optical Astronomy Observatory, Tucson, AZ (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Kawinwanichakij, Lalit; Mehrtens, Nicola; Papovich, Casey [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andy; Murphy, David; Persson, S. Eric; Quadri, Ryan, E-mail: straatman@strw.leidenuniv.nl [Carnegie Observatories, Pasadena, CA 91101 (United States); and others

    2014-03-01

    We report the likely identification of a substantial population of massive M ∼ 10{sup 11} M {sub ☉} galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10{sup –11} yr{sup –1}. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10{sup –5} Mpc{sup –3} to a limit of log{sub 10} M/M {sub ☉} ≥ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 10{sup 11} M {sub ☉}, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M {sub ☉} yr{sup –1}, far exceeding that of similarly abundant UV-bright galaxies at z ≥ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

  12. DUST AND INFRARED IMAGING OF POLAR RING GALAXIES

    NARCIS (Netherlands)

    ARNABOLDI, M; FREEMAN, KC; SACKETT, PD; SPARKE, LS; CAPACCIOLI, M

    1995-01-01

    We have derived surface photometry for a sample of five polar ring(PR) galaxies in the optical (B and R bands) and in the near-IR (K band). Our preliminary results show that the morphology of these objects is heavily perturbed by dust, which sometimes completely hides the real distribution of the

  13. Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey

    Science.gov (United States)

    Ciesla, L.; Boquien, M.; Boselli, A.; Buat, V.; Cortese, L.; Bendo, G. J.; Heinis, S.; Galametz, M.; Eales, S.; Smith, M. W. L.; Baes, M.; Bianchi, S.; De Looze, I.; di Serego Alighieri, S.; Galliano, F.; Hughes, T. M.; Madden, S. C.; Pierini, D.; Rémy-Ruyer, A.; Spinoglio, L.; Vaccari, M.; Viaene, S.; Vlahakis, C.

    2014-05-01

    Although it accounts only for a small fraction of the baryonic mass, dust has a profound impact on the physical processes at play in galaxies. Thus, to understand the evolution of galaxies, it is essential not only to characterize dust properties per se, but also in relation to global galaxy properties. To do so, we derive the dust properties of galaxies in a volume limited, K-band selected sample, the Herschel Reference Survey (HRS). We gather infrared photometric data from 8 μm to 500 μm from Spitzer, WISE, IRAS, and Herschel for all of the HRS galaxies. Draine & Li (2007, ApJ, 663, 866) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the parameters of the Draine & Li models and that a strong constraint on the 20-60 μm range is mandatory to estimate the relative contribution of the photo-dissociation regions to the infrared spectral energy distribution (SED). The SED models tend to systematically underestimate the observed 500 μm flux densities, especially for low-mass systems. We provide the output parameters for all of the galaxies, i.e., the minimum intensity of the interstellar radiation field, the fraction of polycyclic aromatic hydrocarbon (PAH), the relative contribution of PDR and evolved stellar population to the dust heating, the dust mass, and the infrared luminosity. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the main integrated properties of galaxies, such as stellar mass, star formation rate, infraredluminosity, metallicity, Hα and H-band surface brightness, and the far-ultraviolet attenuation. A good correlation between the fraction of PAH and the metallicity is found, implying a weakening of the PAH emission in galaxies with low metallicities and, thus, low stellar masses. The intensity of the diffuse interstellar radiation field and the H-band and Hα surface brightnesses are

  14. DustPedia: Multiwavelength photometry and imagery of 875 nearby galaxies in 42 ultraviolet-microwave bands

    Science.gov (United States)

    Clark, C. J. R.; Verstocken, S.; Bianchi, S.; Fritz, J.; Viaene, S.; Smith, M. W. L.; Baes, M.; Casasola, V.; Cassara, L. P.; Davies, J. I.; De Looze, I.; De Vis, P.; Evans, R.; Galametz, M.; Jones, A. P.; Lianou, S.; Madden, S.; Mosenkov, A. V.; Xilouris, M.

    2018-01-01

    Aims: The DustPedia project is capitalising on the legacy of the Herschel Space Observatory, using cutting-edge modelling techniques to study dust in the 875 DustPedia galaxies - representing the vast majority of extended galaxies within 3000 km s-1 that were observed by Herschel. This work requires a database of multiwavelength imagery and photometry that greatly exceeds the scope (in terms of wavelength coverage and number of galaxies) of any previous local-Universe survey. Methods: We constructed a database containing our own custom Herschel reductions, along with standardised archival observations from GALEX, SDSS, DSS, 2MASS, WISE, Spitzer, and Planck. Using these data, we performed consistent aperture-matched photometry, which we combined with external supplementary photometry from IRAS and Planck. Results: We present our multiwavelength imagery and photometry across 42 UV-microwave bands for the 875 DustPedia galaxies. Our aperture-matched photometry, combined with the external supplementary photometry, represents a total of 21 857 photometric measurements. A typical DustPedia galaxy has multiwavelength photometry spanning 25 bands. We also present the Comprehensive & Adaptable Aperture Photometry Routine (CAAPR), the pipeline we developed to carry out our aperture-matched photometry. CAAPR is designed to produce consistent photometry for the enormous range of galaxy and observation types in our data. In particular, CAAPR is able to determine robust cross-compatible uncertainties, thanks to a novel method for reliably extrapolating the aperture noise for observations that cover a very limited amount of background. Our rich database of imagery and photometry is being made available to the community. Photometry data tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A37

  15. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wild, Vivienne [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during

  16. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    Science.gov (United States)

    Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi

    2017-04-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.

  17. The distribution of interstellar dust in CALIFA edge-on galaxies via oligochromatic radiative transfer fitting

    Science.gov (United States)

    De Geyter, Gert; Baes, Maarten; Camps, Peter; Fritz, Jacopo; De Looze, Ilse; Hughes, Thomas M.; Viaene, Sébastien; Gentile, Gianfranco

    2014-06-01

    We investigate the amount and spatial distribution of interstellar dust in edge-on spiral galaxies, using detailed radiative transfer modelling of a homogeneous sample of 12 galaxies selected from the Calar Alto Legacy Integral Field Area survey. Our automated fitting routine, FITSKIRT, was first validated against artificial data. This is done by simultaneously reproducing the Sloan Digital Sky Survey g-, r-, i- and z-band observations of a toy model in order to combine the information present in the different bands. We show that this combined, oligochromatic fitting has clear advantages over standard monochromatic fitting especially regarding constraints on the dust properties. We model all galaxies in our sample using a three-component model, consisting of a double-exponential disc to describe the stellar and dust discs and using a Sérsic profile to describe the central bulge. The full model contains 19 free parameters, and we are able to constrain all these parameters to a satisfactory level of accuracy without human intervention or strong boundary conditions. Apart from two galaxies, the entire sample can be accurately reproduced by our model. We find that the dust disc is about 75 per cent more extended but only half as high as the stellar disc. The average face-on optical depth in the V band is 0.76 and the spread of 0.60 within our sample is quite substantial, which indicates that some spiral galaxies are relatively opaque even when seen face-on.

  18. Dust Evolution in Low-Metallicity Environments: Bridging the Gap Between Local Universe and Primordial Galaxies

    Science.gov (United States)

    Galliano, Frederic; Barlow, Mike; Bendo, George; Boselli, Alessandro; Buat, Veronique; Chanial, Pierre; Clements, David; Davies, Jon; Eales, Steve; Gomez, Haley; Isaak, Kate; Madden, Suzanne; Page, Mathew; Perez Fournon, Ismael; Sauvage, Marc; Spinoglio, Luigi; Vaccari, Mattia; Wilson, Christine

    2008-03-01

    The local galaxy Science Advisory Group (SAG 2) in the Herschel/SPIRE consortium, has constructed a Guaranteed Time Key Program using the PACS and SPIRE insruments to obtain 60 to 550 micron photometry of a statistically significant sample of 51 dwarf galaxies in our local universe chosen to cover an impressivly broad range of physical conditions. Here we propose the necessary complementary IRAC, MIPS and IRS Spitzer observations which together with the Herschel GT database will provide a rich database to the community to perform the dust and gas analyses in unprecedented detail in low metallicity galaxies ranging between 1/50 to 1 solar metallicity. Due to their chemical youth, and to the extreme conditions they experience, low metallicity environments constitute a keystone to understand dust evolution. The primary goal of this combined Herschel and Spitzer project is to study in details the physical processes at play within the ISM of these galaxies. We will take advantage of the powerful combination of Spitzer, Herschel and ancillary data to decompose the SED into the emission coming from the main phases of the ISM. Such a decomposition will provide reliable estimate of the abundances of the principal dust species, as a fonction of metallicity and physical conditions. These results will be exploited to compare the various evolutionary processes affecting the dust content of galaxies. All these outstanding scientific advances will be the true legacy value that this project brings to the community.

  19. The evolution of the dust temperatures of galaxies in the SFR-M∗ plane up to z ∼ 2

    Science.gov (United States)

    Magnelli, B.; Lutz, D.; Saintonge, A.; Berta, S.; Santini, P.; Symeonidis, M.; Altieri, B.; Andreani, P.; Aussel, H.; Béthermin, M.; Bock, J.; Bongiovanni, A.; Cepa, J.; Cimatti, A.; Conley, A.; Daddi, E.; Elbaz, D.; Förster Schreiber, N. M.; Genzel, R.; Ivison, R. J.; Le Floc'h, E.; Magdis, G.; Maiolino, R.; Nordon, R.; Oliver, S. J.; Page, M.; Pérez García, A.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Rosario, D.; Roseboom, I.; Sanchez-Portal, M.; Scott, D.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wang, L.; Wuyts, S.

    2014-01-01

    We study the evolution of the dust temperature of galaxies in the SFR- M∗ plane up to z ~ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M∗) and redshift estimates, we grid the SFR- M∗parameter space in several redshift ranges and estimate the mean dust temperature (Tdust) of each SFR-M∗ - z bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100-500 μm) of our SFR-M∗ - z bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (LIR), specific SFRs (SSFR; i.e., SFR/M∗), and distances with respect to the main sequence (MS) of the SFR- M∗ plane (i.e., Δlog (SSFR)MS = log [SSFR(galaxy)/SSFRMS(M∗,z)]). The Tdust - SSFR and Tdust - Δlog (SSFR)MS correlations are statistically much more significant than the Tdust - LIR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ~ 2. We convert these results into a recipe to derive Tdust from SFR, M∗ and z, valid out to z ~ 2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong Tdust - Δlog (SSFR)MS correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the Tdust - Δlog (SSFR)MS correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/Mgas) with Δlog (SSFR)MS as found locally by molecular gas studies. Secondly, at fixed Δlog (SSFR)MS, the constant dust temperature observed in galaxies probing wide ranges in SFR and M∗ can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in

  20. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam [University of California, Riverside, CA 92512 (United States); Nayyeri, Hooshang; Miller, Sarah [University of California, Irvine, CA 92697 (United States); Sobral, David, E-mail: shemm001@ucr.edu [Universidade de Lisboa, PT1349-018 Lisbon (Portugal)

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  1. VizieR Online Data Catalog: Dust properties of major-merger galaxy pairs (Domingue+, 2016)

    Science.gov (United States)

    Domingue, D. L.; Cao, C.; Xu, C. K.; Jarrett, T. H.; Ronca, J.; Hill, E.; Jacques, A.

    2018-04-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by Ks magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission (CIGALE) software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. (1 data file).

  2. Stripping of gas and dust from the elliptical galaxy M86

    International Nuclear Information System (INIS)

    White, D.A.; Fabian, A.C.; Forman, W.; Jones, C.; Stern, C.

    1990-01-01

    Past observations of the x ray morphology of M86 have revealed that the galaxy is experiencing ram-pressure stripping due to its large velocity (1500 km s(-1)) relative to the intracluster medium of Virgo (Forman et al. 1979, Fabian, Schwartz, and Forman 1980). Observations indicate that the x ray emitting gas in the plume of M86 is still being produced from the continual heating of gas and dust stripped from nearer the galaxy's center. Researchers obtained two-dimensional Infrared Astronomy Satellite (IRAS) images of M86 which have revealed that there are two spatially separated regions of emission, one at 60 microns and the other at 100 microns of the IRAS wavebands. The 100 microns emission, presumably from cool dust (at approximately 20 K), appears to be located near the center of the galaxy together with HI (detected by Bregman, Roberts and Giovanelli 1988), while the 60 microns emission appears to lie more than 3 arcminutes away from the optical center in a direction slightly south of the center of the plume. Optical images produced by scanning U.K. Schmidt plates, reveal asymmetric isophotal contours along the major axis of the galaxy (first reported by Nulsen and Carter in 1987, which they propose as excess emission due to star formation). This excess optical emission is co-incident with the direction of the 60 micron infra-red emission

  3. Understanding the build-up of SMBH and Galaxies

    Science.gov (United States)

    Carrera, Francisco; Georgakakis, Antonis; Ueda, Yoshihiro; Akylas, Thanassis; Lanzuisi, Giorgio; Castello, N.

    2015-09-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionised material that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe

  4. AN OPTICALLY OBSCURED AGN IN A LOW MASS, IRREGULAR DWARF GALAXY: A MULTI-WAVELENGTH ANALYSIS OF J1329+3234

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Rothberg, B.; Mowry, W. S.; Rosenberg, J. L. [Department of Physics and Astronomy, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030 (United States); Ellison, S. L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Fischer, J.; Schmitt, H. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2015-01-01

    Supermassive black holes (SMBHs) are found ubiquitously in large, bulge-dominated galaxies throughout the local universe, yet little is known about their presence and properties in bulgeless and low-mass galaxies. This is a significant deficiency, since the mass distribution and occupation fraction of nonstellar black holes provide important observational constraints on SMBH seed formation theories and many dwarf galaxies have not undergone major mergers that would erase information on their original black hole population. Using data from the Wide-field Infrared Survey Explorer, we discovered hundreds of bulgeless and dwarf galaxies that display mid-infrared signatures of extremely hot dust highly suggestive of powerful accreting massive black holes, despite having no signatures of black hole activity at optical wavelengths. Here we report, in our first follow-up X-ray investigation of this population, that the irregular dwarf galaxy J132932.41+323417.0 (z = 0.0156) contains a hard, unresolved X-ray source detected by XMM-Newton with luminosity L {sub 2-10} {sub keV} = 2.4 × 10{sup 40} erg s{sup –1}, over two orders of magnitude greater than that expected from star formation, strongly suggestive of the presence of an accreting massive black hole. While enhanced X-ray emission and hot dust can be produced in extremely low metallicity environments, J132932.41+323417.0 is not extremely metal poor (≈40% solar). With a stellar mass of 2.0 × 10{sup 8} M {sub ☉}, this galaxy is similar in mass to the Small Magellanic Cloud, and is one of the lowest mass galaxies with evidence for a massive nuclear black hole currently known.

  5. UNVEILING THE σ-DISCREPANCY IN INFRARED-LUMINOUS MERGERS. I. DUST AND DYNAMICS

    International Nuclear Information System (INIS)

    Rothberg, Barry; Fischer, Jacqueline

    2010-01-01

    Mergers in the local universe present a unique opportunity for studying the transformations of galaxies in detail. Presented here are recent results, based on multi-wavelength, high-resolution imaging and medium resolution spectroscopy, which demonstrate how star formation and the presence of red supergiants and/or asymptotic giant branch stars have led to a serious underestimation of the dynamical masses of infrared-bright galaxies. The dominance of a nuclear disk of young stars in the near-infrared bands, where dust obscuration does not block their signatures, can severely bias the global properties measured in a galaxy, including mass. This explains why past studies of gas-rich luminous infrared galaxies (LIRGs) and ultraluminous infrared galaxies, which have measured dynamical masses using the 1.62 or 2.29 μm CO band heads, have found that these galaxies are forming m m* ellipticals. Moreover, merger remnants, including LIRGs, are placed on the I-band fundamental plane for the first time and appear to be virtually indistinguishable from elliptical galaxies.

  6. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  7. Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

    CERN Document Server

    Bendo, G J; Wells, M; Gallais, P; Haas, M; Heras, A M; Klaas, U; Laureijs, R J; Leech, K; Lemke, D; Metcalfe, L; Rowan-Robinson, M; Schulz, B; Telesco, C M; Bendo, George J.; Joseph, Robert D.; Wells, Martyn; Gallais, Pascal; Haas, Martin; Heras, Ana M.; Klaas, Ulrich; Laureijs, Rene J.; Leech, Kieron; Lemke, Dietrich; Metcalfe, Leo; Rowan-Robinson, Michael; Schulz, Bernhard; Telesco, Charles

    2003-01-01

    We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60-180 micron data, we fit blackbodies with lambda^-1 emissivities and average temperatures of 31 K or lambda^-2 emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60-850 micron range in eight galaxies, we fit blackbodies with lambda^-1, lambda-2, and lambda^-beta (with beta variable) emissivities to the data. The best results were with the lambda^-beta emissivities, where the temperatures were ~30 K and the emissivity coefficient beta ranged from 0.9 to 1.9. These results produced gas to dust ratios that ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities.

  8. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    International Nuclear Information System (INIS)

    Mao Yewei; Kong Xu; Kennicutt, Robert C. Jr.; Hao, Cai-Na; Zhou Xu

    2012-01-01

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-β) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in

  9. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    International Nuclear Information System (INIS)

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-01-01

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 3 μ m /S 1.6 μ m versus S 5 μ m /S 3 μ m criterion, we identify 42 sources where the rest-frame 1.6 μm emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10 11 M sun , and remarkably constant within the range 1 3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z ∼ 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 μm hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  10. On the origin of the dust lane in the active radio galaxies

    International Nuclear Information System (INIS)

    Morita, Kazuhiko; Sakashita, Shiro

    1979-01-01

    A simple explosion model leading to the extragalactic extended radio sources is developed to understand the origin of the dust lane seen in the active radio galaxies. The point explosion in a spheroid with inhomogeneous density distribution is investigated by taking account of the cooling effect induced by radiative energy loss. It is suggested that the morphological relation between the dust lane and double radio sources is well explained on the basis of explosion model. (author)

  11. DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS

    International Nuclear Information System (INIS)

    Kennicutt, Robert C.; Hao, C.-N.; Johnson, Benjamin D.; Calzetti, Daniela; Moustakas, John; Dale, Daniel A.; Bendo, George; Engelbracht, Charles W.; Lee, Janice C.

    2009-01-01

    We combine Hα emission-line and infrared (IR) continuum measurements of two samples of nearby galaxies to derive dust attenuation-corrected star formation rates (SFRs). We use a simple energy balance based method that has been applied previously to H II regions in the Spitzer Infrared Nearby Galaxies Survey, and extend the methodology to integrated measurements of galaxies. We find that our composite Hα + IR based SFRs are in excellent agreement with attenuation-corrected SFRs derived from integrated spectrophotometry, over the full range of SFRs (0.01-80 M sun yr -1 ) and attenuations (0-2.5 mag) studied. We find that the combination of Hα and total IR luminosities provides the most robust SFR measurements, but combinations of Hα measurements with monochromatic luminosities at 24 μm and 8 μm perform nearly as well. The calibrations differ significantly from those obtained for H II regions, with the difference attributable to a more evolved population of stars heating the dust. Our results are consistent with a significant component of diffuse dust (the 'IR cirrus' component) that is heated by a non-star-forming population. The same methodology can be applied to [O II]λ3727 emission-line measurements, and the radio continuum fluxes of galaxies can be applied in place of IR fluxes when the latter are not available. We assess the precision and systematic reliability of all of these composite methods.

  12. The unexpectedly large dust and gas content of quiescent galaxies at z > 1.4

    Science.gov (United States)

    Gobat, R.; Daddi, E.; Magdis, G.; Bournaud, F.; Sargent, M.; Martig, M.; Jin, S.; Finoguenov, A.; Béthermin, M.; Hwang, H. S.; Renzini, A.; Wilson, G. W.; Aretxaga, I.; Yun, M.; Strazzullo, V.; Valentino, F.

    2018-03-01

    Early-type galaxies (ETGs) contain most of the stars present in the local Universe and, above a stellar mass content of 5 × 1010 solar masses, vastly outnumber spiral galaxies such as the Milky Way. These massive spheroidal galaxies have, in the present day, very little gas or dust in proportion to their mass1, and their stellar populations have been evolving passively for over 10 billion years. The physical mechanisms that led to the termination of star formation in these galaxies and depletion of their interstellar medium remain largely conjectural. In particular, there are currently no direct measurements of the amount of residual gas that might still be present in newly quiescent spheroidals at high redshift2. Here we show that quiescent ETGs at redshift z 1.8, close to their epoch of quenching, contained at least two orders of magnitude more dust at a fixed stellar mass compared with local ETGs. This implies the presence of substantial amounts of gas (5-10%), which has been consumed less efficiently than in more active galaxies, probably due to their spheroidal morphology, consistent with our simulations. This lower star formation efficiency, combined with an extended hot gas halo possibly maintained by persistent feedback from an active galactic nucleus, keep ETGs mostly passive throughout cosmic time.

  13. Metals and dust in the neutral ISM: the Galaxy, Magellanic Clouds, and damped Lyman-α absorbers

    Science.gov (United States)

    De Cia, Annalisa

    2018-05-01

    Context. The presence of dust in the neutral interstellar medium (ISM) dramatically changes the metal abundances that we measure. Understanding the metal content in the neutral ISM, and a direct comparison between different environments, has been hampered to date because of the degeneracy to the observed ISM abundances caused by the effects of metallicity, the presence of dust, and nucleosynthesis. Aims: We study the metal and dust content in the neutral ISM consistently in different environments, and assess the universality of recently discovered sequences of relative abundances. We also intend to assess the validity of [Zn/Fe] as a tracer of dust in the ISM. This has recently been cast into doubt based on observations of stellar abundances, and needs to be addressed before we can safely use it to study the ISM. Methods: In this letter we present a simple comparison of relative abundances observed in the neutral ISM in the Galaxy, the Magellanic Clouds, and damped Lyman-α absorbers (DLAs). The main novelty in this comparison is the inclusion of the Magellanic Clouds. Results: The same sequences of relative abundances are valid for the Galaxy, Magellanic Clouds, and DLAs. These sequences are driven by the presence of dust in the ISM and seem "universal". Conclusions: The metal and dust properties in the neutral ISM appear to follow a similar behaviour in different environments. This suggests that a dominant fraction of the dust budget is built up from grain growth in the ISM depending of the physical conditions and regardless of the star formation history of the system. In addition, the DLA gas behaves like the neutral ISM, at least from a chemical point of view. Finally, despite the deviations in [Zn/Fe] observed in stellar abundances, [Zn/Fe] is a robust dust tracer in the ISM of different environments, from the Galaxy to DLAs.

  14. Understanding the build-up of supermassive black holes and galaxies

    Science.gov (United States)

    Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis

    2016-07-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionisedmaterial that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe

  15. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  16. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    Science.gov (United States)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  17. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  18. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Science.gov (United States)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  19. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    International Nuclear Information System (INIS)

    Graham, M. L.; Pritchet, C. J.; Balam, D.; Fabbro, S.; Sullivan, M.; Hook, I. M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Perrett, K.; Conley, A.; Fouchez, D.; Rich, J.

    2010-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ∼1-5 times the rate in all early-type galaxies, and that any enhancement is always ∼<2σ. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infrared properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.

  20. GAMA/H-ATLAS: THE DUST OPACITY-STELLAR MASS SURFACE DENSITY RELATION FOR SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Grootes, M. W.; Tuffs, R. J.; Andrae, E. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Popescu, C. C.; Pastrav, B. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gunawardhana, M.; Taylor, E. N. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 206 (Australia); Kelvin, L. S.; Driver, S. P. [Scottish Universities' Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom); Liske, J. [European Southern Observatory, Karl-Schwarzschild Str. 2, D-85748 Garching (Germany); Seibert, M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Graham, Alister W. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baldry, I. K. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Bourne, N. [Centre for Astronomy and Particle Theory, The School of Physics and Astronomy, Nottingham University, University Park Campus, Nottingham NG7 2RD (United Kingdom); Brough, S. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dariush, A. [Physics Department, Imperial College, Prince Consort Road, London SW7 2AZ (United Kingdom); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L., E-mail: meiert.grootes@mpi-hd.mpg.de [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); and others

    2013-03-20

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, {tau}{sup f}{sub B}, and the stellar mass surface density, {mu}{sub *}, of nearby (z {<=} 0.13) spiral galaxies. This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sersic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the {tau}{sub B}{sup f} - {mu}{sub *} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the {tau}{sub B}{sup f} - {mu}{sub *} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu and Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar

  1. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  2. Galaxies and their Masks A Conference in Honour of K.C. Freeman, FRS

    CERN Document Server

    Block, David L; Puerari, Ivânio

    2010-01-01

    Various kinds of masks obscure our view of our galaxy, the Milky Way, as well as of other galaxies. Masks of interstellar dust affect our measurements within galaxies, on scales ranging from individual supernovae to the galaxies themselves. The “mass mask” (our inability to image mass rather than light) gives astronomers a very incomplete picture of the size and structure of galaxies themselves, because we cannot image the dark matter which provides most of the galactic mass. Another mass is the “dynamical mask”: as galaxies form, much dynamical information is lost in the birthing process. A new thrust in research is to retrieve such information by means of chemical tagging. About 50 astronomers flew into Namibia in April 2010, to celebrate the 70th birthday of Professor K.C. Freeman, Fellow of the Royal Society. At age 70, Freeman, a father of dark matter in galaxies, continues to be one of planet’s most highly cited astronomers. The current volume affords readers a unique perspective on galaxies b...

  3. The dust attenuation of star-forming galaxies at z ˜ 3 and beyond: New insights from ALMA observations

    Science.gov (United States)

    Fudamoto, Y.; Oesch, P. A.; Schinnerer, E.; Groves, B.; Karim, A.; Magnelli, B.; Sargent, M. T.; Cassata, P.; Lang, P.; Liu, D.; Le Fèvre, O.; Leslie, S.; Smolčić, V.; Tasca, L.

    2017-11-01

    We present results on the dust attenuation of galaxies at redshift ∼3-6 by studying the relationship between the UV spectral slope (βUV) and the infrared excess (IRX; LIR/LUV) using Atacama Large Millimeter/submillimeter Array (ALMA) far-infrared continuum observations. Our study is based on a sample of 67 massive, star-forming galaxies with a median mass of M* ∼ 1010.7 M⊙ spanning a redshift range z = 2.6-3.7 (median z = 3.2) that were observed with ALMA at λ _{rest}=300 {μ m}. Both the individual ALMA detections (41 sources) and stacks including all galaxies show the IRX-βUV relationship at z ∼ 3 is mostly consistent with that of local starburst galaxies on average. However, we find evidence for a large dispersion around the mean relationship by up to ±0.5 dex. Nevertheless, the locally calibrated dust correction factors based on the IRX-βUV relation are on average applicable to main-sequence z ∼ 3 galaxies. This does not appear to be the case at even higher redshifts, however. Using public ALMA observations of z ∼ 4-6 galaxies we find evidence for a significant evolution in the IRX-βUV and the IRX-M* relations beyond z ∼ 3 towards lower IRX values. We discuss several caveats that could affect these results, including the assumed dust temperature. ALMA observations of larger z > 3 galaxy sample spanning a wide range of physical parameters (e.g. lower stellar mass) will be important to investigate this intriguing redshift evolution further.

  4. ALMA imaging of gas and dust in a galaxy protocluster at redshift 5.3: [C II] emission in 'typical' galaxies and dusty starbursts ≈1 billion years after the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Dominik A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Carilli, Christopher L. [National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801 (United States); Capak, Peter L.; Yan, Lin [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Scoville, Nicholas Z. [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smolčić, Vernesa [University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb (Croatia); Schinnerer, Eva [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Yun, Min [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cox, Pierre [ALMA Santiago Central Office, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Bertoldi, Frank; Karim, Alexander, E-mail: dr@astro.cornell.edu [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, Bonn, D-53121 (Germany)

    2014-12-01

    We report interferometric imaging of [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) and OH({sup 2}Π{sub 1/2} J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 10{sup 10} M {sub ☉}, and a star formation rate (SFR) surface density of Σ{sub SFR} = 530 M {sub ☉} yr{sup –1} kpc{sup –2}. This suggests that AzTEC-3 forms stars at Σ{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ∼95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ☉} yr{sup –1}, consistent with a UV-based estimate of 22 M {sub ☉} yr{sup –1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.

  5. A TALE OF THREE GALAXIES: ANOMALOUS DUST PROPERTIES IN IRAS F10398+1455, IRAS F21013–0739, AND SDSS J0808+3948

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yanxia; Hao, Lei [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Aigen, E-mail: haol@shao.ac.cn [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2014-10-20

    On a galactic scale, the 9.7 μm silicate emission is usually only seen in type 1 active galactic nuclei (AGNs). They usually also display a flat emission continuum at ∼5-8 μm and the absence of polycyclic aromatic hydrocarbon (PAH) emission bands. In contrast, starburst galaxies, luminous infrared (IR) galaxies, and ultraluminous IR galaxies exhibit a red 5-8 μm emission continuum, strong 9.7 μm and 18 μm silicate absorption features, and strong PAH emission bands. Here, we report the detection of anomalous dust properties by the Spitzer/Infrared Spectrograph in three galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) which are characterized by the simultaneous detection of a red 5-8 μm emission continuum, the 9.7 and 18 μm silicate emission features, as well as strong PAH emission bands. These apparently contradictory dust IR emission properties are discussed in terms of iron-poor silicate composition, carbon dust deficit, small grain size, and low dust temperature in the young AGN phase of these three galaxies.

  6. Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng; Pan, Xiang; Ji, Tuo; Jiang, Peng; Wang, Shufen [Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136 (China); Liu, Wenjuan [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Jiang, Ning, E-mail: zhangshaohua@pric.org.cn, E-mail: zhouhongyan@pric.org.cn [Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Sciences and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, 230026 (China)

    2017-08-20

    We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those of narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.

  7. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    International Nuclear Information System (INIS)

    Benson, Andrew; Venkatesan, Aparna; Shull, J. Michael

    2013-01-01

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  8. THE ESCAPE FRACTION OF IONIZING RADIATION FROM GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Andrew [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, San Francisco, CA 94117 (United States); Shull, J. Michael, E-mail: abenson@obs.carnegiescience.edu, E-mail: avenkatesan@usfca.edu, E-mail: michael.shull@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2013-06-10

    The escape of ionizing radiation from galaxies plays a critical role in the evolution of gas in galaxies, and the heating and ionization history of the intergalactic medium. We present semi-analytic calculations of the escape fraction of ionizing radiation for both hydrogen and helium from galaxies ranging from primordial systems to disk-type galaxies that are not heavily dust-obscured. We consider variations in the galaxy density profile, source type, location, and spectrum, and gas overdensity/distribution factors. For sufficiently hard first-light sources, the helium ionization fronts closely track or advance beyond that of hydrogen. Key new results in this work include calculations of the escape fractions for He I and He II ionizing radiation, and the impact of partial ionization from X-rays from early active galactic nuclei or stellar clusters on the escape fractions from galaxy halos. When factoring in frequency-dependent effects, we find that X-rays play an important role in boosting the escape fractions for both hydrogen and helium, but especially for He II. We briefly discuss the implications of these results for recent observations of the He II reionization epoch at low redshifts, as well as the UV data and emission-line signatures from early galaxies anticipated from future satellite missions.

  9. WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121

    International Nuclear Information System (INIS)

    Piconcelli, Enrico; Fiore, Fabrizio; Maiolino, Roberto; Nicastro, Fabrizio; Vignali, Cristian; Bianchi, Stefano; Mathur, Smita; Guainazzi, Matteo; Lanzuisi, Giorgio

    2010-01-01

    We report the discovery of an active galactic nucleus (AGN) pair in the interacting galaxy system IRAS 20210+1121 at z = 0.056. An XMM-Newton observation reveals the presence of an obscured (N H ∼ 5 x 10 23 cm -2 ), Seyfert-like (L 2-10keV = 4.7 x 10 42 erg s -1 ) nucleus in the northern galaxy, which lacks unambiguous optical AGN signatures. Our spectral analysis also provides strong evidence that the IR-luminous southern galaxy hosts a Type 2 quasar embedded in a bright starburst emission. In particular, the X-ray primary continuum from the nucleus appears totally depressed in the XMM-Newton band as expected in the case of a Compton-thick absorber, and only the emission produced by Compton scattering ('reflection') of the continuum from circumnuclear matter is seen. As such, IRAS 20210+1121 seems to provide an excellent opportunity to witness a key, early phase in the quasar evolution predicted by the theoretical models of quasar activation by galaxy collisions.

  10. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  11. ALMA observations of the host galaxy of GRB 090423 at z = 8.23: deep limits on obscured star formation 630 million years after the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Davies, J. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Stanway, E. R.; Levan, A. J. [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Levesque, E. M. [CASA, University of Colorado UCB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000 μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  12. CAN DUST EMISSION BE USED TO ESTIMATE THE MASS OF THE INTERSTELLAR MEDIUM IN GALAXIES-A PILOT PROJECT WITH THE HERSCHEL REFERENCE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Eales, Stephen; Smith, Matthew W. L.; Auld, Robbie; Davies, Jon; Gear, Walter; Gomez, Haley [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, Maarten; De Looze, Ilse; Gentile, Gianfranco; Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, George J. [UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Bianchi, Simone [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Boselli, Alessandro; Ciesla, Laure [Laboratoire d' Astrophysique de Marseilles, UMR6110 CNRS, 38 rue F. Joliot-Curie, F-1338 Marseilles (France); Clements, David [Astrophysics Group, Imperial College, Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Cortese, Luca [European Southern Observatory, Karl-Schwarzschild-Strasse 2 D-85748, Garching bei Munchen (Germany); Galametz, Maud [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hughes, Tom [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Madden, Suzanne [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, F-91191 Gif sur Yvette (France); and others

    2012-12-20

    The standard method for estimating the mass of the interstellar medium (ISM) in a galaxy is to use the 21 cm line to trace the atomic gas and the CO 1-0 line to trace the molecular gas. In this paper, we investigate the alternative technique of using the continuum dust emission to estimate the mass of gas in all phases of the ISM. Using Herschel observations of 10 galaxies from the Herschel Reference Survey and the Herschel Virgo Cluster Survey, we show that the emission detected by Herschel is mostly from dust that has a temperature and emissivity index similar to that of dust in the local ISM in our galaxy, with the temperature generally increasing toward the center of each galaxy. We calibrate the dust method using the CO and 21 cm observations to provide an independent estimate of the mass of hydrogen in each galaxy, solving the problem of the uncertain ''X-factor'' for the CO observations by minimizing the dispersion in the ratio of the masses estimated using the two methods. With the calibration for the dust method and the estimate of the X-factor produced in this way, the dispersion in the ratio of the two gas masses is 25%. The calibration we obtain for the dust method is similar to those obtained from Herschel observations of M31 and from Planck observations of the Milky Way. We discuss the practical problems in using this method.

  13. ALMA Observations of the Host Galaxy of GRB 090423 at z = 8.23: Deep Limits on Obscured Star Formation 630 Million Years after the Big Bang

    Science.gov (United States)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Tanvir, N. R.; Stanway, E. R.; Levan, A. J.; Levesque, E. M.; Davies, J. E.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F ν(222 GHz) Space Telescope rest-frame ultraviolet (UV) observations is SFRUV ~ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z >~ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  14. The Universe's Most Extreme Star-forming Galaxies

    Science.gov (United States)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  15. Peering Through the Dust: NuSTAR Observations of Two First-2Mass Red Quasars

    Science.gov (United States)

    Lamassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat; Urry, C. Megan; Stern, Daniel; Yaqoob, Tahir; Lansbury, George B.; Civano, Francesca; Boggs, Steve E.; Zhang, Will

    2016-01-01

    Some reddened quasars appear to be transitional objects in the paradigm of merger-induced black hole growth/ galaxy evolution, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS-selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830 +3759 is moderately obscured N(sub H) = (2.1 +/- 0.2) x 10 (exp 22) per square centimeter) and F2M 1227+3214 is mildly absorbed (N(sub H),Z =3.4(+0.8/-0.7) X 10(exp -2) along the line of sight, heavier global obscuration may be present in both sources, with N(sub H) = 3.7 (+4.1/-2.6) X 10 (exp 23) per square centimeter) and less than 5.5 X 10(exp 23) per square centimeter) for F2M 0830+3759 and F2M 1227+ 3214, respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present keV, which is well accommodated by a model where 7% of the intrinsic X-ray emission from the active galactic nucleus (AGN) is scattered into the line of sight. While F2M 1227+3214 has a dust-to-gas ratio (E(B - V)/NH) consistent with the Galactic value, the value of E(B - V)/NH for F2M 0830+3759 is lower than the Galactic standard, consistent with the paradigm that the dust resides on galactic scales while the X-ray reprocessing gas originates within the dust sublimation zone of the broad-line region. The X-ray and 6.1 µm luminosities of these red quasars are consistent with the empirical relations derived for high-luminosity, unobscured quasars, extending the parameter space of obscured AGNs previously observed by NuSTAR to higher luminosities.

  16. Planck intermediate results: XLIII. Spectral energy distribution of dust in clusters of galaxies

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degene...

  17. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  18. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies

    International Nuclear Information System (INIS)

    Veilleux, S.

    1989-01-01

    The results of a high resolution study of the narrow emission line profiles of 16 Seyfert galaxies are presented. It is shown that the line profile parameters published in earlier low resolution studies are sometimes strongly influenced by resolution effects. In spite of these important systematic errors, many of the results derived from low resolution data are confirmed in the high resolution data. The narrow line profiles of Seyfert galaxies have a stronger base relative to core than a Gaussian. Most of the emission lines present a blueward asymmetry in the lower portion of their profile. In some galaxies, the line widths and/or line asymmetries are correlated with the ionization potential and/or critical density of the lines. There is a weak correlation between the line asymmetry and the dust content of the narrow line region (NLR). The large scatter in this relation, the absence of a similar correlation in Seyfert 1 to 1.5 galaxies, and the presence of a blue asymmetry in galaxies with dustfree line-emitting regions suggest that dust obscuration is not the only mechanism responsible for the line asymmetry in active galaxies. An optically-thick disk close to the nucleus is proposed as the other source of line asymmetry. An important result is that the host galaxy is probably playing a role in the kinematics of some of the gas in the NLR. A multicomponent model of the NLR is proposed to explain these results

  19. The Origins of UV-optical Color Gradients in Star-forming Galaxies at z ˜ 2: Predominant Dust Gradients but Negligible sSFR Gradients

    Science.gov (United States)

    Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin

    2017-07-01

    The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.

  20. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio [Departamento de Astrofísica y CC. de la Atmósfera, Facultad de CC. Físicas, Universidad Complutense de Madrid, Madrid (Spain); European Southern Observatory, Garching bei München (Germany); Hatziminaoglou, Evanthia [European Southern Observatory, Garching bei München (Germany); Alonso-Herrero, Almudena [Centro de Astrobiología (CSIC-INTA), Madrid (Spain); Mateos, Silvia, E-mail: a.hernan@ucm.es [Instituto de Física de Cantabria (CSIC-UC), Santander (Spain)

    2017-10-31

    We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED) of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk), where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust). The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  1. Disentangling Accretion Disk and Dust Emissions in the Infrared Spectrum of Type 1 AGN

    Directory of Open Access Journals (Sweden)

    Antonio Hernán-Caballero

    2017-10-01

    Full Text Available We use a semi-empirical model to reproduce the 0.1–10 μm spectral energy distribution (SED of a sample of 85 luminous quasars. In the model, the continuum emission from the accretion disk as well as the nebular lines are represented by a single empirical template (disk, where differences in the optical spectral index are reproduced by varying the amount of extinction. The near- and mid-infrared emission of the AGN-heated dust is modeled as the combination of two black-bodies (dust. The model fitting shows that the disk and dust components are remarkably uniform among individual quasars, with differences in the observed SED largely accounted for by varying levels of obscuration in the disk as well as differences in the relative luminosity of the disk and dust components. By combining the disk-subtracted SEDs of the 85 quasars, we generate a template for the 1–10 μm emission of the AGN-heated dust. Additionally, we use a sample of local Seyfert 1 galaxies with full spectroscopic coverage in the 0.37–39 μm range to demonstrate a method for stitching together spectral segments obtained with different PSF and extraction apertures. We show that the disk and dust templates obtained from luminous quasars also reproduce the optical-to-mid-infrared spectra of local Seyfert 1s when the contribution from the host galaxy is properly subtracted.

  2. On the frequency of star-forming galaxies in the vicinity of powerful AGNs: The case of SMM J04135+10277

    Science.gov (United States)

    Fogasy, J.; Knudsen, K. K.; Lagos, C. D. P.; Drouart, G.; Gonzalez-Perez, V.

    2017-01-01

    Context. In the last decade several massive molecular gas reservoirs were found SMM J04135+10277 (z = 2.84) and investigate the expected frequency of quasar-starburst galaxy pairs at high redshift using a cosmological galaxy formation model. Methods: We use archive data and new APEX ArTeMiS data to construct and model the spectral energy distribution of SMM J04135+10277 in order to determine its properties. We also carry out a comprehensive analysis of the cosmological galaxy formation model galform with the aim of characterising how typical the system of SMM J04135+10277 is and whether quasar-star-forming galaxy pairs may constitute an important stage in galaxy evolution. Finally, we compare our results to observations found in the literature at both large and small scales (1 Mpc-100 kpc). Results: The companion galaxy of SMM J04135+10277 is a heavily dust-obscured starburst galaxy with a median star formation rate (SFR) of 700 M⊙ yr-1, median dust mass of 5.1 × 109M⊙ and median dust luminosity of 9.3 × 1012L⊙. Our simulations, performed at z = 2.8, suggest that SMM J04135+10277 is not unique. In fact, at a distance of 108M⊙, and 0.3% have at least one highly star-forming companion (SFR> 100 M⊙ yr-1). Conclusions: Our results suggest that quasar-gas-rich companion galaxy systems are common phenomena in the early Universe and the high incidence of companions makes the study of such systems crucial to understand the growth and hierarchical build-up of galaxies and black holes.

  3. PREDICTIONS FOR ULTRA-DEEP RADIO COUNTS OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Claudia; Lapi, Andrea; De Zotti, Gianfranco; Bressan, Alessandro; Perrotta, Francesca; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Cai, Zhen-Yi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Negrello, Mattia; Bonato, Matteo, E-mail: cmancuso@sissa.it [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-09-01

    We have worked outty predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch-dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free–free) emission. The SFR functions were derived taking into account both the dust-obscured and the unobscured star formation, by combining far-infrared, ultraviolet, and Hα luminosity functions up to high redshifts. We have also revisited the South Pole Telescope counts of dusty galaxies at 95 GHz, performing a detailed analysis of the Spectral Energy Distributions. Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 μJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.

  4. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    Science.gov (United States)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  5. After the Fall: The Dust and Gas in E+A Post-starburst Galaxies

    Science.gov (United States)

    Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I.

    2018-03-01

    The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C II] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.

  6. A combined optical, infrared and radio study of the megamaser galaxy III Zw 35

    International Nuclear Information System (INIS)

    Chapman, J.M.; Axon, D.J.; Cohen, R.J.; Pedlar, A.; Davies, R.D.; Unger, S.W.

    1990-01-01

    III Zw 35 is a pair of galaxies characterized by powerful radio continuum, far-infrared and OH maser radiation. We have made a multi-frequency study of the galaxy pair based on optical, infrared and radio observations. The brighter northern component is identified as an early-type LINER or Seyfert galaxy containing an active nuclear region from which radio continuum, OH maser and thermal dust emission are detected. We propose that the northern component has a compact active nucleus deeply embedded in a highly obscured region of diameter ∼ 210 pc, within which enhanced star-formation occurs. The lower luminosity southern component is of low mass and is undergoing starburst activity over an extended region of diameter ∼ 5.5 kpc. The origin of the starburst and non-thermal activity appears to be an interaction between the two components. (author)

  7. Molecular Outflow and Feedback in an Obscured Quasar at z˜1.5 Revealed by ALMA

    Science.gov (United States)

    Brusa, Marcella

    2017-11-01

    We imaged with ALMA and ARGOS/LUCI the molecular gas and the dust and stellar continuum in XID2028, an obscured QSO at z=1.593, where the presence of a massive outflow in the ionized gas component traced by the [O III]5007 emission has been resolved up to 10 kpc. This target does represent a unique test case to study QSO 'feedback in action' at the peak epoch of AGN- galaxy coevolution. The QSO has been detected both in the CO(5-4) transition and in the 1.3mm continuum, with emissions confined in the central ( consumption conditions in XID2028, possibly due to feedback effects on the host galaxy. Finally, we observe an asymmetric profile of the CO(5-4) line, which suggests the presence of high velocity gas up to 700 km/s. An image of the blueshfited and redshifted CO wings provides the first detection of a spatially resolved, galaxy-scale molecular outflow at high-z, extended in opposite directions with the approaching component spatially coincident with the ionised gas outflow. The resolved, molecular outflow appear to be cospatial with the component observed int the ionised gas. XID2028 therefore represents the first example of molecular and ionised kpc scales outflows at high-z.

  8. Modelling dust rings in early-type galaxies through a sequence of radiative transfer simulations and 2D image fitting

    Science.gov (United States)

    Bonfini, P.; González-Martín, O.; Fritz, J.; Bitsakis, T.; Bruzual, G.; Sodi, B. Cervantes

    2018-05-01

    A large fraction of early-type galaxies (ETGs) host prominent dust features, and central dust rings are arguably the most interesting among them. We present here `Lord Of The Rings' (LOTR), a new methodology which allows to integrate the extinction by dust rings in a 2D fitting modelling of the surface brightness distribution. Our pipeline acts in two steps, first using the surface fitting software GALFIT to determine the unabsorbed stellar emission, and then adopting the radiative transfer code SKIRT to apply dust extinction. We apply our technique to NGC 4552 and NGC 4494, two nearby ETGs. We show that the extinction by a dust ring can mimic, in a surface brightness profile, a central point source (e.g. an unresolved nuclear stellar cluster or an active galactic nucleus; AGN) superimposed to a `core' (i.e. a central flattening of the stellar light commonly observed in massive ETGs). We discuss how properly accounting for dust features is of paramount importance to derive correct fluxes especially for low luminosity AGNs (LLAGNs). We suggest that the geometries of dust features are strictly connected with how relaxed is the gravitational potential, i.e. with the evolutionary stage of the host galaxy. Additionally, we find hints that the dust mass contained in the ring relates to the AGN activity.

  9. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...

  10. Is there dust in galactic haloes

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Ferrini, F.; Pisa Univ.; Barsella, B.; Aiello, S.

    1987-01-01

    The ubiquitous presence of dust within the disks of spiral galaxies is well established. The authors predict that the presence of dust in these regions may be revealed in bright edge-on galaxies, especially by using the polarization of the scattered light from the symmetric lanes. The detection of scattered light above the galactic plane may be an indicator that the parent galaxy has not suffered close encounters with other galaxies at least within the timescale required to establish the dust layers. (author)

  11. MULTI-WAVELENGTH PROBES OF OBSCURATION TOWARD THE NARROW-LINE REGION IN SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Kraemer, S. B.; Schmitt, H.R.; Crenshaw, D. M.; Melendez, M.; Turner, T.J.; Guainazzi, M.; Mushotzky, R.F.

    2011-01-01

    We present a study of reddening and absorption toward the narrow line regions (NLRs) in active galactic nuclei (AGNs) selected from the Revised Shapley-Ames, 12 μm, and Swift/Burst Alert Telescope samples. For the sources in host galaxies with inclinations of b/a > 0.5, we find that the mean ratio of [O III] λ5007, from ground-based observations, and [O IV] 28.59 μm, from Spitzer/Infrared Spectrograph observations, is a factor of two lower in Seyfert 2s than Seyfert 1s. The combination of low [O III]/[O IV] and [O III] λ4363/λ5007 ratios in Seyfert 2s suggests more extinction of emission from the NLR than in Seyfert 1s. Similar column densities of dusty gas, N H ∼ several x 10 21 cm -2 , can account for the suppression of both [O III] λ5007 and [O III] λ4363, as compared to those observed in Seyfert 1s. Also, we find that the X-ray line O VII λ22.1 A is weaker in Seyfert 2s, consistent with absorption by the same gas that reddens the optical emission. Using a Hubble Space Telescope/Space Telescope Imaging Spectrograph slitless spectrum of the Seyfert 1 galaxy NGC 4151, we estimate that only ∼30% of the [O III] λ5007 comes from within 30 pc of the central source, which is insufficient to account for the low [O III]/[O IV] ratios in Seyfert 2s. If Seyfert 2 galaxies have similar intrinsic [O III] spatial profiles, the external dusty gas must extend further out along the NLR, perhaps in the form of nuclear dust spirals that have been associated with fueling flows toward the AGN.

  12. Dust Absorption and the Ultraviolet Luminosity Density at z ~ 3 as Calibrated by Local Starburst Galaxies

    Science.gov (United States)

    Meurer, Gerhardt R.; Heckman, Timothy M.; Calzetti, Daniela

    1999-08-01

    We refine a technique to measure the absorption-corrected ultraviolet (UV) luminosity of starburst galaxies using rest-frame UV quantities alone and apply it to Lyman-limit U dropouts at z~3 found in the Hubble Deep Field (HDF). The method is based on an observed correlation between the ratio of far-infrared (FIR) to UV fluxes with spectral slope β (a UV color). A simple fit to this relation allows the UV flux absorbed by dust and reprocessed to the FIR to be calculated, and hence the dust-free UV luminosity to be determined. International Ultraviolet Explorer spectra and Infrared Astronomical Satellite fluxes of local starbursts are used to calibrate the FFIR/F1600 versus β relation in terms of A1600 (the dust absorption at 1600 Å) and the transformation from broadband photometric color to β. Both calibrations are almost completely independent of theoretical stellar-population models. We show that the recent marginal and nondetections of HDF U dropouts at radio and submillimeter wavelengths are consistent with their assumed starburst nature and our calculated A1600. This is also true of recent observations of the ratio of optical emission-line flux to UV flux density in the brightest U dropouts. This latter ratio turns out not to be a good indicator of dust extinction. In U dropouts, absolute magnitude M1600,0 correlates with β: brighter galaxies are redder, as is observed to be the case for local starburst galaxies. This suggests that a mass-metallicity relationship is already in place at z~3. The absorption-corrected UV luminosity function of U dropouts extends up to M1600,0~-24 AB mag, corresponding to a star formation rate ~200 \\Mscrsolar yr-1 (H0=50 km s-1 Mpc-3 and q0=0.5 are assumed throughout). The absorption-corrected UV luminosity density at z~3 is ρ1600,0>=1.4×1027 ergs-1 Hz-1 Mpc-1. It is still a lower limit since completeness corrections have not been done and because only galaxies with A1600dropouts. The luminosity-weighted mean dust

  13. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    Science.gov (United States)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  14. The VANDELS survey: dust attenuation in star-forming galaxies at z = 3-4

    Science.gov (United States)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.; Carnall, A. C.; Bourne, N.; Castellano, M.; Cimatti, A.; Cirasuolo, M.; Elbaz, D.; Fynbo, J. P. U.; Garilli, B.; Koekemoer, A.; Marchi, F.; Pentericci, L.; Talia, M.; Zamorani, G.

    2018-05-01

    We present the results of a new study of dust attenuation at redshifts 3 Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range 8.2 ≤ log (M⋆/M⊙) ≤ 10.6 probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at z ≃ 3.5 is similar in shape to the commonly adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of RV = 4.18 ± 0.29. In contrast, we find that an average attenuation curve as steep as the SMC extinction law is strongly disfavoured. We show that the optical attenuation (AV) versus stellar mass (M⋆) relation predicted using our method is consistent with recent ALMA observations of galaxies at 2 < z < 3 in the Hubble Ultra Deep Field (HUDF), as well as empirical AV - M⋆ relations predicted by a Calzetti-like law. In fact, our results, combined with other literature data, suggest that the AV-M⋆ relation does not evolve over the redshift range 0 < z < 5, at least for galaxies with log(M⋆/M⊙) ≳ 9.5. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at lower masses log(M⋆/M⊙) ≲ 9.0.

  15. The Intrinsic Shape of Galaxies in SDSS/Galaxy Zoo

    OpenAIRE

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-01-01

    By modelling the axis ratio distribution of SDSS DR8 galaxies we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of $E_0 = 0.284^{+0.015}_{-0.026}$ in the SDSS r band. We als...

  16. An Elegant Galaxy in an Unusual Light

    Science.gov (United States)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy

  17. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  18. DUST ATTENUATION OF THE NEBULAR REGIONS OF z ∼ 2 STAR-FORMING GALAXIES: INSIGHT FROM UV, IR, AND EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    De Barros, S.; Reddy, N.; Shivaei, I., E-mail: stephane.debarros@oabo.inaf.it [Department of Physics and Astronomy, University of California, Riverside, CA 92507 (United States)

    2016-04-01

    We use a sample of 149 spectroscopically confirmed UV-selected galaxies at z ∼ 2 to investigate the relative dust attenuation of the stellar continuum and the nebular emission lines. For each galaxy in the sample, at least one rest-frame optical emission line (Hα/[N ii] λ6583 or [O iii] λ5007) measurement has been taken from the litterature, and 41 galaxies have additional Spitzer/MIPS 24 μm observations that are used to infer infrared luminosities. We use a spectral energy distribution (SED) fitting code that predicts nebular line strengths when fitting the stellar populations of galaxies in our sample, and we perform comparisons between the predictions of our models and the observed/derived physical quantities. We find that on average our code is able to reproduce all the physical quantities (e.g., UV β slopes, infrared luminosities, emission line fluxes), but we need to apply a higher dust correction to the nebular emission compared to the stellar emission for the largest star formation rate (SFR) (log SFR/M{sub ⊙} yr{sup −1} > 1.82, Salpeter initial mass function). We find a correlation between SFR and the difference in nebular and stellar color excesses, which could resolve the discrepant results regarding nebular dust correction at z ∼ 2 from previous studies.

  19. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L. [School of Physics, Astronomy, and Computational Sciences, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030 (United States); Ellison, S. L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Fischer, J., E-mail: satyapal@physics.gmu.edu [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  20. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    International Nuclear Information System (INIS)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L.; Ellison, S. L.; Fischer, J.

    2014-01-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  1. The DEEP2 Galaxy Redshift Survey: AEGIS observations of a Dual AGNat z = 0.7

    International Nuclear Information System (INIS)

    Gerke1, Brian F.; Newman, Jeffrey A.; Lotz, Jennifer; Yan, Renbin; Barmby, P.; Coil, Alison L.; Conselice, Christopher J.; Ivison, R.J.; Lin, Lihwai; Koo, David C.; Nandra, Kirpal; Salim, Samir; Small, Todd; Weiner, Benjamin J.; Cooper, Michael C.; Davis, Marc; Faber, S.M.; Guhathakurta, Puragra

    2006-01-01

    We present evidence for a dual Active Galactic Nucleus (AGN) within an early-type galaxy at z = 0.709 in the Extended Groth Strip. The galaxy lies on the red sequence, with absolute magnitude M B = -21.0 ( AB, w , with h = 0 0.7) and rest-frame color U - B = 1.38. Its optical spectrum shows strong, double-peaked [O III] emission lines and weak Hβ emission, with Seyfert-like line ratios. The two narrow peaks are separate by 630 km s-1 in velocity and arise from two distinct regions, spatially resolved in the DEIMOS spectrum, with a projected physical separation of 1.2 kpc. HST/ACS imaging shows an early-type (E/S0) galaxy with hints of disturbed structure, consistent with the remnant of a dissipationless merger. Multiwavelength photometric information from the AEGIS consortium confirm the identification of a dust-obscured AGN in an early-type galaxy, with detections in X-ray, optical, infrared and radio wavebands. These data are most readily explained as a single galaxy harboring two AGN--the first such system to be observed in an otherwise typical early-type galaxy

  2. Partial dust obscuration in active galactic nuclei as a cause of broad-line profile and lag variability, and apparent accretion disc inhomogeneities

    Science.gov (United States)

    Gaskell, C. Martin; Harrington, Peter Z.

    2018-04-01

    The profiles of the broad emission lines of active galactic nuclei (AGNs) and the time delays in their response to changes in the ionizing continuum ("lags") give information about the structure and kinematics of the inner regions of AGNs. Line profiles are also our main way of estimating the masses of the supermassive black holes (SMBHs). However, the profiles often show ill-understood, asymmetric structure and velocity-dependent lags vary with time. Here we show that partial obscuration of the broad-line region (BLR) by outflowing, compact, dusty clumps produces asymmetries and velocity-dependent lags similar to those observed. Our model explains previously inexplicable changes in the ratios of the hydrogen lines with time and velocity, the lack of correlation of changes in line profiles with variability of the central engine, the velocity dependence of lags, and the change of lags with time. We propose that changes on timescales longer than the light-crossing time do not come from dynamical changes in the BLR, but are a natural result of the effect of outflowing dusty clumps driven by radiation pressure acting on the dust. The motion of these clumps offers an explanation of long-term changes in polarization. The effects of the dust complicate the study of the structure and kinematics of the BLR and the search for sub-parsec SMBH binaries. Partial obscuration of the accretion disc can also provide the local fluctuations in luminosity that can explain sizes deduced from microlensing.

  3. Dusty Dwarfs Galaxies Occulting A Bright Background Spiral

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.

  4. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Hartoog, O. E.; Kaper, L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); D' Elia, V. [INAF/Rome Astronomical Observatory, via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy); Zafar, T. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Afonso, P. M. J. [Physics and Astronomy Department, American River College, 4700 College Oak Drive, Sacramento, CA 95841 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Universite Paris Diderot 5 place Jules Janssen, F-92195 Meudon (France); Goldoni, P. [APC, Astroparticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, Rue Alice Domon et Léonie Duquet, F-75205 Paris, Cedex 13 (France); Greiner, J. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Klose, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Levan, A. J., E-mail: sparre@dark-cosmology.dk [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  5. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    Science.gov (United States)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  6. Three intervening galaxy absorbers towards GRB 060418

    DEFF Research Database (Denmark)

    Ellison, S. L.; Vreeswijk, P.; Ledoux, C.

    2006-01-01

    Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August......Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August...

  7. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  8. Announcment: Conference on Obscured AGN Across Cosmic Time

    Science.gov (United States)

    2006-12-01

    Current deep surveys, notably in X-rays and the mid-IR, are making it possible to carry out a census of essentially all the luminous AGN in the Universe. By pene-trating the obscuration that, in Type 2 sources, hides the nuclear regions in the UV to the near-IR spectrum, these new surveys are finding the radio quiet coun-terparts of the powerful radio galaxies.

  9. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    International Nuclear Information System (INIS)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L.; Gonzalez-Nuevo, J.

    2016-01-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10 10 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10 2 M ⊙ yr −1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr −1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  10. The angular clustering of WISE-selected active galactic nuclei: Different halos for obscured and unobscured active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E. [Instituto de Ciencias Astronómicas, de la Tierra, y del Espacio (ICATE), 5400 San Juan (Argentina); Yan, Lin [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Assef, R. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-07-01

    We calculate the angular correlation function for a sample of ∼170,000 active galactic nuclei (AGNs) extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 – W2 > 0.8) and 4.6 μm flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGNs and to have a mean redshift of (z) = 1.1. In total, the angular clustering of WISE AGNs is roughly similar to that of optical AGNs. We cross-match these objects with the photometric Sloan Digital Sky Survey catalog and distinguish obscured sources with r – W2 > 6 from bluer, unobscured AGNs. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGNs are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find that obscured sources at (z) ∼ 0.9 have a bias of b = 2.9 ± 0.6 and are hosted in dark matter halos with a typical mass of log (M/M {sub ☉} h {sup –1}) ∼ 13.5. In contrast, unobscured AGNs at (z) ∼ 1.1 have a bias of b = 1.6 ± 0.6 and inhabit halos of log (M/M {sub ☉} h {sup –1}) ∼ 12.4. These findings suggest that obscured AGNs inhabit denser environments than unobscured AGNs, and they are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  11. Youngest Stellar Explosion in Our Galaxy Discovered

    Science.gov (United States)

    2008-05-01

    supernova explosions with optical telescopes across half of the Universe, but when they're in this murk, we can miss them in our own cosmic back yard," Reynolds said. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing," he added. Because of the obscuration, no one could have seen the original explosion 140 years ago. The astronomers are reporting their results in papers published in the Astrophysical Journal Letters and Monthly Notices of the Royal Astronomical Society. Background Information: Supernova Explosions Supernova explosions are the violent death throes of stars. These explosions release in one event as much energy as is being released by all the rest of the stars in a galaxy -- typically 100 billion or so. Supernovae seen in other galaxies can outshine the rest of their galaxy for days. The supernovae that have occurred in our own Galaxy and were not obscured by the gas and dust that obscured G1.9+0.3 have often provided a spectacular sight. Historical records indicate that ancient astronomers noted supernova explosions at least as early as A.D. 393, and probably earlier. The pre-telescopic astronomers Tycho Brahe and Johannes Kepler made extensive observations of supernovae in 1572 and 1604. Chinese astronomers noted that a supernova in 1054 was bright enough to be seen in the daytime. A supernova in 1006 remained visible for two years. Supernovae that result from the deaths of stars much more massive than the Sun enrich the galaxy with chemical elements that are produced in the cores of those stars before they explode. The heavy elements, such as carbon, oxygen, iron, siicon and calcium, that make up planets and their inhabitants were made available by supernova explosions. In addition to enriching the material between stars with heavy elements, supernovae stir up that material through the

  12. A TALE OF TWO NARROW-LINE REGIONS: IONIZATION, KINEMATICS, AND SPECTRAL ENERGY DISTRIBUTIONS FOR A LOCAL PAIR OF MERGING OBSCURED ACTIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting; Carroll, Christopher M.; Jones, Mackenzie L.; Zervos, Alexandros S. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Goulding, Andrew D. [Department Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-05-20

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (∼23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirm the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton . These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”.

  13. Galaxies in the First Billion Years After the Big Bang

    Science.gov (United States)

    Stark, Daniel P.

    2016-09-01

    In the past five years, deep imaging campaigns conducted with the Hubble Space Telescope (HST) and ground-based observatories have delivered large samples of galaxies at 6.5space density of luminous galaxies has been shown to decrease by 15-20× over 4Space Telescope demonstrates that z>6 UV-selected galaxies are relatively compact with blue UV continuum slopes, low stellar masses, and large specific star formation rates. In the last year, ALMA (the Atacama Large Millimeter Array) and ground-based infrared spectrographs have begun to complement this picture, revealing minimal dust obscuration and hard radiation fields, and providing evidence for metal-poor ionized gas. Weak low-ionization absorption lines suggest a patchy distribution of neutral gas surrounds O and B stars, possibly aiding in the escape of ionizing radiation. Gamma ray burst afterglows and Lyman-α surveys have provided evidence that the intergalactic medium (IGM) evolves from mostly ionized at z≃6-6.5 ([Formula: see text]) to considerably neutral at z≃7-8 ([Formula: see text]). The reionization history that emerges from considering the UV output of galaxies over 6galaxies can complete reionization by z≃6 and reproduce the Thomson scattering optical depth faced by cosmic microwave background photons if the luminosity function extends ≃4 mag below current surveys and a moderate fraction ([Formula: see text]) of ionizing radiation escapes from galaxies.

  14. THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Egami, E.; Rex, M.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Portouw, J.; Walth, G. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Smith, G. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Altieri, B.; Valtchanov, I. [Herschel Science Centre, ESAC, ESA, P.O. Box 78, Villanueva de la Canada, 28691 Madrid (Spain); Perez-Gonzalez, P. G. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Van der Werf, P. P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Zemcov, M., E-mail: trawle@as.arizona.edu [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 {mu}m), we calculate the obscured star formation rate (SFR). 22{sup +6.2}{sub -5.3}% of the BCGs are detected in the far-infrared, with SFR = 1-150 M{sub Sun} yr{sup -1}. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing H{alpha} emission is also correlated with obscured star formation. For all but the most luminous BCGs (L{sub TIR} > 2 Multiplication-Sign 10{sup 11} L{sub Sun }), only a small ({approx}<0.4 mag) reddening correction is required for SFR(H{alpha}) to agree with SFR{sub FIR}. The relatively low H{alpha} extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.

  15. A dusty, normal galaxy in the epoch of reionization

    DEFF Research Database (Denmark)

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg

    2015-01-01

    Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts $z > 7$, have been found in large numbers with extremely deep restframe-UV imaging. But it has proved difficult for existing spectrographs to characterise them in the UV. The detailed properties...... of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at $z = 3.25$, and recent results have cast doubt on whether...... dust and molecules can be found in typical galaxies at this early epoch. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be $z = 7.5\\pm0.2$ from a spectroscopic detection...

  16. Near-infrared observations of IRAS minisurvey galaxies

    International Nuclear Information System (INIS)

    Carico, D.P.; Soifer, B.T.; Elias, J.H.; Matthews, K.; Neugebauer, G.; Beichman, C.; Persson, C.J.; Persson, S.E.

    1987-01-01

    Near infrared photometry at J, H, and K was obtained for 82 galaxies from the IRAS minisurvey. The near infrared colors of these galaxies cover a larger range in J-H and H-K than do normal field spiral galaxies, and evidence is presented of a tighter correlation between the near and far infrared emission in far infrared bright galaxies than exists between the far infrared and the visible emission. These results suggest the presence of dust in the far infrared bright galaxies, with hot dust emission contributing to the 2.2 micron emission, and extinction by dust affecting both the near infrared colors and the visible luminosities. In addition, there is some indication that the infrared emission in many of the minisurvey galaxies is coming from a strong nuclear component

  17. The Spitzer Survey of Stellar Structure in Galaxies (S4G): Precise Stellar Mass Distributions from Automated Dust Correction at 3.6 μm

    Science.gov (United States)

    Querejeta, Miguel; Meidt, Sharon E.; Schinnerer, Eva; Cisternas, Mauricio; Muñoz-Mateos, Juan Carlos; Sheth, Kartik; Knapen, Johan; van de Ven, Glenn; Norris, Mark A.; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Holwerda, Benne W.; Athanassoula, E.; Bosma, Albert; Groves, Brent; Ho, Luis C.; Gadotti, Dimitri A.; Zaritsky, Dennis; Regan, Michael; Hinz, Joannah; Gil de Paz, Armando; Menendez-Delmestre, Karin; Seibert, Mark; Mizusawa, Trisha; Kim, Taehyun; Erroz-Ferrer, Santiago; Laine, Jarkko; Comerón, Sébastien

    2015-07-01

    The mid-infrared is an optimal window to trace stellar mass in nearby galaxies and the 3.6 μ {{m}} IRAC band has been exploited to this effect, but such mass estimates can be biased by dust emission. We present our pipeline to reveal the old stellar flux at 3.6 μm and obtain stellar mass maps for more than 1600 galaxies available from the Spitzer Survey of Stellar Structure in Galaxies (S4G). This survey consists of images in two infrared bands (3.6 and 4.5 μ {{m}}), and we use the Independent Component Analysis (ICA) method presented in Meidt et al. to separate the dominant light from old stars and the dust emission that can significantly contribute to the observed 3.6 μ {{m}} flux. We exclude from our ICA analysis galaxies with low signal-to-noise ratio ({{S}}/{{N}}\\lt 10) and those with original [3.6]-[4.5] colors compatible with an old stellar population, indicative of little dust emission (mostly early Hubble types, which can directly provide good mass maps). For the remaining 1251 galaxies to which ICA was successfully applied, we find that as much as 10%-30% of the total light at 3.6 μ {{m}} typically originates from dust, and locally it can reach even higher values. This contamination fraction shows a correlation with specific star formation rates, confirming that the dust emission that we detect is related to star formation. Additionally, we have used our large sample of mass estimates to calibrate a relationship of effective mass-to-light ratio (M/L) as a function of observed [3.6]-[4.5] color: {log}({\\text{}}M/L) = -0.339(+/- 0.057) × ([3.6]-[4.5])-0.336(+/- 0.002). Our final pipeline products have been made public through IRSA, providing the astronomical community with an unprecedentedly large set of stellar mass maps ready to use for scientific applications.

  18. Dust Grains and the Luminosity of Circumnuclear Water Masers in Active Galaxies

    Science.gov (United States)

    Collison, Alan J.; Watson, William D.

    1995-01-01

    In previous calculations for the luminosities of 22 GHz water masers, the pumping is reduced and ultimately quenched with increasing depth into the gas because of trapping of the infrared (approximately equals 30-150 micrometers), spectral line radiation of the water molecule. When the absorption (and reemission) of infrared radiation by dust grains is included, we demonstrate that the pumping is no longer quenched but remains constant with increasing optical depth. A temperature difference between the grains and the gas is required. Such conditions are expected to occur, for example, in the circumnuclear masing environments created by X-rays in active galaxies. Here, the calculated 22 GHz maser luminosities are increased by more than an order of magnitude. Application to the well-studied, circumnuclear masing disk in the galaxy NGC 4258 yields a maser luminosity near that inferred from observations if the observed X-ray flux is assumed to be incident onto only the inner surface of the disk.

  19. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    Science.gov (United States)

    2009-07-01

    -wave camera on the ESO-operated APEX telescope. APEX is located at an altitude of 5100 m on the arid plateau of Chajnantor in the Chilean Andes -- a site that allows optimal viewing in the submillimetre range. The Universe is relatively unexplored at submillimetre wavelengths, as extremely dry atmospheric conditions and advanced detector technology are required for such observations. The interstellar medium -- the material between the stars -- is composed of gas and grains of cosmic dust, rather like fine sand or soot. However, the gas is mostly hydrogen and relatively difficult to detect, so astronomers often search for these dense regions by looking for the faint heat glow of the cosmic dust grains. Submillimetre light allows astronomers to see these dust clouds shining, even though they obscure our view of the Universe at visible light wavelengths. Accordingly, the ATLASGAL map includes the denser central regions of our galaxy, in the direction of the constellation of Sagittarius -- home to a supermassive black hole (ESO 46/08) -- that are otherwise hidden behind a dark shroud of dust clouds. The newly released map also reveals thousands of dense dust clumps, many never seen before, which mark the future birthplaces of massive stars. The clumps are typically a couple of light-years in size, and have masses of between ten and a few thousand times the mass of our Sun. In addition, ATLASGAL has captured images of beautiful filamentary structures and bubbles in the interstellar medium, blown by supernovae and the winds of bright stars. Some striking highlights of the map include the centre of the Milky Way, the nearby massive and dense cloud of molecular gas called Sagittarius B2, and a bubble of expanding gas called RCW120, where the interstellar medium around the bubble is collapsing and forming new stars (see ESO 40/08). "It's exciting to get our first look at ATLASGAL, and we will be increasing the size of the map over the next year to cover all of the galactic plane

  20. A magnified view of star formation at z = 0.9 from two lensed galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Alice; Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Rigby, Jane R. [Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Swinbank, Mark [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2014-10-01

    We present new narrowband Hα imaging from the Hubble Space Telescope of two z = 0.91 galaxies that have been lensed by the foreground galaxy cluster A2390. These data probe spatial scales as small as ∼0.3 kpc, providing a magnified look at the morphology of star formation at an epoch when the global star formation rate (SFR) was high. However, dust attenuates our spatially resolved SFR indicators, the Hα and rest-UV emission, and we lack a direct measurement of extinction. Other studies have found that ionized gas in galaxies tends to be roughly 50% more obscured than stars; however, given an unextincted measurement of the SFR we can quantify the relative stellar to nebular extinction and the extinction in Hα. We infer SFRs from Spitzer and Herschel mid- to far-infrared observations and compare these to integrated Hα and rest-UV SFRs; this yields stellar to nebular extinction ratios consistent with previous studies. We take advantage of high spatial resolution and contextualize these results in terms of the source-plane morphologies, comparing the distribution of Hα to that of the rest-frame UV and optical light. In one galaxy, we measure separate SFRs in visually distinct clumps, but can set only a lower limit on the extinction and thus the star formation. Consequently, the data are also consistent with there being an equal amount of extinction along the lines of sight to the ionized gas as to the stars. Future observations in the far-infrared could settle this by mapping out the dust directly.

  1. A magnified view of star formation at z = 0.9 from two lensed galaxies

    International Nuclear Information System (INIS)

    Olmstead, Alice; Veilleux, Sylvain; Rigby, Jane R.; Swinbank, Mark

    2014-01-01

    We present new narrowband Hα imaging from the Hubble Space Telescope of two z = 0.91 galaxies that have been lensed by the foreground galaxy cluster A2390. These data probe spatial scales as small as ∼0.3 kpc, providing a magnified look at the morphology of star formation at an epoch when the global star formation rate (SFR) was high. However, dust attenuates our spatially resolved SFR indicators, the Hα and rest-UV emission, and we lack a direct measurement of extinction. Other studies have found that ionized gas in galaxies tends to be roughly 50% more obscured than stars; however, given an unextincted measurement of the SFR we can quantify the relative stellar to nebular extinction and the extinction in Hα. We infer SFRs from Spitzer and Herschel mid- to far-infrared observations and compare these to integrated Hα and rest-UV SFRs; this yields stellar to nebular extinction ratios consistent with previous studies. We take advantage of high spatial resolution and contextualize these results in terms of the source-plane morphologies, comparing the distribution of Hα to that of the rest-frame UV and optical light. In one galaxy, we measure separate SFRs in visually distinct clumps, but can set only a lower limit on the extinction and thus the star formation. Consequently, the data are also consistent with there being an equal amount of extinction along the lines of sight to the ionized gas as to the stars. Future observations in the far-infrared could settle this by mapping out the dust directly.

  2. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  3. New View of Distant Galaxy Reveals Furious Star Formation

    Science.gov (United States)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  4. EVOLUTION OF THE MOST LUMINOUS DUSTY GALAXIES

    International Nuclear Information System (INIS)

    Weedman, Daniel W.; Houck, James R.

    2009-01-01

    A summary of mid-infrared continuum luminosities arising from dust is given for very luminous galaxies, L IR > 10 12 L sun , with 0.005 0.7 in the 9.7 μm silicate absorption feature (i.e., half of the continuum is absorbed) and having equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature ν (8 μm) for the most luminous obscured AGNs is found to scale as (1+z) 2.6 to z = 2.8. For unobscured AGNs, the scaling with redshift is similar, but luminosities νL ν (8 μm) are approximately three times greater for the most luminous sources. Using both obscured and unobscured AGNs having total infrared fluxes from the Infrared Astronomical Satellite, empirical relations are found between νL ν (8 μm) and L IR . Combining these relations with the redshift scaling of luminosity, we conclude that the total infrared luminosities for the most luminous obscured AGNs, L IR (AGN obscured ) in L sun , scale as log L IR (AGN obscured ) = 12.3 ± 0.25 + 2.6(±0.3)log(1+z), and for the most luminous unobscured AGNs, scale as log L IR (AGN1) = 12.6(±0.15) + 2.6(±0.3)log(1+z). We previously determined that the most luminous starbursts scale as log L IR (SB) = 11.8 ± 0.3 + 2.5(±0.3)log(1+z), indicating that the most luminous AGNs are about 10 times more luminous than the most luminous starbursts. Results are consistent with obscured and unobscured AGNs having the same total luminosities with differences arising only from orientation, such that the obscured AGNs are observed through very dusty clouds which extinct about 50% of the intrinsic luminosity at 8 μm. Extrapolations of observable f ν (24 μm) to z = 6 are made using evolution results for these luminous sources. Both obscured and unobscured AGNs should be detected to z ∼ 6 by Spitzer surveys with f ν (24 μm) > 0.3 mJy, even without luminosity evolution for z > 2.5. By contrast, the most luminous starbursts cannot be detected for z > 3, even if luminosity evolution continues beyond z = 2.5.

  5. The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts

    Science.gov (United States)

    Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.

    2002-12-01

    We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.

  6. Galaxy And Mass Assembly (GAMA): deconstructing bimodality - I. Red ones and blue ones

    Science.gov (United States)

    Taylor, Edward N.; Hopkins, Andrew M.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brown, Michael J. I.; Colless, Matthew; Driver, Simon; Norberg, Peder; Robotham, Aaron S. G.; Alpaslan, Mehmet; Brough, Sarah; Cluver, Michelle E.; Gunawardhana, Madusha; Kelvin, Lee S.; Liske, Jochen; Conselice, Christopher J.; Croom, Scott; Foster, Caroline; Jarrett, Thomas H.; Lara-Lopez, Maritza; Loveday, Jon

    2015-01-01

    We measure the mass functions for generically red and blue galaxies, using a z 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing measurements stems from how `red' and `blue' galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour-mass relation, which enables us characterize the two populations without having to specify a priori which galaxies are `red' and `blue'. Our results then provide the means to derive objective operational definitions for the terms `red' and `blue', which are based on the phenomenology of the colour-mass diagrams. Informed by this descriptive modelling, we show that (1) after accounting for dust, the stellar colours of `blue' galaxies do not depend strongly on mass; (2) the tight, flat `dead sequence' does not extend much below log M* ˜ 10.5; instead, (3) the stellar colours of `red' galaxies vary rather strongly with mass, such that lower mass `red' galaxies have bluer stellar populations; (4) below log M* ˜ 9.3, the `red' population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, (5) it is hard to meaningfully constrain the shape, including the existence of an upturn, of the `red' galaxy mass function below log M* ˜ 9.3. Points 1-4 provide meaningful targets for models of galaxy formation and evolution to aim for.

  7. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Física, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10{sup 10} M {sub ⊙} at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10{sup 2} M {sub ⊙} yr{sup −1} in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M {sub ⊙} yr{sup −1} cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  8. Attenuation Modified by DIG and Dust as Seen in M31

    Energy Technology Data Exchange (ETDEWEB)

    Tomičić, Neven; Kreckel, Kathryn; Schinnerer, Eva [Max Planck Institute for Astronomy (MPIA), Königstuhl 17, 69117 Heidelberg (Germany); Groves, Brent [School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Sandstrom, Karin [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Kapala, Maria [Department of Astronomy, University of Cape Town, Republic of South Africa (South Africa); Blanc, Guillermo A. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Leroy, Adam, E-mail: tomicic@mpia-hd.mpg.de [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-08-01

    The spatial distribution of dust in galaxies affects the global attenuation, and hence inferred properties, of galaxies. We trace the spatial distribution of dust in five approximately kiloparsec fields of M31 by comparing optical attenuation with the total dust mass distribution. We measure the attenuation from the Balmer decrement using Integral Field Spectroscopy and the dust mass from Herschel far-IR observations. Our results show that M31's dust attenuation closely follows a foreground screen model, contrary to what was previously found in other nearby galaxies. By smoothing the M31 data, we find that spatial resolution is not the cause for this difference. Based on the emission-line ratios and two simple models, we conclude that previous models of dust/gas geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG) component. Due to the variation of dust and DIG scale heights with galactic radius, we conclude that different locations in galaxies will have different vertical distributions of gas and dust and therefore different measured attenuation. The difference between our result in M31 with that found in other nearby galaxies can be explained by our fields in M31 lying at larger galactic radii than the previous studies that focused on the centers of galaxies.

  9. Are spiral galaxies heavy smokers?

    International Nuclear Information System (INIS)

    Davies, J.; Disney, M.; Phillipps, S

    1990-01-01

    The dustiness of spiral galaxies is discussed. Starburst galaxies and the shortage of truly bright spiral galaxies is cited as evidence that spiral galaxies are far dustier than has been thought. The possibility is considered that the dust may be hiding missing mass

  10. The Origin of Dust in the Early Universe

    Science.gov (United States)

    Dwek, Eli

    2011-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  11. ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES

    International Nuclear Information System (INIS)

    Hayes, Matthew; Schaerer, Daniel; Oestlin, Goeran; Mas-Hesse, J. Miguel; Atek, Hakim; Kunth, Daniel

    2011-01-01

    The Lyα emission line has been proven to be a powerful tool for studying evolving galaxies at the highest redshift. However, in order to use Lyα as a physical probe of galaxies, it becomes vital to know the Lyα escape fraction (f Lyα esc ). Unfortunately, due to the resonant nature of Lyα, f Lyα esc may vary unpredictably and requires empirical measurement. Here, we compile Lyα luminosity functions (LFs) between redshifts z = 0 and 8 and, combined with Hα and ultraviolet data, assess how f Lyα esc evolves with redshift. We find a strong upward evolution in f Lyα esc over the range z = 0.3-6, which is well fit by the power law f Lyα esc ∝(1 + z) ξ with ξ = (2.57 +0.19 -0.12 ). This predicts that f Lyα esc should reach unity at z = 11.1. By comparing f Lyα esc and E B-V in individual galaxies we derive an empirical relationship between f Lyα esc and E B-V , which includes resonance scattering and can explain the redshift evolution of f Lyα esc between z = 0 and 6 purely as a function of the evolution in the dust content of galaxies. Beyond z ∼ 6.5, f Lyα esc drops more substantially, an effect attributed to either ionizing photon leakage, or an increase in the neutral gas fraction of the intergalactic medium. While distinguishing between these two scenarios may be extremely challenging, by framing the problem this way we remove the uncertainty of the halo mass from Lyα-based tests of reionization. We finally derive a new method by which to estimate the dust content of galaxies, based purely upon the observed Lyα and UV LFs. These data are characterized by an exponential with an e-folding scale of z EBV ∼ 3.4.

  12. THE WYOMING SURVEY FOR Hα. III. A MULTI-WAVELENGTH LOOK AT ATTENUATION BY DUST IN GALAXIES OUT TO z ∼ 0.4

    International Nuclear Information System (INIS)

    Moore, Carolynn A.; Dale, Daniel A.; Barlow, Rebecca J.; Cohen, Seth A.; Cook, David O.; Johnson, L. C.; Kattner, ShiAnne M.; Staudaher, Shawn M.; Lee, Janice C.

    2010-01-01

    We report results from the Wyoming Survey for Hα (WySH), a comprehensive four-square degree survey to probe the evolution of star-forming galaxies over the latter half of the age of the universe. We have supplemented the Hα data from WySH with infrared data from the Spitzer Wide-area Infrared Extragalactic Survey and ultraviolet data from the Galaxy Evolution Explorer Deep Imaging Survey. This data set provides a multi-wavelength look at the evolution of the attenuation by dust, and here we compare a traditional measure of dust attenuation (L(TIR)/L(FUV)) to a diagnostic based on a recently developed robust star formation rate (SFR) indicator, [Ha obs +24μm]/Ha obs . With such data over multiple epochs, the evolution in the attenuation by dust with redshift can be assessed. We present results from the ELAIS-N1 and Lockman Hole regions at z ∼ 0.16, 0.24, 0.32, and 0.40. While the ensemble averages of both diagnostics are relatively constant from epoch to epoch, each epoch individually exhibits a larger attenuation by dust for higher SFRs. Hence, an epoch-to-epoch comparison at a fixed SFR suggests a mild decrease in dust attenuation with redshift.

  13. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies

    Science.gov (United States)

    Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M.-Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S.

    2018-02-01

    Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs.

  14. Major galaxy mergers and the growth of supermassive black holes in quasars.

    Science.gov (United States)

    Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan

    2010-04-30

    Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.

  15. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    Science.gov (United States)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  16. INVERSE COMPTON X-RAY HALOS AROUND HIGH-z RADIO GALAXIES: A FEEDBACK MECHANISM POWERED BY FAR-INFRARED STARBURSTS OR THE COSMIC MICROWAVE BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blundell, Katherine M. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Lehmer, B. D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Alexander, D. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-12-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z {approx} 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L {sub X} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and sizes of {approx}60 kpc. Their morphologies are broadly similar to the {approx}60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z {approx} 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z {approx} 3.6 radio galaxies, which are {approx}4 Multiplication-Sign fainter in the far-infrared than those at z {approx} 3.8, also have {approx}4 Multiplication-Sign fainter X-ray IC emission. Including data for a further six z {approx}> 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes {approx}<100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on {approx}100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly{alpha} emission line

  17. The ultraviolet attenuation law in backlit spiral galaxies

    International Nuclear Information System (INIS)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-01-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  18. The ultraviolet attenuation law in backlit spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Manning, Anna M. [Stennis Space Center, MS 39522 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2201-AZ Noordwijk (Netherlands); Lintott, Chris J. [Astrophysics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin, E-mail: wkeel@ua.edu, E-mail: ammanning@bama.ua.edu, E-mail: bholwerd@rssd.esa.int, E-mail: Twitter@BenneHolwerda, E-mail: cjl@astro.ox.ac.uk, E-mail: Twitter@chrislintott, E-mail: kevin.schawinski@phys.ethz.ch, E-mail: Twitter@kevinschawinski [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  19. Dust Attenuation and H(alpha) Star Formation Rates of Z Approx. 0.5 Galaxies

    Science.gov (United States)

    Ly, Chun; Malkan, Matthew A.; Kashikawa, Nobunari; Ota, Kazuaki; Shimasaku, Kazuhiro; Iye, Masanori; Currie, Thayne

    2012-01-01

    Using deep narrow-band and broad-band imaging, we identify 401 z approximately 0.40 and 249 z approximately 0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7(uparrow){+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an "intrinsic" H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z approximately 0.5.

  20. The FMOS-COSMOS survey of star-forming galaxies at z ∼ 1.6. II. The mass-metallicity relation and the dependence on star formation rate and dust extinction

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Sanders, D. B.; Chu, J.; Hasinger, G. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Kewley, L. J. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell Osservatorio 3, I-35122 Padova (Italy); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Maier, C. [Vienna University, Department of Astrophysics, Tuerkenschanzstrasse 17, 1180 Vienna (Austria); Geller, M. J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388, Marseille (France); Kajisawa, M., E-mail: jabran@ifa.hawaii.edu [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Collaboration: COSMOS Team; and others

    2014-09-01

    We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z ∼ 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z ∼ 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z ∼ 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z ∼ 1.6. The most massive galaxies at z ∼ 1.6 (∼10{sup 11} M {sub ☉}) are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z ∼ 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z ∼ 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction.

  1. The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

    Science.gov (United States)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly "gray" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  2. GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09

    Science.gov (United States)

    Stanway, Elizabeth R.; Levan, Andrew J.; Tanvir, Nial; Wiersema, Klaas; van der Horst, Alexander; Mundell, Carole G.; Guidorzi, Cristiano

    2015-02-01

    We present an analysis of the photometry and spectroscopy of the host galaxy of Swift-detected GRB 080517. From our optical spectroscopy, we identify a redshift of z = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S4.5 GHz = 0.22 ± 0.04 mJy - one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ˜16 M⊙ yr-1 and a high dust obscuration (E(B - V) > 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy-galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.

  3. COOL DUST IN THE OUTER RING OF NGC 1291

    International Nuclear Information System (INIS)

    Hinz, J. L.; Engelbracht, C. W.; Skibba, R.; Montiel, E.; Crocker, A.; Calzetti, D.; Donovan Meyer, J.; Sandstrom, K.; Walter, F.; Groves, B.; Meidt, S. E.; Johnson, B. D.; Hunt, L.; Aniano, G.; Draine, B.; Murphy, E. J.; Armus, L.; Dale, D. A.; Galametz, M.; Kennicutt, R. C.

    2012-01-01

    We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 μm. The mass of cool dust in the ring dominates the total dust mass of the galaxy, accounting for at least 70% of it. The temperature of the emitting dust in the ring (T = 19.5 ± 0.3 K) is cooler than that of the inner galaxy (T = 25.7 ± 0.7 K). We discuss several explanations for the difference in dust temperature, including age and density differences in the stellar populations of the ring versus the bulge.

  4. Discovery of Highly Obscured Galaxies in the Zone of Avoidance

    Science.gov (United States)

    2008-08-01

    the optical (e.g., Roman et al. 2000), near-infrared (DENIS, Schroder et al. 1999; Two Micron All Sky Survey ( 2MASS ), Jarrett et al. 2000), far... 2MASS (Skrutskie et al. 2006), downloaded directly from the NASA/IPAC Infrared Science Archive (IRSA).5 The boundaries of our search were set by the...Figure 3. 2MASS J (blue), H (green), and /is (red) color composite images of the same galaxies. The galaxies are displayed in the same order as shown

  5. Exploring the Dust Content, Metallicity, Star Formation and AGN Activity in Distant Dusty, Star-Forming Galaxies Using Cosmic Telescope

    Science.gov (United States)

    Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey

    2018-01-01

    We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.

  6. Simulating galactic dust grain evolution on a moving mesh

    Science.gov (United States)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  7. Ultraviolet Extinction in Backlit Galaxies - from Galaxy Zoo to GALEX

    Science.gov (United States)

    Keel, William C.; Manning, A.; Holwerda, B. W.; Lintott, C.; Schawinski, K.; Galaxy Zoo Team

    2012-01-01

    We examine the ultraviolet extinction of galaxies on large scales, combining optical and GALEX UV data on backlit galaxies (most found in the Galaxy Zoo citizen-science project). We analyze the images in matching ways, modelling both foreground and background galaxies by symmetry or elliptical isophote families as appropriate, and using the non-overlapping regions of the galaxies to estimate errors in the derived transmission T=e-κ. Spirals appear less symmetric in the UV, as star-forming regions become more dominant, so that our most reliable results are mean values across multiple regions and multiple galaxies. Our mean effective extinction curve is dominated by the contribution of luminous spirals,and shows a fairly flat gray" extinction law into the ultraviolet. For example, the median of κNUV/κB in spiral arms is only 1.3. Along with previous high-resolution HST studies of a few nearby backlit galaxies, this suggests that on kpc scales the effective extinction is dominated by the dust clumping rather than the intrinsic reddening law. This implies that extrapolation of local properties to short wavelengths, a step toward the history of dust in galaxies through comparison of local properties with a similar analysis in deep HST fields, can be done without introducing much additional error. This work was supported by NASA Astrophysics Data Analysis Program grant NNX10AD54G.

  8. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    Science.gov (United States)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; hide

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  9. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  10. Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at z ∼ 4.5

    Science.gov (United States)

    Gómez-Guijarro, C.; Toft, S.; Karim, A.; Magnelli, B.; Magdis, G. E.; Jiménez-Andrade, E. F.; Capak, P. L.; Fraternali, F.; Fujimoto, S.; Riechers, D. A.; Schinnerer, E.; Smolčić, V.; Aravena, M.; Bertoldi, F.; Cortzen, I.; Hasinger, G.; Hu, E. M.; Jones, G. C.; Koekemoer, A. M.; Lee, N.; McCracken, H. J.; Michałowski, M. J.; Navarrete, F.; Pović, M.; Puglisi, A.; Romano-Díaz, E.; Sheth, K.; Silverman, J. D.; Staguhn, J.; Steinhardt, C. L.; Stockmann, M.; Tanaka, M.; Valentino, F.; van Kampen, E.; Zirm, A.

    2018-04-01

    Dust-enshrouded, starbursting, submillimeter galaxies (SMGs) at z ≥ 3 have been proposed as progenitors of z ≥ 2 compact quiescent galaxies (cQGs). To test this connection, we present a detailed spatially resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ∼ 4.5. The stellar UV emission probed by HST is extended and irregular and shows evidence of multiple components. Informed by HST, we deblend Spitzer/IRAC data at rest-frame optical, finding that the systems are undergoing minor mergers with a typical stellar mass ratio of 1:6.5. The FIR dust continuum emission traced by ALMA locates the bulk of star formation in extremely compact regions (median r e = 0.70 ± 0.29 kpc), and it is in all cases associated with the most massive component of the mergers (median {log}({M}* /{M}ȯ )=10.49+/- 0.32). We compare spatially resolved UV slope (β) maps with the FIR dust continuum to study the infrared excess (IRX = L IR/L UV)–β relation. The SMGs display systematically higher IRX values than expected from the nominal trend, demonstrating that the FIR and UV emissions are spatially disconnected. Finally, we show that the SMGs fall on the mass–size plane at smaller stellar masses and sizes than the cQGs at z = 2. Taking into account the expected evolution in stellar mass and size between z = 4.5 and z = 2 due to the ongoing starburst and mergers with minor companions, this is in agreement with a direct evolutionary connection between the two populations.

  11. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  12. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    Science.gov (United States)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  13. Dust in the small Magellanic Cloud. 2: Dust models from interstellar polarization and extinction data

    Science.gov (United States)

    Rodrigues, C. V.; Magalhaes, A. M.; Coyne, G. V.

    1995-01-01

    We study the dust in the Small Magellanic Cloud using our polarization and extinction data (Paper 1) and existing dust models. The data suggest that the monotonic SMC extinction curve is related to values of lambda(sub max), the wavelength of maximum polarization, which are on the average smaller than the mean for the Galaxy. On the other hand, AZV 456, a star with an extinction similar to that for the Galaxy, shows a value of lambda(sub max) similar to the mean for the Galaxy. We discuss simultaneous dust model fits to extinction and polarization. Fits to the wavelength dependent polarization data are possible for stars with small lambda(sub max). In general, they imply dust size distributions which are narrower and have smaller mean sizes compared to typical size distributions for the Galaxy. However, stars with lambda(sub max) close to the Galactic norm, which also have a narrower polarization curve, cannot be fit adequately. This holds true for all of the dust models considered. The best fits to the extinction curves are obtained with a power law size distribution by assuming that the cylindrical and spherical silicate grains have a volume distribution which is continuous from the smaller spheres to the larger cylinders. The size distribution for the cylinders is taken from the fit to the polarization. The 'typical', monotonic SMC extinction curve can be fit well with graphite and silicate grains if a small fraction of the SMC carbon is locked up in the grain. However, amorphous carbon and silicate grains also fit the data well. AZV456, which has an extinction curve similar to that for the Galaxy, has a UV bump which is too blue to be fit by spherical graphite grains.

  14. The role of major mergers in (obscured) black hole growth and galaxy evolution

    Science.gov (United States)

    Treister, E.; Privon, G.; Ricci, C.; Bauer, F.; Schawinski, K.; MODA Collaboration

    2017-10-01

    A clear picture is emerging in which rapid supermassive black hole (SMBH) growth episodes (luminous AGN) are directly linked to major galaxy mergers. Here, we present the first results from our MODA program aimed to obtain optical and near-IR Integral Field Unit (IFU) spectroscopy and mm/sub-mm ALMA maps for a sample of confirmed nearby dual AGN (separation 10 kpc), including the archetypical galaxy NGC6240. Specifically, we will focus here on Mrk 463, a very rich system of two galaxies separated by 3.8 kpc hosting two SMBH growing simultaneously. Clear evidence for complex morphologies and kinematics, outflows and feedback effects can be seen in this system, evidencing the deep connection between major galaxy mergers, SMBH growth and galaxy evolution.

  15. STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)

    Science.gov (United States)

    Holwerda, Benne

    2014-10-01

    Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.

  16. QUANTIFYING THE HEATING SOURCES FOR MID-INFRARED DUST EMISSIONS IN GALAXIES: THE CASE OF M 81

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N.; Zhao, Y. [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Bendo, G. J. [Jordrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Boselli, A. [Laboratoire d' Astrophysique de Marseille-LAM, Université d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Baes, M.; De Looze, I. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Wu, H.; Lam, M. I. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Beijing 100012 (China); Madden, S. C.; Rémy-Ruyer, A. [Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d' Ástrophysique, Bat. 709, F-91191 Gif-sur-Yvette (France); Boquien, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Wilson, C. D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Galametz, M. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-Mnchen (Germany); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Spinoglio, L., E-mail: lu@ipac.caltech.edu [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2014-12-20

    With the newly available photometric images at 250 and 500 μm from the Herschel Space Observatory, we study quantitative correlations over a sub-kiloparsec scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (1) I {sub 8} or I {sub 24}, the surface brightness of the mid-infrared emission observed in the Spitzer Space Telescope 8 or 24 μm band, with I {sub 8} and I {sub 24} being dominated by the emissions from polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (2) I {sub 500}, that of the cold dust continuum emission in the Herschel Space Observatory 500 μm band, dominated by the emission from large dust grains heated by evolved stars; and (3) I {sub Hα}, a nominal surface brightness of the Hα line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heating of PAHs and VSGs by evolved stars. In the case of M 81, about 67% (48%) of the 8 μm (24 μm ) emission derives its heating from evolved stars, with the remainder attributed to radiation heating associated with ionizing stars.

  17. Dust and molecules in extra-galactic planetary nebulae

    Science.gov (United States)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  18. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  19. Measuring ultraviolet extinction with GALEX in overlapping galaxies

    Science.gov (United States)

    Manning, Anna M.

    2011-01-01

    Dust in spiral galaxies is an all encompassing factor in star formation history, measurements of luminosity, and galaxy dynamics. To learn more about galaxy formation and the influence of dust, White & Keel 1992 formulated a direct method to estimate optical depth. In the past few years, with the aid of the Galaxy Zoo forum and its members, known as zooites, a scientifically acceptable number of galaxy pairs have been identified to create a full catalog for this particular research. The White & Keel 1992 method uses differential photometry which eliminates many of the errors that plague statistical techniques that rely on the internal structure of a galaxy to estimate optical depth. The method relies heavily on the symmetry of the galaxies that make up the pair. To fulfill the symmetry requirement of the ideal geometry, the most suitable pair consists of a foreground spiral backlit by an elliptical galaxy. As evidenced here, non-interacting visually symmetric galaxies pairs yield the best results. Observations at the WIYN telescope combined with exposures downloaded from the GALEX archive are used to estimate the optical depth in these pairs as outlined by White & Keel 1992 and additionally, to trace the star formation in UV detections. Two examples of extended dust far beyond the optical radius were observed and analyzed for extinction. In this sample of galaxies, the optical depth of each wavelength scaled to the B filter was generally constant across the wavelengths observed. The effects of clumpy dust structure in the spiral arms dominated the reddening law which likely resulted in an overestimate of the optical depth measurements.

  20. Interpreting the evolution of galaxy colours from z = 8 to 5

    Science.gov (United States)

    Mancini, Mattia; Schneider, Raffaella; Graziani, Luca; Valiante, Rosa; Dayal, Pratika; Maio, Umberto; Ciardi, Benedetta

    2016-11-01

    We attempt to interpret existing data on the evolution of the UV luminosity function and UV colours, β, of galaxies at 5 ≤ z ≤ 8, to improve our understanding of their dust content and interstellar medium properties. To this aim, we post-process the results of a cosmological hydrodynamical simulation with a chemical evolution model, which includes dust formation by supernovae and intermediate-mass stars, dust destruction in supernova shocks, and grain growth by accretion of gas-phase elements in dense gas. We find that observations require a steep, Small Magellanic Cloud-like extinction curve and a clumpy dust distribution, where stellar populations younger than 15 Myr are still embedded in their dusty natal clouds. Investigating the scatter in the colour distribution and stellar mass, we find that the observed trends can be explained by the presence of two populations: younger, less massive galaxies where dust enrichment is mainly due to stellar sources, and massive, more chemically evolved ones, where efficient grain growth provides the dominant contribution to the total dust mass. Computing the IR-excess-UV colour relation, we find that all but the dustiest model galaxies follow a relation shallower than the Meurer et al. one, usually adopted to correct the observed UV luminosities of high-z galaxies for the effects of dust extinction. As a result, their total star formation rates might have been overestimated. Our study illustrates the importance to incorporate a proper treatment of dust in simulations of high-z galaxies, and that massive, dusty, UV-faint galaxies might have already appeared at z ≲ 7.

  1. FIRST-2MASS RED QUASARS: TRANSITIONAL OBJECTS EMERGING FROM THE DUST

    International Nuclear Information System (INIS)

    Glikman, Eilat; Urrutia, Tanya; Lacy, Mark; Djorgovski, S. George; Mahabal, Ashish; Myers, Adam D.; Ross, Nicholas P.; Petitjean, Patrick; Ge, Jian; Schneider, Donald P.; York, Donald G.

    2012-01-01

    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the Faint Images of the Radio Sky at Twenty Centimeters survey with the near-infrared Two Micron All Sky Survey catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B – V). We demonstrate that the reddening in these quasars is best described by Small-Magellanic-Cloud-like dust. This sample spans a wide range in redshift and reddening (0.1 ∼< z ∼< 3, 0.1 ∼< E(B – V) ∼< 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a 'normal' blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up ∼< 15%-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15%-20% as long as the unobscured, blue quasar phase.

  2. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  3. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  4. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yinghe [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Lu, Nanyao; Xu, C. Kevin [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Díaz-Santos, Tanio [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Gao Yu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Charmandaris, Vassilis [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Werf, Paul van der [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Zhang Zhi-Yu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cao, Chen, E-mail: zhaoyinghe@ynao.ac.cn [School of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China)

    2017-08-10

    We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .

  5. Dwarf Galaxies Swimming in Tidal Tails

    Science.gov (United States)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground. Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born. The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light. This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  6. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  7. Interpretation of the far infrared emission of normal galaxies

    International Nuclear Information System (INIS)

    Sauvage, Marc

    1991-01-01

    The objectives of this research thesis are to highlight what IR emission of a galaxy tells us about physical phenomena occurring within it, to identify the origin of this radiation, to see whether a high IR luminosity means a high rate of stellar formation, to see if the shape of interstellar radiation field spectrum has a detectable effect in IR emission, and to see whether we can draw constraints on dust abundance by comparing IR emission with other traces of the interstellar medium. The author proposes a synthesis of available observations, discusses the different existing dust models and indicators derived from IRAS (Infrared Astronomical Satellite) observations such as dust temperatures, IR luminosity, or dust mass. He reports the study performed on Magellanic Clouds which represents an extension of the IR study to entire galaxies. In the third part, the author reports the study of the CfA catalogue, a complete sample of optically selected galaxies. The interpretation of IR flows is compared in different environments in order to highlight the effects of distribution on dust in galaxies, and thus to try to establish relationships between the total IR emission of galaxies and their other properties (visible luminosity, colours, neutral gas mass, and so on) [fr

  8. The First Billion Years project: constraining the dust attenuation law of star-forming galaxies at z ≃ 5

    Science.gov (United States)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.

    2017-09-01

    We present the results of a study investigating the dust attenuation law at z ≃ 5, based on synthetic spectral energy distributions (SEDs) calculated for a sample of N = 498 galaxies drawn from the First Billion Years (FiBY) simulation project. The simulated galaxies at z ≃ 5, which have M1500 ≤ -18.0 and 7.5 ≤ log(M/M}_{⊙}) ≤ 10.2, display a mass-dependent α-enhancement, with a median value of [α /{Fe}]_{z=5} ˜eq 4 × [α /{Fe}]_{Z_{⊙}}. The median Fe/H ratio of the simulated galaxies is 0.14 ± 0.05 which produces steep intrinsic ultraviolet (UV) continuum slopes; 〈βI〉 = -2.4 ± 0.05. Using a set of simple dust attenuation models, in which the wavelength-dependent attenuation is assumed to be of the form A(λ) ∝ λn, we explore the parameter values which best reproduce the observed z = 5 luminosity function (LF) and colour-magnitude relation (CMR). We find that a simple model in which the absolute UV attenuation is a linearly increasing function of log stellar mass (A1500 = 0.5 × log(M/M⊙) - 3.3), and the dust attenuation slope (n) is within the range -0.7 ≤ n ≤ -0.3, can successfully reproduce the LF and CMR over a wide range of stellar population synthesis model assumptions, including the effects of massive binaries. This range of attenuation curves is consistent with a power-law fit to the Calzetti attenuation law in the UV (n = -0.55). In contrast, curves as steep as the Small Magellanic Cloud extinction curve (n = -1.24) are formally ruled out. Finally, we show that our models are consistent with recent 1.3 mm Atacama Large Millimeter Array observations of the Hubble Ultra Deep Field, and predict the form of the z ≃ 5 infrared excess (IRX)-β relation.

  9. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  10. Molecular gas properties of a lensed star-forming galaxy at z 3.6: a case study

    Science.gov (United States)

    Dessauges-Zavadsky, M.; Zamojski, M.; Rujopakarn, W.; Richard, J.; Sklias, P.; Schaerer, D.; Combes, F.; Ebeling, H.; Rawle, T. D.; Egami, E.; Boone, F.; Clément, B.; Kneib, J.-P.; Nyland, K.; Walth, G.

    2017-09-01

    We report on the galaxy MACSJ0032-arc at zCO = 3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACS J0032.1+1808. The successful detections of its rest-frame ultraviolet (UV), optical, far-infrared (FIR), millimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8+ 0.5-1.0 × 109M⊙, and a moderate IR luminosity of 4.8+ 1.2-0.6 × 1011L⊙. By combining the stretching effect of the lens with the high angular resolution imaging of the CO(1-0) line emission and the radio continuum at 5 GHz, we find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(4-3) and CO(6-5) lines demonstrate that high-J transitions, at least up to J = 6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H2 conversion factor. Indeed, the respective CO-to-H2 conversion factors as derived from the correlation with metallicity and the FIR dust continuum can only be reconciled if excitation is accounted for. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by

  11. From the Milky Way to differing galaxy environments: filling critical gaps in our knowledge of star formation and its interplay with dust, and in stellar and galaxy evolution.

    Science.gov (United States)

    Bianchi, Luciana

    2018-01-01

    Rest-frame UV, uniquely sensitive to luminous, short-lived hot massive stars, trace and age-date star formation across galaxies, and is very sensitive to dust, whose properties and presence are closely connected to star formation.With wide f-o-v and deep sensitivity in two broad filters,FUV and NUV,GALEX delivered the first comprehensive UV view of large nearby galaxies, and of the universe to z~2 (e.g.,Bianchi 2014 ApSS 354,103), detected star formation at the lowest rates, in environments where it was not seen before and not expected (e.g. Bianchi 2011 ApSS 335,51; Thilker+2009 Nature 457,990;2007 ApJS 173,538), triggering a new era of investigations with HST and large ground-based telescopes. New instrument technology and modeling capabilities make it now possible and compelling to solve standing issues. The scant UV filters available (esp. FUV) and the wide gap in resolution and f-o-v between GALEX and HST leaves old and new questions open. A chief limitation is degeneracies between physical parameters of stellar populations (age/SFR) and hot stars, and dust (e.g. Bianchi+ 2014 JASR 53,928).We show sample model simulations for filter optimization to provide critical measurements for the science objectives. We also demonstrate how adequate FUV+NUV filters, and resolution, allow us to move from speculative interpretation of UV data to unbiased physical characterization of young stellar populations and dust, using new data from UVIT, which, though smaller than CETUS, has better resolution and filter coverage than GALEX.Also, our understanding of galaxy chemical enrichment is limited by critical gaps in stellar evolution; GALEX surveys enabled the first unbiased census of the Milky Way hot-WD population (Bianchi+2011 MNRAS, 411,2770), which we complement with SDSS, Pan-STARRS, and Gaia data to fill such gaps (Bianchi et al.2018, ApSS). Such objects in CETUS fields (deeper exposures, more filters, and the first UV MOS) will be much better characterized, enabling

  12. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Siana, B.; Masters, D. [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Henry, A. L.; Martin, C. L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Scarlata, C.; Bedregal, A. G. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Atek, H.; Colbert, J. W. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Teplitz, H. I.; Rafelski, M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bunker, A., E-mail: albertod@ucr.edu [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  13. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, R. Scott; Comerford, Julia M. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Pooley, David, E-mail: Robert.Barrows@Colorado.edu [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  14. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Science.gov (United States)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (˜0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  15. THREE-DIMENSIONAL DUST MAPPING REVEALS THAT ORION FORMS PART OF A LARGE RING OF DUST

    International Nuclear Information System (INIS)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F.; Green, G.; Finkbeiner, D. P.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Morgan, J. S.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Draper, P. W.; Metcalfe, N.; Price, P. A.

    2015-01-01

    The Orion Molecular Complex is the nearest site of ongoing high-mass star formation, making it one of the most extensively studied molecular complexes in the Galaxy. We have developed a new technique for mapping the three-dimensional distribution of dust in the Galaxy using Pan-STARRS1 photometry. We isolate the dust at the distance to Orion using this technique, revealing a large (100 pc, 14° diameter), previously unrecognized ring of dust, which we term the ''Orion dust ring''. The ring includes Orion A and B, and is not coincident with current Hα features. The circular morphology suggests formation as an ancient bubble in the interstellar medium, though we have not been able to conclusively identify the source of the bubble. This hint at the history of Orion may have important consequences for models of high-mass star formation and triggered star formation

  16. Characterizing the evolution of WISE-selected obscured and unobscured quasars using HOD models.

    Science.gov (United States)

    Myers, Adam D.; DiPompeo, Michael A.; Mitra, Kaustav; Hickox, Ryan C.; Chatterjee, Suchetana; Whalen, Kelly

    2018-06-01

    Large-area imaging surveys in the infrared are now beginning to unlock the links between the activity of supermassive black holes and the cosmic evolution of dark matter halos during the significant times when black hole growth is enshrouded in dust. With data from the Wide-Field Infrared Survey Explorer (WISE) and complementary optical photometry, we construct samples of nearly half-a-million obscured and unobscured quasars around redshift 1. We study the dark matter halos of these populations using both angular autocorrelation functions and CMB lensing cross-correlations, carefully characterizing the redshift distribution of the obscured quasar sample using cross-correlations. Independent of our measurement technique, we find that obscured quasars occupy dark matter halos a few times more massive than their unobscured counterparts, despite being matched in luminosity at 12 and 22 microns. Modeling the two-point correlation function using a four-parameter Halo Occupation Distribution (HOD) formalism, we determine that purely optically selected quasars reside in dark matter halos that are about half the mass of WISE-selected obscured quasars, and that satellite fractions are somewhat larger for obscured quasars. We investigate scenarios such as merger-driven fueling and Eddington-dependent obscuration to explore what combinations of physical effects can reproduce our observed halo mass measurements. This work was, in part, supported by NASA ADAP award NNX16AN48G.

  17. Bulgeless galaxies at intermediate redshift: Sample selection, color properties, and the existence of powerful active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bizzocchi, Luca; Leonardo, Elvira; Grossi, Marco; Afonso, José; Fernandes, Cristina; Retrê, João [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Filho, Mercedes E.; Lobo, Catarina [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Griffith, Roger L. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Anton, Sonia [Centro de Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do Porto, Porto (Portugal); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Brinchmann, Jarle [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Henriques, Bruno [Max-Planck-Institut für Astrophysik, Karl Schwarzschild Straße 1, D-85748 Garching bei München (Germany); Messias, Hugo [Departamento de astronomía, Av. Esteban Iturra 6to piso, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción (Chile)

    2014-02-10

    We present a catalog of bulgeless galaxies, which includes 19,225 objects selected in four of the deepest, largest multi-wavelength data sets available—COSMOS, AEGIS, GEMS, and GOODS—at intermediate redshift (0.4 ≤ z ≤ 1.0). The morphological classification was provided by the Advanced Camera for Surveys General Catalog (ACS-GC), which used publicly available data obtained with the ACS instrument on the Hubble Space Telescope. Rest-frame photometric quantities were derived using kcorrect. We analyze the properties of the sample and the evolution of pure-disk systems with redshift. Very massive [log (M {sub *}/M {sub ☉}) > 10.5] bulgeless galaxies contribute to ∼30% of the total galaxy population number density at z ≥ 0.7, but their number density drops substantially with decreasing redshift. We show that only a negligible fraction of pure disks appear to be quiescent systems, and red sequence bulgeless galaxies show indications of dust-obscured star formation. X-ray catalogs were used to search for X-ray emission within our sample. After visual inspection and detailed parametric morphological fitting we identify 30 active galactic nuclei (AGNs) that reside in galaxies without a classical bulge. The finding of such peculiar objects at intermediate redshift shows that while AGN growth in merger-free systems is a rare event (0.2% AGN hosts in this sample of bulgeless galaxies), it can indeed happen relatively early in the history of the universe.

  18. Tracking the Obscured Star Formation Along the Complete Evolutionary Merger Sequence of LIRGs

    Science.gov (United States)

    Diaz-Santos, Tanio

    2014-10-01

    We propose to obtain WFC3 narrow-band Pa-beta imaging of a sample of 24 nearby luminous infrared (IR) galaxies (LIRGs) from the Great Observatories All-sky LIRG survey (GOALS) selected to be in advanced stages of interaction. LIRGs account for half of the obscured star formation of the Universe at z ~ 1-2, and they represent a key population in galaxy formation and evolution. We will use the Pa-beta images to trace the ionized gas in LIRGs and study its spatial distribution from scales of ~ 100 pc to up to several kpc, probing the youngest, massive stars formed in the most buried environments of LIRGs due to the interaction process. This will allow us to measure how the gas in the center of mergers is converted into stars, which eventually leads to the build-up of a nuclear stellar cusp and the "inside-out" growth of bulges. We will also create spatially-resolved Pa-beta equivalent width maps to search for age gradients across the galaxies and correlate the distribution of Pa-beta emission with that of un-obscured star clusters detected in the UV and optical with HST on the same spatial scales. Finally, we will combine our data with previous studies mainly focused on isolated and early-stage interacting LIRG systems to analyze the size and compactness of the starburst along the complete merger sequence of LIRGs. The requested data represent a critical missing piece of information that will allow us to understand both the physics of merger-induced star formation and the applicability of local LIRGs as templates for high-z interacting starburst galaxies.

  19. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    Science.gov (United States)

    Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen

    2017-08-01

    We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. Toward the comprehension of the infrared to submillimeter view of the interstellar medium of nearby galaxies

    International Nuclear Information System (INIS)

    Galametz, Maud

    2010-01-01

    This thesis aims to study the interstellar medium (ISM) of nearby galaxies to characterize the physical properties of the gas and dust. We especially focused our study on low-metallicity galaxies of the Local Universe, ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies. Previous studies have shown that the Spectral Energy Distributions (SEDs) of low metallicity galaxies differ significantly from those of massive galaxies and that the dust-to-gas mass ratio (D/G) of the galaxy could be dependent of the metallicity. Observations of low-metallicity galaxies also often led to the detection of an excess at submillimeter (sub-mm) wavelengths not always accounted for in usual SED models. Further studies and observations had to be performed to better cover the far-IR to sub-mm range and probe the coldest phase of dust. We adopt a multi-wavelength approach to model and analyse the SEDs of 4 low-metallicity galaxies observed with LABOCA at 870 μm. We estimated the fraction of cool dust to be significant compared to the total dust mass of the galaxies. Some D/Gs are incoherent compared to what is expected from the current chemical evolution model, revealing possible reservoirs of gas not detected by current HI or CO observations. I enlarged the first sample to a wider range of metallicities and showed that sub-mm measurements significantly affect the dust mass estimates of galaxies. For dustier galaxies for which the SED usually peaks at longer wavelengths, sub-mm fluxes are crucial to position the peak and the Rayleigh-Jeans slope of their SED. For low-metallicity galaxies, the sub-mm wavelength domain harbours an excess that may imply a large amount of very cold dust. Our results confirm that low-metallicity galaxies can exhibit a sub-mm excess when observed at longer wavelengths. Obtaining a more precise inventory of the cold dust and resolve the main actors of dust evolution in massive star forming regions and molecular clouds

  1. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Mawatari, K.; Inoue, A. K. [College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka, 574-8530 (Japan); Kousai, K.; Hayashino, T. [Research Center for Neutrino Science, General School of Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Cooke, R.; Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Yamada, T. [Astronomical Institute, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Matsuda, Y., E-mail: mawatari@las.osaka-sandai.ac.jp [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  2. THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Sandstrom, K. M.; Walter, F.; Leroy, A. K.; Bolatto, A. D.; Wolfire, M.; Croxall, K. V.; Crocker, A.; Draine, B. T.; Aniano, G.; Wilson, C. D.; Calzetti, D.; Kennicutt, R. C.; Galametz, M.; Donovan Meyer, J.; Usero, A.; Bigiel, F.; Brinks, E.; De Blok, W. J. G.; Dale, D.; Engelbracht, C. W.

    2013-01-01

    We present ∼kiloparsec spatial resolution maps of the CO-to-H 2 conversion factor (α CO ) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α CO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both α CO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12 CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α CO results on the more typically used 12 CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α CO and the DGR. On average, α CO = 3.1 M ☉ pc –2 (K km s –1 ) –1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α CO as a function of galactocentric radius. However, most galaxies exhibit a lower α CO value in the central kiloparsec—a factor of ∼2 below the galaxy mean, on average. In some cases, the central α CO value can be factors of 5-10 below the standard Milky Way (MW) value of α CO, M W = 4.4 M ☉ pc –2 (K km s –1 ) –1 . While for α CO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α CO for studies of nearby galaxies

  3. Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project

    Science.gov (United States)

    Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop

    2018-02-01

    We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.

  4. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Richard, Johan [Centre de Recherche Astrophysique de Lyon, Université Lyon 1, 9 Avenue Charles André, F-69561 Saint Genis Laval Cedex (France); Stark, Daniel P.; Robertson, Brant [Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Teplitz, Harry I.; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Kewley, Lisa, E-mail: anahita.alavi@email.ucr.edu [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  5. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  6. The First Hyper-Luminous Infrared Galaxy Discovered by WISE

    Science.gov (United States)

    Eisenhardt, Peter R.; Wu, Jingwen; Tsai, Chao-Wei; Assef, Roberto; Benford, Dominic; Blain, Andrew; Bridge, Carrie; Condon, J. J.; Cushing, Michael C.; Cutri, Roc; hide

    2012-01-01

    We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.

  7. THE ROLE OF DUST IN THE EARLY UNIVERSE. I. PROTOGALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Yamasawa, Daisuke; Habe, Asao; Kozasa, Takashi; Nozawa, Takaya; Nomoto, Ken'ichi; Hirashita, Hiroyuki; Umeda, Hideyuki

    2011-01-01

    We develop one-zone galaxy formation models in the early universe, taking into account dust formation and evolution by supernova (SN) explosions. We focus on the time evolution of dust size distribution, because H 2 formation on the dust surface plays a critical role in the star formation process in the early universe. In the model, we assume that star formation rate (SFR) is proportional to the total amount of H 2 . We consistently treat (1) the formation and size evolution of dust, (2) the chemical reaction networks including H 2 formation both on the surface of dust and in gas phase, and (3) the SFR in the model. First, we find that, because of dust destruction due to both reverse and forward shocks driven by SNe, H 2 formation is more suppressed than in situations without such dust destruction. At the galaxy age of ∼0.8 Gyr, for galaxy models with virial mass M vir = 10 9 M sun and formation redshift z vir = 10, the molecular fraction is 2.5 orders of magnitude less in the model with dust destruction by both shocks than that in the model without dust destruction. Second, we show that the H 2 formation rate strongly depends on the interstellar medium (ISM) density around SN progenitors. The SFR in higher ISM density is lower, since dust destruction by reverse shocks is more effective in higher ISM density. We conclude that not only the amount but also the size distribution of dust related to star formation activity strongly affects the evolution of galaxies in the early universe.

  8. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163

    Energy Technology Data Exchange (ETDEWEB)

    Jencson, Jacob E.; Kasliwal, Mansi M.; Cao, Yi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Johansson, Joel [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Contreras, Carlos; Castellón, Sergio; Morrell, Nidia; Phillips, Mark [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Bond, Howard E.; Monson, Andrew J. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Masci, Frank J.; Helou, George [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Andrews, Jennifer E. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bally, John; Green, Wayne [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Gburek, Timothy; Gehrz, Robert D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Hsiao, Eric, E-mail: jj@astro.caltech.edu [Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL, 32306 (United States); and others

    2017-03-10

    SPitzer InfraRed Intensive Transients Survey—SPIRITS—is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer /IRAC. We present the discovery and follow-up observations of one of our most luminous ( M {sub [4.5]} = −17.1 ± 0.4 mag, Vega) and reddest ([3.6] − [4.5] = 3.0 ± 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 ( D ≈ 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400 km s{sup −1}), double-peaked emission line of He i at 1.083 μ m, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200 days. Assuming an A {sub V} = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]–[4.5] color has not been previously observed for any SN IIb. Another luminous ( M {sub 4.5} = −16.1 ± 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by A{sub V} ≈ 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that ≳18% of nearby core-collapse SNe are missed by currently operating optical surveys.

  9. SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163

    International Nuclear Information System (INIS)

    Jencson, Jacob E.; Kasliwal, Mansi M.; Cao, Yi; Johansson, Joel; Contreras, Carlos; Castellón, Sergio; Morrell, Nidia; Phillips, Mark; Bond, Howard E.; Monson, Andrew J.; Masci, Frank J.; Helou, George; Cody, Ann Marie; Andrews, Jennifer E.; Bally, John; Green, Wayne; Fox, Ori D.; Gburek, Timothy; Gehrz, Robert D.; Hsiao, Eric

    2017-01-01

    SPitzer InfraRed Intensive Transients Survey—SPIRITS—is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer /IRAC. We present the discovery and follow-up observations of one of our most luminous ( M [4.5] = −17.1 ± 0.4 mag, Vega) and reddest ([3.6] − [4.5] = 3.0 ± 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC 2163 ( D ≈ 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (≈8400 km s −1 ), double-peaked emission line of He i at 1.083 μ m, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of ≈200 days. Assuming an A V = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]–[4.5] color has not been previously observed for any SN IIb. Another luminous ( M 4.5 = −16.1 ± 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting ≳80 days, and we suggest a scenario similar to the low-luminosity Type IIP SN 2005cs obscured by A V ≈ 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that ≳18% of nearby core-collapse SNe are missed by currently operating optical surveys.

  10. Can we detect Galactic spiral arms? 3D dust distribution in the Milky Way

    Science.gov (United States)

    Rezaei Kh., Sara; Bailer-Jones, Coryn A. L.; Fouesneau, Morgan; Hanson, Richard

    2018-04-01

    We present a model to map the 3D distribution of dust in the Milky Way. Although dust is just a tiny fraction of what comprises the Galaxy, it plays an important role in various processes. In recent years various maps of dust extinction have been produced, but we still lack a good knowledge of the dust distribution. Our presented approach leverages line-of-sight extinctions towards stars in the Galaxy at measured distances. Since extinction is proportional to the integral of the dust density towards a given star, it is possible to reconstruct the 3D distribution of dust by combining many lines-of-sight in a model accounting for the spatial correlation of the dust. Such a technique can be used to infer the most probable 3D distribution of dust in the Galaxy even in regions which have not been observed. This contribution provides one of the first maps which does not show the ``fingers of God'' effect. Furthermore, we show that expected high precision measurements of distances and extinctions offer the possibility of mapping the spiral arms in the Galaxy.

  11. H I, galaxy counts, and reddening: Variation in the gas-to-dust ratio, the extinction at high galactic latitudes, and a new method for determining galactic reddening

    International Nuclear Information System (INIS)

    Burstein, D.; Heiles, C.

    1978-01-01

    We reanalyze the interrelationships among Shane-Wirtanen galaxy counts, H I column densities, and reddenings, and resolve many of the problems raised by Heiles. These problems were caused by two factors: subtle biases in the reddening data and a variable gas-to-dust ratio in the galaxy. We present a compilation of reddenings for RR Lyrae stars and globular clusters which are on the same system and which we believe to be relatively free of biases. The extinction at the galactic poles, as determined by galaxy counts, is reexamined by using a new method to analyze galaxy counts. This new method partially accounts for the nonrandom clustering of galaxies and permits a reasonable estimate of the error in log N/sub gal/ as a function of latitude. The analysis shows that the galaxy counts (or galaxy cluster counts) are too noisy to allow direct determination of the extinction, or variation in extinction, near the galactic poles. From all available data, we conclude that the reddening at the poles is small [< or =0.02 mag in E (B--V) over much of the north galactic pole] and irregularly distributed. We find that there are zero offsets in the relations between E (B--V) and H I, and between galaxy counts and H I, which are at least partly the result of an instrumental effect in the radio data. We also show that the gas-to-dust ratio can vary by a factor of 2 from the average, and we present two methods for correcting for this variability in predicting the reddening of objects which are located outside of the galactic absorbing layer. We present a prescription for predicting these reddenings; in the area of sky covered by the Shane-Wirtanen galaxy counts, the error in these predictions is, on average, less than 0.03 mag in E

  12. The Halo Occupation Distribution of obscured quasars: revisiting the unification model

    Science.gov (United States)

    Mitra, Kaustav; Chatterjee, Suchetana; DiPompeo, Michael A.; Myers, Adam D.; Zheng, Zheng

    2018-06-01

    We model the projected angular two-point correlation function (2PCF) of obscured and unobscured quasars selected using the Wide-field Infrared Survey Explorer (WISE), at a median redshift of z ˜ 1 using a five parameter Halo Occupation Distribution (HOD) parametrization, derived from a cosmological hydrodynamic simulation by Chatterjee et al. The HOD parametrization was previously used to model the 2PCF of optically selected quasars and X-ray bright active galactic nuclei (AGNs) at z ˜ 1. The current work shows that a single HOD parametrization can be used to model the population of different kinds of AGN in dark matter haloes suggesting the universality of the relationship between AGN and their host dark matter haloes. Our results show that the median halo mass of central quasar hosts increases from optically selected (4.1^{+0.3}_{-0.4} × 10^{12} h^{-1} M_{⊙}) and infra-red (IR) bright unobscured populations (6.3^{+6.2}_{-2.3} × 10^{12} h^{-1} M_{⊙}) to obscured quasars (10.0^{+2.6}_{-3.7} × 10^{12} h^{-1} M_{⊙}), signifying an increase in the degree of clustering. The projected satellite fractions also increase from optically bright to obscured quasars and tend to disfavour a simple `orientation only' theory of active galactic nuclei unification. Our results also show that future measurements of the small-scale clustering of obscured quasars can constrain current theories of galaxy evolution where quasars evolve from an IR-bright obscured phase to the optically bright unobscured phase.

  13. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  14. The Maximum Flux of Star-Forming Galaxies

    Science.gov (United States)

    Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie

    2018-04-01

    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.

  15. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    Science.gov (United States)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  16. Star Formation in High Pressure, High Energy Density Environments: Laboratory Experiments of ISM Dust Analogs

    International Nuclear Information System (INIS)

    Breugel, W. van; Bajt, S.; Bradley, J.; Bringa, E.; Dai, Z.; Felter, T.; Graham, G.; Kucheyev, S.; Torres, D.; Tielens, A.; Baragiola, R.; Dukes, C.; Loeffler, M.

    2005-01-01

    Dust grains control the chemistry and cooling, and thus the gravitational collapse of interstellar clouds. Energetic particles, shocks and ionizing radiation can have a profound influence on the structure, lifetime and chemical reactivity of the dust, and therefore on the star formation efficiency. This would be especially important in forming galaxies, which exhibit powerful starburst (supernovae) and AGN (active galactic nucleus) activity. How dust properties are affected in such environments may be crucial for a proper understanding of galaxy formation and evolution. The authors present the results of experiments at LLNL which show that irradiation of the interstellar medium (ISM) dust analog forsterite (Mg 2 SiO 4 ) with swift heavy ions (10 MeV Xe) and a large electronic energy deposition amorphizes its crystalline structure, without changing its chemical composition. From the data they predict that silicate grains in the ISM, even in dense and cold giant molecular clouds, can be amorphized by heavy cosmic rays (CR's). This might provide an explanation for the observed absence of crystalline dust in the ISM clouds of the Milky Way galaxy. This processing of dust by CR's would be even more important in forming galaxies and galaxies with active black holes

  17. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    Science.gov (United States)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  18. Cross-calibration of CO- vs dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies

    Science.gov (United States)

    Bertemes, Caroline; Wuyts, Stijn; Lutz, Dieter; Förster Schreiber, Natascha M.; Genzel, Reinhard; Minchin, Robert F.; Mundell, Carole G.; Rosario, David; Saintonge, Amélie; Tacconi, Linda

    2018-05-01

    We present a cross-calibration of CO- and dust-based molecular gas masses at z ≤ 0.2. Our results are based on a survey with the IRAM 30-m telescope collecting CO(1-0) measurements of 78 massive (log M⋆/M⊙ > 10) galaxies with known gas-phase metallicities, and with IR photometric coverage from WISE (22 μ ) and Herschel SPIRE (250, 350, 500μ). We find a tight relation (˜0.17 dex scatter) between the gas masses inferred from CO and dust continuum emission, with a minor systematic offset of 0.05 dex. The two methods can be brought into agreement by applying a metallicity-dependent adjustment factor (˜0.13 dex scatter). We illustrate that the observed offset is consistent with a scenario in which dust traces not only molecular gas, but also part of the H I reservoir, residing in the H2 -dominated region of the galaxy. Observations of the CO(2-1) to CO(1-0) line ratio for two thirds of the sample indicate a narrow range in excitation properties, with a median ratio of luminosities ⟨R21⟩ ˜ 0.64. Finally, we find dynamical mass constraints from spectral line profile fitting to agree well with the anticipated mass budget enclosed within an effective radius, once all mass components (stars, gas and dark matter) are accounted for.

  19. A Wealth of Dust Grains in Quasar Winds

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from. The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above. The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer. Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  20. A New Population of High-z, Dusty Lyman-alpha Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    Science.gov (United States)

    Bridge, Carrie R.; Blain, Andrew; Borys, Colin J. K.; Petty, Sara; Benford, Dominic; Eisenhardt, Peter; Farrah, Duncan; Griffith, Roger, L.; Jarrett, Tom; Lonsdale, Carol; hide

    2013-01-01

    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 approx. 10(exp 13)-10(exp 14) Solar L) and have warm colors. They are typically more luminous and warmer than other dusty, z approx.. 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly-alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.

  1. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  2. Red galaxies at high redshift

    NARCIS (Netherlands)

    Wuyts, Stijn Elisabeth Raphaël

    2007-01-01

    From its origin at the center of a star to the edge, through the surrounding gas and dust in the distant galaxy, through the intergalactic medium, traveling billions of light years only to be reflected by a mirror and captured by a detector; the little amount of light observed from galaxies in the

  3. The progenitors of the compact early-type galaxies at high redshift

    International Nuclear Information System (INIS)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Cassata, Paolo; Tundo, Elena; Conselice, Christopher J.; Wiklind, Tommy; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10 10 M ☉ ) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  4. The progenitors of the compact early-type galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Cassata, Paolo [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Tundo, Elena; Conselice, Christopher J. [The School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Wiklind, Tommy [Joint ALMA Observatory, ESO, Santiago (Chile); Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wuyts, Stijn [Max-Planck-Institut für Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Boulevard, Baltimore, MD 21218 (United States); Hathi, Nimish [Carnegie Observatories, Pasadena, CA 91101 (United States); Huang, Kuang-Han [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Kocevski, Dale, E-mail: ccwillia@astro.umass.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); and others

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10{sup 10} M {sub ☉}) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  5. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  6. ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5

    International Nuclear Information System (INIS)

    Papovich, C.; Quadri, R.; Tilvi, V.; Tran, K.-V.; Labbé, I.; Straatman, C. M. S.; Behroozi, P.; Ferguson, H. C.; Bell, E. F.; Glazebrook, K.; Kacprzak, G. G.; Spitler, L.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Inami, H.; Finkelstein, S. L.; Gawiser, E.; Faber, S. M.

    2015-01-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 10 10 M ☉ (defined here to be MW-mass) and 10 11 M ☉ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ∼ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ∼ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the

  7. ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5

    Science.gov (United States)

    Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.

    2015-04-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth

  8. The unusual ISM in Blue and Dusty Gas Rich Galaxies (BADGRS).

    Science.gov (United States)

    Dunne, L.; Zhang, Z.; De Vis, P.; Clark, C. J. R.; Oteo, I.; Maddox, S. J.; Cigan, P.; de Zotti, G.; Gomez, H. L.; Ivison, R. J.; Rowlands, K.; Smith, M. W. L.; van der Werf, P.; Vlahakis, C.; Millard, J. S.

    2018-06-01

    The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV - K 0.5). Dubbed `Blue and Dusty Gas Rich Sources' (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep {CO(J_{up}=1,2,3)} observations across the central and outer disk regions. We find very low CO brightnesses (Tp = 5 - 30 mK), despite the bright far-infrared emission and metallicities in the range 0.5 UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-β space as z ˜ 5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.

  9. The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study

    DEFF Research Database (Denmark)

    Guainazzi, M.; Risaliti, G.; Awaki, H.

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM–Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probe...

  10. ON THE CURVATURE OF DUST LANES IN GALACTIC BARS

    International Nuclear Information System (INIS)

    Comeron, Sebastien; MartInez-Valpuesta, Inma; Knapen, Johan H.; Beckman, John E.

    2009-01-01

    We test the theoretical prediction that the straightest dust lanes in bars are found in strongly barred galaxies, or more specifically, that the degree of curvature of the dust lanes is inversely proportional to the strength of the bar. The test uses archival images of barred galaxies for which a reliable nonaxisymmetric torque parameter (Q b ) and the radius at which Q b has been measured (r(Q b )) have been published in the literature. Our results confirm the theoretical prediction but show a large spread that cannot be accounted for by measurement errors. We simulate 238 galaxies with different bar and bulge parameters in order to investigate the origin of the spread in the dust lane curvature versus Q b relation. From these simulations, we conclude that the spread is greatly reduced when describing the bar strength as a linear combination of the bar parameters Q b and the quotient of the major and minor axes of the bar, a/b. Thus, we conclude that the dust lane curvature is predominantly determined by the parameters of the bar.

  11. Star Formation in the Milky Way Galaxy

    Indian Academy of Sciences (India)

    Swarna Kanti Ghosh

    How much Inter Stellar Matter (ISM) is there in our Galaxy ? ~ 10% of the total mass (concentrated in the Galactic plane). ~ 99% of ISM mass in the GAS component. ~ 1% in the DUST component. (dust grains : size ~ 0.01 - 0.2 micron). DUST plays a crucial role by interaction with the local radiation field (absorption ...

  12. Peering Into an Early Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    Thirteen billion years ago, early galaxies ionized the gas around them, producing some of the first light that brought our universe out of its dark ages. Now the Atacama Large Millimeter/submillimeter Array (ALMA) has provided one of the first detailed looks into the interior of one of these early, distant galaxies.Sources of LightArtists illustration of the reionization of the universe (time progresses left to right), in which ionized bubbles that form around the first sources of light eventually overlap to form the fully ionized universe we observe today. [Avi Loeb/Scientific American]For the first roughly hundred million years of its existence, our universe expanded in relative darkness there were no sources of light at that time besides the cosmic microwave background. But as mass started to condense to form the first objects, these objects eventually shone as the earliest luminous sources, contributing to the reionization of the universe.To learn about the early production of light in the universe, our best bet is to study in detail the earliest luminous sources stars, galaxies, or quasars that we can hunt down. One ideal target is the galaxy COSMOS Redshift 7, known as CR7 for short.Targeting CR7CR7 is one of the oldest, most distant galaxies known, lying at a redshift of z 6.6. Its discovery in 2015 and subsequent observations of bright, ultraviolet-emitting clumps within it have led to broad speculation about the source of its emission. Does this galaxy host an active nucleus? Or could it perhaps contain the long-theorized first generation of stars, metal-free Population III stars?To determine the nature of CR7 and the other early galaxies that contributed to reionization, we need to explore their gas and dust in detail a daunting task for such distant sources! Conveniently, this is a challenge that is now made possible by ALMAs incredible capabilities. In a new publication led by Jorryt Matthee (Leiden University, the Netherlands), a team of scientists now

  13. Polarimetry and Unification of Low-Redshift Radio Galaxies

    International Nuclear Information System (INIS)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-01-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or Pα.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise steeply

  14. Polarimetry and Unification of Low-Redshift Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-11-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or P{alpha}.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise

  15. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  16. Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies

    Science.gov (United States)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Dijkstra, Mark; Tilvi, V.; Wang, Junxian

    2017-08-01

    We studied Lyman-α (Lyα) escape in a statistical sample of 43 Green Peas with HST/COS Lyα spectra. Green Peas are nearby star-forming galaxies with strong [O III]λ5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about two-thirds of Green Peas are strong Lyα line emitters with rest-frame Lyα equivalent width > 20 \\mathringA . The Lyα profiles of Green Peas are diverse. The Lyα escape fraction, defined as the ratio of observed Lyα flux to intrinsic Lyα flux, shows anti-correlations with a few Lyα kinematic features—both the blue peak and red peak velocities, the peak separations, and the FWHM of the red portion of the Lyα profile. Using properties measured from Sloan Digital Sky Survey optical spectra, we found many correlations—the Lyα escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [O III]/[O II] ratio. We fit their Lyα profiles with the H I shell radiative transfer model and found that the Lyα escape fraction is anti-correlated with the best-fit N H I . Finally, we fit an empirical linear relation to predict {f}{esc}{Lyα } from the dust extinction and Lyα red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of intergalactic medium (IGM) scatterings from Lyα escape and to probe the IGM optical depth along the line of sight of each z> 7 Lyα emission-line galaxy in the James Webb Space Telescope era.

  17. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Finkelstein, K.; Finkelstein, Steven [University of Texas, Austin, TX 78712 (United States); Carilli, Chris [National Radio Astronomy Observatory, Socorro, NM (United States); Combes, Françoise [Observatoire de Paris, LERMA, CNRS, 61 Avenue de l’Observatoire, F-75014 Paris (France); Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole [Institut d’Astrophysique Spatiale, Centre Universitaire d’Orsay (France); Frye, Brenda [Steward Observatory, University of Arizona, Tucson, AZ (United States); Gerin, Maryvonne [LERMA,24 rue Lhomond, F-75231 Paris Cedex 05 (France); Rigby, Jane [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Shin, Min-Su [Oxford University, Oxford, OX1 3PA (United Kingdom); Spaans, Marco [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Papovich, Casey, E-mail: malhotra@asu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-20

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  18. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    International Nuclear Information System (INIS)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan; Finkelstein, K.; Finkelstein, Steven; Carilli, Chris; Combes, Françoise; Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole; Frye, Brenda; Gerin, Maryvonne; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey

    2017-01-01

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10 7 L ⊙ to 3.7 × 10 9 L ⊙ (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  19. Embedded star formation in S4G galaxy dust lanes

    International Nuclear Information System (INIS)

    Elmegreen, Debra M.; Teich, Yaron; Popinchalk, Mark; Elmegreen, Bruce G.; Erroz-Ferrer, Santiago; Knapen, Johan H.; Athanassoula, E.; Bosma, Albert; Comerón, Sébastien; Laine, Jarkko; Laurikainen, Eija; Efremov, Yuri N.; Gadotti, Dimitri A.; Kim, Taehyun; De Paz, Armando Gil; Hinz, Joannah L.; Ho, Luis C.; Holwerda, Benne; Menéndez-Delmestre, Karín; Mizusawa, Trisha

    2014-01-01

    Star-forming regions that are visible at 3.6 μm and Hα but not in the u, g, r, i, z bands of the Sloan Digital Sky Survey are measured in five nearby spiral galaxies to find extinctions averaging ∼3.8 mag and stellar masses averaging ∼5 × 10 4 M ☉ . These regions are apparently young star complexes embedded in dark filamentary shock fronts connected with spiral arms. The associated cloud masses are ∼10 7 M ☉ . The conditions required to make such complexes are explored, including gravitational instabilities in spiral-shocked gas and compression of incident clouds. We find that instabilities are too slow for a complete collapse of the observed spiral filaments, but they could lead to star formation in the denser parts. Compression of incident clouds can produce a faster collapse but has difficulty explaining the semi-regular spacing of some regions along the arms. If gravitational instabilities are involved, then the condensations have the local Jeans mass. Also in this case, the near-simultaneous appearance of equally spaced complexes suggests that the dust lanes, and perhaps the arms too, are relatively young.

  20. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  1. The AGN-Star Formation Connection: Future Prospects with JWST

    Science.gov (United States)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Barro, Guillermo; Bonato, Matteo; Kocevski, Dale D.; Pérez-González, Pablo; Rieke, George H.; Rodríguez-Muñoz, Lucia; Sajina, Anna; Grogin, Norman A.; Mantha, Kameswara Bharadwaj; Pandya, Viraj; Pforr, Janine; Salvato, Mara; Santini, Paola

    2017-11-01

    The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z=1{--}2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 μm counts of SFGs, AGN/star-forming “Composites,” and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 μm, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z˜ 1{--}2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 μm PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by ˜35% for cases where the AGN provides half the IR luminosity and ˜50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of {λ }{Edd}˜ 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.

  2. THE MOST LUMINOUS GALAXIES DISCOVERED BY WISE

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chao-Wei; Eisenhardt, Peter R. M.; Stern, Daniel; Moustakas, Leonidas A. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Wu, Jingwen; Wright, Edward L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Assef, Roberto J. [Núcleo de Astronomía de la Facultad deIngeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Blain, Andrew W. [Department of Physics and Astronomy, University of Leicester, 1 University Road, Leicester, LE1 7RH (United Kingdom); Bridge, Carrie R.; Sayers, Jack [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic J.; Leisawitz, David T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Cutri, Roc M.; Masci, Frank J.; Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Lonsdale, Carol J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Petty, Sara M. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Stanford, S. Adam, E-mail: Chao-Wei.Tsai@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2015-06-01

    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L{sub bol} > 10{sup 14} L{sub ☉}, including five with infrared luminosities L{sub IR} ≡ L{sub (rest} {sub 8–1000} {sub μm)} > 10{sup 14} L{sub ☉}. These “extremely luminous infrared galaxies,” or ELIRGs, were discovered using the “W1W2-dropout” selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T{sub d} ∼ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L{sub bol} level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L{sub bol} > 10{sup 14} L{sub ☉} at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ∼10{sup 3} M{sub ☉}, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.

  3. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    Science.gov (United States)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  4. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  5. The shape of the cosmic X-ray background: nuclear starburst discs and the redshift evolution of AGN obscuration

    Science.gov (United States)

    Gohil, R.; Ballantyne, D. R.

    2018-04-01

    A significant number of active galactic nuclei (AGNs) are observed to be hidden behind dust and gas. The distribution of material around AGNs plays an important role in modelling the cosmic X-ray background (CXB), especially the fraction of type 2 AGNs (f2). One of the possible explanations for obscuration in Seyfert galaxies at intermediate redshifts is dusty starburst discs. We compute the two-dimensional (2D) hydrostatic structure of 768 nuclear starburst discs (NSDs) under various physical conditions and also the distribution of column density along the line of sight (NH) associated with these discs. Then the NH distribution is evolved with redshift by using the redshift-dependent distribution function of input parameters. Parameter f2 shows a strong positive evolution up to z = 2, but only a weak level of enhancement at higher z. The Compton-thin and Compton-thick AGN fractions associated with these starburst regions increase ∝ (1 + z)δ, where δ is estimated to be 1.12 and 1.45, respectively. The reflection parameter Rf associated with column density NH ≥ 1023.5 cm-2 extends from 0.13 at z = 0 to 0.58 at z = 4. A CXB model employing this evolving NH distribution indicates that more compact (Rout < 120 pc) NSDs provide a better fit to the CXB. In addition to `Seyfert-like' AGNs obscured by nuclear starbursts, we predict that 40-60 per cent of quasars must be Compton-thick to produce a peak of the CXB spectrum within the observational uncertainty. The predicted total number counts of AGNs in 8-24 keV bands are in fair agreement with observations from the Nuclear Spectroscopic Telescope Array (NuSTAR).

  6. The Effects of Galaxy Interactions on Star Formation

    Science.gov (United States)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  7. Source-plane reconstruction of the giant gravitational arc in A2667: A candidate Wolf-Rayet galaxy at z ∼ 1

    International Nuclear Information System (INIS)

    Cao, Shuo; Zhu, Zong-Hong; Federico II, Via Cinthia, I-80126 Napoli (Italy))" data-affiliation=" (Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Via Cinthia, I-80126 Napoli (Italy))" >Covone, Giovanni; Jullo, Eric; Richard, Johan; Izzo, Luca

    2015-01-01

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of its counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z 850 band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec –2 and a characteristic radius r s = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.

  8. Ground based THz Spectroscopy of Obscured Starbursts in the Early Universe enabled by the 2nd generation Redshift (z) & Early Universe Spectrometer (ZEUS-2)

    Science.gov (United States)

    Vishwas, Amit; Stacey, Gordon; Nikola, Thomas; Ferkinhoff, Carl; Parshley, Stephen; Schoenwald, Justin; Lamarche, Cody James; Higdon, James; Higdon, Sarah; Brisbin, Drew; Güesten, Rolf; Weiss, Axel; Menten, Karl; Irwin, Kent; Cho, Hsiao-Mei; Niemack, Michael; Hilton, Gene; Hubmayr, Johannes; Amiri, Mandana; Halpern, Mark; Wiebe, Donald; Hasselfield, Matthew; Ade, Peter; Tucker, Carole

    2018-01-01

    Galaxies were surprisingly dusty in the early Universe, with more than half of the light emitted from stars being absorbed by dust within the system and re-radiated into far infrared (FIR, ~50-150μm) wavelengths. Dusty star forming galaxies (DSFGs) dominate the co-moving star formation rate density of the Universe that peaks around redshift, z~2, making it compelling to study them in rest frame FIR bands. From galaxies at z > 1, the FIR line emission from abundant ions like [O III], [C II] and [N II], are redshifted into the short sub-mm telluric windows. My thesis work is based on building and deploying the 2nd Generation Redshift (z) and Early Universe Spectrometer (ZEUS-2), a long-slit, echelle grating spectrometer optimized to study broad (Δv = 300km/s) spectral lines from galaxies in the 200-650µm telluric windows using TES bolometers. These far-IR lines being extinction free and major coolants of the gas heated by (young) massive stars, are powerful probes of the physical conditions of the gas and the stellar radiation field. I present results from our survey of the [O III] 88µm line in galaxies at redshift, z ~ 2.8 to 4.6, with ZEUS-2 at the Atacama Pathfinder Experiment (APEX) Telescope. To interpret our observations along with ancillary data from optical to radio facilities, we apply photoionization models for HII regions and Photo Dissociation Region (PDR) models and confirm that the galaxies host substantial ongoing obscured star formation. The presence of doubly ionized oxygen suggests hard radiation fields and hence, elevated ionization parameters that can only be accounted for by a large population of massive stars formed during the ongoing starburst, that contribute a large fraction of the infrared luminosity. This study highlights the use of FIR line emission to trace the assembly of current day massive galaxies, conditions of star formation and details of their stellar populations. The construction and operation of ZEUS-2 were funded by NSF ATI

  9. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  10. Rapid formation of large dust grains in the luminous supernova 2010jl.

    Science.gov (United States)

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

  11. Lyα-EMITTING GALAXIES AT z = 2.1: STELLAR MASSES, DUST, AND STAR FORMATION HISTORIES FROM SPECTRAL ENERGY DISTRIBUTION FITTING

    International Nuclear Information System (INIS)

    Guaita, Lucia; Padilla, Nelson; Acquaviva, Viviana; Gawiser, Eric; Bond, Nicholas A.; Kurczynski, Peter; Ciardullo, Robin; Gronwall, Caryl; Treister, Ezequiel; Lira, Paulina; Schawinski, Kevin

    2011-01-01

    We study the physical properties of 216 z ≅ 2.1 Lyα-emitting galaxies (LAEs) discovered in an ultra-deep narrow- MUSYC image of the ECDF-S. We fit their stacked spectral energy distribution (SED) using Charlot and Bruzual templates. We consider star formation histories (SFHs) parameterized by the e-folding time parameter τ, allowing for exponentially decreasing (τ > 0), exponentially increasing (τ * /M sun ) = 8.6[8.4-9.1], E(B - V) = 0.22[0.00-0.31], τ = -0.02[(- 4)-18] Gyr, and age SF = 0.018[0.009-3] Gyr. Thus, we obtain robust measurements of low stellar mass and dust content, but we cannot place meaningful constraints on the age or SFH of the LAEs. We also calculate the instantaneous SFR to be 35[0.003-170] M sun yr -1 , with its average over the last 100 Myr before observation giving (SFR) 100 = 4[2-30] M sun yr -1 . When we compare the results for the same SFH, typical LAEs at z ≅ 2.1 appear dustier and show higher instantaneous SFRs than z ≅ 3.1 LAEs, while the observed stellar masses of the two samples seem consistent. Because the majority are low-mass galaxies, our typical LAEs appear to occupy the low-mass end of the distribution of star-forming galaxies at z ∼ 2. We perform SED fitting on several sub-samples selected based on photometric properties and find that LAE sub-samples at z ≅ 2.1 exhibit heterogeneous properties. The typical IRAC-bright, UV-bright, and red LAEs have the largest stellar mass and dust reddening. The typical UV-faint, IRAC-faint, and high EW LAE sub-samples appear less massive ( 9 M sun ) and less dusty, with E(B - V) consistent with zero.

  12. Structure of the Galaxy and its subsystems

    International Nuclear Information System (INIS)

    Ruprecht, J.

    1979-01-01

    Current knowledge is summed up of the structure of our galaxy consisting of more than 100 thousand million stars of an overal mass of 10 44 g, and of interstellar dust and gas. The galaxy comprises several subsystems, the oldest of which being of a spherical shape while the younger ones are more-or-less oblate rotational ellipsoids. It is considered on the basis of visual and radio observations that the galaxy has a spiral structure with many arms, similar to other galaxies. The structure of the galaxy nucleus has not yet been fully explained. (Ha)

  13. TOTAL INFRARED LUMINOSITY ESTIMATION OF RESOLVED AND UNRESOLVED GALAXIES

    International Nuclear Information System (INIS)

    Boquien, M.; Calzetti, D.; Bendo, G.; Dale, D.; Engelbracht, C.; Kennicutt, R.; Lee, J. C.; Van Zee, L.; Moustakas, J.

    2010-01-01

    The total infrared (TIR) luminosity from galaxies can be used to examine both star formation and dust physics. We provide here new relations to estimate the TIR luminosity from various Spitzer bands, in particular from the 8 μm and 24 μm bands. To do so, we use data for 45'' subregions within a subsample of nearby face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) that have known oxygen abundances as well as integrated galaxy data from the SINGS, the Local Volume Legacy survey (LVL), and Engelbracht et al. samples. Taking into account the oxygen abundances of the subregions, the star formation rate intensity, and the relative emission of the polycyclic aromatic hydrocarbons at 8 μm, the warm dust at 24 μm, and the cold dust at 70 μm and 160 μm, we derive new relations to estimate the TIR luminosity from just one or two of the Spitzer bands. We also show that the metallicity and the star formation intensity must be taken into account when estimating the TIR luminosity from two wave bands, especially when data longward of 24 μm are not available.

  14. Infrared Photometric Study of Wolf–Rayet Galaxies

    Science.gov (United States)

    Chen, P. S.; Yang, X. H.; Liu, J. Y.; Shan, H. G.

    2018-01-01

    We collected observational data on 781 Wolf–Rayet (WR) galaxies from the literature to photometrically study their infrared properties measured by the 2MASS, WISE, IRAS, AKARI, and Herschel missions. It is found that in the 1–5 μm range the radiations of WR galaxies are dominated by the free–free emissions from the stellar winds and the circumstellar dust from the late-type stars in the host galaxy. In the 5–22 μm range, the radiation of WR galaxies is dominated by the free–free emissions and the synchrotron radiation from the central active galactic nucleus (AGN; but not always present). In the 22–140 μm range, the radiations of WR galaxies are dominated by the free–free emissions and the star formation/starburst activities. In the 250–500 μm range, the radiation of WR galaxies is dominated by the free–free emissions. In addition, the comparison with the non-WR galaxies is made. It is shown that some star formation WR galaxies have redder near-infrared colors than non-WR star-forming galaxies probably due to the gas emission in the near-infrared. In the 2–5 μm region WR galaxies have redder colors due to the thermal emission from circumstellar dust of late-type stars and the enhanced gas emission. In the 5–22 μm region, both WR galaxies and non-WR galaxies have similar behavior, indicative of having similar free–free emission as the dominant radiation. In the 25–140 μm region, both types of galaxies also have similar behavior, indicative of having free–free emission from the stellar winds or the thermal radiation from the starburst/star formation as the dominant radiation.

  15. The environment and host haloes of the brightest z ˜ 6 Lyman-break galaxies

    Science.gov (United States)

    Hatfield, P. W.; Bowler, R. A. A.; Jarvis, M. J.; Hale, C. L.

    2018-04-01

    By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright (-22.7 model to measure their typical halo masses. We find that the clustering amplitude and corresponding HOD fits suggests that these sources are highly biased (b ˜ 8) objects in the densest regions of the high-redshift Universe. Coupled with the observed rapid evolution of the number density of these objects, our results suggest that the shape of high luminosity end of the luminosity function is related to feedback processes or dust obscuration in the early Universe - as opposed to a scenario where these sources are predominantly rare instances of the much more numerous MUV ˜ -19 population of galaxies caught in a particularly vigorous period of star formation. There is a slight tension between the number densities and clustering measurements, which we interpret this as a signal that a refinement of the model halo bias relation at high redshifts or the incorporation of quasi-linear effects may be needed for future attempts at modelling the clustering and number counts. Finally, the difference in number density between the fields (UltraVISTA has a surface density˜1.8 times greater than UDS) is shown to be consistent with the cosmic variance implied by the clustering measurements.

  16. When Bad Masks Turn Good

    Science.gov (United States)

    Abraham, Roberto G.

    In keeping with the spirit of a meeting on ‘masks,' this talk presents two short stories on the theme of dust. In the first, dust plays the familiar role of the evil obscurer, the enemy to bedefeated by the cunning observer in order to allow a key future technology (adaptive optics) to be exploited fully by heroic astronomers. In the second story, dust itself emerges as the improbable hero, in the form of a circumstellar debris disks. I will present evidence of a puzzling near-infrared excess in the continuum of high-redshift galaxies and will argue that the seemingly improbable origin of this IR excess is a population of young circumstellar disks formed around high-mass stars in distant galaxies. Assuming circumstellar disks extend down to lower masses,as they do in our own Galaxy, the excess emission presents us with an exciting opportunity to measure the formation rate of planetary systems in distant galaxies at cosmic epochs before our own solar system formed.

  17. Spatially resolving the dust properties and submillimetre excess in M 33

    Science.gov (United States)

    Relaño, M.; De Looze, I.; Kennicutt, R. C.; Lisenfeld, U.; Dariush, A.; Verley, S.; Braine, J.; Tabatabaei, F.; Kramer, C.; Boquien, M.; Xilouris, M.; Gratier, P.

    2018-05-01

    Context. The relative abundance of the dust grain types in the interstellar medium is directly linked to physical quantities that trace the evolution of galaxies. Because of the poor spatial resolution of the infrared and submillimetre data, we are able to study the dependence of the resolved infrared spectral energy distribution (SED) across regions of the interstellar medium (ISM) with different physical properties in just a few objects. Aims: We aim to study the dust properties of the whole disc of M 33 at spatial scales of 170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. Methods: For each pixel in the disc of M 33 we have fitted the infrared SED using a physically motivated dust model that assumes an emissivity index β close to two. We applied a Bayesian statistical method to fit the individual SEDs and derived the best output values from the study of the probability density function of each parameter. We derived the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. Results: The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Hα luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected, it is the first time that a correlation between the two quantities has been reported

  18. Electrodynamic Dust Shield for Solar Panels on Mars

    Science.gov (United States)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  19. The Secret Lives of Galaxies

    Science.gov (United States)

    2001-01-01

    The ground-based image in visible light locates the hub imaged with the Hubble Space Telescope. This barred galaxy feeds material into its hub, igniting star birth. The Hubble NICMOS instrument penetrates beneath the dust to reveal clusters of young stars. Footage shows ground-based, WFPC2, and NICMOS images of NGS 1365. An animation of a large spiral galaxy zooms from the edge to the galactic bulge.

  20. Obscured AGN at z ~ 1 from the zCOSMOS-Bright Survey. I. Selection and optical properties of a [Ne v]-selected sample

    Science.gov (United States)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Pellò, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    2013-08-01

    Aims: The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z ~ 1 obscured AGN from optical spectroscopic surveys. Methods: A sample of 94 narrow-line AGN with 0.65 advantage of the large amount of data available in the COSMOS field, the properties of the [Ne v]-selected type 2 AGN were investigated, focusing on their host galaxies, X-ray emission, and optical line-flux ratios. Finally, a previously developed diagnostic, based on the X-ray-to-[Ne v] luminosity ratio, was exploited to search for the more heavily obscured AGN. Results: We found that [Ne v]-selected narrow-line AGN have Seyfert 2-like optical spectra, although their emission line ratios are diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our type 2 AGN to be hosted in early-type spirals with stellar masses greater than 109.5 - 10 M⊙, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [Ne v]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at ≈2 × 1011 M⊙. A comparison with other selection techniques at z ~ 1, namely the line-ratio diagnostics and X-ray detections, shows that the detection of the [Ne v] λ3426 line is an effective method for selecting AGN in the optical band, in particular the most heavily obscured ones, but cannot provide a complete census of type 2 AGN by itself. Finally, the high fraction of [Ne v]-selected type 2 AGN not detected in medium-deep (≈100-200 ks) Chandra observations (67%) is suggestive of the inclusion of Compton-thick (i.e., with NH > 1024 cm-2) sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray-to-[Ne v] ratio; we estimated, by means of an X-ray stacking technique and simulations, that the Compton-thick fraction in our

  1. The IRX-β dust attenuation relation in cosmological galaxy formation simulations

    Science.gov (United States)

    Narayanan, Desika; Davé, Romeel; Johnson, Benjamin D.; Thompson, Robert; Conroy, Charlie; Geach, James

    2018-02-01

    We utilize a series of galaxy formation simulations to investigate the relationship between the ultraviolet (UV) slope, β, and the infrared excess (IRX) in the spectral energy distributions (SEDs) of galaxies. Our main goals are to understand the origin of and scatter in the IRX-β relation; to assess the efficacy of simplified stellar population synthesis screen models in capturing the essential physics in the IRX-β relation; and to understand systematic deviations from the canonical local IRX-β relations in particular populations of high-redshift galaxies. Our main results follow. Young galaxies with relatively cospatial UV and IR emitting regions and a Milky Way-like extinction curve fall on or near the standard Meurer relation. This behaviour is well captured by simplified screen models. Scatter in the IRX-β relation is dominated by three major effects: (i) older stellar populations drive galaxies below the relations defined for local starbursts due to a reddening of their intrinsic UV SEDs; (ii) complex geometries in high-z heavily star-forming galaxies drive galaxies towards blue UV slopes owing to optically thin UV sightlines; (iii) shallow extinction curves drive galaxies downwards in the IRX-β plane due to lowered near-ultraviolet/far-ultraviolet extinction ratios. We use these features of the UV slopes of galaxies to derive a fitting relation that reasonably collapses the scatter back towards the canonical local relation. Finally, we use these results to develop an understanding for the location of two particularly enigmatic populations of galaxies in the IRX-β plane: z ˜ 2-4 dusty star-forming galaxies and z > 5 star-forming galaxies.

  2. Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    We present all-sky modelling of the high resolution Planck, IRAS, andWISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling....... The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Sigma(Md), the dust optical extinction A(V), and the starlight intensity heating the bulk...... of the dust, parametrized by U-min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31...

  3. CONTINUUM OBSERVATIONS AT 350 MICRONS OF HIGH-REDSHIFT MOLECULAR EMISSION LINE GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Evans, Neal J.; Dunham, Michael M.; Vanden Bout, Paul A.

    2009-01-01

    We report observations of 15 high-redshift (z = 1 - 5) galaxies at 350 μm using the Caltech Submillimeter Observatory and Submillimeter High Angular Resolution Camera II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates (SFRs), total dust masses, and minimum source size estimates are derived. These galaxies have SFRs and star formation efficiencies comparable to other high-redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30)x10 6 dense clumps, each with a luminosity of 5 x 10 5 L sun , the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall spectral energy distributions (SEDs) of the galaxies. They indicate that the individual clumps are quite opaque in the far-infrared. Luminosity-to-mass ratios vary over two orders of magnitude, correlating strongly with the dust temperature derived from simple fits to the SED. The gas masses derived from the dust modeling are in remarkable agreement with those from CO luminosities, suggesting that the assumptions going into both calculations are reasonable.

  4. Missing dust signature in the cosmic microwave background

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2017-01-01

    Roč. 470, č. 1 (2017), L44-L48 ISSN 0035-8711 Institutional support: RVO:67985530 Keywords : dust, extinction * galaxies: high redshift * galaxies: ISM * intergalactic medium * cosmic background radiation * early Universe Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  5. Supernova rates, galaxy emission, and Hubble type

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1991-01-01

    Supernova discovery frequency is found to correlate with emission-line (H-alpha + forbidden N II line) equivalent width, except for the most active galaxies in which some supernovae might be hidden by dust. SNII occur preferentially in active galaxies with emission-line EW not less than 20 A, whereas SNIa favor less active galaxies with EW less than 20 A. The intrinsic frequency of supernovae is found to be an order of magnitude higher in Sc galaxies than it is in early type spirals. The relatively high frequency of SNIa in late-type galaxies suggests that not all such objects have old progenitors. 13 refs

  6. Interstellar matter within elliptical galaxies

    Science.gov (United States)

    Jura, Michael

    1988-01-01

    Multiwavelength observations of elliptical galaxies are reviewed, with an emphasis on their implications for theoretical models proposed to explain the origin and evolution of the interstellar matter. Particular attention is given to interstellar matter at T less than 100 K (atomic and molecular gas and dust), gas at T = about 10,000 K, and gas at T = 10 to the 6th K or greater. The data are shown to confirm the occurrence of mass loss from evolved stars, significant accretion from companion galaxies, and cooling inflows; no evidence is found for large mass outflow from elliptical galaxies.

  7. MAPPING THE SPATIAL DISTRIBUTION OF DUST EXTINCTION IN NGC 959 USING BROADBAND VISIBLE AND MID-INFRARED FILTERS

    International Nuclear Information System (INIS)

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.

    2009-01-01

    We present a method to estimate and map the two-dimensional distribution of dust extinction in the late-type spiral galaxy NGC 959 from the theoretical and observed flux ratio of optical V and mid-IR (MIR) 3.6 μm images. Our method is applicable to both young and old stellar populations for a range of metallicities, and is not restricted to lines of sight toward star-formation (SF) regions. We explore this method using a pixel-based analysis on images of NGC 959 obtained in the V band at the Vatican Advanced Technology Telescope and at 3.6 μm (L band) with Spitzer/Infrared Array Camera. We present the original and extinction corrected Galaxy Evolution Explorer (GALEX) far-UV (FUV) and near-UV (NUV) images, as well as optical UBVR images of NGC 959. While the dust lanes are not clearly evident at GALEX resolution, our dust map clearly traces the dust that can be seen silhouetted against the galaxy's disk in the high-resolution Hubble Space Telescope (HST) images of NGC 959. The advantages of our method are (1) it only depends on two relatively common broadband images in the optical V band and in the MIR at 3.6 μm (but adding a near-UV band improves its fidelity); and (2) it is able to map the two-dimensional spatial distribution of dust within a galaxy. This powerful tool could be used to measure the detailed distribution of dust extinction within higher redshift galaxies to be observed with, e.g., the Hubble Space Telescope (HST)/WFC3 (optical near-IR) and James Webb Space Telescope (mid-IR), and to distinguish properties of dust within galaxy bulges, spiral arms, and inter-arm regions.

  8. Galaxy Evolution Over the Past Eleven Billion Years

    DEFF Research Database (Denmark)

    Man, Wing Shan

    mechanism in evolving the sizes and stellar masses of quiescent galaxies? Are quiescent galaxies truly passive, or are their stellar populations in fact not old but reddened by dust? The goal of this thesis is to address these two outstanding questions, in order to verify the existence of such an extreme...

  9. Some stars are totally metal: a new mechanism driving dust across star-forming clouds, and consequences for planets, stars, and galaxies

    International Nuclear Information System (INIS)

    Hopkins, Philip F.

    2014-01-01

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size ≳ 0.1 μm, containing most grain mass) in sufficiently large molecular clouds (radii ≳ 1-10 pc, masses ≳ 10 4 M ☉ ), this scale becomes larger than the characteristic sizes of prestellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit significant abundance spreads in the elements preferentially found in large grains (C, O). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may explain the 'UV upturn' in early-type galaxies. It will also dramatically change planet formation in the resulting protostellar disks, by preferentially 'seeding' disks with an enhancement in large carbonaceous or silicate grains. The relevant threshold for this behavior scales simply with cloud densities and temperatures, making straightforward predictions for clusters in starbursts and high-redshift galaxies. Because of the selective sorting by size, this process is not necessarily visible in extinction mapping. We also predict the shape of the abundance distribution—when these fluctuations occur, a small fraction of the cores may actually be seeded with abundances Z ∼ 100 (Z) such that they are almost 'totally metal' (Z ∼ 1)! Assuming the cores collapse, these totally metal stars would be rare (1 in ∼10 4 in clusters where this occurs), but represent a fundamentally new stellar evolution channel.

  10. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation

    Science.gov (United States)

    Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team

    2018-06-01

    TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.

  11. Evolution in the Continuum Morphological Properties of Ly alpha-Emitting Galaxies from Z=3.1 to Z=2.1

    Science.gov (United States)

    Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Padilla, Nelson; Gronwall, Chile Caryl; Ciardullo, Robin; Lai, Kamson

    2011-01-01

    We present a rest-frame ultraviolet morphological analysis of 108 z = 2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z = 3.1 . Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field surveys, we measure the size and photometric component distributions, where photo- metric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii physical properties derived from its SED. LAEs are found to be larger for galaxies with larger stellar mass, larger star formation rate, and larger dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at that redshift, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lya emission.

  12. A MINUET OF GALAXIES

    Science.gov (United States)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  13. CCD imagery of the S0 galaxies NGC 3990 and NGC 3998

    International Nuclear Information System (INIS)

    Welch, G.A.; Welch, D.M.K.; Dupuy, D.L.

    1991-01-01

    The structure and colors of NGC 3990 and NGC 3998 are investigated using BR CCD imagery. Fits of bulge-disk models of the galaxies indicate that both disks are somewhat brighter and more compact than typical S0 galaxies in the Virgo and Fornax clusters. Although the two galaxies are separated by only about 3.5 arcmin, none of the obvious signs of gravitational interaction are seen. The colors of both galaxies are normal; the disk of NGC 3998 is somewhat bluer than its bulge. The search has failed to reveal the interstellar dust predicted from the neutral hydrogen observations of NGC 3998. The dust that is seen appears to be mixed with ionized gas which occupies the center of this galaxy and may be the same material seen at longer wavelengths by the IRAS experiment. Its low abundance relative to the neutral gas is consistent with the idea that the ISM was contributed by a gas-rich dwarf galaxy in a destructive merger. 31 refs

  14. The Cambridge photographic atlas of galaxies

    CERN Document Server

    König, Michael

    2017-01-01

    Galaxies - the Milky Way's siblings - offer a surprising variety of forms and colours. Displaying symmetrical spiral arms, glowing red nebulae or diffuse halos, even the image of a galaxy can reveal much about its construction. All galaxies consist of gas, dust and stars, but the effects of gravity, dark matter and the interaction of star formation and stellar explosions all influence their appearances. This volume showcases more than 250 of the most beautiful galaxies within an amateur's reach and uses them to explain current astrophysical research. It features fantastic photographs, unique insights into our knowledge, tips on astrophotography and essential facts and figures based on the latest science. From the Andromeda Galaxy to galaxy clusters and gravitational lenses, the nature of galaxies is revealed through these stunning amateur photographs. This well illustrated reference atlas deserves a place on the bookshelves of astronomical imagers, observers and armchair enthusiasts.

  15. Gone with the heat: a fundamental constraint on the imaging of dust and molecular gas in the early Universe.

    Science.gov (United States)

    Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M

    2016-06-01

    Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.

  16. Peering through the dust: NuSTAR observations of two first-2MASS red quasars

    DEFF Research Database (Denmark)

    LaMassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat

    2016-01-01

    through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS-selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830+3759 is moderately obscured (NH,Z = (2.1 ± 0.2) ×  1022 cm−2...

  17. The physical properties of Lyα emitting galaxies: not just primeval galaxies?

    Science.gov (United States)

    Pentericci, L.; Grazian, A.; Fontana, A.; Castellano, M.; Giallongo, E.; Salimbeni, S.; Santini, P.

    2009-02-01

    Aims: We have analyzed a sample of Lyman break galaxies from z ~ 3.5 to z ~ 6 selected from the GOODS-S field as B, V, and i-dropouts, and with spectroscopic observations showing that they have the Lyα line in emission. Our main aim is to investigate their physical properties and their dependence on the emission line characteristic and to shed light on the relation between galaxies with Lyα emission and the general LBG population. Methods: The objects were selected from their optical continuum colors and then spectroscopically confirmed by the GOODS collaboration and other campaigns. From the public spectra we derived the main properties of the Lyα emission such as total flux and rest frame EW. We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, and through standard spectro-photometric techniques we derived the physical properties of the galaxies, such as total stellar mass, stellar ages, star formation rates, and dust content. Finally we investigated the relation between emission line and physical properties. Results: Although most galaxies are fit by young stellar populations, a small but non negligible fraction has SEDs that cannot be represented well by young models and require considerably older stellar component, up to ~1 Gyr. There is no apparent relation between age and EW: some of the oldest galaxies have high line EW, and should be also selected in narrow-band surveys. Therefore not all Lyα emitting galaxies are primeval galaxies in the very early stages of formation, as is commonly assumed. We also find a range of stellar populations, with masses from 5 × 108 M_⊙ to 5 × 1010 M_⊙ and SFR from few to 60 M_⊙ yr-1. Although there is no net correlation between mass and EW, we find a significant lack of massive galaxies with high EW, which could be explained if the most massive galaxies were either dustier and/or if they contained more neutral gas than less massive objects. Finally we find that more than

  18. A high-redshift IRAS galaxy with huge luminosity - hidden quasar or protogalaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rowan-Robinson, M; Broadhurst, T [Queen Mary Coll., London (UK). School of Mathematical Sciences; Lawrence, A [Queen Mary Coll., London (UK). Dept. of Physics; McMahon, R G [Cambridge Univ. (UK). Inst. of Astronomy; Lonsdale, C J [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Oliver, S J; Taylor, A N [Queen Mary Coll., London (UK). School of Mathematical Sciences; Hacking, P B; Conrow, T [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Saunders, W [Oxford Univ. (UK). Dept. of Astrophysics; Ellis, R S [Durham Univ. (UK). Dept. of Physics; Efstathiou, G P [Oxford Univ. (UK). Dept. of Astrophysics; Condon, J J [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1991-06-27

    During a survey intended to measure redshifts for 1,400 galaxies identified with faint sources detected by the Infrared Astronomy Satellite, we found an emission-line galaxy at a redshift of 2.286, and with the enormous far-infrared luminosity of 3 x 10{sup 14} times that of the sun (L{sub sun}) The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-{alpha} emission. A self-absorbed synchrotron model for the infrared energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the infrared emission, as might a starburst embedded in 1-10 x 10{sup 9} M{sub sun} of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. In either case, this is a remarkable object, and the presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch. (author).

  19. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  20. How Quasar Feedback May Shape the Co-evolutionary Paths

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Wako, E-mail: wako.ishibashi@physik.uzh.ch [Physik-Institut, University of Zurich, Zürich (Switzerland)

    2017-10-17

    Observations point toward some form of “co-evolutionary sequence,” from dust-enshrouded starbursts to luminous unobscured quasars. Active galactic nucleus (AGN) feedback is generally invoked to expel the obscuring dusty gas in a blow-out event, eventually revealing the hidden central quasar. However, the physical mechanism driving AGN feedback, either due to winds or radiation, remains uncertain and is still a source of much debate. We consider quasar feedback, based on radiation pressure on dust, which directly acts on the obscuring dusty gas. We show that AGN radiative feedback is capable of efficiently removing the obscuring cocoon, and driving powerful outflows on galactic scales, consistent with recent observations. I will discuss how such quasar feedback may provide a natural physical interpretation of the observed evolutionary path, and the physical implications in the broader context of black hole-host galaxy co-evolution.

  1. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    International Nuclear Information System (INIS)

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan

    2010-01-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Hα/Hβ, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  2. Exploring the nearby galaxies 0 present and future

    Indian Academy of Sciences (India)

    Galaxies: . Content l Stars. Gas, Dust . Structure & Kinematics . Dynamics & Ecology . Formation & Evolution. Star formation. Chemical evolution. Dynamic evolution. Interaction with neighbours . Galactic Centre ...

  3. Origins Space Telescope: 3D infrared surveys of star formation and black hole growth in galaxies over cosmic time

    Science.gov (United States)

    Pope, Alexandra; Armus, Lee; bradford, charles; Origins Space Telescope STDT

    2018-01-01

    In the coming decade, new telescope facilities and surveys aim to provide a 3D map of the unobscured Universe over cosmic time. However, much of galaxy formation and evolution occurs behind dust, and is only observable through infrared observations. Previous extragalactic infrared surveys were fundamentally limited to a 2D mapping of the most extreme populations of galaxies due to spatial resolution and sensitivity. The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies sponsored by NASA to provide input to the 2020 Astronomy and Astrophysics Decadal survey. OST is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum, which will achieve spectral line sensitivities up to 1000 times deeper than previous infrared facilities. With powerful instruments such as the Medium Resolution Survey Spectrometer (MRSS), capable of simultaneous imaging and spectroscopy, the extragalactic infrared sky can finally be surveyed in 3D. In addition to spectroscopic redshifts, the rich suite of lines in the infrared provides unique diagnostics of the ongoing star formation (both obscured and unobscured) and the central supermassive black hole growth. In this poster, we present a simulated extragalactic survey with OST/MRSS which will detect millions of galaxies down to well below the knee of the infrared luminosity function. We demonstrate how this survey can map the coeval star formation and black hole growth in galaxies over cosmic time.

  4. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Thompson, Todd A.

    2011-01-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR -L' CO correlation, and the L IR -L' HCN correlation. In particular, the linear L IR -L' HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H 2 and HCN-to-H 2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  5. Gradients of stellar population properties and evolution clues in a nearby galaxy M101

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Zou, Hu; Jiang, Zhaoji; Zhou, Xu, E-mail: linlin@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn, E-mail: zouhu@nao.cas.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A {sub FUV} relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an 'inside-out' disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  6. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Sugiyama, N. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, 277-8583 (Japan); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 (Japan); Sanders, D.; Zahid, J.; Kewley, L. J.; Chu, J.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822 (United States); Kartaltepe, J. S. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ, 85719 (United States); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, Hawaii, 96720 (United States); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122, Padova, Italy, EU (Italy); Rodighiero, G.; Baronchelli, I. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122, Padova (Italy); Daddi, E.; Juneau, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Lilly, S. J.; Carollo, C. M. [Institute of Astronomy, ETH Zürich, CH-8093, Zürich (Switzerland); Capak, P. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Ilbert, O., E-mail: john.silverman@ipmu.jp [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); and others

    2015-09-15

    We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Hα emission line that falls within the H-band (1.6–1.8 μm) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M{sub stellar} ≳ 10{sup 10} M{sub ⊙}. With the high multiplex capability of FMOS, it is now feasible to construct samples of over 1000 galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R ∼ 2600) effectively separates Hα and [N ii]λ6585, thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate (SFR)—stellar mass relation. Galaxies with Hα detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11–1.35 μm) grating to detect Hβ and [O iii]λ5008 which provides an assessment of the extinction required to measure SFRs not hampered by dust, and an indication of embedded active galactic nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.

  7. DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations

    Science.gov (United States)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.

    2018-06-01

    Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.

  8. DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Temim, Tea; Dwek, Eli; Boyer, Martha L.; Tchernyshyov, Kirill; Meixner, Margaret; Gall, Christa; Roman-Duval, Julia

    2015-01-01

    The dust budget in galaxies depends on the rate at which dust grains are created in different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper, we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetimes and destruction efficiencies of silicate and carbon dust. We find dust lifetimes of 22 ± 13 Myr (30 ± 17 Myr) for silicate (carbon) grains in the LMC, and 54 ± 32 Myr (72 ± 43 Myr) for silicate (carbon) grains in the SMC. The corresponding dust destruction rates are 2.3 × 10 –2 M ☉  yr –1 (5.9 × 10 –3 M ☉  yr –1 ) and 3.0 × 10 –3 M ☉  yr –1 (5.6 × 10 –4 M ☉  yr –1 ) for silicate (carbon) grains in the LMC and SMC, respectively. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass and preferentially higher dust-to-gas (D2G) mass ratios in the vicinity of the SNRs. We find that the maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae are an order of magnitude lower than the dust destruction rates by the SNRs, suggesting that most of the dust may be reconstituted in dense molecular clouds. We also discuss the dependence of the dust destruction rate on the local D2G mass ratio, ambient gas density, and metallicity, as well as the application of our results to other galaxies and dust evolution models

  9. Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

    Science.gov (United States)

    McLure, R. J.; Dunlop, J. S.; Cullen, F.; Bourne, N.; Best, P. N.; Khochfar, S.; Bowler, R. A. A.; Biggs, A. D.; Geach, J. E.; Scott, D.; Michałowski, M. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.

    2018-05-01

    We present the results of a new study of the relationship between infrared excess (IRX ≡ LIR/LUV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log (M_{\\ast }/M_{⊙}) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.

  10. Colors of galaxies with continuing star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.; Demin, V.V.

    1979-01-01

    A position of non-elliptical galaxies on a two-colour diagram (B-V)-(U-B) is considered from the data on the RC2 catalogue. Correction was made for internal reddening of light in galaxies. A sequence of colour indices on a two-colour diagram is compared with theoretical sequences for the Salpeter's initial mass function of stars (IMF). To reach the best agreement between calculated and observed colours of galaxies it is demanded that IMF change systematically along a morphological Hubble's sequence of galaxies and IMF in most of spiral galaxies of early types must have a deficiency of massive stars with respect to the Salpeter's IMF. A difference between colour indices of inner and outer parts of spiral galaxies shows that internal light absorption is possibly stronger in the inner regions of galaxies. A relation between dust content of galaxies and their IMF is in qualitative agreement with the Kahn's theory which gives an upper limit of mass of young stars

  11. The evolution of interstellar medium mass probed by dust emission: Alma observations at z = 0.3-2

    International Nuclear Information System (INIS)

    Scoville, N.; Manohar, S.; Aussel, H.; Sheth, K.; Scott, K. S.; Sanders, D.; Ivison, R.; Pope, A.; Capak, P.; Vanden Bout, P.; Kartaltepe, J.; Robertson, B.; Lilly, S.

    2014-01-01

    The use of submillimeter dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star-forming galaxies, Planck observations of the Milky Way, and high-redshift submillimeter galaxies. All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans tail of the dust emission can be used as an accurate and very fast probe of the interstellar medium (ISM) in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar-mass-selected from COSMOS to have M * ≅ 10 11 M ☉ : 37 at z ∼ 0.4, 33 at z ∼ 0.9, and 31 at z = 2. A fourth sample with six infrared-luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased by a factor ∼6 from 1 to 2 × 10 10 M ☉ at both z = 2 and 0.9 down to ∼2 × 10 9 M ☉ at z = 0.4. The infrared-luminous sample at z = 2 shows a further ∼4 times increase in M ISM compared with the equivalent non-infrared-bright sample at the same redshift. The gas mass fractions are ∼2% ± 0.5%, 12% ± 3%, 14% ± 2%, and 53% ± 3% for the four subsamples (z = 0.4, 0.9, and 2 and infrared-bright galaxies).

  12. Dust in the small Magellanic cloud. 1: Interstellar polarization and extinction data

    Science.gov (United States)

    Magalhaes, A. M.; Rodrigues, C. V.; Coyne, C. V.; Piirola, V.

    1996-01-01

    The typical extinction curve for the Small Magellanic Cloud (SMC), in contrast to that for the Galaxy, has no bump at 2175 A and has a steeper rise into the far ultraviolet. For the Galaxy the interpretation of the extinction and, therefore, the dust content of the interstellar medium has been greatly assisted by measurements of the wavelength dependence of the polarization. For the SMC no such measurements existed. Therefore, to further elucidate the dust properties in the SMC we have for the first time measured linear polarization with five colors in the optical region of the spectrum for a sample of reddened stars. For two of these stars, for which there were no existing UV spectrophotometric measurements, but for which we measured a relatively large polarization, we have also obtained data from the International Ultraviolet Explorer (IUE) in order to study the extinction. We also attempt to correlate the SMC extinction and polarization data. The main results are: the wavelength of maximum polarization, lambda(sub max), in the SMC is typically smaller than that in the Galaxy; however, AZC 456, which shows the UV extinction bump, has a lambda(sub max) typical of that in the Galaxy, but its polarization curve is narrower and its bump is shifted to shorter wavelengths as compared to the Galaxy; and from an analysis of both the extinction and polarization data it appears that the SMC has typically smaller grains than those in the Galaxy. The absence of the extinction bump in the SMC has generally been thought to imply a lower carbon abundance in the SMC compared to the Galaxy. We interpret our results to mean that te size distribution of the interstellar grains, and not only the carbon abundance, is different in the SMC as compared to the Galaxy. In Paper 2 we present dust model fits to these observations.

  13. THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Franx, Marijn; Holden, Bradford P.; Illingworth, Garth D.; Kelson, Daniel D.; Van der Wel, Arjen

    2012-01-01

    We utilize for the first time Hubble Space Telescope Advanced Camera for Surveys imaging to examine the structural properties of galaxies in the rest-frame U – V versus V – J diagram (i.e., the UVJ diagram) using a sample at 0.6 ☉ >10.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star-forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sérsic indices (n > 2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sérsic indices. Interestingly, most UVJ-selected SFGs with high Sérsic indices also display structure due to dust and star formation typical of the n < 2.5 SFGs and late-type systems. Finally, we find that the position of an SFG on the sequence of UVJ colors is determined to a large degree by the mass of the galaxy and its inclination. Systems that are closer to edge-on generally display redder colors and lower [O II]λ3727 luminosity per unit mass as a consequence of the reddening due to dust within the disks. We conclude that the two main features seen in UVJ color space correspond closely to the traditional morphological classes of early- and late-type galaxies.

  14. CANDELS+3D-HST: Compact SFGs at z ∼ 2-3, the progenitors of the first quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, G.; Faber, S. M.; Koo, D. C.; Guo, Y. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Pérez-González, P. G. [Universidad Complutense de Madrid, F. CC. Físicas, 28040 Madrid (Spain); Pacifici, C. [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Trump, J. R. [Pennsylvania State University, University Park, PA 16802 (United States); Wuyts, S.; Hsu, L. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Bell, E. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Dekel, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Porter, L.; Primack, J. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Ferguson, H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ashby, M. L. N.; Fazio, G. G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Caputi, K. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Ceverino, D. [Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122 (Australia); Giavalisco, M. [Astronomy Department, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); and others

    2014-08-10

    We analyze the star-forming and structural properties of 45 massive (log(M/M{sub ☉}) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ∼ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically are disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ∼2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M{sub ☉}) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers

  15. CANDELS+3D-HST: Compact SFGs at z ∼ 2-3, the progenitors of the first quiescent galaxies

    International Nuclear Information System (INIS)

    Barro, G.; Faber, S. M.; Koo, D. C.; Guo, Y.; Pérez-González, P. G.; Pacifici, C.; Trump, J. R.; Wuyts, S.; Hsu, L.; Bell, E.; Dekel, A.; Porter, L.; Primack, J.; Ferguson, H.; Ashby, M. L. N.; Fazio, G. G.; Caputi, K.; Ceverino, D.; Croton, D.; Giavalisco, M.

    2014-01-01

    We analyze the star-forming and structural properties of 45 massive (log(M/M ☉ ) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ∼ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically are disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ∼2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M ☉ ) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk

  16. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  17. IR Observations of a Complete Unbiased Sample of Bright Seyfert Galaxies

    Science.gov (United States)

    Malkan, Matthew; Bendo, George; Charmandaris, Vassilis; Smith, Howard; Spinoglio, Luigi; Tommasin, Silvia

    2008-03-01

    IR spectra will measure the 2 main energy-generating processes by which galactic nuclei shine: black hole accretion and star formation. Both of these play roles in galaxy evolution, and they appear connected. To obtain a complete sample of AGN, covering the range of luminosities and column-densities, we will combine 2 complete all-sky samples with complementary selections, minimally biased by dust obscuration: the 116 IRAS 12um AGN and the 41 Swift/BAT hard Xray AGN. These galaxies have been extensively studied across the entire EM spectrum. Herschel observations have been requested and will be synergistic with the Spitzer database. IRAC and MIPS imaging will allow us to separate the nuclear and galactic continua. We are completing full IR observations of the local AGN population, most of which have already been done. The only remaining observations we request are 10 IRS/HIRES, 57 MIPS-24 and 30 IRAC pointings. These high-quality observations of bright AGN in the bolometric-flux-limited samples should be completed, for the high legacy value of complete uniform datasets. We will measure quantitatively the emission at each wavelength arising from stars and from accretion in each galactic center. Since our complete samples come from flux-limited all-sky surveys in the IR and HX, we will calculate the bi-variate AGN and star formation Luminosity Functions for the local population of active galaxies, for comparison with higher redshifts.Our second aim is to understand the physical differences between AGN classes. This requires statistical comparisons of full multiwavelength observations of complete representative samples. If the difference between Sy1s and Sy2s is caused by orientation, their isotropic properties, including those of the surrounding galactic centers, should be similar. In contrast, if they are different evolutionary stages following a galaxy encounter, then we may find observational evidence that the circumnuclear ISM of Sy2s is relatively younger.

  18. The physical properties of galaxies with unusually red mid-infrared colours

    Science.gov (United States)

    Kauffmann, Guinevere

    2018-02-01

    The goal of this paper is to investigate the physical nature of galaxies in the redshift range 0.02 Survey Explorer, W1 - W2 band) colours is sharply peaked, with a long tail to much redder W1 - W2 colours. We introduce a procedure to pull out the red outlier population based on a combination of three stellar population diagnostics. When compared with optically selected active galactic nucleus (AGN), red outliers are more likely to be found in massive galaxies, and they tend to have lower stellar mass densities, younger stellar ages and higher dust content than optically selected AGN hosts. They are twice as likely to be detected at radio wavelengths. We examine W1 - W2 colour profiles for a subset of the nearest, reddest outliers and find that most are not centrally peaked, indicating that the hot dust emission is spread throughout the galaxy. We find that radio luminosity is the quantity that is most predictive of a redder central W1 - W2 colour. Radio-loud galaxies with centrally concentrated hot dust emission are almost always morphologically disturbed, with compact, unresolved emission at 1.4 GHz. The 80 per cent of such systems are identifiable as AGN using optical emission line diagnostics.

  19. Luminosity function for planetary nebulae and the number of planetary nebulae in local group galaxies

    International Nuclear Information System (INIS)

    Jacoby, G.H.

    1980-01-01

    Identifications of 19 and 34 faint planetary nebulae have been made in the central regions of the SMC and LMC, respectively, using on-line/off-line filter photography at [O III] and Hα. The previously known brighter planetary nebulae in these fields, eight in both the SMC and the LMC, were also identified. On the basis of the ratio of the numbers of faint to bright planetary nebulae in these fields and the numbers of bright planetary nebulae in the surrounding fields, the total numbers of planetary nebulae in the SMC and LMC are estimated to be 285 +- 78 and 996 +- 253, respectively. Corrections have been applied to account for omissions due to crowding confusion in previous surveys, spatial and detectability incompleteness, and obscuration by dust.Equatorial coordinates and finding charts are presented for all the identified planetary nebulae. The coordinates have uncertainties smaller than 0.''6 relative to nearby bright stars, thereby allowing acquisition of the planetary nebulae by bling offsetting.Monochromatic fluxes are derived photographically and used to determine the luminosity function for Magellanic Cloud planetary nebulae as faint as 6 mag below the brightest. The luminosity function is used to estimate the total numbers of planetary nebulae in eight Local Group galaxies in which only bright planetary nebulae have been identified. The dervied luminosity specific number of planetary nebulae per unit luminosity is nearly constant for all eight galaxies, having a value of 6.1 x 10 -7 planetary nebulae L -1 /sub sun/. The mass specific number, based on the three galaxies with well-determined masses, is 2.1 x 10 -7 planetary nebulae M -1 /sub sun/. With estimates for the luminosity and mass of our Galaxy, its total number of planetary nebulae is calculated to be 10,000 +- 4000, in support of the Cudworth distance scale

  20. Multi-wavelength study of infrared galaxies

    International Nuclear Information System (INIS)

    Marcillac, Delphine

    2005-01-01

    This thesis deals with a panchromatic study of luminous infrared galaxies (LIRGs) detected at 15 microns by ISOCAM (camera aboard ISO) and at 24 microns by MIPS (camera aboard the recently launched Spitzer satellite). These galaxies are today considered to be the Rosetta Stone of galaxy evolution since they are found to be far more numerous at high redshift and it is thought that a large part of stars seen in the local universe are born in such phases. The first part of this thesis presents a new study dedicated to dust emission of distant LIRGs in the mid-infrared range. Their dust emission has been compared to those of a local sample of LIRGs in addition to the prediction of several spectral energy distributions (SEDs) built on data available in the local universe. It has been shown that distant and local LIRGs present similar mid infrared spectral energy distribution: similar PAH bumps are detected in both local and distant LIRGs, however distant LIRGs show evidence of a stronger silicate absorption at 10 microns associated silicate grains. It also shows that distant LIRG mid infrared emission can be used together with local SEDs in order to estimate the total infrared luminosity. The second part of this thesis is dedicated to the burst of star formation and to the recent star formation history of these galaxies, which is responsible for the dust emission. This study was done thanks to a combination of high resolution spectra (R=2000 in the rest frame) obtained at VLT/FORS2 and the stellar population synthesis models called GALAXEV (Bruzual and Charlot, 2003). It has been shown that the burst of star formation has a duration of about 0.1 Gyear. About 10 % of the stellar content is formed during this burst of star formation. (author) [fr

  1. Large-Scale Structure Behind The Milky Way with ALFAZOA

    Science.gov (United States)

    Sanchez Barrantes, Monica; Henning, Patricia A.; Momjian, Emmanuel; McIntyre, Travis; Minchin, Robert F.

    2018-06-01

    The region of the sky behind the Milky Way (the Zone of Avoidance; ZOA) is not well studied due to high obscuration from gas and dust in our galaxy as well as stellar confusion, which results in low detection rate of galaxies in this region. Because of this, little is known about the distribution of galaxies in the ZOA, and other all sky redshift surveys have incomplete maps (e.g. the 2MASS Redshift survey in NIR has a gap of 5-8 deg around the Galactic plane). There is still controversy about the dipole anisotropy calculated from the comparison between the CMB and galaxy and redshift surveys, in part due to the incomplete sky mapping and redshift depth of these surveys. Fortunately, there is no ZOA at radio wavelengths because such wavelengths can pass unimpeded through dust and are not affected by stellar confusion. Therefore, we can detect and make a map of the distribution of obscured galaxies that contain the 21cm neutral hydrogen emission line, and trace the large-scale structure across the Galactic plane. The Arecibo L-Band Feed Array Zone of Avoidance (ALFAZOA) survey is a blind HI survey for galaxies behind the Milky Way that covers more than 1000 square degrees of the sky, conducted in two phases: shallow (completed) and deep (ongoing). We show the results of the finished shallow phase of the survey, which mapped a region between the galactic longitude l=30-75 deg, and latitude b <|10 deg|, and detected 418 galaxies to about 12,000 km/s, including galaxy properties and mapped large-scale structure. We do the same for new results from the deep phase, which is ongoing and covers 30 < l < 75 deg and b < |2| deg for the inner galaxy and 175 < l < 207 deg, with -2 < b < 1 for the outer galaxy.

  2. Some stars are totally metal: a new mechanism driving dust across star-forming clouds, and consequences for planets, stars, and galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F., E-mail: phopkins@caltech.edu [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-10

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size ≳ 0.1 μm, containing most grain mass) in sufficiently large molecular clouds (radii ≳ 1-10 pc, masses ≳ 10{sup 4} M {sub ☉}), this scale becomes larger than the characteristic sizes of prestellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit significant abundance spreads in the elements preferentially found in large grains (C, O). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may explain the 'UV upturn' in early-type galaxies. It will also dramatically change planet formation in the resulting protostellar disks, by preferentially 'seeding' disks with an enhancement in large carbonaceous or silicate grains. The relevant threshold for this behavior scales simply with cloud densities and temperatures, making straightforward predictions for clusters in starbursts and high-redshift galaxies. Because of the selective sorting by size, this process is not necessarily visible in extinction mapping. We also predict the shape of the abundance distribution—when these fluctuations occur, a small fraction of the cores may actually be seeded with abundances Z ∼ 100 (Z) such that they are almost 'totally metal' (Z ∼ 1)! Assuming the cores collapse, these totally metal stars would be rare (1 in ∼10{sup 4} in clusters where this occurs), but represent a fundamentally new stellar evolution channel.

  3. Shrouds of the Night Masks of the Milky Way and Our Awesome New View of Galaxies

    CERN Document Server

    Block, David L

    2009-01-01

    The Milky Way has captivated the mind of multitudes ever since the beginning of time. Particularly striking are its apparent dusty gaping voids. With the advent of near-infrared technology, astronomers have discovered an awesome new view of its structure, and of the structure of other galaxies around us. Galaxies are encased within shrouds of the night: shrouds or veils of cosmic dust, which have given us a totally incomplete picture of what our majestic Universe actually looks like. Shrouds of the Night features some of the most remarkable early photographic work of masters such as Isaac Roberts and Edward Barnard, before presenting to the reader the unmasked (dust penetrated) view of our cosmos, using some of the world’s largest ground and space-based telescopes. "Galaxies are the 'ecosystems' of the cosmos – vast assemblages in which gas and dust are recycled through successive generations of stars. The authors of this beautiful book describe our ever-sharpening view of the Milky Way, the galaxy that i...

  4. THE NATURE OF THE SECOND PARAMETER IN THE IRX-β RELATION FOR LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Grasha, Kathryn; Calzetti, Daniela; Andrews, Jennifer E.; Lee, Janice C.; Dale, Daniel A.

    2013-01-01

    We present an analysis of 98 galaxies of low-dust content, selected from the Spitzer Local Volume Legacy survey, aimed at examining the relation between the ultraviolet (UV) color and dust attenuation in normal star-forming galaxies. The IRX-β diagram relates the total dust attenuation in a galaxy, traced by the far-IR (FIR) to UV ratio, to the observed UV color, indicated by β. Previous research has indicated that while starburst galaxies exhibit a relatively tight IRX-β relation, normal star-forming galaxies do not, and have a much larger spread in the total-IR to far-UV (FUV) luminosity for a fixed UV color. We examine the role that the age of the stellar population plays as the ''second parameter'' responsible for the observed deviation and spread of star-forming galaxies from the starburst relation. We model the FUV to FIR spectral energy distribution of each galaxy according to two broad bins of star formation history (SFH): constant and instantaneous burst. We find clear trends between stellar population mean age estimators (extinction-corrected FUV/NIR, U – B, and EW(Hα)) and the UV color β; the trends are mostly driven by the galaxies best-described by instantaneous burst populations. We also find a significant correlation between β and the mean age directly determined from the best-fit instantaneous models. As already indicated by other authors, the UV attenuation in star-forming galaxies may not be recovered with the UV color alone and is highly influenced by the stellar population's mean age and SFH. Overall, the scatter in the IRX-β diagram is better correlated with β than with the perpendicular distance, d p

  5. Dust scattering and the radiation pressure force in the M82 superwind

    International Nuclear Information System (INIS)

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul

    2013-01-01

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L *,UV ) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L *,UV ≈ (1-6) × 10 42 erg s –1 , ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L *,UV implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  6. A COMPREHENSIVE VIEW OF A STRONGLY LENSED PLANCK-ASSOCIATED SUBMILLIMETER GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Jullo, E. [Observatoire d' Astrophysique de Marseille-Provence, 38 rue Frederic Joliot-Curie, F-13388 Marseille (France); Bussmann, R. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Perez-Fournon, I. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Djorgovski, S. G.; Scoville, N.; Yan, L.; Riechers, D. A.; Bradford, M. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Aguirre, J. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Auld, R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd., Piscataway, NJ 08854 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Dannerbauer, H. [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1160 Wien (Austria); Dariush, A. [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); De Zotti, G., E-mail: haif@uci.edu [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2012-07-10

    We present high-resolution maps of stars, dust, and molecular gas in a strongly lensed submillimeter galaxy (SMG) at z = 3.259. HATLAS J114637.9-001132 is selected from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) as a strong lens candidate mainly based on its unusually high 500 {mu}m flux density ({approx}300 mJy). It is the only high-redshift Planck detection in the 130 deg{sup 2} H-ATLAS Phase-I area. Keck Adaptive Optics images reveal a quadruply imaged galaxy in the K band while the Submillimeter Array and the Jansky Very Large Array show doubly imaged 880 {mu}m and CO(1{yields}0) sources, indicating differentiated distributions of the various components in the galaxy. In the source plane, the stars reside in three major kpc-scale clumps extended over {approx}1.6 kpc, the dust in a compact ({approx}1 kpc) region {approx}3 kpc north of the stars, and the cold molecular gas in an extended ({approx}7 kpc) disk {approx}5 kpc northeast of the stars. The emissions from the stars, dust, and gas are magnified by {approx}17, {approx}8, and {approx}7 times, respectively, by four lensing galaxies at z {approx} 1. Intrinsically, the lensed galaxy is a warm (T{sub dust} {approx} 40-65 K), hyper-luminous (L{sub IR} {approx} 1.7 Multiplication-Sign 10{sup 13} L{sub Sun }; star formation rate (SFR) {approx}2000 M{sub Sun} yr{sup -1}), gas-rich (M{sub gas}/M{sub baryon} {approx} 70%), young (M{sub stellar}/SFR {approx} 20 Myr), and short-lived (M{sub gas}/SFR {approx} 40 Myr) starburst. With physical properties similar to unlensed z > 2 SMGs, HATLAS J114637.9-001132 offers a detailed view of a typical SMG through a powerful cosmic microscope.

  7. Definition of the large-scale extinction - A new solution of the central void phenomenon

    Science.gov (United States)

    Grabinska, T.

    1989-11-01

    The Estonian School results (Joeveer et al., 1977) concerning the galaxy cell structure were partly interpreted in the spirit of Zwicky's idea on intergalactic dust, although it remained a speculation. The same view was proposed also by Rudnicki to explain the evident deficit of galaxies in the central region (central void) of the Jagellonian field. Zieba (1974) tried to explain the effect of the central void in terms of an interstellar obscuration. This explanation of the central void (CV) in terms of a possible intergalactic dust was opened up again in 1984 and 1985; and its merits considered by Rudnicki et al. (1989). Now a new solution of the problem of the CV mystery is presented.

  8. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith [Department of Physics and Astronomy, East Tennessee State University, Johnson City TN 37614 (United States); Zaragoza-Cardiel, Javier [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain); Struck, Curtis, E-mail: smithbj@etsu.edu [Department of Physics and Astronomy, Iowa State University, Ames IA 50011 (United States)

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  9. The gas content in starburst galaxies

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Sanders, D.B.

    1987-01-01

    The results from two large and homogeneous surveys, one in HI, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal far-infrared radiation and non-thermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher far-infrared luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, we conclude that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties

  10. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  11. Stars, gas, and dust in the Andromeda Galaxy

    International Nuclear Information System (INIS)

    Walterbos, R.A.M.

    1986-01-01

    In this thesis the results of an extensive observational study are presented of the properties of the stellar disk and bulge, the dust, and the gas in the Andromeda nebula (M31). A detailed analysis of the RAS results on M31 is given. In addition, new complete multi-color data on the optical light distribution are described. Together with a high-resolution radio continuum survey at 21 cm. The general morphological aspects of the different compounds are discussed. The analysis further focusses on the correlations between various components, in particular on that between gas and dust. (Auth.)

  12. Smooth-arm spiral galaxies: their properties and significance to cluster-galaxy evolution

    International Nuclear Information System (INIS)

    Wilkerson, M.S.

    1979-01-01

    In this dissertation a number of galaxies with optical appearances between those of normal, actively-star-forming spirals and SO galaxies have been examined. These so-called smooth-arm spiral galaxies exhibit spiral arms without any of the spiral tracers - H II regions, O-B star associations, dust - indicative of current star formation. Tests were made to find if, perhaps, these smooth-arm spirals could have, at one time, been normal, actively-star-forming spirals whose gas had been somehow removed; and that are currently transforming into SO galaxies. This scenario proceeds as (1) removal of gas, (2) gradual dying of disk density wave, (3) emergence of SO galaxy. If the dominant method of gas removal is ram-pressure stripping by a hot, intracluster medium, then smooth-arm spirals should occur primarily in x-ray clusters. Some major findings of this dissertation are as follows: (1) Smooth-arm spirals are redder than normal spirals of the same morphological type. Most smooth-arm spirals cannot be distinguished by color from SO galaxies. (2) A weak trend exists for smooth-arm spirals with stronger arms to be bluer than those with weaker arms; thus implying that the interval since gas removal has been shorter for the galaxies with stronger arms. (3) Smooth-arm spirals are deficient in neutral hydrogen - sometimes by an order of magnitude or, possibly, more

  13. Coupling the Mars Dust and Water Cycles: Investigating the Role of Clouds in Controlling the Vertical Distribution of Dust During N. H. Summer

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.

    2014-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer

  14. A PUBLIC CATALOG OF STELLAR MASSES, STAR FORMATION AND METALLICITY HISTORIES, AND DUST CONTENT FROM THE SLOAN DIGITAL SKY SURVEY USING VESPA

    International Nuclear Information System (INIS)

    Tojeiro, Rita; Wilkins, Stephen; Heavens, Alan F.; Panter, Ben; Jimenez, Raul

    2009-01-01

    We applied the VESPA algorithm to the Sloan Digital Sky Survey final data release of the Main Galaxies and Luminous Red Galaxies samples. The result is a catalog of stellar masses, detailed star formation and metallicity histories and dust content of nearly 800,000 galaxies. We make the catalog public via a T-SQL database, which is described in detail in this paper. We present the results using a range of stellar population and dust models, and will continue to update the catalog as new and improved models are made public. We also present a brief exploration of the catalog, and show that the quantities derived are robust: luminous red galaxies can be described by one to three populations, whereas a main galaxy sample galaxy needs on average two to five; red galaxies are older and less dusty; the dust values we recover are well correlated with measured Balmer decrements and star formation rates are also in agreement with previous measurements. We find that whereas some derived quantities are robust to the choice of modelling, many are still not.

  15. Physical conditions of the interstellar medium in high-redshift submillimetre bright galaxies

    Science.gov (United States)

    Yang, Chentao

    2017-12-01

    The discovery of a population of high- redshift dust-obscured submillimeter galaxies (SMGs) from ground-based submm cameras has revolutionised our understanding of galaxy evolution and star formation in extreme conditions. They are the strongest starbursts in the Universe approaching the Eddington limit and are believed to be the progenitors of the most massive galaxies today. However, theoretical models of galaxy evolution have even been challenged by a large number of detections of high-redshift SMGs. A very few among them are gravitationally lensed by an intervening galaxy. Recent wide-area extragalactic surveys have discovered hundreds of such strongly lensed SMGs, opening new exciting opportunities for observing the interstellar medium in these exceptional objects. We have thus carefully selected a sample of strongly gravitational lensed SMGs based on the submillimeter flux limit from the Herschel-ATLAS sample. Using IRAM telescopes, we have built a rich H2O-line-detected sample of 16 SMGs. We found a close-to-linear tight correlation between the H2O line and total infrared luminosity. This indicates the importance of far-IR pumping to the excitation of the H2O lines. Using a far-IR pumping model, we have derived the physical properties of the H2O gas and the dust. We showed that H2O lines trace a warm dense gas that may be closely related to the active star formation. Along with the H2O lines, several H2O+ lines have also been detected in three of our SMGs. We also find a tight correlation between the luminosity of the lines of H2O and H2O+ from local ULIRGs to high-redshift SMGs. The flux ratio between H2O+ and H2O suggests that cosmic rays from strong star forming activities are possibly driving the related oxygen chemistry. Another important common molecular gas tracer is the CO line. We have observed multiple transitions of the CO lines in each of our SMGs with IRAM 30m telescope. By analysing the CO line profile, we discovered a significant differential

  16. Extended Red Emission in the Evil Eye Galaxy

    Science.gov (United States)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2001-05-01

    The Evil Eye Galaxy (NGC 4826) is a nearby galaxy with an asymmetrically placed, strongly absorbing dust lane across its prominent bulge, associated to an active star formation (SF) region. We obtained accurate low--resolution (4.2 Å/pixel) spectroscopy (KPNO 4-m) of NGC 4826 in the wavelength range 5300--9100Å with a slit of 4.4' length, positioned across the nucleus of the galaxy and encompassing its bulge size. We were able to study the wavelength dependent effects of absorption and scattering by the dust by comparing the stellar SEDs at corresponding positions on the bulge, symmetrically placed with respect to the nucleus, under the assumption that the intrinsic (i.e. unobscured by the dust lane) ISRF is radially symmetric, except for the ongoing SF region. We report on the detection of strong extended red emission (ERE) from the dust lane of NGC 4826 within a radial distance of about 15{' '} from its nucleus, adjacent to the active SF region. At the nucleus, the ERE band extends from about 5800 Å to 9100 Å, with peak near 8300 Å, and the ERE-to-scattered light integrated intensity ratio is about 0.7. At farther distances, approaching the ongoing SF region, the ERE band and peak shift to longer wavelengths, while the integrated ERE intensity diminishes and, finally, vanishes there. The H α line intensity and the index [NII]λ 6583/H α constrain the Lyman continuum photon rate and the effective temperatures of the OB association stars. The ERE-to-scattered light ratio decreases as well but shows a secondary maximum where the opacity of the dust lane peaks. We interpret the ERE nature as photoluminescence by nanometer--sized clusters, illuminated by UV/visible photons of the local radiation field. When examined within the context of ERE observations in the diffuse ISM of our Galaxy and in a variety of other dusty environments, we conclude that the ERE photon conversion efficiency in NGC 4826 is as high as found elsewhere, but that the characteristic size

  17. Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3

    Science.gov (United States)

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan

    2016-09-01

    We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  18. Very high-luminosity infrared galaxies - are they very young?

    International Nuclear Information System (INIS)

    Burbidge, G.

    1986-01-01

    It is proposed that most of the very high-luminosity IRAS galaxies, those which emit greater than or equal to 10 to the 12th solar luminosities nearly all in the far infrared out to 100 microns, are very young systems with ages less than or equal to 10 to the 9th years. The luminosity comes largely from stars with masses near 100 solar masses which evolve rapidly, ejecting much of their mass as elements heavier than hydrogen. The gas ejected condenses into dust in circumstellar shells. The prototype star in the Galaxy which shows all of these attributes is Eta Car. It is shown that total masses of order 10 to the 7th-10 to the 8th solar masses condensed into such stars can produce the observed luminosities, and that 10-100 generations of such stars will produce enough dust (about 10 to the 8th solar masses) to explain the observed infrared luminosities. If this hypothesis is correct the composition of gas and dust may well be highly anomalous, and there should be no old stars with ages about 10 to the 10th years present. Initial star formation is probably triggered by interactions with close companion galaxies. 40 references

  19. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    Science.gov (United States)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  20. DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea; Dwek, Eli; Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tchernyshyov, Kirill; Meixner, Margaret [Department of Physics and Astronomy, The Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Gall, Christa [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Roman-Duval, Julia, E-mail: tea.temim@nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-01

    The dust budget in galaxies depends on the rate at which dust grains are created in different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper, we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetimes and destruction efficiencies of silicate and carbon dust. We find dust lifetimes of 22 ± 13 Myr (30 ± 17 Myr) for silicate (carbon) grains in the LMC, and 54 ± 32 Myr (72 ± 43 Myr) for silicate (carbon) grains in the SMC. The corresponding dust destruction rates are 2.3 × 10{sup –2} M {sub ☉} yr{sup –1} (5.9 × 10{sup –3} M {sub ☉} yr{sup –1}) and 3.0 × 10{sup –3} M {sub ☉} yr{sup –1} (5.6 × 10{sup –4} M {sub ☉} yr{sup –1}) for silicate (carbon) grains in the LMC and SMC, respectively. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass and preferentially higher dust-to-gas (D2G) mass ratios in the vicinity of the SNRs. We find that the maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae are an order of magnitude lower than the dust destruction rates by the SNRs, suggesting that most of the dust may be reconstituted in dense molecular clouds. We also discuss the dependence of the dust destruction rate on the local D2G mass ratio, ambient gas density, and metallicity, as well as the application of our results to other galaxies and dust evolution models.

  1. A New 3D Map of Milky Way Dust

    Science.gov (United States)

    Green, Gregory Maurice; Schlafly, Edward; Finkbeiner, Douglas

    2018-01-01

    Interstellar dust is an important foreground for observations across a wide range of wavelengths. Dust grains scatter and absorb UV, optical and near-infrared light. These processes heat dust grains, causing them to radiate in the far-infrared. As a tracer of mass in the interstellar medium, dust correlates strongly with diffuse gamma-ray emission generated by cosmic-ray pion production. Thus, while dust makes up just 1% of the mass of the interstellar medium, it plays an outsize role in our efforts to address questions as diverse as the chemical evolution of the Milky Way galaxy and the existence of primordial B-mode polarizations in the CMB.We present a new 3D map of Milky Way dust, covering three-quarters of the sky (δ > -30°). The map is based on high-quality photometry of more than 800 million stars observed by Pan-STARRS 1, with matched photometry from 2MASS for approximately 200 million stars. We infer the distribution of dust vs. distance along sightlines with a typical angular scale of 6'. Out of the midplane of the Galaxy, our map agrees well with 2D maps based on far-infrared dust emission. After accounting for a 15% difference in scale, we find a mean scatter of approximately 10% between our map and the Planck 2D dust map, out to a depth of 0.8 mag in E(r-z). Our map can be downloaded at http://argonaut.skymaps.info.In order to extend our map, we have surveyed the southern Galactic plane with DECam, which is mounted on the 4m Blanco telescope on Cerro Tololo. The resulting survey, the Dark Energy Camera Plane Survey (DECaPS), is now publicly available. See Edward Schlafly's poster for more information on DECaPS.

  2. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  3. A RESOLVED MAP OF THE INFRARED EXCESS IN A LYMAN BREAK GALAXY AT z = 3

    Energy Technology Data Exchange (ETDEWEB)

    Koprowski, M. P.; Coppin, K. E. K.; Geach, J. E.; Hine, N. K.; Smith, D. J. B.; Violino, G. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Bremer, M. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2 (Canada); Davies, L. J. M. [ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Hayashino, T. [Research Center for Neutrino Science, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Knudsen, K. K. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Kubo, M.; Matsuda, Y. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Lehmer, B. D. [Department of Physics, University of Arkansas, 226 Physics Building, 835 West Dickson Street, Fayetteville, AR 72701 (United States); Van der Werf, P. P. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Yamada, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, 252-5210 Sagamihara, Kanagawa 252-5210 (Japan)

    2016-09-10

    We have observed the dust continuum of 10 z = 3.1 Lyman break galaxies with the Atacama Large Millimeter/submillimeter Array at ∼450 mas resolution in Band 7. We detect and resolve the 870 μ m emission in one of the targets with a flux density of S {sub 870} = 192 ± 57 μ Jy, and measure a stacked 3 σ signal of S {sub 870} = 67 ± 23 μ Jy for the remaining nine. The total infrared luminosities are L {sub 8–1000} = (8.4 ± 2.3) × 10{sup 10} L {sub ⊙} for the detection and L {sub 8–1000} = (2.9 ± 0.9) × 10{sup 10} L {sub ⊙} for the stack. With Hubble Space Telescope Advanced Camera for Surveys I -band imaging we map the rest-frame UV emission on the same scale as the dust, effectively resolving the “infrared excess” (IRX = L {sub FIR}/ L {sub UV}) in a normal galaxy at z = 3. Integrated over the galaxy we measure IRX = 0.56 ± 0.15, and the galaxy-averaged UV slope is β = −1.25 ± 0.03. This puts the galaxy a factor of ∼10 below the IRX– β relation for local starburst nuclei of Meurer et al. However, IRX varies by more than a factor of 3 across the galaxy, and we conclude that the complex relative morphology of the dust relative to UV emission is largely responsible for the scatter in the IRX– β relation at high- z . A naive application of a Meurer-like dust correction based on the UV slope would dramatically overestimate the total star formation rate, and our results support growing evidence that when integrated over the galaxy, the typical conditions in high- z star-forming galaxies are not analogous to those in the local starburst nuclei used to establish the Meurer relation.

  4. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  5. Dust scattering and the radiation pressure force in the M82 superwind

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul, E-mail: coker@astronomy.ohio-state.edu, E-mail: thompson@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy and Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2013-11-20

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L {sub *,UV}) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L {sub *,UV} ≈ (1-6) × 10{sup 42} erg s{sup –1}, ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L {sub *,UV} implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  6. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    Science.gov (United States)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  7. The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study

    OpenAIRE

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, Finn Erland; Craig, W. W.; Forster, K.; Hailey, C. J.; Harrison, F.; Koss, M.

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM–Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column dens...

  8. Planck intermediate results XXV. The Andromeda galaxy as seen by Planck

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2015-01-01

    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spir...

  9. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46

    Science.gov (United States)

    Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.

    2018-04-01

    We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

  10. Quasars, companion galaxies and Poisson statistics

    International Nuclear Information System (INIS)

    Webster, A.

    1982-01-01

    Arp has presented a sample of quasars lying close to the companion galaxies of bright spirals, from which he estimates a value of 10 -17 for the probability that the galaxies and quasars are sited independently on the celestial sphere; Browne, however, has found a simple fallacy in the statistics which accounts for about 10 of the 17 orders of magnitude. Here we draw attention to an obscure part of Arp's calculation which we have been unable to repeat; if it is carried out in what seems to be the most straightforward way, about five more orders may be accounted for. In consequence, it is not clear that the sample contains any evidence damaging to the popular notion that the redshifts of quasars indicate distance through the Hubble Law. (author)

  11. A mid- to far-infrared variability study of the intermediate Seyfert galaxy, Mk 6

    International Nuclear Information System (INIS)

    Clement, R.; Sembay, S.; Coe, M.J.; Hanson, C.G.

    1988-01-01

    A mid- to far-infrared (MFIR) variability study of the intermediate Seyfert galaxy, Mk 6, is presented using data from the Infrared Astronomical Satellite (IRAS). We have analysed 25 observations of this source covering a period of about 1 month. Within the expected errors, the source shows no evidence for variability and this may be an indication that there is a strong contribution to the MFIR emission from thermal re-radiation by dust. This interpretation is consistent with previous studies which suggest that the bulk of the far-infrared (30 -100 μm) emission in Seyfert galaxies originates from cool (35 - 75 K) dust associated with star formation regions in the surrounding envelope of the active nucleus. The lack of variability at 12 and 25 μm can also be readily explained by dust emission. However, in this case, the dust temperatures required to produce emission at these wavelengths makes the narrow-line region a more feasible location for the dust grains. (author)

  12. SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Benjamin; Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-05-10

    We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2} density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.

  13. GAMA/G10-COSMOS/3D-HST: the 0 history, stellar-mass, and dust-mass densities

    Science.gov (United States)

    Driver, Simon P.; Andrews, Stephen K.; da Cunha, Elisabete; Davies, Luke J.; Lagos, Claudia; Robotham, Aaron S. G.; Vinsen, Kevin; Wright, Angus H.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Bourne, Nathan; Brough, Sarah; Bremer, Malcolm N.; Cluver, Michelle; Colless, Matthew; Conselice, Christopher J.; Dunne, Loretta; Eales, Steve A.; Gomez, Haley; Holwerda, Benne; Hopkins, Andrew M.; Kafle, Prajwal R.; Kelvin, Lee S.; Loveday, Jon; Liske, Jochen; Maddox, Steve J.; Phillipps, Steven; Pimbblet, Kevin; Rowlands, Kate; Sansom, Anne E.; Taylor, Edward; Wang, Lingyu; Wilkins, Stephen M.

    2018-04-01

    We use the energy-balance code MAGPHYS to determine stellar and dust masses, and dust corrected star formation rates for over 200 000 GAMA galaxies, 170 000 G10-COSMOS galaxies, and 200 000 3D-HST galaxies. Our values agree well with previously reported measurements and constitute a representative and homogeneous data set spanning a broad range in stellar-mass (108-1012 M⊙), dust-mass (106-109 M⊙), and star formation rates (0.01-100 M⊙yr-1), and over a broad redshift range (0.0 history (CSFH), the stellar-mass density (SMD), and the dust-mass density (DMD) over a 12 Gyr timeline. The data mostly agree with previous estimates, where they exist, and provide a quasi-homogeneous data set using consistent mass and star formation estimators with consistent underlying assumptions over the full time range. As a consequence our formal errors are significantly reduced when compared to the historic literature. Integrating our CSFH we precisely reproduce the SMD with an interstellar medium replenishment factor of 0.50 ± 0.07, consistent with our choice of Chabrier initial mass function plus some modest amount of stripped stellar mass. Exploring the cosmic dust density evolution, we find a gradual increase in dust density with lookback time. We build a simple phenomenological model from the CSFH to account for the dust-mass evolution, and infer two key conclusions: (1) For every unit of stellar mass which is formed 0.0065-0.004 units of dust mass is also formed. (2) Over the history of the Universe approximately 90-95 per cent of all dust formed has been destroyed and/or ejected.

  14. Anisotropic extinction distortion of the galaxy correlation function

    International Nuclear Information System (INIS)

    Fang Wenjuan; Hui Lam; Menard, Brice; May, Morgan; Scranton, Ryan

    2011-01-01

    Similar to the magnification of the galaxies' fluxes by gravitational lensing, the extinction of the fluxes by comic dust, whose existence is recently detected by [B. Menard, R. Scranton, M. Fukugita, and G. Richards, Mon. Not. R. Astron. Soc. 405, 1025 (2010).], also modifies the distribution of a flux-selected galaxy sample. We study the anisotropic distortion by dust extinction to the 3D galaxy correlation function, including magnification bias and redshift distortion at the same time. We find the extinction distortion is most significant along the line of sight and at large separations, similar to that by magnification bias. The correction from dust extinction is negative except at sufficiently large transverse separations, which is almost always opposite to that from magnification bias (we consider a number count slope s>0.4). Hence, the distortions from these two effects tend to reduce each other. At low z (< or approx. 1), the distortion by extinction is stronger than that by magnification bias, but at high z, the reverse holds. We also study how dust extinction affects probes in real space of the baryon acoustic oscillations (BAO) and the linear redshift distortion parameter β. We find its effect on BAO is negligible. However, it introduces a positive scale-dependent correction to β that can be as large as a few percent. At the same time, we also find a negative scale-dependent correction from magnification bias, which is up to percent level at low z, but to ∼40% at high z. These corrections are non-negligible for precision cosmology, and should be considered when testing General Relativity through the scale-dependence of β.

  15. Modelling the IRAS colors of galaxies

    International Nuclear Information System (INIS)

    Helou, G.

    1987-01-01

    A physical interpretation is proposed for the color-color diagram of galaxies which are powered only by star formation. The colors of each galaxy result from the combination of two components: cirrus-like emission from the neutral disk, and warmer emission from regions directly involved in on-going star formation. This approach to modelling the emission is based on dust properties, but independent evidence for it is found in the relation between the color sequence and the luminosity sequence. Implications of data and interpretations are discussed and possible tests mentioned for the model

  16. The nature of interstellar dust as revealed by light scattering

    Directory of Open Access Journals (Sweden)

    D. A. Williams

    2011-09-01

    Full Text Available Interstellar dust was first identified through the extinction that it causes of optical starlight. Initially, observational and theoretical studies of extinction were made to identify simple ways of removing the effect of extinction. Over the last few decades it has become clear that dust has a number of very important roles in interstellar physics and chemistry, and that through these roles dust affects quite fundamentally the evolution of the Milky Way and other galaxies. However, our detailed knowledge of the actual material of dust remains relatively poor. The use of accurate models for the interaction of electromagnetic radiation with particles of arbitrary shape and composition remains vital, if our description of dust is to improve.

  17. Panchromatic SED modelling of spatially resolved galaxies

    Science.gov (United States)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  18. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Schawinski, Kevin; Urry, C. Megan; Bonning, Erin W. [Department of Physics, Yale University, New Haven, CT 06511 (United States); Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Oh, Kyuseok [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Cardamone, Carolin N. [Harriet W. Sheridan Center for Teaching and Learning, Brown University, P.O. Box 1912, Providence, RI 02912 (United States); Keel, William C. [Department of Physics and Astronomy, 206 Gallalee Hall, 514 University Boulevard, University of Alabama, Tuscaloosa, AL 35487-034 (United States); Simmons, Brooke D. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Treister, Ezequiel, E-mail: stacy.h.teng@nasa.gov [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  19. Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies

    Science.gov (United States)

    Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Overzier, Roderik A.; Hornschemeier, Ann; LaMassa, Stephanie M.

    2011-01-01

    We have used XMM-Newton to observe six Lyman break analogs (LBAs): members of the rare population of local galaxies that have properties that are very similar to distant Lyman break galaxies. Our six targets were specifically selected because they have optical emission-line properties that are intermediate between starbursts and Type 2 (obscured) active galactic nuclei (AGNs). Our new X-ray data provide an important diagnostic of the presence of an AGN. We find X-ray luminosities of order 10(sup 42) erg per second and ratios of X-ray to far-IR lummositles that are higher than values in pure starburst galaxies by factors ranging from approximately 3 to 30. This strongly suggests the presence of an AGN in at least some of the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O III] emission line are low by about an order of magnitude compared with Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN. Either the AGN hard X-rays are significantly obscured or the [O III] emission is dominated by the starburst. We searched for an iron emission line at approximately 6.4 ke V, which is a key feature of obscured AGNs, but only detected emission at the approximately 2sigma level. Finally, we find that the ratios of the mid-infrared (24 micrometer) continuum to [O III]lambda 5007 luminosities in these LBAs are higher than the values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we conclude that an AGN is likely to be present, but that the bolometric luminosity is produced primarily by an intense starburst. If these black holes are radiating at the Eddington limit, their masses would lie in the range of 10(sup 5) - 10(sup 6) solar mass. These objects may offer ideal local laboratories to investigate the processes by which black holes grew in the early universe.

  20. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4

    International Nuclear Information System (INIS)

    Finkelstein, Steven L.; Papovich, Casey; Salmon, Brett; Bassett, Robert; Finlator, Kristian; Dickinson, Mark; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Giavalisco, Mauro; Reddy, Naveen A.; Mobasher, Bahram; Conselice, Christopher J.; Dunlop, James S.; McLure, Ross J.; Faber, S. M.; Kocevski, Dale D.; Lai, Kamson; Hathi, Nimish P.; Lee, Kyoung-Soo

    2012-01-01

    We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 ∼ 3.5, including 113 at z ≅ 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slope (β) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on β than other methods, as well as a reduced number of galaxies with catastrophically incorrect β measurements (i.e., Δβ > 1). We find that the median value of β evolves significantly from –1.82 +0.00 –0.04 at z = 4 to –2.37 +0.26 –0.06 at z = 7. Additionally, we find that faint galaxies at z = 7 have β –2.68 +0.39 –0.24 (∼ –2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require 'exotic' stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z = 7 to A V ∼ 0.5 mag at z = 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant ( UV when measuring M UV at a consistent rest-frame wavelength of 1500 Å. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between β and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have similarly red colors at each redshift, implying that dust can build up quickly in massive galaxies and that feedback is likely removing dust from low-mass galaxies at z ≥ 7. Thus, the stellar-mass—metallicity relation, previously observed up

  1. The CALYMHA survey: Lyα escape fraction and its dependence on galaxy properties at z = 2.23

    Science.gov (United States)

    Matthee, Jorryt; Sobral, David; Oteo, Iván; Best, Philip; Smail, Ian; Röttgering, Huub; Paulino-Afonso, Ana

    2016-05-01

    We present the first results from our CAlibrating LYMan α with Hα (CALYMHA) pilot survey at the Isaac Newton Telescope. We measure Lyα emission for 488 Hα selected galaxies at z = 2.23 from High-z Emission Line Survey in the COSMOS and UDS fields with a specially designed narrow-band filter (λc = 3918 Å, Δλ = 52 Å). We find 17 dual Hα-Lyα emitters [fLyα > 5 × 10-17 erg s-1 cm-2, of which five are X-ray active galactic nuclei (AGN)]. For star-forming galaxies, we find a range of Lyα escape fractions (fesc, measured with 3 arcsec apertures) from 2 to 30 per cent. These galaxies have masses from 3 × 108 M⊙ to 1011 M⊙ and dust attenuations E(B - V) = 0-0.5. Using stacking, we measure a median escape fraction of 1.6 ± 0.5 per cent (4.0 ± 1.0 per cent without correcting Hα for dust), but show that this depends on galaxy properties. The stacked fesc tends to decrease with increasing star formation rate and dust attenuation. However, at the highest masses and dust attenuations, we detect individual galaxies with fesc much higher than the typical values from stacking, indicating significant scatter in the values of fesc. Relations between fesc and UV slope are bimodal, with high fesc for either the bluest or reddest galaxies. We speculate that this bimodality and large scatter in the values of fesc is due to additional physical mechanisms such as outflows facilitating fesc for dusty/massive systems. Lyα is significantly more extended than Hα and the UV. fesc continues to increase up to at least 20 kpc (3σ, 40 kpc [2σ]) for typical star-forming galaxies and thus the aperture is the most important predictor of fesc.

  2. H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, Cameron; Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Mitchell-Wynne, K. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Amblard, A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Auld, R.; Eales, S.; Pascale, E. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Baes, M.; Michalowski, M. J. [Sterrenkundig Observatorium, Universiteit Gent, KrijgslAAn 281 S9, B-9000 Gent (Belgium); Clements, D. L.; Dariush, A.; Hopwood, R. [Physics Department, Imperial College London, South Kensington campus, London, SW7 2AZ (United Kingdom); De Zotti, G. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Maddox, S. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Hoyos, C. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Ibar, E. [UK Astronomy Technology Centre, The Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Jarvis, M. [Astrophysics, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom); and others

    2013-05-01

    We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey at 250, 350, and 500 {mu}m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcmin to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 {mu}m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between {Omega}{sub dust} = 10{sup -6} and 8 Multiplication-Sign 10{sup -6} in the redshift range z {approx} 0-3. This dust abundance is consistent with estimates of the dust content in the universe using quasar reddening and magnification measurements in the Sloan Digital Sky Survey.

  3. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  4. The opacity of spiral galaxy disks. VIII. Structure of the cold ISM

    NARCIS (Netherlands)

    Holwerda, B. W.; Draine, B.; Gordon, K. D.; Gonzalez, R. A.; Calzetti, D.; Thornley, M.; Buckalew, B.; Allen, Ronald J.; van der Kruit, P. C.

    2007-01-01

    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper we compare two techniques, one based on emission and one on absorption, applied to sections of 14 disk galaxies. The two measurements reflect, respectively, the

  5. Evolution of Hot Gas in Elliptical Galaxies

    Science.gov (United States)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  6. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    International Nuclear Information System (INIS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-01-01

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 ∼> z ∼> 0.3) and luminosities, finding an average accuracy in (1 + z phot )/(1 + z spec ) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux ∼> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR ∼> 10 12 L ☉ ), and 3% of the total SFRD at z ∼ 2

  7. Clustering of very luminous infrared galaxies and their environment

    Science.gov (United States)

    Gao, YU

    1993-01-01

    The IRAS survey reveals a class of ultraluminous infrared (IR) galaxies (ULIRG's) with IR luminosities comparable to the bolometric luminosities of quasars. The nature, origin, and evolution of ULIRG's are attracting more and more attention recently. Since galaxy morphology is certainly a function of environment, morphological observations show that ULIRG's are interacting/merging galaxies, and some ULIRG's might be the dust-enshrouded quasars (S88) or giant ellipticals, the study of ULIRG's environment and large scale clustering effects should be worthwhile. ULIRG's and very luminous IR galaxies have been selected from the 2Jy IRAS redshift survey. Meanwhile, a catalog of IRAS groups of galaxies has been constructed using a percolation-like algorithm. Therefore, whether ULIRG's and/or VLIRG's have a group environment can be checked immediately. Other aspects of the survey are discussed.

  8. CO Spectral Line Energy Distributions of Infrared-Luminous Galaxies and Active Galactic Nuclei

    Science.gov (United States)

    Papadopoulos, Padeli P.; van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR(8-1000 μm) >~ 1011 L sun), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR>1012 L sun), and two powerful local active galactic nuclei (AGNs)—the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293—using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C+ line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  9. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-01-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR (8-1000 μm) ∼> 10 11 L sun ), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR >10 12 L sun ), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C + line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  10. Learning From Nature: Biomimetic Polarimetry for Imaging in Obscuring Environments

    Energy Technology Data Exchange (ETDEWEB)

    VanderLaan, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kemme, Shanalyn A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index systematically, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement in circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  11. Optical and theoretical studies of giant clouds in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1980-01-01

    An optical study of four spiral galaxies, combined with radiative transfer models for transmitted and scattered light, has led to a determination of the opacities and masses of numerous dark patches and dust lanes that outline spiral structure. The observed compression factors for the spiral-like dust lanes are in accord with expectations from the theory of gas flow in spiral density waves. Several low density (10 2 cm -3 ) clouds containing 10 6 to 10 7 solar masses were also studied. These results are discussed in terms of recent theoretical models of cloud and star formation in spiral galaxies. The long-term evolution of giant molecular clouds is shown to have important consequences for the positions and ages of star formation sites in spiral arms. (Auth.)

  12. SPITZER ANALYSIS OF H II REGION COMPLEXES IN THE MAGELLANIC CLOUDS: DETERMINING A SUITABLE MONOCHROMATIC OBSCURED STAR FORMATION INDICATOR

    International Nuclear Information System (INIS)

    Lawton, B.; Gordon, K. D.; Meixner, M.; Sewilo, M.; Shiao, B.; Babler, B.; Bracker, S.; Meade, M.; Block, M.; Engelbracht, C. W.; Misselt, K.; Bolatto, A. D.; Carlson, L. R.; Hora, J. L.; Robitaille, T.; Indebetouw, R.; Madden, S. C.; Oey, M. S.; Oliveira, J. M.; Vijh, U. P.

    2010-01-01

    H II regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. To study the H II regions, we compute the bolometric infrared flux, or total infrared (TIR), by integrating the flux from 8 to 500 μm. The TIR provides a measure of the obscured star formation because the UV photons from hot young stars are absorbed by dust and re-emitted across the mid-to-far-infrared (IR) spectrum. We aim to determine the monochromatic IR band that most accurately traces the TIR and produces an accurate obscured SFR over large spatial scales. We present the spatial analysis, via aperture/annulus photometry, of 16 Large Magellanic Cloud (LMC) and 16 Small Magellanic Cloud (SMC) H II region complexes using the Spitzer Space Telescope's IRAC (3.6, 4.5, 8 μm) and MIPS (24, 70, 160 μm) bands. Ultraviolet rocket data (1500 and 1900 A) and SHASSA Hα data are also included. All data are convolved to the MIPS 160 μm resolution (40 arcsec full width at half-maximum), and apertures have a minimum radius of 35''. The IRAC, MIPS, UV, and Hα spatial analysis are compared with the spatial analysis of the TIR. We find that nearly all of the LMC and SMC H II region spectral energy distributions (SEDs) peak around 70 μm at all radii, from ∼10 to ∼400 pc from the central ionizing sources. As a result, we find the following: the sizes of H II regions as probed by 70 μm are approximately equal to the sizes as probed by TIR (∼70 pc in radius); the radial profile of the 70 μm flux, normalized by TIR, is constant at all radii (70 μm ∼ 0.45TIR); the 1σ standard deviation of the 70 μm fluxes, normalized by TIR, is a lower fraction of the mean (0.05-0.12 out to ∼220 pc) than the normalized 8, 24, and 160 μm normalized fluxes (0.12-0.52); and these results are the same for the LMC and the

  13. GALAXY EVOLUTION AT HIGH REDSHIFT: OBSCURED STAR FORMATION, GRB RATES, COSMIC REIONIZATION, AND MISSING SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy)

    2017-01-20

    We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST / Herschel , and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit M {sub UV} ≲ −13 (or SFR limit around 10{sup −2} M {sub ⊙} yr{sup −1}) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z {sub ⊙}/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τ {sub es} ≈ 0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f {sub esc} ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 10{sup 8} M {sub ⊙}; pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of M {sub UV} ≲ −12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST , will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

  14. Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission

    Science.gov (United States)

    Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.

    2018-01-01

    Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.

  15. Measures of star formation rates from infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields

    Science.gov (United States)

    Buat, V.; Giovannoli, E.; Burgarella, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.; Eales, S.; Elbaz, D.; Fox, M.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, M.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Isaak, K.; Ivison, R. J.; Lagache, G.; Levenson, L.; Lonsdale, C. J.; Lu, N.; Madden, S.; Maffei, B.; Magdis, G.; Mainetti, G.; Marchetti, L.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Owen, F. N.; Page, M. J.; Pannella, M.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sánchez Portal, M.; Schulz, B.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Stevens, J. A.; Strazzullo, V.; Symeonidis, M.; Trichas, M.; Tugwell, K. E.; Vaccari, M.; Valiante, E.; Valtchanov, I.; Vigroux, L.; Wang, L.; Ward, R.; Wright, G.; Xu, C. K.; Zemcov, M.

    2010-11-01

    The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-μm samples of sources at redshift z 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of mag is measured in the samples. LIR/LUV is found to correlate with LIR. Galaxies with and 0.5 recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with (or ). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR.

  16. Solar Array Panels With Dust-Removal Capability

    Science.gov (United States)

    Dawson, Stephen; Mardesich, Nick; Spence, Brian; White, Steve

    2004-01-01

    It has been proposed to incorporate piezoelectric vibrational actuators into the structural supports of solar photovoltaic panels, for the purpose of occasionally inducing vibrations in the panels in order to loosen accumulated dust. Provided that the panels were tilted, the loosened dust would slide off under its own weight. Originally aimed at preventing obscuration of photovoltaic cells by dust accumulating in the Martian environment, the proposal may also offer an option for the design of solar photovoltaic panels for unattended operation at remote locations on Earth. The figure depicts a typical lightweight solar photovoltaic panel comprising a backside grid of structural spars that support a thin face sheet that, in turn, supports an array of photovoltaic cells on the front side. The backside structure includes node points where several spars intersect. According to the proposal, piezoelectric buzzers would be attached to the node points. The process of designing the panel would be an iterative one that would include computational simulation of the vibrations by use of finite- element analysis to guide the selection of the vibrational frequency of the actuators and the cross sections of the spars to maximize the agitation of dust.

  17. ISM Parameters in the Normal Galaxy NGC 5713

    Science.gov (United States)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; hide

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  18. Featured Image: Extinction in Our Inner Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    In this map of the innermost galaxy, which spans only a few square degrees at the Milky Ways center, we can seethe locations of more than 31 million objects obtained from the VISTA Variables in the Va Lctea (VVV) survey. This near-infrared atlas traces stellar populations in the inner Milky Way that are dimmed and reddened by interstellar dust and gas a process known as extinction in a predictable way. Led by Javier Alonso-Garca (University of Antofagasta and the Millennium Institute of Astrophysics in Chile), a team of scientists has now used the VVV measurements of these stars to better understand the distribution of gas and dust that causes extinction in our inner galaxy particularly in the most central, highly reddened, and crowded areas of the Milky Way. For more information, check out the paper below.CitationJavier Alonso-Garca et al 2017 ApJL 849 L13. doi:10.3847/2041-8213/aa92c3

  19. The opacity of spiral galaxy disks. IV. Radial extinction profiles from counts of distant galaxies seen through foreground disks

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; Allen, RJ; van der Kruit, PC

    Dust extinction can be determined from the number of distant field galaxies seen through a spiral disk. To calibrate this number for the crowding and confusion introduced by the foreground image, Gonzalez et al. and Holwerda et al. developed the Synthetic Field Method (SFM), which analyzes synthetic

  20. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    Science.gov (United States)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  1. COLDz: KARL G. JANSKY VERY LARGE ARRAY DISCOVERY OF A GAS-RICH GALAXY IN COSMOS

    Energy Technology Data Exchange (ETDEWEB)

    Lentati, L. [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Wagg, J. [Square Kilometre Array Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Carilli, C. L. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Riechers, D.; Sharon, C. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Capak, P.; Scoville, N. [California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Walter, F.; Da Cunha, E.; Decarli, R. [Max-Planck Institute for Astronomy, D-69117 Heidelberg (Germany); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Hodge, J. A. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild Strasse, D-85748 Garching bei Munchen (Germany); Smail, I. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sargent, M. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Smolčć, V., E-mail: ltl21@mrao.cam.ac.uk [University of Zagreb, Bijenicka cesta 32, HR-10002 Zagreb (Croatia)

    2015-02-10

    The broad spectral bandwidth at millimeter and centimeter wavelengths provided by the recent upgrades to the Karl G. Jansky Very Large Array (VLA) has made it possible to conduct unbiased searches for molecular CO line emission at redshifts, z > 1.31. We present the discovery of a gas-rich, star-forming galaxy at z = 2.48 through the detection of CO J = 1-0 line emission in the COLDz survey and through a sensitive, Ka-band (31-39 GHz) VLA survey of a 6.5 arcmin{sup 2} region of the COSMOS field. We argue that the broad line (FWHM ∼ 570 ± 80 km s{sup –1}) is most likely to be CO J = 1-0 at z = 2.48, as the integrated emission is spatially coincident with an infrared-detected galaxy with a photometric redshift estimate of z {sub phot} = 3.2 ± 0.4. The CO J = 1-0 line luminosity is L{sub CO}{sup ′}=(2.2±0.3)×10{sup 10} K km s{sup –1} pc{sup 2}, suggesting a cold molecular gas mass of M {sub gas} ∼ (2-8) × 10{sup 10} M {sub ☉} depending on the assumed value of the molecular gas mass to CO luminosity ratio α{sub CO}. The estimated infrared luminosity from the (rest-frame) far-infrared spectral energy distribution (SED) is L {sub IR} = 2.5 × 10{sup 12} L {sub ☉} and the star formation rate is ∼250 M {sub ☉} yr{sup –1}, with the SED shape indicating substantial dust obscuration of the stellar light. The infrared to CO line luminosity ratio is ∼114 ± 19 L {sub ☉}/(K km s{sup –1} pc{sup 2}), similar to galaxies with similar SFRs selected at UV/optical to radio wavelengths. This discovery confirms the potential for molecular emission line surveys as a route to study populations of gas-rich galaxies in the future.

  2. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  3. THE DUST PROPERTIES OF z ∼ 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS

    International Nuclear Information System (INIS)

    Fan, X. L.; Pipino, A.; Matteucci, F.

    2013-01-01

    The stacked spectral energy distribution (SED) 24 μm Lyman break galaxies (MIPS-LBGs) detected by the Multiband Imaging Photometer for Spitzer (MIPS) is fitted by means of the spectrophotometric model GRASIL with an ''educated'' fitting approach which benefits from the results of chemical evolution models. The star formation rate-age-metallicity degeneracies of SED modeling are broken by using star formation history (SFH) and chemical enrichment history suggested by chemical models. The dust mass, dust abundance, and chemical pattern of elements locked in the dust component are also directly provided by chemical models. Using our new ''fitting'' approach, we derive the total mass M tot , stellar mass M * , gas mass M g , dust mass M d , age, and star formation rate (SFR) of the stacked MIPS-LBG in a self-consistent way. Our estimate of M * = 8 × 10 10 of the stacked MIPS-LBG agrees with other works based on UV-optical SED fitting. We suggest that the MIPS-LBGs at z ∼ 3 are young (0.3-0.6 Gyr), massive (M tot ∼ 10 11 M ☉ ), dusty (M d ∼ 10 8 M ☉ ), and metal-rich (Z ∼ Z ☉ ) progenitors of elliptical galaxies undergoing a strong burst of star formation (SFR ∼ 200 M ☉ yr –1 ). Our estimate of M d = 7 × 10 7 M ☉ of the stacked MIPS-LBG is about a factor of eight lower than the estimated value based on single temperature graybody fitting, suggesting that self-consistent SED models are needed to estimate dust mass. By comparing with Milky Way molecular cloud and dust properties, we suggest that denser and dustier environments and flatter dust size distribution are likely in high-redshift massive star-forming galaxies. These dust properties, as well as the different types of SFHs, can cause different SED shapes between high-redshift star-forming ellipticals and local starburst templates. This discrepancy of SED shapes could in turn explain the non-detection at submillimeter wavelengths of IR luminous (L IR ⪰10 12 L ☉ ) MIPS-LBGs.

  4. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    Science.gov (United States)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  5. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  6. THE RELATION BETWEEN MID-PLANE PRESSURE AND MOLECULAR HYDROGEN IN GALAXIES: ENVIRONMENTAL DEPENDENCE

    International Nuclear Information System (INIS)

    Feldmann, Robert; Hernandez, Jose; Gnedin, Nickolay Y.

    2012-01-01

    Molecular hydrogen (H 2 ) is the primary component of the reservoirs of cold, dense gas that fuel star formation in our Galaxy. While the H 2 abundance is ultimately regulated by physical processes operating on small scales in the interstellar medium (ISM), observations have revealed a tight correlation between the ratio of molecular to atomic hydrogen in nearby spiral galaxies and the pressure in the mid-plane of their disks. This empirical relation has been used to predict H 2 abundances in galaxies with potentially very different ISM conditions, such as metal-deficient galaxies at high redshifts. Here, we test the validity of this approach by studying the dependence of the pressure-H 2 relation on environmental parameters of the ISM. To this end, we follow the formation and destruction of H 2 explicitly in a suite of hydrodynamical simulations of galaxies with different ISM parameters. We find that a pressure-H 2 relation arises naturally in our simulations for a variety of dust-to-gas ratios or strengths of the interstellar radiation field in the ISM. Fixing the dust-to-gas ratio and the UV radiation field to values measured in the solar neighborhood results in fair agreement with the relation observed in nearby galaxies with roughly solar metallicity. However, the parameters (slope and normalization) of the pressure-H 2 relation vary in a systematical way with ISM properties. A particularly strong trend is the decrease of the normalization of the relation with a lowering of the dust-to-gas ratio of the ISM. We show how this trend and other properties of the pressure-H 2 relation arise from the atomic-to-molecular phase transition in the ISM caused by a combination of H 2 formation, destruction, and shielding mechanisms.

  7. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, D.; Sugiyama, N. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Kajisawa, M. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Koekemoer, A. M., E-mail: daichi@nagoya-u.jp [HST and JWST Instruments/Science Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-11-01

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.

  8. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    International Nuclear Information System (INIS)

    Rujopakarn, W.; Silverman, J. D.; Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J.; Rieke, G. H.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Bhatnagar, S.; Alexander, D. M.; Biggs, A. D.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.

    2016-01-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr −1 kpc −2 , sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M ⊙ yr −1 ) above which a significant population of more compact SFGs appears to emerge.

  9. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS

    International Nuclear Information System (INIS)

    Conroy, Charlie; Gunn, James E.; White, Martin

    2010-01-01

    Models for the formation and evolution of galaxies readily predict physical properties such as star formation rates, metal-enrichment histories, and, increasingly, gas and dust content of synthetic galaxies. Such predictions are frequently compared to the spectral energy distributions of observed galaxies via the stellar population synthesis (SPS) technique. Substantial uncertainties in SPS exist, and yet their relevance to the task of comparing galaxy evolution models to observations has received little attention. In the present work, we begin to address this issue by investigating the importance of uncertainties in stellar evolution, the initial stellar mass function (IMF), and dust and interstellar medium (ISM) properties on the translation from models to observations. We demonstrate that these uncertainties translate into substantial uncertainties in the ultraviolet, optical, and near-infrared colors of synthetic galaxies. Aspects that carry significant uncertainties include the logarithmic slope of the IMF above 1 M sun , dust attenuation law, molecular cloud disruption timescale, clumpiness of the ISM, fraction of unobscured starlight, and treatment of advanced stages of stellar evolution including blue stragglers, the horizontal branch, and the thermally pulsating asymptotic giant branch. The interpretation of the resulting uncertainties in the derived colors is highly non-trivial because many of the uncertainties are likely systematic, and possibly correlated with the physical properties of galaxies. We therefore urge caution when comparing models to observations.

  10. The Very Red Afterglow of GRB 000418: Further Evidence for Dust Extinction in a Gamma-Ray Burst Host Galaxy

    Science.gov (United States)

    Klose, S.; Stecklum, B.; Masetti, N.; Pian, E.; Palazzi, E.; Henden, A. A.; Hartmann, D. H.; Fischer, O.; Gorosabel, J.; Sánchez-Fernández, C.; Butler, D.; Ott, Th.; Hippler, S.; Kasper, M.; Weiss, R.; Castro-Tirado, A.; Greiner, J.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Benetti, S.; Ghinassi, F.; Magazzú, A.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Goldsten, J.; Gold, R.; Mazets, E.; Golenetskii, S.; Noeske, K.; Papaderos, P.; Vreeswijk, P. M.; Tanvir, N.; Oscoz, A.; Muñoz, J. A.; Castro Cerón, J. M.

    2000-12-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy, we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K~4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions. Based on observations collected at the Bologna Astronomical Observatory in Loiano, Italy; at the TNG, Canary Islands, Spain; at the German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; at the US Naval Observatory; and at the UK Infrared Telescope.

  11. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    Science.gov (United States)

    2003-12-01

    Not so long ago, the real nature of the "spiral nebulae", spiral-shaped objects observed in the sky through telescopes, was still unknown. This long-standing issue was finally settled in 1924 when the famous American astronomer Edwin Hubble provided conclusive evidence that they are located outside our own galaxy and are in fact "island universes" of their own. Nowadays, we know that the Milky Way is just one of billions of galaxies in the Universe. They come in vastly different shapes - spiral, elliptical, irregular - and many of them are simply beautiful, especially the spiral ones. Astronomers Mark Neeser from the Universitäts-Sternwarte München (Germany) and Peter Barthel from the Kapteyn Institute in Groningen (The Netherlands) were clearly not insensitive to this when they obtained images of three beautiful spiral galaxies with ESO's Very Large Telescope (VLT). They did this in twilight during the early morning when they had to stop their normal observing programme, searching for very distant and faint quasars. The resulting colour images ( ESO PR Photos 33a-c/03 ) were produced by combining several CCD images in three different wavebands from the FORS multi-mode instruments. The three galaxies are known as NGC 613, NGC 1792 and NGC 3627 . They are characterized by strong far-infrared, as well as radio emission, indicative of substantial ongoing star-formation activity. Indeed, these images all display prominent dust as well as features related to young stars, clear signs of intensive star-formation. NGC 613 ESO PR Photo 33a/03 ESO PR Photo 33a/03 [Preview - JPEG: 470 x 400 pix - 25k] [Normal - JPEG: 939 x 800 pix - 416k] [Full Res - JPEG: 2702 x 2301 pix - 3.4M] PR Photo 33a/03 of the barred spiral galaxy NGC 613 was obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively) on December 16-18, 2001. It is a composite of three exposures in different wavebands, cf. the technical note below. The full-resolution version

  12. Dust around the Cool Component of D-Type Symbiotic Binaries

    Science.gov (United States)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  13. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C.; Rotermund, K. M. [Dalhousie University, Halifax, Nova Scotia (Canada); Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A. [University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H.; Ma, J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); González-López, J. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M., E-mail: jspilker@as.arizona.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  14. Is a top-heavy initial mass function needed to reproduce the submillimetre galaxy number counts?

    Science.gov (United States)

    Safarzadeh, Mohammadtaher; Lu, Yu; Hayward, Christopher C.

    2017-12-01

    Matching the number counts and redshift distribution of submillimetre galaxies (SMGs) without invoking modifications to the initial mass ffunction (IMF) has proved challenging for semi-analytic models (SAMs) of galaxy formation. We adopt a previously developed SAM that is constrained to match the z = 0 galaxy stellar mass function and makes various predictions which agree well with observational constraints; we do not recalibrate the SAM for this work. We implement three prescriptions to predict the submillimetre flux densities of the model galaxies; two depend solely on star formation rate, whereas the other also depends on the dust mass. By comparing the predictions of the models, we find that taking into account the dust mass, which affects the dust temperature and thus influences the far-infrared spectral energy distribution, is crucial for matching the number counts and redshift distribution of SMGs. Moreover, despite using a standard IMF, our model can match the observed SMG number counts and redshift distribution reasonably well, which contradicts the conclusions of some previous studies that a top-heavy IMF, in addition to taking into account the effect of dust mass, is needed to match these observations. Although we have not identified the key ingredient that is responsible for our model matching the observed SMG number counts and redshift distribution without IMF variation - which is challenging given the different prescriptions for physical processes employed in the SAMs of interest - our results demonstrate that in SAMs, IMF variation is degenerate with other physical processes, such as stellar feedback.

  15. Introducing GAMER: A Fast and Accurate Method for Ray-tracing Galaxies Using Procedural Noise

    Science.gov (United States)

    Groeneboom, N. E.; Dahle, H.

    2014-03-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  16. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    International Nuclear Information System (INIS)

    Groeneboom, N. E.; Dahle, H.

    2014-01-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  17. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    Energy Technology Data Exchange (ETDEWEB)

    Groeneboom, N. E.; Dahle, H., E-mail: nicolaag@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2014-03-10

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  18. THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5

    International Nuclear Information System (INIS)

    Brammer, G. B.; Whitaker, K. E.; Van Dokkum, P. G.; Marchesini, D.; Lee, K.-S.; Muzzin, A.; Labbe, I.; Franx, M.; Quadri, R. F.; Kriek, M.; Illingworth, G.; Rudnick, G.

    2009-01-01

    We select 25,000 galaxies from the NEWFIRM Medium Band Survey (NMBS) to study the rest-frame U - V color distribution of galaxies at 0 < z ∼< 2.5. The five unique NIR filters of the NMBS enable the precise measurement of photometric redshifts and rest-frame colors for 9900 galaxies at 1 < z < 2.5. The rest-frame U - V color distribution at all z ∼< 2.5 is bimodal, with a red peak, a blue peak, and a population of galaxies in between (the green valley). Model fits to the optical-NIR spectral energy distributions and the distribution of MIPS-detected galaxies indicate that the colors of galaxies in the green valley are determined largely by the amount of reddening by dust. This result does not support the simplest interpretation of green valley objects as a transition from blue star forming to red quiescent galaxies. We show that correcting the rest-frame colors for dust reddening allows a remarkably clean separation between the red and blue sequences up to z ∼ 2.5. Our study confirms that dusty-starburst galaxies can contribute a significant fraction to red-sequence samples selected on the basis of a single rest-frame color (i.e., U - V), so extra care must be taken if samples of truly 'red and dead' galaxies are desired. Interestingly, of galaxies detected at 24 μm, 14% remain on the red sequence after applying the reddening correction.

  19. The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    Science.gov (United States)

    Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.

    2017-09-01

    We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.

  20. Obscurity of poetry in Paul Celan

    Directory of Open Access Journals (Sweden)

    Mauricio Mendonça Cardozo

    2012-07-01

    Full Text Available Tensioned between variations of the said and the unsaid, and between figures of light and shadow, Paul Celan's work performs a certain confrontation with the condition of silence and obscurity, breaking all at once with a certain way of making poetry and of relating to reality. In this sense, Celan's work can hardly be reduced to a kind of hermeticism, a category too vague to account for its singularity. In his work saying and silencing together articulate the tension that creates the poetic space in which the poem is inscribed. The poet himself tried to refuse the insistence of some critics on labeling his work as obscure. Despite of its fragmentary nature, the recently published manuscripts of his speech project Von der Dunkelheit des Dichterischen constitutes one of Celan’s most extensive discussions of the matter of obscurity in poetry. This paper aims at presenting the fragments of his speech project and pointing out its importance to the discussion of the notion of obscurity in Paul Celan's work.

  1. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  2. E+A galaxies in the SDSS. Stellar population and morphology

    Science.gov (United States)

    Leiva, R.; Galaz, G.

    2014-10-01

    Galaxies with E+A spectrum have deep Balmer absorption and no H_{α} and [OII] emission. This suggest recent star formation and the lack of ongoing star formation. With an E+A sample from the SDSS DR 7 (Aihara et al. 2011) we study the morphology with Galaxy Zoo 1 data and the star formation history fitting models from Bruzual & Charlot (2003). We found an underpopulation of spiral and disk like galaxies and an overpopulation of interacting galaxies, the last seems consistent with the scenario where, at low z, the interaction mechanism is responsible for at least part of the E+A galaxies. The star formation history (SFH) fits most of the spectra indicating an increased star formation around 2 Gyr in the past. Additional parameters like dust internal extinction need to be included to improve the fitting.

  3. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven L. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Papovich, Casey; Salmon, Brett; Bassett, Robert [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Finlator, Kristian [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Reddy, Naveen A.; Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Conselice, Christopher J. [School of Physics and Astronomy, University of Nottingham, Nottingham (United Kingdom); Dunlop, James S.; McLure, Ross J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh (United Kingdom); Faber, S. M.; Kocevski, Dale D.; Lai, Kamson [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Hathi, Nimish P. [Carnegie Observatories, Pasadena, CA 91101 (United States); Lee, Kyoung-Soo, E-mail: stevenf@astro.as.utexas.edu [Yale Center for Astronomy and Astrophysics, Departments of Physics and Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2012-09-10

    We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 {approx}< z {approx}< 8. We use new wide-field near-infrared data in the Great Observatories Origins Deep Survey-South field from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble Ultra Deep Field (HUDF) 2009, and Early Release Science programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z {approx}> 3.5, including 113 at z {approx_equal} 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slope ({beta}) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on {beta} than other methods, as well as a reduced number of galaxies with catastrophically incorrect {beta} measurements (i.e., {Delta}{beta} > 1). We find that the median value of {beta} evolves significantly from -1.82{sup +0.00}{sub -0.04} at z = 4 to -2.37{sup +0.26}{sub -0.06} at z = 7. Additionally, we find that faint galaxies at z = 7 have {beta} -2.68{sup +0.39}{sub -0.24} ({approx} -2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require 'exotic' stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z = 7 to A{sub V} {approx} 0.5 mag at z = 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant (<2{sigma}) correlation between {beta} and M{sub UV} when measuring M{sub UV} at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF

  4. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, Lee R.; Rees, Glen [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Allen, Rebecca, E-mail: lee.spitler@mq.edu.au [Australian Astronomical Observatory, P.O. Box 296 Epping, NSW 1710 (Australia)

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  5. Mapping the three-dimensional dust extinction towards the supernova remnant S147 - the S147 dust cloud

    Science.gov (United States)

    Chen, B.-Q.; Liu, X.-W.; Ren, J.-J.; Yuan, H.-B.; Huang, Y.; Yu, B.; Xiang, M.-S.; Wang, C.; Tian, Z.-J.; Zhang, H.-W.

    2017-12-01

    We present a three-dimensional (3D) extinction analysis in the region towards the supernova remnant (SNR) S147 (G180.0-1.7) using multiband photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2MASS and WISE. We isolate a previously unrecognized dust structure likely to be associated with SNR S147. The structure, which we term as 'S147 dust cloud', is estimated to have a distance d = 1.22 ± 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.

  6. Young Stellar Variability of GM Cephei by Circumstellar Dust Clumps

    Science.gov (United States)

    Huang, Po-Chieh; Chen, Wen-Ping; Hu, Chia-Ling; Burkhonov, Otabek; Ehgamberdiev, Shuhrat; Liu, Jinzhong; Naito, Hiroyuki; Pakstiene, Erika; Qvam, Jan Kare Trandem; Rätz, Stefanie; Semkov, Evgeni

    2018-04-01

    UX Orionis stars are a sub-type of Herbig Ae/be or T Tauri stars exhibiting sporadic extinction of stellar light due to circumstellar dust obscuration. GM Cep is such an UX Orionis star in the young (∼ 4 Myr) open cluster Trumpler 37 at ∼ 900 pc, showing a prominent infrared access, H-alpha emission, and flare activity. Our multi-color photometric monitoring from 2009 to 2016 showed (i) sporadic brightening on a time scale of days due to young stellar accretion, (ii) cyclic, but not strictly periodical, occultation events, each lasting for a couple months, with a probable recurrence time of about two years, (iii) normal dust reddening as the star became redder when dimmer, (iv) the unusual "blueing" phenomena near the brightness minima, during which the star appeared bluer when dimmer, and (v) a noticeable polarization, from 3 to 9 percent in g', r', and i' -bands. The occultation events may be caused by dust clumps, signifying the density inhomogeneity in a young stellar disk from grain coagulation to planetesimal formation. The level of polarization was anti-correlated with the brightness in the bright state, when the dust clump backscattered stellar light. We discussed two potential hypotheses: orbiting dust clumps versus dust clumps along a spiral arm structure.

  7. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  8. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  9. Gas, Dust, and Quenching of Dusty Galaxies in the Early Universe

    Science.gov (United States)

    Spilker, Justin Scott

    In this dissertation, I study various aspects related to the gas and star formation in dusty star-forming galaxies in the distant universe. My dissertation is heavily based on observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), observing a sample of gravitationally lensed high-redshift dusty galaxies originally discovered by the South Pole Telescope (SPT). In addition to the introductions to the individual chapters, Chapter 1 provides a broader background to the study of these objects and places them in the overall context of galaxy evolution. In Chapter 2 I describe a technique designed to search for faint molecular lines in the spectrum of high-redshift dusty galaxies. The brightest molecular lines in the spectra of these objects are due to carbon monoxide, but a host of other species are present in the interstellar media. These other molecules trace gas of a wide range of temperatures and densities, but are generally ten times fainter than the brighter CO lines. I detected several other molecular lines, and used them to characterize the conditions of the interstellar gas. This work was published in Spilker et al. (2014). In Chapter 3, I describe a technique for modeling the effects of gravitational lensing which is optimized for data from interferometers such as ALMA. Using these models and data for a large sample of objects from ALMA, I studied the intrinsic properties of the sample such as the source sizes and luminosities. I used these intrinsic properties to revisit topics from the literature which benefit from the additional size information I determined. This work was published in Spilker et al. (2016). In Chapter 4, I use the modeling technique I developed to investigate the relationship between the star formation and the cold molecular gas from which stars form in two objects selected from the SPT sample. Using the models of the source, I was able to determine the mass of molecular gas in these objects using several independent

  10. RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S4G IRAC 3.6 AND 4.5 μm IMAGES. I. CORRECTING FOR CONTAMINATION BY POLYCYCLIC AROMATIC HYDROCARBONS, HOT DUST, AND INTERMEDIATE-AGE STARS

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Schinnerer, Eva; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Buta, Ronald J.; Zaritsky, Dennis; Hinz, Joannah L.; Skibba, Ramin A.; Laurikainen, Eija; Salo, Heikki; Elmegreen, Debra; Elmegreen, Bruce G.; Gadotti, Dimitri A.; Regan, Michael; Ho, Luis C.; Madore, Barry F.; Gil de Paz, Armando

    2012-01-01

    With the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 μm images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 μm bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 μm, which is dominated by the broad PAH feature. Using the measured 3.6 μm/8 μm ratio to select individual contaminants, we find that hot dust and PAHs together contribute between ∼5% and 15% to the integrated light at 3.6 μm, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information

  11. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    Energy Technology Data Exchange (ETDEWEB)

    Cikota, Aleksandar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching b. München (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marleau, Francine, E-mail: acikota@eso.org [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck (Austria)

    2016-03-10

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.

  12. Seeing the Forest Through the Trees: The Distribution and Properties of Dense Molecular Gas in the Milky Way Galaxy

    Science.gov (United States)

    Ellsworth-Bowers, Timothy P.

    The Milky Way Galaxy serves as a vast laboratory for studying the dynamics and evolution of the dense interstellar medium and the processes of and surrounding massive star formation. From our vantage point within the Galactic plane, however, it has been extremely difficult to construct a coherent picture of Galactic structure; we cannot see the forest for the trees. The principal difficulties in studying the structure of the Galactic disk have been obscuration by the ubiquitous dust and molecular gas and confusion between objects along a line of sight. Recent technological advances have led to large-scale blind surveys of the Galactic plane at (sub-)millimeter wavelengths, where Galactic dust is generally optically thin, and have opened a new avenue for studying the forest. The Bolocam Galactic Plane Survey (BGPS) observed over 190 deg 2 of the Galactic plane in dust continuum emission near lambda = 1.1 mm, producing a catalog of over 8,000 dense molecular cloud structures across a wide swath of the Galactic disk. Deriving the spatial distribution and physical properties of these objects requires knowledge of distance, a component lacking in the data themselves. This thesis presents a generalized Bayesian probabilistic distance estimation method for dense molecular cloud structures, and demonstrates it with the BGPS data set. Distance probability density functions (DPDFs) are computed from kinematic distance likelihoods (which may be double- peaked for objects in the inner Galaxy) and an expandable suite of prior information to produce a comprehensive tally of our knowledge (and ignorance) of the distances to dense molecular cloud structures. As part of the DPDF formalism, this thesis derives several prior DPDFs for resolving the kinematic distance ambiguity in the inner Galaxy. From the collection of posterior DPDFs, a set of objects with well-constrained distance estimates is produced for deriving Galactic structure and the physical properties of dense molecular

  13. QUANTIFYING NON-STAR-FORMATION-ASSOCIATED 8 μm DUST EMISSION IN NGC 628

    International Nuclear Information System (INIS)

    Crocker, Alison F.; Calzetti, Daniela; Thilker, David A.; Aniano, Gonzalo; Draine, Bruce T.; Hunt, Leslie K.; Kennicutt, Robert C.; Sandstrom, Karin; Smith, J. D. T.

    2013-01-01

    Combining Hα and IRAC images of the nearby spiral galaxy NGC 628, we find that between 30% and 43% of its 8 μm dust emission is not related to recent star formation. Contributions from dust heated by young stars are separated by identifying H II regions in the Hα map and using these areas as a mask to determine the 8 μm dust emission that must be due to heating by older stars. Corrections are made for sub-detection-threshold H II regions, photons escaping from H II regions, and for young stars not directly associated with H II regions (i.e., 10-100 Myr old stars). A simple model confirms that this amount of 8 μm emission can be expected given dust and PAH absorption cross sections, a realistic star formation history, and the observed optical extinction values. A Fourier power spectrum analysis indicates that the 8 μm dust emission is more diffuse than the Hα emission (and similar to observed H I), supporting our analysis that much of the 8 μm-emitting dust is heated by older stars. The 8 μm dust-to-Hα emission ratio declines with galactocentric radius both within and outside of H II regions, probably due to a radial increase in disk transparency. In the course of this work, we have also found that intrinsic diffuse Hα fractions may be lower than previously thought in galaxies, if the differential extinction between H II regions and diffuse regions is taken into account.

  14. ZINGRS: Understanding Hot DOGs via the resolved radio continuum of W2246-0526

    Science.gov (United States)

    Hershey, Deborah; Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Brisbin, Drew; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.

    2018-06-01

    We present new high-resolution (~0.5”) radio-continuum images of the high-redshift galaxy W2246-0526 obtained with the Jansky Very Large Array. W2246 at z~4.6 is a hot dust obscured galaxy (Hot DOG) that have extreme luminosities, LIR > 1014 L⊙ produced by hot T~450 K dust. It hosts both an active galactic nucleus and significant star formation. Having observed the [OIII] 88 micron line from W2246 with our ZEUS spectrometer, the source is part of our ZEUS INvestigate Galaxy Reference Sample (ZINGRS). The radio images are initial observations from the ZINGRS Radio Survey where we observe the free-free and non-thermal emissions of high-z galaxies. Combining the radio emission with ALMA and ZEUS observations of the [CII] 158 micron, [OIII] 88 micron and [NII] 122 micron lines we probe the metallicity, age of stellar population, and ionization parameter. For W2246 we pay special attention to gradients of the stellar age and metallicity to determine the impact of the AGN on the host galaxy. Our work here is our initial analysis. When complete for all of ZINGRS ours findings will improve our understanding of early galaxies, including helping to explain Hot DOGs like W2246.

  15. Behind every innovative solution lies an obscure feature

    Directory of Open Access Journals (Sweden)

    Lee Spector (Fellow ISGEC

    2012-06-01

    Full Text Available The Obscure Features Hypothesis (OFH for innovation states that a two-step process undergirds almost all innovative solutions: (1 notice an infrequently observed or new (i.e., obscure feature of the problem and (2 construct an interaction involving the obscure feature that produces the desired effects to solve the problem. The OFH leads to a systematic derivation of innovation-enhancing techniques by engaging in two tasks. First, we developed a 32-category system of the types of features possessable by a physical object or material. This Feature Type Taxonomy (FTT provides a panoramic view of the space of features and assists in searches for the obscure ones. Second, we are articulating the many cognitive reasons that obscure features are overlooked and are developing countering techniques for each known reason. We present the implications and techniques of the OFH, as well as indicate how software can assist innovators in the effective use of these innovation-enhancing techniques.

  16. Stellar astrophysics

    International Nuclear Information System (INIS)

    1988-01-01

    Enhanced mass loss occurs at critical stages in the evolution of stars over a wide range of stellar mass. Observationally, these stages are difficult to identify because of their short duration and because the star is often obscured by dust which condenses in the ejecta. A study of a G-type star, of which only the outer envelope was directly visible, was undertaken by the South African Astronomical Observatory (SAAO). The star itself was obscured by dust clouds and its light was only feebly seen by reflection from some of these clouds. Other studies of the galaxy undertaken by the SAAO include observations of the following: the extreme carbon star IRAS 15194-5115; RV Tauri and T Tauri stars; pre-main sequence stars; the properties of circumstellar dust; rotational modulation and flares on RS CVn and BY Dra stars; heavy-element stars; hydrogen-deficient stars; the open cluster NGC6192; stars in Omega Centauri, and lunar occulations of stars. Simultaneous x-ray, radio and optical data of the flare star YZ CMi were also obtained. 1 fig

  17. THE DUST PROPERTIES OF z {approx} 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X. L. [School of Physics and Electronics Information, Hubei University of Education, 430205 Wuhan (China); Pipino, A. [Institut fur Astronomie, ETH Zurich, CH-8093 Zurich (Switzerland); Matteucci, F., E-mail: fan@oats.inaf.it [Dipartimento di Fisica, Sezione di Astronomia, Universit a di Trieste, via G.B. Tiepolo 11, I-34131 Trieste (Italy)

    2013-05-10

    The stacked spectral energy distribution (SED) 24 {mu}m Lyman break galaxies (MIPS-LBGs) detected by the Multiband Imaging Photometer for Spitzer (MIPS) is fitted by means of the spectrophotometric model GRASIL with an ''educated'' fitting approach which benefits from the results of chemical evolution models. The star formation rate-age-metallicity degeneracies of SED modeling are broken by using star formation history (SFH) and chemical enrichment history suggested by chemical models. The dust mass, dust abundance, and chemical pattern of elements locked in the dust component are also directly provided by chemical models. Using our new ''fitting'' approach, we derive the total mass M{sub tot}, stellar mass M{sub *}, gas mass M{sub g} , dust mass M{sub d} , age, and star formation rate (SFR) of the stacked MIPS-LBG in a self-consistent way. Our estimate of M{sub *} = 8 Multiplication-Sign 10{sup 10} of the stacked MIPS-LBG agrees with other works based on UV-optical SED fitting. We suggest that the MIPS-LBGs at z {approx} 3 are young (0.3-0.6 Gyr), massive (M{sub tot} {approx} 10{sup 11} M{sub Sun }), dusty (M{sub d} {approx} 10{sup 8} M{sub Sun }), and metal-rich (Z {approx} Z{sub Sun }) progenitors of elliptical galaxies undergoing a strong burst of star formation (SFR {approx} 200 M{sub Sun} yr{sup -1}). Our estimate of M{sub d} = 7 Multiplication-Sign 10{sup 7} M{sub Sun} of the stacked MIPS-LBG is about a factor of eight lower than the estimated value based on single temperature graybody fitting, suggesting that self-consistent SED models are needed to estimate dust mass. By comparing with Milky Way molecular cloud and dust properties, we suggest that denser and dustier environments and flatter dust size distribution are likely in high-redshift massive star-forming galaxies. These dust properties, as well as the different types of SFHs, can cause different SED shapes between high-redshift star-forming ellipticals and

  18. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    Science.gov (United States)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  19. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    Science.gov (United States)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  20. Why i cried over thomas Hardy's - jude the obscure Why i cried over thomas Hardy's - jude the obscure

    Directory of Open Access Journals (Sweden)

    Hildrun Heinrichs

    2008-04-01

    Full Text Available 1. INTRODUCTION "Why did I cry over Jude the Obscure" seems rather a difficult question to discuss in public. But isn't it amazing, how authors manipulate their readers? How we are at their mercy to feel delighted or distressed? If this is so, we ought to ask ourselves how they do it, what their devices are. So my problem really is: what elements are there in the narrative of Jude the Obscure, that provoke a sentiment of agonizing awe, which reaches its climax under the impression of Sue's decision to chastise herself and go back to Phillotson? A second question follows: why the reader accepts such a decision, i.e. how it fits the reality and characters created in this novel. I shall therefore analyse Jude the Obscure under the following aspects: arepresentation of reality bpresentation of plot c characterization of Sue Bridehead 1. INTRODUCTION "Why did I cry over Jude the Obscure" seems rather a difficult question to discuss in public. But isn't it amazing, how authors manipulate their readers? How we are at their mercy to feel delighted or distressed? If this is so, we ought to ask ourselves how they do it, what their devices are. So my problem really is: what elements are there in the narrative of Jude the Obscure, that provoke a sentiment of agonizing awe, which reaches its climax under the impression of Sue's decision to chastise herself and go back to Phillotson? A second question follows: why the reader accepts such a decision, i.e. how it fits the reality and characters created in this novel. I shall therefore analyse Jude the Obscure under the following aspects: arepresentation of reality bpresentation of plot c characterization of Sue Bridehead

  1. RELICS: A Candidate Galaxy Arc at z~10 and Other Brightly Lensed z>6 Galaxies

    Science.gov (United States)

    Salmon, Brett; Coe, Dan; Bradley, Larry; Bradac, Marusa; Huang, Kuang-Han; Oesch, Pascal; Brammer, Gabriel; Stark, Daniel P.; Sharon, Keren; Trenti, Michele; Avila, Roberto J.; Ogaz, Sara; Acebron, Ana; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Cibirka, Nathália; Dawson, William; Frye, Brenda; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Paterno-Mahler, Rachel; Rodney, Steven; Umetsu, Keiichi; Zitrin, Adi; RELICS

    2018-01-01

    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here some of the most brightly lensed z>6 galaxy candidates known from the Reionization Lensing Cluster Survey (RELICS) and the discovery of a particularly fortuitous z~10 galaxy candidate which has been arced by the effects of strong gravitational lensing. The z~10 candidate has a lensed H-band magnitude of 25.8 AB mag and a high lensing magnification (~4-7). The inferred upper limits on the stellar mass (log [M_star /M_Sun]=9.5) and star formation rate (log [SFR/(M_Sun/yr)]=1.5) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M_star relation. We rule out the only low-z solution as unphysical based on the required stellar mass, dust attenuation, size, and [OIII] EW needed for a z~2 SED to match the data. Finally, we reconstruct the source-plane image and estimate the candidate's physical size at z~10, finding a half-light radius of r_e 9 candidates. While the James Webb Space Telescope will detect z>10 with ease, this rare candidate offers the potential for unprecedented spatial resolution less than 500 Myr after the Big Bang.

  2. A supernova origin for dust in a high-redshift quasar.

    Science.gov (United States)

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  3. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Conroy, Charlie, E-mail: phopkins@caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  4. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Conroy, Charlie

    2017-01-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  5. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rujopakarn, W.; Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rieke, G. H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cibinel, A. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Nyland, K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Jagannathan, P.; Bhatnagar, S. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild-Straße 2, Garching (Germany); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Elbaz, D. [CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Geach, J. E. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hayward, C. C. [Center for Computational Astrophysics, 160 Fifth Avenue, New York, NY 10010 (United States); Kirkpatrick, A., E-mail: wiphu.rujopakarn@ipmu.jp [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); and others

    2016-12-10

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M {sub ⊙} yr{sup −1} kpc{sup −2}, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M {sub ⊙} yr{sup −1}) above which a significant population of more compact SFGs appears to emerge.

  6. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy

    DEFF Research Database (Denmark)

    Elíasdóttir, Á.; Fynbo, J. P. U.; Hjorth, J.

    2009-01-01

    We report the clear detection of the 2175 Å dust absorption feature in the optical afterglow spectrum of the gamma-ray burst (GRB) GRB 070802 at a redshift of z = 2.45. This is the highest redshift for a detected 2175 Å dust bump to date, and it is the first clear detection of the 2175 Å bump...

  7. HERSCHEL OBSERVATIONS OF MAJOR MERGER PAIRS AT z = 0: DUST MASS AND STAR FORMATION

    International Nuclear Information System (INIS)

    Cao, Chen; Xu, Cong Kevin; Lu, Nanyao; Mazzarella, Joe; Domingue, Donovan; Ronca, Joseph; Jacques, Allison; Buat, Veronique; Cheng, Yi-Wen; Gao, Yu; Huang, Jiasheng; Jarrett, Thomas H.; Lisenfeld, Ute; Sun, Wei-Hsin; Wu, Hong; Yun, Min S.

    2016-01-01

    We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (M dust ) are derived from the IR SED fitting. The mass of total gas (M gas ) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The M gas of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR

  8. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-01-01

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 μm). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute ∼20% of the global SMC flux (extended + point-source) at 3.6 μm, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  9. 3C 220.3: A radio galaxy lensing a submillimeter galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Martin; Westhues, Christian; Chini, Rolf [Astronomisches Institut, Ruhr Universität, Bochum (Germany); Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Barthel, Peter; Koopmans, Léon V. E. [Kapteyn Astronomical Institute, University of Groningen (Netherlands); Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Vegetti, Simona [Max-Planck-Institut für Astrophysik, Garching (Germany); Clements, David L. [Imperial College, London (United Kingdom); Fassnacht, Christopher D. [University of California, Davis, CA (United States); Horesh, Assaf [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA (United States); Lagattuta, David J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn (Australia); Stern, Daniel; Wylezalek, Dominika, E-mail: haas@astro.rub.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States)

    2014-07-20

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ∼1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/L{sub i}∼8±4 M{sub ⊙} L{sub ⊙}{sup −1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ∼ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a

  10. High levels of absorption in orientation-unbiased, radio-selected 3CR Active Galaxies

    Science.gov (United States)

    Wilkes, Belinda J.; Haas, Martin; Barthel, Peter; Leipski, Christian; Kuraszkiewicz, Joanna; Worrall, Diana; Birkinshaw, Mark; Willner, Steven P.

    2014-08-01

    A critical problem in understanding active galaxies (AGN) is the separation of intrinsic physical differences from observed differences that are due to orientation. Obscuration of the active nucleus is anisotropic and strongly frequency dependent leading to complex selection effects for observations in most wavebands. These can only be quantified using a sample that is sufficiently unbiased to test orientation effects. Low-frequency radio emission is one way to select a close-to orientation-unbiased sample, albeit limited to the minority of AGN with strong radio emission.Recent Chandra, Spitzer and Herschel observations combined with multi-wavelength data for a complete sample of high-redshift (1half the sample is significantly obscured with ratios of unobscured: Compton thin (22 24.2) = 2.5:1.4:1 in these high-luminosity (log L(0.3-8keV) ~ 44-46) sources. These ratios are consistent with current expectations based on modelingthe Cosmic X-ray Background. A strong correlation with radio orientation constrains the geometry of the obscuring disk/torus to have a ~60 degree opening angle and ~12 degree Compton-thick cross-section. The deduced ~50% obscured fraction of the population contrasts with typical estimates of ~20% obscured in optically- and X-ray-selected high-luminosity samples. Once the primary nuclear emission is obscured, AGN X-ray spectra are frequently dominated by unobscured non-nuclear or scattered nuclear emission which cannot be distinguished from direct nuclear emission with a lower obscuration level unless high quality data is available. As a result, both the level of obscuration and the estimated instrinsic luminosities of highly-obscured AGN are likely to be significantly (*10-1000) underestimated for 25-50% of the population. This may explain the lower obscured fractions reported for optical and X-ray samples which have no independent measure of the AGN luminosity. Correcting AGN samples for these underestimated luminosities would result in

  11. Spiral model of the Galaxy from observations of the interstellar light attenuation

    International Nuclear Information System (INIS)

    Urasin, L.A.

    1987-01-01

    The model of two arms spiral structure of the Galaxy is made from the observations of space distribution of the interstellar dust matter. This model is the logarithmic spiral with characteristic angle (pith) 6.5 deg

  12. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Linda C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Martini, Paul; Wong, Man-Hong [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lisenfeld, Ute [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Boeker, Torsten [European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Schinnerer, Eva, E-mail: lwatson@cfa.harvard.edu [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, H{alpha} data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v{sub circ}). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at v{sub circ} < 120 km s{sup -1} (M{sub *} {approx}< 10{sup 10} M{sub Sun }) to narrow dust lanes with small scale heights and gravitationally unstable disks at v{sub circ} > 120 km s{sup -1}. We find no transition in star formation efficiency ({Sigma}{sub SFR}/{Sigma}{sub Hi+H{sub 2}}) at v{sub circ} = 120 km s{sup -1} or at any other circular velocity probed by our sample (v{sub circ} = 46-190 km s{sup -1}). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  13. Central obscuration effects on optical synthetic aperture imaging

    Science.gov (United States)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  14. A CORRECTION TO THE STANDARD GALACTIC REDDENING MAP: PASSIVE GALAXIES AS STANDARD CRAYONS

    International Nuclear Information System (INIS)

    Peek, J. E. G.; Graves, Genevieve J.

    2010-01-01

    We present corrections to the Schlegel et al. (SFD98) reddening maps over the Sloan Digital Sky Survey (SDSS) northern Galactic cap area. To find these corrections, we employ what we call the 'standard crayon' method, in which we use passively evolving galaxies as color standards to measure deviations from the reddening map. We select these passively evolving galaxies spectroscopically, using limits on the Hα and [O II] equivalent widths to remove all star-forming galaxies from the SDSS main galaxy catalog. We find that by correcting for known reddening, redshift, color-magnitude relation, and variation of color with environmental density, we can reduce the scatter in color to below 3% in the bulk of the 151,637 galaxies that we select. Using these galaxies, we construct maps of the deviation from the SFD98 reddening map at 4. 0 5 resolution, with 1σ error of ∼1.5 mmag E(B - V). We find that the SFD98 maps are largely accurate with most of the map having deviations below 3 mmag E(B - V), though some regions do deviate from SFD98 by as much as 50%. The maximum deviation found is 45 mmag in E(B - V), and spatial structure of the deviation is strongly correlated with the observed dust temperature, such that SFD98 underpredict reddening in regions of low dust temperature. Our maps of these deviations, as well as their errors, are made available to the scientific community on the Web as a supplemental correction to SFD98.

  15. Properties in the middle and far infrared radiation of spiral and irregular galaxies

    International Nuclear Information System (INIS)

    Contursi, Alessandra

    1998-01-01

    In the first part of this research thesis, the author reports the study in the middle infrared of H II regions belonging to Magellanic clouds. For this purpose, he presents different aspects of infrared emission by the interstellar medium: origin and evolution of interstellar grains, dust studied by astrophysical observations, dust models, infrared observations made by COBE and IRAS satellites, exploitation of the ISO satellite. He also presents the Small and Large Magellanic clouds, and reports the study of the H II N4 region of the large one, imagery and spectroscopy of the H II N66 region of the small one, and the study of silicate emission in the central region of N66. The second part reports the study of cluster normal spiral galaxies in the middle and far infrared. For this purpose, the author discusses the colours in the middle infrared of Virgo's and Coma's galaxies, discusses the properties in the infrared of spiral galaxies (Coma and A1367), based on observations made by ISO [fr

  16. PROBING EXTRAGALACTIC DUST THROUGH NEARBY GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Liang, S. L.; Li Aigen

    2010-01-01

    The quantities and wavelength dependencies of the dust extinction along the lines of sight toward 33 nearby gamma-ray bursts (GRBs) with redshifts z V derived from the Drude approach is generally larger by a factor of ∼2-5 than that inferred by assuming a SMC-type template extinction law. Consistent with previous studies, the extinction-to-gas ratio is mostly smaller than that of the MW, and does not seem to correlate with the shape of the extinction curve. It is shown that the standard silicate-graphite interstellar grain model closely reproduces the extinction curves of all 33 GRBs host galaxies. For these 33 bursts at z < 2, we find no evidence for the evolution of the dust extinction, dust sizes, and relative abundances of silicate to graphite on redshifts.

  17. Galaxies Die in Groups: An IRAC Autopsy

    Science.gov (United States)

    Wilman, D. J.; Pierini, D.; Tyler, K.; McGee, S. L.; Oemler, A., Jr.; Morris, S. L.; Balogh, M. L.; Bower, R. G.; Mulchaey, J. S.

    2008-10-01

    The most massive galaxies in the Universe are also the oldest. To overturn this apparent contradiction with hierarchical growth models, we focus on the group-scale haloes which host most of these galaxies. Our z˜0.4 group sample is selected in redshift space from the CNOC2 redshift survey. A stellar mass selected M_{*} ≲ 2×10^{10}M_{⊙} sample is constructed using IRAC observations. A sensitive Mid InfraRed (MIR) IRAC colour is used to isolate passive galaxies. It produces a bimodal distribution, in which passive galaxies (highlighted by morphological early-types) define a tight MIR colour sequence (Infrared Passive Sequence, IPS). This is due to stellar atmospheric emission from old stellar populations. Significantly offset from the IPS are galaxies where reemission by dust boosts emission at λ_{obs}=8 micron. We term them InfraRed-Excess galaxies whether star formation and/or AGN activity are present. They include all known morphological late-types. The fraction of InfraRed Excess galaxies, f(IRE) drops with M_{*}, such that f(IRE)=0.5 at a ``crossover mass'' of M_{cr}˜ 1.3×10^{11}M_{⊙}. Within our optically-defined group sample there is a strong and consistent deficit in f(IRE) at all masses, but most clearly at M_{*} ≲ 10^{11}M_{⊙}. Suppression of star formation must mainly occur in groups, and the observed trend of f(IRE) with M_{*} can be explained if suppression of M_{*} ≲ 10^{11}M_{⊙} galaxies occurs primarily in the group environment.

  18. THE S{sup 4}G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E.; Schinnerer, Eva [Max-Planck-Institut fuer Astronomie/Koenigstuhl 17, D-69117 Heidelberg (Germany); Munoz-Mateos, Juan-Carlos; Kim, Taehyun [National Radio Astronomy Observatory, Charlottesville, VA (United States); Holwerda, Benne [European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menendez-Delmestre, Karin; Seibert, Mark [The Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); Knapen, Johan H. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Bosma, Albert; Athanassoula, E. [Laboratoire d' Astrophysique de Marseille (LAM), Marseille (France); Hinz, Joannah L. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Regan, Michael [Space Telescope Science Institute, Baltimore, MD (United States); De Paz, Armando Gil [Departamento de Astrofisica, Universidad Complutense Madrid, Madrid (Spain); Mizusawa, Trisha [Spitzer Science Center, Pasadena, CA (United States); Gadotti, Dimitri A. [European Southern Observatory, Santiago (Chile); Laurikainen, Eija; Salo, Heikki [Astronomy Division, Department of Physical Sciences, University of Oulu, Oulu (Finland); and others

    2012-04-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters-each the analogue of a {approx}1 Gyr old post-starburst galaxy-has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average {approx}0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from {approx}70%, as predicted in the latest generation of synthesis models, to {approx}35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  19. Measuring Dust Emission from the Mojave Desert (USA) by Daily Remote-Camera Observations and Wind-Erosion Measurements: Bearing on "Unseen" Sources and Global Dust Abundance

    Science.gov (United States)

    Reynolds, R. L.; Urban, F.; Goldstein, H. L.; Fulton, R.

    2017-12-01

    A large gap in understanding the effects of atmospheric dust at all spatial scales is uncertainty about how much and whence dust is emitted annually. Digital recording of dust emission at high spatial and temporal resolution would, together with periodic flux measurements, support improved estimates of local-scale dust flux where infrastructure could support remote internet enabled cameras. Such recording would also elucidate wind-erosion dynamics when combined with meteorological data. Remote camera recording of dust-emitting settings on and around Soda Lake (Mojave Desert) was conducted every 15 minutes during daylight between 10 Nov. 2010 and 31 Dec. 2016 and images uploaded to a web server. Examination of 135,000 images revealed frequent dust events, termed "dust days" when plumes obscured mountains beyond source areas. Such days averaged 68 (sd=10) per year (2011 through 2016). We examined satellite retrievals (MODIS, GOES) for dust events during six cloudless days of highest and longest duration dust emission but none were observed. From Apr. 2000 through May 2013, aeolian sediments collected at three sites were sampled and weighed. Estimates of the emitted mass of silt- and clay-size fractions were made on the basis of measured horizontal mass flux, particle sizes of sediment in collectors, and roughly determined areas of dust generation. Over this period, nearly 4 Tg yr-1 of dust (as particulate matter flood in the basin in late Dec. 2010 that deposited flood sediment across the lake basin. Increased emission was likely related to the availability of fresh, unanchored flood sediment. Within the Mojave and Great Basin deserts of North America, many settings akin to those at Soda Lake similarly emit dust that is rarely detected in satellite retrievals. These findings strongly imply that local and regional dust emissions from western North America are far underestimated and that, by extension to relatively small dust-source areas across all drylands, global

  20. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I. [Instituto Milenio de Astrofísica, Santiago (Chile); Minniti, D. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello, República 220, Santiago (Chile); Majaess, D. [Saint Mary’s University, Halifax, Nova Scotia (Canada); Zoccali, M.; Hajdu, G.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Alonso-García, J. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Borissova, J., E-mail: idekany@astro.puc.cl [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaso (Chile)

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the last 100 million years.

  1. A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5

    Science.gov (United States)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; hide

    2013-01-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  2. Near-infrared mapping of ARP 299 (IC 694-NGC 3690) - colliding galaxies unveiled

    International Nuclear Information System (INIS)

    Telesco, C.M.; Decher, R.; Gatley, I.; Edinburgh Royal Observatory, England)

    1985-01-01

    Near-infrared maps and multicolor photometry of the interacting galaxies IC 694 and NGC 3690 which form Arp 299 (= Markarian 171) are presented. These data reveal for the first time the distribution of nuclei and old red stars in a cataclysmically interacting system. The nuclei are considerably offset from the visual centroids of the galaxies but not from the mass centroids. The near-infrared colors of the most active regions are strongly affected by extinction, emission form hot dust, and bremsstrahlung. Near-infrared emission is also identified with secondary regions of star formation, probably resulting from the galaxies interaction. 24 references

  3. Storm in a Teacup: X-Ray View of an Obscured Quasar and Superbubble

    Science.gov (United States)

    Lansbury, George B.; Jarvis, Miranda E.; Harrison, Chris M.; Alexander, David M.; Del Moro, Agnese; Edge, Alastair C.; Mullaney, James R.; Thomson, Alasdair P.

    2018-03-01

    We present the X-ray properties of the “Teacup AGN” (SDSS J1430+1339), a z = 0.085 type 2 quasar that is interacting dramatically with its host galaxy. Spectral modeling of the central quasar reveals a powerful, highly obscured active galactic nucleus (AGN) with a column density of N H = (4.2–6.5) × 1023 cm‑2 and an intrinsic luminosity of L 2–10 keV = (0.8–1.4) × 1044 erg s‑1. The current high bolometric luminosity inferred (L bol ≈1045–1046 erg s‑1) has ramifications for previous interpretations of the Teacup as a fading/dying quasar. High-resolution Chandra imaging data reveal a ≈10 kpc loop of X-ray emission, cospatial with the “eastern bubble” previously identified in luminous radio and ionized gas (e.g., [O III] line) emission. The X-ray emission from this structure is in good agreement with a shocked thermal gas, with T = (4–8) × 106 K, and there is evidence for an additional hot component with T ≳ 3 × 107 K. Although the Teacup is a radiatively dominated AGN, the estimated ratio between the bubble power and the X-ray luminosity is in remarkable agreement with observations of ellipticals, groups, and clusters of galaxies undergoing AGN feedback.

  4. The Overdense Environments of WISE-Selected, Ultra-Luminous, High-Redshift AGN in the Submillimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Suzy F., E-mail: suzy.jones@chalmers.se [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala (Sweden)

    2017-11-21

    The environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively, were found to have overdensities of companion Submillimeter-selected sources. The overdensities were of ~2–3 and ~5–6, respectively, compared with blank field submm surveys. The space densities in both samples were found to be overdense compared to normal star-forming galaxies and Submillimeter galaxies (SMGs). All of the companion sources have consistent mid-IR colors and mid-IR to submm ratios to SMGs. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5 arcmin scale maps. WISE-selected AGNs appear to be good indicators of overdense areas of active galaxies at high redshift.

  5. Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA

    Science.gov (United States)

    Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.

    2018-06-01

    We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdepstar-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.

  6. Active galactic nuclei. From the central engine to the host galaxy

    International Nuclear Information System (INIS)

    Gilbert, Didier

    2008-01-01

    After some recalls on galaxies, on their classification, on the Universe expansion and on the Hubble law, this academic report addresses active galactic nuclei (AGN) by describing their anatomy (central black hole, accretion disk, jets and winds, Broad Line Region, Narrow Line Region, molecular torus and dusts, radio lobes). The author also presents the unified model. In the next part, he proposes an overview of active galaxies and active galactic nuclei by distinguishing galaxies with a strong stellar activity, radio-quiet and radio-loud active galactic nuclei. Examples are presented for each of these types. In the last part, the author draws perspectives for research in cosmology, and outlines questions which are still to be answered

  7. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H 2 and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H 2 -based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z ∼ 10 –2 Z ☉ in dense, star-forming regions of early galaxies.

  8. HNCO ABUNDANCES IN GALAXIES: TRACING THE EVOLUTIONARY STATE OF STARBURSTS

    International Nuclear Information System (INIS)

    Martin, Sergio; Martin-Pintado, J.; Mauersberger, R.

    2009-01-01

    The chemistry in the central regions of galaxies is expected to be strongly influenced by their nuclear activity. To find the best tracers of nuclear activity is of key importance to understand the processes taking place in the most obscured regions of galactic nuclei. In this work, we present multiline observations of CS, C 34 S, HNCO, and C 18 O in a sample of 11 bright galaxies prototypical for different types of activity. The 32 S/ 34 S isotopic ratio is ∼10, supporting the idea of an isotopical 34 S enrichment due to massive star formation in the nuclear regions of galaxies. Although C 32 S and C 34 S do not seem to be significantly affected by the activity type, the HNCO abundance appears highly contrasted among starbursts (SBs). We observed HNCO abundance variations of nearly 2 orders of magnitude. The HNCO molecule is shown to be a good tracer of the amount of molecular material fueling the SB and therefore can be used as a diagnostics of the evolutionary state of a nuclear SB.

  9. Galaxies Coming of Age in Cosmic Blobs

    Science.gov (United States)

    2009-06-01

    The "coming of age" of galaxies and black holes has been pinpointed, thanks to new data from NASA's Chandra X-ray Observatory and other telescopes. This discovery helps resolve the true nature of gigantic blobs of gas observed around very young galaxies. About a decade ago, astronomers discovered immense reservoirs of hydrogen gas -- which they named "blobs" - while conducting surveys of young distant galaxies. The blobs are glowing brightly in optical light, but the source of immense energy required to power this glow and the nature of these objects were unclear. A long observation from Chandra has identified the source of this energy for the first time. The X-ray data show that a significant source of power within these colossal structures is from growing supermassive black holes partially obscured by dense layers of dust and gas. The fireworks of star formation in galaxies are also seen to play an important role, thanks to Spitzer Space Telescope and ground-based observations. "For ten years the secrets of the blobs had been buried from view, but now we've uncovered their power source," said James Geach of Durham University in the United Kingdom, who led the study. "Now we can settle some important arguments about what role they played in the original construction of galaxies and black holes." Galaxies are believed to form when gas flows inwards under the pull of gravity and cools by emitting radiation. This process should stop when the gas is heated by radiation and outflows from galaxies and their black holes. Blobs could be a sign of this first stage, or of the second. Based on the new data and theoretical arguments, Geach and his colleagues show that heating of gas by growing supermassive black holes and bursts of star formation, rather than cooling of gas, most likely powers the blobs. The implication is that blobs represent a stage when the galaxies and black holes are just starting to switch off their rapid growth because of these heating processes. This

  10. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    Science.gov (United States)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  11. 'Nuisance Dust' - a Case for Recalibration?

    Science.gov (United States)

    Datson, Hugh; Marker, Brian

    2013-04-01

    This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over

  12. Infrared emission and tidal interactions of spiral galaxies

    International Nuclear Information System (INIS)

    Byrd, G.G.

    1987-01-01

    Computer simulations of tidal interactions of spiral galaxies are used to attempt to understand recent discoveries about infrared (IR) emitting galaxies. It is found that the stronger tidal perturbation by a companion the more disk gas clouds are thrown into nucleus crossing orbits and the greater the velocity jumps crossing spiral arms. Both these tidally created characteristics would create more IR emission by high speed cloud collisions and more IR via effects of recently formed stars. This expectation at greater tidal perturbation matches the observation of greater IR emission for spiral galaxies with closer and/or more massive companions. The greater collision velocities found at stronger perturbations on the models will also result in higher dust temperature in the colliding clouds. In the IR pairs examined, most have only one member, the larger, detected and when both are detected, the larger is always the more luminous. In simulations and in a simple analytic description of the strong distance dependence of the tidal force, it is found that the big galaxy of a pair is more strongly affected than the small

  13. THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z ∼ 2

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel; Bezanson, Rachel; Lee, Kyoung-Soo; Muzzin, Adam; Wake, David A.; Kriek, Mariska; Franx, Marijn; Quadri, Ryan F.; Labbe, Ivo; Marchesini, Danilo; Illingworth, Garth D.; Rudnick, Gregory

    2010-01-01

    With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10 11 M sun ) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, σ z /(1 + z) ∼ 2%, and rest-frame colors, σ U-V ∼ 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread in ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z ∼< 1, and a frosting of relatively young stars from star formation at later times.

  14. How Simbol-X Will Reveal the Most Obscured High Energy Sources of our Galaxy

    Science.gov (United States)

    Chaty, S.

    2009-05-01

    The INTEGRAL satellite has revealed a major population of supergiant High Mass X-ray Binaries in our Galaxy, revolutionizing our understanding of binary systems and their evolution. This population, constituted of a compact object orbiting around a supergiant star, have unusual properties, either being extremely absorbed, or exhibiting very short flares. I will first describe the characteristics of these sources, that only intensive multi-wavelength observations have led us to disentangle, before showing that Simbol-X, thanks to its energy range and sensitivity, will allow us to go further in the understanding of these supergiant HMXBs.

  15. ISO shows what's in the centre of our Galaxy 100 000 stars seen for the first time

    Science.gov (United States)

    2000-06-01

    The Milky Way is a large spiral galaxy 130 000 light-years across, which began to form about 10 000 or 15 000 million years ago - shortly after the origin of the Universe. It is structured in a thin disk with spiral arms and a great bulge in the centre, which as seen from the Earth lies towards the constellation of Sagittarius. Our Solar System is in the edge of one of the arms, about 25 000 light-years from the centre: a very quiet area compared to the inner central bulge. "The inner bulge of the Milky Way is like the core of a very busy metropolis. The density of stars is 500 times larger than elsewhere in the galaxy - stars can even bump into each other!. These populations of stars give us a lot of information about the whole galaxy. For example, their relative motions might reveal traces of other galaxies devoured by our own in the past", says Alain Omont, at the Institut d'Astrophysique de Paris. Despite its interest, current knowledge about the centre of the Milky Way is far from complete because the dust enshrouding it has blocked the view of most telescopes so far. Only ESA's ISO, the first space observatory working at infrared wavelengths - and hence able to see through the dust - has performed a very deep exploration of its stellar populations. One of ISO's longest observing programme, ISOGAL, has devoted 255 hours to this aim, focusing especially on the inner central bulge. The first results from this programme, a joint effort by astronomers from France, the UK, Holland, Italy, Germany, Spain, Sweden, India, South Africa, Chile and the US are already being published in the scientific literature. 100 000 red giants newly identified In a region of the galactic centre that as seen from Earth is only about four times the angular size of the full moon, ISO has identified a population of more than 100 000 stars of the 'red giant' type. Most of them are the so-called AGB (Asymptotic Giant Branch) stars, which for astronomers adds value to the finding. AGB stars

  16. Active Galaxy Host Properties from a New H I 21-cm Survey of the Swift BAT-detected AGN

    Science.gov (United States)

    Winter, Lisa M.; George, E. R.; Zauderer, B.; Darling, J.

    2013-01-01

    Many questions remain open on how central supermassive black holes and their host galaxies form and affect each other's evolution. In order to answer these questions, we need to understand the observational properties of a complete sample of active galaxies. To this end, we have been collecting and studying multi-wavelength spectroscopy of a unique sample of active galaxies selected in the very hard X-rays with the Swift Burst Alert Telescope. Here we present an analysis of the 21-cm H I spectra, which we observed with the 100-m Green Bank Telescope in 2012, for a sample of 95 Swift-detected AGN. With this complete sample, we show evidence for differences in the host cold gas mass content between obscured and unobscured AGN.

  17. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    Science.gov (United States)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 250 μJy and 1.5 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  18. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Burke, David L.; Hicken, Malcolm; Mandel, Kaisey S.; Kirshner, Robert P.

    2010-01-01

    From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 10.8 M sun in a cosmology fit yields 1 + w = 0.22 +0.152 -0.108 , while a combination where the 30 nearby SNe instead have host masses greater than 10 10.8 M sun yields 1 + w = -0.03 +0.217 -0.143 . Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SNe Ia.

  19. Broadband X-Ray Spectral Analysis of the Double-nucleus Luminous Infrared Galaxy Mrk 463

    Science.gov (United States)

    Yamada, Satoshi; Ueda, Yoshihiro; Oda, Saeko; Tanimoto, Atsushi; Imanishi, Masatoshi; Terashima, Yuichi; Ricci, Claudio

    2018-05-01

    We present a broadband (0.4–70 keV) X-ray spectral analysis of the luminous infrared galaxy (LIRG) system Mrk 463 observed with Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton, which contains double active galactic nuclei (AGNs; Mrk 463E and Mrk 463W) with a separation of ∼3.8 kpc. Detecting their transmitted hard X-ray >10 keV continua with NuSTAR, we confirm that Mrk 463E and Mrk 463W have AGNs with intrinsic luminosities of (1.6–2.2) × 1043 and (0.5–0.6) × 1043 erg s‑1 (2–10 keV) obscured by hydrogen column densities of 8 × 1023 and 3 × 1023 cm‑2, respectively. Both nuclei show strong reflection components from cold matter. The luminosity ratio between X-ray (2–10 keV) and [O IV] 25.89 μm of Mrk 463E is ∼5 times smaller than those of normal Seyfert galaxies, suggesting that the intrinsic SED is X-ray weak relative to the UV luminosity. In fact, the bolometric AGN luminosity of Mrk 463E estimated from L‧-band (3.8 μm), [O IV] 25.89 μm, and [Ne V] 14.32 μm lines indicate a large bolometric-to-X-ray luminosity ratio, κ 2–10 keV ≈ 110–410, and a high Eddington ratio, λ Edd ∼ 0.4–0.8. We suggest that the merger triggered a rapid growth of the black hole in Mrk 463E, which is not yet deeply “buried” by circumnuclear dust. By contrast, the L‧-band luminosity of Mrk 463W is unusually small relative to the X-ray luminosity, suggesting that the Eddington ratio is low (activity.

  20. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Rafelski, Marc [NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Acquaviva, Viviana [New York City College of Technology, Brooklyn, NY 11201 (United States); Brown, Thomas M.; Coe, Dan; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lee, Kyoung-soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Siana, Brian D. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-09-20

    We estimate the UV continuum slope, β, for 923 galaxies in the range 1 < z < 8 in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at 1 < z < 2 down to an absolute magnitude M{sub UV}=−14(∼0.006 L{sub z=1}{sup ∗};0.02 L{sub z=0}{sup ∗}), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range 1 < z < 2 are significantly bluer than local dwarf galaxies. We find their mean (median) values <β > = – 1.382(– 1.830) ± 0.002 (random) ± 0.1 (systematic). We find comparable scatter in β (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than z > 2 galaxies. We study the trends of β with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, dβ/dM = –0.11 ± 0.01, and no evolution in dβ/dM with redshift. A modest increase in dust reddening with redshift and luminosity, ΔE(B – V) ∼ 0.1, and a comparable increase in the dispersion of dust reddening at z < 2, appears likely to explain the observed trends. At z > 2, we find trends that are consistent with previous works; combining our data with the literature in the range 1 < z < 8, we find a color evolution with redshift, dβ/dz = –0.09 ± 0.01 for low luminosity (0.05 L{sub z=3}{sup ∗}), and dβ/dz = –0.06 ± 0.01 for medium luminosity (0.25 L{sub z=3}{sup ∗}) galaxies.