WorldWideScience

Sample records for dust charge variation

  1. Analytical Study of Nonlinear Dust Acoustic Waves in Two-Dimensional Dust Plasma with Dust Charge Variation

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2005-01-01

    The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.

  2. Jeans instability of a dusty plasma with dust charge variations

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi Pajouh, H., E-mail: hakimi@alzahra.ac.ir; Afshari, N. [Faculty of Physics, Alzahra University, P. O. Box 19938-93973, Tehran (Iran, Islamic Republic of)

    2015-09-15

    The effect of the dust charge variations on the stability of a self-gravitating dusty plasma has been theoretically investigated. The dispersion relation for the dust-acoustic waves in a self-gravitating dusty plasma is obtained. It is shown that the dust charge variations have significant effects. It increases the growth rate of instability and the instability cutoff wavenumbers. It is found that by increasing the value of the ions temperature and the absolute value of the equilibrium dust charge, the cutoff wavenumber decreases and the stability region is extended.

  3. Effect of adiabatic variation of dust charges on dust acoustic solitary waves in magnetized dusty plasmas

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Shan

    2004-01-01

    The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.

  4. Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 郎和

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may excite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  5. Dust acoustic shock wave generation due to dust charge variation in a dusty plasma

    Indian Academy of Sciences (India)

    M R Gupta; S Sarkar; M Khan; Samiran Ghosh

    2003-12-01

    In a dusty plasma, the non-adiabaticity of the charge variation on a dust grain surface results in an anomalous dissipation. Analytical investigation shows that this results in a small but finite amplitude dust acoustic (DA) wave propagation which is described by the Korteweg–de Vries–Burger equation. Results of the numerical investigation of the propagation of large-amplitude dust acoustic stationary shock wave are presented here using the complete set of non-linear dust fluid equations coupled with the dust charging equation and Poisson equation. The DA waves are of compressional type showing considerable increase of dust density, which is of significant importance in astrophysical context as it leads to enhanced gravitational attraction considered as a viable process for star formation. The DA shock transition to its far downstream amplitude is oscillatory in nature due to dust charge fluctuations, the oscillation amplitude and shock width depending on the ratio pd/ch and other plasma parameters.

  6. Effect of dust charge variation on dust—acoustic solitary waves in a magnetized two—ion—temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    XueJu-Kui; LangHe

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  7. Influence of superthermal plasma particles on the Jeans instability in self-gravitating dusty plasmas with dust charge variations

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi Pajouh, H., E-mail: hakimi@alzahra.ac.ir; Afshari, N.

    2016-11-25

    Highlights: • The current of superthermal electrons and ions on the dust surface is calculated. • Increase in the superthermal particles number increases growth rate of instability. • Increase in the superthermal particles number decreases DA waves frequency. • By decreasing κ, the ratio of electric to self-gravitational force is decreased. • Dust charge variations decreases the ratio of electric to self-gravitational force. - Abstract: A theoretical analysis of the dust acoustic waves in the self-gravitating dusty plasmas is presented within the consideration of the superthermal electrons, ions and dust charge variations. For this purpose, the current of electrons and ions to the dust surface is calculated, and then the dispersion relation for the dust acoustic waves is obtained. It is shown that by increasing the number of superthermal particles, the growth rate of the instability increases, the dust acoustic waves frequency decreases, and the instability region is extended to the smaller wavelengths. Moreover, it is found that the ratio of the electric force to the self-gravitational force is decreased in the presence of the superthermal particles, and dust charge variations.

  8. Charged Dust Aggregate Interactions

    Science.gov (United States)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  9. Lost in Jupiter's Shadow: Can Resonant Charge Variations Explain Dust Grain Sizes in the Main Ring?

    Science.gov (United States)

    Jontof-Hutter, Daniel; Hamilton, D. P.

    2012-10-01

    Interplanetary impacts onto the tiny moons Metis and Adrastea replenish Jupiter's main ring with dusty ejecta of all sizes. The equilibrium size distribution present in the rings at a given time is a function of production and loss mechanisms, both of which may be vary with particle size. Loss mechanisms include collisions and dynamical processes. Here we explore some of the latter. Grains tend to pick up negative electric charges due to motion through Jupiter's plasma environment, and positive charges from the photoelectric effect of sunlight. The periodic interruption of sunlight in Jupiter's shadow causes the equilibrium electric charge, and hence the Lorentz force, to resonate with the Kepler orbital frequency. The eccentricity increases for grains moving radially inwards during the shadow transit, and decreases when grains move outward in the shadow, hence the azimuthal location of pericenter is important. For smaller grains, the eccentricity increases monotonically until they collide with Jupiter. For much larger grains, precession due to both the Lorentz force and planetary oblateness causes the eccentricity to oscillate periodically. We explore the shadow instability in the main ring for a variety of uniform plasma density models, comparing numerical data with a semi-analytic approximation. We find that the effect of the shadow dwindles in importance for plasma that is either too sparse or too dense. In sparse plasma, the charging timescale slows, limiting the change in electric potential from sunlight to shadow. In dense plasma, charging currents from the plasma overwhelm the photoelectric effect in sunlight, also resulting in a small change in electric potential. Between these two regimes, the shadow resonance efficiently removes grains up to a particular size threshold in the main ring. This size-dependent loss mechanism may contribute to the observed flattening in the size distribution index for smaller grains.

  10. Photoelectric Charging of Dust in Space

    Science.gov (United States)

    Sickafoose, A. A.; Robertson, S.; Colwell, J. E.; Horanyi, M.

    1999-09-01

    Illumination of surfaces in space by solar ultraviolet light produces photoelectrons which form a plasma sheath near the surface. Dust particles on the surface can acquire a charge and be transported horizontally and vertically by electric fields within the sheath. On the moon, suspended dust grains have been observed on multiple occasions, and there is evidence for horizontal lunar dust transport. Photoelectron production and dust particle charging are also expected to be significant near the surface of Mars. Understanding the photoelectric charging properties of dust can help explain the observed dynamics of lunar dust and help predict the behavior of dust on surfaces of planetary satellites, asteroids, planetary ring particles, and planetesimals. In addition, any human or spacecraft activity on planetary bodies is affected by dust dynamics near the surface. We have examined the photoelectric charging of dust dropped through UV illumination and dust dropped past a UV illuminated surface having a photoelectron sheath. Experiments are performed in vacuum with illumination from a 1 kW Hg-Xe arc lamp. The lamp produces a spectrum down to ~ 200 nm ( ~ 6.2 eV), and the photoemitter is a 12 cm diameter zirconium plate. Dust dropped through UV illumination loses electrons due to photoemission, while dust dropped past an illuminated surface gains electrons from the photoelectron sheath. Initial results are consistent with expected charge calculated from the work function of the materials, the energy of incoming photons, and the capacitance of the grains. Photoelectric charging experiments have been done for several different kinds of dust 90-106 mu m in diameter. We will present the results of these experiments and compare the charging properties of zinc, copper, graphite, Martian regolith simulant (JSC Mars-1), lunar regolith simulant (JSC-1), and lunar soil from an Apollo 17 sample. This research is supported by NASA.

  11. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P

    2016-01-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  12. Dust Charging in Electronegative SiH4 Plasmas

    Institute of Scientific and Technical Information of China (English)

    DUAN Ping; WANG Zheng-Xiong; LIU Yue; LIU Jin-Yuan; WANG Xiao-Gang

    2005-01-01

    @@ We theoretically investigate the dust charging in electronegative silane (SiH4) plasmas, taking into account the effects of UV photodetachment. It is found that UV photodetachment could significantly lower the dust negative charge and even makes dust grains be positively charged under some special conditions. In addition, the other parameters, involving the negative ion and dust number densities, electron temperature and dust radius, have great effects upon the dust charging.

  13. Charging and Growth of Fractal Dust Grains

    CERN Document Server

    Matthews, Lorin S

    2007-01-01

    The structure and evolution of aggregate grains formed within a plasma environment are dependent upon the charge acquired by the micron-sized dust grains during the coagulation process. The manner in which the charge is arranged on developing irregular structures can affect the fractal dimension of aggregates formed during collisions, which in turn influences the coagulation rate and size evolution of the dust within the plasma cloud. This paper presents preliminary models for the charge and size evolution of fractal aggregates immersed in a plasma environment calculated using a modification to the orbital-motion-limited (OML) theory. Primary electron and ion currents incident on points on the aggregate surface are determined using a line-of-sight (LOS) approximation: only those electron or ion trajectories which are not blocked by another grain within the aggregate contribute to the charging current. Using a self-consistent iterative approach, the equilibrium charge and dipole moment are calculated for the d...

  14. Ionization and Dust Charging in Protoplanetary Disks

    Science.gov (United States)

    Ivlev, A. V.; Akimkin, V. V.; Caselli, P.

    2016-12-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance of the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.

  15. Imaging Charged Dust in Laboratory Plasmas

    Science.gov (United States)

    Goree, John

    2010-05-01

    Laboratory experiments with dust grains are described in this talk, which will include numerous images and videos from the experiments. In all the experiments, grains are immersed in plasma, and they are electrically charged. In the first experiment, grains are synthesized under conditions that simulate the outflow of carbon stars. These grains are grown in the gas phase with a carbon vapor. They grow by homogeneous nucleation, accretion, and coagulation. After growth, they are collected and imaged by scanning electron microscopy. These images reveal the grain morphology. In the second experiment, the structure and dynamics of the liquid or solid-phase centers of a star is simulated in the laboratory using charged grains (precision micron-size spheres) as proxies for protons. These grains are imaged by video microscopy, revealing how they self-organize, arranging themselves spatially in a crystalline-like lattice due to mutual Coulomb repulsion. Video microscopy allows tracking the motion of the microspheres and calculating their velocities. This measurement allows the experimenter to detect waves corresponding to random thermal motion, and from the properties of these waves one can measure the grain's charge. In the third experiment, sound waves in a cloud of charged dust are observed using high-speed video cameras. The compression and rarefaction of the dust-grain number density are easily observed in the video. Work supported by NSF and NASA.

  16. Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long

    2011-01-01

    Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.

  17. Stochastic Theory of Dust-Grain Charging in Low-Pressure Plasmas

    CERN Document Server

    Abolmasov, S N; Cabarrocas, P Roca i

    2013-01-01

    Charging of dust grains in low-pressure plasmas is reviewed critically. A theory based on the Fokker-Planck equation and orbital motion limited approximation is proposed. The theory predicts that dust grains can acquire a positive charge in low-pressure electropositive plasmas having a sufficiently high plasma potential, in agreement with experimental observations. It is also shown that variations in the plasma potential (electron temperature) can lead to spatial regions in which grains have opposite charges.

  18. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    Indian Academy of Sciences (India)

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  19. Characteristics of nonlinear dust acoustic waves in a Lorentzian dusty plasma with effect of adiabatic and nonadiabatic grain charge fluctuation

    Directory of Open Access Journals (Sweden)

    Raicharan Denra

    2016-12-01

    Full Text Available In this paper, characteristics of small amplitude nonlinear dust acoustic wave have been investigated in a unmagnetized, collisionless, Lorentzian dusty plasma where electrons and ions are inertialess and modeled by generalized Lorentzian Kappa distribution. Dust grains are inertial and equilibrium dust charge is negative. Both adiabatic and nonadiabatic fluctuation of charges on dust grains have been taken under consideration. For adiabatic dust charge variation reductive perturbation analysis gives rise to a KdV equation that governs the nonlinear propagation of dust acoustic waves having soliton solutions. For nonadiabatic dust charge variation nonlinear propagation of dust acoustic wave obeys KdV-Burger equation and gives rise to dust acoustic shock waves. Numerical estimation for adiabatic grain charge variation shows the existence of rarefied soliton whose amplitude and width varies with grain charges. Amplitude and width of the soliton have been plotted for different electron Kappa indices keeping ion velocity distribution Maxwellian. For non adiabatic dust charge variation, ratio of the coefficients of Burger term and dispersion term have been plotted against charge fluctuation for different kappa indices. All these results approach to the results of Maxwellian plasma if both electron and ion kappa tends to infinity.

  20. Characteristics of nonlinear dust acoustic waves in a Lorentzian dusty plasma with effect of adiabatic and nonadiabatic grain charge fluctuation

    Science.gov (United States)

    Denra, Raicharan; Paul, Samit; Sarkar, Susmita

    2016-12-01

    In this paper, characteristics of small amplitude nonlinear dust acoustic wave have been investigated in a unmagnetized, collisionless, Lorentzian dusty plasma where electrons and ions are inertialess and modeled by generalized Lorentzian Kappa distribution. Dust grains are inertial and equilibrium dust charge is negative. Both adiabatic and nonadiabatic fluctuation of charges on dust grains have been taken under consideration. For adiabatic dust charge variation reductive perturbation analysis gives rise to a KdV equation that governs the nonlinear propagation of dust acoustic waves having soliton solutions. For nonadiabatic dust charge variation nonlinear propagation of dust acoustic wave obeys KdV-Burger equation and gives rise to dust acoustic shock waves. Numerical estimation for adiabatic grain charge variation shows the existence of rarefied soliton whose amplitude and width varies with grain charges. Amplitude and width of the soliton have been plotted for different electron Kappa indices keeping ion velocity distribution Maxwellian. For non adiabatic dust charge variation, ratio of the coefficients of Burger term and dispersion term have been plotted against charge fluctuation for different kappa indices. All these results approach to the results of Maxwellian plasma if both electron and ion kappa tends to infinity.

  1. Dust Charging in the Sheath of an Electronegative Plasma

    Institute of Scientific and Technical Information of China (English)

    王正汹; 王文春; 刘悦; 刘金远; 王晓钢

    2004-01-01

    We theoretically investigate the dust charging in the sheath of an electronegative plasma, by using a single dust grain model based on a previous sheath structure [Chin. Phys. Lett 20 (2003) 1537] in which cold positive ions and hot negative ions have been assumed. It is found that dust grains are first charged negatively at the sheath edge and then begin to be charged positively in the sheath. Moreover, both the temperature ratio of electrons to negative ions and the density ratio of negative ions to positive ions have effects on the neutral point of the dust charge.

  2. Effect of secondary electron emission on nonlinear dust acoustic wave propagation in a complex plasma with negative equilibrium dust charge

    Science.gov (United States)

    Bhakta, Subrata; Ghosh, Uttam; Sarkar, Susmita

    2017-02-01

    In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma where equilibrium dust charge is negative. The primary electrons, secondary electrons, and ions are Boltzmann distributed, and only dust grains are inertial. Electron-neutral and ion-neutral collisions have been neglected with the assumption that electron and ion mean free paths are very large compared to the plasma Debye length. Both adiabatic and nonadiabatic dust charge variations have been separately taken into account. In the case of adiabatic dust charge variation, nonlinear propagation of dust acoustic waves is governed by the KdV (Korteweg-de Vries) equation, whereas for nonadiabatic dust charge variation, it is governed by the KdV-Burger equation. The solution of the KdV equation gives a dust acoustic soliton, whose amplitude and width depend on the secondary electron yield. Similarly, the KdV-Burger equation provides a dust acoustic shock wave. This dust acoustic shock wave may be monotonic or oscillatory in nature depending on the fact that whether it is dissipation dominated or dispersion dominated. Our analysis shows that secondary electron emission increases nonadiabaticity induced dissipation and consequently increases the monotonicity of the dust acoustic shock wave. Such a dust acoustic shock wave may accelerate charge particles and cause bremsstrahlung radiation in space plasmas whose physical process may be affected by secondary electron emission from dust grains. The effect of the secondary electron emission on the stability of the equilibrium points of the KdV-Burger equation has also been investigated. This equation has two equilibrium points. The trivial equilibrium point with zero potential is a saddle and hence unstable in nature. The nontrivial equilibrium point with constant nonzero potential is a stable node up to a critical value of the wave velocity and a stable focus above it. This critical

  3. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  4. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  5. Charge Fluctuation of Dust Grain and Its Impact on Dusty-Acoustic Wave Damping

    CERN Document Server

    Atamaniuk, B

    2007-01-01

    We consider the influence of dust charge fluctuations on damping of the dust-ion-acoustic waves. It is assumed that all grains have equal masses but charges are not constant in time - they may fluctuate in time. The dust charges are not really independent of the variations in the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In the case considered here, when the temperature of electrons is much greater than the temperature of the ions and the temperature of electrons is not great enough for further ionization of the ions, we show that attenuation of the acoustic wave depends only on one phenomenological coefficient

  6. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Schmidt, Christian [IEAP, Christian-Albrechts-Universität, Kiel (Germany)

    2015-05-15

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed.

  7. Charging of Fractal Dust Agglomerates in a Plasma Environment

    CERN Document Server

    Matthews, L S

    2007-01-01

    The charge on micron-sized dust grains plays a crucial role in the structure and evolution of forming aggregates within the dust population during the coagulation process. The manner in which the charge is arranged on developing irregular structures can affect the fractal dimension of aggregates formed during collisions, which in turn influences the coagulation rate and size evolution of the dust cloud. Preliminary models for the charge evolution on fractal aggregates immersed in a plasma environment calculated using a modification to the orbital-motion-limited (OML) theory are presented in this paper. The model calculates currents to each point on the aggregate surface using a line-of-sight (LOS) approximation: only those electron or ion trajectories which are not blocked by another grain within the aggregate contribute to the charging current. Both the total charge and the dipole moment are calculated for the dust aggregate. While most coagulation theories assume that it is difficult for like-charged grains...

  8. Planetary Magnetosphere Probed by Charged Dust Particles

    Science.gov (United States)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  9. Interaction of solitary waves in magnetized warm dusty plasmas with dust charging effects

    Institute of Scientific and Technical Information of China (English)

    Xue Ju-Kui

    2006-01-01

    In consideration of adiabatic dust charge variation, the combined effect of the external magnetized field and the dust temperature on head-on collision of the three-dimensional dust acoustic solitary waves is investigated. By using the extended Poincaré-Lighthill-Kuo method, the phase shifts and the trajectories of two solitons after the collision are obtained. The effects of the magnitude and the obliqueness of the external magnetic field and the dust temperature on the solitary wave collisions are discussed in detail.

  10. Dust-acoustic solitary waves in dusty plasma with variable dust charge

    CERN Document Server

    Forozani, Gh

    2011-01-01

    In this article we are going to consider dust acoustic wave in dusty plasma whose constituents are inertial negative charged dust particles, Boltzmann distributed electrons and non-thermal distributed ions with variable dust charge. Using reductive perturbation method, we have obtained Korteweg-de Veries (kdv) and modified kdv(mkdv) equations. A Sagdeev potential for the system and stability conditions for solitonic solution are also derived.

  11. Stability Dust-Ion-Acoustic Wave in Dusty Plasmas With Stream -Influence of Charge Fluctuation of Dust Grains

    CERN Document Server

    Atamaniuk, B; Atamaniuk, Barbara; Zuchowski, Krzysztof

    2007-01-01

    There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the...

  12. Coherent structures in presence of dust charge fluctuations

    Indian Academy of Sciences (India)

    M Kakati; K S Goswami

    2000-05-01

    This paper shows the formation of nonlinear coherent structures in a dusty plasma in presence of dust charge fluctuations. Using the typical plasma parameters the potential of the nonlinear coherent structures is derived.

  13. Simulation of the electrostatic charging of Philae on 67P/Churyumov-Gerasimenko and of its interaction with the dusts.

    Science.gov (United States)

    Hess, S. L. G.; Sarrailh, P.; Matéo-Vélez, J.-C.; Forest, J.; Jeanty-Ruard, B.; Cipriani, F.

    2015-12-01

    ROSETTA's probe Philae landed on a dust covered soil. This dust may be ejected from the ground through many mechanisms (other than spacecraft landing) : micro-meteorite impacts, electrostatic charging and soil outgassing. In any cases, the dust grains charge electrostatically in the ambient plasma and this charge impacts the dust interaction with the spacecraft, which is itself differentially charged due to its partial exposure to the solar UV light. Using the DUST addition to the Spacecraft-Plasma Interaction Software (SPIS) routinely used to compute the charge state of the spacecraft surfaces, we simulate the electrostatic charging of Philae as well as its dust environment. SPIS-DUST allows one to compute the electrostatic charging of the dust grains on the ground and in the plasma, and to model their ejection and their recollection by the probe. We simulated one cometary day of the Philae environment at different distances from the sun to observe the variation of the dust collection with Philae's local time.

  14. Abnormal Kinetic Energy of Charged Dust Particles in Plasmas

    NARCIS (Netherlands)

    Norman, G.; Stegailov, V.; Timofeev, A.

    A mechanism of the increase of the average kinetic energy of charged dust particles in gas discharge plasmas is suggested. Particle charge fluctuation is the reason for the appearance of forced resonance, which heals vertical oscillations. The energy transfer from vertical oscillations to the

  15. Abnormal Kinetic Energy of Charged Dust Particles in Plasmas

    NARCIS (Netherlands)

    Norman, G.; Stegailov, V.; Timofeev, A.

    2010-01-01

    A mechanism of the increase of the average kinetic energy of charged dust particles in gas discharge plasmas is suggested. Particle charge fluctuation is the reason for the appearance of forced resonance, which heals vertical oscillations. The energy transfer from vertical oscillations to the horizo

  16. Role of nonthermal electrons on dust ion acoustic double layer with variable dust charge

    Science.gov (United States)

    Borah, Prathana; Gogoi, Deepshikha; Das, Nilakshi

    2016-01-01

    The presence of nonthermal electron may play an important role in the formation of nonlinear structures in plasma. On the other hand, fluctuation of dust charge is an important and unique feature of complex plasma and it gives rise to a dissipative effect in the system leading to the formation of nonlinear structures due to the balance between nonlinearity and dissipation. In this paper, the propagation of nonlinear dust ion acoustic (DIA) wave in unmagnetized collisionless dusty plasma consisting of ions, nonthermal electrons and dust grains with variable negative charge has been investigated using the Sagdeev potential method. The existence domain of rarefactive double layer (DL) in the DIA wave has been investigated for the range of plasma parameters. The real potential has been obtained by numerically solving the Poisson equation and dust charging equation. It is observed that the presence of nonthermal electrons strengthens the DIA DL.

  17. Transport of charged dust grains into the galactic halo

    CERN Document Server

    Khoperskov, S A

    2014-01-01

    We develop a 3D dynamical model of dust outflows from galactic discs. The outflows are initiated by multiple SN explosions in a magnetized interstellar medium (ISM) with a gravitationally stratified density distribution. Dust grains are treated as particles in cells interacting collisionally with gas, and forced by stellar radiation of the disc and Lorenz force. We show that magnetic field plays a crucial role in accelerating the charged dust grains and expelling them out of the disc: in 10--20~Myr they can be elevated at distances up to 10~kpc above the galactic plane. The dust-to-gas ratio in the outflowing medium varies in the range $5 \\cdot 10^{-4} - 5 \\cdot 10^{-2}$ along the vertical stream. Overall the dust mass loss rate depends on the parameters of ISM and may reach up to $3\\times 10^{-2}$~\\Msun~yr$^{-1}$

  18. Acceleration of Small Dust Grains due to Charge Fluctuations

    CERN Document Server

    Hoang, Thiem

    2011-01-01

    We consider the acceleration of very small dust grains including Polycyclic Aromatic Hydrocarbons (PAHs) arising from the electrostatic interactions of dust grains that have charge fluctuates in time due to charging events. We simulate the charge fluctuations of very small grains due to their sticking collisions with electrons and ions in plasma and the emission of photoelectrons by UV photons using Monte Carlo method. We identify the acceleration induced by the charge fluctuations as the dominant acceleration mechanism of very small grains in the diffuse interstellar medium (ISM). We show that this acceleration mechanism is more efficient for environments with low ionization, where the charge fluctuations are slow but have a large amplitude. We also discuss the implications of the present mechanism for grain coagulation and shattering in the diffuse ISM, molecular clouds and protoplanetary disks.

  19. Charge of dust particles in a particle chain

    CERN Document Server

    Yousefi, Razieh; Matthews, Lorin Swint; Hyde, Truell W

    2016-01-01

    Charged dust particles form structures which are extended in the vertical direction in the electrode sheath of a rf discharge when confined within a glass box. The charge on each particle as a function of height varies due to the changing plasma conditions and the wakefield of upstream particles. Here an analysis of the equilibrium state of chains of varying number of particles is analyzed to determine the charge on each particle within a vertically extended chain as well as the magnitude of the positive wakefield charge.

  20. Dust particle charge distribution in a stratified glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sukhinin, Gennady I [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Fedoseev, Alexander V [Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Lavrentyev Ave., 1, Novosibirsk 630090 (Russian Federation); Ramazanov, Tlekkabul S [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Dzhumagulova, Karlygash N [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan); Amangaliyeva, Rauan Zh [Institute of Experimental and Theoretical Physics, Al Farabi Kazakh National University, Tole Bi, 96a, Almaty 050012 (Kazakhstan)

    2007-12-21

    The influence of a highly pronounced non-equilibrium characteristic of the electron energy distribution function in a stratified dc glow discharge on the process of dust particle charging in a complex plasma is taken into account for the first time. The calculated particle charge spatial distribution is essentially non-homogeneous and it can explain the vortex motion of particles at the periphery of a dusty cloud obtained in experiments.

  1. Dust-Acoustic Waves in Strongly Coupled Dusty Plasmas Containing Variable-Charge Impurities

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HE Kai-Fen; M. Y. Yu

    2000-01-01

    A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable charge impurities is given. Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account. It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.

  2. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.

    2015-12-01

    > ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.

  3. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  4. Complex role of secondary electron emissions in dust grain charging in space environments: measurements on Apollo 11 & 17 dust grains

    Science.gov (United States)

    Abbas, Mian; Tankosic, Dragana; Spann, James; Leclair, Andre C.

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, by electron/ion collisions, and sec-ondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstel-lar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynam-ical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10-400 eV energy range. The charging rates of positively and negatively charged particles of 0.2 to 13 µm diam-eters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong parti-cle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  5. Seasonal variations of dust record in the Muztagata ice cores

    Institute of Scientific and Technical Information of China (English)

    WU GuangJian; YAO TanDong; XU BaiQing; TIAN LiDe; LI Zhen; DUAN KeQin

    2008-01-01

    Based on the oxygen isotope ratio and microparticle record in ice cores recovered at Mt.Muztagata,Eastern Pamirs,the seasonal variations of atmospheric dust have been reconstructed for the past four decades.High dust concentrations and coarser particle grains have the similar trend with oxygen iso-tope value.Our statistical results indicate that 50%--60% high dust concentration samples occur dur-ing the season with high oxygen isotope values (summer),while low dust storm frequency during spring and winter.Back-trajectory analysis shows that the air mass hitting Muztagata predominately came from West Asia (such as Iran-Afghanistan Plateau) and Central Asia,which are the main dust source area for Muztagata.Dust storms in those source areas most frequently occur during summer (from May to August),while frequent dust storm events in northern China mainly occur during spring (March to May).Regions in the path of Asian dust transport,such as in Japan,the North Pacific,and Greenland,also show high dust concentrations during spring (from March to May).Our results indicate that dust storms have different seasonality in different regions within Asia.

  6. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  7. Irregularity excitation associated with charged dust cloud boundary layers

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.

    2012-02-01

    Irregularity generation associated with dust cloud expansion through a background plasma along a magnetic field is investigated. Because of the dust charging process, a boundary layer is produced, separating the dusty plasma generated and the background plasma. It is observed that under appropriate conditions, localized plasma irregularities may be generated in this boundary layer. Theoretical and computational models are used to study the evolution of relevant plasma instabilities thought to play a dominant role in irregularity production. An electron flow develops along the boundary layer of the dust cloud, and plasma irregularities are generated in response to this flow. Several aspects of the cloud's structure (thickness of the boundary layer, average particle size and density, collisional processes, and cloud expansion speed) and the ambient plasma are varied to determine the effect of these quantities on the resulting irregularities. The relevance of these results to past experimental observations in space and the laboratory for applications to the expansion of naturally or artificially created dust clouds is discussed.

  8. Effects of Adiabatic Dust Charge Fluctuation and Particles Collisions on Dust-Acoustic Solitary Waves in Three-Dimensional Magnetized Dusty Plasmas

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-Hong; WEI Nan-Xia

    2009-01-01

    Taking into account the combined effects of the external magnetic field, adiabatic dust charge fluctuation and collisions occurring between the charged dust gains and neutral gas particles (dust-neutral collisions), the dust-acoustic solitary waves in three-dimensional uniform dusty plasmas are investigated analytically. By using the reductive perturbation method, the Korteweg-de Vries (KdV) equation governing the dust-acoustic solitary waves is obtained. The present analytical results show that only rarefactive solitary waves exist in this system. It is also found that the effects of the wave vector along the z-direction, dust charge variation, collisional frequency, the plasma density, and temperature ratio can significantly influence the characteristics of low-frequency wave modes. Moreover, for the collisional dusty plasmas, there is a certain critical value μc of the plasma density ratio #, if μ < μc, the width of the waves increases with μ, otherwise the width of waves decreases with μ.

  9. Charged dust and shock phenomena in the Solar System

    Directory of Open Access Journals (Sweden)

    S. I. Popel

    2006-01-01

    Full Text Available The results on shock phenomena in dusty plasmas of the Solar System are reviewed. The problems of dust ion acoustic bow shock in interaction of the solar wind with dusty cometary coma and formation of transient atmospheres of atmosphereless cosmic bodies such as Moon, Mercury, asteroids and comets are considered. The latter assumes the evolution of meteoroid impact plumes and production of charged dust grains due to the condensation of both the plume substance and the vapor thrown from the crater and the surrounding regolith layer. Physical phenomena occurring during large meteoroid impacts can be modeled with the aid of active rocket experiments, which involve the release of some gaseous substance in near-Earth space. New vistas in investigation of shock processes in natural dusty plasmas are determined.

  10. Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.

    2008-01-01

    The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.

  11. Orbital-motion-limited theory of dust charging and plasma response

    CERN Document Server

    Tang, Xian-Zhu

    2015-01-01

    The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely-used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important ...

  12. Harrison transformation of hyperelliptic solutions and charged dust disks

    CERN Document Server

    Klein, C

    2002-01-01

    We use a Harrison transformation on solutions to the stationary axisymmetric Einstein equations to generate solutions of the Einstein-Maxwell equations. The case of hyperelliptic solutions to the Ernst equation is studied in detail. Analytic expressions for the metric and the multipole moments are obtained. As an example we consider the transformation of a family of counter-rotating dust disks. The resulting solutions can be interpreted as disks with currents and matter with a purely azimuthal pressure or as two streams of freely moving charged particles. We discuss interesting limiting cases as the extreme limit where the charge becomes identical to the mass, and the ultrarelativistic limit where the central redshift diverges.

  13. Dust ion-acoustic shock waves due to dust charge fluctuation in a superthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alinejad, H., E-mail: alinejad@nit.ac.ir [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of); Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Tribeche, M. [Plasma Physics Group, Faculty of Sciences – Physics, University of Bab-Ezzouar (Algeria); Mohammadi, M.A. [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-11-14

    The nonlinear propagation of dust ion-acoustic (DIA) shock waves is studied in a charge varying dusty plasma with electrons having kappa velocity distribution. We use hot ions with equilibrium streaming speed and a fast superthermal electron charging current derived from orbit limited motion (OLM) theory. It is found that the presence of superthermal electrons does not only significantly modify the basic properties of shock waves, but also causes the existence of shock profile with only positive potential in such plasma with parameter ranges corresponding to Saturn's rings. It is also shown that the strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. -- Highlights: ► The presence of superthermal electrons causes the existence of shock waves with only positive potential. ► The strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. ► As the electrons evolve toward their thermodynamic equilibrium, the shock structures are found with smaller amplitude.

  14. A note on dust grain charging in space plasmas

    Science.gov (United States)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  15. Influence of solar wind ions on photoemission charging of dust

    Science.gov (United States)

    Nouzak, Libor; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2016-04-01

    The lunar surface covered by a layer of dust grains is exposed to solar wind particles and photons coming from the Sun on the sunlit side. Solar wind ions cause sputtering of dust grains or can be implanted into grains. We suppose that as a consequence of ion implantation, an additional energy is transferred to grains, more valence band electrons are excited, and the photoelectron yield is increased. An increase of the photoelectron current causes the enhanced density of electrons that form a sheet above the illuminated lunar surface. Thus, an influence of solar wind ions on the Debye length and photoelectron sheet formation is expected. We present laboratory estimations of work functions and photoelectron yields of a single micron-sized silica grain before and after ion implantation. The silica grain used as a lunar simulant is caught in the electrodynamic trap. Grain's specific charge is evaluated by an analysis of the grain motion within the trap, while its work function is determined from observations of a time evolution of the charge-to-mass ratio when the grain is irradiated by photons of different emission lines. By comparison of the photoelectron current (from grain) with photon flux (from UV source), we establish the photoelectron yield of the trapped object. The influence of ion implantation is thoroughly analyzed and discussed.

  16. Variational multiscale models for charge transport.

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  17. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz

    2009-09-15

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  18. Attraction of positively charged dust grains in a plasma

    Science.gov (United States)

    Delzanno, Gian Luca; Lapenta, Giovanni

    2006-10-01

    In two recent papers, Delzanno et al. [1-2] have pointed out that an electron emitting dust grain immersed in a plasma can sustain profiles of the shielding potential having an attractive potential well. The existence of attractive potential wells around dust grains in a plasma is of considerable interest as it provides an alternative mechanism for the attraction of the grains. Moreover, this mechanism can play an important role in astrophysical scenarios, for example in star forming regions where a substantial UV field is responsible for grain photoemission. We have therefore developed a three-dimensional PIC code with the aim of studying the collapse of a system of grains undergoing gravitational and electrostatic forces (the latter modeled via the potential well discovered in Refs. [1,2]). We will show how the attractive potential well can indeed lead to the collapse of the system, at rates which can be higher with respect to the pure gravitational analogue. Further on, a pure monotonic Debye-Huckel electrostatic potential can impede the collapse, depending on the charge to mass ratio of the grains. These results are in agreement with the predictions of the linear theory we have recently developed [3]. [1] G. L. Delzanno, G. Lapenta, M. Rosenberg, Phys. Rev. Lett. 92 (3), 035002 (2004). [2] G. L. Delzanno, A. Bruno, G. Sorasio, G. Lapenta, Phys. Plasmas 12, 062102 (2005). [3] G. L. Delzanno, G. Lapenta, Phys. Rev. Lett. 94, 175005 (2005).

  19. Type Ia Supernova Color Curves: Disentangling Intrinsic Variations from Dust

    Science.gov (United States)

    Bouzid, Samia; McCully, C.; Jha, S.

    2012-01-01

    Type Ia supernovae (SNe Ia) are important cosmological tools based on their use as "standard candles": as objects of similar intrinsic luminosity, their variations in apparent brightness are a reliable indication of relative distance. The more accurately we can measure and correct for variations in SN Ia brightness, the more precisely we can determine cosmological distances and place constraints on cosmological parameters including the Hubble constant and the nature of dark energy. Corrections for dust along the line of sight to the SN are usually based on its reddening effect; however, recent studies have shown that the relationship between extinction and reddening of SN light curves does not match canonical values for standard, Milky Way-like dust. It is likely that color variations intrinsic to the SNe themselves are confounding our ability to independently determine the dust extinction and reddening. Using ground-based photometry of several hundred SNe from the published literature, we present an analysis that attempts to disentangle the effects of dust and intrinsic color variations by looking at the time dependence of SNe Ia colors, controlling for light curve shape properties by empirically matching similar objects.

  20. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    Science.gov (United States)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-06-01

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  1. Effect of dust size distribution and dust charge fluctuation on dust ion-acoustic shock waves in a multi-ion dusty plasma

    Indian Academy of Sciences (India)

    WANG HONGYAN; ZHANG KAIBIAO

    2016-07-01

    The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary solutions are obtained by using the reductive perturbation method. The analytical and numerical results show that the height with polynomial dust size distribution is larger than that of the monosized dusty plasmas with the same dustgrains, but the thickness in the case of different dust grains is smaller than that of the monosized dusty plasmas. Furthermore, the moving speed of the shock waves also depend on different dust size distributions.

  2. Variations between Dust and Gas in the Diffuse Interstellar Medium

    CERN Document Server

    Reach, William T; Bernard, Jean-Philippe

    2015-01-01

    Using the Planck far-infrared and Arecibo GALFA 21-cm line surveys, we identified a set of isolated interstellar clouds (approximately degree-sized on the sky and comprising 100 solar masses) and assessed the ratio of gas mass to dust mass. Significant variations of the gas-to-dust ratio are found both from cloud to cloud and within regions of individual clouds; within the clouds, the atomic gas per unit dust decreases by more than a factor of 3 compared to the standard gas-to-dust ratio. Three hypotheses are considered. First, the apparently low gas-to-dust ratio could be due to molecular gas. Comparing to Planck CO maps, the brightest clouds have a H2/CO ratio comparable to galactic plane clouds, but a strong lower limit is placed on the ratio for other clouds, such that the required amount of molecular gas is far higher than would be expected based on the CO upper limits. Second, we consider self-absorbed 21-cm lines and find the optical depth must be approximately 3, significantly higher than found from s...

  3. Solitary waves in a dusty plasma with charge fluctuation and dust size distribution and vortex like ion distribution

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, K. [Department of Physics, J.C.C. College, Kolkata 700 033 (India); Mishra, Amar P. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India); Roy Chowdhury, A. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India)

    2006-07-15

    A modified KdV equation is derived for the propagation of non-linear waves in a dusty plasma, containing N different dust grains with a size distribution and charge fluctuation with electrons in the background. The ions are assumed to obey a vortex like distribution due to their non-isothermal nature. The standard distribution for the dust size is a power law. The variation of the soliton width is studied with respect to normalized size of the dust grains. A numerical solution of the equation is done by considering the soliton solution of the modified KdV as the initial pulse. It shows considerable broadening of the pulse variation of width with {beta} {sub 1} is shown.

  4. Electrostatic shock waves in a nonthermal dusty plasma with oppositely charged dust

    Science.gov (United States)

    Hossen, M. Mobarak; Nahar, L.; Alam, M. S.; Sultana, S.; Mamun, A. A.

    2017-09-01

    Theoretical and numerical investigations of dust acoustic shock waves (DASHWs) have been carried out in electron-depleted magnetized dusty plasmas (consisting of mobile positively charged as well as negatively charged dust particles, and nonextensive q-distributed ions). The both positively and negatively charged dust kinematic viscosities are taken into account to derive the Burgers equation. It is observed that the viscous force (acting on both polarity charged dust particles) is the dissipitive source and responsible for the formation of DASHWs. It is seen that the electron-depleted magnetized plasma supports both (positive and negative) polarity shock structures. It is also seen that the basic features (i.e., amplitude, width, polarity, phase speed, etc.) of DASHWs are modified by the effects of ion nonextensivity, coefficient of viscosity, oblique angle, negative-to-positive dust mass ratio, ratio of the number of electrons on a negatively charged dust-to-the number of protons on a positively charged dust, and the ratio of the ion number density-to-the negative dust number density. The results of our present investigation may be useful to study the various space and laboratory plasmas, where dissipation due to kinematic viscosity can not be neglected.

  5. Dust charge fluctuation effects on Langmuir waves with kappa distributed electrons

    Science.gov (United States)

    Jamshidi, M.; Rouhani, M. R.; Hakimi Pajouh, H.

    2016-03-01

    Using a kinetic description, dust charge fluctuations due to the inelastic collisions between dust particles and plasma particles are studied in unmagnetized dusty plasmas. Most astrophysical and space plasmas are observed to have non-Maxwellian high energy tail. Therefore, a kappa distribution for electrons in the equilibrium is assumed. The dispersion relation and damping rates for Langmuir waves are obtained. Considering the dust charge fluctuations increases the damping rate of Langmuir waves. It is shown that the damping rate of Langmuir waves depends on the spectral index and the dust density parameter.

  6. Attraction of likely charged nano-sized grains in dust-electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net [Physical-Chemical Institute for Environmental and Human Protection, Odessa 65082 (Ukraine)

    2016-01-15

    Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. The equilibrium state between attraction and repulsion of grains is demonstrated.

  7. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Directory of Open Access Journals (Sweden)

    M. Kassa

    2012-03-01

    Full Text Available We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  8. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Science.gov (United States)

    Kassa, M.; Rapp, M.; Hartquist, T. W.; Havnes, O.

    2012-03-01

    We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE) dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  9. Stimulated Brillouin scattering of an electromagnetic wave in weakly magnetized plasma with variably charged dust particles

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2009-10-01

    We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.

  10. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    Science.gov (United States)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  11. Dust-lower-hybrid instability with fluctuating charge in quantum plasmas

    Science.gov (United States)

    Jamil, M.; Ali, M.; Rasheed, A.; Zubia, K.; Salimullah, M.

    2015-03-01

    The instability of Dust-Lower-Hybrid (DLH) wave is examined in detail in the uniform dusty magnetoplasmas. The time dependent charging effects on dust particles around its equilibrium charge Qd0 are taken into account based on Orbit-Limited Probe theory. The quantum characteristics of the system like Bohm potential and Fermi degenerate pressure are dealt using the quantum hydrodynamic model of plasmas. The external magnetic field and size of the dust particles have new physical effects over the dissipative instability of DLH wave in the quantum plasma regime.

  12. The dust-acoustic mode in two-temperature electron plasmas with charging effects

    Indian Academy of Sciences (India)

    Zhong Xijuan; Chen Hui; Liu Nianhua; Liu Sanqiu

    2016-04-01

    Dust charging in an unmagnetized collisionless dusty plasma with two-temperature electrons was investigated based on the orbital motion limited theory, where the two-temperature electrons and ions are modelled by the Maxwellian distributions. Then by taking into account the effects of two-temperature electron and the associated charging fluctuations, the dispersion peculiarities of dust-acoustic waves are studied based on dust fluid dynamics. The present results show that the effect will introduce a dissipation on the mode, and the dispersion and the dissipation depend on the temperature ratio and number density ratio of hot and cold electrons.

  13. Dust-lower-hybrid instability with fluctuating charge in quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Ali, M. [Department of Physics, School of Natural Sciences, NUST, Islamabad 44000 (Pakistan); Rasheed, A. [Department of Physics, GC University, Faisalabad 38000 (Pakistan); Zubia, K. [Department of Physics, GC University, Lahore 54000 (Pakistan); Salimullah, M. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2015-03-15

    The instability of Dust-Lower-Hybrid (DLH) wave is examined in detail in the uniform dusty magnetoplasmas. The time dependent charging effects on dust particles around its equilibrium charge Q{sub d0} are taken into account based on Orbit-Limited Probe theory. The quantum characteristics of the system like Bohm potential and Fermi degenerate pressure are dealt using the quantum hydrodynamic model of plasmas. The external magnetic field and size of the dust particles have new physical effects over the dissipative instability of DLH wave in the quantum plasma regime.

  14. Dissipative dust-acoustic shock waves in a varying charge electronegative magnetized dusty plasma with trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, Mustapha [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-08-15

    The combined effects of an oblique magnetic field and electron trapping on dissipative dust-acoustic waves are examined in varying charge electronegative dusty plasmas with application to the Halley Comet plasma (∼10{sup 4} km from the nucleus). A weakly nonlinear analysis is carried out to derive a modified Korteweg-de Vries-Burger-like equation. Making use of the equilibrium current balance equation, the physically admissible values of the electron trapping parameter are first constrained. We then show that the Burger dissipative term is solely due to the dust charge variation process. It is found that an increase of the magnetic field obliqueness or a decrease of its magnitude renders the shock structure more dispersive.

  15. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma

    CERN Document Server

    Yousefi, Razieh; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-01-01

    Understanding the agglomeration of dust particles in complex plasmas requires a knowledge of the basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold coated mono-disperse spherical melamine-formaldehyde monomers in a radio-frequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining 3D structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  16. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  17. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  18. Seasonal variation in dust events and the causes of the variation in the Tarim Basin,China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We analyzed dust event occurrence and its seasonal distribution at 16 sites in the Tarim Basin,China.Although the overall frequency of dust events was the highest in spring in this region,its variation in other seasons could be classified into three patterns:(1) frequency of dust events in autumn > that in summer > that in winter(at the Kashi and Kuche sites);(2) frequency in summer > that in winter > that in autumn(at the Ruoqiang site);and(3) frequency in summer > that in autumn > that in winter(at all other areas of the Tarim Basin).The frequency of dust events and their seasonal variations in the Tarim Basin were mainly controlled by wind speed and locally available dust sources;the former was the key control when dust sources did not differ significantly.The seasonal variation in evaporation had a smaller,but still significant effect on the frequency of dust events.

  19. Long-Term Variations, Signatures, Sources of Asian Dust and Role of Climate Change Versus Desertification in Asian Dust Emission

    Institute of Scientific and Technical Information of China (English)

    X.Y. Zhang; S.L. Gong; T.L. Zhao; R. Arimoto; Y.Q. Wang; Z.J. Zhou

    2004-01-01

    @@ For long-term variations and elemental signatures of Asian dust aerosol, changes in mass, twenty elemental concentrations over the period 2001~2003 were assessed from five surface-based stations in western, northern, northeast deserts, the Loess Plateau and the coastal areas in China. Together with the back trajectory analyses and visibility observations, the elemental signatures of soil dust aerosol from different air-mass clusters were characterized for the dust storm (DS) and non-dust storm (N-DS)conditions, respectively.

  20. Nonlinear propagation of dust-acoustic solitary waves in a dusty plasma with arbitrarily charged dust and trapped electrons

    Indian Academy of Sciences (India)

    O Rahman; A A Mamun

    2013-06-01

    A theoretical investigation of dust-acoustic solitary waves in three-component unmagnetized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA) waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead of KdV). The reductive perturbation method was employed to study the basic features (amplitude, width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped electrons. The implications of our results in space and laboratory plasmas are briefly discussed.

  1. Effect of trapped ions and nonequilibrium electron-energy distribution function on dust-particle charging in gas discharges.

    Science.gov (United States)

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2009-03-01

    Dust-particles charging in a low-pressure glow discharge was investigated theoretically. The dust-particle charge was found on the basis of a developed self-consistent model taking into account the nonequilibrium character of electron distribution function and the formation of an ionic coat composed of bound or trapped ions around the dust particle. The dust-particle charge, the radial distributions of electron density, free and trapped ions densities, and the distribution of electrostatic potential were found. It was shown that the non-Maxwellian electron distribution function and collisional flux of trapped ions both reduce the dust-particle charge in comparison with that received with the help of the conventional orbital motion limited (OML) model. However, in rare collisional regimes in plasma when the collisional flux is negligible, the formation of ionic coat around a particle leads to a shielding of the proper charge of a dust particle. In low-pressure experiments, it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ions. The calculated effective dust particle charge is in fairly good agreement with the experimental measurements of dust-particle charge dependence on gas pressure.

  2. The Effect of the Charge Fluctuation of Dust Particles on Ion-acoustic Wave Excited Through Ioniza tion Instability

    Institute of Scientific and Technical Information of China (English)

    华建军; 刘金远; 马腾才

    2002-01-01

    The effect of the charge fluctuation of dust particles on ion acoustic wave (IAW) excited through ionization instability was investigated. The hydrodynamic equations and linear time-dependent perturbation theory served as the starting point of theory, by which the dispersion relation and growth rate of the IAW were given. By comparing the results with the case of constant dust charges, it was found that the charge fluctuation of dust particles reduces the instability of the wave mode.

  3. Variation of Inner Radius of Dust Torus in NGC4151

    CERN Document Server

    Koshida, Shintaro; Kobayashi, Yukiyasu; Minezaki, Takeo; Sakata, Yu; Sugawara, Shota; Enya, Keigo; Suganuma, Masahiro; Tomita, Hiroyuki; Aoki, Tsutomu; Peterson, Bruce A

    2009-01-01

    The long-term optical and near infrared monitoring observations for a type 1 act ive galactic nucleus NGC 4151 were carried out for six years from 2001 to 2006 b y using the MAGNUM telescope, and delayed response of flux variations in the $K(2.2\\mu m)$ band to those in the $V(0.55\\mu m)$ band was clearly detected. Based on cross correlation analysis, we precisely measured a lag time $\\Delta t$ for eight separate periods, and we found that $\\Delta t$ is not constant changing be tween 30 and 70 days during the monitoring period. Since $\\Delta t$ is the ligh t travel time from the central energy source out to the surrounding dust torus, this is the first convincing evidence that the inner radius of dust torus did ch ange in an individual AGN. In order to relate such a change of $\\Delta t$ with a change of AGN luminosity $L$, we presented a method of taking an average of th e observed $V$-band fluxes that corresponds to the measured value of $\\Delta t$, and we found that the time-changing track of NGC 4151 in the...

  4. Influence of dust charge fluctuation and polarization force on radiative condensation instability of magnetized gravitating dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, R.P., E-mail: prajapati_iter@yahoo.co.in; Bhakta, S.

    2015-10-30

    The influence of dust charge fluctuation, thermal speed and polarization force due to massive charged dust grains is studied on the radiative condensation instability (RCI) of magnetized self-gravitating astrophysical dusty (complex) plasma. The dynamics of the charged dust and inertialess electrons are considered while the Boltzmann distributed ions are assumed to be thermal. The dusty fluid model is formulated and the general dispersion relations are derived analytically using the plane wave solutions under the long wavelength limits in both the presence and the absence of dust charge fluctuations. The combined effects of polarization force, dust thermal speed, dust charge fluctuation and dust cyclotron frequency are observed on the low frequency wave modes and radiative modified Jeans Instability. The classical criterion of RCI is also derived which remains unaffected due to the presence of these parameters. Numerical calculations have been performed to calculate the growth rate of the system and plotted graphically. We find that dust charge fluctuation, radiative cooling and polarization force have destabilizing while dust thermal speed and dust cyclotron frequency have stabilizing influence on the growth rate of Jeans instability. The results have been applied to understand the radiative cooling process in dusty molecular cloud when both the dust charging and polarization force are dominant. - Highlights: • We study combined influence of dust charge fluctuation and polarization force on RCI of dusty plasma. • The modified dispersion characteristics and conditions of Jeans and radiative instabilities are obtained. • In the photo-association region various parameters are numerically estimated. • The dust charge fluctuation, radiative cooling and polarization force have destabilizing influence on the growth rate.

  5. Simulation of Dust Charging and Shielding in the Presence of a Magnetic Field

    Science.gov (United States)

    Fichtl, Chris; Delzanno, Gian Luca; Lapenta, Giovanni

    2006-10-01

    We explore the charging of a dust particle immersed in a plasma in the presence of a magnetic field. The dust particle charges due to the flowing electrons and ions within the plasma and is allowed to emit electrons via thermionic emission and photoemission. Several parameters are obtained and compared with basic simulations without the magnetic field using the 2-D, 3-V DEMOCRITUS code developed at LANL. Next we look at the effect of this dust particle charging in the presence of another dust particle. Delzanno, et al. [1] showed that for a thermionically emitting particle immersed in a plasma, an attractive potential well can form. This leads to the attraction of particles with like charges, such as another dust grain. We explore the attractive forces between two particles as a function of their separation. If the attractive potential well is deep enough, the two particles will combine, thereby creating macro-particles. We study this in an astrophysical sense, looking at this phenomenon as a possible source of galactic formation. [1] G.L. Delzanno, G. Lapenta, and M. Rosenberg, Phys. Rev. Lett. 92 (3), 035002 (2004)

  6. Geographical variation and the determinants of domestic endotoxin levels in mattress dust in Europe

    NARCIS (Netherlands)

    Chen, C.M.; Thiering, E.; Doekes, G.|info:eu-repo/dai/nl/070079803; Zock, J.P.|info:eu-repo/dai/nl/095184309; Bakolis, I.; Norbäck, D.; Sunyer, J.; Villani, S.; Verlato, G.; Täubel, M.; Jarvis, D.

    2012-01-01

    Endotoxin exposures have manifold effects on human health. The geographical variation and determinants of domestic endotoxin levels in Europe have not yet been extensively described. To investigate the geographical variation and determinants of domestic endotoxin concentrations in mattress dust in

  7. Charge Balance in the Mesosphere with Meteoric Dust Particles

    Science.gov (United States)

    Robertson, S. H.; Asmus, H.; Dickson, S.; Friedrich, M.; Megner, L. S.

    2013-12-01

    An aerosol particle charging model developed initially for noctilucent cloud particles has been extended in several steps in order to better explain data for charged meteoric smoke particles (MSPs) returned by the nighttime and daytime CHAMPS rockets launched from the Andøya rocket Range, Norway, in October 2011. Addition of photodetachment to the model shows that this process reduces the number density of positively charged MSPs as well as the number density of negatively charged MSPs as a consequence of the photodetached electrons neutralizing the positively charged MSPs. In addition, the model shows that the ionization rate can be deduced from the electron number density and the electron-ion recombination rate only at the highest altitudes as a consequence of recombination of electrons on the MSPs at lower altitudes. The differences between the daytime and nighttime data place constraints on the photodetachment rate. A further extension of the model to include the formation of negative ions and their destruction by atomic oxygen helps explain the ledge seen in the number density of the lightest negatively charged particles. MSP particle densities from the CARMA/CHEM2D model are in better agreement with rocket data for assumed values of the meteor input flux that are at the low end of the generally accepted range.

  8. Charged cosmological dust solutions of the coupled Einstein and Maxwell equations

    CERN Document Server

    Spruck, Joel

    2010-01-01

    It is well known through the work of Majumdar, Papapetrou, Hartle, and Hawking that the coupled Einstein and Maxwell equations admit a static multiple blackhole solution representing a balanced equilibrium state of finitely many point charges. This is a result of the exact cancellation of gravitational attraction and electric repulsion under an explicit condition on the mass and charge ratio. The resulting system of particles, known as an extremely charged dust, gives rise to examples of spacetimes with naked singularities. In this paper, we consider the continuous limit of the Majumdar--Papapetrou--Hartle--Hawking solution modeling a space occupied by an extended distribution of extremely charged dust. We show that for a given smooth distribution of matter of finite ADM mass there is a continuous family of smooth solutions realizing asymptotically flat space metrics.

  9. Charging of dust grains in a nonequilibrium plasma of a stratified glow discharge

    Science.gov (United States)

    Sukhinin, G. I.; Fedoseev, A. V.

    2007-12-01

    A theoretical model is presented that describes the charging of dust grains in the positive plasma column of a stratified glow dc discharge in argon. A one-dimensional self-consistent model is used to obtain axial profiles of the electric field, as well as the electron energy distribution function along the axis of the discharge tube. Radial profiles of the electric field are determined in the ambipolar diffusion approximation. It is assumed that, in the radial direction, the electron distribution function depends only on the total electron energy. Two-dimensional distributions of the discharge plasma parameters are calculated and used to determine the potential and charge of a test dust grain at a certain point within the discharge and the electrostatic forces acting on it. It is shown that the grain charge distribution depends strongly on the nonequilibrium electron distribution function and on the nonuniform distribution of the electric field in a stratified glow discharge. A discussion is presented on the suspension of dust grains, the separation of grains by size in the discharge striations, and a possible mechanism for the onset of vortex dust motion at the edge of a dust cloud.

  10. Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jizheng; Wang Canglong; Zhang Jianrong; Ma Shengqian; Hong Xueren; Sun Jianan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Duan Wenshan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Yang Lei [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2012-08-15

    The effects of dust size distribution and charging process of dust grains on the complex electric conductivity of dusty plasmas have been investigated in the present paper. Comparisons are made between real dusty plasma in which there are many different dust grain species and the mono-sized dusty plasma (MDP) in which there is only one kind of dust grain whose size is the average dust size. In some cases the complex electric conductivity of real dusty plasma is larger than that of MDP, while in other cases it is smaller than that of MDP, it depends on the dust size distribution function.

  11. On the signature of positively charged dust particles on plasma irregularities in the mesosphere

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.

    2013-11-01

    Recent rocket payloads have studied the properties of aerosol particles within the ambient plasma environment in the polar mesopause region and measured the signature of the positively charged particles with number densities of (2000 cm-3) for particles of 0.5-1 nm in radius. The measurement of significant numbers of positively charged aerosol particles is unexpected from the standard theory of aerosol charging in plasma. Nucleation on the cluster ions is one of the most probable hypotheses for the positive charge on the smallest particles. This work attempts to study the correlation and anti-correlation of fluctuations in the electron and ion densities in the background plasma by adopting the proposed hypothesis of positive dust particle formation. The utility being that it may provide a test for determining the presence of positive dust particles. The results of the model described show good agreement with observed rocket data. As an application, the model is also applied to investigate the electron irregularity behavior during radiowave heating assuming the presence of positive dust particles. It is shown that the positive dust produces important changes in the behavior during Polar Mesospheric Summer Echo PMSE heating experiments that can be described by the fluctuation correlation and anti-correlation properties.

  12. Charge of interstellar dust in dense molecular clouds: Effect of cosmic rays

    CERN Document Server

    Ivlev, Alexei; Galli, Daniele; Caselli, Paola

    2015-01-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(\\mathrm{H_2})$ between $\\sim10^4$ cm$^{-3}$ and $\\sim10^6$ cm$^{-3}$. The charging effect o...

  13. Comparison of dust charging between Orbital-Motion-Limited theory and Particle-In-Cell simulations

    CERN Document Server

    Delzanno, Gian Luca

    2016-01-01

    The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [Tang and Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with Particle-In-Cell simulations that retain the absorption radius effect. It is found that for large dust grain radius $r_d$ relative to the plasma Debye length $\\lambda_D$, the revised OML theory remains a very good approximation as, for the parameters considered ($r_d/\\lambda_D\\le10$, equal electron and ion temperatures), it yields the dust charge to within $20\\%$ accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within $15-30\\%$.

  14. Dust dynamics and evolution in expanding HII regions. I. Radiative drift of neutral and charged grains

    CERN Document Server

    Akimkin, V V; Pavlyuchenkov, Ya N; Wiebe, D S

    2015-01-01

    We consider dust drift under the influence of stellar radiation pressure during the pressure-driven expansion of an HII region using the chemo-dynamical model MARION. Dust size distribution is represented by four dust types: conventional polycyclic aromatic hydrocarbons (PAHs), very small grains (VSGs), big grains (BGs) and also intermediate-sized grains (ISGs), which are larger than VSGs and smaller than BGs. The dust is assumed to move at terminal velocity determined locally from the balance between the radiation pressure and gas drag. As Coulomb drag is an important contribution to the overall gas drag, we evaluate a grain charge evolution within the HII region for each dust type. BGs are effectively swept out of the HII region. The spatial distribution of ISGs within the HII region has a double peak structure, with a smaller inner peak and a higher outer peak. PAHs and VSGs are mostly coupled to the gas. The mean charge of PAHs is close to zero, so they can become neutral from time to time because of char...

  15. Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition

    OpenAIRE

    Moore, J. Keith; Doney, Scott C.; Lindsay, Keith; Mahowald, Natalie; Michaels, Anthony F.

    2011-01-01

    A global ocean biogeochemical model is used to quantify the sensitivity of marine biogeochemistry and air–sea CO2 exchange to variations in dust deposition over decadal timescales. Estimates of dust deposition generated under four climate states provide a large range in total deposition with spatially realistic patterns; transient ocean model experiments are conducted by applying a step-function change in deposition from a current climate control. Relative to current conditions, higher dust d...

  16. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  17. Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on nonplanar dust-ion-acoustic solitary waves.

    Science.gov (United States)

    Mamun, A A; Shukla, P K

    2009-09-01

    Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.

  18. Secondary electron emission from a charged spherical dust particle due to electron incidence according to OML model

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Y., E-mail: tomita@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Huang, Z.H.; Pan, Y.D. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Kawamura, G. [National Institute for Fusion Science, Toki 509-5292 (Japan); Yan, L.W. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China)

    2015-08-15

    Effect of secondary electron emission (SEE) current to dust charging and influence to forces on a dust particle are studied according to the orbital motion limited (OML) model. As higher electron temperature increases the SEE current, the negative dust charge decreases. As a result, the ion friction force on the dust particle decreases. The critical electron temperatures without the dust charge are 75.1, 70.3 and 55.9 eV for graphite and are 31.3, 30.4 and 27.1 eV for tungsten to the temperature ratio T{sub i}/T{sub e} = 0.1, 1.0 and 10.0, respectively. At the critical electron temperature, there is no ion scattering force but the ion absorption force remains finite.

  19. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    Science.gov (United States)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  20. Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation

    Science.gov (United States)

    Karmakar, P. K.; Borah, B.

    2013-09-01

    We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries ( d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.

  1. Dust variations in the diffuse interstellar medium: constraints on Milky Way dust from Planck-HFI observations

    CERN Document Server

    Ysard, N; Jones, A; Miville-Deschênes, M -A; Abergel, A; Fanciullo, L

    2015-01-01

    The Planck-HFI all-sky survey from 353 to 857GHz combined with the 100 microns IRAS show that the dust properties vary in the diffuse ISM at high Galactic latitude (1e19variations with changes in the ISM properties and grain evolution. Our starting point is the latest core-mantle dust model. It consists of small aromatic-rich carbon grains, larger amorphous carbon grains with aliphatic-rich cores and aromatic-rich mantles, and amorphous silicates with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observations. The dust properties are also varied in terms of mantle thickness, Fe/FeS inclusions, carbon abundance, and size distribution. Variations in the radiation field intensity and gas density distribution cannot explain the observed variations but radiation fields harder than the standard ISRF may participate in crea...

  2. Kadomstev–Petviashvili (KP) equation in warm dusty plasma with variable dust charge, two-temperature ion and nonthermal electron

    Indian Academy of Sciences (India)

    Hamid Reza Pakzad

    2010-04-01

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained. The effects of variable dust charge on the energy of soliton and the angular frequency of linear wave are also discussed.

  3. Neutron yield when fast deuterium ions collide with strongly charged tritium-saturated dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Akishev, Yu. S., E-mail: akishev@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.; Starostin, A. N.; Trushkin, N. I.; Filippov, A. V. [State Research Center of Russian Federation, Troitsk Institute for Innovation and Thermonuclear Research (Russian Federation)

    2017-02-15

    The ultrahigh charging of dust particles in a plasma under exposure to an electron beam with an energy up to 25 keV and the formation of a flux of fast ions coming from the plasma and accelerating in the strong field of negatively charged particles are considered. Particles containing tritium or deuterium atoms are considered as targets. The calculated rates of thermonuclear fusion reactions in strongly charged particles under exposure to accelerated plasma ions are presented. The neutron generation rate in reactions with accelerated deuterium and tritium ions has been calculated for these targets. The neutron yield has been calculated when varying the plasma-forming gas pressure, the plasma density, the target diameter, and the beam electron current density. Deuterium and tritium-containing particles are shown to be the most promising plasmaforming gas–target material pair for the creation of a compact gas-discharge neutron source based on the ultrahigh charging of dust particles by beam electrons with an energy up to 25 keV.

  4. Geographical variation and the determinants of domestic endotoxin levels in mattress dust in Europe

    NARCIS (Netherlands)

    Chen, C.M.; Thiering, E.; Doekes, G.; Zock, J.P.; Bakolis, I.; Norbäck, D.; Sunyer, J.; Villani, S.; Verlato, G.; Täubel, M.; Jarvis, D.

    2012-01-01

    Endotoxin exposures have manifold effects on human health. The geographical variation and determinants of domestic endotoxin levels in Europe have not yet been extensively described. To investigate the geographical variation and determinants of domestic endotoxin concentrations in mattress dust in E

  5. Variation of strong dust storm events in Northern China during 1978-2007

    Science.gov (United States)

    Wang, Ruxing; Liu, Bo; Li, Huiru; Zou, Xueyong; Wang, Jingpu; Liu, Wei; Cheng, Hong; Kang, Liqiang; Zhang, Chunlai

    2017-01-01

    Dust storms have a great significance for global mineral aerosol cycle, marine ecosystem, air quality and human health. Dust storm frequency (DSF), often used as a primary index for understanding a regional characteristic of dust storms. However, DSF couldn't describe the frequency and the outbreak areas of a dust storm event (DSE) which was defined as a dust storm occurred at three or more meteorological stations during the same weather process, because a DSE might occur at several meteorological stations and continue for several days. We defined a new index DSE considering the factors including wind speed, wind direction and spatial variation during a dust storm process. To clarify which index of DSF or DSE is better to describe the characteristics of dust storms, we have used the data sets of dust storm from 319 meteorological stations to calculate the frequency of DSE, and the outbreak area and the duration of each DSE in 1978-2007, as well as to compare the differences between DSE and DSF in spatiotemporal distribution in Northern China. The results showed that the high-value locations of occurrence numbers of DSE and DSF were almost overlapped; from 1978 to 2007, the total values of DSE and DSF decreased from 558 to 201 and from 1273 to 467, respectively, but the mean values of outbreak area and duration of DSE have wavily increased since 1991. These implied that the differences existed between DSE and DSF in describing the characteristics of a regional dust storm, and DSE was a better index for a dust storm to identify the fact of occurrence frequency and outbreak area. The implication of this study was that the values of DSE and DSF have a decrease trends with increase of extreme precipitation events and decrease of mean wind speed under the global warming scenarios, but strong dust storms, which is defined as the outbreak area of an event > 105 km2 here, probably bring greater risk in future.

  6. Variations in the composition of house dust by particle size.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2017-07-03

    In this study, the distribution of heavy metals and other components in the various size fractions of house dust is investigated. A house dust sample collected from a vacuum cleaner was separated into size fractions by sieving and air classification. The analysis of the size fractions showed that the heavy metals and other components are not uniformly distributed in the various size fractions. The highest total carbon concentrations were found in the size fractions with a mass median diameter of 18-95 µm, while in the coarser size fractions and in the finest size fraction, the total carbon concentration was lower. In contrast, for many heavy metals and other metals (Al, Fe, Ca, S, Mn, Ti, Ba, Sr, As, Co, and V), the maximum concentrations were found in the finest size fraction. With increasing size of the dust fractions, the concentrations decreased. For several of these components, the dependence of the concentration on the particle size can be approximately assessed well using a power function. The distribution of Zn, Cu, Mg and Na was different. While the concentration of Na and Mg was higher in the coarser size fractions, no distinct trend was found for the concentrations of Cu and Zn.

  7. Propagation of waves in a multicomponent plasma having charged dust particles

    Indian Academy of Sciences (India)

    Sukanya Burman; A Roy Chowdhury; S N Paul

    2001-06-01

    Propagation of both low and high frequency waves in a plasma consisting of electrons, ions, positrons and charged dust particles have been theoretically studied. The characteristics of dust acoustic wave propagating through the plasma has been analysed and the dispersion relation deduced is a generalization of that obtained by previous authors. It is found that nonlinear localization of high frequency electromagnetic field in such a plasma generates magnetic field. This magnetic field is seen to depend on the temperatures of electrons and positrons and also on their equilibrium density ratio. It is suggested that the present model would be applicable to find the magnetic field generation in space plasma.

  8. Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup

    Science.gov (United States)

    Lai, H. R.; Wei, H. Y.; Russell, C. T.

    2013-06-01

    The solar wind contains many magnetic structures, and most of them have identifiable correlated changes in the flowing plasma. However, the very characteristic rise and fall of the magnetic field in an interplanetary field enhancement has no clear solar wind counterpart. It appears to be a pure magnetic ``barrier'' that transfers solar wind momentum to charged dust produced in collisions of interplanetary bodies in the size range of tens to hundreds of meters. This transfer lifts the fine scale dust out of the Sun's gravitational well. We demonstrate the lack of field-plasma correlation with several examples from spacecraft records as well as show an ensemble average velocity profile during IFEs which is consistent with our IFE formation hypothesis.

  9. Seasonal Variations in Dust Loading within Gale Crater, Mars

    Science.gov (United States)

    Moore, Casey; Moores, John; Smith, Christina L.; MSL Science Team

    2016-10-01

    The Mars Science Laboratory rover Curiosity has been exploring Gale Crater for more than two martian years. Such tenure allows seasonal variability of the weather record for the current era to be studied with aid from Mast Cameras (Mastcam), Navigation Cameras (Navcam) and Rover Environmental Monitoring Station (REMS). Dust is a key component in the Martian atmosphere which helps drive atmospheric circulation. As such, these three instruments are integral in the characterization of the dust-loading environment both within and above the crater. This study uses Navcam imagery and a digital terrain model provided from HRSC on Mars Express to derive geographical line-of-sight extinction (LOS-Ext) coefficients, a quantity that assesses dust loading local to the air within the crater and which reveals differences in dust loading along different lines of sight.We report two martian years worth of LOS-Ext at Gale Crater, covering Ls 210° in Mars year (MY) 31 to Ls 210° in MY33. All seasons have been observed twice with the only significant exception being a gap in data between Ls 270° - 315° in MY31 (early southern summer). Visibility conditions within the crater range from a few tens of km in spring and summer to over 100 km peaking around the winter solstice. The LOS-Ext record is also compared to the column extinction record derived from the Mastcam Tau observations. The first year shows a convergence of the two values around Ls 270° in MY31 and similar values around Ls 350° in MY31 and Ls 135° in MY32. Otherwise, during the first year of observation, the LOS-Ext has lower values than the Mastcam column extinction indicating two non-interacting atmospheric layers. In the second year, not only are similar values observed more frequently, the LOS-Ext coefficients have a global peak and overtake Mastcam column extinction during Ls 270° - 315° in MY32, which correspond to the missing timeframe from the previous year. As this season is prone to high wind speeds

  10. Spherical Kadomtsev–Petviashviliequation for dust acoustic waves with dust size distribution and two-charges-ions

    Indian Academy of Sciences (India)

    K Annou; S Bahamida; R Annou

    2011-03-01

    The nonlinear dust acoustic waves in dusty plasmas with negative as well as positive ions and the combined effects of bounded spherical geometry and the transverse perturbation and the size distribution of dust grains are studied. Using the perturbation method, a spherical Kadomtsev–Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.

  11. Gyromagnetic factor of rotating disks of electrically charged dust in general relativity

    Science.gov (United States)

    Liu Pynn, Yu-Chun; Macedo, Rodrigo Panosso; Breithaupt, Martin; Palenta, Stefan; Meinel, Reinhard

    2016-11-01

    We calculated the dimensionless gyromagnetic ratio ("g -factor") of self-gravitating, uniformly rotating disks of dust with a constant specific charge ɛ . These disk solutions to the Einstein-Maxwell equations depend on ɛ and a "relativity parameter" γ (0 <γ ≤1 ) up to a scaling parameter. Accordingly, the g -factor is a function g =g (γ ,ɛ ). The Newtonian limit is characterized by γ ≪1 , whereas γ →1 leads to a black-hole limit. The g -factor, for all ɛ , approaches the values g =1 as γ →0 and g =2 as γ →1 .

  12. Gyromagnetic factor of rotating disks of electrically charged dust in general relativity

    CERN Document Server

    Pynn, Yu-Chun; Breithaupt, Martin; Palenta, Stefan; Meinel, Reinhard

    2016-01-01

    We calculated the dimensionless gyromagnetic ratio ("$g$-factor") of self-gravitating, uniformly rotating disks of dust with a constant specific charge $\\epsilon$. These disk solutions to the Einstein-Maxwell equations depend on $\\epsilon$ and a "relativity parameter" $\\gamma$ ($0<\\gamma\\le 1$) up to a scaling parameter. Accordingly, the $g$-factor is a function $g=g(\\gamma,\\epsilon)$. The Newtonian limit is characterized by $\\gamma \\ll 1$, whereas $\\gamma\\to 1$ leads to a black-hole limit. The $g$-factor, for all $\\epsilon$, approaches the values $g=1$ as $\\gamma\\to 0$ and $g=2$ as $\\gamma\\to 1$.

  13. Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance.

    Science.gov (United States)

    Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A

    2015-06-01

    Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components.

  14. Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance

    Science.gov (United States)

    Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A

    2015-01-01

    Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components. PMID:26120428

  15. Electromagnetic wave attenuation due to the charged particles in dust&sand (DUSA) storms

    Science.gov (United States)

    Dou, X. Q.; Xie, L.

    2017-07-01

    In this paper, we calculated the attenuation of the electromagnetic waves (EMWs) propagating through the dust&sand (DUSA) storms using the predicting model based on Mie theory, in which the charges carried on the DUSA particles, the ambient relative humidity (RH) and the particle size distribution are considered simultaneously. It can be found that the charges carried on the DUSA particles and the RH can change the value of the absorption and scattering efficiency, but they can't change the domain attenuation mechanism caused by the DUSA storms in the EMWs frequency regions (3 GHz, 4 GHz), (8 GHz, 40 GHz) and (75 GHz, 100 GHz). Whatever the DUSA storms are formed by equal-size particles or the mixed-size particles, the charge carried on the particle surface and the RH have a significant impact on the attenuation caused by the DUSA storms, and the change ratio of the attenuation caused by the charge or RH depends on the particle size. By the comparison of the calculated attenuation with the measured one, we found that the charges carried on the particles and the RH will be important factors to affect the attenuation of the EMWs.

  16. Lead in Chinese villager house dust: Geographical variation and influencing factors.

    Science.gov (United States)

    Bi, Xiangyang; Liu, Jinling; Han, Zhixuan; Yang, Wenlin

    2015-12-01

    House dust has been recognized as an important contributor to Pb exposure of children. Here we conducted a comprehensive study to investigate geographical variation of Pb in Chinese villager house dust. The influences of outdoor soil Pb concentrations, dates of construction, house decoration materials, heating types, and site specific pollution on Pb concentrations in house dust were evaluated. The concentrations of Pb in 477 house dust samples collected from twenty eight areas throughout China varied from 12 to 2510 mg/kg, with a median concentration of 42 mg/kg. The median Pb concentrations in different geographical areas ranged from 16 (Zhangjiakou, Hebei) to 195 mg/kg (Loudi, Hunan). No correlations were found between the house dust Pb concentrations and the age of houses, as well as house decoration materials. Whereas outdoor soil, coal combustion, and site specific pollution may be potential Pb sources. Principal component analysis (PCA) confirmed that elemental compositions of the house dust were controlled by both anthropogenic and geogenic sources. Using scanning electron microscopy (SEM), the Pb bearing particles in the house dust were also studied.

  17. Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    CERN Document Server

    Liljegren, S; Nowotny, W; Eriksson, K

    2016-01-01

    Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. The first model with dust and stellar wind is ve...

  18. Time evolution of nonplanar dust ion-acoustic solitary waves in a charge varying dusty plasma with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Sciences- Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria); Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India)

    2015-12-15

    A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) dust ion-acoustic solitary waves (DIASW) is carried out in a dusty plasma, whose constituents are inertial ions, superthermal electrons, and charge fluctuating stationary dust particles. Using the reductive perturbation theory, a modified Korteweg-de Vries equation is derived. It is shown that the propagation characteristics of the cylindrical and spherical DIA solitary waves significantly differ from those of their one-dimensional counterpart.

  19. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  20. Analysis on the decadal scale variation of the dust storm in North China

    Institute of Scientific and Technical Information of China (English)

    KANG Dujuan; WANG Huijun

    2005-01-01

    In this paper, the temporal variation characteristics of the dust storm in North China are investigated. Based on power spectrum analysis and wavelet analysis, 1956-1970 and 1985-1999 are chosen as the high-frequency and low-frequency dust storm decades respectively. Analysis results clearly show that the spring and wintertime anomalous atmospheric circulation between these two decades are significantly different. Compared with the former decade, there are a strengthened polar vortex, enhanced westerlies near 50(N, and a weak East Asian major though in the winter of the latter decade. The north and center parts of the Siberian high and the Aleutian low become weak. The southerly and easterly wind anomalies appear over the north and east parts of China, which implies the weakening of East Asian winter monsoon. Meanwhile, northern China experiences warmer winters and wetter springs, which are in favor of the weakening of dust storm intensity in North China. There are significant out-of-phase relationships between dust frequency and wintertime westerly intensity, as well as between dust frequency and Arctic Oscillation. It is also found that the frequency of dust weather is strongly related to winter-springtime East Asian monsoon intensity.

  1. Annual distributions and variations of dust weather occurrence over the Tarim Basin, China

    Science.gov (United States)

    Zhao, Yong; Zhou, Yang; Wang, Minzhong; Huo, Wen; Huang, Anning; Yang, Xinhua; Yang, Fan

    2017-02-01

    The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of -0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.

  2. Collision rate coefficient for charged dust grains in the presence of linear shear

    Science.gov (United States)

    Yang, Huan; Hogan, Christopher J.

    2017-09-01

    Like and oppositely charged particles or dust grains in linear shear flows are often driven to collide with one another by fluid and/or electrostatic forces, which can strongly influence particle-size distribution evolution. In gaseous media, collisions in shear are further complicated because particle inertia can influence differential motion. Expressions for the collision rate coefficient have not been developed previously which simultaneously account for the influences of linear shear, particle inertia, and electrostatic interactions. Here, we determine the collision rate coefficient accounting for the aforementioned effects by determining the collision area, i.e., the area of the plane perpendicular to the shear flow defining the relative initial locations of particles which will collide with one another. Integration of the particle flux over this area yields the collision rate. Collision rate calculations are parametrized as an enhancement factor, i.e., the ratio of the collision rate considering potential interactions and inertia to the traditional collision rate considering laminar shear only. For particles of constant surface charge density, the enhancement factor is found dependent only on the Stokes number (quantifying particle inertia), the electrostatic energy to shear energy ratio, and the ratio of colliding particle radii. Enhancement factors are determined for Stokes numbers in the 0-10 range and energy ratios up to 5. Calculations show that the influences of both electrostatic interactions and inertia are significant; for inertialess (St =0 ) equal-sized and oppositely charged particles, we find that even at energy ratios as low as 0.2, enhancement factors are in excess of 2. For the same situation but like-charged particles, enhancement factors fall below 0.5. Increasing the Stokes number acts to mitigate the influence of electrostatic potentials for both like and oppositely charged particles; i.e., inertia reduces the enhancement factor for

  3. Atmospheric dust charging, vertical profiles and optical properties measured in the Arabian Peninsula during the DREAME campaign

    Science.gov (United States)

    Ulanowski, Z.; Sabbah, I.; Harrison, R. G.; Nicoll, K. A.; Hirst, E.; Kaye, P. H.; Al-Abbadi, N.; Rogers, G.

    2010-05-01

    Polarimetric observations of atmospheric Saharan dust over the Canary Islands have provided strong evidence for the presence of vertically aligned particles. The alignment was thought to be due to the electric field present because of dust charging. It was concluded that the charging and consequent partial alignment could be a common feature of atmospheric mineral dust layers, influencing the optical properties of dust layers and possibly also dust transport (Atmos. Chem. Phys. 7, 6161, 2007). We show preliminary results from the DREAME campaign, aimed at investigating these phenomena. DREAME used simultaneous and collocated measurements from specially developed aerosol radiosondes, and ground-based sun photometers and electric field meters. The radiosondes provided vertical profiles of dust size distribution and electric charge density, in addition to standard meteorological parameters (Ulanowski et al. EGU 2010, AS3.16). The electric field was measured in Kuwait between late April and November 2009, and at Solar Village (Riyadh, Saudi Arabia) between May and June 2009. The measurements were supplemented by satellite retrievals of aerosol properties. Similar measurements but without electric field meters were carried out on Cape Verde Islands in August 2009 (Nicoll et al. EGU 2010, AS4.7). The electric field measured on the ground in Kuwait showed strong variability, particularly in the presence of atmospheric dust, when polarity reversals from the normal positive potential gradient (PG) clear-sky pattern were frequently observed. In the absence of clouds the negative PG excursions were often down to -800 V/m and reached -1300 V/m. The PG was strongly correlated with the aerosol optical thickness (AOT) from the sun photometer: the correlation coefficient was about -0.51 at visible and near infra-red wavelengths and a few percent less in the UV. Slightly lower correlation was present for satellite AOT: -0.4 for MODIS AOT at 550 nm, and -0.3 for OMI AOT at 483.5 nm

  4. Large amplitude solitary waves in ion-beam plasmas with charged dust impurities

    CERN Document Server

    Misra, A P

    2011-01-01

    The nonlinear propagation of large amplitude dust ion-acoustic (DIA) solitary waves (SWs) in an ion-beam plasma with stationary charged dusts is investigated. For typical plasma parameters relevant for experiments [J. Plasma Phys. \\textbf{60}, 69 (1998)], when the beam speed is larger than the DIA speed ($v_{b0}\\gtrsim1.7c_s$), three stable waves, namely the "fast" and "slow" ion-beam modes and the plasma DIA wave are shown to exist. These modes can propagate as SWs in the beam plasmas. However, in the other regime ($c_s0)$ is found to be limited by a critical value which typically depends on $M$, $v_{b0}$ as well as the ion/beam temperature. The conditions for the existence of DIA solitons are obtained and their properties are analyzed numerically in terms of the system parameters. While the system supports both the compressive and rarefactive large amplitude SWs, the small amplitude solitons exist only of the compressive type. The theoretical results may be useful for observation of soliton excitations in l...

  5. Small-amplitude shock waves and double layers in dusty plasmas with opposite polarity charged dust grains

    Science.gov (United States)

    Amina, M.; Ema, S. A.; Mamun, A. A.

    2017-06-01

    Theoretical investigation is carried out for understanding the properties of nonlinear dust-acoustic (DA) waves in an unmagnetized dusty plasma whose constituents are massive, micron-sized, positive and negatively charged inertial dust grains along with q (nonextensive) distributed electrons and ions. The reductive perturbation method is employed in order to derive two types of nonlinear dynamical equations, namely, Burgers equation and modified Gardner equation (Gardner equation with dissipative term). They are also numerically analyzed to investigate the basic features (viz., polarity, amplitude, width, etc.) of shock waves and double layers. It has been observed that the effects of nonextensivity, opposite polarity charged dust grains, and different dusty plasma parameters have significantly modified the fundamental properties of shock waves and double layers. The results of this investigation may be used for researches of the nonlinear wave propagation in laboratory and space plasmas.

  6. Luminosity-variation independent location of the circum-nuclear, hot dust in NGC 4151

    CERN Document Server

    Pott, Jorg-Uwe; Elitzur, Moshe; Ghez, Andrea M; Herbst, Tom M; Schodel, Rainer; Woillez, Julien

    2010-01-01

    After recent sensitivity upgrades at the Keck Interferometer (KI), systematic interferometric 2um studies of the innermost dust in nearby Seyfert nuclei are within observational reach. Here, we present the analysis of new interferometric data of NGC 4151, discussed in context of the results from recent dust reverberation, spectro-photometric and interferometric campaigns. The complete data set gives a complex picture, in particular the measured visibilities from now three different nights appear to be rather insensitive to the variation of the nuclear luminosity. KI data alone indicate two scenarios: the K-band emission is either dominated to ~90% by size scales smaller than 30mpc, which falls short of any dust reverberation measurement in NGC 4151 and of theoretical models of circum-nuclear dust distributions. Or contrary, and more likely, the K-band continuum emission is dominated by hot dust (>= 1300K) at linear scales of about 50mpc. The linear size estimate varies by a few tens of percent depending on th...

  7. Variation in dust properties in a dense filament of the Taurus molecular complex (L1506)

    CERN Document Server

    Ysard, Nathalie; Ristorcelli, Isabelle; Juvela, Mika; Pagani, Laurent; Konyves, Vera; Spencer, Locke; White, Glenn; Zavagno, Annie

    2013-01-01

    We observed the L1506 filament, which is located in the Taurus molecular complex, with the Herschel PACS and SPIRE instruments. Our aim is to prove the variation in grain properties along the entire length of the filament. In particular, we want to determine above which gas density this variation arises and what changes in the grain optical properties/size distribution are required. We use the 3D radiative transfer code CRT, coupled to the dust emission and extinction code DustEM, to model the emission and extinction of the dense filament. We test a range of optical properties and size distributions for the grains: dust of the diffuse interstellar medium (interstellar PAHs and amorphous carbons and silicates) and both compact and fluffy aggregates. We find that the grain opacity has to increase across the filament to fit simultaneously the near-IR extinction and Herschel emission profiles of L1506. We interpret this change to be a consequence of the coagulation of dust grains to form fluffy aggregates. Grains...

  8. Effect of self-gravitation and dust-charge fluctuations on the shielding and energy loss of N×M projectiles in a collisional dusty plasma

    Science.gov (United States)

    Sarwar, M. Adnan; Mirza, Arshad M.

    2007-03-01

    A simple derivation of the electrostatic potential and energy loss of N×M test charge projectiles traveling through dusty plasma has been presented. The effect of dust-charge fluctuations, dust neutral collisions, and self-gravitation on the shielded potential and energy loss of charge projectiles has been investigated both analytically as well as numerically. An interference contribution of these projectiles to the shielded potential and energy loss has been observed, which depends upon their relative orientation and separation distance. A comparison has been made for correlated and uncorrelated motion of the two projectiles. The amplitude of the shielded potential is enhanced with the increase of dust Jeans frequency for separation less than the effective Debye length. The dust-charge fluctuations produce a potential well for a slow charge relaxation rate and energy is gained, not lost, by the test charge projectiles. However, a fast charge relaxation rate with a fixed value of Jeans frequency enhances the energy loss. The dust neutral collisions are also found to enhance the energy loss for the test charge velocities greater than the dust acoustic speeds. The present investigation might be useful to explain the coagulation of dust particles such as those in molecular clouds, the interstellar medium, comet tails, planetary rings, etc.

  9. The implications for dust emission modeling of spatial and vertical variations in horizontal dust flux and particle size in the Bodélé Depression, Northern Chad

    Science.gov (United States)

    Chappell, Adrian; Warren, Andrew; O'Donoghue, Alice; Robinson, Andrea; Thomas, Andrew; Bristow, Charlie

    2008-02-01

    The Bodélé Depression has been confirmed as the single largest source of atmospheric mineral dust on Earth. It is a distinctive source because of its large exposure of diatomite and the presence of mega-barchan dunes. Direct measurements of horizontal dust flux and particle size were made to investigate dust emission processes and for comparison with mechanisms of emission assumed in current dust models. More than 50 masts, with traps mounted on each, were located across and downwind of three barchans in 56 km2 study area of the eastern Bodélé. The size-distribution of surface material is bi-modal; there are many fine dust modes and a mixed mineralogy with a particle density three times smaller than quartz. Horizontal fluxes (up to 70 m above the playa) of particles, up to 1000 μm in diameter, are produced frequently from the accelerated flow over and around the barchans, even in below-threshold shear conditions on the diatomite playa. Our data on dust sizes do not conform to retrievals of dust size distributions from radiance measurements made in the same area. Dust emission models for the region may need to be revised to account for: saltators in the Bodélé, which are a mixture of quartz sand and diatomite flakes; the great spatial and vertical variation in the abundance, mass and density of dust and abraders; and the patterns of surface erodibility. All of these have important local effects on the vertical dust flux and its particle sizes.

  10. Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. II. Gas-to-Dust Ratio Variations across ISM Phases

    CERN Document Server

    Roman-Duval, Julia; Meixner, Margaret; Bot, Caroline; Bolatto, Alberto D; Hughes, Annie; Wong, Tony; Babler, Brian; Bernard, Jean-Philippe; Clayton, Geoffrey; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Glover, Simon C O; Hony, Sacha; Israel, Frank; Jameson, Katherine; Lebouteiller, Vianney; Lee, Min-Young; Li, Aigen; Madden, Suzanne C; Misselt, Karl; Montiel, Edward; Okumura, K; Onishi, Toshikazu; Panuzzo, Pasquale; Reach, William; Remy-Ruyer, A; Robitaille, Thomas; Rubio, Monica; Sauvage, Marc; Seale, Jonathan; Sewilo, Marta; Staveley-Smith, Lister; Zhukovska, Svitlana

    2014-01-01

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Halpha observations. In the diffuse atomic ISM, we derive the gas-to-dust ratio as the slope of the dust-gas relation and find gas-to-dust ratios of 380+250-130 in the LMC, and 1200+1600-420 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 Mo pc-2 in the LMC and 0.03 Mo pc-2 in the SMC, corresponding to AV ~ 0.4 and 0.2, respectively. We investigate the range of CO-to-H2 conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on XCO to be 6x1020 cm-2 K-1 km-1 s in the LMC (Z=0.5Zo) at 15 pc resolution, and 4x 1021 cm-2 K-1 km-1 s in the SMC (Z=0.2Zo) at 45 pc resolution. In the ...

  11. Three-dimensional kinetic modeling of the neutral and charged dust in the coma of Rosetta’s target comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Tenishev, Valeriy; Borovikov, Dmitry; Combi, Michael R.; Fougere, Nicolas; Huang, Zhenguang; Bieler, Andre; Hansen, Kenneth; Toth, Gabor; Jia, Xianzhe; Shou, Yinsi; Gombosi, Tamas; Rubin, Martin; Rotundi, Alessandra; Della Corte, Vincenzo

    2015-11-01

    Rosetta is the first mission that escorts a comet along its way through the Solar System for an extended amount of time. As a result, the target of the mission, comet 67P/Churyumov-Gerasimenko, is an object of great scientific interest.Dust ejected from the nucleus is entrained into the coma by the escaping gas. Interacting with the ambient plasma the dust particles are charged by the electron and ion collection currents. The photo and secondary emission currents can also change the particle charge. The resulting Lorentz force together with the gas drag, gravity, and radiation pressure define the dust particle trajectories.At altitudes comparable to those of the Rosetta trajectory, direction of a dust particle velocity can be significantly different from that in the innermost vicinity of the coma near the nucleus. At such altitudes the angular distribution of the dust grains velocity has a pronounced tail-like structure. This is consistent with Rosetta’s GIADA dust observations showing dust grains moving in the anti-sunward direction.Here, we present results of our model study of the neutral and charged dust in the coma of comet 67P/Churyumov-Gerasimenko, combining the University of Michigan AMPS kinetic particle model and the BATSRUS MHD model. Trajectories of dust particles within the observable size range of Rosetta’s GIADA dust instrument have been calculated accounting for the radiation pressure, gas drag, the nucleus gravity, the Lorentz force, and the effect of the nucleus rotation. The dust grain electric charge is calculated by balancing the collection currents at the grain’s location. We present angular velocity distribution maps of these charged dust grains for a few locations representative of Rosetta's trajectory around the comet.This work was supported by US Rosetta project contracts JPL-1266313 and JPL-1266314 and NASA Planetary Atmospheres grant NNX14AG84G

  12. Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2017-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82% of the continental North Africa dust emission (1340-1570 Tg year-1) in the 27-year average, the Sahel accounts for 17% with a larger seasonal and inter-annual variation (230-380 Tg year-1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R = 0.92). Over the Sahel, the dust emission is correlated with W10m (R = 0.69) but is also anti-correlated with the trend of NDVI (R = -0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R = 0.53), suggesting that Saharan/Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  13. Large-scale variations of the dust optical properties in the Galaxy

    CERN Document Server

    Cambresy, L; Beichman, C A

    2005-01-01

    We present an analysis of the dust optical properties at large scale, for the whole galactic anticenter hemisphere. We used the 2MASS Extended Source Catalog to obtain the total reddening on each galaxy line of sight and we compared this value to the IRAS 100 microns surface brightness converted to extinction by Schlegel et al (1998). We performed a careful examination and correction of the possible systematic effects resulting from foreground star contamination, redshift contribution and galaxy selection bias. We also evaluated the contribution of dust temperature variations and interstellar clumpiness to our method. The correlation of the near-infrared extinction to the far-infrared optical depth shows a discrepancy for visual extinction greater than 1 mag with a ratio A_V(FIR) / A_V(gal) = 1.31 +- 0.06. We attribute this result to the presence of fluffy/composite grains characterized by an enhanced far--infrared emissivity. Our analysis, applied to half of the sky, provides new insights on the dust grains ...

  14. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  15. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' université, F-67000 Strasbourg (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Hughes, Annie; Hony, Sacha [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Wong, Tony [University of Illinois at Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States); Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter St., Madison, WI 53706 (United States); Bernard, Jean-Philippe [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Clayton, Geoffrey C. [Louisiana State University, Department of Physics and Astronomy, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching (Germany); Galliano, Frederic; Lebouteiller, Vianney; Lee, Min-Young [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Glover, Simon [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Israel, Frank [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Li, Aigen, E-mail: duval@stsci.edu [314 Physics Building, Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); and others

    2014-12-20

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380{sub −130}{sup +250} ± 3 in the LMC, and 1200{sub −420}{sup +1600} ± 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M {sub ☉} pc{sup –2} in the LMC and 0.03 M {sub ☉} pc{sup –2} in the SMC, corresponding to A {sub V} ∼ 0.4 and 0.2, respectively. We investigate the range of CO-to-H{sub 2} conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X {sub CO} to be 6 × 10{sup 20} cm{sup –2} K{sup –1} km{sup –1} s in the LMC (Z = 0.5 Z {sub ☉}) at 15 pc resolution, and 4 × 10{sup 21} cm{sup –2} K{sup –1} km{sup –1} s in the SMC (Z = 0.2 Z {sub ☉}) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∼2, even after accounting for the effects of CO-dark H{sub 2} in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H{sub 2}. Within the expected 5-20 times Galactic X {sub CO} range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling

  16. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    Science.gov (United States)

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  17. Effect of ion radiative cooling on Jeans instability of partially ionized dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Sharma, Prerana; Patidar, Archana

    2017-01-01

    In this paper, the effect of ion radiative cooling on the gravitational instability of dusty plasma is studied, incorporating dust charge fluctuation with dust-neutral, neutral-ion, and ion-neutral collisions. The basic equations are linearized using normal mode analysis to obtain a general dispersion relation. The general dispersion relation is analytically and numerically discussed to explain the role of ion radiative cooling in the structure formation through gravitational instability. The Jeans collapse criteria are found to be modified due to ion and electron radiative cooling, dust charge fluctuations, and collisions effects. It is determined from the analytical and numerical calculations that the support of radiative cooling of ions drives thermal fluctuations and gives instability to the system. The electron cooling effect remains dominating over ion cooling effect, and thus, it enhances the collapse more efficiently than ion cooling effect. Although the radiative cooling is slow, it may precede the collapse in molecular cloud, which further leads to the structure formation. The present work is relevance for the structure formation in the molecular cloud.

  18. Untangling the nature of spatial variations of cold dust properties in star forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Kennicutt, Robert [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Galametz, Maud [European Southern Observatory, Karl-Schwarzchild-Str. 2, D-85748 Garching-bei-München (Germany); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Groves, Brent; Tabatabaei, Fatemeh [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Hunt, Leslie [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Dale, Daniel [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hinz, Joannah, E-mail: kirkpatr@astro.umass.edu [MMT Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States)

    2014-07-10

    We investigate the far-infrared (IR) dust emission for 20 local star forming galaxies from the Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH) sample. We model the far-IR/submillimeter spectral energy distribution (SED) using images from Spitzer Space Telescope and Herschel Space Observatory. We calculate the cold dust temperature (T{sub c} ) and emissivity (β) on a pixel by pixel basis (where each pixel ranges from 0.1 to 3 kpc{sup 2}) using a two-temperature modified blackbody fitting routine. Our fitting method allows us to investigate the resolved nature of temperature and emissivity variations by modeling from the galaxy centers to the outskirts (physical scales of ∼15-50 kpc, depending on the size of the galaxy). We fit each SED in two ways: (1) fit T{sub c} and β simultaneously, (2) hold β constant and fit T{sub c} . We compare T{sub c} and β with star formation rates (calculated from L{sub Hα} and L{sub 24μm}), the luminosity of the old stellar population (traced through L{sub 3.6μm}), and the dust mass surface density (traced by 500 μm luminosity, L{sub 500}). We find a significant trend between SFR/L{sub 500} and T{sub c} , implying that the flux of hard UV photons relative to the amount of dust is significantly contributing to the heating of the cold, or diffuse, dust component. We also see a trend between L{sub 3.6}/L{sub 500} and β, indicating that the old stellar population contributes to the heating at far-IR/submillimeter wavelengths. Finally, we find that when β is held constant, T{sub c} exhibits a strongly decreasing radial trend, illustrating that the shape of the far-IR SED is changing radially through a galaxy, thus confirming on a sample almost double in size the trends observed in Galametz et al.

  19. Stable motions of charged dust grains subject to solar wind, Poynting-Robertson drag, and the mean interplanetary magnetic field

    Science.gov (United States)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-10-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semi-major axis.

  20. Dust Abundance Variations in the Magellanic Clouds: Probing the Life-cycle of Metals with All-sky Surveys

    Science.gov (United States)

    Roman-Duval, Julia; Bot, Caroline; Chastenet, Jeremy; Gordon, Karl

    2017-06-01

    Observations and modeling suggest that dust abundance (gas-to-dust ratio, G/D) depends on (surface) density. Variations of the G/D provide timescale constraints for the different processes involved in the life cycle of metals in galaxies. Recent G/D measurements based on Herschel data suggest a factor of 5-10 decrease in dust abundance between the dense and diffuse interstellar media (ISM) in the Magellanic Clouds. However, the relative nature of the Herschel measurements precludes definitive conclusions as to the magnitude of those variations. We investigate variations of the dust abundance in the LMC and SMC using all-sky far-infrared surveys, which do not suffer from the limitations of Herschel on their zero-point calibration. We stack the dust spectral energy distribution (SED) at 100, 350, 550, and 850 microns from IRAS and Planck in intervals of gas surface density, model the stacked SEDs to derive the dust surface density, and constrain the relation between G/D and gas surface density in the range 10-100 M ⊙ pc-2 on ˜80 pc scales. We find that G/D decreases by factors of 3 (from 1500 to 500) in the LMC and 7 (from 1.5× {10}4 to 2000) in the SMC between the diffuse and dense ISM. The surface-density-dependence of G/D is consistent with elemental depletions, and with simple modeling of the accretion of gas-phase metals onto dust grains. This result has important implications for the sub-grid modeling of galaxy evolution, and for the calibration of dust-based gas-mass estimates, both locally and at high redshift.

  1. Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane

    CERN Document Server

    Paradis, D; Noriega-Crespo, A; Paladini, R; Piacentini, F; Bernard, J P; de Bernardis, P; Calzoletti, L; Faustini, F; Martin, P; Masi, S; Montier, L; Natoli, P; Ristorcelli, I; Thompson, M A; Traficante, A; Molinari, S

    2010-01-01

    Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first time to study the dust emissivity variations in the inner regions of the Galactic plane at resolution below 1 degree. We present maps of the emissivity spectral index derived from the combined Herschel PACS 160 \\mu m, SPIRE 250 \\mu m, 350 \\mu m, and 500 \\mu m data, and the IRIS 100 \\mu m data, and we analyze the spatial variations of the spectral index as a function of dust temperature and wavelength in the two Science Demonstration Phase Hi-GAL fields, centered at l=30{\\deg} and l=59{\\deg}. Applying two different methods, we determine both dust temperature and emissivity spectral index between 100 and 500 \\mu m, at an angular resolution of 4'. Combining both fields, the results show variations of the emissivity spectral index in the range 1.8-2.6 for temperature...

  2. Charged dust grain dynamics subject to solar wind, Poynting-Robertson drag, and the interplanetary magnetic field

    CERN Document Server

    Lhotka, Christoph; Narita, Yasuhito

    2016-01-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason we derive a secular theory of motion by the means of averaging method and validate it with numerical simulations of the un-averaged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semi-major axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces unde...

  3. Untangling the Nature of Spatial Variations of Cold Dust Properties in Star Forming Galaxies

    CERN Document Server

    Kirkpatrick, Allison; Kennicutt, Robert; Galametz, Maud; Gordon, Karl; Groves, Brent; Hunt, Leslie; Dale, Daniel; Hinz, Joannah; Tabatabaei, Fatemeh

    2014-01-01

    We investigate the far-infrared (IR) dust emission for 20 local star forming galaxies from the Key Insights on Nearby Galaxies: A Far-IR Survey with Herschel (KINGFISH) sample. We model the far-IR/submillimeter spectral energy distribution (SED) using images from Spitzer Space Telescope and Herschel Space Observatory. We calculate the cold dust temperature (T(cold)) and emissivity (beta) on a pixel by pixel basis (where each pixel ranges from 0.1-3 kpc^2) using a two temperature modified blackbody fitting routine. Our fitting method allows us to investigate the resolved nature of temperature and emissivity variations by modeling from the galaxy centers to the outskirts (physical scales of ~15-50 kpc, depending on the size of the galaxy). We fit each SED in two ways: (1) fit T(cold) and beta simultaneously, (2) hold beta constant and fit T(cold). We compare T(cold) and beta with star formation rates (calculated from L(Halpha) and L(24)), the luminosity of the old stellar population (traced through L(3.6), and ...

  4. Variations in dust event frequency over the past century reflected by ice-core and lacustrine records in north China

    Institute of Scientific and Technical Information of China (English)

    WANG NingLian; YAO TanDong; YANG XiangDong; SHEN Ji; WANG Yong

    2007-01-01

    In this paper, we analyzed the variations of dust proxies in the Dunde, Malan and Chongce ice cores from the northern Tibetan Plateau and the Hongjiannao lacustrine sediment core from north Shaanxi Province, and found that they all showed a general decrease trend over the past century. Owing to the fact that all these ice cores and lacustrine core were retrieved from the margins and/or the leeward sides of the major areas of dust events in north China, their records could suggest that the dust event frequency in north China declined over the study period. This decrease trend might be attributed to increasing precipitation and weakening westerly. However, human activities have made the areal extent of desertification expand acceleratingly in north China. This status could make it possible that dust events would occur on a large spatial scale under the future climate change, which would be a big environmental issue we shall face.

  5. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Verschuur, J.W.J.; Boller, K.-J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  6. Assessment of Vegetation Variation on Primarily Creation Zones of the Dust Storms Around the Euphrates Using Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jamil Amanollahi

    2012-06-01

    Full Text Available Recently, period frequency and effect domain of the dust storms that enter Iran from Iraq have increased. In this study, in addition to detecting the creation zones of the dust storms, the effect of vegetation cover variation on their creation was investigated using remote sensing. Moderate resolution image Spectroradiometer (MODIS and Landsat Thematic Mapper (TM5 have been utilized to identify the primarily creation zones of the dust storms and to assess the vegetation cover variation, respectively. Vegetation cover variation was studied using Normalized Differences Vegetation Index (NDVI obtained from band 3 and band 4 of the Landsate satellite. The results showed that the surrounding area of the Euphrates in Syria, the desert in the vicinity of this river in Iraq, including the deserts of Alanbar Province, and the north deserts of Saudi Arabia are the primarily creation zones of the dust storms entering west and south west of Iran. The results of NDVI showed that excluding the deserts in the border of Syria and Iraq, the area with very weak vegetation cover have increased between 2.44% and 20.65% from 1991 to 2009. In the meanwhile, the retention pound surface areas in the south deserts of Syria as well as the deserts in its border with Iraq have decreased 6320 and 4397 hectares, respectively. As it can be concluded from the findings, one of the main environmental parameters initiating these dust storms is the decrease in the vegetation cover in their primarily creation zones.

  7. Variations in dust contributions to air quality impairment in a temperate grassland of Inner Mongolia, China

    Science.gov (United States)

    Zhang, Baolin; Guan, Chunzhu; Zhao, Junling; Li, Jiannan

    2017-01-01

    Dust associated visibility impairment is the most noticeable air pollution phenomena, has important implications regarding air quality in developing cities. We integrated the commonly reported visibility with remote sensing, found that dust emission tended to decrease over Xilingol grassland. The temporal coherency between dust event and visibility reduction demonstrated dust was an important factor responsible for air quality impairment, but the differences in seasonal patterns and long-term trends among stations manifested some drops in visibility couldn’t be solely attributed to dust activity. It is urgent to conclude the causes of visibility reduction in developing cities susceptible to dust impact in recent years.

  8. Dust acoustic waves in strongly coupled dissipative plasmas

    Science.gov (United States)

    Xie, B. S.; Yu, M. Y.

    2000-12-01

    The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.

  9. Origin-Dependent Variations in the Atmospheric Microbiome Community in Eastern Mediterranean Dust Storms.

    Science.gov (United States)

    Gat, Daniella; Mazar, Yinon; Cytryn, Eddie; Rudich, Yinon

    2017-06-20

    Microorganisms carried by dust storms are transported through the atmosphere and may affect human health and the functionality of microbial communities in various environments. Characterizing the dust-borne microbiome in dust storms of different origins or that followed different trajectories provides valuable data to improve our understanding of global health and environmental impacts. We present a comparative study on the diversity of dust-borne bacterial communities in dust storms from three distinct origins (North Africa, Syria and Saudi Arabia) and compare them with local bacterial communities sampled on clear days, all collected at a single location: Rehovot, Israel. Storms from different dust origins exhibited distinct bacterial communities, with signature bacterial taxa. Dust storms were characterized by a lower abundance of selected antibiotic resistance genes (ARGs) compared with ambient dust, asserting that the origin of these genes is local and possibly anthropogenic. With the progression of the storm, the storm-borne bacterial community showed increasing resemblance to ambient dust, suggesting mixing with local dust. These results show, for the first time, that dust storms from different sources display distinct bacterial communities, suggesting possible diverse effects on the environment and public health.

  10. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan in response to Asian dust events

    Directory of Open Access Journals (Sweden)

    T. Maki

    2017-10-01

    Full Text Available Aerosol particles, including airborne microorganisms, are transported through the free troposphere from the Asian continental area to the downwind area in East Asia and can influence climate changes, ecosystem dynamics, and human health. However, the variations present in airborne bacterial communities in the free troposphere over downwind areas are poorly understood, and there are few studies that provide an in-depth examination of the effects of long-range transport of aerosols (natural and anthropogenic particles on bacterial variations. In this study, the vertical distributions of airborne bacterial communities at high altitudes were investigated and the bacterial variations were compared between dust events and non-dust events.Aerosols were collected at three altitudes from ground level to the free troposphere (upper level: 3000 or 2500 m; middle level: 1200 or 500 m; and low level: 10 m during Asian dust events and non-dust events over the Noto Peninsula, Japan, where westerly winds carry aerosols from the Asian continental areas. During Asian dust events, air masses at high altitudes were transported from the Asian continental area by westerly winds, and laser imaging detection and ranging (lidar data indicated high concentrations of non-spherical particles, suggesting that dust-sand particles were transported from the central desert regions of Asia. The air samples collected during the dust events contained 10–100 times higher concentrations of microscopic fluorescent particles and optical particle counter (OPC measured particles than in non-dust events. The air masses of non-dust events contained lower amounts of dust-sand particles. Additionally, some air samples showed relatively high levels of black carbon, which were likely transported from the Asian continental coasts. Moreover, during the dust events, microbial particles at altitudes of  >  1200 m increased to the concentrations ranging from 1. 2 × 106 to 6

  11. Bistable Intrinsic Charge Fluctuations of a Dust Grain Subject to Secondary Electron Emission in a Plasma

    CERN Document Server

    Shotorban, Babak

    2015-01-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  12. Bistable intrinsic charge fluctuations of a dust grain subject to secondary electron emission in a plasma.

    Science.gov (United States)

    Shotorban, B

    2015-10-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  13. Surface Potential of Dust Grains at the Sheath Edge of Electronegative Dusty Plasmas

    Institute of Scientific and Technical Information of China (English)

    段萍; 王正汹; 王文春; 刘金远; 刘悦; 王晓钢

    2004-01-01

    In this paper we investigate the dust surface potential at the sheath edge of electronegative dusty plasmas theoretically, using the standard fluid model for the sheath and treating electrons and negative ions as Boltzmann particles but positive ions and dust grains as cold fluids.The dust charging model is self-consistently coupled with the sheath formation criterion by the dust surface potential and the ion Mach number, moreover the dust density variation is taken into account. The numerical results reveal that the dust number density and negative ion number density as well as its temperature can significantly affect the dust surface potential at the sheath edge.

  14. Ultrahigh charging of dust grains by the beam−plasma method for creating a compact neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Akishev, Yu. S., E-mail: fav@triniti.ru; Karal’nik, V. B.; Petryakov, A. V.; Starostin, A. N.; Trushkin, N. I.; Filippov, A. V. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2016-01-15

    Generation of high-voltage high-current electron beams in a low-pressure (P = 0.1–1 Torr) gas discharge is studied experimentally as a function of the discharge voltage and the sort and pressure of the plasma-forming gas. The density of the plasma formed by a high-current electron beam is measured. Experiments on ultrahigh charging of targets exposed to a pulsed electron beam with an energy of up to 25 keV, an electron current density of higher than 1 A/cm{sup 2}, a pulse duration of up to 1 μs, and a repetition rate of up to 1 kHz are described. A numerical model of ultrahigh charging of dust grains exposed to a high-energy electron beam is developed. The formation of high-energy positive ions in the field of negatively charged plane and spherical targets is calculated. The calculations performed for a pulse-periodic mode demonstrate the possibility of achieving neutron yields of higher than 10{sup 6} s{sup –1} cm{sup –2} in the case of a plane target and about 10{sup 9} s{sup –1} in the case of 10{sup 3} spherical targets, each with a radius of 250 μm.

  15. VARIATIONS OF MID- AND FAR-INFRARED LUMINOSITIES AMONG EARLY-TYPE GALAXIES: RELATION TO STELLAR METALLICITY AND COLD DUST

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, William G.; Brighenti, Fabrizio [University of California Observatories/Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Temi, Pasquale; Amblard, Alexandre, E-mail: mathews@ucolick.org, E-mail: fabrizio.brighenti@unibo.it, E-mail: pasquale.temi@nasa.gov [Astrophysics Branch, NASA/Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States)

    2013-05-01

    The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 {mu}m luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central active galactic nucleus (AGN) emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 {mu}m luminosities remains significant along the correlation. We find that the 24 {mu}m variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branch stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies, cold interstellar dust emitting at 70 and 160 {mu}m may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 {mu}m luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) AGNs. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 {mu}m emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myr. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.

  16. Stability analysis of non-thermal complex astrofluids in the presence of polarized dust-charge fluctuations

    Science.gov (United States)

    Dutta, P.; Das, P.; Karmakar, P. K.

    2016-10-01

    The panoptic influence of plasma q-nonextensivity and dust-charge fluctuations on the gravito-electro-magnetic stability behaviour of a realistic non-thermal complex astroplasma model configuration with infinite geometrical extension is reconnoitered. It includes active viscoelasticity and dust polarization force-field effects in quasi-neutral hydrostatic equilibrium on the astrophysical fluid scales of space and time. The nontrivial linear model is simplified with the Jeans homogenization assumption (Jeans swindle, no zeroth-order force-field). It analytically and logically enables us to relax from the inclusion of large-scale inhomogeneities and of associated intrinsic complications. The role of boundary effects on the dynamical stability is assumed to be insignificant. We apply a standard technique of the Fourier formulaic plane-wave analysis over the basic cloud-structuring equations in a closed integrated form. It reduces the model Fourier algebraic equations decoupling into a unique form of cubic dispersion relation having mixed variable coefficients, which, indeed, explicitly, evolve on the diverse model plasma parameters. It is interestingly seen that the polarization and nonextensive effects directly play destabilizing roles. In contrast, the viscoelasticity and magnetic field create stabilizing effects on the instability. The pragmatic significance and applicability in the context of astro-cosmo-galactic environments are briefly indicated aboard analytic facts and introspective faults.

  17. Form function and variation of burning surface area for hexa-tubular charge

    Directory of Open Access Journals (Sweden)

    J. N. Kapur

    1964-10-01

    Full Text Available The problem of combustion of a hexa-tubular charge, which is a cylindrical charge with six holes of equal diameters- one at the centre and the other five symmetrically situated about it, has been considered in this paper. The burning of the charge proceeds in three distinct phases for each of which the form function and variation of burning surface area has been investigated. Equivalent form-factor has also been found. Numerical results for some important cases are tabulated.

  18. Testing spatial α-variation with optical atomic clocks based on highly charged ions

    Directory of Open Access Journals (Sweden)

    Berengut J. C.

    2013-08-01

    Full Text Available We review recent works illustrating the potential use of highly charged ions as the basis of optical atomic clocks of exceptional accuracy and very high sensitivity to variation of the fine structure constant, α. The tendency towards large transition energies in highly charged ions can be overcome using level crossings, which allow transitions between different orbitals to be within the range of usual lasers. We present simple scaling laws that demonstrate reduced systematics that could be realised in highly charged ion clocks. Such clocks could allow us to corroborate astronomical studies that suggest a spatial gradient in values of α across the Universe.

  19. Variation of Mid and Far-IR Luminosities among Early-Type Galaxies: Relation to Stellar Metallicity and Cold Dust

    CERN Document Server

    Mathews, William G; Brighenti, Fabrizio; Amblard, Alexandre

    2013-01-01

    The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 micron luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central AGN emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 micron luminosities remains significant along the correlation. We find that the 24 micron variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branch stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies cold interstellar dust emitting at 70 and 160 microns may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 micron lu...

  20. Highly charged ions for atomic clocks, quantum information, and search for α variation.

    Science.gov (United States)

    Safronova, M S; Dzuba, V A; Flambaum, V V; Safronova, U I; Porsev, S G; Kozlov, M G

    2014-07-18

    We propose 10 highly charged ions as candidates for the development of next generation atomic clocks, quantum information, and search for α variation. They have long-lived metastable states with transition wavelengths to the ground state between 170-3000 nm, relatively simple electronic structure, stable isotopes, and high sensitivity to α variation (e.g., Sm(14+), Pr(10+), Sm(13+), Nd(10+)). We predict their properties crucial for the experimental exploration and highlight particularly attractive systems for these applications.

  1. Spatial and temporal variation in magnetic properties of street dust in Lanzhou City, China

    Institute of Scientific and Technical Information of China (English)

    WANG Guan; XIA DunSheng; LIU XiuMing; CHEN FaHu; YU Ye; YANG LiPing; CHEN JianHui; ZHOU AiFeng

    2008-01-01

    Urban environmental problems are of increasing concern. Lanzhou is a large industrial city in North-west China. Street dust samples representing different temporal and spatial scales were collected for magnetic properties study. Magnetic measurements indicate a high concentration of magnetic minerals in Lanzhou street dust, dominated by pseudo-single domain (PSD) magnetite. The concentration of magnetic materials is distinctly high in winter and spring, low in autumn. Similarly, higher concentra-tions associated with heavy industry, concentrated residential development, and vehicular traffic sug-gest mixed contributions of magnetic material from both anthropogenic and natural sources. Xif and SOFT% are effective magnetic parameters that denote seasonal differences among magnetic proper-ties in street dust, convenient and economical methods for monitoring street dust pollution.

  2. Interplanetary Charged Dust Magnetic Clouds Striking the Magnetosphere: Coordinated Space-based and Ground-based Observations

    Science.gov (United States)

    Russell, C. T.; Chi, Peter; Lai, Hairong

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth’s magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth’s field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth’s magnetopause. These ground stations spread across

  3. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    Science.gov (United States)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-04-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  4. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    Science.gov (United States)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  5. Variations of the dust properties of M82 with galactocentric distance

    CERN Document Server

    Hutton, S; Yershov, V

    2015-01-01

    We use near ultraviolet and optical photometry to investigate the dust properties in the nearby starburst galaxy M82. By combining imaging from the Swift/UVOT instrument and optical data from the Sloan Digital Sky Survey, we derive the extinction curve parameterized by the standard Rv factor, and the strength of the NUV 2175 A feature - quantified by a parameter B -- out to projected galactocentric distances of 4 kpc. Our analysis is robust against possible degeneracies from the properties of the underlying stellar populations. Both B and Rv correlate with galactocentric distance, revealing a systematic trend of the dust properties. Our results confirm previous findings that dust in M82 is better fit by a Milky Way standard extinction curve (Hutton et al.), in contrast to a Calzetti law. We find a strong correlation between Rv and B, towards a stronger NUV bump in regions with higher Rv, possibly reflecting a distribution with larger dust grain sizes. The data we use were taken before SN2014J, and therefore c...

  6. Evolution of Martian polar landscapes - Interplay of long-term variations in perennial ice cover and dust storm intensity

    Science.gov (United States)

    Cutts, J. A.; Blasius, K. R.; Roberts, W. J.

    1979-01-01

    The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.

  7. Phthalate concentrations in house dust in relation to autism spectrum disorder and developmental delay in the CHildhood Autism Risks from Genetics and the Environment (CHARGE) study.

    Science.gov (United States)

    Philippat, Claire; Bennett, Deborah H; Krakowiak, Paula; Rose, Melissa; Hwang, Hyun-Min; Hertz-Picciotto, Irva

    2015-06-26

    Phthalates are endocrine-disrupting chemicals that influence thyroid hormones and sex steroids, both critical for brain development. We studied phthalate concentrations in house dust in relation to the risks of developing autism spectrum disorder (ASD) or developmental delay (DD). Participants were a subset of children from the CHARGE (CHildhood Autism Risks from Genetics and the Environment) case-control study. ASD and DD cases were identified through the California Department of Developmental Services system or referrals; general population controls were randomly sampled from state birth files and frequency-matched on age, sex, and broad geographic region to ASD cases. All children (50 ASD, 27 DD, 68 typically developing (TD)) were assessed with Mullen Scales of Early Learning, Vineland Adaptive Behavior Scales (VABS) and Aberrant Behavior Checklist. We measured 5 phthalates in dust collected in the child's home using a high volume small surface sampler. None of the phthalates measured in dust was associated with ASD. After adjustment, we observed greater di(2-ethylhexyl) phthalate (DEHP) and butylbenzyl phthalate (BBzP) concentrations in indoor dust from homes of DD children: Odds ratios (OR) were 2.10 (95% confidence interval (CI); 1.10; 4.09) and 1.40 (95% CI; 0.97; 2.04) for a one-unit increase in the ln-transformed DEHP and BBzP concentrations, respectively. Among TD children, VABS communication, daily living, and adaptive composite standard scores were lower, in association with increased diethyl phthalate (DEP) concentrations in dust. Participants with higher dibutyl phthalate (DBP) concentrations in house dust also trended toward reduced performance on these subscales. Among ASD and DD boys, higher indoor dust concentrations of DEP and DBP were associated with greater hyperactivity-impulsivity and inattention. House dust levels of phthalates were not associated with ASD. The inability to distinguish past from recent exposures in house dust and the fact

  8. Simulation of source intensity variations from atmospheric dust for solar occultation Fourier transform infrared spectroscopy at Mars

    Science.gov (United States)

    Olsen, K. S.; Toon, G. C.; Strong, K.

    2016-05-01

    A Fourier transform spectrometer observing in solar occultation mode from orbit is ideally suited to detecting and characterizing vertical profiles of trace gases in the Martian atmosphere. This technique benefits from a long optical path length and high signal strength, and can have high spectral resolution. The Martian atmosphere is often subject to large quantities of suspended dust, which attenuates solar radiation along the line-of-sight. An instrument making solar occultation measurements scans the limb of the atmosphere continuously, and the optical path moves through layers of increasing or decreasing dust levels during a single interferogram acquisition, resulting in time-varying signal intensity. If uncorrected, source intensity variations (SIVs) can affect the relative depth of absorption lines, negatively impacting trace gas retrievals. We have simulated SIVs using synthetic spectra for the Martian atmosphere, and investigated different techniques to mitigate the effects of SIVs. We examined high-pass filters in the wavenumber domain, and smoothing methods in the optical path difference (OPD) domain, and conclude that using a convolution operator in the OPD domain can isolate the SIVs and be used to correct for it. We observe spectral residuals of less than 0.25% in both high- and low-dust conditions, and retrieved volume mixing ratio vertical profile differences on the order of 0.5-3% for several trace gases known to be present in the Martian atmosphere. These differences are smaller than those caused by adding realistic noise to the spectra. This work thus demonstrates that it should be possible to retrieve vertical profiles of trace gases in a dusty Martian atmosphere using solar occultation if the interferograms are corrected for the effects of dust.

  9. Intrinsic Charge Trapping Observed as Surface Potential Variations in diF-TES-ADT Films.

    Science.gov (United States)

    Hoffman, Benjamin C; McAfee, Terry; Conrad, Brad R; Loth, Marsha A; Anthony, John E; Ade, Harald W; Dougherty, Daniel B

    2016-08-24

    Spatial variations in surface potential are measured with Kelvin probe force microscopy for thin films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophenes (diF-TES-ADT) grown on SiO2 and silane-treated SiO2 substrates by organic molecular beam deposition. The variations are observed both between and within grains of the polycrystalline organic film and are quantitatively different than electrostatic variations on the substrate surfaces. The skewness of surface potential distributions is larger on SiO2 than on HMDS-treated substrates. This observation is attributed to the impact of substrate functionalization on minimizing intrinsic crystallographic defects in the organic film that can trap charge.

  10. Within-Individual Variation in Preferences Equity Effects of Congestion Charges

    DEFF Research Database (Denmark)

    Borjesson, Maria; Cherchi, Elisabetta; Bierlaire, Michel

    2013-01-01

    The purpose of this research was to explore how the values of travel time (VTT) and preferences for different modes vary within individuals compared with the variation between observed trips. With 6-week revealed preference panel data and stated preference data from a mode choice context, both...... collected in Switzerland, a revealed stated preference logit mode choice model was estimated. The model was applied to simulate how VTT and change in consumer surplus vary across trips within and between individuals over the 6 weeks in response to a hypothetical congestion-charging scheme. The variation...... in VTT arising from income differences was found to be substantially smaller than the variation in VTT between trips. Moreover, the variability in VTT averaged over all trips within each individual was considerably smaller than the variability in VTT for all observed trips. Therefore, the assumption...

  11. Variations in cometary dust composition from Giotto to Rosetta, clues to their formation mechanisms

    Science.gov (United States)

    Engrand, Cécile; Duprat, Jean; Dartois, Emmanuel; Benzerara, Karim; Leroux, Hugues; Baklouti, Donia; Bardyn, Anaïs; Briois, Christelle; Cottin, Hervé; Fischer, Henning; Fray, Nicolas; Godard, Marie; Hilchenbach, Martin; Langevin, Yves; Paquette, John; Rynö, Jouni; Schulz, Rita; Silén, Johan; Stenzel, Oliver; Thirkell, Laurent; Cosima Team

    2016-11-01

    This paper reviews the current knowledge on the composition of cometary dust (ice, minerals and organics) in order to constrain their origin and formation mechanisms. Comets have been investigated by astronomical observations, space missions (Giotto to Rosetta), and by the analysis of cometary dust particles collected on Earth, chondritic porous interplanetary dust particles (CP-IDPs) and ultracarbonaceous Antarctic micrometeorites (UCAMMs). Most ices detected in the dense phases of the interstellar medium (ISM) have been identified in cometary volatiles. However, differences also suggest that cometary ices cannot be completely inherited from the ISM. Cometary minerals are dominated by crystalline Mg-rich silicates, Fe sulphides and glassy phases including GEMS (glass with embedded metals and sulphides). The crystalline nature and refractory composition of a significant fraction of the minerals in comets imply a high temperature formation/processing close to the proto-Sun, resetting a possible presolar signature of these phases. These minerals were further transported up to the external regions of the disc and incorporated in comet nuclei. Cometary matter contains a low abundance of isotopically anomalous minerals directly inherited from the presolar cloud. At least two different kinds of organic matter are found in dust of cometary origin, with low or high nitrogen content. N-poor organic matter is also observed in primitive interplanetary materials (like carbonaceous chondrites) and its origin is debated. The N-rich organic matter is only observed in CP-IDPs and UCAMMs and can be formed by Galactic cosmic ray irradiation of N2- and CH4-rich icy surface at large heliocentric distance beyond a `nitrogen snow line'.

  12. Bond length and charge density variations within extended arm chair defects in graphene.

    Science.gov (United States)

    Warner, Jamie H; Lee, Gun-Do; He, Kuang; Robertson, Alex W; Yoon, Euijoon; Kirkland, Angus I

    2013-11-26

    Extended linear arm chair defects are intentionally fabricated in suspended monolayer graphene using controlled focused electron beam irradiation. The atomic structure is accurately determined using aberration-corrected transmission electron microscopy with monochromation of the electron source to achieve ∼80 pm spatial resolution at an accelerating voltage of 80 kV. We show that the introduction of atomic vacancies in graphene disrupts the uniformity of C-C bond lengths immediately surrounding linear arm chair defects in graphene. The measured changes in C-C bond lengths are related to density functional theory (DFT) calculations of charge density variation and corresponding DFT calculated structural models. We show good correlation between the DFT predicted localized charge depletion and structural models with HRTEM measured bond elongation within the carbon tetragon structure of graphene. Further evidence of bond elongation within graphene defects is obtained from imaging a pair of 5-8-5 divacancies.

  13. The Search for Fractional Charge Particles in an Advanced, Automated Variation of the Millikan Experiment

    Science.gov (United States)

    Lee, I. T.; Halyo, V.; Lee, E. R.; Loomba, D.; Perl, M. L.

    2001-04-01

    We will present a variation on the Millikan apparatus designed to look for fractionally charged particles in bulk materials, and results from the current run. Oil drops are produced from a drop-on-demand ejector, and imaged by a digital CCD camera and framegrabber combination. A networked Linux cluster is used to simultaneously collect and analyze data, and to monitor and control the apparatus. The experiment is fully automated, and utilizes laminar air flow to make possible the accurate measurements of charge on large (20 micron) fluid drops. The experiment has the capability to process a total of 10^7 to 10^8 drops (20-200 mg), and the ability to use large drops enables the search to be carried out in mineral suspensions.

  14. Impacts of Interactive Dust and its Direct Radiative Forcing on Interannual Variations of Temperature and Precipitation in Winter over East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Sijia; Russell, Lynn M.; Yang, Yang; Liu, Ying; Singh, Balwinder; Ghan, Steven J.

    2017-08-24

    We used 150-year pre-industrial simulations of the Community Earth System Model (CESM) to quantify the impacts of interactively-modeled dust emissions on the interannual variations of temperature and precipitation over East Asia during the East Asian Winter Monsoon (EAWM) season. The simulated December-January-February dust column burden and dust optical depth are lower over northern China in the strongest EAWM years than those of the weakest years, with regional mean values lower by 38.3% and 37.2%, respectively. The decrease in dust over the dust source regions (the Taklamakan and Gobi Deserts) and the downwind region (such as the North China Plain) leads to an increase in direct radiative forcing (RF) both at the surface and top of atmosphere by up to 1.5 and 0.75 W m-2, respectively. The effects of EAWM-related variations in surface winds, precipitation and their effects on dust emissions and wet removal contribute about 67% to the total dust-induced variations of direct RF at the surface and partly offset the cooling that occurs with the EAWM strengthening by heating the surface. The variations of surface air temperature induced by the changes in wind and dust emissions increase by 0.4-0.6 K over eastern coastal China, northeastern China, and Japan, which weakens the impact of EAWM on surface air temperature by 3–18% in these regions. The warming results from the combined effects of changes in direct RF and easterly wind anomalies that bring warm air from the ocean to these regions. Moreover, the feedback of the changes in wind on dust emissions weakens the variations of the sea level pressure gradient on the Siberian High while enhancing the Maritime Continent Low. Therefore, cold air is prevented from being transported from Siberia, Kazakhstan, western and central China to the western Pacific Ocean and decreases surface air temperature by 0.6 K and 2 K over central China and the Tibetan Plateau, respectively. Over eastern coastal China, the variations of

  15. Variation in Emergency Department vs Internal Medicine Excess Charges in the United States.

    Science.gov (United States)

    Xu, Tim; Park, Angela; Bai, Ge; Joo, Sarah; Hutfless, Susan M; Mehta, Ambar; Anderson, Gerard F; Makary, Martin A

    2017-08-01

    Uninsured and insured but out-of-network emergency department (ED) patients are often billed hospital chargemaster prices, which exceed amounts typically paid by insurers. To examine the variation in excess charges for services provided by emergency medicine and internal medicine physicians. Retrospective analysis was conducted of professional fee payment claims made by the Centers for Medicare & Medicaid Services for all services provided to Medicare Part B fee-for-service beneficiaries in calendar year 2013. Data analysis was conducted from January 1 to July 31, 2016. Markup ratios for ED and internal medicine professional services, defined as the charges submitted by the hospital divided by the Medicare allowable amount. Our analysis included 12 337 emergency medicine physicians from 2707 hospitals and 57 607 internal medicine physicians from 3669 hospitals in all 50 states. Services provided by emergency medicine physicians had an overall markup ratio of 4.4 (340% excess charges), which was greater than the markup ratio of 2.1 (110% excess charges) for all services performed by internal medicine physicians. Markup ratios for all ED services ranged by hospital from 1.0 to 12.6 (median, 4.2; interquartile range [IQR], 3.3-5.8); markup ratios for all internal medicine services ranged by hospital from 1.0 to 14.1 (median, 2.0; IQR, 1.7-2.5). The median markup ratio by hospital for ED evaluation and management procedure codes varied between 4.0 and 5.0. Among the most common ED services, laceration repair had the highest median markup ratio (7.0); emergency medicine physician review of a head computed tomographic scan had the greatest interhospital variation (range, 1.6-27.7). Across hospitals, markups in the ED were often substantially higher than those in the internal medicine department for the same services. Higher ED markup ratios were associated with hospital for-profit ownership (median, 5.7; IQR, 4.0-7.1), a greater percentage of uninsured patients seen

  16. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  17. Spatial and Temporal Variation of the Extreme Saharan Dust Event over Turkey in March 2016

    Directory of Open Access Journals (Sweden)

    Hakki Baltaci

    2017-02-01

    Full Text Available In this study, the influence of an extraordinary Saharan dust episode over Turkey on 23–24 March 2016 and the atmospheric conditions that triggered this event were evaluated in detail. PM10 (particulate matter less than 10 μm observations from 97 air quality stations, METAR (Meteorological Terminal Aviation Routine Weather Report observations at 64 airports, atmospheric soundings, and satellite products were used for the analysis. To determine the surface and upper levels of atmospheric circulation, National Centers of Environmental Prediction (NCEP/National Center for Atmospheric Research (NCAR Reanalysis data were applied to the extreme dust episodes. On 23 March 2016, high southwesterly winds due to the interaction between surface low- and high-pressure centers over Italy and Levant basin brought thick dust particles from Libya to Turkey. The daily PM10 data from 43 stations exceeded their long-term spring means over Turkey (especially at the northern and western stations. As a consequence of the longitudinal movement of the surface low from Italy to the Balkan Peninsula, and the quasi-stationary conditions of the surface high-pressure center allowed for the penetration of strong south and southwesterly winds to inner parts of the country on the following day. As a consequence, 100%, 90%, 88%, and 87% of the monitoring stations in Marmara (NW Turkey, central Anatolia, western (Aegean and northern (Black Sea regions of Turkey, respectively, exhibited above-normal daily PM10 values. In addition, while strong subsidence at the low levels of the atmosphere plays a significant role in having excessive daily PM10 values in Black Sea, dry atmospheric conditions and thick inversion level near the ground surface of Marmara ensured this region to have peak PM10 values ~00 Local Time (LT.

  18. Constraining dust and color variations of high-z SNe using NICMOS on Hubble Space Telescope

    CERN Document Server

    Nobili, S; Aldering, G; Amanullah, R; Barbary, K; Burns, M S; Dawson, K S; Deustua, S E; Faccioli, L; Fruchter, A S; Goldhaber, G; Goobar, A; Hook, I; Howell, D A; Kim, A G; Knop, R A; Lidman, C; Meyers, J; Nugent, P E; Pain, R; Panagia, N; Perlmutter, S; Rubin, D; Spadafora, A L; Strovink, M; Suzuki, N; Swift, H

    2009-01-01

    We present data from the Supernova Cosmology Project for five high redshift Type Ia supernovae (SNe Ia) that were obtained using the NICMOS infrared camera on the Hubble Space Telescope. We add two SNe from this sample to a rest-frame I-band Hubble diagram, doubling the number of high redshift supernovae on this diagram. This I-band Hubble diagram is consistent with a flat universe (Omega_Matter, Omega_Lambda= 0.29, 0.71). A homogeneous distribution of large grain dust in the intergalactic medium (replenishing dust) is incompatible with the data and is excluded at the 5 sigma confidence level, if the SN host galaxy reddening is corrected assuming R_V=1.75. We use both optical and infrared observations to compare photometric properties of distant SNe Ia with those of nearby objects. We find generally good agreement with the expected color evolution for all SNe except the highest redshift SN in our sample (SN 1997ek at z=0.863) which shows a peculiar color behavior. We also present spectra obtained from ground ...

  19. Gas and dust productions of comet 103P/Hartley 2 from millimetre observations: interpreting rotation-induced time variations

    CERN Document Server

    Boissier, J; Biver, N; Colom, P; Crovisier, J; Moreno, R; Zakharov, V; Groussin, O; Jorda, L; Lis, D C

    2013-01-01

    Comet 103P/Hartley 2 made a close approach to the Earth in October 2010. It was the target of an extensive observing campaign and was visited by the Deep Impact spacecraft (mission EPOXI). We present observations of HCN and CH3OH emission lines conducted with the IRAM Plateau de Bure interferometer on 22-23, 28 October and 4, 5 November 2010 at 1.1, 1.9 and 3.4 mm wavelengths. The thermal emission from the dust coma and nucleus is detected simultaneously. Interferometric images with unprecedented spatial resolution are obtained. A sine-wave variation of the thermal continuum is observed in the 23 October data, that we associate with the nucleus thermal light curve. The nucleus contributes up to 30-55 % of the observed continuum. The large dust-to-gas ratio (in the range 2-6) can be explained by the unusual activity of the comet for its size, which allows decimeter size particles and large boulders to be entrained by the gas. The rotational temperature of CH3OH is measured. We attribute the increase from 35 to...

  20. LISA Pathfinder test-mass charging during galactic cosmic-ray flux short-term variations

    Science.gov (United States)

    Grimani, C.; Fabi, M.; Lobo, A.; Mateos, I.; Telloni, D.

    2015-02-01

    Metal free-floating test masses aboard the future interferometers devoted to gravitational wave detection in space are charged by galactic and solar cosmic rays with energies \\gt 100 MeV/n. This process represents one of the main sources of noise in the lowest frequency band (\\lt 10-3 Hz) of these experiments. We study here the charging of the LISA Pathfinder (LISA-PF) gold-platinum test masses due to galactic cosmic-ray (GCR) protons and helium nuclei with the Fluka Monte Carlo toolkit. Projections of the energy spectra of GCRs during the LISA-PF operations in 2015 are considered. This work was carried out on the basis of the solar activity level and solar polarity epoch expected for LISA-PF. The effects of GCR short-term variations are evaluated here for the first time. Classical Forbush decreases, GCR variations induced by the Sun rotation, and fluctuations in the LISA-PF frequency bandwidth are discussed.

  1. Variations between Dust and Gas in the Diffuse Interstellar Medium. 2. Search for Cold Gas

    CERN Document Server

    Reach, William T; Bernard, Jean-Philippe

    2016-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 solar masses in size, and used the dust content to estimate the total amount of gas. In Paper 1, the total inferred gas content was found significantly larger than that seen in 21-cm emission measurements of H~I. In this paper we test the hypothesis that the apparent excess `dark' gas is cold H~I, which would be evident in absorption but not in emission due to line saturation. The results show there is not enough 21-cm absorption toward the clouds to explain the total amount of `dark' gas.

  2. Variations between Dust and Gas in the Diffuse Interstellar Medium. II. Search for Cold Gas

    Science.gov (United States)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M⊙ in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that there is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.

  3. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer

    Science.gov (United States)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin

    2011-08-01

    The associations between the variations of PM10 concentration during summer monsoon dry seasons over the Klang Valley, Malaysia and the local meteorological factors, synoptic weather conditions as well as the regional hotspots number were examined based on simple multiple linear regression analysis. The regressive relationships established, suggest that the variation of PM10 in Klang Valley was governed significantly by all of the examined factors. Local meteorological conditions are among those factors which governed the largest day-to-day variations of PM10 concentration in the Klang Valley areas during the dry season. When augmented by synoptic meteorological variables and foreign emission sources, a remarkable increase in the explained variance was apparent. On the other hand, domestic burning sources only had a minimal impact on PM10 fluctuations. Important synoptic weather patterns which influence the air pollution variations were also identified. These synoptic conditions include the strengthening of the summer monsoon southwesterly winds over the equatorial area. In addition, the formation of cyclonic circulation, associated with typhoon formation over the north-west Pacific and the South China Sea as well as over the Bay of Bengal, are found to have had a profound impact on PM10 variations over the Malaysian region through the modulation of regional moisture distributions.

  4. Influence of grain charge gradients on the dynamics of macroparticles in an electrostatic trap

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    An analytical model of anomalous heating of charged dust grains (macroparticles) caused by their stochastic motion in a bounded plasma volume is proposed. Analytical expressions allowing one to describe the pumping (heating) of interacting grains with additional stochastic energy due to grain charge gradients are derived. The analytical results are verified by numerical simulation of the problem. It is shown that spatial variations in the charges of dust grains can lead to their anomalous heating in laboratory plasma.

  5. Jovian dust streams Probes of the Io plasma torus

    CERN Document Server

    Krüger, H; Grün, E; Krueger, Harald; Horanyi, Mihaly; Gruen, Eberhard

    2002-01-01

    Jupiter was discovered to be a source of high speed dust particles by the Ulysses spacecraft in 1992. These dust particles originate from the volcanic plumes on Io. They collect electrostatic charges from the plasma environment, gain energy from the co-rotating electric field of the magnetosphere, and leave Jupiter with escape speeds over $\\rm 200 km s^{-1}$. The dust streams were also observed by the Galileo and Cassini spacecraft. While Ulysses and Cassini only had a single encounter with Jupiter, Galileo has continuously monitored the dust streams in the Jovian magnetosphere since 1996. The observed dust fluxes exhibit large orbit-to-orbit variability due to both systematic and stochastic changes. By combining the entire data set, the variability due to stochatic processes can be approximately removed and a strong variation with Jovian local time is found. This result is consistent with theoretical expectations and confirms that the majority of the Jovian dust stream particles originate from Io rather than...

  6. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution.

    Science.gov (United States)

    Prajapati, Santosh Kumar; Tripathi, B D

    2008-01-01

    To assess the dust interception efficiency of some selected tree species and impact of dust deposition on chlorophyll and ascorbic acid content of leaves the present study was undertaken. The plant species selected for the study were Ficus religiosa, Ficus benghalensis, Mangifera indica, Dalbergia sissoo, Psidium guajava, and Dendrocalamus strictus. It was found that all species have maximum dust deposition in the winter season followed by summer and rainy seasons. Chlorophyll content decreased and ascorbic acid content increased with the increase of dust deposition. There was significant negative and positive correlation between dust deposition and chlorophyll and ascorbic acid content, respectively. Maximum dust interception was done by Dalbergia sisso and least by Dendrocalamus strictus. Thus plants can be used to intercept dust particles which are of potential health hazards to humans.

  7. Incorrect diatomic dissociation in variational reduced density matrix theory arises from the flawed description of fractionally charged atoms.

    Science.gov (United States)

    Van Aggelen, Helen; Bultinck, Patrick; Verstichel, Brecht; Van Neck, Dimitri; Ayers, Paul W

    2009-07-21

    The behaviour of diatomic molecules is examined using the variational second-order density matrix method under the P, Q and G conditions. It is found that the method describes the dissociation limit incorrectly, with fractional charges on the well-separated atoms. This can be traced back to the behaviour of the energy versus the number of electrons for the isolated atoms. It is shown that the energies for fractional charges are much too low.

  8. Electrostatic Characterization of Lunar Dust

    Science.gov (United States)

    2008-01-01

    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  9. The Role of Meteorology and Surface Condition to Multi-Decadal Variations of Dust Emission in Sahara and Sahel

    Science.gov (United States)

    Kim, D.; Chin, M.; Diehl, T. L.; Bian, H.; Brown, M. E.; Remer, L. A.; Stockwell, W. R.

    2014-12-01

    North Africa is the world's largest dust source region influencing regional and global climate, human health, and even the local economy. However North Africa as a dust source is not uniform but it consists of the arid region (Sahara) and the semi-arid region (Sahel) with emission rates depending on meteorological and surface conditions. Several recent studies have shown that dust from North Africa seems to have a decreasing trend in the past three decades. The goal of this study is to better understand the controlling factors that determine the change of dust in North Africa using observational data and model simulations. First we analyze surface bareness conditions determined from a long-term satellite observed Normalized Difference Vegetation Index for 1980-2008. Then we examine the key meteorological variables of precipitation and surface winds. Modeling experiments were conducted using the NASA Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which has been recently updated with a dynamic dust source function. Using the method we separate the dust originating from the Sahel from that of the Sahara desert. We find that the surface wind speed is the most dominant factor affecting Sahelian dust emission while vegetation has a modulating effect. We will show regional differences in meteorological variables, surface conditions, dust emission, and dust distribution and address the relationships among meteorology, surface conditions, and dust emission/loading in the past three decades (1980-2008).

  10. [Particle Size Distribution, Seasonal Variation Characteristics and Human Exposure Assessment of Heavy Metals in Typical Settled Dust from Beijing].

    Science.gov (United States)

    Cao, Zhi-guo; Yu, Gang; Lü, Xiang-ying; Wang, Meng-lei; Li, Qi-lu; Feng, Jing-lan; Yan, Guang-xuan; Yu, Hao; Sun, Jian-hui

    2016-04-15

    Four types of dust from dormitories, offices, hotels and roads in Beijing were collected and fractionated into 9 fractions, respectively. Totally 36 samples were obtained and analyzed for heavy metals including Cu, Zn, Cr, Pb, Cd and Ni. Particle size distributions of those heavy metals in these four types of dust were investigated and the influencing mechanisms were discussed. Distribution patterns of the same heavy metal in different types of dust showed various characteristics. Also different metals in the same type of dust represented different distribution patterns. Heavy metals in road dust tended to concentrate in finer particles. Two offices from the same building, located in Beijing, China, were selected to study the seasonality of heavy metals in dust. Dust sampling from Office A was conducted at weekly intervals between March 2012 and August 2012, while dust from Office B was sampled fortnightly from March 2012 to December 2012. Generally, levels of all heavy metals remained stable among different seasons, however, Cr and Pb represented more significant fluctuations than other four heavy metals. Based on the geo-accumulation index method, the pollution of Zn, Cu and Pb was more serious in the investigated samples, and dust from offices and hotels were moderately polluted by Zn. According to the risk assessment results, the carcinogenic health risks of the six heavy metals in the four types of dust were negligible.

  11. Extinction law variations and dust excitation in the spiral galaxy NGC 300

    CERN Document Server

    Roussel, H; Seibert, M; Helou, G; Madore, B F; Martin, C

    2005-01-01

    We investigate the origin of the strong radial gradient in the ultraviolet-to-infrared ratio in the spiral galaxy NGC 300, and emphasize the importance of local variations in the interstellar medium geometry, concluding that they cannot be neglected with respect to metallicity effects. This analysis is based upon a combination of maps from GALEX and Spitzer, and from the ground (UBVRI, Halpha and Hbeta). We select ionizing stellar clusters associated with HII regions of widely varying morphologies, and derive their fundamental parameters from population synthesis fitting of their spectral energy distributions, measured to eliminate local backgrounds accurately. From these fits, we conclude that the stellar extinction law is highly variable in the line of sight of young clusters of similar ages. In the particular model geometry that we consider most appropriate to the sampled regions, we checked that our findings are not significantly altered by the correct treatment of radiative transfer effects. The variatio...

  12. Distribution of artificial sweeteners in dust and soil in China and their seasonal variations in the environment of Tianjin.

    Science.gov (United States)

    Gan, Zhiwei; Sun, Hongwen; Yao, Yiming; Zhao, Yangyang; Li, Yan; Zhang, Yanwei; Hu, Hongwei; Wang, Ruonan

    2014-08-01

    A nationwide investigation on the occurrence of artificial sweeteners (ASs) was conducted by collecting 98 paired outdoor dust and soil samples from mainland China. The ASs were widely detected in Chinese atmospheric dry deposition and soil samples, at concentrations up to 6450 and 1280 ng/g, respectively. To give a picture on AS distribution and source in the whole environment, the concentrations and seasonal variations of ASs in Tianjin were studied, including atmosphere, soil, and water samples. The AS levels were significantly higher in Haihe river at TJW (a sampling site in central city) in winter, while no obviously seasonal trends were obtained at BYL (close to a AS factory) and the site at a wastewater treatment plant. Saccharin, cyclamate, and acesulfame were the dominant ASs in both gas and particulate phase, with concentrations varying from 0.02 to 1940 pg/m(3). Generally, gas phase concentrations of the ASs were relatively higher in summer, while opposite results were acquired for particulate phase. Wet and dry deposition fluxes were calculated based on the measured AS levels. The results indicated that both wet and dry deposition could efficiently remove ASs in the atmosphere and act as important pollutant sources for the ASs in surface environment.

  13. Variations in exposure to inhalable wood dust in the Danish furniture industry. Within- and between-worker and factory components estimated from passive dust sampling.

    Science.gov (United States)

    Vinzents, P S; Schlünssen, V; Feveile, H; Schaumburg, I

    2001-10-01

    Variability of exposure to wood dust at large factories in the Danish furniture industry was studied. Three repeated exposure measurements of 292 workers at 38 factories were included in the study. The measurements were carried out by use of personal passive dust monitors. The components of variance were estimated by means of a random effects ANOVA model. The ratio of within- to between-worker variance was 1.07. Based on this result, and three repeated exposure measurements, the observed relation between health outcome and exposure will be attenuated to 74% of the true value. Grouping by factory showed very poor exposure contrast, as the contrast in exposure level among factories was as low as 0.15.

  14. Regular and quasi black hole solutions for spherically symmetric charged dust distributions in Einstein-Maxwell theory

    CERN Document Server

    Horvat, D; Narancic, Z; Horvat, Dubravko; Ilijic, Sasa; Narancic, Zoran

    2004-01-01

    Spherically symmetric distributions of electrically counterpoised dust (ECD) are used to construct solutions to Einstein-Maxwell equations in Majumdar-Papapetrou formalism. Unexpected bifurcating behavior of regular and singular solutions with regard to source strength is found for localized, as well as for the delta-function ECD distributions. Unified treatment of general ECD distributions is accomplished and it is shown that for certain source strengths one class of regular solutions approaches Minkowski spacetime, while the other comes arbitrarily close to black hole solutions.

  15. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  16. Variation in the dust emissivity index across M33 with Herschel and Spitzer (HerM33es)

    CERN Document Server

    Tabatabaei, F S; Xilouris, E M; Kramer, C; Boquien, M; Combes, F; Henkel, C; Relano, M; Verley, S; Gratier, P; Israel, F; Wiedner, M C; Roellig, M; Schuster, K F; van derWerf, P

    2013-01-01

    We study the wavelength dependence of the dust emission as a function of position and environment across the disk of M33 at a linear resolution of 160 pc using Spitzer and Herschel photometric data. Expressing the emissivity of the dust as a power law, the power-law exponent (beta) is estimated from two independent approaches designed to properly treat the degeneracy between beta and the dust temperature. Both beta and the dust temperature are higher in the inner disk than in the outer disk, contrary to reported beta-T anti-correlations found in other sources. In the cold + warm dust model, the warm component and the ionized gas (Halpha) have a very similar distribution across the galaxy, demonstrating that the model separates the components in an appropriate fashion. The flocculent spiral arms and the dust lanes are evident in the map of the cold component. Both cold and warm dust column densities are high in star forming regions and reach their maxima toward the giant star forming complexes NGC604 and NGC59...

  17. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  18. Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits

    Directory of Open Access Journals (Sweden)

    A. Sima

    2013-07-01

    Full Text Available European loess sequences of the Marine Isotope Stage 3 (~60–25 kyr BP show periods of strong dust accumulation alternating with episodes of reduced sedimentation, favoring soil development. In the western part of the loess belt centered around 50° N, these variations appear to have been related to the North Atlantic rapid climate changes: the Dansgaard–Oeschger (DO and Heinrich (H events. It has been recently suggested that the North Atlantic climate signal can be detected further east, in loess deposits from Stayky (50°05.65' N, 30°53.92' E, Ukraine. Here we use climate and dust emission modeling to investigate this data interpretation. We focus on the areas north and northeast of the Carpathians, where loess deposits can be found, and the corresponding main dust sources must have been located as well. The simulations were performed with the LMDZ atmospheric general circulation model and the ORCHIDEE land surface model. They represent a reference "Greenland stadial" state and two perturbations, seen as sensitivity tests with respect to changes in the North Atlantic surface conditions between 30° and 63° N: a "Greenland interstadial" and an "H event". The main source for the loess deposits in the studied area is identified as a dust deflation band, with two very active spots located west-northwest from our reference site. Emissions only occur between February and June. Differences from one deflation spot to another, and from one climate state to another, are explained by analyzing the relevant meteorological and surface variables. Over most of the source region, the annual emission fluxes in the "interstadial" experiment are 30 to 50% lower than the "stadial" values; they would only be about 20% lower if the inhibition of dust uplift by the vegetation were not taken into account. Assuming that lower emissions result in reduced dust deposition leads us to the conclusion that the loess–paleosol stratigraphic succession in the Stayky

  19. Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS 3 loess deposits

    Science.gov (United States)

    Sima, A.; Kageyama, M.; Rousseau, D.-D.; Ramstein, G.; Balkanski, Y.; Antoine, P.; Hatté, C.

    2013-07-01

    European loess sequences of the Marine Isotope Stage 3 (~60-25 kyr BP) show periods of strong dust accumulation alternating with episodes of reduced sedimentation, favoring soil development. In the western part of the loess belt centered around 50° N, these variations appear to have been related to the North Atlantic rapid climate changes: the Dansgaard-Oeschger (DO) and Heinrich (H) events. It has been recently suggested that the North Atlantic climate signal can be detected further east, in loess deposits from Stayky (50°05.65' N, 30°53.92' E), Ukraine. Here we use climate and dust emission modeling to investigate this data interpretation. We focus on the areas north and northeast of the Carpathians, where loess deposits can be found, and the corresponding main dust sources must have been located as well. The simulations were performed with the LMDZ atmospheric general circulation model and the ORCHIDEE land surface model. They represent a reference "Greenland stadial" state and two perturbations, seen as sensitivity tests with respect to changes in the North Atlantic surface conditions between 30° and 63° N: a "Greenland interstadial" and an "H event". The main source for the loess deposits in the studied area is identified as a dust deflation band, with two very active spots located west-northwest from our reference site. Emissions only occur between February and June. Differences from one deflation spot to another, and from one climate state to another, are explained by analyzing the relevant meteorological and surface variables. Over most of the source region, the annual emission fluxes in the "interstadial" experiment are 30 to 50% lower than the "stadial" values; they would only be about 20% lower if the inhibition of dust uplift by the vegetation were not taken into account. Assuming that lower emissions result in reduced dust deposition leads us to the conclusion that the loess-paleosol stratigraphic succession in the Stayky area reflects indeed

  20. Universal instability of dust ion-sound waves and dust-acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V.N. [General Physics Institute, Russian Academy of Science Moscow, Moscow (Russian Federation); Watanabe, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  1. Impact of Charge Variation on the Encapsulation of Nanoparticles by Virus Coat Proteins

    CERN Document Server

    Lin, Hsiang-Ku; Zandi, Roya

    2012-01-01

    Electrostatic interaction is the driving force for the encapsulation by virus coat proteins of nanoparticles such as quantum dots, gold particles and magnetic beads for, e.g., imaging and therapeutic purposes. In recent experimental work, Daniel et al. [ACS Nano 4 (2010), 3853-3860] found the encapsulation efficiency to sensitively depend on the interplay between the surface charge density of negatively charged gold nanoparticles and the number of positive charges on the RNA binding domains of the proteins. Surprisingly, these experiments reveal that despite the highly cooperative nature of the co-assembly at low pH, the efficiency of encapsulation is a gradual function of their surface charge density. We present a simple all-or-nothing mass action law combined with an electrostatic interaction model to explain the experiments. We find quantitative agreement with experimental observations, supporting the existence of a natural statistical charge distribution between nanoparticles.

  2. Variation in southwestern hospital charges for pulmonary and critical care DRGs

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2013-07-01

    Full Text Available Recently, the Centers for Medicare and Medicaid Services (CMS released nationwide data on hospital charges and CMS payments for the top 100 disease-related groups (DRG. Data obtained from the CMS website was examined for 23 common pulmonary and critical care DRG charges and payments to hospitals in the Southwest United States (Arizona, New Mexico and Colorado. Similar to nationwide trends, charges vastly exceeded payments and varied widely. Normalizing the data to the state average for each DRG, the percent over/under the state average revealed a negative correlation between charges and payments. Urban hospitals billed more but did not receive significantly higher payments. Hospitals that were primary hospitals for residencies did not bill significantly more but did receive higher payments. These data demonstrate that charges and payments for respiratory and critical care DRGs in the Southwest mirror nationwide trends in large overcharges.

  3. Global dust attenuation in disc galaxies: strong variation with specific star formation and stellar mass, and the importance of sample selection

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2016-06-01

    We study the relative dust attenuation-inclination relation in 78 721 nearby galaxies using the axis ratio dependence of optical-near-IR colour, as measured by the Sloan Digital Sky Survey, the Two Micron All Sky Survey, and the Wide-field Infrared Survey Explorer. In order to avoid to the greatest extent possible attenuation-driven biases, we carefully select galaxies using dust attenuation-independent near- and mid-IR luminosities and colours. Relative u-band attenuation between face-on and edge-on disc galaxies along the star-forming main sequence varies from ˜0.55 mag up to ˜1.55 mag. The strength of the relative attenuation varies strongly with both specific star formation rate and galaxy luminosity (or stellar mass). The dependence of relative attenuation on luminosity is not monotonic, but rather peaks at M3.4 μm ≈ -21.5, corresponding to M* ≈ 3 × 1010 M⊙. This behaviour stands seemingly in contrast to some older studies; we show that older works failed to reliably probe to higher luminosities, and were insensitive to the decrease in attenuation with increasing luminosity for the brightest star-forming discs. Back-of-the-envelope scaling relations predict the strong variation of dust optical depth with specific star formation rate and stellar mass. More in-depth comparisons using the scaling relations to model the relative attenuation require the inclusion of star-dust geometry to reproduce the details of these variations (especially at high luminosities), highlighting the importance of these geometrical effects.

  4. Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2003-01-01

    Full Text Available We present small scale variations of electron number densities and particle charge number densities measured in situ in the presence of polar mesosphere summer echoes. It turns out that the small scale fluctuations of electrons and negatively charged particles show a strong anticorrelation down to the smallest scales observed. Comparing these small scale structures with the simultaneously measured radar signal to noise profile, we find that the radar profile is well described by the power spectral density of both electrons and charged particles at the radar half wavelength (=the Bragg scale. Finally, we consider the shape of the power spectra of the observed plasma fluctuations and find that both charged particles and electrons show spectra that can be explained in terms of either neutral air turbulence acting on the distribution of a low diffusivity tracer or the fossil remnants of a formerly active turbulent region. All these results are consistent with the theoretical ideas by Rapp and Lübken (2003 suggesting that PMSE can be explained by a combination of active and fossil neutral air turbulence acting on the large and heavy charged aerosol particles which are subsequently mirrored in the electron number density distribution that becomes visible to a VHF radar when small scale fluctuations are present.

  5. Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits

    CERN Document Server

    Vincendon, Mathieu; Poulet, François; Pommerol, Antoine; Wolff, Michael; Bibring, Jean-Pierre; Gondet, Brigitte; Jouglet, Denis; 10.1016/j.icarus.2008.12.012

    2011-01-01

    The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 {\\mu}m. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 {\\mu}m. Observations w...

  6. Variation of Charge Distribution and Capacitance on Thin Wire Using the Method of Moments

    Directory of Open Access Journals (Sweden)

    Mohamed Louzazni

    2013-09-01

    Full Text Available In this paper, we attempting to determine the linear charge density and capacitance on a finite straight segment of thin charged conducting wire of length L=1 m and radius r. we assume that the charge density piecewise constant over the length and the electric potential are is one volt. If the radius are very small compared to the length r<charge density are piecewise constant onto each segment. The integral equation will be transformed to linear equation in N equation with N unknown system. We use the method of moments for solving this system and we obtained a Toeplitz matrix, the results shows the charge density for N=100 is represented on the low levels of discretisation, and the decreasing of the radius increaser the fidelity of the results.

  7. Variation in the dust emissivity index across M 33 with Herschel and Spitzer (HerM 33es)

    Science.gov (United States)

    Tabatabaei, F. S.; Braine, J.; Xilouris, E. M.; Kramer, C.; Boquien, M.; Combes, F.; Henkel, C.; Relano, M.; Verley, S.; Gratier, P.; Israel, F.; Wiedner, M. C.; Röllig, M.; Schuster, K. F.; van der Werf, P.

    2014-01-01

    We study the wavelength dependence of the dust emission as a function of position and environment across the disk of M 33 using Spitzer and Herschel photometric data. M 33 is a Local Group spiral with slightly subsolar metallicity, which makes it an ideal stepping-stone to less regular and lower-metallicity objects such as dwarf galaxies and, probably, young-universe objects. Expressing the emissivity of the dust as a power law, the power-law exponent (β) was estimated from two independent approaches designed to properly treat the degeneracy between β and the dust temperature (T). Both β and T are higher in the inner than in the outer disk, contrary to reported β - T anti-correlations found in other sources. In the cold + warm dust model, the warm component and the ionized gas (Hα) have a very similar distribution across the galaxy, demonstrating that the model separates the components in an appropriate way. Both cold- and warm-dust column densities are high in star-forming regions and reach their maxima toward the giant star-forming complexes NGC 604 and NGC 595. β declines from close to 2 in the center to about 1.3 in the outer disk. β is positively correlated with star formation and with the molecular gas column, as traced by the Hα and CO emission. The lower dust-emissivity index in the outer parts of M 33 is most likely related to the reduced metallicity (different grain composition) and possibly to a different size distribution. It is not due to the decrease in stellar radiation field or temperature in a simple way because the far-infrared-bright regions in the outer disk also have a low β. Like most spirals, M 33 has a (decreasing) radial gradient in star formation and molecular-to-atomic gas ratio such that the regions bright in Hα or CO tend to trace the inner disk, which makes it difficult to distinguish between their effects on the dust. The assumption of a constant emissivity index β is obviously not appropriate.

  8. Elemental carbon, organic carbon, and dust concentrations in snow measured with thermal optical and gravimetric methods: Variations during the 2007-2013 winters at Sapporo, Japan

    Science.gov (United States)

    Kuchiki, Katsuyuki; Aoki, Teruo; Niwano, Masashi; Matoba, Sumito; Kodama, Yuji; Adachi, Kouji

    2015-01-01

    mass concentrations of light-absorbing snow impurities at Sapporo, Japan, were measured during six winters from 2007 to 2013. Elemental carbon (EC) and organic carbon (OC) concentrations were measured with the thermal optical method, and dust concentration was determined by filter gravimetric measurement. The measurement results using the different filters were compared to assess the filtration efficiency. Adding NH4H2PO4 coagulant to melted snow samples improved the collection efficiency for EC particles by a factor of 1.45. The mass concentrations of EC, OC, and dust in the top 2 cm layer ranged in 0.007-2.8, 0.01-13, and 0.14-260 ppmw, respectively, during the six winters. The mass concentrations and their short-term variations were larger in the surface than in the subsurface. The snow impurity concentrations varied seasonally; that is, they remained relatively low during the accumulation season and gradually increased during the melting season. Although the surface snow impurities showed no discernible trend over the six winters, they varied from year to year, with a negative correlation between the snow impurity concentrations and the amount of snowfall. The surface snow impurities generally increased with the number of days elapsed since snowfall and showed a different rate for EC (1.44), OC (9.96), and dust (6.81). The possible processes causing an increase in surface snow impurities were dry deposition of atmospheric aerosols, melting of surface snow, and sublimation/evaporation of surface snow.

  9. Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Z.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-07-15

    The linear and nonlinear properties of dust-acoustic waves are investigated in a collisionless Thomas-Fermi magnetoplasma, whose constituents are electrons, ions, and negatively charged dust particles. At dust time scale, the electron and ion number densities follow the Thomas-Fermi distribution, whereas the dust component is described by the classical fluid equations. A linear dispersion relation is analyzed to show that the wave frequencies associated with the upper and lower modes are enhanced with the variation of dust concentration. The effect of the latter is seen more strongly on the upper mode as compared to the lower mode. For nonlinear analysis, we obtain magnetized Korteweg-de Vries (KdV) and Zakharov-Kuznetsov (ZK) equations involving the dust-acoustic solitary waves in the framework of reductive perturbation technique. Furthermore, the shock wave excitations are also studied by allowing dissipation effects in the model, leading to the Korteweg-de Vries-Burgers (KdVB) and ZKB equations. The analysis reveals that the dust-acoustic solitary and shock excitations in a Thomas-Fermi plasma are strongly influenced by the plasma parameters, e.g., dust concentration, dust temperature, obliqueness, magnetic field strength, and dust fluid viscosity. The present results should be important for understanding the solitary and shock excitations in the environments of white dwarfs or supernova, where dust particles can exist.

  10. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  11. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    Science.gov (United States)

    Anabalón, Andrés; Deruelle, Nathalie; Julié, Félix-Louis

    2016-08-01

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the "Gamma-Gamma -Gamma-Gamma" part of the Hilbert action supplemented by the divergence of a generalized "Katz vector". We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar "hair" is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell ("KBL") superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of "counterterms". Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is defined by the KBL superpotential.

  12. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias,Universidad Adolfo Ibáñez, Viña del Mar (Chile); Deruelle, Nathalie; Julié, Félix-Louis [APC, Université Paris Diderot, CNRS, CEA, Observatoire de Paris,Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet,F-75205 Paris CEDEX 13 (France)

    2016-08-08

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the “Gamma-Gamma − Gamma-Gamma' part of the Hilbert action supplemented by the divergence of a generalized “Katz vector'. We consider static solutions of Einstein’s equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar “hair' is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell (“KBL') superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of “counterterms'. Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is defined by the KBL superpotential.

  13. Form factors and charge radii in a quantum chromodynamics-inspired potential model using variationally improved perturbation theory

    Indian Academy of Sciences (India)

    Bhaskar Jyoti Hazarika; D K choudhury

    2015-01-01

    We use variationally improved perturbation theory (VIPT) for calculating the elastic form factors and charge radii of , $D_{s}$, $B$, $B_{s}$ and $B_{c}$ mesons in a quantum chromodynamics (QCD)-inspired potential model. For that, we use linear-cum-Coulombic potential and opt the Coulombic part first as parent and then the linear part as parent. The results show that charge radii and form factors are quite small for the Coulombic parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer 2, hinting at a workable range of 2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option.

  14. Contributions To The Study Of Heavy Metals Concentration Variation In Sedimentable Dusts According To The Distance From The Pollution Source

    Directory of Open Access Journals (Sweden)

    Mariana DOBRA

    2006-01-01

    Full Text Available The environment in areas where geological and mining activities, such as the extraction of ores containing heavy metals, take place, is heavily polluted with dusts resulting from these activities, as well as with residual waters from the mines. Depending on the meteorological conditions, as well as on the conditions under which sedimentable dusts or dusts in suspension are emitted into the air, the distance from the main pollution source varies considerably. In order to estimate the pollution level and the danger presented by this phenomenon, some analyses are required with regard to determining the concentration of heavy pollutant metals in air, soil and plants samples, as well as in dusts from the air. For the precise determination of the major components, as well as the minor ones, and also the ones in traces, the analytical techniques used must have low detection limits and the lowest matrix effects possible [1,2]. The methods that respond to these requirements are from the category of inductively coupled plasma atomic emission spectrometry (ICP-AES. The research was done in an area where there are industrial units whose main field of activity is extraction of certain ores which contain Pb, Cu and Zn as major components, as well as Cr, Mn, Ni, Co, Ag, Au, Al, and Fe as minor components or in traces. It is obvious that the presence of these metals in the air, water and soil has a negative impact on human health, plants and animals. This paper is a study of these aspects in an area where pollution with heavy metals reaches alarming quotas.

  15. Dust temperature and CO-to-H2 conversion factor variations in the SFR-M* plane

    CERN Document Server

    Magnelli, B; Lutz, D; Tacconi, L J; Berta, S; Bournaud, F; Charmandaris, V; Dannerbauer, H; Elbaz, D; Förster-Schreiber, N M; Graciá-Carpio, J; Ivison, R; Maiolino, R; Nordon, R; Popesso, P; Rodighiero, G; Santini, P; Wuyts, S

    2012-01-01

    Deep Herschel imaging and 12CO(2-1) line luminosities from the IRAM PdBI are combined for a sample of 17 galaxies at z>1 from the GOODS-N field. The sample includes galaxies both on and above the main sequence (MS) traced by star-forming galaxies in the SFR-M* plane. The far-infrared data are used to derive dust masses, Mdust. Combined with an empirical prescription for the dependence of the gas-to-dust ratio on metallicity (GDR), the CO luminosities and Mdust values are used to derive for each galaxy the CO-to-H2 conversion factor, alpha_co. Like in the local Universe, the value of alpha_co is a factor of ~5 smaller in starbursts compared to normal star-forming galaxies (SFGs). We also uncover a relation between alpha_co and dust temperature (Tdust; alpha_co decreasing with increasing Tdust) as obtained from modified blackbody fits to the far-infrared data. While the absolute normalization of the alpha_co(Tdust) relation is uncertain, the global trend is robust against possible systematic biases in the deter...

  16. Source apportionment and spatial-temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India.

    Science.gov (United States)

    Pathak, Aditya Kumar; Yadav, Sudesh; Kumar, Pawan; Kumar, Rakesh

    2013-01-15

    Surface dust collected during three different seasons from Faridabad industrial area adjoining Delhi is studied for different metals, their spatial and temporal variations, and sources. Al, Fe, Mn, Ti, Ca and Mg show limited variations and lower abundances compared to Upper Continental Crust (UCC); Fe shows enrichment and seasonal changes. Cd, V, Co, Ba, Ti, Ni, Cu, Cr and Zn show significant spatial and temporal variations, and enrichments compared to UCC indicate their anthropogenic sources. Seasonal variability could be due to: 1) different types of industries, 2) variations in the emissions, 3) very frequent shifting of small scale industry within the region, and 4) changes in the land use pattern. The sampling sites, according to the geo-accumulation index, are: 1) least polluted for Ca, Mg, Al and Ti except for Ti in winter, 2) least to moderately polluted for Ba, Co and V but season specific, and 3) moderately to extremely polluted for other metals. Average pollution load index of 2.67-2.87 indicates consistently high level of pollution at all sites in all sampling seasons. The sites located in the residential areas near small to medium scale unorganized industry are more polluted compared to sites near large industries suggesting that the small scale unorganized industries causes more pollution. Three dominant sources of metals were identified: 1) mixed industrial, 2) crustal, and 3) vehicular, oil and battery related burnings. The third component related to Ba, Pb, Cd, Zn and Cr, further splits into two components in the pre-monsoon and winter samples. Surface dust, enriched in metals, is likely to cause serious danger to public health. There is an urgent need to make a shift from unorganized to formally organized industry to reduce the metal pollution and protect human health and environment as a whole.

  17. Study on Ground Simulation Test System of Material Charging under Lunar Dust Environment%月尘环境材料带电地面模拟试验系统研究

    Institute of Scientific and Technical Information of China (English)

    许滨; 原青云; 孙永卫; 吴勇

    2014-01-01

    This paper introduces the characteristics of lunar dust and harm of lunar dust electro-statics to spacecraft’s activities,based on the fundamental principles of material charging under the lunar dust environment,and sets up a ground simulation system of charged materials in vacu-um environment.This system can be used to inspect the effects of simulated electrostatic lunar dust on lunar probes,to study the laws of effects of lunar dust on moon crafts as to its electrostat-ic electrification,adsorption,coupling and discharge.It is intended to meet the requirements of e-lectrostatic shielding technology for our country's lunar probe programs.%介绍月尘的特点及月尘静电对航天活动的危害,根据月尘环境下材料带电的原理,构建真空环境材料带电地面模拟试验系统。利用装置进行模拟静电月尘对探月航天器的作用,研究月尘静电对登月探测器的静电起电、吸附、耦合及放电效应影响规律,从而初步解决我国在探月工程上月球探测器对月球表面静电防护技术的需求。

  18. Effect of variations in growth parameters on cellulase activity of Trichoderma viride NSPR006 cultured on different wood-dusts

    Directory of Open Access Journals (Sweden)

    Olaniyi, O. O.

    2013-01-01

    Full Text Available Aims: The biotechnology research into agro wastes has been driven by the need to screen organisms for hyper-production of novel extracellular enzymes in which cellulase plays a significant role. Therefore, the aim of the study was to pre-screen selected fungal strains and optimize cultural conditions for cellulase production by Trichoderma viride NSPR006 cultured on pretreated sawdust as lignocellulosic substrate. Methodology and results: The selected fungal isolates namely Trichoderma viride NSPR006, Botrydiplodia NSPR007 and Acremonium butyri NSPR06B obtained from the culture collection of the Nigerian Stored Products Research Institute Ilorin, Kwara State, Nigeria were screened for the production of cellulase in mineral salt medium in which carboxymethylcellulose (CMC had been incorporated as the sole carbon source. All the tested fungal isolates produced cellulase with differences in the amount of enzyme production. Of all the selected fungal isolates screened, Trichoderma viride NSPR006 was found to yield highest cellulase activity compared to the other isolates. Among tested carbon sources, Pachyslasma tessmani wood dust at 3% level proved to the best for cellulase production. Of the entire tested organic nitrogen sources, locust beans were observed to yield maximum cellulase activity (0.194 µmol/min/mL. The optimum temperature, incubation time and pH for maximum cellulase production were 28 °C, 72 h and 6.5, respectively. Conclusion, significance and impact of study: Outcome of this study shows the effectiveness of pre-treatment of wood dust as low cost system for hyper-production of cellulase for industrial application. Also, the work revealed the use of pretreated wood dust as substitute to commercial substrate known to be expensive in cellulase production.

  19. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  20. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  1. Planck intermediate results. L. Evidence for spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB $B$-mode analysis

    CERN Document Server

    Aghanim, N; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Benabed, K; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bracco, A; Burigana, C; Calabrese, E; Cardoso, J -F; Chiang, H C; Colombo, L P L; Combet, C; Comis, B; Crill, B P; Curto, A; Cuttaia, F; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Di Valentino, E; Dickinson, C; Diego, J M; Doré, O; Douspis, M; Ducout, A; Dupac, X; Dusini, S; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Fantaye, Y; Finelli, F; Frailis, M; Fraisse, A A; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Gerbino, M; Ghosh, T; Giard, M; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Helou, G; Herranz, D; Hivon, E; Huang, Z; Jaffe, A H; Jones, W C; Keihänen, E; Keskitalo, R; Kisner, T S; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Levrier, F; Liguori, M; Lilje, P B; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Matarrese, S; Mauri, N; McEwen, J D; Melchiorri, A; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Moss, A; Naselsky, P; Nørgaard-Nielsen, H U; Oxborrow, C A; Pagano, L; Paoletti, D; Partridge, B; Patrizii, L; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Plaszczynski, S; Polenta, G; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renzi, A; Rocha, G; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Salvati, L; Sandri, M; Savelainen, M; Scott, D; Sirignano, C; Sirri, G; Stanco, L; Suur-Uski, A -S; Tauber, J A; Tenti, M; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Valiviita, J; Vansyngel, J; Van Tent, F; Vielva, P; Wandelt, B D; Wehus, I K; Zacchei, A; Zonca, A

    2016-01-01

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in the challenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution, and its potential impact on the determination of the tensor-to-scalar ratio. We use the correlation ratio of the $C_\\ell^{BB}$ angular power spectra between the 217- and 353-GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is margina...

  2. Dust levitation about Itokawa's equator

    Science.gov (United States)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  3. Galactic dust properties

    Science.gov (United States)

    Paradis, D.

    2011-12-01

    Recent studies have shown evidence for variations in the dust emissivity law with temperature and wavelength. A recent dust emission model, called TLS model (for two-level systems), based on the description of the disordered internal structure of the amorphous dust grains has been developped to interpret observations in the far-infrared/submillimeter (FIR/submm) domain. A recent work focusing on the comparison between data of the diffuse interstellar medium seen by FIRAS-WMAP, as well as Archeops compact sources, with the TLS model allowed us to constrain the model parameters characterizing the general Galactic dust properties. Using the newly available Herschel/Hi-GAL data of the inner Galactic plane, we report a 500 μm emissivity excess in the peripheral parts of the Galactic plane, that can reach up to 20% of the emissivity. Results of the TLS modeling indicate significant changes in the dust properties from the central to peripheral parts of the Galactic plane.

  4. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  5. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    CERN Document Server

    Anabalón, Andrés; Julié, Félix

    2016-01-01

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the "Gamma-Gamma $-$ Gamma-Gamma" part of the Hilbert action supplemented by the divergence of a generalized "Katz vector". We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar "hair" is present, only sub-families of the solutions can obey that criterion. The Katz superpotential built on his (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next tha...

  6. SPITZER IRS SPECTRAL MAPPING OF THE TOOMRE SEQUENCE: SPATIAL VARIATIONS OF PAH, GAS, AND DUST PROPERTIES IN NEARBY MAJOR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Haan, S.; Armus, L.; Laine, S.; Surace, J. A.; Diaz-Santos, T.; Beirao, P.; Stierwalt, S. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Smith, J. D. [Ritter Astrophysical Observatory, University of Toledo, Toledo, OH 43606 (United States); Schweizer, F.; Murphy, E. J. [Observatories of the Carnegie Institution, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Evans, A. S.; Hibbard, J. E. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Yun, M. [Astronomy Department, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Jarrett, T. H. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2011-12-01

    We have mapped the key mid-IR diagnostics in eight major merger systems of the Toomre sequence (NGC 4676, NGC 7592, NGC 6621, NGC 2623, NGC 6240, NGC 520, NGC 3921, and NGC 7252) using the Spitzer Infrared Spectrograph. With these maps, we explore the variation of the ionized-gas, polycyclic aromatic hydrocarbon (PAH), and warm gas (H{sub 2}) properties across the sequence and within the galaxies. While the global PAH interband strength and ionized gas flux ratios ([Ne III]/[Ne II]) are similar to those of normal star-forming galaxies, the distribution of the spatially resolved PAH and fine structure line flux ratios is significantly different from one system to the other. Rather than a constant H{sub 2}/PAH flux ratio, we find that the relation between the H{sub 2} and PAH fluxes is characterized by a power law with a roughly constant exponent (0.61 {+-} 0.05) over all merger components and spatial scales. While following the same power law on local scales, three galaxies have a factor of 10 larger integrated (i.e., global) H{sub 2}/PAH flux ratio than the rest of the sample, even larger than what it is in most nearby active galactic nuclei. These findings suggest a common dominant excitation mechanism for H{sub 2} emission over a large range of global H{sub 2}/PAH flux ratios in major mergers. Early-merger systems show a different distribution between the cold (CO J = 1-0) and warm (H{sub 2}) molecular gas components, which is likely due to the merger interaction. Strong evidence for buried star formation in the overlap region of the merging galaxies is found in two merger systems (NGC 6621 and NGC 7592) as seen in the PAH, [Ne II], [Ne III], and warm gas line emission, but with no apparent corresponding CO (J = 1-0) emission. The minimum of the 11.3/7.7 {mu}m PAH interband strength ratio is typically located in the nuclei of galaxies, while the [Ne III/[Ne II] ratio increases with distance from the nucleus. Our findings also demonstrate that the variations of

  7. Effect of nonthermal ion distribution and dust temperature on nonlinear dust-acoustic solitary waves

    Indian Academy of Sciences (India)

    K Annou; R Annou

    2012-01-01

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.

  8. Clumpy dust clouds and extended atmosphere of the AGB star W Hya revealed with VLT/SPHERE-ZIMPOL and VLTI/AMBER II. Time variations between pre-maximum and minimum light

    CERN Document Server

    Ohnaka, Keiichi; Hofmann, Karl-Heinz

    2016-01-01

    Our recent visible polarimetric images of the well-studied AGB star W Hya taken at pre-maximum light (phase 0.92) with VLT/SPHERE-ZIMPOL have revealed clumpy dust clouds close to the star at ~2 Rstar. We present second-epoch SPHERE-ZIMPOL observations of W Hya at minimum light (phase 0.54) in the continuum (645, 748, and 820 nm), in the Halpha line (656.3 nm), and in the TiO band (717 nm) as well as high-spectral resolution long-baseline interferometric observations in 2.3 micron CO lines with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). The high-spatial resolution polarimetric images have allowed us to detect clear time variations in the clumpy dust clouds as close as 34--50~mas (1.4--2.0 Rstar) to the star. We detected the formation of a new dust cloud and the disappearance of one of the dust clouds detected at the first epoch. The Halpha and TiO emission extends to ~150 mas (~6 Rstar), and the Halpha images reveal time variations. The degree of linear polarization is higher at mi...

  9. Variation.

    Science.gov (United States)

    Hamilton City Board of Education (Ontario).

    Suggestions for studying the topic of variation of individuals and objects (balls) to help develop elementary school students' measurement, comparison, classification, evaluation, and data collection and recording skills are made. General suggestions of variables that can be investigated are made for the study of human variation. Twelve specific…

  10. Astrophysics of Dust in Cold Clouds

    CERN Document Server

    Draine, B T

    2003-01-01

    Nine lectures reviewing the astrophysics of dust in interstellar clouds. Topics include: (1) Summary of observational evidence concerning interstellar dust: broadband extinction, scattering of starlight, polarization of starlight, spectroscopy of dust, IR and FIR emission, and depletions of grain-forming elements. (2) Optics of interstellar dust grains: dielectric functions of nonconducting and conducting materials, calculational techniques, formulae valid in the Rayleigh limit, Kramers-Kronig relations, microwave emission mechanisms, and X-ray scattering. (3) IR and FIR emission: heating of interstellar dust, including single-photon heating, and resulting IR emission spectrum. (4) Charging of dust grains: collisional charging, photoelectric emission, and resulting charge distribution functions. (5) Dynamics: gas drag, Lorentz force, forces due to anisotropic radiation, and resulting drift velocities. (6) Rotational dynamics: brownian rotation, suprathermal rotation, and effects of starlight torques. (7) Alig...

  11. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  12. Dust Acoustic Solitary Waves in Dusty Plasma with Trapped Electrons Having Different Temperature Nonthermal Ions

    Science.gov (United States)

    Deka, Manoj Kr.

    2016-12-01

    In this report, a detailed investigation on the study of dust acoustics solitary waves solution with negatively dust charge fluctuation in dusty plasma corresponding to lower and higher temperature nonthermal ions with trapped electrons is presented. We consider temporal variation of dust charge as a source of dissipation term to derive the lower order modified Kadomtsev-Petviashvili equation by using the reductive perturbation technique. Solitary wave solution is obtained with the help of sech method in presence of trapped electrons and low (and high) temperature nonthermal ions. Both nonthermality of ions and trapped state of the electrons are found to have an imperative control on the nonlinear coefficient, dissipative coefficient as well as height of the wave potential.

  13. ISO far infrared observations of the high latitude cloud L1642. II. Correlated variations of far-infrared emissivity and temperature of "classical large" dust particles

    CERN Document Server

    Lehtinen, K; Mattila, K; Lemke, D; Russeil, D

    2007-01-01

    Our aim is to compare the infrared properties of big, ``classical'' dust grains with visual extinction in the cloud L1642. In particular, we study the differences of grain emissivity between diffuse and dense regions in the cloud. The far-infrared properties of dust are based on large-scale 100um and 200um maps. Extinction through the cloud has been derived by using the star count method at B- and I-bands, and color excess method at J, H and Ks bands. Radiative transfer calculations have been used to study the effects of increasing absorption cross-section on the far-infrared emission and dust temperature. Dust emissivity, measured by the ratio of far-infrared optical depth to visual extinction, tau(far-IR)/A(V), increases with decreasing dust temperature in L1642. There is about two-fold increase of emissivity over the dust temperature range of 19K-14K. Radiative transfer calculations show that in order to explain the observed decrease of dust temperature towards the centre of L1642 an increase of absorption...

  14. Dust devil dynamics

    Science.gov (United States)

    Horton, W.; Miura, H.; Onishchenko, O.; Couedel, L.; Arnas, C.; Escarguel, A.; Benkadda, S.; Fedun, V.

    2016-06-01

    A self-consistent hydrodynamic model for the solar heating-driven onset of a dust devil vortex is derived and analyzed. The toroidal flows and vertical velocity fields are driven by an instability that arises from the inversion of the mass density stratification produced by solar heating of the sandy surface soil. The nonlinear dynamics in the primary temperature gradient-driven vertical airflows drives a secondary toroidal vortex flow through a parametric interaction in the nonlinear structures. While an external tangential shear flow may initiate energy transfer to the toroidal vortex flow, the nonlinear interactions dominate the transfer of vertical-radial flows into a fast toroidal flow. This secondary flow has a vertical vorticity, while the primary thermal gradient-driven flow produces the toroidal vorticity. Simulations for the complex nonlinear structure are carried out with the passive convection of sand as test particles. Triboelectric charging modeling of the dust is used to estimate the charging of the sand particles. Parameters for a Dust Devil laboratory experiment are proposed considering various working gases and dust particle parameters. The nonlinear dynamics of the toroidal flow driven by the temperature gradient is of generic interest for both neutral gases and plasmas.

  15. Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    H. Qin and X. Guan

    2008-02-11

    A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.

  16. Imaging state of charge and its correlation to interaction variation in an LiMn(0.75)Fe(0.25)PO(4) nanorods-graphene hybrid.

    Science.gov (United States)

    Zhou, Jigang; Wang, Jian; Hu, Yongfeng; Regier, Tom; Wang, Hailiang; Yang, Yuan; Cui, Yi; Dai, Hongjie

    2013-02-28

    Visualization of the state of charge (SOC) in an LiMn(0.75)Fe(0.25)PO(4) nanorods-graphene hybrid nanostructure (LMFP-C) is realized by chemical mapping of the Fe valance state using scanning transmission X-ray microscopy (STXM). The LMFP-graphene interaction strength variation studied by C K-edge STXM has been correlated to SOC variation, i.e. a stronger interaction was observed for sample regions with a higher SOC in LMFP. Such structure-performance correlation opens new perspectives for a rational design of a better performance olivine cathode for lithium ion batteries.

  17. Discussion about Dust Collector for Coke Pushing Car of Top Charging Coke Oven%顶装焦炉推焦车烟尘捕集装置的探讨

    Institute of Scientific and Technical Information of China (English)

    樊海莲

    2015-01-01

    针对顶装焦炉推焦车烟尘捕集装置存在的问题 ,提出了相应的解决措施 ,以提高环保效果为目标 ,使太重公司的产品成为具有市场竞争力的高可靠性、实用性的设备.%In this article ,to the problems in dust collector for coke pushing car of top charging coke oven ,a relevant solution is giv-en ,which aims at high environmental protection ,to makes our products have high reliability and practicality in market competitive-ness .

  18. Jovian Dust Streams: A monitor of Io's volcanic plume activity

    CERN Document Server

    Krüger, H; Horányi, M; Graps, A L; Kempf, S; Srama, R; Moragas-Klostermeyer, G; Moissl, R; Johnson, T V; Grün, E; Krueger, Harald; Geissler, Paul; Horanyi, Mihaly; Graps, Amara L.; Kempf, Sascha; Srama, Ralf; Moragas-Klostermeyer, Georg; Moissl, Richard; Johnson, Torrence V.; Gruen, Eberhard

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's innermost Galilean moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over $\\rm 200 km s^{-1}$. Galileo, which was the first orbiter spacecraft of Jupiter, has continuously monitored the dust streams during 34 revolutions about the planet between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between $10^{-3}$ and $\\mathrm{10} \\rm kg s^{-1}$, and is typically in the range of 0.1 to $\\rm 1 kg s^{-1}$. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes.

  19. LADEE Search for a Dust Exosphere: A Historical Perspective

    Science.gov (United States)

    Glenar, D. A.; Stubbs, T. J.; Elphic, R.

    2014-01-01

    The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.

  20. Variation of Surface Charge along the Surface of Wool Fibers Assessed by High-Resolution Force Spectroscopy

    Science.gov (United States)

    Zimmerman, Bonnie; Chow, James; Abbott, Albert G.; Ellison, Michael S.; Kennedy, Marian S.; Dean, Delphine

    2011-01-01

    In this study, we have mapped the surface charge of wool fibers using chemically specific high-resolution force spectroscopy in order to better understand the dispersion of amino acids in relation to fiber morphology. The inter-surface forces between standard atomic force microscopy (AFM) probe tips (tip radius ~ 50 nm) functionalized with COOH and NH3 terminated alkanethiol self assembling monolayers and the wool surface were used to estimate the surface charge per unit area using linear Poisson-Boltzmann-based electrostatic double layer theory. The positional measurement of nano-scale surface charge showed a correlation between the surface charge and fiber morphology, indicated that basic amino acids are located near the scale edges. PMID:21866220

  1. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  2. Relationship between the characteristics of the interplanetary medium and the intensity variations of charged particles from the flare of September 7, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.S.; Kuzhevskii, B.M.; Maduev, V.L.; Mineev, Iu.V.; Spirkova, E.S.; Shestopalov, I.P.

    The propagation characteristics of charged particles generated by a solar flare are studied on the basis of Mars-7 and Prognoz-3 data obtained at different distances from the sun. It is shown that the nature of electron intensity variations at electron energies above 40 keV and proton energies of 0.2 to 20 MeV is determined by changes in the structure of the interplanetary medium, i.e., changes in solar wind velocity and interplanetary magnetic field parameters.

  3. Dust in the planetary system: Dust interactions in space plasmas of the solar system

    Science.gov (United States)

    Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej

    2014-03-01

    Cosmic dust particles are small solid objects observed in the solar planetary system and in many astronomical objects like the surrounding of stars, the interstellar and even the intergalactic medium. In the solar system the dust is best observed and most often found within the region of the orbits of terrestrial planets where the dust interactions and dynamics are observed directly from spacecraft. Dust is observed in space near Earth and also enters the atmosphere of the Earth where it takes part in physical and chemical processes. Hence space offers a laboratory to study dust-plasma interactions and dust dynamics. A recent example is the observation of nanodust of sizes smaller than 10 nm. We outline the theoretical considerations on which our knowledge of dust electric charges in space plasmas are founded. We discuss the dynamics of the dust particles and show how the small charged particles are accelerated by the solar wind that carries a magnetic field. Finally, as examples for the space observation of cosmic dust interactions, we describe the first detection of fast nanodust in the solar wind near Earth orbit and the first bi-static observations of PMSE, the radar echoes that are observed in the Earth ionosphere in the presence of charged dust.

  4. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: composition variations and implications for human exposure.

    Science.gov (United States)

    Zheng, Xiaobo; Xu, Fuchao; Chen, Kehui; Zeng, Yanhong; Luo, Xiaojun; Chen, Shejun; Mai, Bixian; Covaci, Adrian

    2015-05-01

    Several classes of flame retardants, such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), dechlorane plus (DPs), and organophosphate flame retardants (PFRs), together with polychlorinated biphenyls (PCBs) were measured in indoor dust from five villages located in three e-waste recycling regions in Guangdong Province, South China. The medians of PBDEs, NBFRs, and PFRs in dust in five sites ranged from 685-67,500, 1460-50,010, and 2180-29,000ng/g, respectively. These concentrations were much higher than the medians of PCBs (52-2900ng/g). BDE 209 and decabromodiphenyl ethane (DBDPE) were the two major halogen flame retardants in dust, while tris-(1-chloro-2-propyl) phosphate (TCIPP) and triphenyl phosphate (TPHP) were the major PFRs. Principle component analysis revealed the different pollutant patterns among different sites. The estimated median human exposures of PBDEs, NBFRs, PFRs, and PCBs via dust ingestion were 1.1-24.1, 0.73-20.3, 1.36-23.5, and 0.04-0.93ng/kgbw/day for adults, and 16.2-352, 10.7-296, 19.9-343, 0.05-0.61, 0.65-13.6ng/kgbw/day for toddlers, respectively. Residents from Site 5 had the highest exposure (95 percentile levels and high dust ingestion for toddlers) of PBDEs (3920ng/kgbw/day), NBFRs (3200ng/kgbw/day), and PFRs (5280ng/kgbw/day). More attention should be paid to the contamination with NBFRs and PFRs, instead of PCBs, in these e-waste recycling regions, and local public health threat from PBDE alternatives should remain of concern. To the best of our knowledge, this is the first study on human exposure assessment of PFRs at e-waste sites.

  5. Compressive and Rarefactive Waves in Dust Plasma with Non-thermal Ions

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan; WANG Hong-Yan; John Parkes

    2006-01-01

    The governing equation of the dust fluid with non-thermal ions and variable dust charge on dust particles in hot dust plasmas is obtained. Both the compressive and rarefactive waves in this system are investigated. They can be determined by plasma parameters including the temperatures of dust fluid, ions and electrons, as well as the non-thermal parameter of ions, and the number densities of the dust particles, the ions and the electrons, etc.

  6. Temporal evolution of radar echoes associated with mesospheric dust clouds after turn-on of radio wave heating

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.

    2012-03-01

    The initial perturbation of polar mesospheric summer echoes PMSEs during radio wave heating provides significant diagnostic information about the charged dust layer associated with the irregularity source region. Comparison between the results of computational models and the observation data can be used as a tool to estimate charged dust layer parameters. An analytical model is developed and compared to a more accurate computational model as a reference to investigate the possibilities for diagnostic information as well as insight into the physical processes after heater turn-on. During radio wave heating of the mesosphere, which modifies the background electron temperature, various temporal evolution characteristics of irregularity amplitude may be observed which depend on the background plasma parameters and the characteristics of the dust layer. Turn-on overshoot due to the dominant electron charging process and turn-on undershoot resulting from the dominant ambipolar diffusion process, that can occur simultaneously at different radar frequencies, have been studied. The maximum and minimum of the electron density irregularity amplitude and the time at which this amplitude has been achieved as well as the decay time of irregularity amplitude after the maximum amplitude are unique observables that can shed light on the physical processes after the turn-on of the pump heating and to diagnose the charged dust layer. The agreement between the computational and analytical results are good and indicate the simplified analytical model may be used to provide considerable insight into the heating process and serve as the basis for a diagnostic model after heater turn-on. Moreover, the work proposes that conducting PMSE active experiments in the HF and VHF band simultaneously may allow estimation of the dust density altitude profile, dust charge state variation during pump heating, and ratio of electron temperature enhancement in the irregularity source region.

  7. Electric Field Generation in Martian Dust Devils

    Science.gov (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2015-01-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  8. Dust Mite Allergy

    Science.gov (United States)

    Dust mite allergy Overview By Mayo Clinic Staff Dust mite allergy is an allergic reaction to tiny bugs that commonly live in house dust. Signs of dust mite allergy include those common to hay fever, such as ...

  9. Non-monotonic spatial distribution of the interstellar dust in astrospheres: finite gyroradius effect

    Science.gov (United States)

    Katushkina, O. A.; Alexashov, D. B.; Izmodenov, V. V.; Gvaramadze, V. V.

    2017-02-01

    High-resolution mid-infrared observations of astrospheres show that many of them have filamentary (cirrus-like) structure. Using numerical models of dust dynamics in astrospheres, we suggest that their filamentary structure might be related to specific spatial distribution of the interstellar dust around the stars, caused by a gyrorotation of charged dust grains in the interstellar magnetic field. Our numerical model describes the dust dynamics in astrospheres under an influence of the Lorentz force and assumption of a constant dust charge. Calculations are performed for the dust grains with different sizes separately. It is shown that non-monotonic spatial dust distribution (viewed as filaments) appears for dust grains with the period of gyromotion comparable with the characteristic time-scale of the dust motion in the astrosphere. Numerical modelling demonstrates that the number of filaments depends on charge-to-mass ratio of dust.

  10. Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation.

    Science.gov (United States)

    Lienkamp, Karen; Madkour, Ahmad E; Kumar, Kushi-Nidhi; Nüsslein, Klaus; Tew, Gregory N

    2009-11-02

    The synthesis and characterization of a series of poly(oxanorbornene)-based synthetic mimics of antimicrobial peptides (SMAMPs) is presented. In the first part, the effect of different organic counterions on the antimicrobial properties of the SMAMPs was investigated. Unexpectedly, adding hydrophobicity by complete anion exchange did not increase the SMAMPs' antimicrobial activity. It was found by dye-leakage studies that this was due to the loss of membrane activity of these polymers caused by the formation of tight ion pairs between the organic counterions and the polymer backbone. In the second part, the effect of molecular charge density on the biological properties of a SMAMP was investigated. The results suggest that, above a certain charge threshold, neither minimum inhibitory concentration (MIC90) nor hemolytic activity (HC50) is greatly affected by adding more cationic groups to the molecule. A SMAMP with an MIC90 of 4 microg mL(-1) against Staphylococcus aureus and a selectivity (=HC50/MIC90) of 650 was discovered, the most selective SMAMP to date.

  11. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  12. Dust in the Interplanetary Medium

    CERN Document Server

    Mann, Ingrid; Meyer-Vernet, Nicole; Zaslavsky, Arnaud; Lamy, Herve

    2010-01-01

    The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nano dust particles of sizes 1 - 10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nano dust are detected near 1AU with the plasma wave instrument onboard the STEREO spacecraft. Though such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.

  13. Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa – contributions from wildfire emissions and mineral dust

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2009-03-01

    Full Text Available High levels of trace gas (O3 and CO and aerosol (BC, fine and coarse particles concentrations, as well as high scattering coefficient (σs values, were recorded at the regional GAW-WMO station of Mt. Cimone (MTC, 2165 m a.s.l., Italy during the period 26–30 August 2007. Analysis of air-mass circulation, aerosol chemical characterization and trace gas and aerosol emission ratios (ERs, showed that high O3 and aerosol levels were likely linked to (i the transport of anthropogenic pollution from Northern Italy, and (ii the advection of air masses rich in mineral dust and biomass burning (BB products from North Africa. In particular, during the advection of air masses from North Africa, the CO and aerosol levels (CO: 175 ppbv, BC: 1015 ng/m3, fine particle: 83.8 cm−3, σs: 84.5 Mm−1 were even higher than during the pollution event (CO: 138 ppbv, BC: 733 ng/m3, fine particles: 41.5 cm−3, σs: 44.9 Mm−1. Moreover, despite the presence of mineral dust able to significantly affect the O3 concentration, the analysis of ERs showed that the BB event represented an efficient source of fine aerosol particles (e.g. BC, but also of the O3 recorded at MTC. The results suggest that events of mineral dust mobilization and wildfire emissions over North Africa could significantly influence radiative properties (as deduced from σs observations at MTC and air quality over the Mediterranean basin and Northern Italy. Since in the future it is expected that wildfire and Saharan dust transport frequency could increase in the Mediterranean basin due to more frequent and severe droughts, similar events will possibly play an important role in influencing the climate and the tropospheric composition over South Europe.

  14. Personal gravimetric dust sampling and risk assessment.

    CSIR Research Space (South Africa)

    Unsted, AD

    1996-03-01

    Full Text Available . At all the sampling sites extremely large variation in dust concentrations were measured on a day to day and shift basis. Correlation of dust concentrations between personal and stationary samples was very poor as was the correlation between quartz...

  15. Trapped ions and the shielding of dust particles in low-density non-equilibrium plasma of glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sukhinin, Gennady; Fedoseev, Alexander [Institute of Thermophysics SB RAS, Ave. Lavrentyev, 1, Novosibirsk 630090 (Russian Federation); Antipov, Sergei; Petrov, Oleg; Fortov, Vladimir [Joint Institute for High Temperatures RAS, Izhorskaya 13/19, Moscow 127412 (Russian Federation)], E-mail: sukhinin@itp.nsc.ru

    2009-05-29

    A new model for the formation of trapped ions around a negatively charged dust particle immersed in low-density non-equilibrium plasma of gas discharge is presented. It is shown that the ionic coat leads to a shielding of the proper charge of the dust particle. In experiments it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ion000.

  16. Variation of the net charge, lipophilicity, and side chain flexibility in Dmt(1)-DALDA: Effect on Opioid Activity and Biodistribution.

    Science.gov (United States)

    Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W; Ballet, Steven

    2012-11-26

    The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.

  17. Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio-waves

    Science.gov (United States)

    Cohen, M.; Zhang, X.; Cohen, M.; Mahmoudian, A.; Scales, W.; Kosch, M. J.; M Farahani, M.; Mohebalhojeh, A.

    2016-12-01

    So-called polar mesospheric winter echoes (PMWE) are radar echoes observed during winter at altitudes around 50-80 km and are much weaker than their PMSE (Polar Mesospheric Summer Echoes) counterpart. Unlike PMSE, PMWE are less studied and understood. Breaking of gravity waves and the associated turbulence are proposed as the major source for PMWE echoes. The action of neutral turbulence alone does not appear to give a good explanation for PMWE. PMWE is also attributed to Bragg scatter from electron irregularities which result from charging of free electrons onto sub-visible particles. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and off are distinct parameters that are a function of radar frequency. This work presents the first study of the modulation of PMWE by artificial radiowave heating using computational modeling and experimental observation in different radar frequency bands. Variation of dust plasma parameters associated with PMWE such as dust radius, dust density, recombination rate, electron- and dust-neutral collision frequencies, photo-detachment current and electron temperature enhancement ratio are included. Computational results derived from different sets of parameters are considered and compared with recent observations at EISCAT using 224 MHz and 56 MHz radars. The agreement between the model results and the observations show the high potential of remote sensing of dust and plasma parameters associated with PMWE. Measurement of Te/Ti using ISR and simultaneous observations in two frequency bands may lead to a more accurate estimation of dust density and radius. The enhancement of backscattered signal in the HF band during PMWE heating is predicted for the first time. The required background dust-plasma parameters as well as heater power (Te/Ti) for the observation

  18. Global dust attenuation in disc galaxies: strong variation with specific star formation and stellar mass, and the importance of sample selection

    CERN Document Server

    Devour, Brian

    2016-01-01

    We study the relative dust attenuation-inclination relation in 78,721 nearby galaxies using the axis ratio dependence of optical-NIR colour, as measured by the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS), and the Wide-field Infrared Survey Explorer (WISE). In order to avoid to the greatest extent possible attenuation-driven biases, we carefully select galaxies using dust attenuation-independent near- and mid-IR luminosities and colours. Relative u-band attenuation between face-on and edge-on disc galaxies along the star forming main sequence varies from ~0.55 mag up to ~1.55 mag. The strength of the relative attenuation varies strongly with both specific star formation rate and galaxy luminosity (or stellar mass). The dependence of relative attenuation on luminosity is not monotonic, but rather peaks at $M_{3.4\\mu m} \\approx -21.5$, corresponding to $M_* \\approx 3\\times 10^{10}M_{Sun}$. This behavior stands seemingly in contrast to some older studies; we show that older works failed...

  19. Dust en-route to Jupiter and the Galilean satellites

    CERN Document Server

    Krüger, H; Krueger, Harald; Gruen, Eberhard

    2002-01-01

    Spacecraft investigations during the last ten years have vastly improved our knowledge about dust in the Jovian system. All Galilean satellites, and probably all smaller satellites as well, are sources of dust in the Jovian system. In-situ measurements with the dust detectors on board the Ulysses and Galileo spacecraft have for the first time demonstrated the electromagnetic interaction of charged dust grains with the interplanetary magnetic field and with a planetary magnetosphere. Jupiter's magnetosphere acts as a giant mass-velocity spectrometer for charged 10-nanometer dust grains. These dust grains are released from Jupiter's moon Io with typical rate of 1 kg s^1. The dust streams probe the plasma conditions in the Io plasma torus and can be used as a potential monitor of Io's volcanic plume activity. The other Galilean satellites are surrounded by tenuous impact-generated clouds of mostly sub-micrometer ejecta grains. Galileo measurements have demonstrated that impact-ejecta derived from hypervelocity i...

  20. Revisiting STEREO interplanetary and interstellar dust flux and mass estimates

    Science.gov (United States)

    Malaspina, David M.; O'Brien, Leela E.; Thayer, Frederick; Sternovsky, Zoltan; Collette, Andrew

    2015-08-01

    Two recent events have motivated a second look at estimates for the flux and mass of approximately micron-radius interplanetary and interstellar dust observed by the twin STEREO spacecraft. First, the signals interpreted as nanometer dust impacts on STEREO-A have nearly ceased, even though STEREO-B continues to observe these signals unabated. Second, a recent laboratory dust accelerator experimental campaign has quantified the charge release associated with hypervelocity dust impacts on materials specific to STEREO. The first event enables an investigation of the extent to which nanometer dust signals influence estimates of micron-radius dust flux. The second event allows an evaluation of how impact charge release values specific to STEREO materials influence dust mass estimates. Revised estimates based on these considerations yield higher fluxes and similar masses for micron-radius interplanetary dust compared to prior studies, as well as lower fluxes and higher masses for interstellar micron-radius dust compared to prior studies. The revised flux and mass estimates reported here differ by less than a factor of 4 from those reported in previous work, demonstrating that STEREO-derived estimates for the flux and mass of micron-radius dust are largely robust to spacecraft material charge yields and the disappearance of nanometer dust signals.

  1. Variation of interface trap level charge density within the bandgap of 4H-SiC with varying oxide thickness

    Indian Academy of Sciences (India)

    Sanjeev K Gupta; A Azam; J Akhtar

    2011-01-01

    Interfacial characteristics of metal oxide-silicon carbide (MOSiC) structure with different thickness of SiO2, thermally grown in steam ambient on Si-face of 4H-SiC (0 0 0 1) substrate were investigated. Variations in interface trapped level density (Dit) was systematically studied employing high-low (H-L) frequency – method. It was found that the distribution of Dit within the bandgap of 4H-SiC varied with oxide thickness. The calculated Dit value near the midgap of 4H-SiC remained almost stable for all oxide thicknesses in the range of 109 –1010 cm-2 eV-1. The Dit near the conduction band edge had been found to be of the order of 1011 cm-2 eV-1 for thicker oxides and for thinner oxides Dit was found to be the range of 1010 cm-2 eV-1. The process had direct relevance in the fabrication of MOS-based device structures.

  2. A Possible Mechanism for Overcoming the Electrostatic Barrier Against Dust Growth in Protoplanetary disks

    OpenAIRE

    2015-01-01

    The coagulation of dust particles under the conditions in protoplanetary disks is investigated. The study focuses on the repulsive electrostatic barrier against growth of charged dust grains. Taking into account the photoelectric effect leads to the appearance of a layer at intermediate heights where the dust has a close to zero charge, enabling the dust grains to grow efficiently. An increase in the coagulation rate comes about not only due to the lowering of the Coulomb barrier, but also be...

  3. Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio waves

    Science.gov (United States)

    Mahmoudian, A.; Mohebalhojeh, A. R.; Farahani, M. M.; Scales, W. A.; Kosch, M.

    2017-01-01

    This paper presents the first study of the modulation of polar mesospheric winter echoes (PMWE) by artificial radio wave heating using computational modeling and experimental observation in different radar frequency bands. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer associated with mesospheric smoke particles. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and turnoff are distinct parameters that are a function of radar frequency. The variation of PMWE strength with PMWE source region parameters such as electron-neutral collision frequency, photodetachment current, electron temperature enhancement ratio, dust density, and radius is considered. The comparison of recent PMWE measurements at 56 MHz and 224 MHz with computational results is discussed, and dust parameters in the PMWE generation regime are estimated. Predictions for HF PMWE modification and its connection to the dust charging process by free electrons is investigated. The possibility for remote sensing of dust and plasma parameters in artificially modified PMWE regions using simultaneous measurements in multiple frequency bands are discussed.

  4. Dust Evolution in Protoplanetary Disks

    Science.gov (United States)

    Testi, L.; Birnstiel, T.; Ricci, L.; Andrews, S.; Blum, J.; Carpenter, J.; Dominik, C.; Isella, A.; Natta, A.; Williams, J. P.; Wilner, D. J.

    In the core-accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow up to micrometer-sized particles in the dense regions of molecular clouds, the growth to pebbles and kilometer-sized bodies must occur at the high densities within protoplanetary disks. This critical step is the last stage of solids evolution that can be observed directly in extrasolar systems before the appearance of large planetary-sized bodies. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures of these processes are summarized. We briefly discuss grain growth in molecular cloud cores and in collapsing envelopes of protostars, as these likely provide the initial conditions for the dust in protoplanetary disks. We then review the observational constraints on grain growth in disks from millimeter surveys, as well as the very recent evidence for radial variations of the dust properties in disks. We also include a brief discussion on the small end of the grain size distribution and dust settling as derived from optical, near-, and mid-infrared observations. Results are discussed in the context of global dust-evolution models; in particular, we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of maximum grain sizes as the result of growth barriers. We also highlight the limits of the current models of dust evolution in disks, including the need to slow the radial drift of grains to overcome the migration/fragmentation barrier.

  5. A Monte Carlo Simulation for the Ion Transport in Glow Discharges with Dusts

    Institute of Scientific and Technical Information of China (English)

    SUN Ai-Ping; PU Wei; QIU Xiao-Ming

    2001-01-01

    We use the Monte Carlo method to simulate theion transport in the rf parallel plate glow discharge with a negative-voltage pulse connected to the electrode. It is found that self-consistent field, dust charge, dust concentration,and dust size influence the energy distribution and the density of the ions arriving at the target, and in particular, the latter two make significant influence. As dust concentration or dust size increases, the number of ions arriving at the target reduces greatly.

  6. Mesospheric dust observations during the MAXIDUSTY campaign

    Science.gov (United States)

    Antonsen, Tarjei; Havnes, Ove; Fredriksen, Åshild; Friedrich, Martin; Sternovsky, Zoltan; Plane, John; Hartquist, Tom; Olsen, Sveinung; Eilertsen, Yngve; Trondsen, Espen; Mann, Ingrid; Hedin, Jonas; Gumbel, Jörg; Moen, Jøran; Latteck, Ralph; Baumgarten, Gerd; Höffner, Josef; Williams, Bifford; Hoppe, Ulf-Peter; Karlberg, Jan-Ove

    2017-04-01

    The MAXIDUSTY rocket payloads, launched from Andøya June 30 and July 8 2016, were equipped with dust impact detectors aiming to characterize mesospheric dust charge state, mass distribution of impact fragments and NLC/PMSE structure. One of the main scientific objectives for the campaign was to confirm that material of meteoric origin is abundant inside the icy mesospheric dust particles. The rockets were launched simultaneously with PMSE and NLC (MAXIDUSTY-1) and PMSE (MAXIDUSTY-1B) respectively, and radar measurements were made coincident with the rocket flight path. We report here on the initial results from the rocket probes and remote soundings, with emphasis on the dust impact detector results. Results from the Multiple Dust Detector (MUDD) confirm that NLC ice particles probably have a relatively high content of meteoric smoke particles with a filling factor of up to several percent. Comparisons of the DUSTY faraday bucket and PMSE show that there is no simple correlation between the two.

  7. Dust particle spin-up caused by cross-field plasma flow and turbulence.

    Science.gov (United States)

    Shukla, P. K.; Shevchenko, V. I.; Krasheninnikov, S. I.

    2006-10-01

    Spinning of dust particles adds new interesting features to dust particle dynamics and to the dusty plasma physics. Several reasons for dust particle spin-up have been suggested (e.g. Ref. 1): i) sheared flow of plasmas around charge dust particles, ii) dust particle surface irregularities, and iii) sheath effects resulting from the interactions of a charge dipole of a dust particle (caused by plasma flows into the sheath) with the sheath electric field. Here we present a novel mechanism for charged dust particle spin-up. The physics of the present mechanism is simple and robust, and is associated with the interaction of a charge dipole of a dust particle, D, induced by the ExB cross-field flow of a magnetized plasma (D ExB), where E and B are the electric and ambient magnetic fields. Since the resulting torque is proportional to | E |^2, the presented mechanism of charged dust particle spin-up works for both stationary and non-stationary (turbulent in particular) electric fields. In many cases the turbulent electric field stremgth is much larger than the laminar one so that the impact of turbulence can be dominant. We present theoretical analyses for charged dust particle spin-up and estimate the maximum value for the angular velocity charged dust particle can acquire due to our new spin-up mechanism. [1] N. Sato ``Spinning Motion of Fine Particles in Plasmas'', AIP Conference Proceedings No. 799, p. 97; AIP, New York, 2005.

  8. On the brightness variations of Comet Halley at large heliocentric distances

    Science.gov (United States)

    Flammer, K. R.; Jackson, B.; Mendis, D. A.

    1986-01-01

    Sporadic variations of its intrinsic brightness of up to 500 percent, with time scales as short as a few hours, has been exhibited by Halley's comet at large heliocentric distances (11-8 AU). It is shown that many of these brightness enhancements are closely correlated to the encounter of high-speed solar wind streams by the comet. It is proposed that during such periods, the night side of the comet gets charged to numerically large negative electrostatic potentials, with consequent electrostatic levitation and blow-off of fine charged dust grains lying on it. This gives rise to the observed brightness variations.

  9. Radiation and Dynamics of Dust Particle

    CERN Document Server

    Klacka, J

    2002-01-01

    Relativistically covariant form of equation of motion for arbitrarily shaped dust particle (neutral in charge) under the action of electromagnetic radiation is derived -- emission, scattering and absorption of radiation is considered. The result is presented in the form of optical quantities used in optics of dust particles. The obtained equation of motion represents a generalization of the Poynting-Robertson (P-R) effect, which is standardly used in orbital evolution of dust particles in astrophysics. Simultaneous action of electromagnetic radiation and gravitational fields of the central body -- star -- on the motion of the particle is discussed.

  10. Electrostatic Characterization of Lunar Dust Simulants

    Science.gov (United States)

    Calle, C. I.; Buhler, C. R.; Ritz, M. L.

    2008-01-01

    Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith.

  11. Clumpy dust clouds and extended atmosphere of the AGB star W Hydrae revealed with VLT/SPHERE-ZIMPOL and VLTI/AMBER. II. Time variations between pre-maximum and minimum light

    Science.gov (United States)

    Ohnaka, K.; Weigelt, G.; Hofmann, K.-H.

    2017-01-01

    Aims: Our recent visible polarimetric images of the well-studied AGB star W Hya taken at pre-maximum light (phase 0.92) with VLT/SPHERE-ZIMPOL have revealed clumpy dust clouds close to the star at 2 R⋆. We present second-epoch SPHERE-ZIMPOL observations of W Hya at minimum light (phase 0.54) as well as high-spectral resolution long-baseline interferometric observations with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). Methods: We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Hα line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 μm with a spectral resolution of 12 000. Results: The high-spatial resolution polarimetric images obtained with SPHERE-ZIMPOL have allowed us to detect clear time variations in the clumpy dust clouds as close as 34-50 mas (1.4-2.0 R⋆) to the star. We detected the formation of a new dust cloud as well as the disappearance of one of the dust clouds detected at the first epoch. The Hα and TiO emission extends to 150 mas ( 6 R⋆), and the Hα images obtained at two epochs reveal time variations. The degree of linear polarization measured at minimum light, which ranges from 13 to 18%, is higher than that observed at pre-maximum light. The power-law-type limb-darkened disk fit to the AMBER data in the continuum results in a limb-darkened disk diameter of 49.1 ± 1.5 mas and a limb-darkening parameter of 1.16 ± 0.49, indicating that the atmosphere is more extended with weaker limb-darkening compared to pre-maximum light. Our Monte Carlo radiative transfer modeling shows that the second-epoch SPHERE-ZIMPOL data can be explained by a shell of 0.1 μm grains of Al2O3, Mg2SiO4, and MgSiO3 with a 550 nm optical depth of 0.6 ± 0.2 and an inner and outer radii of 1.3 R⋆ and 10 ± 2R⋆, respectively. Our modeling suggests the predominance of small (0

  12. Dust Measurements in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  13. Dynamics of Dust Aggregates in a Complex Plasma

    Science.gov (United States)

    Davis, Allen; Carmona Reyes, Jorge; Matthews, Lorin; Hyde, Truell

    2012-10-01

    Charged dust aggregates play an important role in many astrophysical phenomena, such as early stages of protostellar and protoplanetary growth, the dynamics of planetary rings and cometary tails, and the formation of noctilucent clouds in earth's upper atmosphere. Dust is also expected to be an unwanted byproduct in the operation of plasma fusion devices, such as ITER. In all of these environments, direct study of the dust aggregates in their in situ environment is extremely difficult, if not impossible. As a model for these complex plasma environments, dust aggregates are formed in a laboratory plasma as monodisperse spheres are accelerated in a self-excited dust density wave. Individual dust particles are perturbed using a diode pumped solid state laser (Coherent VERDI) with their motions recorded by a high-speed camera at 1000 fps. Analysis of the particle motion allows determination of the aggregate characteristics which determine the grain dynamics, such as charge, mass, and gas drag.

  14. Microwave Emission from Aligned Dust

    CERN Document Server

    Lazarian, A

    2003-01-01

    Polarized microwave emission from dust is an important foreground that may contaminate polarized CMB studies unless carefully accounted for. We discuss potential difficulties associated with this foreground, namely, the existence of different grain populations with very different emission/polarization properties and variations of the polarization yield with grain temperature. In particular, we discuss observational evidence in favor of rotational emission from tiny PAH particles with dipole moments, i.e. ``spinning dust'', and also consider magneto-dipole emission from strongly magnetized grains. We argue that in terms of polarization, the magneto-dipole emission may dominate even if its contribution to total emissivity is subdominant. Addressing polarized emission at frequencies larger than approsimately 100 GHz, we discuss the complications arising from the existence of dust components with different temperatures and possibly different alignment properties.

  15. Grain charging in protoplanetary discs

    CERN Document Server

    Ilgner, Martin

    2011-01-01

    Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as MHD (magnetohydrodynamic) turbulence and grain growth which are coupled in a two-way process. We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension D_f = 2. Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the ...

  16. Highly charged W+13, Ir+16, and Pt+17 ions as promising optical clock candidates for probing variations of the fine-structure constant

    Science.gov (United States)

    Nandy, D. K.; Sahoo, B. K.

    2016-09-01

    Transitions among the first three low-lying states in the highly charged W+13, Ir+16, and Pt+17 ions are found to be strongly forbidden with wavelengths in the optical regime. By determining their energy levels, lifetimes, and other spectroscopic properties that are decisive quantities for estimating dominant systematics due to stray electromagnetic interactions in an experiment, we demonstrate that it can be possible to measure frequencies of the lowest forbidden transitions below a 10-19 precision level in the above ions, and hence, they seem to be suitable for frequency standards. We employ a sophisticated relativistic coupled cluster method to carry out calculations of these properties of the above states involving 4 f - and 5 s -core orbitals. We also found, by estimating their relativistic sensitivity coefficients, that these clock transitions can be highly sensitive to the tiny drift in the fine-structure constant αe. Consequently, a clock based on one of these ions, particularly Pt+17, could be used for corroborating the hypothesis of temporal and spatial variation in αe.

  17. Alternative Respiration Induced by Glucose Stimulation and Variation of Adenylate Energy Charge in Glucose-Starved Cells of Green Alga Chlorella Protothecoides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of inhibitors and glucose on cytochrome and alternative respiration and on adenylate energy charge (AEC) in glucose-starved Chlorella protothecoides were investigated. 1 mmol/L azide (NaN3), which immediately caused an increase of O2 uptake by inhibiting the cytochrome pathway and stimulating alternative respiration, resulted in a decrease of AEC value from 0. 83 to 0. 34 within 3 minutes. When 1 mmol/L salicylhydroxamic acid (SHAM) was added into the cell suspension, there was no apparent variation in AEC. Adding NaN3 and SHAM together into cell suspension to inhibit both cytochrome and alternative pathways showed a same change of AEC as that of adding NaN3 alone. When 2.0 mmol/L of glucose was added to a suspension of glucose-starved cells, the O2 uptake rate was immediately stimulated from 0.81 up to 1.34 [μrnol/L O2 · min-] · (mL PCV)-1]. The respiration stimulated by glucose could be inhibited about 20% by adding 1 mmol/L SHAM. It was found by titration with SHAM in the absence and presence of NaN3 that 53% of O2 uptake went through the cytochrome pathway and 45% of the alternate pathway was operational in enhanced respiration. It implied that induced operation of the alternative respiratory pathway probably resulted from the burst of the electron flux into the electron transport chain by glucose stimulation.

  18. Spontaneous electrostatic precipitation of dust. Research report

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, F.M.; Hielscher, F.H.

    1973-05-15

    The report provides fundamental research information on the electrostatic behavior of coal mine dust. The results will be used to help determine whether a precipitator should be designed that would function by the spontaneous exchange of electric charge between coal mine dust and polymer surfaces. The following conclusions were reached: (1) Electrification occurs upon contact of materials; rubbing is not required; (2) Electrification occurs by electron injection and not by polarization of dipoles; (3) The direction of electron transfer depends on the electron-donor or electron-acceptor character of the outermost surfaces of the materials in contact; (4) Some pairs of materials transferred as many as 4 x 10 to the 12th power electrons/cm; (5) Strong electrification of dusts took place in a fraction of a second, but weaker charge transfer took longer; (6) The transfer of charge between an insulated polymer surface and impinging dust particles diminishes as the surface charge builds up on the polymer; (7) The charge transfer characteristics of polymers were modified by incorporating acidic or basic additives. (GRA)

  19. Modeling of Plasma Irregularities in Expanding Ionospheric Dust Clouds

    Science.gov (United States)

    Fu, H.; Scales, W.; Mahmoudian, A.; Bordikar, M. R.

    2009-12-01

    Natural dust layers occur in the earth’s mesosphere (50km-85km). Plasma irregularities are associated with these natural dust layers that produce radar echoes. Recently, an Ionospheric sounding rocket experiment was performed to investigate the plasma irregularities in upper atmospheric dust layers. The Charged Aerosol Release Experiment (CARE) uses a rocket payload injection of particles in the ionosphere to determine the mechanisms for enhanced radar scatter from plasma irregularities embedded in artificial dusty plasma in space. A 2-D hybrid computational model is described that may be used to study a variety of irregularities in dusty space plasmas which may lead to radar echoes. In this model, the dust and ions are both treated with Particle-In-Cell method while the dust charge varies with time based on the standard dust Orbit Motion Limited charging model. A stochastic model is adopted to remove particle ions due to the dust charging process. Electrons are treated with a fluid model including the parallel dynamics of magnetic fields. Fourier spectral methods with a predictor-corrector time advance are used to solve it. This numerical model will be used to investigate the electrodynamics and several possible plasma irregularity generation mechanisms after the creation of an artificial dust layer. The first is the dust ion-acoustic instability due to the drift of dust relative to the plasma. The instability saturates by trapping some ions. The effects of dust radius and dust drift velocity on plasma irregularities will be analyzed further. Also, a shear- driven instability in expanding dusty clouds is investigated.

  20. Instrument concept of a single channel dust trajectory detector

    Science.gov (United States)

    Li, Yanwei; Kempf, Sascha; Simolka, Jonas; Strack, Heiko; Grün, Eberhard; Srama, Ralf

    2017-03-01

    Charged dust particles in space can be detected by in situ sensors using charge induction. Such trajectory sensors are normally based on many grid or wire electrodes connected to individual charge sensitive amplifiers. In this article we describe a new approach to measure the trajectory of a charged dust particle by a single charge sensitive amplifier. The signal shape is used to calculate particle speed, mass and trajectory. The detector employs two half-circular grid electrodes, and the electrodes are connected to the differential input stage of an amplifier. Simulations using the Coulomb 9.0 software package were performed in order to determine the expected signal shapes depending on the particle parameters (entry location and incident angles). The simulated charge signals show, that the chosen measurement concept is an efficient method for low-power and low-mass dust trajectory sensors.

  1. Dust processing in photodissociation regions - Mid-IR emission modelling

    CERN Document Server

    Compiegne, M; Verstraete, L; Habart, E

    2008-01-01

    Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H_2 formation. With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. We show that in both regio...

  2. Inhaled dust and disease

    Energy Technology Data Exchange (ETDEWEB)

    Holt, P.F.

    1987-01-01

    This book discusses the following: the respiratory system; respirable dust; the fate of inhaled dust; translocation and some general effects of inhaled dust; silicosis; experimental research on silica-related disease; natural fibrous silicates; asbestos dust levels and dust sources; asbestos-related diseases - asbestosis, lung cancer, mesothelioma and other diseases, cancers at sites other than lung and pleura; experimental research relating to asbestos-related diseases; asbestos hazard - mineral types and hazardous occupations, neighbourhood and domestic hazard; silicates other than asbestos-man-made mineral fibres, mineral silicates and cement; metals; coal mine dust, industrial carbon and arsenic; natural and synthetic organic substances; dusts that provoke allergic alveolitis; tobacco smoke.

  3. Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model.

    Science.gov (United States)

    Li, Nan; Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Zhang, Rong; Feng, Tian; Liu, Suixin; Li, Guohui

    2016-01-15

    We developed a regional dust dynamical model (WRF-Dust) to simulate surface dust concentrations in the Guanzhong (GZ) basin of China during two typical dust cases (19th Aug. and 26th Nov., 2013), and compared model results with the surface measurements at 17 urban and rural sites. The important improvement of the model is to employ multiple high-resolution (0.5-500 m) remote sensing data to construct dust sources. The new data include the geographic information of constructions, croplands, and barrens over the GZ basin in summer and winter of 2013. For the first time, detailed construction dust emissions have been introduced in a regional dust model in large cities of China. Our results show that by including the detailed dust sources, model performance at simulating dust pollutions in the GZ basin is significantly improved. For example, the simulated dust concentration average for the 17 sites increases from 28 μg m(-3) to 59 μg m(-3), closing to the measured concentration of 66 μg m(-3). In addition, the correlation coefficient (r) between the calculated and measured dust concentrations is also improved from 0.17 to 0.57, suggesting that our model better presents the spatial variation. Further analysis shows that urban construction activities are the crucial source in controlling urban dust pollutions. It should be considered by policy makers for mitigating particulate air pollution in many Chinese cities.

  4. Dust in the interplanetary medium

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Ingrid; Lamy, Herve [Belgian Institute for Space Aeronomy, Brussels (Belgium); Czechowski, Andrzej [Space Research Center, Polish Academy of Sciences, Warsaw (Poland); Meyer-Vernet, Nicole; Zaslavsky, Arnaud, E-mail: ingrid.mann@aeronomie.b [LESIA, Observatoire de Paris, Meudon (France)

    2010-12-15

    The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nanodust particles of sizes {approx_equal}1-10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nanodust are detected near 1 AU with the plasma wave instrument onboard the STEREO spacecraft. Although such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.

  5. Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks.

    Science.gov (United States)

    Williams, Ross H; McGee, David; Kinsley, Christopher W; Ridley, David A; Hu, Shineng; Fedorov, Alexey; Tal, Irit; Murray, Richard W; deMenocal, Peter B

    2016-11-01

    Saharan mineral dust exported over the tropical North Atlantic is thought to have significant impacts on regional climate and ecosystems, but limited data exist documenting past changes in long-range dust transport. This data gap limits investigations of the role of Saharan dust in past climate change, in particular during the mid-Holocene, when climate models consistently underestimate the intensification of the West African monsoon documented by paleorecords. We present reconstructions of African dust deposition in sediments from the Bahamas and the tropical North Atlantic spanning the last 23,000 years. Both sites show early and mid-Holocene dust fluxes 40 to 50% lower than recent values and maximum dust fluxes during the deglaciation, demonstrating agreement with records from the northwest African margin. These quantitative estimates of trans-Atlantic dust transport offer important constraints on past changes in dust-related radiative and biogeochemical impacts. Using idealized climate model experiments to investigate the response to reductions in Saharan dust's radiative forcing over the tropical North Atlantic, we find that small (0.15°C) dust-related increases in regional sea surface temperatures are sufficient to cause significant northward shifts in the Atlantic Intertropical Convergence Zone, increased precipitation in the western Sahel and Sahara, and reductions in easterly and northeasterly winds over dust source regions. Our results suggest that the amplifying feedback of dust on sea surface temperatures and regional climate may be significant and that accurate simulation of dust's radiative effects is likely essential to improving model representations of past and future precipitation variations in North Africa.

  6. Kinetic temperature of dust particle motion in gas-discharge plasma

    NARCIS (Netherlands)

    Norman, G. E.; Timofeev, A. V.

    2011-01-01

    A system of equations describing motion of dust particles in gas discharge plasma is formulated. This system is developed for a monolayer of dust particles with an account of dust particle charge fluctuations and features of the discharge near-electrode layer. Molecular dynamics simulation of the du

  7. Model of the dust-loaded ionospheres of Mars and Titan

    Science.gov (United States)

    Witasse, Olivier; Cardnell, Sandy; Molina-Cuberos, Gregorio; Michael, Mary; Tripathi, Sachi; Deprez, Gregoire; Montmessin, Franck; O'Brien, Keran

    2016-10-01

    The ionization of lower atmospheres of celestial bodies and the presence of charged species are fundamental in the understanding of atmospheric electricity phenomena, such as electric discharges, large scale electric currents and Schumann resonances. On January 14, 2005, the Huygens Probe measured the electric conductivity of Titan's atmosphere from 140 km down to the surface. Micro-ARES, the electric field and conductivity sensor on board the ExoMars 2016 Schiaparelli lander, will conduct the very first measurement and characterization of Martian atmospheric electricity. The landing is scheduled for October 19, 2016 and the measurements will be performed over 2-4 sols.The present photochemical model is developed to compute the concentration of the most abundant charged species (cluster-ions, electrons and charged aerosols) and electric conductivity in the lower atmospheres of Mars (0-70 km) and Titan (0-145 km). For both cases, the main source of ionization is galactic cosmic rays. In addition, during daytime, photoionization of aerosols due to solar UV radiation is important at Mars. Ion and electron attachment to aerosols is another major source of aerosol charging, which can vary between -50 and +200 elementary charges for Mars and -55 and -25 for Titan. The steady state concentration of charged species is computed by solving the respective balance equations, which include the source and sink terms of the photochemical reactions. Since the amount of suspended dust in the Martian atmosphere can vary considerably and it has an important effect on the atmospheric properties, several dust scenarios, in addition to the day-night variations, are considered to characterize the variability of the concentration of charged species.The agreement between with the results of the model for Titan and the Huygens data suggests an improvement with respect to previous models. This gives confidence in the results of the model for Mars, which characterize the predicted electric

  8. Obliquely propagating dust-density waves

    Science.gov (United States)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-02-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.

  9. Finite dust clusters in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Melzer, A; Buttenschoen, B; Miksch, T; Passvogel, M [Institute of Physics, Ernst-Moritz-Arndt-Universitaet Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Block, D; Arp, O; Piel, A, E-mail: melzer@physik.uni-greifswald.d [IEAP, Christian-Albrechts-Universitaet Kiel, Olshausenstr. 40-60, 24098 Kiel (Germany)

    2010-12-15

    We review recent experiments on the formation of finite systems of charged microspheres in dusty plasmas. There, finite arrangements of these dust clusters can be studied in different geometries ranging from 1D to 3D. The structure and the mode dynamics in these systems will be discussed.

  10. On the dynamics of dust during protostellar collapse

    Science.gov (United States)

    Bate, Matthew R.; Lorén-Aguilar, Pablo

    2017-02-01

    The dynamics of dust and gas can be quite different from each other when the dust is poorly coupled to the gas. In protoplanetary discs, it is well known that this decoupling of the dust and gas can lead to diverse spatial structures and dust-to-gas ratios. In this paper, we study the dynamics of dust and gas during the earlier phase of protostellar collapse, before a protoplanetary disc is formed. We find that for dust grains with sizes ≲ 10 μm, the dust is well coupled during the collapse of a rotating, pre-stellar core and there is little variation of the dust-to-gas ratio during the collapse. However, if larger grains are present, they may have trajectories that are very different from the gas during the collapse, leading to mid-plane settling and/or oscillations of the dust grains through the mid-plane. This may produce variations in the dust-to-gas ratio and very different distributions of large and small dust grains at the very earliest stages of star formation, if large grains are present in pre-stellar cores.

  11. On the dynamics of dust during protostellar collapse

    CERN Document Server

    Bate, Matthew R

    2016-01-01

    The dynamics of dust and gas can be quite different from each other when the dust is poorly coupled to the gas. In protoplanetary discs, it is well known that this decoupling of the dust and gas can lead to diverse spatial structures and dust-to-gas ratios. In this paper, we study the dynamics of dust and gas during the earlier phase of protostellar collapse, before a protoplanetary disc is formed. We find that for dust grains with sizes < 10 micron, the dust is well coupled during the collapse of a rotating, pre-stellar core and there is little variation of the dust-to-gas ratio during the collapse. However, if larger grains are present, they may have trajectories that are very different from the gas during the collapse, leading to mid-plane settling and/or oscillations of the dust grains through the mid-plane. This may produce variations in the dust-to-gas ratio and very different distributions of large and small dust grains at the very earliest stages of star formation, if large grains are present in pr...

  12. A simple model of the magnetic emission from a dust devil

    Science.gov (United States)

    Kurgansky, Michael V.; Baez, Leonardo; Ovalle, Elías M.

    2007-11-01

    A simple Rankine-like vortex model of the dust devil behaving as a magnetic solenoid has been constructed. It is augmented with a one-dimensional model describing steady vertical distribution of the electric charge in the dust devil. For terrestrial dust devils, the model permits uniform vertical distribution of the negatively charged dust within the main vortex flow. For higher electric conductivity of air on Mars, the model hints on a rapid decay with altitude of the dust electrification, with e-folding height order of several tens of meters, which is much less than the total dust column height. It is shown that some characteristic features of recently discovered ULF magnetic emission from the terrestrial dust devil can be interpreted in terms of interaction between negatively charged smaller-scale vortex filaments inside the main vortex. It is conjectured that such ULF magnetic emission should be accompanied by the emission of sound waves of approximately doubled frequency.

  13. LADEE UVS Observations of Atoms and Dust in the Lunar Tail

    Science.gov (United States)

    Wooden, Diane H.; Colaprete, Anthony; Cook, Amanda M.; Shirley, Mark H.; Vargo, Kara E.; Elphic, Richard C.; Stubbs, Timothy J.; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail.

  14. The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts

    Science.gov (United States)

    Khan-Mayberry, Noreen

    2007-01-01

    The moon's surface is covered with a thin layer of fine, charged, reactive dust capable of layer of fine, charged, reactive dust capable of capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to study the effects of exposure to Lunar Dust on human health. To date, no scientifically defensible toxicological studies have been performed on lunar dusts, specifically the determination of exposure limits and their affect on human health. The multi-center LADTAG (Lunar Airborne Dust Toxicology center LADTAG (Lunar Airborne Dust Toxicology Advisory Group) was formed in response to the Office of the Chief Health and Medical Office s (OCHMO) request to develop recommendations for defining risk (OCHMO) request to develop recommendations for defining risk defining risk criteria for human lunar dust exposure.

  15. Jeans Collapse of a System of Electron Emitting Dust Particles

    Science.gov (United States)

    Delzanno, G. L.; Lapenta, G.

    2004-05-01

    The collapse of a molecular cloud to form a planetary system is a classic process in astrophysics. The length scale of the collapsed system and the rate of its formation is described in the simplest model by the Jeans instability. When the model is complicated by additional processes, the rate and scale of the Jeans instability is modified [1]. We focus on the processes involved with the charging of the dust in the initial cloud. The presence of charge of the same sign on the dust particles inhibits the process of collapse. Yet, the process of charging is expected to be operational. We propose a mechanism that can explain this apparent contradiction. In a recent work [2], we have shown that in presence of electron emission from the dust the interaction potential of a dust particle becomes similar to the Lennard-Jones (LJ) potential. The important consequence of this discovery is that emitting dust particles with LJ like potential can actually attract each other even though they all share the same sign of charge. Here, we present a series of simulations conducted with a new code designed to study a large system of weakly coupled dust particles, interacting with a LJ like potential. [1] P. K. Shukla, Dust plasma interaction in space, Nova Science Publ., 2002. [2] G.L. Delzanno, G. Lapenta, M. Rosenberg, Phys. Rev. Lett., to appear.

  16. Beyond Orbital-Motion-Limited theory effects for dust transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, Gian Luca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tang, Xianzhu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-29

    Dust transport in tokamaks is very important for ITER. Can many kilograms of dust really accumulate in the device? Can the dust survive? The conventional dust transport model is based on Orbital-Motion-Limited theory (OML). But OML can break in the limit where the dust grain becomes positively charged due to electron emission processes because it overestimates the dust collected power. An OML+ approximation of the emitted electrons trapped/passing boundary is shown to be in good agreement with PIC simulations.

  17. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  18. Dust-off

    OpenAIRE

    Maycroft, Neil; Cheang, Shu Lea

    2015-01-01

    The fan of a motherboard switches on and off intermittently. It blows household dust, removed from the inside of a computer carcass, into the air. The dust then settles onto the motherboard, to be blown off again. This continual movement of dust is contained in the piece. However, it should remind us that the ceaseless creation and motion of unconfined dust accompanies all stages of the e-waste journey.

  19. Dust-off

    OpenAIRE

    Maycroft, Neil; Cheang, Shu Lea

    2015-01-01

    The fan of a motherboard switches on and off intermittently. It blows household dust, removed from the inside of a computer carcass, into the air. The dust then settles onto the motherboard, to be blown off again. This continual movement of dust is contained in the piece. However, it should remind us that the ceaseless creation and motion of unconfined dust accompanies all stages of the e-waste journey.

  20. The Dust Accelerator Facility at CCLDAS

    Science.gov (United States)

    Shu, A. J.; Collette, A.; Drake, K.; Gruen, E.; Horanyi, M.; Leblanc, S.; Munsat, T.; Northway, P.; Robertson, S. H.; Srama, R.; Sternovsky, Z.; Thomas, E.; Wagner, M.; Colorado CenterLunar Dust; Atmospheric Studies

    2010-12-01

    At the Colorado Center for Lunar Dust and Atmospheric Science (CCLDAS) we are in the process of assembling a 3MV macroscopic (~1um) dust particle accelerator. The acceleration unit is being made by the National Electrostatics Corporation (NEC). The accelerator consists of a pelletron generator and potential rings encased in an enclosure held at 6 atm of SF6. A pulsed dust source is used to inject particles into the accelerator. Here we describe advancements in dust accelerator technology at CCLDAS to allow more functionality and ease of use, focusing primarily on dust source control, and the capability to select a precise range in dust mass and velocity. Previously, the dust source was controlled by long plastic rods turning potentiometers inside the SF6 environment providing little to no feedback and repeatability. We describe a fiber optic control system that allows full control of the pulse characteristics being sent to the dust source using a LabVIEW control program to increase usability. An electrostatic Einzel lens is being designed using the ion-optics code SIMION to determine the properties of the electrodes needed for the optimum focusing of the dust beam. Our simulations studies indicate that the dust beam can be directed into a 0.5mm diameter spot. Our planned experiments require a high degree of control over particles size, speed, charge and other characteristics. In order to ensure that only particles of the desired characteristics are allowed to pass into the target chamber, two deflection plates are used to eliminate unwanted particles from the beam. Further simulations are being done to determine the possibility of bending the beamline to allow active selection of particles. The current design of the selection unit uses nuclear accelerator techniques to determine the velocity and charge of each particle and digital timing and logic to choose particles that will be allowed to pass. This requires a high signal to noise ratio due to the need for a well

  1. Dust in the Universe

    Science.gov (United States)

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  2. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    Science.gov (United States)

    Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of

  3. Bridging a High School Science Fair Experience with First Year Undergraduate Research: Using the E-SPART Analyzer to Determine Electrostatic Charge Properties of Compositionally Varied Rock Dust Particles as Terrestrial Analogues to Mars Materials

    Science.gov (United States)

    Scott, A. G.; Williams, W. J. W.; Mazumder, M. K.; Biris, A.; Srirama, P. K.

    2005-01-01

    NASA missions to Mars confirm presence of surficial particles, as well as dramatic periods of aeolian reworking. Dust deposition on, or infiltration into, exploration equipment such as spacecraft, robotic explorers, solar panel power supplies, and even spacesuits, can pose significant problems such as diminished power collection, short circuits / discharges, and added weight. We report results conducted initially as a science fair project and a study now part of a first year University undergraduate research experience.

  4. Solar wind collimation of the Jupiter high velocity dust streams

    Science.gov (United States)

    Flandes, A.; Krueger, H.

    2006-12-01

    The dust bursts discovered by the Ulysses dust sensor when approaching Jupiter in 1992 were later confirmed as collimated streams of high velocity (~200 km/s) charged (~5V) dust grains escaping from Jupiter and dominated by the interplanetary Magnetic field (IMF). With Cassini, a similar phenomenon was observed in Saturn. It was demonstrated that the Jovian dust streams are closely related to the solar wind compressed regions, either Corotating interaction regions (CIRs) or Coronal mass ejections (CMEs) ¨Cto a minor extent-. Actually the dust streams seem ultimately to be generated by such events. This can be explained considering that dust grains are accelerated as they gain substantial energy while compressed at the forward and reverse shocks that bound or precede these solar wind regions.

  5. Modelling the dust emission from dense interstellar clouds: disentangling the effects of radiative transfer and dust properties

    OpenAIRE

    Ysard, N.; Juvela, M.; Demyk, K.; Guillet, V.; Abergel, A.; Bernard, J. -P.; Malinen, J.; Mény, C.; Montier, L.; Paradis, D.; Ristorcelli, I.; L. Verstraete

    2012-01-01

    With Planck and Herschel, we now have the spectral coverage and angular resolution required to observe dense and cold molecular clouds. As these clouds are optically thick at short wavelength but optically thin at long wavelength, it is tricky to conclude anything about dust properties without a proper treatment of the radiative transfer (RT). Our aim is to disentangle the effects of RT and of dust properties on the variations in the dust emission to provide observers with keys to analyse the...

  6. Interstellar Dust Inside and Outside the Heliosphere

    CERN Document Server

    Krueger, Harald

    2008-01-01

    In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft identified interstellar dust in the solar system. Since then the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10e-13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of 'big' interstellar grains (up to 10e-13 kg) and a gas-to-dust-mass ratio i...

  7. Toxicity of lunar dust

    CERN Document Server

    Linnarsson, Dag; Fubini, Bice; Gerde, Per; Karlsson, Lars L; Loftus, David J; Prisk, G Kim; Staufer, Urs; Tranfield, Erin M; van Westrenen, Wim

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust...

  8. Field Measurements of Terrestrial and Martian Dust Devils

    Science.gov (United States)

    Murphy, Jim; Steakley, Kathryn; Balme, Matt; Deprez, Gregoire; Esposito, Francesca; Kahanpää, Henrik; Lemmon, Mark; Lorenz, Ralph; Murdoch, Naomi; Neakrase, Lynn; Patel, Manish; Whelley, Patrick

    2016-11-01

    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types.

  9. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  10. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-09-01

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  11. Interstellar Dust Close to the Sun

    CERN Document Server

    Frisch, Priscilla C

    2012-01-01

    The low density interstellar medium (ISM) close to the Sun and inside of the heliosphere provides a unique laboratory for studying interstellar dust grains. Grain characteristics in the nearby ISM are obtained from observations of interstellar gas and dust inside of the heliosphere and the interstellar gas towards nearby stars. Comparison between the gas composition and solar abundances suggests that grains are dominated by olivines and possibly some form of iron oxide. Measurements of the interstellar Ne/O ratio by the Interstellar Boundary Explorer spacecraft indicate that a high fraction of interstellar oxygen in the ISM must be depleted onto dust grains. Local interstellar abundances are consistent with grain destruction in ~150 km/s interstellar shocks, provided that the carbonaceous component is hydrogenated amorphous carbon and carbon abundances are correct. Variations in relative abundances of refractories in gas suggest variations in the history of grain destruction in nearby ISM. The large observed ...

  12. Optical signatures of the Charge of a Dielectric Particle in a Plasma

    CERN Document Server

    Heinisch, R L; Fehske, H

    2013-01-01

    With an eye on dust particles immersed into an ionized gas, we study the effect of a negative charge on the scattering of light by a dielectric particle with a strong transverse optical phonon resonance in the dielectric constant. Surplus electrons alter the scattering behavior of the particle by their phonon limited conductivity in the surface layer (negative electron affinity) or in the bulk of the particle (positive electron affinity). We identify a charge-dependent increase of the extinction efficiency for low frequencies, a shift of the extinction resonance above the transverse optical phonon frequency, and a rapid variation of the polarization angles over this resonance. These effects could be used for non-invasive optical measurements of the charge of the particle.

  13. Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma

    Science.gov (United States)

    Ur-Rehman, Hafeez; Mahmood, S.

    2016-09-01

    The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.

  14. Self-excited dust-acoustic waves in an electron-depleted nanodusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tadsen, Benjamin, E-mail: tadsen@physik.uni-kiel.de; Greiner, Franko; Groth, Sebastian; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany)

    2015-11-15

    A dust density wave field is observed in a cloud of nanodust particles confined in a radio frequency plasma. Simultaneous measurements of the dust properties, grain size and density, as well as the wave parameters, frequency and wave number, allow for an estimate of the ion density, ion drift velocity, and the dust charge using a hybrid model for the wave dispersion. It appears that the charge on the dust grains in the cloud is drastically reduced to tens of elementary charges compared with isolated dust particles in a plasma. The charge is much higher at the cloud's periphery, i.e., towards the void in the plasma center and also towards the outer edge of the cloud.

  15. A Possible Mechanism for Overcoming the Electrostatic Barrier Against Dust Growth in Protoplanetary disks

    CERN Document Server

    Akimkin, V

    2015-01-01

    The coagulation of dust particles under the conditions in protoplanetary disks is investigated. The study focuses on the repulsive electrostatic barrier against growth of charged dust grains. Taking into account the photoelectric effect leads to the appearance of a layer at intermediate heights where the dust has a close to zero charge, enabling the dust grains to grow efficiently. An increase in the coagulation rate comes about not only due to the lowering of the Coulomb barrier, but also because of the electrostatic attraction between grains of opposite charge due to the non-zero dispersion of the near-zero charge. Depending on the efficiency of mixing in the disk, the acceleration of the evolution of the dust in this layer could be important, both in the quasi-stationary stage of the disk evolution and during its dispersal.

  16. The large scale dust distribution in the inner galaxy

    Science.gov (United States)

    Hauser, M. G.; Dwek, E.; Gezari, D.; Silverberg, R.; Kelsall, T.; Stier, M.; Cheung, L.

    1983-01-01

    Initial results are presented from a new large-scale survey of the first quadrant of the galactic plane at wavelengths of 160, 260, and 300 microns. The submillimeter wavelength emission, interpreted as thermal radiation by dust grains, reveals an optically thin disk of angular width about 0.09 deg (FWHM) with a mean dust temperature of 23 K and significant variation of the dust mass column density. Comparison of the dust column density with the gas column density inferred from CO survey data shows a striking spatial correlation. The mean luminosity per hydrogen atom is found to be 2.5 x 10 to the -30th W/H, implying a radiant energy density in the vicinity of the dust an order of magnitude larger than in the solar neighborhood. The data favor dust in molecular clouds as the dominant submillimeter radiation source.

  17. Seasonal variations in Na, K, Mg and Ca charge balance in marine brown algae from Saurashtra Coast (NW coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Singbal, S.Y.S.

    Seasonal variation of Na, K, Mg and Ca were estimated in Cystoseira indica, Sargassum tenerrimum and S. johnstonii. Abundance of these elements were higher during the rapid growth stage but decreased subsequently. Monovalent cations (Na + K...

  18. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  19. Operational Dust Prediction

    Science.gov (United States)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  20. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex? *

    Science.gov (United States)

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R.; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-01-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0”.58×0”.78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets. PMID:28944000

  1. MAPPING DUST THROUGH EMISSION AND ABSORPTION IN NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kreckel, Kathryn; Groves, Brent; Schinnerer, Eva; Meidt, Sharon E.; Tabatabaei, Fatemeh S. [Max Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Johnson, Benjamin D. [Institut d' Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, F-75014 Paris (France); Aniano, Gonzalo [Institut d' Astrophysique Spatiale (IAS), Batiment 121, Universite Paris-Sud 11 and CNRS (UMR 8617), F-91405 Orsay (France); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Croxall, Kevin V. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Draine, Bruce T. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States); Gordon, Karl D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Crocker, Alison F.; Smith, J. D. T. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hunt, Leslie K. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Kennicutt, Robert C., E-mail: kreckel@mpia.de [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-07-01

    Dust has long been identified as a barrier to measuring inherent galaxy properties. However, the link between dust and attenuation is not straightforward and depends on both the amount of dust and its distribution. Herschel imaging of nearby galaxies undertaken as part of the KINGFISH project allows us to map the dust as seen in emission with unprecedented sensitivity and {approx}1 kpc resolution. We present here new optical integral field unit spectroscopy for eight of these galaxies that provides complementary 100-200 pc scale maps of the dust attenuation through observation of the reddening in both the Balmer decrement and the stellar continuum. The stellar continuum reddening, which is systematically less than that observed in the Balmer decrement, shows no clear correlation with the dust, suggesting that the distribution of stellar reddening acts as a poor tracer of the overall dust content. The brightest H II regions are observed to be preferentially located in dusty regions, and we do find a correlation between the Balmer line reddening and the dust mass surface density for which we provide an empirical relation. Some of the high-inclination systems in our sample exhibit high extinction, but we also find evidence that unresolved variations in the dust distribution on scales smaller than 500 pc may contribute to the scatter in this relation. We caution against the use of integrated A{sub V} measures to infer global dust properties.

  2. The geologic records of dust in the Quaternary

    Science.gov (United States)

    Muhs, Daniel R.

    2013-06-01

    Study of geologic records of dust composition, sources and deposition rates is important for understanding the role of dust in the overall planetary radiation balance, fertilization of organisms in the world's oceans, nutrient additions to the terrestrial biosphere and soils, and for paleoclimatic reconstructions. Both glacial and non-glacial processes produce fine-grained particles that can be transported by the wind. Geologic records of dust flux occur in a number of depositional archives for sediments: (1) loess deposits; (2) lake sediments; (3) soils; (4) deep-ocean basins; and (5) ice sheets and smaller glaciers. These archives have several characteristics that make them highly suitable for understanding the dynamics of dust entrainment, transport, and deposition. First, they are often distributed over wide geographic areas, which permits reconstruction of spatial variation of dust flux. Second, a number of dating methods can be applied to sediment archives, which allows identification of specific periods of greater or lesser dust flux. Third, aeolian sediment particle size and composition can be determined so that dust source areas can be ascertained and dust transport pathways can be reconstructed. Over much of the Earth's surface, dust deposition rates were greater during the last glacial period than during the present interglacial period. A dustier Earth during glacial periods is likely due to increased source areas, greater aridity, less vegetation, lower soil moisture, possibly stronger winds, a decreased intensity of the hydrologic cycle, and greater production of dust-sized particles from expanded ice sheets and glaciers.

  3. Total and respirable dust exposures among carpenters and demolition workers during indoor work in Denmark

    DEFF Research Database (Denmark)

    Kirkeskov, Lilli; Hanskov, Dorte Jessing Agerby; Brauer, Charlotte

    2016-01-01

    or the variation between the different work tasks. The purpose of this study was therefore to assess if there were differences in dust exposure between carpenters and demolition workers who were expected to have low and high dust exposure, respectively. METHODS: Through interviews of key persons...... out for carpenters and 20 measurements of total dust, 11 of respirable dust and 11 of respirable crystalline silica dust on four different works tasks for demolition workers. Dust measurements were tested for differences using linear regression, t-test and one-way ANOVA. RESULTS: For carpenters...... deviation 11.6) and the respirable dust was 1.06 mg/m(3) (geometric standard deviation 5.64). The mean difference between total dust for demolition workers and carpenters was 11.4 (95 % confidence interval 3.46-37.1) mg/m(3). The mean difference between respirable dust for demolition workers and carpenters...

  4. Confinement and structure of electrostatically coupled dust clouds in a direct current plasma-sheath

    Science.gov (United States)

    Nunomura, S.; Ohno, N.; Takamura, S.

    1998-10-01

    Mechanisms for the confinement and the internal structure of an electrostatically coupled dust cloud formed in a dc glow discharge have been investigated from a comparative viewpoint between experimental observations and a simple model. Two kinds of dust clouds with different internal structures are clearly observed, depending on the dispersion of the size distribution of dust particles. The dust cloud can be trapped only in the plasma-sheath boundary area, corresponding to the potential minimum region determined by gravitational and electrostatic forces in the cathode sheath. No dust particles were found deep inside of the sheath, which is consistent with the analysis because the dust particles may be charged positively due to an extreme reduction of the electron density. The internal structure of the electrostatically coupled dust cloud was found to be arranged so that the total potential energy, including the repulsive Coulomb interaction among negative dust particles, may become minimal.

  5. Lead in Chinese villager house dust

    Science.gov (United States)

    Bi, Xiangyang; Liu, Jinling; Han, Zhixuan

    2016-04-01

    House dust has been recognized as an important contributor to children's blood Pb. Here we conducted a comprehensive study to investigate geographical variation of Pb in Chinese villager house dust. The concentrations of Pb in 477 house dust samples collected from twenty eight areas throughout China varied from 12 to 2510 mg/kg, with geometric mean and median concentration of 54 mg/kg and 42 mg/kg, respectively. The median Pb concentrations in different geographical areas ranged from 16 (Zhangjiakou, Hebei) to 195 mg/kg (Loudi, Hunan). The influences of outdoor soil Pb concentrations, dates of construction, house decorative materials, heating types, and site specific pollution on Pb concentrations in house dust were evaluated. No correlations were found between the house dust Pb concentrations and the age of houses, as well as house decorative materials. Whereas outdoor soil, coal combustion, and site specific pollution may be potential Pb sources. The results of scanning electron microscopy (SEM) showed that Pb bearing particles appeared as cylindrical, flaky and irregular aggregates with the particle size ranging from about 10 to 800 μm. The energy dispersive X-ray microanalysis (EDX) suggested that Pb in the dust particles may be associated with calcium compounds. But the major fraction of Pb in the household dust samples was found to be strongly bound to Fe-Mn oxide phases (37%) while Pb present in minor fractions individually making up between 14 and 18% was characterized in falling order as residual, carbonate, organic/sulphide and exchangeable fractions by the sequential extraction method applied. Bioaccessible Pb making up an average proportion of 53% in the household dusts was significantly correlated to the Fe-Mn oxide phases of Pb.

  6. Particulate Matter Emissions Factors for Dust from Unique Military Activities

    Science.gov (United States)

    2010-06-01

    good assumption for desert dust in the absence of iron oxides, especially hematite (Fe2O3)). In the SI-1400 method, particle size distribution is...shear stress imparted to the surface. The PI-SWERL is being used increasingly as a primary tool to evaluate windblown dust emissions from natural and...surface, so the amount of charge should be the primary control on emission strength for a given surface. 26 Table 3. Minimum, maximum, mean and

  7. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhengguo; Liu, Xiaodong; An, Zhisheng [Chinese Academy of Sciences, State Key Laboratory of Loess Quaternary Geology (SKLLQG), Institute of Earth Environment, Xi' an (China); Yi, Bingqi; Yang, Ping [Texas A and M University, College Station, TX (United States); Mahowald, Natalie [Cornell University, Ithaca, NY (United States)

    2011-12-15

    Northern Tibetan Plateau uplift and global climate change are regarded as two important factors responsible for a remarkable increase in dust concentration originating from inner Asian deserts during the Pliocene-Pleistocene period. Dust cycles during the mid-Pliocene, last glacial maximum (LGM), and present day are simulated with a global climate model, based on reconstructed dust source scenarios, to evaluate the relative contributions of the two factors to the increment of dust sedimentation fluxes. In the focused downwind regions of the Chinese Loess Plateau/North Pacific, the model generally produces a light eolian dust mass accumulation rate (MAR) of 7.1/0.28 g/cm{sup 2}/kyr during the mid-Pliocene, a heavier MAR of 11.6/0.87 g/cm{sup 2}/kyr at present, and the heaviest MAR of 24.5/1.15 g/cm{sup 2}/kyr during the LGM. Our results are in good agreement with marine and terrestrial observations. These MAR increases can be attributed to both regional tectonic uplift and global climate change. Comparatively, the climatic factors, including the ice sheet and sea surface temperature changes, have modulated the regional surface wind field and controlled the intensity of sedimentation flux over the Loess Plateau. The impact of the Tibetan Plateau uplift, which increased the areas of inland deserts, is more important over the North Pacific. The dust MAR has been widely used in previous studies as an indicator of inland Asian aridity; however, based on the present results, the interpretation needs to be considered with greater caution that the MAR is actually not only controlled by the source areas but the surface wind velocity. (orig.)

  8. Alignment of atmospheric mineral dust due to electric field

    Science.gov (United States)

    Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.

    2007-12-01

    Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.

  9. Carbon dust particles in a beam-plasma discharge

    Science.gov (United States)

    Koval, O. A.; Vizgalov, V.; Shalpegin, A. V.

    2016-09-01

    This paper focuses on dynamics of micro-sized carbon dust grains in beam-plasma discharge (BPD) plasmas. It was demonstrated that injected dust particles can be captured and transported along the discharge. Longitudinal average velocity of the particles in the central area of the plasma column was 17 m/sec, and 2 m/sec in the periphery. Dust injection caused a decrease of emission intensity of metastable nitrogen molecular ion. This effect is suggested for a spectroscopy method for particles’ potential measurements. Five-micron radius carbon dust grains obtained potential above 500 V in the experiments on PR-2 installation, proving the feasibility of BPDs for the charging of fine dust particles up to high potential values, unattainable in similar plasma conditions.

  10. Stone dusting process advance

    Energy Technology Data Exchange (ETDEWEB)

    Matt Ryan; David Humphreys [Mining Attachments (Qld.) Pty Ltd. (Australia)

    2009-01-15

    The coal mining industry has, for many years, used dry stone dust or calcium carbonate (CaCO{sub 3}) in the prevention of the propagation of coal dust explosions throughout their underground mines in Australia. In the last decade wet stone dusting has been introduced. This is where stone dust and water are mixed together to form a paste like slurry. This mixture is pumped and sprayed on to the underground roadway surfaces. This method solved the contamination of the intake airways but brought with it a new problem known as 'caking'. Caking is the hardened layer that is formed as the stone dust slurry dries. It was proven that this hardened layer compromises the dispersal characteristics of the stone dust and therefore its ability to suppress a coal dust explosion. This project set out to prove a specially formulated, non toxic slurry additive and process that could overcome the caking effect. The slurry additive process combines dry stone dust with water to form a slurry. The slurry is then treated with the additive and compressed air to create a highly vesicular foam like stone dusted surface. The initial testing on a range of additives and the effectiveness in minimising the caking effect of wet dusting were performed at Applied Chemical's research laboratory in Melbourne, Victoria and independently tested at the SGS laboratory in Paget, Queensland. The results from these tests provided the platform to conduct full scale spraying trials at the Queensland Mines Rescue Station and Caledon Coal's Cook Colliery, Blackwater. The project moved into the final stage of completion with the collection of data. The intent was to compare the slurry additive process to dry stone dusting in full-scale methane explosions at the CSIR Kloppersbos explosion facility in Kloppersbos, South Africa.

  11. Interstellar Dust in the Solar System

    CERN Document Server

    Krueger, Harald; Altobelli, Nicolas; Gruen, Eberhard

    2007-01-01

    The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79 deg, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in-situ dust detector on board continuously measured interstellar dust grains with masses up to 10^-13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Sun's motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged gr...

  12. Data assimilation of dust aerosol observations for the CUACE/dust forecasting system

    Directory of Open Access Journals (Sweden)

    T. Niu

    2008-07-01

    Full Text Available A data assimilation system (DAS was developed for the Chinese Unified Atmospheric Chemistry Environment – Dust (CUACE/Dust forecast system and applied in the operational forecasts of sand and dust storm (SDS in spring 2006. The system is based on a three dimensional variational method (3D-Var and uses extensively the measurements of surface visibility (phenomena and dust loading retrieval from the Chinese geostationary satellite FY-2C. By a number of case studies, the DAS was found to provide corrections to both under- and over-estimates of SDS, presenting a major improvement to the forecasting capability of CUACE/Dust in the short-term variability in the spatial distribution and intensity of dust concentrations in both source regions and downwind areas. The seasonal mean Threat Score (TS over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the data assimilation system, a 41% enhancement. The forecast results with DAS usually agree with the dust loading retrieved from FY-2C and visibility distribution from surface meteorological stations, which indicates that the 3D-Var method is very powerful by the unification of observation and numerical model to improve the performance of forecast model.

  13. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    Science.gov (United States)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  14. Dust in magnetised plasmas - Basic theory and some applications. [to planetary rings

    Science.gov (United States)

    Northrop, T. G.; Morfill, G. E.

    1984-01-01

    In this paper the theory of charged test particle motion in magnetic fields is reviewed. This theory is then extended to charged dust particles, for which gravity and charge fluctuations play an important role. It is shown that systematic drifts perpendicular to the magnetic field and stochastic transport effects may then have to be considered none of which occur in the case of atomic particles (with the exception of charge exchange reactions). Some applications of charged dust particle transport theory to planetary rings are then briefly discussed.

  15. Escape mechanisms of dust in Io

    Science.gov (United States)

    Flandes, A.

    The injection of material into the jovian magnetosphere through Io's volcanic activity makes possible the formation of structures such as the plasma torus and the dust ballerina skirt. Io's high temperature volcanism produces spectacular plumes, but even the tallest plumes, as those of Pelen Patera, will not produce enough energy to defeat the gravitational attraction of Io. The fact is that dust escapes from Io, which implies that a second mechanism is acting on the grains. Grains brought to the top of the highest plumes by the volcanic forces are still under Io's gravitational pull, but need only a minimum charge (~10-1 4 C) so that the Lorentz force due to the Jovian magnetic field equilibrates this attraction. In the volcanic vents, the escape velocity of the ejected material and its own density produces enough collisions to create charges. On top of the highest plumes (~500km) charged grains are exposed to the plasma torus that co-rotates rigidly with Jupiter and, due to the relative velocity among Io and the torus, the grains will be dragged away from Io. As it is well known, these dust grains will also be dragged away from Jupiter.

  16. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  17. Dust escape from Io

    Science.gov (United States)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  18. Adjoint inversion modeling of Asian dust emission using lidar observations

    Directory of Open Access Journals (Sweden)

    K. Yumimoto

    2008-06-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for a regional dust model (RAMS/CFORS-4DVAR; RC4 is applied to an adjoint inversion of a heavy dust event over eastern Asia during 20 March–4 April 2007. The vertical profiles of the dust extinction coefficients derived from NIES Lidar network are directly assimilated, with validation using observation data. Two experiments assess impacts of observation site selection: Experiment A uses five Japanese observation sites located downwind of dust source regions; Experiment B uses these and two other sites near source regions. Assimilation improves the modeled dust extinction coefficients. Experiment A and Experiment B assimilation results are mutually consistent, indicating that observations of Experiment A distributed over Japan can provide comprehensive information related to dust emission inversion. Time series data of dust AOT calculated using modeled and Lidar dust extinction coefficients improve the model results. At Seoul, Matsue, and Toyama, assimilation reduces the root mean square differences of dust AOT by 35–40%. However, at Beijing and Tsukuba, the RMS differences degrade because of fewer observations during the heavy dust event. Vertical profiles of the dust layer observed by CALIPSO are compared with assimilation results. The dense dust layer was trapped at potential temperatures (θ of 280–300 K and was higher toward the north; the model reproduces those characteristics well. Latitudinal distributions of modeled dust AOT along the CALIPSO orbit paths agree well with those of CALIPSO dust AOT, OMI AI, and MODIS coarse-mode AOT, capturing the latitude at which AOTs and AI have high values. Assimilation results show increased dust emissions over the Gobi Desert and Mongolia; especially for 29–30 March, emission flux is about 10 times greater. Strong dust uplift fluxes over the Gobi Desert and Mongolia cause the heavy dust event. Total optimized dust emissions are 57

  19. Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)

    NARCIS (Netherlands)

    G. Davies (Gail); N.J. Armstrong (Nicola J.); J.C. Bis (Joshua); J. Bressler (Jan); V. Chouraki (Vincent); S. Giddaluru (Sudheer); E. Hofer; C.A. Ibrahim-Verbaas (Carla); M. Kirin (Mirna); J. Lahti; S. van der Lee (Sven); S. Le Hellard (Stephanie); T. Liu; R.E. Marioni (Riccardo); C. Oldmeadow (Christopher); D. Postmus (Douwe); G.D. Smith; J.A. Smith (Jennifer A); A. Thalamuthu (Anbupalam); R. Thomson (Russell); V. Vitart (Veronique); J. Wang; L. Yu; L. Zgaga (Lina); W. Zhao (Wei); R. Boxall (Ruth); S.E. Harris (Sarah); W.D. Hill (W. David); D.C. Liewald (David C.); M. Luciano (Michelle); H.H.H. Adams (Hieab); D. Ames; N. Amin (Najaf); P. Amouyel (Philippe); A.A. Assareh; R. Au; J.T. Becker; A. Beiser; C. Berr (Claudine); L. Bertram (Lars); E.A. Boerwinkle (Eric); B.M. Buckley (Brendan M.); H. Campbell (Harry); J. Corley; P.L. De Jager; C. Dufouil (Carole); J.G. Eriksson (Johan G.); T. Espeseth (Thomas); J.D. Faul; I. Ford; G. Scotland (Generation); R.F. Gottesman (Rebecca); M.D. Griswold (Michael); V. Gudnason (Vilmundur); T.B. Harris; G. Heiss (Gerardo); A. Hofman (Albert); E.G. Holliday (Elizabeth); J.E. Huffman (Jennifer); S.L.R. Kardia (Sharon); N.A. Kochan (Nicole A.); D.S. Knopman (David); J.B. Kwok; J.-C. Lambert; T. Lee; G. Li; S.-C. Li; M. Loitfelder (Marisa); O.L. Lopez (Oscar); A.J. Lundervold; A. Lundqvist; R. Mather; S.S. Mirza (Saira S.aeed); L. Nyberg; B.A. Oostra (Ben); A. Palotie (Aarno); G. Papenberg; A. Pattie (Alison); K. Petrovic (Katja); O. Polasek (Ozren); B.M. Psaty (Bruce); P. Redmond (Paul); S. Reppermund; J.I. Rotter; R. Schmidt (Reinhold); M. Schuur (Maaike); P.W. Schofield; R.J. Scott; V.M. Steen (Vidar); D.J. Stott (David J.); J.C. van Swieten (John); K.D. Taylor (Kent); J. Trollor; S. Trompet (Stella); A.G. Uitterlinden (André); G. Weinstein; E. Widen (Elisabeth); B.G. Windham (B Gwen); J.W. Jukema (Jan Wouter); A. Wright (Alan); M.J. Wright (Margaret); Q. Yang (Qiong Fang); H. Amieva (Hélène); J. Attia (John); D.A. Bennett (David); H. Brodaty (Henry); A.J. de Craen (Anton); C. Hayward; M.A. Ikram (Arfan); U. Lindenberger; L.-G. Nilsson; D.J. Porteous (David J.); K. Räikkönen (Katri); I. Reinvang (Ivar); I. Rudan (Igor); P.S. Sachdev (Perminder); R. Schmidt; P. Schofield (Peter); V. Srikanth; J.M. Starr (John); S.T. Turner (Stephen); D.R. Weir (David R.); J.F. Wilson (James F); C.M. van Duijn (Cornelia M.); L.J. Launer (Lenore); A.L. Fitzpatrick (Annette); S. Seshadri (Sudha); T.H. Mosley (Thomas H.); I.J. Deary (Ian J.)

    2015-01-01

    textabstractGeneral cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health- and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of g

  20. 柴河流域典型区域大气降尘量年内变化特征研究%Intra-annual Variation Characteristics of the Atmospheric Dust Deposition on Typical Region of Chain Basin

    Institute of Scientific and Technical Information of China (English)

    葛平; 赵斌; 吴献花; 刘忠霖; 吴斌; 高婷

    2012-01-01

    [目的]研究柴河流域大气降尘总量和可燃物总量随时间的年内变化规律.[方法]以滇池南部柴河小流域为研究区域,选择该流域居民点、化工区、砂石生产区、水源地4种典型区域测定大气降尘量和降尘可燃物量,探讨该流域大气降尘污染状况及其年内变化规律.[结果]居民点、化工区、砂石生产区及水源地4个区域中,砂石生产区降尘量(降尘可燃物量)最高,水源地最低,而化工区和居民点降尘量低于砂石生产区,高于水源地;在所选取的4个区域中,一年降尘量(降尘可燃物量)最高值出现在旱季,最低值出现在雨季,其他月份降尘量(降尘可燃物量)也有变化,但变化幅度不大,说明气象条件对降尘含量影响较大;相关性分析表明,砂石生产区降尘量与降尘可燃物量呈极显著相关,水源地降尘量与降尘可燃物量呈显著相关,居民点和化工区降尘量与降尘可燃物量均呈正相关.[结论]该研究为柴河流域大气污染状况提供科学依据%[ Objective ] The aim was to study the interannual changes of atmospheric dust deposition and quantity of combustible dust-fall in Chaihe basin. [Method]Taking Chaihe Basin in south Dianchi as study area, the atmospheric dust deposition and combustible substances in the residential, chemical area, sand production area and watershed in Chaihe basin were measured. The pollution and interannual changes of atmospheric dust in Chaihe basin were discussed. [Result] In the residential, chemical area, sand production area and watershed, the amount of sand was the highest in sand production area and lowest in the watershed. While the dust amount in the chemical area and watershed areas were lower than sandy production area and higher than watershed area. In the four chosen areas, the highest value of dust appeared in autumn and the lowest value appeared in precipitation season. Sand in other months changed and the change scale was

  1. Collision and recombination driven instabilities in variable charged dusty plasmas

    Indian Academy of Sciences (India)

    S Bal; M Bose

    2013-04-01

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant in the long wavelength regime even in the presence of dust-neutral and ion-neutral collisions, while in the shorter wavelength regime, the dust-neutral collision is found to play a major role. In an earlier research work, the dust-neutral collision was neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report shows that the recombination effect is negligible in the presence of dust-neutral collisions. In line of this present situation our investigation revealed that the recombination is more important than dust-neutral collisions in laboratory plasma and fusion plasma, while the dust-neutral collision frequency is dominant in the interstellar plasmas. The effects of ion and dust densities and ion streaming on the recombination and collision driven mode in parameter regimes relevant for many experimental studies on dusty plasmas have also been calculated.

  2. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  3. SPARCLE: Electrostatic Dust Control Tool Proof of Concept

    Science.gov (United States)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.

    2010-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  4. SPARCLE: Electrostatic Dust Control Tool Proof of Concept

    Science.gov (United States)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Marshall, J.; Nuth, J.; Calle, C.

    2010-01-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  5. Hypervelocity Dust Impacts in Space and the Laboratory

    Science.gov (United States)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  6. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Directory of Open Access Journals (Sweden)

    O. Havnes

    2009-03-01

    Full Text Available The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height ~81.5–83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was ~−3.5×109 e m−3 and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2–3 over a distance of ≲10 m, while the same change at their lower edges were much more gradual. The upper edge of this layer is also sharp, with a change in the probe current from zero to IDC=−10−11 A over ~10 m, while the same change at the low edge occurs over ~500 m. The second dust layer at ~85–92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was ~−108 e m−3. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=NdZd /n_e≲0.01.

    In spite of the dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to ~50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is θi≳20–35°. This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Næsheim, 2007 as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  7. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, O. [Department of Physics and Technology, University of Tromsoe, Tromsoe (Norway); Surdal, L.H. [Narvik University College, Norvik, and Andoeya Rocket Range, Andenes (Norway); Philbrick, C.R. [Pennsylvania State University, Electrical Engineering Department (United States)

    2009-07-01

    The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height {proportional_to}81.5-83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was {proportional_to}-3.5 x 10{sup 9} e m{sup -3} and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2-3 over a distance of dust layer at {proportional_to}85-92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was {proportional_to}-10{sup 8} e m{sup -3}. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=N{sub d}Z{sub d}/n{sub e}dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to {proportional_to}50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is {theta}{sub i}>or similar 20-35 . This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Naesheim, 2007) as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  8. Equivalence of Electron-Vibration Interaction and Charge-Induced Force Variations: A New O(1 Approach to an Old Problem

    Directory of Open Access Journals (Sweden)

    Tunna Baruah

    2012-04-01

    Full Text Available Calculating electron-vibration (vibronic interaction constants is computationally expensive. For molecules containing N nuclei it involves solving the Schrödinger equation for Ο(3N nuclear configurations in addition to the cost of determining the vibrational modes. We show that quantum vibronic interactions are proportional to the classical atomic forces induced when the total charge of the system is varied. This enables the calculation of vibronic interaction constants from O(1 solutions of the Schrödinger equation. We demonstrate that the O(1 approach produces numerically accurate results by calculating the vibronic interaction constants for several molecules. We investigate the role of molecular vibrations in the Mott transition in κ-(BEDT-TTF2Cu[N(CN2]Br.

  9. Planar dust-acoustic waves in electron–positron–ion–dust plasmas with dust-size distribution under higher-order transverse perturbations

    Indian Academy of Sciences (India)

    Hong-Yan Wang; Kai-Biao Zhang

    2015-01-01

    Propagation of small but finite nonlinear dust-acoustic solitary waves are investigated in a planar unmagnetized dusty plasma, which consists of electrons, positrons, ions and negatively charged dust particles with different sizes and masses. A Kadomtsev–Petviashvili (KP) equation is obtained by using reductive perturbation method. The effect of positron density and positron–electron temperature ratio on dust-acoustic solitary structures are studied. Numerical results show that the increase in positron number density increases the amplitude of hump-like solitons but decreases the dip-like solitary waves. Furthermore, increase in the positron–electron temperature ratio results in the decrease of the amplitude of dip-like solitary waves. It seems that both the dipand hump-like solitary waves can exist in this system. Our results also suggest that the dust-size distribution has a significant role on the amplitude of the solitary waves.

  10. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NARCIS (Netherlands)

    Amato, F.; Schaap, M.; Denier van der Gon, H.A.C.; Pandolfi, M.; Alastuey, A.; Keuken, M.; Querol, X.

    2013-01-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well

  11. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NARCIS (Netherlands)

    Amato, F.; Schaap, M.; Denier van der Gon, H.A.C.; Pandolfi, M.; Alastuey, A.; Keuken, M.; Querol, X.

    2013-01-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well des

  12. [Seasonal Provincial Characteristics of Vertical Distribution of Dust Loadings and Heavy Metals near Surface in City].

    Science.gov (United States)

    Li, Xiao-yan; Zhang, Shu-ting

    2015-06-01

    With the emergence of urban high-rise building, the vertical space of human daily life gradually extended upward. Seasonal characteristics of vertical distribution of dust loadings and heavy metals near surface are remarkable. In this study, we collected dust deposited on the windowsill at different space height (1th-8th floor) from three buildings in Guiyang city during spring, summer, autumn and winter, and analyzed the deposition fluxes of dust and elements including Ca, Fe, Cd, Cr, Cu, Ni, Pb and Zn. The results showed that: the total changing trend of vertical distribution of dust loadings was that the deposition fluxes of dust in winter were the highest, followed by those in spring, and the deposition fluxes of dust in summer were the lowest. The degree of variation on dust loadings dependent on the change of elevation was the highest in winter, followed by that in summer, and was relatively lower in spring and autumn. The effect on dust loadings by seasonal changing was relatively heavier on windowsill on the lower level than on the higher level. The levels of elements were the highest in spring dust, while those in autumn were relatively lower. Among the 8 elements, the variability of Zn in dust related to space time variation was the most obvious, and that of Ca was weaker. The atmospheric inversion condition might be one of the reasons that improved the deposition fluxes of dust and the contents of Ph and Zn in dust during winter and spring.

  13. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting....... Consequently, a combination of carburizing and oxidizing conditions has a strong mutual catalyzing effect on the metal dusting corrosion....

  14. Nano Dust Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new highly sensitive instrument to confirm the existence of the so-called nano-dust particles, characterize their impact parameters, and...

  15. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasma

    CERN Document Server

    Choudhary, Mangilal; Bandyopadhyay, P

    2016-01-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current (DC) glow discharge. These dust particles are found to get trapped in an electrostatic potential well which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self excited dust acoustic waves and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust par...

  16. Spinning Dust Emission from Wobbling Grains: Important Physical Effects and Implications

    CERN Document Server

    Hoang, Thiem

    2012-01-01

    We review major progress on the modeling of electric dipole emission from rapidly spinning tiny dust grains, including polycyclic aromatic hydrocarbons (PAHs). We begin by summarizing the original model of spinning dust proposed by Draine and Lazarian and recent theoretical results improving the Draine and Lazarian model. The review is focused on important physical effects that were disregarded in earlier studies for the sake of simplicity and recently accounted for by us, including grain wobbling due to internal relaxation, impulsive excitation by single-ion collisions, the triaxiality of grain shape, charge fluctuations, and the turbulent nature of astrophysical environments. Implications of the spinning dust emission for constraining physical properties of tiny dust grains and environment conditions are discussed. We discuss the alignment of tiny dust grains and possibility of polarized spinning dust emission. Suggestions for constraining the alignment of tiny grains and polarization of spinning dust emiss...

  17. Dust emission from comets at large heliocentric distances. I - The case of comet Bowell /1980b/

    Science.gov (United States)

    Houpis, H. L. F.; Mendis, D. A.

    1981-01-01

    Alternative processes of dust emission from comets at large heliocentric distances are considered, in order to explain the dust coma observed in comet Bowell (1980b) at a heliocentric distance as large as 7.17 AU. It is shown that the electrostatic blow-off of dust from a charged, H2O-dominated nucleus having a layer of loose, fine dust may be the formation process of the dust coma, with the coma size expected from the process being comparable to the observed value and the dust grain size being equal to or less than 0.4 microns in size. The upper limit for the total mass in the coma is 3.9 x 10 to the 8th g, and the spatial extension less than 10,000 km. The observed activity may alternatively be due to dust entrainment by the sublimating gas from a CO2-dominated nucleus.

  18. Evaluation of the electrical properties of dust storms by multi-parameter observations and theoretical calculations

    Science.gov (United States)

    Zhang, Huan; Bo, Tian-Li; Zheng, Xiaojing

    2017-03-01

    Dusty phenomena, such as wind-blown sand, dust devils, and dust storms, play key roles in Earth's climate and geological processes. Dust electrification considerably affects the lifting and transport of dust particles. However, the electrical properties of dust storms remain poorly understood. Here, we conducted multi-parameter measurements and theoretical calculations to investigate the electrical properties of dust storms and their application to dust storm prediction. The results show that the vertical electric field (E-field) decreases first, then increases, and finally decreases with the height above the ground, reversing its direction at two heights, ∼ 8- 12 and ∼ 24 m. This suggests that the charge polarity of dust particles changes from negative to positive and back to negative again as the height increases. By carefully analyzing the E-field and dust concentration data, we further found that there is a significant positive linear relationship between the measured E-field intensity and dust concentration at the given ambient conditions. In addition, measurements and calculations demonstrate that a substantial enhancement in the vertical E-field can be observed several hours before the arrival of the external-source dust storms, indicating that the E-field can be used to provide an early warning of external-source dust storms.

  19. An In Vitro Investigation of Pulmonary Alveolar Macrophage Cytotoxicity Introduced by Fibrous and Grainy Mineral Dusts

    Institute of Scientific and Technical Information of China (English)

    DONG Faqin; DENG Jianjun; WU Fengchun; PU Xiaoyong; John HUANG; FENG Qiming; HE Xiaochun

    2006-01-01

    In order to study the damage mechanism of mineral dusts on the pulmonary alveolar macrophage (AM), the changes in their death ratio, malandialdthyde (MDA) content and activities of lactate dehydrogenase (LDH) and superoxide dismutase (SOD) were measured, and the technique of cell culture in vitro was used to investigate the cytotoxicity of six mineral dusts (twelve crystal habits)from twelve mineral deposits. The results show that wollastonite and clinoptilolite have no AM cytotoxicity, while other fibrous and grainy mineral dusts damage pulmonary AM in various degrees.The cytotoxicity of fibrous mineral dusts was greater than that of the grainy ones, and the cytotoxicity of dusts was positively correlated with the active OH- content in dusts, but not necessarily so with its SiO2 content. The high pH values produced by dust was unfavorable for the survival of cells and the dusts with low bio-resistance were safe for cells. The content of variable valence elements in dusts might influence their cytotoxicity and the surface charge of dusts was not a stable factor for their toxicity. It is demonstrated that the shape of mineral dusts was one of the factors affecting cytotoxicity, and that the cytotoxicity of mineral dusts depends mainly on their properties.

  20. Measurements of Finite Dust Temperature Effects in the Dispersion Relation of the Dust Acoustic Wave

    Science.gov (United States)

    Snipes, Erica; Williams, Jeremiah

    2009-04-01

    A dusty plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of these charged microparticles gives rise to new plasma wave modes, including the dust acoustic wave. Recent measurements [1, 2] of the dispersion relationship for the dust acoustic wave in a glow discharge have shown that finite temperature effects are observed at higher values of neutral pressure. Other work [3] has shown that these effects are not observed at lower values of neutral pressure. We present the results of ongoing work examining finite temperature effects in the dispersion relation as a function of neutral pressure. [4pt] [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [0pt] [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [0pt] [3] T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, 042105 (2006).

  1. Dust acoustic solitary structures in a multi-fluid dusty plasma in the presence of kappa distributed particles

    Science.gov (United States)

    Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika; Kaur, Nimardeep

    2016-07-01

    Dusty plasma is a fully or partially ionized gas which contain micron or sub-micron sized dust particles. These dust particles can be positively or negatively charged, depending upon the mechanism of charging . Dusty plasma is often observed in most of the space and astrophysical plasma environments. Presence of these dust particles can modify the dispersion properties of waves in the plasma and can introduce several new wave modes, e.g., dust acoustic (DA) waves, dust-ion acoustic (DIA) waves, dust-acoustic shock waves etc. In this investigation we have studied the small amplitude dust acoustic waves in an unmagnetized plasma comprising of electrons, positively charged ions, negatively charged hot as well as cold dust. Electrons and ions are described by superthermal distribution which is more appropriate for modeling space and astrophysical plasmas. Kadomtsev- Petviashvili (KP) equation has been derived using reductive perturbation technique. Positive as well as negative potential structures are observed, depending upon some critical values of parameters. Amplitude and width of dust acoustic solitary waves are modified by varying these parameters such as superthermality of electrons and ions, direction of propagation of the wave, relative concentration of hot and cold dust particles etc. This study may be helpful in understanding the formation and dynamics of nonlinear structures in various space and astrophysical plasma environments such Saturn's F-rings.

  2. New stacking variations of the charge and orbital ordering in the metal-ordered manganite YBaMn{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, H.; Nakajima, T.; Ichihara, M.; Ueda, Y.; Yoshizawa, H. [Tokyo Univ., Institute for Solid State Physics, Kashiwa, Chiba (Japan); Ohoyama, K. [Tohoku Univ., Institute for Materials Research, Sendai, Miyagi (Japan)

    2003-02-01

    We performed transmission electron microscopy (TEM) and powder neutron diffraction experiments on an A-site ordered manganese perovskite YBaMn{sub 2}O{sub 6} which undergoes unusual and multiple phase transitions. In the paramagnetic insulating phase, the so-called CE type of charge and orbital ordering was observed in the monoclinic a-b plane, which has been frequently observed for the ordinary solid solution of A{sub 1-x}{sup 3+}A{sub x}'{sup 2+}MnO{sub 3} around x=0.5. TEM revealed, however, a fourfold periodicity along the c axis, suggesting a new stacking pattern, in which planes of the CE type are built up according to the sequence [{alpha}{alpha}{beta}{beta}...]. Interestingly, when the system entered the antiferromagnetic state below 195 K, this stacking pattern changed into [{alpha}{alpha}{alpha}{alpha}...] or [{alpha}{beta}{alpha}{beta}...], suggesting a close interplay between spins and orbitals. The obtained stacking patterns were strongly correlated to the inherent structural alternation, i.e., the Y/Ba order along the c axis. (author)

  3. Dust Versus Cosmic Acceleration

    CERN Document Server

    Aguirre, A N

    1999-01-01

    Two groups have recently discovered a statistically significant deviation in the fluxes of high-redshift type Ia supernovae from the predictions of a Friedmann model with zero cosmological constant. This letter argues that bright, dusty, starburst galaxies would preferentially eject a dust component with a shallower opacity curve (hence less reddening) and a higher opacity/mass than the observed galactic dust which is left behind. Such dust could cause the falloff in flux at high-z without violating constraints on reddening or metallicity. The specific model presented is of needle-like dust, which is expected from the theory of crystal growth and has been detected in samples of interstellar dust. Carbon needles with conservative properties can supply the necessary opacity, and would very likely be ejected from galaxies as required. The model is not subject to the arguments given in the literature against grey dust, but may be constrained by future data from supernova searches done at higher redshift, in clust...

  4. Electrovacuum Static Counterrotating Relativistic Dust Disks

    CERN Document Server

    García-Reyes, Gonzalo

    2004-01-01

    A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We also find explicit expressions for the energy densities, charge densities and velocities of the counterrotating fluids. We then show that this constraint can be satisfied if we take the two counterrotating streams as circulating along electro-geodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electro-geodesics nor take the two counterrotating tangential velocities as equal and opposite. Four simple families of models of counterrotating charged disks based on Chazy-Curzon-like, Zipoy-Voorhees-like, Bonnor-Sackfield-like and Kerr-like electrovacuum solutions are considered w...

  5. Coagulation of dust particles in a plasma

    Science.gov (United States)

    Horanyi, M.; Goertz, C. K.

    1990-01-01

    The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.

  6. Newton to Einstein — dust to dust

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas, E-mail: michael.kopp@physik.lmu.de, E-mail: cora.uhlemann@physik.lmu.de, E-mail: thomas.haugg@physik.lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilian University Munich, Theresienstr. 37, Munich, 80333 (Germany)

    2014-03-01

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.

  7. Floating potential of large dust grains with electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Bacharis, M., E-mail: minas.bacharis03@imperial.ac.uk [Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BW (United Kingdom)

    2014-07-15

    Electron emission from the surface of solid particles plays an important role in many dusty plasma phenomena and applications. Examples of such cases include fusion plasmas and dusty plasma systems in our solar system. Electron emission complicates the physics of the plasma-dust interaction. One of the most important aspects of the physics of the dust plasma interaction is the calculation of the particle's floating potential. This is the potential a dust particle acquires when it is in contact with a plasma and it plays a very important role for determining its dynamical behaviour. The orbital motion limited (OML) approach is used in most cases in the literature to model the dust charging physics. However, this approach has severe limitations when the size of the particles is larger than the electron Debye length λ{sub De}. Addressing this shortcoming for cases without electron emission, a modified version of OML (MOML) was developed for modelling the charging physics of dust grains larger than the electron Debye length. In this work, we will focus on extending MOML in cases where the particles emit electrons. Furthermore, a general method for calculating the floating potential of dust particles with electron emission will be presented for a range of grain sizes.

  8. Shielding of emitting dust particles

    Science.gov (United States)

    Luca Delzanno, Gian; Lapenta, Giovanni; Rosenberg, Marlene

    2003-10-01

    In the present work we focus on the role of electron emission (either thermionic or photoelectric) in charging an object immersed in a plasma. In fact, it is well known that the higher mobility of the plasma electrons (that would lead to negatively charged objects) can be overcome by electron emission, thus reversing the object polarity. Moreover, recent work [1] has shown how electron emission can fundamentally affect the shielding potential around the dust. In particular, depending on the physical parameters of the system (that were chosen such to correspond to common experimental conditions), the shielding potential can develop an attractive potential well. The aim of the present work is two-fold. First, we will present a parametric study in order to enlight the conditions for the formation, as well as the stability of the well. Furthermore, simulations will be presented with physical parameters corresponding to the ionosphere, thus extending our study to the case of meteroids. [1] G.L. Delzanno, G. Lapenta, M. Rosenberg, "Attractive Potential among Thermionically Emitting Microparticles", submitted.

  9. Study of the influence of pressure drop coefficients variation on the instability of the structure; Etude de l`influence de la variation des coefficients de perte de charge sur l`instabilite de la structure

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, C

    1998-12-31

    The aim of this study is the analysis of the influence of pressure drop fluctuations induced by a fluid flow on the mechanical vibrations of a structure. This fluid-elastic coupling can be encountered in several components of a nuclear power plant. In the first par of this study, the problem of fluid-elastic stresses calculation is described. A general method defined for a 2-D system comprising a fluid space with any geometry and several degrees of freedom is used to determine the fluid-elastic stresses. Then, an analytical study of a structure with an annular fluid space and 2 degrees of freedom is performed taking into account the variation of pressure drop coefficients. The aim of this part is to determine the stress matrices. Part 2 is devoted to the determination of the various possible instabilities with respect to the boundaries defined upstream and downstream of the domain. Then, reasonable variations of these coefficients are determined for simple example of structures. (J.S.) 6 refs.

  10. Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2016-09-01

    The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.

  11. A 20-year simulated climatology of global dust aerosol deposition.

    Science.gov (United States)

    Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike

    2016-07-01

    Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal

  12. Observations of dust trapping phenomena in the TRISTAN accumulation ring and a study of dust removal in a beam chamber

    Science.gov (United States)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-04-01

    Using a gamma-ray detector and a television camera system for synchrotron light, high-energy bremsstrahlung and horizontal growth of the synchrotron light source were observed when sudden decrease in the electron-beam lifetime occurred due to dust trapping in the electron beam. Two types of beam current losses were found; one was a continuous beam current loss, and the other was a short-term beam current loss. High-energy bremsstrahlung at a location was observed in a short time and after that, the bremsstrahlung was not detected in spite of the occurrence of dust trapping phenomena. The fact suggests motions of the trapped dust particles in the longitudinal directions. Materials collected in the beam chamber are dust particles from ion pumps and dust particles made during the beam chamber processing for welding. Most of the collected dust particles were less than 2 mm in size and surfaces of some dust particles were melted with the electron beam. Simple analysis was carried out for the conditions necessary for a dust particle to be trapped, for motions of the trapped dust particle, and for interactions between the trapped dust particle and the electron beam. The analysis showed that a dust particle less than 3 mm in size, made of Al, can be trapped and that the trapped dust particle can move in the vertical and longitudinal directions. The analysis also suggested that a dust particle in size of about 2 mm can be continuously trapped around the electron beam without being destroyed by the electron beam. Furthermore, the analysis explained the difference between the two types of beam current losses observed in the ring. Experiments which simulate the electron beam using a Cu wire in an evacuated beam chamber show that a dust particle (less than 70 μm) is trapped sufficiently. The experiments also coincide with theory for an attractive force acting to a conducting small particle. The calculated electric field of the electron beam and the calculated electric charge

  13. The Relationship between Decadal Variation of Sand-Dust Storm in North China and Decadal Variability of North Atlantic Air-Sea System%我国北方沙尘暴年代际变化与北大西洋海气系统年代际变率的联系

    Institute of Scientific and Technical Information of China (English)

    李耀辉; 孙国武; 张良; 段海霞

    2011-01-01

    In this paper, the characteristics between the decadal variation of sand-storm in north China and decadal variability of thermohaline circulation (THC) in recent 50 years are analyzed. It is found that there are some relationships between the sand-dust storm and THC. Further analyses indicate the primary process of this following relationship: THC influences on NAO, NAO on Siberia high, Siberia high on cold air activities, and then, on the sand-dust storm. The results show that when THC is strong (weak) , NAO is weak ( strong) , Siberia and north winds in surface are strong (weak), sand-dust storms are more (less). Moreover, a remarkable variation from the end of the 1970' s to the beginning of 1980' s is also found that THC, Siberia high and north wind changed from strong to weak, NAO from weak to strong and sand-dust storm in north China obviously decreased.%分析了近50年我国北方沙尘暴的年代际变化和热盐环流(THC)的年代际变率的演变特征,发现沙尘暴与THC存在一定的联系.这种相互联系的演变过程大致是:THC与北大西洋涛动(NAO)有联系,NAO与西伯利亚冷高压有联系,而西伯利亚高压又影响北半球冷空气活动,最终影响我国北方沙尘暴的发生.结果表明,THC强(弱)→NAO弱(强)→西伯利亚高压强(弱)→地面偏北风强(弱)→沙尘暴偏多(少).而且,在20世纪70年代末到80年代初,均存在一个明显的转折变化,即THC、西伯利亚高压和地面北风从强到弱,NAO从弱到强,沙尘暴则出现由偏多到偏少的变化趋势.

  14. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    Science.gov (United States)

    Hensley, Brandon S.; Draine, B. T.

    2017-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of ≃4.5 Å, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges, particularly in regions with high gas temperatures and ionization fractions. If ≳10% of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  15. Thermodynamics and Charging of Interstellar Iron Nanoparticles

    CERN Document Server

    Hensley, Brandon S

    2016-01-01

    Interstellar iron in the form of metallic iron nanoparticles may constitute a component of the interstellar dust. We compute the stability of iron nanoparticles to sublimation in the interstellar radiation field, finding that iron clusters can persist down to a radius of $\\simeq 4.5\\,$\\AA, and perhaps smaller. We employ laboratory data on small iron clusters to compute the photoelectric yields as a function of grain size and the resulting grain charge distribution in various interstellar environments, finding that iron nanoparticles can acquire negative charges particularly in regions with high gas temperatures and ionization fractions. If $\\gtrsim 10\\%$ of the interstellar iron is in the form of ultrasmall iron clusters, the photoelectric heating rate from dust may be increased by up to tens of percent relative to dust models with only carbonaceous and silicate grains.

  16. Dust deposition: iron source or sink? A case study

    OpenAIRE

    Ye, Y.; Wagener, T.; Völker, C.; Guieu, C.; D. A. Wolf-Gladrow

    2011-01-01

    A significant decrease of dissolved iron (DFe) concentration has been observed after dust addition into mesocosms during the DUst experiment in a low Nutrient low chlorophyll Ecosystem (DUNE), carried out in the summer of 2008. Due to low biological productivity at the experiment site, biological consumption of iron can not explain the magnitude of DFe decrease. To understand processes regulating the observed DFe variation, we simulated the experiment using a one-dimensional model of the Fe b...

  17. Interstellar Extinction by Spheroidal Dust Grains

    OpenAIRE

    Gupta, Ranjan; Mukai, Tadashi; Vaidya, D. B.; Sen, Asoke K.; Okada, Yasuhiko

    2005-01-01

    Observations of interstellar extinction and polarization indicate that the interstellar medium consists of aligned non-spherical dust grains which show variation in the interstellar extinction curve for wavelengths ranging from NIR to UV. To model the extinction and polarization, one cannot use the Mie theory which assumes the grains as solid spheres. We have used a T-matrix based method for computing the extinction efficiencies of spheroidal silicate and graphite grains of different shapes (...

  18. Dipole-Dipole Interactions of Charged Magnetic Grains

    CERN Document Server

    Perry, Jonathan; Hyde, Truell

    2010-01-01

    The interaction between dust grains is an important process in fields as diverse as planetesimal formation or the plasma processing of silicon wafers into computer chips. This interaction depends in large part on the material properties of the grains, for example whether the grains are conducting, non-conducting, ferrous or non-ferrous. This work considers the effects that electrostatic and magnetic forces, alone or in combination, can have on the coagulation of dust in various environments. A numerical model is used to simulate the coagulation of charged, charged-magnetic and magnetic dust aggregates formed from ferrous material and the results are compared to each other as well as to those from uncharged, non-magnetic material. The interactions between extended dust aggregates are also examined, specifically looking at how the arrangement of charge over the aggregate surface or the inclusion of magnetic material produces dipole-dipole interactions. It will be shown that these dipole-dipole interactions can ...

  19. Dust Quantization and Effects on Agriculture Over Uttar Pradesh, India

    Science.gov (United States)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    Dust plays a very important role in the atmosphere and the biosphere. In this communication, the effect of atmospheric dust on the yields of certain crops grown in Uttar Pradesh, India is assessed. Coherent physical and thermodynamic fingerprints of dust parameters such as from Satellite data- KALPANA-1, MODIS, OMI, CALIPSO; Model data- DREAM, HYSPLIT, ECMWF; have been considered to run the APSIM model to derive the impacts. This paper assesses dust as a physical atmospheric phenomenon including its Long Range Transport (LRT) and dispersion along with considerable variations of Aerosol Optical Depths (AODs) over the subcontinent of India. While AODs significantly increase by more dust concentration, the local dispersion of pollutants is a major concern with deposition of atmospheric dust such as sulphates and other chemical constituents that affect agricultural land. An approach in atmospheric physics is also taken to parameterize the model outputs. This communication indicates dust to be a positive factor for the cultivation of certain crops such as wheat, maize in the experimental location. Initial results suggest that LRT dust is a viable counterpart to decrease the concentration of soil acidity and related parameters thus enhancing the vitality of crops.

  20. Alignment of atmospheric mineral dust due to electric field

    Directory of Open Access Journals (Sweden)

    Z. Ulanowski

    2007-09-01

    Full Text Available Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction consistent with the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling also indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here.

  1. Electrodynamic Dust Shield for Solar Panels on Mars

    Science.gov (United States)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  2. Nonlinear Electrostatic Properties of Lunar Dust

    Science.gov (United States)

    Irwin, Stacy A.

    2012-01-01

    A laboratory experiment was designed to study the induction charging and charge decay characteristics of small dielectric particles, or glass beads. Initially, the goal of the experiment was further understanding of induction charging of lunar dust particles. However, the mechanism of charging became a point of greater interest as the project continued. Within an environmentally-controlled acrylic glove box was placed a large parallel plate capacitor at high-voltage (HV) power supply with reversible polarity. Spherical 1-mm and 0.5-mm glass beads, singly, were placed between the plates, and their behaviors recorded on video and quantified. Nearly a hundred trials at various humidities were performed. The analysis of the results indicated a non-linear relationship between humidity and particle charge exchange time (CET), for both sizes of beads. Further, a difference in CET for top-resting beads and bottom-resting beads hinted at a different charging mechanism than that of simple induction. Results from the I-mm bead trials were presented at several space science and physics conferences in 2008 and 2009, and were published as a Master's thesis in August 2009. Tangential work stemming from this project resulted in presentations at other international conferences in 2010, and selection to attend workshop on granular matter flow 2011.

  3. Interactions of a Projectile Charge with Two-Dimensional Dusty Plasmas

    Institute of Scientific and Technical Information of China (English)

    JIANG Ke; HOU Lu-Jing; WANG You-Nian

    2005-01-01

    @@ The interactions of a moving charge (namely, one additional dust particle) with a two-dimensional dusty plasma in gas discharge experiment are studied by means of the linearized hydrodynamic theory for the dusty plasma.Expressions are derived for the induced potential and the stopping power of the moving charge, when the charge flights parallel to and over the dust layer. The numerical results are obtained for different discharge pressures and different distances from the moving charge to the dust layer. The results show that the moving charge excites a V-shaped disturbance of induced potential or the so-called Mach cone in the dust layer, while the charge itself loses its energy.

  4. Measurements of Martian dust devil winds with HiRISE

    Science.gov (United States)

    Choi, D.S.; Dundas, C.M.

    2011-01-01

    We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.

  5. Investigation of the dynamics of nanometer-size dust particles in the inner heliosphere

    Science.gov (United States)

    O'brien, L.

    2015-12-01

    The spatial and size distribution of submicron-sized interplanetary dust particles at 1 AU is highly variable due to the nature of its production and transport through the solar system. Nano-dust particles are thought to be produced by mutual collisions between interplanetary dust particles slowly spiraling toward the Sun and are accelerated outward to high velocities by interaction with the solar wind. The WAVES instruments on the two STEREO spacecraft reported the detection, strong temporal variation, and potentially high flux of these particles [Meyer-Vernet et al., 2009]. Simulations of nano-dust dynamics are performed to gain an understanding of their transport in the inner heliosphere and distribution near 1 AU where they can potentially be detected. Simulations show that the temporal variation in nano-dust detection, as suggested by the STEREO observations, can be described by the dust's interaction with the complex structure of the interplanetary magnetic field (IMF) [Juhasz and Horanyi, 2013]. The dust trajectories and their distribution near Earth's orbit is a function of the initial conditions of both nano-dust particles and the IMF. Le Chat et al. (2015) reported on the correlation between high nano-dust fluxes observed by STEREO and the observed Interplanetary Coronal Mass Ejections (ICMEs). We present the results from simulating nano-dust interaction with ICMEs that are modeled as magnetic clouds, and report that the dust trajectories and, thus, their distribution and velocities at 1 AU are significantly altered.

  6. Interannual Modulation of Subtropical Atlantic Boreal Summer Dust Variability by ENSO

    Energy Technology Data Exchange (ETDEWEB)

    DeFlorio, Mike; Goodwin, Ian D.; Cayan, Dan; Miller, Arthur J.; Ghan, Steven J.; Pierce, David; Russell, Lynn M.; Singh, Balwinder

    2016-01-01

    Dust variability in the climate system has been studied for several decades, yet there remains an incomplete understanding of the dynamical mechanisms controlling interannual and decadal variations in dust transport. The sparseness of multi-year observational datasets has limited our understanding of the relationship between climate variations and atmospheric dust. We use available observations and a century-length fully coupled Community Earth System Model (CESM) simulation to show that the El Niño- Southern Oscillation (ENSO) exerts a control on North African dust transport during boreal summer. In CESM, this relationship is stronger over the dusty tropical North Atlantic than near Barbados, one of the few sites having a multi-decadal observed record. During strong La Niña summers in CESM, a statistically significant increase in lower tropospheric easterly wind is associated with an increase in North African dust transport over the Atlantic. Barbados dust and Pacific SST variability are only weakly correlated in both observations and CESM, suggesting that other processes are controlling the crossbasin variability of dust. We also use our CESM simulation to show that the relationship between downstream North African dust transport and ENSO fluctuates on multidecadal timescales and may be modulated by the North Atlantic Oscillation (NAO). Our findings indicate that existing observations of dust over the tropical North Atlantic are not extensive enough to completely describe the variability of dust and dust transport, and demonstrate the importance of global models to supplement and interpret observational records.

  7. Oblique dust density waves

    Science.gov (United States)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  8. Far-Reaching Impacts of African Dust- A Calipso Perspective

    Science.gov (United States)

    Yu, Hongbin; Chin, Mian; Yuan, Tianle; Bian, Huisheng; Prospero, Joseph; Omar, Ali; Remer, Lorraine; Winker, David; Yang, Yuekui; Zhang, Yan; Zhang, Zhibo

    2014-01-01

    African dust can transport across the tropical Atlantic and reach the Amazon basin, exerting far-reaching impacts on climate in downwind regions. The transported dust influences the surface-atmosphere interactions and cloud and precipitation processes through perturbing the surface radiative budget and atmospheric radiative heating and acting as cloud condensation nuclei and ice nuclei. Dust also influences biogeochemical cycle and climate through providing nutrients vital to the productivity of ocean biomass and Amazon forests. Assessing these climate impacts relies on an accurate quantification of dust transport and deposition. Currently model simulations show extremely large diversity, which calls for a need of observational constraints. Kaufman et al. (2005) estimated from MODIS aerosol measurements that about 144 Tg of dust is deposited into the tropical Atlantic and 50 Tg of dust into the Amazon in 2001. This estimated dust import to Amazon is a factor of 3-4 higher than other observations and models. However, several studies have argued that the oversimplified characterization of dust vertical profile in the study would have introduced large uncertainty and very likely a high bias. In this study we quantify the trans-Atlantic dust transport and deposition by using 7 years (2007-2013) observations from CALIPSO lidar. CALIPSO acquires high-resolution aerosol extinction and depolarization profiles in both cloud-free and above-cloud conditions. The unique CALIPSO capability of profiling aerosols above clouds offers an unprecedented opportunity of examining uncertainties associated with the use of MODIS clear-sky data. Dust is separated from other types of aerosols using the depolarization measurements. We estimated that on the basis of 7-year average, 118142 Tg of dust is deposited into the tropical Atlantic and 3860 Tg of dust into the Amazon basin. Substantial interannual variations are observed during the period, with the maximum to minimum ratio of about 1

  9. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  10. Dust-acoustic solitary waves in a dusty plasma with two-temperature nonthermal ions

    Indian Academy of Sciences (India)

    Zhi-Jian Zhou; Hong-Yan Wang; Kai-Biao Zhang

    2012-01-01

    By using reductive perturbation method, the nonlinear propagation of dust-acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of small but finite amplitude nonlinear dust-acoustic waves are examined. It is found that two-temperature nonthermal ions affect the basic properties of the dust-acoustic solitary waves. It is also observed that only compressive solitary waves exist in this system.

  11. Dust exposure in Finnish foundries.

    Science.gov (United States)

    Siltanen, E; Koponen, M; Kokko, A; Engström, B; Reponen, J

    1976-01-01

    Dust measurements were made in 51 iron, 9 steel, and 8 nonferrous foundries, at which 4,316 foundrymen were working. The sampling lasted at least two entire shifts or work days continuously during various operations in each foundry. The dust samples were collected at fixed sites or in the breathing zones of the workers. The mass concentration was determined by weighing and the respirable dust fraction was separated by liquid sedimentation. The free silica content was determined by X-ray diffraction. In the study a total of 3,188 samples were collected in the foundries and 6,505 determinations were made in the laboratory. The results indicated a definite difference in the dust exposure during various operations. The highest dust exposures were found during furnace, cupola, and pouring ladle repair. During cleaning work, sand mixing, and shake-out operations excessive silica dust concentrations were also measured. The lowest dust concentrations were measured during melting and pouring operations. Moderate dust concentrations were measured during coremaking and molding operations. The results obtained during the same operations of iron and steel foundries were similar. The distribution of the workers into various exposure categories, the content of respirable dust and quartz, the correlation between respirable dust and total dust, and the correlation between respirable silica and total dust concentrations are discussed. Observations concerning dust suppression and control methods are briefly considered.

  12. Estimation of dust thickness in Arabia Terra region on Mars

    Science.gov (United States)

    Vincendon, C.; Mangold, N.; Masson, P.; Ansan, V.

    2003-04-01

    The almost totality of Mars planet surface is recovered by aeolian dust deposit whose thickness varies according to regions. Mariner and Viking imagery highlighted this aeolian dust deposit with the presence of smooth geomorphologic surface characteristic of dust recovering, with the apparition of dust wind streaks to leeward area of numerous relief, and with seasonal changes in surface albedo after dust storms (Greeley, 1992). These observations have been recently confirmed by the high resolution Mars Orbiter Camera (MOC) of Mars Global Surveyor (MGS) orbiter (Malin et al., 1998 ; Edgett and Malin, 2000). At present time no method exists to estimate aeolian dust thickness at global scale. Only the geographic distribution of the first top centimeters have been realized with the help of thermal inertia cartography from Thermal Emission Spectrometer (TES) data (Jakosky et al., 2000). The aeolian dust deposits recover first the small impact craters and consequently disturb their distribution at the planet surface. Variations between distributions curves locally measured and Hartmann's Isochrons (Hartmann and Neukum, 2001) for a Martian lands not affected by surface phenomenon, give the diameter of the biggest crater obliterated by the surface process. This diameter allows us to estimate the minimal aeolian dust thickness using geometrical proprieties of impact crater between diameter (D) and the rim height (H) (Garvin et al., 2002) : H=0.07D0.52 (for D<7km). Indeed the rim height is a good approximation of minimal dust thickness needed to completely erase the impact crater from the surface if one suppose that there's no evidence of aeolian erosion. The first objective of this study is to determine the distribution variations of the small impact craters to estimate locally the different thickness of aeolian dust. The second objective is to realize a global cartography of the aeolian dust thickness. We study the region of Arabia Terra to apply this method because this

  13. Dust Devil Days

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 6 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. Dust devils, small cyclonic wind storms, are common in the American Southwest and on Mars. As the dust devil moves across the surface it picks up the loose dust, leaving behind a dark track to mark its passage. These dust devil tracks are in the Argyre Basin. Image information: VIS instrument. Latitude -46.6, Longitude 317.5 East (42.5 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the

  14. Dust Devil Tracks

    Science.gov (United States)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  15. Dust during the Reionization

    CERN Document Server

    Elfgren, E; Elfgren, Erik

    2003-01-01

    The possibility that population III stars have reionized the Universe at redshifts greater than 6 has recently gained momentum with WMAP polarization results. Here we analyse the role of early dust produced by these stars and ejected into the intergalactic medium. We show that this dust, heated by the radiation from the same population III stars, produces a submillimetre excess. The electromagnetic spectrum of this excess is compatible with the FIRAS (Far Infrared Absolute Spectrophotometer) cosmic far infrared background. This spectrum, a Doppler spectrum times the $\

  16. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  17. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  18. The detection of dust around NN Ser

    Science.gov (United States)

    Hardy, Adam; Schreiber, Matthias R.; Parsons, Steven G.; Caceres, Claudio; Brinkworth, Carolyn; Veras, Dimitri; Gänsicke, Boris T.; Marsh, Thomas R.; Cieza, Lucas

    2016-07-01

    Eclipse timing variations observed from the post-common-envelope binary (PCEB) NN Ser offer strong evidence in favour of circumbinary planets existing around PCEBs. If real, these planets may be accompanied by a disc of dust. We here present the ALMA detection of flux at 1.3 mm from NN Ser, which is likely due to thermal emission from a dust disc of mass ˜0.8 ± 0.2 M⊕. We performed simulations of the history of NN Ser to determine possible origins of this dust, and conclude that the most likely origin is, in fact, common-envelope material which was not expelled from the system and instead formed a circumbinary disc. These discs have been predicted by theory but previously remained undetected. While the presence of this dust does not prove the existence of planets around NN Ser, it adds credibility to the possibility of planets forming from common-envelope material in a `second-generation' scenario.

  19. [The research on remote sensing dust aerosol by using split window emissivity].

    Science.gov (United States)

    Xu, Hui; Yu, Tao; Gu, Xing-Fa; Cheng, Tian-Hai; Xie, Dong-Hai; Liu, Qian

    2013-05-01

    Dust aerosol can cause the change in the land surface emissivity in split window by radiative forcing (RF). Firstly, the present paper explained from the microscopic point of view the extinction properties of dust aerosols in the 11 and 12 microm channels, and their influence on the land surface emissivity. Secondly, on April 29, 2011, in the northern region of Inner Mongolia a strong sandstorm outbroke, and based on the analysis of the changes in land surface emissivity, this paper proposed a dust identification method by using the variation of emissivity. At last, the dust identification result was evaluated by the dust monitoring product provided by the National Satellite Meteorological Center. The result shows that under the assumption that the 12 microm emissivity equals to 1, using 11 microm relative emissivity could identify dust cover region effectively, and the 11 microm relative emissivity to a certain extent represented the intensity information of dust aerosol.

  20. Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    Science.gov (United States)

    Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.

    2015-08-01

    Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org

  1. Interstellar Dust models towards some IUE stars

    CERN Document Server

    Katyal, Nisha; Vaidya, D B

    2013-01-01

    We study the extinction properties of the composite dust grains, consisting of host silicate spheroids and graphite as inclusions, using discrete dipole approximation (DDA). We calculate the extinction cross sections of the composite grains in the ultraviolet spectral region, 1200\\AA -3200\\AA and study the variation in extinction as a function of the volume fraction of the inclusions. We compare the model extinction curves with the observed interstellar extinction curves obtained from the data given by the International Ultraviolet Explorer (IUE) satellite. Our results for the composite grains show a distinct variation in the extinction efficiencies with the variation in the volume fraction of the inclusions. In particular, it is found that the wavelength of peak absorption at `2175\\AA' shifts towards the longer wavelength with the variation in the volume fraction of inclusions. We find that the composite grain models with the axial ratios viz. 1.33 and 2.0 fit the observed extinction reasonably well with a g...

  2. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  3. Identification of the exploatation dust in road dust

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2012-01-01

    Full Text Available The aim of this publication is to determine models of explore dust from vehicle brake systems and the presentationof measurement results of the exploitation dust, which is separate from road dust. The following methods and measuring devices were used: T-01M device, screen analysis, analysis of chemical composition with the use of a scanning microscope with Energy Dispersive x-ray Spectroscopy (EDS analyser. The measurements for identifying this type of dust were conducted on marked sections of roads: motorway, city road and mountain road. The explored dust was distinguished in the following car systems: brakes, clutch plates, tyres and catalytic converters.

  4. Temperature measurement of a dust particle in a RF plasma GEC reference cell

    CERN Document Server

    Kong, Jie; Matthews, Lorin S; Hyde, Truell W

    2016-01-01

    The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary differences between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a normal temperature measurement. In this paper, we discuss how to separate random and coherent motion of a dust particle confined in a glass box in a Gaseous Electronic Conference radio frequency reference cell employing experimentally determined dust particle fluctuation data analyzed using the mean square displacement technique.

  5. Cylindrically symmetric dust spacetime

    CERN Document Server

    Senovilla, J M M; Senovilla, Jose M. M.; Vera, Raul

    2000-01-01

    We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has new surprising features. The universe is ``closed'' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is ``enclosed'' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable agai...

  6. Cylindrically symmetric dust spacetime

    Science.gov (United States)

    Senovilla, José M. M.

    2000-07-01

    We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has surprising new features. The universe is `closed' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is `enclosed' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable against some global non-vacuum perturbations.

  7. Left in the Dust

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    NASA's Stardust spacecraft ended its seven-year voyage January 15 after a safe landing on earth, bringing back a capsule of comet particles and samples of interstellar dust that exceeded the loftiest of expectations of mission scientists. The ensuing studies of the cosmic treasure are expected to shed light on the origins of the solar system and earth itself.

  8. Satellite Observations of Desert Dust-induced Himalayan Snow Darkening

    Science.gov (United States)

    Gautam, Ritesh; Hsu, N. Christina; Lau, William K.-M.; Yasunari, Teppei J.

    2013-01-01

    The optically thick aerosol layer along the southern edge of the Himalaya has been subject of several recent investigations relating to its radiative impacts on the South Asian summer monsoon and regional climate forcing. Prior to the onset of summer monsoon, mineral dust from southwest Asian deserts is transported over the Himalayan foothills on an annual basis. Episodic dust plumes are also advected over the Himalaya, visible as dust-laden snow surface in satellite imagery, particularly in western Himalaya. We examined spectral surface reflectance retrieved from spaceborne MODIS observations that show characteristic reduction in the visible wavelengths (0.47 nm) over western Himalaya, associated with dust-induced solar absorption. Case studies as well as seasonal variations of reflectance indicate a significant gradient across the visible (0.47 nm) to near-infrared (0.86 nm) spectrum (VIS-NIR), during premonsoon period. Enhanced absorption at shorter visible wavelengths and the resulting VIS-NIR gradient is consistent with model calculations of snow reflectance with dust impurity. While the role of black carbon in snow cannot be ruled out, our satellite-based analysis suggests the observed spectral reflectance gradient dominated by dust-induced solar absorption during premonsoon season. From an observational viewpoint, this study underscores the importance of mineral dust deposition toward darkening of the western Himalayan snow cover, with potential implications to accelerated seasonal snowmelt and regional snow albedo feedbacks.

  9. On the (in)variance of the dust-to-metals ratio in galaxies

    CERN Document Server

    Mattsson, Lars; Andersen, Anja C; Zafar, Tayyaba

    2014-01-01

    Recent works have demonstrated a surprisingly small variation of the dust-to-metals ratio in different environments and a correlation between dust extinction and the density of stars. Naively, one would interpret these findings as strong evidence of cosmic dust being produced mainly by stars. But other observational evidence suggest there is a significant variation of the dust-to-metals ratio with metallicity. As we demonstrate in this paper, a simple star-dust scenario is problematic also in the sense that it requires that destruction of dust in the interstellar medium (e.g., due to passage of supernova shocks) must be highly inefficient. We suggest a model where stellar dust production is indeed efficient, but where interstellar dust growth is equally important and acts as a replenishment mechanism which can counteract the effects of dust destruction. This model appears to resolve the seemingly contradictive observations, given that the ratio of the effective (stellar) dust and metal yields is not universal...

  10. Dust Acoustic Solitary Waves in Saturn F-ring's Region

    Institute of Scientific and Technical Information of China (English)

    E.K. El-Shewy; M.I. Abo el Maaty; H.G. Abdelwahed; M.A.Elmessary

    2011-01-01

    Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated.The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation.At the critical hot dusty plasma density NhO, the KdV equation is not appropriate for describing the system.Hence, a set of stretched coordinates is considered to derive the modified KdV equation.It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles.In the vicinity of the critical hot dusty plasma density NhO, neither KdV nor mKdV equation is appropriate for describing the DAWs.Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.

  11. Reuyl Crater Dust Avalanches

    Science.gov (United States)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  12. Far-infrared to millimeter astrophysical dust emission. II. Comparison of the two-level systems (TLS) model with astronomical data

    Science.gov (United States)

    Paradis, D.; Bernard, J.-P.; Mény, C.; Gromov, V.

    2011-10-01

    Aims: In a previous paper we proposed a new model for the emission by amorphous astronomical dust grains, based on solid-state physics. The model uses a description of the disordered charge distribution (DCD) combined with the presence of two-level systems (TLS) defects in the amorphous solid composing the grains. The goal of this paper is to compare this new model to astronomical observations of different Galactic environments in the far-infrared/submillimeter, in order to derive a set of canonical model parameters to be used as a Galactic reference to be compared to in future Galactic and extragalactic studies. Methods: We compare the TLS model with existing astronomical data. We consider the average emission spectrum at high latitudes in our Galaxy as measured with FIRAS and WMAP, as well as the emission from Galactic compact sources observed with the Archeops balloon experiment, for which an inverse relationship between the dust temperature and the emissivity spectral index has been shown. Results: We show that, unlike models previously proposed that often invoke two dust components at different temperatures, the TLS model successfully reproduces both the shape of the Galactic spectral energy distribution and its evolution with temperature as observed in the Archeops data. The best TLS model parameters indicate a charge coherence length of ≃13 nm and other model parameters in broad agreement with expectations from laboratory studies of dust analogs. We conclude that the millimeter excess emission, which is often attributed to the presence of very cold dust in the diffuse ISM, is very likely caused solely by TLS emission in disordered amorphous dust grains. We discuss the implications of the new model, in terms of mass determinations from millimeter continuum observations and the expected variations in the emissivity spectral index with wavelength and dust temperature. The implications for analyzing the Herschel and Planck satellite data are discussed. Table 5

  13. Possibilities of Diagnosing Mesospheric Dust Layers During Ionospheric Heating Experiments

    Science.gov (United States)

    Scales, Wayne; Mahmoudian, Alireza

    2012-07-01

    Over the past decade, significant advances have been made in understanding physical processes associated with heating mesospheric dust layers with high power radiowaves. The principal signature associated with this heating, which increases the electron temperature, is the modulation of Polar Mesospheric Summer Echoes PMSEs which are strong radar echoes from electron irregularities due to the presence of the charged dust layer. Particularly important is the modulation of PMSE strength during the periods after the turn-on and turn-off of the radiowave heating. Such periods have been proposed to provide significant diagnostic information about the dust layer and have lead to this being a vigorous field of investigation. At this time, several computational models have been developed that can reproduce important aspects of the temporal behavior during the experiments, however, a key objective to furthering experimental progress is to continue to develop strategies to obtain critical diagnostic information on the dust layer. The focus of this talk is to present simplified analytical models that 1) elucidate the fundamental dusty plasma physics of the processes during the turn-on and turn-off of radiowave heating and 2) are much more amenable to directly providing diagnostic information on the dust layer than the complicated computational models of the past. During the first part of the presentation, the formulation and application of the simplified models are discussed. It is then shown that using a multi-frequency experimental measurement is expected to provide enough observables to determine critical diagnostic information on the dust layer such as the dust density altitude profile, average charge state, and electron temperature in the heated volume.

  14. Head-on collision of dust-ion-acoustic solitons in electron-dust-ion quantum plasmas

    Indian Academy of Sciences (India)

    Prasanta Chatterjee; Malay Kumar Ghorui; Rajkumar Roychoudhury

    2013-03-01

    In this paper, we study the head-on collision between two dust-ion-acoustic (DIA) solitons in quantum electron-dust-ion plasma. Using the extended Poincaré–Lighthill–Kuo (PLK) method, we obtain the Korteweg–de Vries (KdV) equations, the phase shifts and the trajectories after the head-on collision of the two DIA solitons. We investigate the effect of quantum diffraction parameters for electrons and ions $(H_{e}, H_{i})$, the Fermi temperature ratio () and the dust charged number density (d0) on the phase shifts. Different values of = d0(d0/i0) and d = d0(i/d) are taken to discuss the effects on phase shifts, where d0 denotes the dust charge number, j0 represents the equilibrium number density and is the mass of the jth species ( = , , for electrons, ions and dust particles, respectively). It is observed that the phase shifts are significantly affected by the plasma parameters.

  15. Dust impact signals on the wind spacecraft

    Science.gov (United States)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.

    2016-02-01

    We analyze waveforms recorded by the Time Domain Sampler of the WAVES experiment on Wind which are similar to impulsive waveforms observed by the S/WAVES experiment on STEREO. These have been interpreted as dust impacts by Meyer-Vernet et al. and M. L. Kaiser and K. Goetz and extensively analyzed by Zaslavsky et al. The mechanism for coupling the emission to the antennas to produce an electrical signal is still not well understood, however. One suggested mechanism for coupling of the impact to the antenna is that the spacecraft body changes potential with respect to the surrounding plasma but the antennas do not (the body mechanism). Another class of mechanisms, with several forms, is that the charge of the emitted cloud interacts with the antennas. The Wind data show that both are operating. The time domain shapes of the dust pulses are highly variable but we have little understanding of what provides these shapes. One feature of the STEREO data has been interpreted as impacts from high velocity nanoparticles entrained by the solar wind. We have not found evidence for fast nanodust in the Wind data. An appreciable fraction of the impacts observed on Wind is consistent with interstellar dust. The impact rates do not follow a Poisson distribution, expected for random independent events, and this is interpreted as bunching. We have not succeeded in relating this bunching to known meteor showers, and they do not repeat from 1 year to the next. The data suggest bunching by fields in the heliosphere.

  16. Dust occultation at Titan measured by CDA onboard Cassini

    Science.gov (United States)

    Srama, Ralf; CDA science Team

    2016-10-01

    The Cosmic Dust Analyzer (CDA) onboard Cassini characterized successfully the dust environment at Saturn since 2004. The instrument measures the primary charge, speed, mass and composition of individual submicron and micron sized dust grains. The detection threshold scales with speed^3.5 such that the detection of fast nanograins (~100 km/s) is possible. Saturn's nanodust environment (streams) is studied many years. However, a special geometric condition of Saturn, Cassini and Titan during a Titan flyby in 2014 (DOY 65) provided a special dust occultation opportunity. Titan and its atmosphere blocked the stream of fast nanoparticles such that CDA registered a clear drop in impact rate around closest approach. An analysis of the data allows to constrain the source region of the nanograins, which is compatible with a source region in the ring plane at distances from Saturn between 4 and 8 Saturn radii. Backward and forward modeling was performed leading to dust grain sizes between 3 and 9 nm and speeds between 80 and 150 km/s. The new modeling results also show that Enceladus acts a direct source for nanodust streams leading to the observation of periodic impact rates in the outer Saturn system. Such periodicities were observed recently by CDA and showed a clear signature of the Enceladus orbital period. A second dust occultation opportunity using Titan is planned august 2016.

  17. Charge transfer in multicomponent oxides

    Science.gov (United States)

    Kohan, A. F.; Ceder, G.

    1998-02-01

    The transfer of charge between different ions in an oxide plays an essential role in the stability of these compounds. Since small variations in charge can introduce large changes in the total energy, a correct description of this phenomenon is critical. In this work, we show that the ionic charge in oxides can strongly depend on its atomic environment. A model to assign point charges to atoms as a function of their atomic environment has recently been proposed for binary alloys [C. Wolverton, A. Zunger, S. Froyen, and S.-H. Wei, Phys. Rev. B 54, 7843 (1996)] and proven to be very successful in screened solids such as semiconductors and metals. Here, we extend this formalism to multicomponent oxides and we assess its applicability. The simple point-charge model predicts a linear relation between the charge on an atom and the number of unlike neighbors, and between the net value of the charge and the Coulomb field at a given site. The applicability of this approach is tested in a large-supercell self-consistent tight-binding calculation for a random Zr-Ca-O alloy. The observed fluctuations of the ionic charge about the average linear behavior (as a function of the number of unlike neighbors) was larger than 0.25 electrons even when many shells of atomic neighbors were considered in the fit. This variation is significant since it can introduce large errors in the electrostatic energy. On the other hand, for small absolute values of the charge, the ionic charge varied linearly with the Coulomb field, in agreement with previous findings. However, for large Coulomb fields, this function saturates at the formal chemical charge.

  18. Dust processing in elliptical galaxies

    CERN Document Server

    Hirashita, Hiroyuki; Villaume, Alexa; Srinivasan, Sundar

    2015-01-01

    We reconsider the origin and processing of dust in elliptical galaxies. We theoretically formulate the evolution of grain size distribution, taking into account dust supply from asymptotic giant branch (AGB) stars and dust destruction by sputtering in the hot interstellar medium (ISM), whose temperature evolution is treated by including two cooling paths: gas emission and dust emission (i.e. gas cooling and dust cooling). With our new full treatment of grain size distribution, we confirm that dust destruction by sputtering is too efficient to explain the observed dust abundance even if AGB stars continue to supply dust grains, and that, except for the case where the initial dust-to-gas ratio in the hot gas is as high as $\\sim 0.01$, dust cooling is negligible compared with gas cooling. However, we show that, contrary to previous expectations, cooling does not help to protect the dust; rather, the sputtering efficiency is raised by the gas compression as a result of cooling. We additionally consider grain grow...

  19. Composite grains: Application to circumstellar dust

    Directory of Open Access Journals (Sweden)

    D. B. Vaidya

    2011-09-01

    Full Text Available Using the discrete dipole approximation (DDA we calculate the absorption efficiency of the composite grain, made up of a host silicate spheroid and inclusions of graphite, in the spectral region 5.0-25.0μm. We study the absorption as a function of the voulume fraction of the inclusions. In particular, we study the variation in the 10.0μm and 18.0μm emission features with the volume fraction of the inclusions. Using the extinction efficiencies, of the composite grains we calculate the infrared fluxes at several dust temperatures and compare the model curves with the observed infrared emission curves (IRAS-LRS, obtained for circumstellar dust shells around oxygen rich M-type stars.

  20. The cosmic dust analyser onboard cassini: ten years of discoveries

    Science.gov (United States)

    Srama, R.; Kempf, S.; Moragas-Klostermeyer, G.; Altobelli, N.; Auer, S.; Beckmann, U.; Bugiel, S.; Burton, M.; Economomou, T.; Fechtig, H.; Fiege, K.; Green, S. F.; Grande, M.; Havnes, O.; Hillier, J. K.; Helfert, S.; Horanyi, M.; Hsu, S.; Igenbergs, E.; Jessberger, E. K.; Johnson, T. V.; Khalisi, E.; Krüger, H.; Matt, G.; Mocker, A.; Lamy, P.; Linkert, G.; Lura, F.; Möhlmann, D.; Morfill, G. E.; Otto, K.; Postberg, F.; Roy, M.; Schmidt, J.; Schwehm, G. H.; Spahn, F.; Sterken, V.; Svestka, J.; Tschernjawski, V.; Grün, E.; Röser, H.-P.

    2011-12-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after 7 years of cruise phase. The German cosmic dust analyser (CDA) was developed under the leadership of the Max Planck Institute for Nuclear Physics in Heidelberg under the support of the DLR e.V. This instrument measures the interplanetary, interstellar and planetary dust in our solar system since 1999 and provided unique discoveries. In 1999, CDA detected interstellar dust in the inner solar system followed by the detection of electrical charges of interplanetary dust grains during the cruise phase between Earth and Jupiter. The instrument determined the composition of interplanetary dust and the nanometre-sized dust streams originating from Jupiter's moon Io. During the approach to Saturn in 2004, similar streams of submicron grains with speeds in the order of 100 km/s were detected from Saturn's inner and outer ring system and are released to the interplanetary magnetic field. Since 2004 CDA measured more than one million dust impacts characterising the dust environment of Saturn. The instrument is one of the three experiments which discovered the active ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the water ice grains in Saturn's E ring system led to the discovery of large reservoirs of liquid water (oceans) below the icy crust of Enceladus. Finally, the determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as predicted) allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. This paper summarizes the discoveries of a 10-year story of success based on reliable measurements with the most advanced dust detector flown in space until today. This paper focuses on cruise results and findings achieved at Saturn with a focus on flux and density measurements. CDA discoveries related to the detailed dust stream

  1. Occurrence of Respiratory Symptoms Resulting from Exposure to House Dust Mites in Early Childhood

    Science.gov (United States)

    Jedrychowski, Wieslaw; Maugeri, Umberto; Zembala, Marek; Hajto, Barbara; Flak, Elzbieta; Mroz, Elzbieta; Jacek, Ryszard; Sowa, Agata; Perera, Frederica P.

    2009-01-01

    The aim of the study was to describe the distribution of house dust mite (HDM) allergens within homes of three-year-old children, to identify factors responsible for its variation and to test the hypothesis whether the content of HDM allergens exceeding 2 [mu]g/g dust may be regarded as a risk level of sensitization possibly affecting respiratory…

  2. Southern Dust Devils

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 9 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. In our final dust devil image we are again looking at the southern hemisphere of Mars. These tracks occur mainly on the northeast side of the topographic ridges. Of course, there are many exceptions, which makes understanding the dynamics that initiate the actual dust devil cyclone difficult. Image information: VIS instrument. Latitude -47.6, Longitude 317.3 East (42.7 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed

  3. Plentiful Dust Devils

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 8 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. These dust devil tracks occur on the northern plains of Mars. The majority of the surface seen in the image has been affected by the passage of dust devils. Image information: VIS instrument. Latitude -54.6, Longitude 79.3 East (280.7 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are

  4. Electrostatic Barrier Against Dust Growth in Protoplanetary Disks. I. Classifying the Evolution of Size Distribution

    CERN Document Server

    Okuzumi, Satoshi; Takeuchi, Taku; Sakagami, Masa-aki

    2010-01-01

    Collisional growth of submicron-sized dust grains into macroscopic aggregates is the first step of planet formation in protoplanetary disks. These aggregates are considered to carry nonzero negative charges in the weakly ionized gas disks, but its effect on their collisional growth has not been fully understood so far. In this paper, we investigate how the charging of dust aggregates affects the evolution of their size distribution properly taking into account the charging mechanism in a weakly ionized gas. To clarify the role of the size distribution, we divide our analysis into two steps. First, we analyze the collisional growth of charged aggregates assuming a monodisperse (i.e., narrow) size distribution. We show that the monodisperse growth stalls due to the electrostatic repulsion when a certain condition is met, as is already expected in the previous work. Second, we numerically simulate dust coagulation using Smoluchowski's method to see how the outcome changes when the size distribution is allowed to...

  5. Distribution of dust during two dust storms in Iceland

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  6. Continuous Measurement of Number Concentrations and Elemental Composition of Aerosol Particles for a Dust Storm Event in Beijing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A continuous measurement of number size distributions and chemical composition of aerosol particles was conducted in Beijing in a dust storm event during 21-26 March 2001. The number concentration of coarse particles (>2μm) increased more significantly than fine particles (<2μm) during the dust storm due to dust weather, while the anthropogenic aerosols collected during the non-dust-storm period tended to be associated with fine particles. Elemental compositions were analyzed by using proton-induced X-ray emission (PIXE). The results show that 20 elements in the dust storm were much higher than in the non-dust-storm period. The calculated soil dust concentration during the dust storm was, on average, 251.8μg m-3, while it was only 52.1 μg m-3 on non-dust-storm days. The enrichment factors for Mg, Al, P, K, Ca, Ti, Mn, Fe, Cl, Cu, Pb, and Zn show small variations between the dust storm and the non-dust-storm period, while those for Ca, Ni and Cr in the dust storm were much lower than those in the non-dust-storm period due to significant local emission sources. A high concentration and enrichment factor for S were observed during the dust storm, which implies that the dust particles were contaminated by aerosol particles from anthropogenic emissions during the long-range transport. A statistical analysis shows that the elemental composition of particles collected during the dust storm in Beijing were better correlated with those of desert soil colleted from desert regions in Inner Mongolia. Air mass back-trajectory analysis further confirmed that this dust storm event could be identified as streaks of dust plumes originating from Inner Mongolia.

  7. Dust deposition: iron source or sink? A case study

    Directory of Open Access Journals (Sweden)

    Y. Ye

    2011-08-01

    Full Text Available A significant decrease of dissolved iron (DFe concentration has been observed after dust addition into mesocosms during the DUst experiment in a low Nutrient low chlorophyll Ecosystem (DUNE, carried out in the summer of 2008. Due to low biological productivity at the experiment site, biological consumption of iron can not explain the magnitude of DFe decrease. To understand processes regulating the observed DFe variation, we simulated the experiment using a one-dimensional model of the Fe biogeochemical cycle, coupled with a simple ecosystem model. Different size classes of particles and particle aggregation are taken into account to describe the particle dynamics. DFe concentration is regulated in the model by dissolution from dust particles and adsorption onto particle surfaces, biological uptake, and photochemical mobilisation of particulate iron.

    The model reproduces the observed DFe decrease after dust addition well. This is essentially explained by particle adsorption and particle aggregation that produces a high export within the first 24 h. The estimated particle adsorption rates range between the measured adsorption rates of soluble iron and those of colloidal iron, indicating both processes controlling the DFe removal during the experiment. A dissolution timescale of 3 days is used in the model, instead of an instantaneous dissolution, underlining the importance of dissolution kinetics on the short-term impact of dust deposition on seawater DFe.

    Sensitivity studies reveal that initial DFe concentration before dust addition was crucial for the net impact of dust addition on DFe during the DUNE experiment. Based on the balance between abiotic sinks and sources of DFe, a critical DFe concentration has been defined, above which dust deposition acts as a net sink of DFe, rather than a source. Taking into account the role of excess iron binding ligands and biotic processes, the critical DFe concentration might be applied to

  8. Regional Modeling of Dust Mass Balance and Radiative Forcing over East Asia using WRF-Chem

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Zhongwei; Bi, Jianrong; Zhang, Wu; Shi, Jinsen; Yang, Lei; Li, Deshuai; Li, Jinxin

    2014-12-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is used to investigate the seasonal and annual variations of mineral dust over East Asia during 2007-2011, with a focus on the dust mass balance and radiative forcing. A variety of measurements from in-stu and satellite observations have been used to evaluate simulation results. Generally, WRF-Chem reproduces not only the column variability but also the vertical profile and size distribution of mineral dust over and near the dust source regions of East Asia. We investigate the dust lifecycle and the factors that control the seasonal and spatial variations of dust mass balance and radiative forcing over the seven sub-regions of East Asia, i.e. source regions, the Tibetan Plateau, Northern China, Southern China, the ocean outflow region, and Korea-Japan regions. Results show that, over the source regions, transport and dry deposition are the two dominant sinks. Transport contributes to ~30% of the dust sink over the source regions. Dust results in a surface cooling of up to -14 and -10 W m-2, atmospheric warming of up to 20 and 15 W m-2, and TOA cooling of -5 and -8 W m-2 over the two major dust source regions of East Asia, respectively. Over the Tibetan Plateau, transport is the dominant source with a peak in summer. Over identified outflow regions, maximum dust mass loading in spring is contributed by the transport. Dry and wet depositions are the comparably dominant sinks, but wet deposition is larger than dry deposition over the Korea-Japan region, particularly in spring (70% versus 30%). The WRF-Chem simulations can generally capture the measured features of dust aerosols and its radaitve properties and dust mass balance over East Asia, which provides confidence for use in further investigation of dust impact on climate over East Asia.

  9. Measurements of the Atmospheric Electric Field through a Triangular Array and the Long-range Saharan Dust Electrification in Southern Portugal

    CERN Document Server

    Silva, H G; Pereira, S; Barbosa, S M; Nicoll, K; Pereira, M Collares; Harrison, R G

    2016-01-01

    Atmospheric electric field (AEF) measurements were carried out in three different sites forming a triangular array in Southern Portugal. The campaign was performed during the summer characterized by Saharan dust outbreaks; the 16th-17th July 2014 desert dust event is considered here. Evidence of long-range dust electrification is attributed to the air-Earth electrical current creating a positive space-charge inside of the dust layer. An increase of ~23 V/m is observed in AEF on the day of the dust event corresponding to space-charges of ~20-2 pCm-3 (charge layer thicknesses ~10-100 m). A reduction of AEF is observed after the dust event.

  10. [House dust mite allergy].

    Science.gov (United States)

    Carrard, A; Pichler, C

    2012-04-01

    House dust mites can be found all over the world where human beings live independent from the climate. Proteins from the gastrointestinal tract- almost all known as enzymes - are the allergens which induce chronic allergic diseases. The inhalation of small amounts of allergens on a regular base all night leads to a slow beginning of the disease with chronically stuffed nose and an exercise induced asthma which later on persists. House dust mites grow well in a humid climate - this can be in well isolated dwellings or in the tropical climate - and nourish from human skin dander. Scales are found in mattresses, upholstered furniture and carpets. The clinical picture with slowly aggravating complaints leads quite often to a delayed diagnosis, which is accidently done on the occasion of a wider spectrum of allergy skin testing. The beginning of a medical therapy with topical steroids as nasal spray or inhalation leads to a fast relief of the complaints. Although discussed in extensive controversies in the literature - at least in Switzerland with the cold winter and dry climate - the recommendation of house dust mite avoidance measures is given to patients with good clinical results. The frequent ventilation of the dwelling with cold air in winter time cause a lower indoor humidity. Covering encasings on mattresses, pillow, and duvets reduces the possibility of chronic contact with mite allergens as well as the weekly changing the bed linen. Another option of therapy is the specific immunotherapy with extracts of house dust mites showing good results in children and adults. Using recombinant allergens will show a better quality in diagnostic as well as in therapeutic specific immunotherapy.

  11. Dust Removal Technolgy for a Mars In Situ Resource Utilization System

    Science.gov (United States)

    Calle, C. I.; Johansen, M. R.; Williams, B. S.; Hogue, M. D.; Mackey, P. J.; Clements, J. S.

    2011-01-01

    Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions.

  12. Anomalous kinetic energy of a system of dust particles in a gas discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Norman, G. E., E-mail: norman@ihed.ras.ru; Stegailov, V. V., E-mail: stegailov@gmail.com; Timofeev, A. V., E-mail: timofeevalvl@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2011-11-15

    The system of equations of motion of dust particles in a near-electrode layer of a gas discharge has been formulated taking into account fluctuations of the charge of a dust particle and the features of the nearelectrode layer of the discharge. The molecular dynamics simulation of the system of dust particles has been carried out. Performing a theoretical analysis of the simulation results, a mechanism of increasing the average kinetic energy of dust particles in the gas discharge plasma has been proposed. According to this mechanism, the heating of the vertical oscillations of dust particles is initiated by induced oscillations generated by fluctuations of the charge of dust particles, and the energy transfer from vertical to horizontal oscillations can be based on the parametric resonance phenomenon. The combination of the parametric and induced resonances makes it possible to explain an anomalously high kinetic energy of dust particles. The estimate of the frequency, amplitude, and kinetic energy of dust particles are close to the respective experimental values.

  13. Inferring the interplanetary dust properties from remote observations and simulations

    CERN Document Server

    Lasue, Jeremie; Fray, Nicolas; Cottin, Hervé

    2016-01-01

    Since in situ studies and interplanetary dust collections only provide a spatially limited amount of information about the interplanetary dust properties, it is of major importance to complete these studies with properties inferred from remote observations of light scattered and emitted, with interpretation through simulations. Physical properties of the interplanetary dust in the near-ecliptic symmetry surface, such as the local polarization, temperature and composition, together with their heliocentric variations, may be derived from scattered and emitted light observations, giving clues to the respective contribution of the particles sources. A model of light scattering by a cloud of solid particles constituted by spheroidal grains and aggregates thereof is used to interpret the local light scattering data. Equilibrium temperature of the same particles allows us to interpret the temperature heliocentric variations. A good fit of the local polarization phase curve, $P_{\\alpha}$, near 1.5~AU from the Sun is ...

  14. A coal dust burner

    Energy Technology Data Exchange (ETDEWEB)

    Vakhrshev, B.M.; Khasnullin, I.G.; Krauze, Ye.G.; Ushakov, Yu.A.; Zinovyev, V.G.

    1982-01-01

    The burner for combustion of coal dust fuel, primarily, in rotating furnaces, contains coaxially disposed pipes, a branch pipe for feeding in the air mixture and a rotating mechanism. The first two pipes are switched in to an air source. The third pipe on the input end has an oblique section and the pipe may be rotated around an axis by a mechanism. The first pipe has ports and it may be moved in an axial direction. By installing the third pipe in the first and second positions, it is possible to direct the dust coming from the branch pipe along the central (the larger part of the dust) or the central pipe, respectively, which makes it possible to regulate the configuration of the torch and its temperature. Hot air is sucked from the furnace through the ports in the perforated first pipe to the mouth of the burner, which makes it possible to intensify combustion. By moving the fifitpipe to the right it is possible to overlap the ports with the projections and to rule out suction of the air. The possibility of regulating combustion in wide ranges makes it possible to reduce the expenditure of fuel by 2 to 3 percent.

  15. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, N. G.

    2003-12-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health

  16. Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    from 23 to 353 GHz, which separate dust and anomalous microwave emission (AME). We show that the flattening of the dust SED can be accounted for with an additional component with a blackbody spectrum. This additional component, which accounts for (26 ± 6)% of the dust emission at 100GHz, could...... of the dust-Hi correlation. We identify a Galactic contribution to these residuals, which we model with variations of the dust emissivity on angular scales smaller than that of our correlation analysis. This model of the residuals is used to quantify uncertainties of the CIB power spectrum in a companion...

  17. Charged dust phenomena in the near-Earth space environment

    Science.gov (United States)

    Scales, W. A.; Mahmoudian, A.

    2016-10-01

    Dusty (or complex) plasmas in the Earth’s middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  18. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2013-07-01

    Full Text Available This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the dust size parameterization. Simulations are conducted quasi-globally (180° W–180° E and 60° S–70° N using the WRF-Chem model with three different approaches to represent dust size distribution (8-bin, 4-bin, and 3-mode. The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode approach retains more fine dust particles but fewer coarse dust particles due to its prescribed σg of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (∼6000 Tg yr-1, the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg and 25% (49.1 Tg higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (-2 and atmospheric warming (0.39∼0.96 W m-2 and in a tremendous difference of a factor of ∼10 in dust TOA cooling (-0.24∼-2.20 W m-2. An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size

  19. Clouds and Dust Storms

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote

  20. On the photoelectric quantum yield of small dust particles

    Science.gov (United States)

    Kimura, Hiroshi

    2016-07-01

    Photoelectron emission is crucial to electric charging of dust particles around main-sequence stars and gas heating in various dusty environments. An estimate of the photoelectric processes contains an ill-defined parameter called the photoelectric quantum yield, which is the total number of electrons ejected from a dust particle per absorbed photon. Here we revisit the so-called small particle effect of photoelectron emission and provide an analytical model to estimate photoelectric quantum yields of small dust particles in sizes down to nanometers. We show that the small particle effect elevates the photoelectric quantum yields of nanoparticles up to by a factor of 103 for carbon, water ice, and organics, and a factor of 102 for silicate, silicon carbide, and iron. We conclude the surface curvature of the particles is a quantity of great importance to the small particle effect, unless the particles are submicrometers in radius or larger.

  1. On the photoelectric quantum yield of small dust particles

    CERN Document Server

    Kimura, Hiroshi

    2016-01-01

    Photoelectron emission is crucial to electric charging of dust particles around main-sequence stars and gas heating in various dusty environments. An estimate of the photoelectric processes contains an ill-defined parameter called the photoelectric quantum yield, which is the total number of electrons ejected from a dust particle per absorbed photon. Here we revisit the so-called small particle effect of photoelectron emission and provide an analytical model to estimate photoelectric quantum yields of small dust particles in sizes down to nanometers. We show that the small particle effect elevates the photoelectric quantum yields of nanoparticles up to by a factor of $10^3$ for carbon, water ice, and organics, and a factor of $10^2$ for silicate, silicon carbide, and iron. We conclude the surface curvature of the particles is a quantity of great importance to the small particle effect, unless the particles are submicrometers in radius or larger.

  2. Connecting The Interstellar Gas And Dust Properties Of Distant Galaxies

    Science.gov (United States)

    Kulkarni, Varsha

    The properties of interstellar gas and dust in distant galaxies are fundamental parameters in constraining galaxy evolution models. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous background quasars, provide invaluable tools to directly study gas and dust in distant normal galaxies. Recent studies of QASs have found interesting trends in both gas and dust properties, such as correlations in metallicity with redshift and dust depletions. Our Spitzer spectroscopic studies also indicate that silicate dust grains are present in QASs, and in fact, at a level higher than expected for diffuse gas in the Milky Way. Moreover, the silicate dust grains in these distant galaxies may be substantially more crystalline than those in the Milky Way interstellar medium. We now propose a comprehensive study of the gas and dust properties of all QASs with strong Ly-alpha and/or metal absorption lines that have adequate archival IR data to probe the study of dust. Our analysis will include data primarily from the NASA-supported Spitzer, Herschel, HST, and Keck Observatory archives, along with a small amount of VLT/SDSS archival data. Our specific goals are as follows: (1) We will measure a large range of metal absorption lines in high-resolution quasar spectra from Keck, HST, and VLT archives to uniformly determine the metallicity, dust depletions, ionization, and star formation rates in the foreground QASs. In particular, we will study the variations in these quantities with gas velocity, using Voigt profile fitting techniques to determine the velocity structure. This analysis will also allow us to quantify the kinematics of the absorbing gas. (2) We will use archival Spitzer IRS quasar spectra to search for and measure the strengths of the 10 and 18 micron silicate dust absorption features for a much larger sample of QASs than previously studied. (3) We will fit the observed silicate absorption features in the Spitzer archival

  3. Optimizing Saharan dust CALIPSO retrievals

    Directory of Open Access Journals (Sweden)

    V. Amiridis

    2013-06-01

    Full Text Available We demonstrate improvements in CALIPSO dust extinction retrievals over North Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and co-located AERONET measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS co-located AOD product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1 by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2 by applying an averaging scheme that includes zero extinction values for the non-dust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and co-located dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per sub-region examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model, makes this dataset an ideal candidate for the provision of an accurate and robust multi-year dust climatology over North Africa and Europe.

  4. Calibration of impact ionization cosmic dust detectors: first tests to investigate how the dust density influences the signal

    Science.gov (United States)

    Jasmin Sterken, Veerle; Moragas-Klostermeyer, Georg; Hillier, Jon; Fielding, Lee; Lovett, Joseph; Armes, Steven; Fechler, Nina; Srama, Ralf; Bugiel, Sebastian; Hornung, Klaus

    2016-10-01

    Impact ionization experiments have been performed since more than 40 years for calibrating cosmic dust detectors. A linear Van de Graaff dust accelerator was used to accelerate the cosmic dust analogues of submicron to micron-size to speeds up to 80 km s^-1. Different materials have been used for calibration: iron, carbon, metal-coated minerals and most recently, minerals coated with conductive polymers. While different materials with different densities have been used for instrument calibration, a comparative analysis of dust impacts of equal material but different density is necessary: porous or aggregate-like particles are increasingly found to be present in the solar system: e.g. dust from comet 67P Churyumov-Gerasimenko [Fulle et al 2015], aggregate particles from the plumes of Enceladus [Gao et al 2016], and low-density interstellar dust [Westphal 2014 et al, Sterken et al 2015]. These recalibrations are relevant for measuring the size distributions of interplanetary and interstellar dust and thus mass budgets like the gas-to-dust mass ratio in the local interstellar cloud.We report about the calibrations that have been performed at the Heidelberg dust accelerator facility for investigating the influence of particle density on the impact ionization charge. We used the Cassini Cosmic Dust Analyzer for the target, and compared hollow versus compact silica particles in our study as a first attempt to investigate experimentally the influence of dust density on the signals obtained. Also, preliminary tests with carbon aerogel were performed, and (unsuccessful) attempts to accelerate silica aerogel. In this talk we explain the motivation of the study, the experiment set-up, the preparation of — and the materials used, the results and plans and recommendations for future tests.Fulle, M. et al 2015, The Astrophysical Journal Letters, Volume 802, Issue 1, article id. L12, 5 pp. (2015)Gao, P. et al 2016, Icarus, Volume 264, p. 227-238Westphal, A. et al 2014, Science

  5. Interplanetary dust. [survey of last four years' research

    Science.gov (United States)

    Brownlee, D. E.

    1979-01-01

    Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.

  6. Saharan dust, climate variability, and asthma in Grenada, the Caribbean

    Science.gov (United States)

    Akpinar-Elci, Muge; Martin, Francis E.; Behr, Joshua G.; Diaz, Rafael

    2015-11-01

    Saharan dust is transported across the Atlantic and interacts with the Caribbean seasonal climatic conditions, becoming respirable and contributing to asthma presentments at the emergency department. This study investigated the relationships among dust, climatic variables, and asthma-related visits to the emergency room in Grenada. All asthma visits to the emergency room ( n = 4411) over 5 years (2001-2005) were compared to the dust cover and climatic variables for the corresponding period. Variation in asthma was associated with change in dust concentration ( R 2 = 0.036, p cultures, population sizes, industrialization level, and economies. Therefore, different than from the studies in Trinidad and Barbados, Grenada is a non-industrialized low-income small island without major industrialized air pollution addition; asthma visits were inversely related to mean sea level pressure ( R 2 = 0.123, p = 0.006) and positively correlated with relative humidity ( R 2 = 0.593, p = 0.85). Saharan dust in conjunction with seasonal humidity allows for inhalable particulate matter that exacerbates asthma among residents in the Caribbean island of Grenada. These findings contribute evidence suggesting a broader public health impact from Saharan dust. Thus, this research may inform strategic planning of resource allocation among the Caribbean public health agencies.

  7. Lifting particles in martian dust devils by pressure excursions

    Science.gov (United States)

    Koester, Marc; Wurm, Gerhard

    2017-10-01

    The passage of a dust devil vortex goes along with a pressure reduction above ground. This leads to a sub-soil overpressure. It has been suggested that this enhances the lift on particles and facilitates dust entrainment by dust devils. We quantify the necessary pressure difference to lift fine sand from sand beds with thickness of 50, 150, and 250 mm in laboratory experiments with basalt samples consisting of 63-125 μm grains. The absolute pressure was varied between 1,300 and 3,600 Pa. In general, a pressure differences of about 30 Pa per mm depth is needed to lift sand grains. With slight systematic variations this is in agreement to simply accounting for the weight of a lifted particle layer. On Mars observed absolute pressure difference are several Pa. This limits particle lift to a layer smaller than 100 μm . However, it clearly allows Δp lifting if the top layer has a decreased permeability. This might be the case for dust layers sitting on top of a coarse grained sand bed. These measurements support the idea of enhanced dust entrainment due to the Δp -effect in Martian dust devils under certain conditions.

  8. Acceleration of dust grains by means of the high energy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S.M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Sabzinezhad, F. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A.R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2013-11-08

    The acceleration of charged dust grains by a high energy ion beam is investigated by obtaining the dispersion relation. The Cherenkov and cyclotron acceleration mechanisms of dust grains are compared with each other. The role of dusty plasma parameters and the magnetic field strength in the acceleration process are discussed. In addition, the stimulated waves by an ion beam in a fully magnetized dust–ion plasma are studied. It is shown that these waves are unstable at different angles with respect to the external magnetic field. It is also indicated that the growth rates increase by either increasing the ion and dust densities or decreasing the magnetic field strength. Finally, the results of our research show that the high energy ion beam can accelerate charged dust grains.

  9. The Fundamentally Different Dynamics of Dust and Gas in Molecular Clouds

    CERN Document Server

    Hopkins, Philip F

    2015-01-01

    We study the behavior of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behavior of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a>0.01 micron exhibit dramatic (exceeding factor ~1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The 'clumping factor' of the dust (critical for dust evolution) can reach ~100, for grains in the ideal size range. The dust clustering is maximized around scales ~0.2pc*(a/micron)*...

  10. Composition of Plasma Formed from Hypervelocity Dust Impacts

    Science.gov (United States)

    Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.

    2012-12-01

    Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment

  11. Optical Estimation on Pollution Level of Respirable Dust Based on Infrared Transmitting Behavior in Coalmine Fully Mechanized Working Face

    Directory of Open Access Journals (Sweden)

    Wen-Zheng Wang

    2016-01-01

    Full Text Available Respirable coal particle generated during underground mining is the main cause for gas-dust explosions and coal workers’ pneumoconiosis (CWP which needs accurate monitoring especially on its concentration. Focusing on the coal dust pollution in the fully mechanized working face of Huangbaici coalmine, coal particle was sampled for further industrial analysis and FT-IR test to obtain its chemical composition and optical constant. Combined with the simulated spatial distribution of airborne dust, the spectral transmission characteristics of coal dust within wavelengths of 2.5 to 25 μm under different operating conditions were obtained. The simulation results show that the transmittance and aerosol optical depth (AOD of coal dust are closely linked and obviously influenced by the variation of dust generation source (intensity of dust release, position of coal cutting, and the wetting of the coal seam and airflow field (wind speed and direction of ventilation. Furthermore, an optical channel of 1260–1280 cm−1 (7.937–7.813 μm which is almost only sensitive to the variation of dust concentration but dull to the diameter change of coal dust was selected to establish the correlation of dust concentration and infrared transmittance. The fitting curve was then applied to retrieve the equivalent dust concentration based on optical information, and the comparison results demonstrate that the estimated pollution level is consistent with field measurement data in engineering practice.

  12. The cycling of carbon into and out of dust

    CERN Document Server

    Jones, Anthony P; Koehler, Melanie; Fanciullo, Lapo; Bocchio, Marco; Micelotta, Elisabetta; Verstraete, Laurent; Guillet, Vincent

    2014-01-01

    Observational evidence seems to indicate that the depletion of interstellar carbon into dust shows rather wide variations and that carbon undergoes rather rapid recycling in the interstellar medium (ISM). Small hydrocarbon grains are processed in photo-dissociation regions by UV photons, by ion and electron collisions in interstellar shock waves and by cosmic rays. A significant fraction of hydrocarbon dust must therefore be re-formed by accretion in the dense, molecular ISM. A new dust model (Jones et al., Astron. Astrophys., 2013, 558, A62) shows that variations in the dust observables in the diffuse interstellar medium (nH = 1000 cm^3), can be explained by systematic and environmentally-driven changes in the small hydrocarbon grain population. Here we explore the consequences of gas-phase carbon accretion onto the surfaces of grains in the transition regions between the diffuse ISM and molecular clouds (e.g., Jones, Astron. Astrophys., 2013, 555, A39). We find that significant carbonaceous dust re-processi...

  13. Radiative impact of mineral dust on monsoon precipitation variability over West Africa

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2010-11-01

    Full Text Available The radiative forcing of dust and its impact on precipitation over the West Africa monsoon (WAM region is simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem. During the monsoon season, dust is a dominant contributor to aerosol optical depth (AOD over West Africa. In the control simulation, on 24-h domain average, dust has a cooling effect (−6.11 W/m2 at the surface, a warming effect (6.94 W/m2 in the atmosphere, and a relatively small TOA forcing (0.83 W/m2. Dust modifies the surface energy budget and atmospheric diabatic heating and hence causes lower atmospheric cooling in the daytime but warming in the nighttime. As a result, atmospheric stability is increased in the daytime and reduced in the nighttime, leading to a reduction of late afternoon precipitation by up to 0.14 mm/h (25% and an increase of nocturnal and early morning precipitation by up to 0.04 mm/h (45% over the WAM region. Dust-induced reduction of diurnal precipitation variation improves the simulated diurnal cycle of precipitation when compared to measurements. However, daily precipitation is only changed by a relatively small amount (−0.17 mm/day or −4%. The dust-induced change of WAM precipitation is not sensitive to interannual monsoon variability. On the other hand, sensitivity simulations show that, from weaker to stronger absorbing dust representing the uncertainty in dust solar absorptivity, dust longwave warming effect in the nighttime surpasses its shortwave cooling effect in the daytime at the surface, leading to a less stable atmosphere associated with more convective precipitation in the nighttime. As a result, the dust-induced change of daily WAM precipitation varies from a significant reduction of −0.52 mm/day (−12%, weaker absorbing dust to a small increase of 0.03 mm/day (1%, stronger absorbing dust. This variation originates from the competition between dust impact on daytime and nighttime

  14. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  15. Flying Through Dust From Asteroids

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  16. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  17. A Diversity of Dust In Oort Cloud Comets

    Science.gov (United States)

    Kelley, Michael S.; Woodward, Charles E.; Harker, David Emerson; Wooden, Diane H.; Sitko, Michael L.; Yang, Bin; Russell, Ray W.

    2016-10-01

    Oort cloud comet nuclei, especially their interiors, have remained cool enough to retain highly volatile molecules such as CO2, CO, and CH4. At these low temperatures the composition of comet dust remains stable. Thus, observations of comet dust may reveal information on cometary origins, including dust formation processes and the spatial distribution of refractory materials in the early outer Solar System. We examine IRTF/BASS, IRTF/MIRSI, Gemini/T-ReCS, and VLT/VISIR mid-infrared spectra of six Oort cloud comets: C/2004 Q2 (Machholz), C/2009 P1 (Garradd), C/2011 L4 (Pan-STARRS), C/2012 F6 (Lemmon), C/2013 US10 (Catalina) (from Woodward et al. in prep.), and C/2014 Q1 (Pan-STARRS). The shapes of their 10-μm silicate bands are similar, trapezoidal with a crystalline silicate peak at 11.2 to 11.3 μm. However, there are some differences on the short-wavelength end of the spectrum, and the relative strengths of the silicate bands vary from 12% to 45% above the pseudo continuum. These variations are due to dust grain size, porosity, and composition. We fit each spectrum with our comet dust thermal model to quantify the relative amounts of the major dust species: "amorphous" silicates, crystalline silicates, and low albedo (e.g., carbonaceous) dust. These results are presented, and comapred to other Oort cloud comets already modeled in the literature in order to better understand the distribution of dust in the comet formation zone.This research was supported by NASA's Planetary Astronomy Program grant NNX13AH67G and at The Aerospace Corporation by the Independent Research and Development program.

  18. Dust evolution in the transition towards the denser ISM: impact on dust temperature, opacity, and spectral index

    CERN Document Server

    Köhler, Melanie; Jones, Anthony P

    2015-01-01

    Variations in the observed dust emission and extinction indicate a systematic evolution of grain properties in the transition from the diffuse interstellar medium (ISM) to denser molecular clouds. The differences in the dust spectral energy distribution (SED) observed from the diffuse ISM to denser regions, namely an increase in the spectral index at long wavelengths, an increase in the FIR opacity, and a decrease in temperature, are usually assumed to be the result of changes in dust properties. We investigate if evolutionary processes, such as coagulation and accretion, are able to change the dust properties of grains in a way that is consistent with observations. We use a core-mantle grain model to describe diffuse ISM-type grains, and using DDA we calculate how the accretion of mantles and coagulation into aggregates vary the grain optical properties. We calculate the dust SED and extinction using DustEM and the radiative transfer code CRT. We show that the accretion of an aliphatic carbon mantle on diffu...

  19. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  20. On Meteoric Dust Particles in the Near-Earth Space Environment

    Science.gov (United States)

    Mahmoudian, Alireza; Farahani, Majid Mazraeh Ei; Mohebalhojeh, Ali R.; Scales, Wayne

    2016-07-01

    Over 40 metric tons of meteoric dust enters the earth's atmosphere every day. This dust settles and creates natural dust layers in the altitude ranges between 80 and 100 kilometers which spans the earth's upper mesosphere to lower thermosphere. The dust layers in the lower atmosphere have a great impact on climate, human health as well as communication and navigation signals. The main goal of this study is the role of meteoric smoke particles on the formation of Polar Mesospheric Clouds (PMC). Recent rocket experiments have detected the presence of these particles. Since these dust layers are immersed in the earth's upper atmosphere, they become charged due to collection of electrons and ions from the earth's ionospheric plasma. Noctilucent Clouds NLCs are a fascinating visual manifestation of these dust layers. So-called Polar Mesospheric Summer Echoes PMSEs are radar echoes that are a direct consequence of the sub-visible charged dust that exists at altitudes above NLC regions. Polar Mesospheric Summer Echoes (PMSE) are strong echoes that have been typically observed in the frequency range from 50MHz to 1.3GHz and in the altitude about 85km. Unlike PMSE, Polar mesospheric winter echoes (PMWE) are less known. PMWE appear at a lower altitude and is weaker in comparison with PMSE. The focus of this study is on meteoric smoke particles and how they affect PMWE source region. Parameters associated with smoke dust particles such as size distribution, charging characteristics, density and positive or negative charge will be considered. The second part of this presentation will be on the effect of gravity waves on PMC. Full coupling to a turbulent neutral field with a statistical analysis will be discussed. Impact of a neutral turbulence driving field on small amplitude plasma fluctuations in such a configuration and some of the important consequences will be also presented. This has important consequences for electric field and potential measurements on rocket probes as

  1. The dust properties and physical conditions of the interstellar medium in the LMC massive star forming complex N11

    CERN Document Server

    Galametz, M; Albrecht, M; Galliano, F; Cormier, D; Lebouteiller, V; Lee, M Y; Madden, S C; Bolatto, A; Bot, C; Hughes, A; Israel, F; Meixner, M; Oliviera, J M; Paradis, D; Pellegrini, E; Roman-Duval, J; Rubio, M; Sewiło, M; Fukui, Y; Kawamura, A; Onishi, T

    2015-01-01

    We combine Spitzer and Herschel data of the star-forming region N11 in the Large Magellanic Cloud to produce detailed maps of the dust properties in the complex and study their variations with the ISM conditions. We also compare APEX/LABOCA 870um observations with our model predictions in order to decompose the 870um emission into dust and non-dust (free-free emission and CO(3-2) line) contributions. We find that in N11, the 870um can be fully accounted for by these 3 components. The dust surface density map of N11 is combined with HI and CO observations to study local variations in the gas-to-dust mass ratios. Our analysis leads to values lower than those expected from the LMC low-metallicity as well as to a decrease of the gas-to-dust mass ratio with the dust surface density. We explore potential hypotheses that could explain the low observed gas-to-dust mass ratios (variations in the XCO factor, presence of CO-dark gas or of optically thick HI or variations in the dust abundance in the dense regions). We f...

  2. [Biological effect of wood dust].

    Science.gov (United States)

    Maciejewska, A; Wojtczak, J; Bielichowska-Cybula, G; Domańska, A; Dutkiewicz, J; Mołocznik, A

    1993-01-01

    The biological effect of exposure to wood dust depends on its composition and the content of microorganisms which are an inherent element of the dust. The irritant and allergic effects of wood dust have been recognised for a long time. The allergic effect is caused by the wood dust of subtropical trees, e.g. western red cedar (Thuja plicata), redwood (Sequoia sempervirens), obeche (Triplochiton scleroxylon), cocabolla (Dalbergia retusa) and others. Trees growing in the European climate such as: larch (Larix), walnut (Juglans regia), oak (Quercus), beech (Fagus), pine (Pinus) cause a little less pronounced allergic effect. Occupational exposure to irritative or allergic wood dust may lead to bronchial asthma, rhinitis, alveolitis allergica, DDTS (Organic dust toxic syndrome), bronchitis, allergic dermatitis, conjunctivitis. An increased risk of adenocarcinoma of the sinonasal cavity is an important and serious problem associated with occupational exposure to wood dust. Adenocarcinoma constitutes about half of the total number of cancers induced by wood dust. An increased incidence of the squamous cell cancers can also be observed. The highest risk of cancer applies to workers of the furniture industry, particularly those dealing with machine wood processing, cabinet making and carpentry. The cancer of the upper respiratory tract develops after exposure to many kinds of wood dust. However, the wood dust of oak and beech seems to be most carcinogenic. It is assumed that exposure to wood dust can cause an increased incidence of other cancers, especially lung cancer and Hodgkin's disease. The adverse effects of microorganisms, mainly mould fungi and their metabolic products are manifested by alveolitis allergica and ODTS. These microorganisms can induce aspergillomycosis, bronchial asthma, rhinitis and allergic dermatitis.

  3. Flue Dust Agglomeration in the Secondary Lead Industry

    Science.gov (United States)

    Schwitzgebel, Klaus

    1981-01-01

    A secondary lead smelter produces several tons of bag-house dust a day. Appropriate handling of this dust is mandatory to meet the proposed OSHA and EPA workroom and ambient standards. Dust agglomeration proved a successful approach. Dusts with a high concentration of PbCl2, or compounds containing PbCl2 can be agglomerated at much lower temperatures than samples with low PbCl2 concentrations. The chlorine sources are polyvinyl chloride (PVC) battery plate separators. Since PVC is used in Europe to a much greater extent than in the U.S., the composition of feedstock must be considered in equipment selection at U.S. secondary smelters. The vapor pressure characteristics of PbCl2 favor its evaporation at blast furnace temperatures. Condensation occurs in the gas cooling system. Recycling of baghouse dust leads to a buildup of PbCl2 in the smelter. Its removal from the system is eventually necessary through leaching, if charges with a high PVC content are processed.

  4. MEDUSA (Martian Environmental DUst Systematic Analyser)

    Science.gov (United States)

    Battaglia, R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Palomba, E.; Palumbo, P.; Panizza, A.; Rotundi, A.

    2003-04-01

    Aerosol dust suspended in the atmosphere thermally influences the behaviour of the lower atmosphere by absorbing solar radiation and by increasing the thermal inertia. Main dust parameters influencing the atmosphere heating are size distribution, albedo, single scattering phase function, imaginary part of the index of refraction. Moreover, atmospheric dust seems to have had long term effects on the surface geology, too. In fact, in the present environment of Mars, the most active surface modifying agent is the wind. Vast dune fields, various albedo patterns that change with time, wind eroded hills and drifts of fine grained material observed at the Viking landing sites are all attributed to aeolian processes. Large parts of the cratered uplands and smooth terrain in both polar regions are believed to be composed of deposits of windblown particles. These deposits may be important reservoirs for volatiles and may influence climate changes via variation of regional albedo. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand the climate and the surface evolution on Mars. Dust deposition also may be a key process in the volatile cycle on the planet. In situ results obtained so far do not give exhaustive information on dust physical properties and concentration near the surface. On the other hand H_2O is important as indicator of global climate changes on long time-scales and has fundamental links to life forms origin. Furthermore, the past volcanism on Mars, associated with a "wetter" environment, most probably caused in the past hydro-thermal activities that would be particularly suited for the existence of the most primitive organisms. Most of our understanding of the water vapour circulation derives from orbiter-based observations by the Mars Atmospheric Water Detection experiment, onboard the Viking Orbiters and from the Thermal Emission Spectrometer (TES

  5. Of data and dust

    CERN Multimedia

    Stephanie Hills

    2016-01-01

    The traditional image of an archive is one of dusty old boxes, books and papers. When your archive is digital, dust spells disaster. An innovative environmental sensor designed and built by a CERN IT specialist has become an essential element in the Laboratory’s data-preservation strategy.   The novel air particle monitoring sensor designed by CERN's Julien Leduc. CERN’s archive holds more than 130 petabytes of data from past and present high-energy physics experiments. Some of it is 40 years old, most of it needs to be kept forever, and all of it is held on tape cartridges (over 20,000 of them). The cartridges are held inside tape libraries with robotic arms that load them into tape drives where they can be read and written. Tape cartridges have many advantages over other data storage media, notably cost and long-term reliability, but topping the list of drawbacks is their vulnerability to contamination from airborne dust particles; a tiny piece of g...

  6. Mining dust filter. Bergbaustaubfilter

    Energy Technology Data Exchange (ETDEWEB)

    Igelbuescher, H.; Hoelter, H.

    1988-12-28

    A dust filter for application underground, whose casing is designed as a transportable unit combinable with further casings and fitted with removable filter pockets. These filter pockets have a frame which seals towards the casing and with the lattices on which the filter cloth is stretched and with spacers holding the said lattices at a distance. Each casing as such has inspection ports that are operationable optionally on either side, and clean and crude gas channels on its upper side. The ends of these channels have coupleable head pieces, so that connection is made easy when casings are arranged in a line. Each crude gas channel is connected to the inside of the casing by means of perforations in the floor of said channel, whereas the clean gas channel, for its part, is in connection with the inside of the casing by means of a channel on the head side of the casing. It is thus possible to create a dust filter having practically any desired output by arranging individual modules in line, in which connection each individual module is reliably transportable on the facilities available below ground, as pre-fabricated above ground. Stable support of the sides of the filter cloths is ensured by the lattice that consists of reciprocally cranked longitudinal and transverse wires. 10 figs.

  7. Sulfur in Cometary Dust

    Science.gov (United States)

    Fomenkova, M. N.

    1997-01-01

    The computer-intensive project consisted of the analysis and synthesis of existing data on composition of comet Halley dust particles. The main objective was to obtain a complete inventory of sulfur containing compounds in the comet Halley dust by building upon the existing classification of organic and inorganic compounds and applying a variety of statistical techniques for cluster and cross-correlational analyses. A student hired for this project wrote and tested the software to perform cluster analysis. The following tasks were carried out: (1) selecting the data from existing database for the proposed project; (2) finding access to a standard library of statistical routines for cluster analysis; (3) reformatting the data as necessary for input into the library routines; (4) performing cluster analysis and constructing hierarchical cluster trees using three methods to define the proximity of clusters; (5) presenting the output results in different formats to facilitate the interpretation of the obtained cluster trees; (6) selecting groups of data points common for all three trees as stable clusters. We have also considered the chemistry of sulfur in inorganic compounds.

  8. Erosion of dust aggregates

    CERN Document Server

    Seizinger, Alexander; Kley, Wilhelm

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 m/s and above. Though fractal aggregates as ...

  9. Synergistic Use of Remote Sensing and Modeling for Tracing Dust Storms in the Mediterranean

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2012-01-01

    Full Text Available This study focuses on the detection of the dust source region and monitoring of the transport of the dust plume from its primary outflow to final deposition. The application area is the Sahara desert and the eastern Mediterranean, where two dust events occurred during the period 4–6 February 2009, an unusual event for a winter period. The Aqua-MODIS and OMI observations clearly define the spatial distribution of the dust plumes, while the CALIPSO observations of total attenuated backscatter (TAB at 532 nm, depolarization ratio (DR, and attenuated color ratio (1064/532 nm on 5 February 2009 provide a clear view and vertical structure of the dust-laden layer. The dust source region is defined to be near the Chad-Niger-Libyan borders, using satellite observations and model (DREAM output. This dust plume is vertically extended up to 2.5 km and is observed as a mass plume of dust from surface level to that altitude, where the vertical variation of TAB (0.002 to 0.2 and DR (0.2–0.5 implies dust-laden layer with non-spherical particles. CALIPSO profiles show that after the dust plume reached at its highest level, the dust particles start to be deposited over the Mediterranean and the initial dust plume was strongly attenuated, while features of dust were limited below about 1–1.5 km for latitudes northern of ~36° (Greek territory.

  10. Plasma dust crystallization

    Science.gov (United States)

    Goree, John; Thomas, H.; Morfill, G.

    1994-01-01

    In a ground-based definition study, a concept for a new type of microgravity experiment is developed. We formed a new state of matter: a crystalline lattice structure of charged micron-size spheres, suspended in a charge-neutral plasma. The plasma is formed by a low-pressure radio-frequency argon discharge. Solid microspheres are introduced, and they gain a negative electric charge. They are cooled by molecular drag on the ambient neutral gas. They are detected by laser light scattering and video photography. Laboratory experiments have demonstrated that a two-dimensional nonquantum lattice forms through the Coulomb interaction of these spheres. Microgravity is thought to be required to observe a three-dimensional structure.

  11. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  12. CFD modeling of dust dispersion through Najaf historic city centre

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Full Text Available The aim of this project is to study the influences of the wind flow and dust particles dispersion through Najaf historic city centre. Two phase Computational Fluid Dynamics (CFD model using a Reynolds Average Navier Stokes (RANS equations has been used to simulate the wind flow and the transport and dispersion of the dust particles through the historic city centre. This work may provide useful insight to urban designers and planners interested in examining the variation of city breathability as a local dynamic morphological parameter with the local building packing density.

  13. Interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty plasmas

    Science.gov (United States)

    Jafari, S.

    2016-04-01

    In this Letter, a new conceptual approach has been presented to investigate the interaction of energetic electrons with dust whistler-mode waves in magnetospheric dusty (complex) plasmas. Dust whistler-mode waves generated in the presence of charged dust grains in the magnetized dusty plasma, can scatter the launched electrons into the loss-cone leading to precipitation into the upper atmosphere which is an important loss process in the radiation belts and provides a major source of energy for the diffuse and pulsating aurora. To study the scattered electrons and chaotic regions, a Hamiltonian model of the electron-dust wave interaction has been employed in the magnetospheric plasma by considering the launched electron beam self-fields. Numerical simulations indicate that an electron beam interacting with the whistler-mode wave can easily trigger chaos in the dust-free plasma, while in the presence of dust charged grains in the plasma, the chaotic regions are quenched to some extent in the magnetosphere. Consequently, the rate of scattered electrons into the loss-cone reduces for the regions that the dust grains are present.

  14. Andromeda's dust

    Energy Technology Data Exchange (ETDEWEB)

    Draine, B. T.; Aniano, G. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States); Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Braun, Robert [CSIRO—Astronomy and Space Science, P.O. Box 76, Epping, NWS 1710 (Australia); Leroy, Adam, E-mail: draine@astro.princeton.edu, E-mail: ganiano@ias.u-psud.fr [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  15. Dust and the Sick Building Syndrome

    DEFF Research Database (Denmark)

    Gyntelberg, Finn; Suadicani, Poul; Wohlfahrt Nielsen, Jan

    1994-01-01

    Farmakologi, bacteria, dust, histamine, disease, gram-negative, indoor climate, sick building syndrome......Farmakologi, bacteria, dust, histamine, disease, gram-negative, indoor climate, sick building syndrome...

  16. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  17. Climate Change Implications and Use of Early Warning Systems for Global Dust Storms

    Science.gov (United States)

    Harriman, L.

    2014-12-01

    Increased changes in land cover and global climate have led to increased frequency and/or intensity of dust storms in some regions of the world. Early detection and warning of dust storms, in conjunction with effective and widespread information broadcasts, will be essential to the prevention and mitigation of future risks and impacts to people and the environment. Since frequency and intensity of dust storms can vary from region to region, there is a demonstrated need for more research to be conducted over longer periods of time to analyze trends of dust storm events [1]. Dust storms impact their origin area, but also land, water and people a great distance away from where dust finally settles [2, 3]. These transboundary movements and accompanying impacts further warrant the need for global collaboration to help predict the onset, duration and path of a dust storm. Early warning systems can help communicate when a dust storm is occurring, the projected intensity of the dust storm and its anticipated physical impact over a particular geographic area. Development of regional dust storm models, such as CUACE/Dust for East Asia, and monitoring networks, like the Sand and Dust Storm Warning Network operated by the World Meteorological Organization, and the use of remote sensing and satellite imagery derived products [4], including MODIS, are currently being incorporated into early warning and monitoring initiatives. However, to increase future certainty of impacts of dust storms on vulnerable populations and ecosystems, more research is needed to analyze the influences of human activities, seasonal variations and long-term climatic patterns on dust storm generation, movement and impact. Sources: [1] Goudie, A.S. (2009), Dust storms: recent developments, J Environ. Manage., 90. [2] Lee, H., and Liu, C. (2004), Coping with dust storm events: information, impacts, and policymaking in Taiwan, TAO, 15(5). [3] Marx, S.K., McGowan, H.A., and Balz, K.S. (2009), Long-range dust

  18. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  19. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  20. E ring dust sources: Implications from Cassini's dust measurements

    Science.gov (United States)

    Spahn, Frank; Albers, Nicole; Hörning, Marcel; Kempf, Sascha; Krivov, Alexander V.; Makuch, Martin; Schmidt, Jürgen; Seiß, Martin; Miodrag Sremčević

    2006-08-01

    The Enceladus flybys of the Cassini spacecraft are changing our understanding of the origin and sustainment of Saturn's E ring. Surprisingly, beyond the widely accepted dust production caused by micrometeoroid impacts onto the atmosphereless satellites (the impactor-ejecta process), geophysical activities have been detected at the south pole of Enceladus, providing an additional, efficient dust source. The dust detector data obtained during the flyby E11 are used to identify the amount of dust produced in the impactor-ejecta process and to improve related modeling [Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V.V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremčević, M., Tuzzolino, A., Economou, T., Grün, E., 2006. Cassini dust measurements at Enceladus: implications for Saturn's E ring. Science, in press]. With this, we estimate the impact-generated dust contributions of the other E ring satellites and find significant differences in the dust ejection efficiency by two projectile families - the E ring particles (ERPs) and the interplanetary dust particles (IDPs). Together with the Enceladus south-pole source, the ERP impacts play a crucial role in the inner region, whereas the IDP impacts dominate the particle production in the outer E ring, possibly accounting for its large radial extent. Our results can be verified in future Cassini flybys of the E ring satellites. In this way poorly known parameters of the dust particle production in hypervelocity impacts can be constrained by comparison of the data and theory.

  1. Physicochemical impacts of dust particles on alpine glacier meltwater at the Laohugou Glacier basin in western Qilian Mountains, China.

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Chen, Jizu; Qin, Xiang; Ren, Jiawen; Cui, Xiaoqing; Du, Zhiheng; Kang, Shichang

    2014-09-15

    This work discusses the temporal variation of various physicochemical species in the meltwater runoff of Laohugou Glacier No. 12 (4260 ma.s.l.) in central Asia, and their correlation with dust particles, based on a two-year field observation in summer 2012 and 2013, mainly focusing on dust concentration and size distribution, meltwater chemistry, particles SEM-EDX analysis in the meltwater, and MODIS atmospheric optical depth fields around the Qilian Mountains in central Asia. We find that, the volume-size distribution of dust particles in the meltwater is mainly composed of three parts, which includes fine aerosol particles (with diameter of 0~3.0 μm, mainly PM 2.5), atmospheric dust (with diameter of 3.0~20 μm), and local dust particles (20~100 μm), respectively. Comparison of dust particles in the snowpack and meltwater runoff indicates that, large part of dust particles in the meltwater may have originated from atmospheric dust deposition to the snow and ice on the glacier, and transported into the meltwater runoff. Moreover, temporal variation of dust and major ions (especially crustal species) is very similar with each other, showing great influence of dust particles to the chemical constituents of the glacier meltwater. SPM and TDS implied significant influences of dust to the physical characteristics of the glacier meltwater. Results showed that, accelerated glacier melting may affect physicochemical characteristics of the meltwater at an alpine basin under global warming. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm, showed great influence of regional dust transportation over western Qilian Mountains in springtime. SEM-EDX analysis shows that dust particles in the glacier meltwater contain Si-, Al-, Ca-, K-, and Fe-rich materials, such as quartz, albite, aluminate, and fly ash, similar to that deposited in snowpack. These results showed great and even currently underestimated influences of atmospheric dust

  2. Dust deposition and ambient PM10 concentration in northwest China: spatial and temporal variability

    Science.gov (United States)

    Zhang, Xiao-Xiao; Sharratt, Brenton; Chen, Xi; Wang, Zi-Fa; Liu, Lian-You; Guo, Yu-Hong; Li, Jie; Chen, Huan-Sheng; Yang, Wen-Yi

    2017-02-01

    Eolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable deposition data are scarce in central and east Asia. Located at the boundary of central and east Asia, Xinjiang Province of northwestern China has long played a strategic role in cultural and economic trade between Asia and Europe. In this paper, we investigated the spatial distribution and temporal variation in dust deposition and ambient PM10 (particulate matter in aerodynamic diameter ≤ 10 µm) concentration from 2000 to 2013 in Xinjiang Province. This variation was assessed using environmental monitoring records from 14 stations in the province. Over the 14 years, annual average dust deposition across stations in the province ranged from 255.7 to 421.4 t km-2. Annual dust deposition was greater in southern Xinjiang (663.6 t km-2) than northern (147.8 t km-2) and eastern Xinjiang (194.9 t km-2). Annual average PM10 concentration across stations in the province varied from 100 to 196 µg m-3 and was 70, 115 and 239 µg m-3 in northern, eastern and southern Xinjiang, respectively. The highest annual dust deposition (1394.1 t km-2) and ambient PM10 concentration (352 µg m-3) were observed in Hotan, which is located in southern Xinjiang and at the southern boundary of the Taklamakan Desert. Dust deposition was more intense during the spring and summer than other seasons. PM10 was the main air pollutant that significantly influenced regional air quality. Annual average dust deposition increased logarithmically with ambient PM10 concentration (R2 ≥ 0.81). While the annual average dust storm frequency remained unchanged from 2000 to 2013, there was a positive relationship between dust storm days and dust deposition and PM10 concentration across stations. This study suggests that sand storms are a major factor affecting the temporal variability and spatial distribution of dust deposition in northwest China.

  3. IGM metal enrichment through dust sputtering

    CERN Document Server

    Bianchi, S; Bianchi, Simone; Ferrara, Andrea

    2005-01-01

    We study the motion of dust grains into the Intergalactic Medium (IGM) around redshift z=3, to test the hypothesis that grains can efficiently pollute the gas with metals through sputtering. We use the results available in the literature for radiation-driven dust ejection from galaxies as initial conditions, and follow the motion onward. Via this mechanism, grains are ejected into the IGM with velocities >100 km/s; as they move supersonically, grains can be efficiently eroded by non-thermal sputtering. However, Coulomb and collisional drag forces effectively reduce the charged grain velocity. Up-to-date sputtering yields for graphite and silicate (olivine) grains have been derived using the code TRIM, for which we provide analytic fits. After training our method on a homogeneous density case, we analyze the grain motion and sputtering in the IGM density field as derived from a LambdaCDM cosmological simulation at z = 3.27. We found that only large (a >~ 0.1-um) grains can travel up to considerable distances (...

  4. Dust cloud lightning in extraterrestrial atmospheres

    CERN Document Server

    Helling, Christiane; Diver, Declan; Witte, Soeren

    2012-01-01

    Lightning is present in all solar system planets which form clouds in their atmospheres. Cloud formation outside our solar system is possible in objects with much higher temperatures than on Earth or on Jupiter: Brown dwarfs and giant extrasolar gas planets form clouds made of mixed materials and a large spectrum of grain sizes. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short timescales, inconsistent with the observation of stochastic ionization events of the solar system planets. We argue that a significant volume of the clouds in brown dwarfs and extrasolar planets is susceptible to local discharge events and that the upper cloud layers are most suitable for powerful lightning-like discharge events. We discuss various sources of atmospheric ionisation, including thermal ionisation and a first estimate of ionisation by cosmic rays, and argue that we should expect thunderstorms also in the atmospheres of brown dwarfs and giant gas planets which contain mineral clouds.

  5. Acceleration of small astrophysical grains due to charge fluctuations

    CERN Document Server

    Ivlev, A V; Tsytovich, V N; de Angelis, U; Hoang, Thiem; Morfill, G E

    2010-01-01

    We discuss a novel mechanism of dust acceleration which dominates for particles smaller than $\\sim0.1 \\mu$m. The acceleration is caused by charge fluctuations occurring on grains during their mutual Coulomb collisions. The energy source for the acceleration are the irreversible plasma fluxes continuously absorbed by grains. In particular, this mechanism of charge-fluctuation-induced acceleration affects the rate of grain coagulation and shattering of the population of small grains.

  6. Holography of charges in gauge theories

    CERN Document Server

    Julia, B L

    2001-01-01

    In this short review we compare the rigid Noether charges to topological gauge charges. One important extension is that one should consider each boundary component of spacetime independently. The argument that relates bulk charges to surface terms can be adapted to the perfect fluid situation where one can recognise the helicity and enstrophies as Noether charges. More generally a forcing procedure that increases for instance any Noether charge is demonstrated. In the gauge theory situation, the key idea can be summarized by one sentence: ``go to infinity and stay there''. A new variational formulation of Einstein's gravity is given that allows for local GL(D,R) invariance. The a priori indeterminacy of the Noether charges is emphasized and a covariant ansatz due to S. Silva for the surface charges of gauge theories is analysed, it replaces the (non-covariant) Regge-Teitelboim procedure.

  7. Planck 2013 results. XI. All-sky model of thermal dust emission

    CERN Document Server

    Abergel, A; Aghanim, N; Alina, D; Alves, M I R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cardoso, J -F; Catalano, A; Chamballu, A; Chary, R -R; Chiang, H C; Chiang, L -Y; Christensen, P R; Church, S; Clemens, M; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Grenier, I A; Gruppuso, A; Guillet, V; Hansen, F K; Hanson, D; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, A H; Jaffe, T R; Jewell, J; Joncas, G; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leonardi, R; León-Tavares, J; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Massardi, M; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Welikala, N; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a tight representation of the data at 5 arcmin. It shows variations of the order of 30 % compared with the widely-used model of Finkbeiner, Davis, and Schlegel. The Planck data allow us to estimate the dust temperature uniformly over the whole sky, providing an improved estimate of the dust optical depth compared to previous all-sky dust model, especially in high-contrast molecular regions. An increase of the dust opacity at 353 GHz, tau_353/N_H, from the diffuse to the denser interstellar medium (ISM) is reported. It is associated with a decrease in the observed dust temperature, T_obs, that could be due at least in part to the increased dust opacity. We also report an excess of dust emission at HI column densities lower than...

  8. Intensified dust storm activity and Valley fever infection in the southwestern United States

    Science.gov (United States)

    Tong, Daniel Q.; Wang, Julian X. L.