WorldWideScience

Sample records for dusk

  1. Cosmological Structure Formation: From Dawn till Dusk

    DEFF Research Database (Denmark)

    Heneka, Caroline Samantha

    Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology with mass......Cosmology has entered an era where a plethora data is available on structure formation to constrain astrophysics and underlying cosmology. This thesis strives to both investigate new observables and modeling of the Epoch of Reionization, as well as to constrain dark energy phenomenology...... with massive galaxy clusters, traveling from the dawn of structure formation, when the first galaxies appear, to its dusk, when a representative part of the mass in the Universe is settled in massive structures. This hunt for accurate constraints on cosmology is complemented with the demonstration of novel...... Bayesian statistical tools and kinematical constraints on dark energy. Starting at the dawn of structure formation, we study emission line fluctuations, employing semi-numerical simulations of cosmological volumes of their line emission, in order to cross-correlate fluctuations in brightness. This cross...

  2. The Sound of South Africa: Johan Vlok Louw's Karoo Dusk ...

    African Journals Online (AJOL)

    This article examines the choices some South African authors have recently made as regards the setting and style of their writing, and the implications of these choices. It looks in some detail at Johan Vlok Louw's Karoo Dusk (2014), and concludes with a brief look at Steven Boykey Sidley's latest novel, Free Association ...

  3. Simulations of the neutral structure within the dusk side aurora

    Directory of Open Access Journals (Sweden)

    H. F. Parish

    2006-10-01

    Full Text Available Observations of neutral winds from rocket release experiments within the premidnight and postmidnight substorm recovery phase aurora, show very large E-region neutral winds of several hundred m/s, where winds measured on the dusk side are even larger than those on the dawn side. These large winds are also associated with strong shears, and there is evidence that some of the regions below these shears may be unstable. The mechanisms which generate this strong vertical structure are not well understood. It is also not known whether the acceleration conditions in the pre and post midnight sectors of the aurora may produce significantly different neutral responses on the dawn and dusk sides. Simulations have been performed using a three-dimensional high resolution limited area thermosphere model to try to understand the neutral structure within the dawn and dusk side aurora. When simulations are performed using auroral forcing alone, for equivalent conditions within the dawn and dusk sectors, differences are found in the simulated response on each side. When measured values of auroral forcing parameters, and background winds and tides consistent with recent observations, are used as model inputs, some of the main features of the zonal and meridional wind observations are reproduced in the simulations, but the magnitude of the peak zonal wind around 140 km tends to be too small and the maximum meridional wind around 130 km is overestimated. The winds above 120 km altitude are found to be sensitive to changes in electric fields and ion densities, as was the case for the dawn side, but the effects of background winds and tides on the magnitudes of the winds above 120 km are found to be relatively small on the dusk side. The structure below 120 km appears to be related mainly to background winds and tides rather than auroral forcing, as was found in earlier studies on the dawn side, although the peak magnitudes of simulated wind variations in the 100 to

  4. Natural entrainment without dawn and dusk : The case of the European ground squirrel (Spermophilus citellus)

    NARCIS (Netherlands)

    Hut, RA; van Oort, BEH; Daan, S; Oort, Bob E.H. van

    Observational data collected in the field and in enclosures show that diurnal, burrow-dwelling European ground squirrels (Spermophilus citellus) never were above ground during twilight at dawn or at dusk. The animals emerged on average 4.02 h (SD = 0.45) after civil twilight at dawn and retreated in

  5. Magnetotail Fast Flow Occurrence Rate and Dawn-Dusk Asymmetry at XGSM ˜ -60 RE

    Science.gov (United States)

    Kiehas, S. A.; Runov, A.; Angelopolos, V.; Hietala, H.; Korovinksiy, D.

    2018-03-01

    As a direct result of magnetic reconnection, plasma sheet fast flows act as primary transporter of mass, flux, and energy in the Earth's magnetotail. During the last decades, these flows were mainly studied within XGSM>-60RE, as observations near or beyond lunar orbit were limited. By using 5 years (2011-2015) of ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moons Interaction with the Sun) data, we statistically investigate earthward and tailward flows at around 60 RE downtail. A significant fraction of fast flows is directed earthward, comprising 43% (vx>400 km/s) to 56% (vx>100 km/s) of all observed flows. This suggests that near-Earth and midtail reconnection are equally probable of occurring on either side of the ARTEMIS downtail distance. For fast convective flows (v⊥x>400 km/s), this fraction of earthward flows is reduced to about 29%, which is in line with reconnection as source of these flows and a downtail decreasing Alfvén velocity. More than 60% of tailward convective flows occur in the dusk sector (as opposed to the dawn sector), while earthward convective flows are nearly symmetrically distributed between the two sectors for low AL (>-400 nT) and asymmetrically distributed toward the dusk sector for high AL (infer that near-Earth reconnection is preferentially located at dusk, whereas midtail reconnection (X >- 60RE) is likely symmetric across the tail during weak substorms and asymmetric toward the dusk sector for strong substorms, as the dawn-dusk asymmetric nature of reconnection onset in the near-Earth region progresses downtail.

  6. Reconciling the dawn-dusk asymmetry in Mercury's exosphere with the micrometeoroid impact directionality

    OpenAIRE

    Pokorný, Petr; Sarantos, Menelaos; Janches, Diego

    2017-01-01

    Combining dynamical models of dust from Jupiter Family Comets and Halley-type Comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury's exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impac...

  7. Dusk/dawn atmospheric asymmetries on tidally-locked satellites: O2 at Europa

    Science.gov (United States)

    Oza, Apurva V.; Johnson, Robert E.; Leblanc, François

    2018-05-01

    We use a simple analytic model to examine the effect of the atmospheric source properties on the spatial distribution of a volatile in a surface-bounded atmosphere on a satellite that is tidally-locked to its planet. Spatial asymmetries in the O2 exosphere of Europa observed using the Hubble Space Telescope appear to reveal on average a dusk enhancement in the near-surface ultraviolet auroral emissions. Since the hop distances in these ballistic atmospheres are small, we use a 1-D mass conservation equation to estimate the latitudinally-averaged column densities produced by suggested O2 sources. Although spatial asymmetries in the plasma flow and in the surface properties certainly affect the spatial distribution of the near-surface aurora, the dusk enhancements at Europa can be understood using a relatively simple thermally-dependent source. Such a source is consistent with the fact that radiolytically produced O2 permeates their porous regoliths and is not so sensitive to the local production rate from ice. The size of the shift towards dusk is determined by the ratio of the rotation rate and atmospheric loss rate. A thermally-dependent source emanating from a large reservoir of O2 permeating Europa's icy regolith is consistent with the suggestion that its subsurface ocean might be oxidized by subduction of such radiolytic products.

  8. Light pollution alters the phenology of dawn and dusk singing in common European songbirds.

    Science.gov (United States)

    Da Silva, Arnaud; Valcu, Mihai; Kempenaers, Bart

    2015-05-05

    Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting. We previously reported on analyses suggesting that artificial night lighting affects the daily timing of singing in five species. The main aim of this study was to investigate whether the presence of artificial night lighting is also associated with the seasonal occurrence of dawn and dusk singing. We found that in four species dawn and dusk singing developed earlier in the year at sites exposed to light pollution. We also examined the effects of weather conditions and found that rain and low temperatures negatively affected the occurrence of dawn and dusk singing. Our results support the hypothesis that artificial night lighting alters natural seasonal rhythms, independently of other effects of urbanization. The fitness consequences of the observed changes in seasonal timing of behaviour remain unknown.

  9. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    Science.gov (United States)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  10. First detection of global dawn-dusk ionospheric current intensities using Ampere's integral law on Orsted orbits

    DEFF Research Database (Denmark)

    Stauning, P.; Primdahl, Fritz

    2000-01-01

    -to-dusk ionospheric current is found to be proportional to the gee-effective solar wind electric field and is around 1 million ampere for a typical solar wind electric field of 2 mV/m. Dividing the Ampere integral into semi-orbit parts has enabled us to show that the hemispherical total current intensities depend......The magnetic measurements by the Orsted satellite in noon-midnight orbits have enabled the derivation of the global dawn-dusk oriented ionospheric currents from an Ampere's law closed loop line integral of the geomagnetic vector field along the satellite track. The globally integrated dawn...... on the respective polar cap conductivities, which relate to the daily and seasonally varying solar illumination. The more illuminated hemisphere conveys up to three times more current from dawn to dusk than does the less illuminated....

  11. A simple model describing the nonlinear dynamics of the dusk/dawn asymmetry in the high-latitude thermospheric flow

    Science.gov (United States)

    Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.

    1988-01-01

    A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.

  12. Dawn-dusk asymmetry in particles of solar wind origin within the magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    Full Text Available Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT and invariant latitude (7 for various energy ranges. For all energies observed by MICS (1.8–21.4 keV and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX /BY . It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a "cross-over" energy of about 23 keV but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/ gradient drift towards dusk. The convection electric field in the tail is weaker for

  13. Dawn-dusk asymmetry in particles of solar wind origin within the magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2001-01-01

    Full Text Available Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT and invariant latitude (7 for various energy ranges. For all energies observed by MICS (1.8–21.4 keV and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX /BY . It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a "cross-over" energy of about 23 keV but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/ gradient drift towards dusk. The convection electric field in the tail is weaker for northward IMF. Ions then need less energy to drift to the dusk flank, so that the cross-over energy, at which the asymmetry changes sense, is reduced

  14. Distinct sources of particles near the cusp and the dusk flank of the magnetosphere

    Science.gov (United States)

    Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M.; Dandouras, I. S.; Rème, H.; Fazakerley, A. N.; Daly, P. W.

    2015-12-01

    At the magnetopause, the location of the magnetic reconnection sites depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is also taking place near the exterior cusp quasi-simultaneously. A

  15. Cluster Observations of reconnection along the dusk flank of the magnetosphere

    Science.gov (United States)

    Escoubet, C.-Philippe; Grison, Benjamin; Berchem, Jean; Trattner, Karlheinz; Lavraud, Benoit; Pitout, Frederic; Soucek, Jan; Richard, Robert; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick

    2015-04-01

    Magnetic reconnection is generally accepted to be the main process that transfers particles and energy from the solar wind to the magnetosphere. The location of the reconnection site depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4

  16. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare Seedlings.

    Directory of Open Access Journals (Sweden)

    Weiwei Deng

    Full Text Available The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare, a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  17. Dusk to dawn activity patterns of anopheline mosquitoes in West Timor and Java, Indonesia.

    Science.gov (United States)

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2011-05-01

    Malaria is a serious health issue in Indonesia. We investigated the dusk to dawn anopheline mosquito activity patterns, host-seeking and resting locations in coastal plain, hilly and highland areas in West Timor and Java. Adult mosquitoes were captured landing on humans or resting in houses or animal barns. Data analyzed were: mosquito night-time activities; period of peak activity; night-time activity in specific periods of time and for mosquito resting locations. Eleven species were recorded; data were sparse for some species therefore detailed analyses were performed for four species only. In Java Anopheles vagus was common, with a bimodal pattern of high activity. In West Timor, its activity peaked around midnight. Other species with peak activity around the middle of the night were An. barbirostris and An. subpictus. Most species showed no biting and resting preference for indoors or outdoors, although An. barbirostris preferred indoors in West Timor, but outdoors in Java. An. aconitus and An. annularis preferred resting in human dwellings; An. subpictus and An. vagus preferred resting in animal barns. An. barbirostris preferred resting in human dwellings in West Timor and in animal barns in Java. The information is useful for planning the mosquito control aspect of malaria management. For example, where mosquito species have peak activity at night indoors, bednets and indoor residual spraying should reduce malaria risk, but where mosquitoes are most active outdoors, other options may be more effective.

  18. On the Occurrence of Magnetic Reconnection Along the Dawn and Dusk Magnetopause

    Science.gov (United States)

    Petrinec, S. M.; Burch, J. L.; Fuselier, S. A.; Trattner, K. J.; Gomez, R. G.; Giles, B. L.; Pollock, C.; Russell, C. T.; Strangeway, R. J.

    2017-12-01

    Magnetic reconnection is recognized as the primary process by which bulk solar wind plasma is able to enter the magnetosphere. The amount of plasma and energy transport is affected by the reconnection rate along the reconnection line as well as the spatial extent of the reconnection line. These parameters are in turn influenced by parameters such as the orientation of the interplanetary magnetic field (IMF), the dipole tilt angle of the Earth, and the local change in plasma beta between the magnetosheath and magnetosphere. Local variations of magnetosheath parameters are influenced by the character of the standing bow shock upstream of the observing location; i.e., there is greater variation downstream of the quasi-parallel shock than downstream of the quasi-perpendicular shock. Observations from the MMS mission are used to examine the occurrence of quasi-steady magnetic reconnection along the dawn and dusk regions of the magnetopause, and to determine the influence of local magnetosheath variations on the characteristics of the extended reconnection line.

  19. Dusk but not dawn burrow emergence rhythms of Nephrops norvegicus (Crustacea: Decapoda

    Directory of Open Access Journals (Sweden)

    Valerio Sbragaglia

    2013-10-01

    Full Text Available The Norway lobster, Nephrops norvegicus, can be captured by haul nets only during the emergence from its burrow. In the last few decades, an extensive field research revealed distinct diel (24-h–based catchability patterns at different depths. Laboratory experiments suggested that burrow emergence (used as a proxy of catchability is endogenously controlled via a circadian system. Results were usually presented in terms of mean effects without a quantification of inter-individual variability and arrhythmia. Here, we studied the burrow emergence of 52 adult Nephrops by an infrared actograph endowed with an artificial burrow. Animals were exposed to 12-12 h light-darkness cycle, simulating photic condition of the lower shelf. Forty-five animals showed rhythmic emergence (87%, while seven were arrhythmic (13%. Rhythmic animals were clustered according to their timing of emergence: 54% at dusk and 4% at dawn. Moreover, other animals showed fully diurnal or nocturnal emergence (10% and 19%, respectively. The comparison of our results with those derived from temporally scheduled trawling indicates that bimodal catch patterns observed in shelf populations are poorly observed during individual experiments in the laboratory, where the same light conditions are simulated. Nephrops burrow emergence seems to be the result of a mixed endogenous-exogenous control, while arrhythmia could also be present in the wild.

  20. Simultaneous measurements of the thermospheric wind profile at three separate positions in the dusk auroral oval

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Friis-Christensen, E.; Larsen, M.F.; Kelley, M.C.; Vickrey, J.; Meriwether, J.; Shih, P.

    1987-01-01

    On March 20, 1985, two rockets were launched from Soendre Stroemfjord, Greenland, into the dusk auroral oval. Three trimethyl aluminium trails were released to measure the neutral wind profiles between 95 and 190 km of altitude at two points separated by 190 km normal to the invariant latitude circles and at a third point separated from the first two by 300 km along the invariant latitude circles. Two barium/strontium clouds were released at 250 km of altitude, extending two of the neutral wind profiles to this altitude. In the E region the tip of the wind vector traced an ellipse as a function of increasing altitude with maximum wind speeds of 100-150 m/s in the southeastward and northwestward directions. The F region winds were southward with speeds of 100-200 m/s. The zonal wind component between 115 and 140 km of altitude had a horizontal gradient in the southeastward direction, whereas the meridional wind component at the same heights was constant over the spatial extent covered by the measurements. The authors interpret the observed E region wind field as being part of a gravity wave with a period of 3 hours as estimated from the ellipticity of the wind hodograms. The wind vectors rotated 540 degree clockwise with increasing height, indicating that the wave energy is propagating upward. The Fabry-Perot interferometer at Soendre Stroemfjord was first able to detect the F region winds 45 min after the releases and measured winds of 100-400 m/s mainly in the southeastward or antisunward direction. The geomagnetic conditions were quiet, with Kp not exceeding 2 for the 24 hours preceding the experiment. The incoherent scatter radar at Soendre Stroemfjord observed a contracted plasma convection pattern associated with positive B y and B z components of the interplanetary magnetic field

  1. An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere

    International Nuclear Information System (INIS)

    Mitchell, D.G.; Kutchko, F.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Russell, C.T.

    1987-01-01

    The authors present a study of the low-latitude boundary layer (LLBL) using ISEE 1 energetic particle, plasma, and magnetic field data obtained during numerous traversals of the LLBL that occurred on 66 ISEE 1 passes through the magnetospheric flank LLBL region. They use energetic particle distributions to determine dawn and dusk LLBL behavior and topology for varying orientations of the magnetosheath and/or interplanetary magnetic field (M/IMF), for different local times, and for changing levels of geomagnetic activity (Kp). This study corroborates and extends the earlier work of Williams et al. (1985) who presented a detailed study of two (dusk and dawn) ISEE 1 passes through the LLBL region for the case of northward M/IMF. They find that the dawn and dusk LLBL are on closed geomagnetic field lines for northward M/IMF but are on a combination of closed and open field lines for a southward M/IMF. The energetic particle distributions show that cases of reverse-draped field lines in the LLBL are consistent with an open field line topology. In addition, they find that the LLBL is thicker (thinner) for northward (southward) M/IMF and becomes thicker with increasing distance from the subsolar point. LLBL electric fields nominally are in the few (3-5) millivolts per meter range and display an apparent maximum value of ∼10mV/m. These electric fields capture magnetospherically drifting particles as they approach the LLBL and propel them tailward. In this way, the plasma sheet is the dominant source of energetic (approx-gt 10 keV) particles in the LLBL while the magnetosheath appears to be the dominant source for lower-energy (approx-lt 10 keV) LLBL particles

  2. The dawn–dusk asymmetry of ion density in the dayside magnetosheath and its annual variability measured by THEMIS

    Directory of Open Access Journals (Sweden)

    A. P. Dimmock

    2016-05-01

    Full Text Available The local and global plasma properties in the magnetosheath play a fundamental role in regulating solar wind–magnetosphere coupling processes. However, the magnetosheath is a complex region to characterise as it has been shown theoretically, observationally and through simulations that plasma properties are inhomogeneous, non-isotropic and asymmetric about the Sun-Earth line. To complicate matters, dawn–dusk asymmetries are sensitive to various changes in the upstream conditions on an array of timescales. The present paper focuses exclusively on dawn–dusk asymmetries, in particularly that of ion density. We present a statistical study using THEMIS data of the dawn–dusk asymmetry of ion density in the dayside magnetosheath and its long-term variations between 2009 and 2015. Our data suggest that, in general, the dawn-side densities are higher, and the asymmetry grows from noon towards the terminator. This trend was only observed close to the magnetopause and not in the central magnetosheath. In addition, between 2009 and 2015, the largest asymmetry occurred around 2009 decreasing thereafter. We also concluded that no single parameter such as the Alfvén Mach number, plasma velocity, or the interplanetary magnetic field strength could exclusively account for the observed asymmetry. Interestingly, the dependence on Alfvén Mach number differed between data sets from different time periods. The asymmetry obtained in the THEMIS data set is consistent with previous studies, but the solar cycle dependence was opposite to an analysis based on IMP-8 data. We discuss the physical mechanisms for this asymmetry and its temporal variation. We also put the current results into context with the existing literature in order to relate THEMIS era measurements to those made during earlier solar cycles.

  3. Dawn-dusk asymmetries and sub-Alfvénic flow in the high and low latitude magnetosheath

    Directory of Open Access Journals (Sweden)

    M. Longmore

    2005-11-01

    Full Text Available We present the results of a statistical survey of the magnetosheath using four years of Cluster orbital coverage. Moments of the plasma distribution obtained from the electron and ion instruments together with magnetic field data are used to characterise the flow and density in the magnetosheath. We note two important differences between our survey and the gasdynamic model predictions: a deceleration of the flow at higher latitudes close to the magnetopause, resulting in sub-Alfvénic flow near the cusp, and a dawn-dusk asymmetry with higher velocity magnitudes and lower densities measured on the dusk side of the magnetosheath in the Northern Hemisphere. The latter observation is in agreement with studies carried out by Paularena et al. (2001, Němeček et al. (2000, and Šafránková et al. (2004. In equations of hydrodynamics for a single-component additon to this we observe a reverse of this asymmetry for the Southern Hemisphere. High-latitude sub-Alfvénic flow is thought to be a necessary condition for steady state reconnection pole-ward of the cusp.

  4. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies.

    Science.gov (United States)

    Ge, Dengteng; Wu, Gaoxiang; Yang, Lili; Kim, Hye-Na; Hallwachs, Winnie; Burns, John M; Janzen, Daniel H; Yang, Shu

    2017-07-11

    Whiteness, although frequently apparent on the wings, legs, antennae, or bodies of many species of moths and butterflies, along with other colors and shades, has often escaped our attention. Here, we investigate the nanostructure and microstructure of white spots on the wings of Carystoides escalantei , a dusk-active and shade-inhabiting Costa Rican rain forest butterfly (Hesperiidae). On both males and females, two types of whiteness occur: angle dependent (dull or bright) and angle independent, which differ in the microstructure, orientation, and associated properties of their scales. Some spots on the male wings are absent from the female wings. Whether the angle-dependent whiteness is bright or dull depends on the observation directions. The angle-dependent scales also show enhanced retro-reflection. We speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to butterfly's low light habitat and to airflow experienced on the wing base vs. wing tip.

  5. The control of auroral zone dynamics and thermodynamics by the interplanetary magnetic field dawn-dusk (Y) component

    International Nuclear Information System (INIS)

    Sica, R.J.; Hernandez, G.; Emery, B.A.; Roble, R.G.; Smith, R.W.; Rees, M.H.

    1989-01-01

    Previous theoretical and experimental studies have shown that the dawn-dusk component of the interplanetary magnetic field (IMF B y ) expands the classical symmetric two-cell convection pattern toward dusk (B y negative) or toward dawn (B y positive) in the northern hemisphere, altering the ion drag forcing on the neutral atmosphere. Measurements of the neutral dynamics associated with these convection patterns have been presented primarily at magnetic latitudes greater than 70 degree in the polar cap. In this study, nights with coincident IMF measurements have been selected from the extensive four-year auroral zone thermospheric wind and temperature data set derived from Fabry-Perot spectrometer measurements of the Doppler shifts and widths of the O( 1 D) 15,867 cm -1 (630.0 nm) emission from College, Alaska. Averages from 112 nights of measurements from College were also computed using a selection criterion that depended on the previous 2 hours of IMF measurements (case 2). This procedure yielded averages that differed at times from case 1. The wind and temperature averages for both cases show large variations with B y in the auroral zone. The wind averages for B y negative and positive are compared with National Center for Atmospheric Research thermospheric general circulation model predictions that use a B y -dependent model of ionospheric convection. The results for B y negative and positive are compared with National Center for Atmospheric Research thermospheric general circulation model predictions that use a B y -dependent model of ionospheric convection. The results for B y negative compare favorably with the averages, but there are significant differences between model calculations and averages for the B y positive case

  6. The Wonder and Enrichment of Teaching Wright Morris's "A Fight between a White Boy and a Black Boy in the Dusk of a Fall Afternoon in Omaha, Nebraska."

    Science.gov (United States)

    McCaffrey, Jerrine

    2001-01-01

    Outlines a teaching method for Wright Morris's "A Fight Between a White Boy and a Black Boy in the Dusk of a Fall Afternoon in Omaha, Nebraska." Proposes that the story provides and opportunity to introduce stream-of-consciousness writing and to convey the significance of memory recall. (PM)

  7. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF BZ. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers

  8. Organic Light-Emitting Diode with Color Tunable between Bluish-White Daylight and Orange-White Dusk Hue

    Directory of Open Access Journals (Sweden)

    Shih-Yun Liao

    2014-01-01

    Full Text Available The varying color of sunlight diurnally exhibits an important effect on circadian rhythm of living organisms. The bluish-white daylight that is suitable for work shows a color temperature as high as 9,000 K, while the homey orange-white dusk hue is as low as 2,000 K. We demonstrate in this report the feasibility of using organic light-emitting diode (OLED technology to fabricate sunlight-style illumination with a very wide color temperature range. The color temperature can be tuned from 2,300 K to 9,300 K, for example, by changing the applied voltage from 3 to 11 V for the device composing red and yellow emitters in the first emissive layer and blue emitter in the second. Unlike the prior arts, the color-temperature span can be made much wider without any additional carrier modulation layer, which should enable a more cost effective fabrication. For example, the color-temperature span is 7,000 K for the above case, while it is 1,700 K upon the incorporation of a nanoscale hole modulation layer in between the two emissive layers. The reason why the present device can effectively regulate the shifting of recombination zone is because the first emissive layer itself possesses an effective hole modulation barrier of 0.2 eV. This also explains why the incorporation of an extra hole modulation layer with a 0.7 eV barrier did not help extend the desirable color-temperature span since excessive holes may be blocked.

  9. M-I coupling across the auroral oval at dusk and midnight. Repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Sandholt, P.E. [Oslo Univ. (Norway). Dept. of Physics; Farrugia, C.J. [New Hampshire Univ., Durham (United Kingdom). Space Science Center; Denig, W.F. [NOAA, Boulder, CO (United States)

    2014-07-01

    We study substorms from two perspectives, i.e., magnetosphere-ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostroem type I centered at midnight and Bostroem type II maximizing at dawn and dusk) during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC) coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN) index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i) continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii) 'snapshot' satellite (DMSP F13) observations of FAC/precipitation/ion drift profiles, and (iii) observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δB{sub z}/δt) and the inferred large spatial scales (in radial and azimuthal dimensions) of the dipolarization process in these strong substorm expansions may lead to 50-100 kV enhancements of the

  10. M–I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2014-04-01

    Full Text Available We study substorms from two perspectives, i.e., magnetosphere–ionosphere coupling across the auroral oval at dusk and at midnight magnetic local times. By this approach we monitor the activations/expansions of basic elements of the substorm current system (Bostrøm type I centered at midnight and Bostrøm type II maximizing at dawn and dusk during the evolution of the substorm activity. Emphasis is placed on the R1 and R2 types of field-aligned current (FAC coupling across the Harang reversal at dusk. We distinguish between two distinct activity levels in the substorm expansion phase, i.e., an initial transient phase and a persistent phase. These activities/phases are discussed in relation to polar cap convection which is continuously monitored by the polar cap north (PCN index. The substorm activity we selected occurred during a long interval of continuously strong solar wind forcing at the interplanetary coronal mass ejection passage on 18 August 2003. The advantage of our scientific approach lies in the combination of (i continuous ground observations of the ionospheric signatures within wide latitude ranges across the auroral oval at dusk and midnight by meridian chain magnetometer data, (ii "snapshot" satellite (DMSP F13 observations of FAC/precipitation/ion drift profiles, and (iii observations of current disruption/near-Earth magnetic field dipolarizations at geostationary altitude. Under the prevailing fortunate circumstances we are able to discriminate between the roles of the dayside and nightside sources of polar cap convection. For the nightside source we distinguish between the roles of inductive and potential electric fields in the two substages of the substorm expansion phase. According to our estimates the observed dipolarization rate (δ Bz/δt and the inferred large spatial scales (in radial and azimuthal dimensions of the dipolarization process in these strong substorm expansions may lead to 50–100 kV enhancements of the

  11. Dawn-dusk asymmetry induced by the Parker spiral angle in the plasma dynamics around comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Behar, E.; Tabone, B.; Nilsson, H.

    2018-05-01

    When interacting, the solar wind and the ionised atmosphere of a comet exchange energy and momentum. Our aim is to understand the influence of the average Parker spiral configuration of the solar wind magnetic field on this interaction. We compare the theoretical expectations of an analytical generalised gyromotion with Rosetta observations at comet 67P/Churyumov-Gerasimenko. A statistical approach allows one to overcome the lack of upstream solar wind measurement. We find that additionally to their acceleration along (for cometary pick-up ions) or against (for solar wind ions) the upstream electric field orientation and sense, the cometary pick-up ions are drifting towards the dawn side of the coma, while the solar wind ions are drifting towards the dusk side of the coma, independent of the heliocentric distance. The dynamics of the interaction is not taking place in a plane, as often assumed in previous works.

  12. Multi-scale observations of magnetic reconnection: Cluster and MMS measurements of the reconnecting magnetopause at the subsolar region and dusk sector

    Science.gov (United States)

    Toledo Redondo, S.; Escoubet, C. P.; Lavraud, B.; Andre, M.; Coxon, J.; Fear, R. C.; Aunai, N.; Hwang, K. J.; Li, W.; Fuselier, S. A.; Giles, B. L.; Russell, C. T.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is a fundamental plasma process that couples the shocked solar wind to the Earth's magnetosphere, allowing the interchange of energy and mass. The X line of magnetic reconnection lies along the magnetopause but its extent and orientation are only partially understood, despite its importance for understanding global solar wind - magnetosphere coupling. We have identified a series of conjunctions between the MMS and Cluster missions where they crossed simultaneously the magnetopause at locations separated by several Earth radii: MMS spacecraft were in the subsolar region while Cluster were in the dusk flank. We identify signatures of reconnection at both spacecraft, allowing us to draw new conclusions about the extent, orientation and time variations of the X line along the magnetopause.

  13. Actin-based vesicular transport in the first 20 min after dusk is crucial for daily rhabdom synthesis in the compound eye of the grapsid crab Hemigrapsus sanguineus.

    Science.gov (United States)

    Matsushita, A; Arikawa, K

    1997-09-01

    In the crab Hemigrapsus sanguineus, maintained under a 12 h:12 h light:dark cycle, the amount of vesicular smooth endoplasmic reticulum (vesicular sER) in the photoreceptor cell body increases after the light is turned off. This paper demonstrates that actin filaments in the photoreceptor cell body are involved in the transport of vesicular sER towards the rhabdom. To specify the time of actin contribution to rhabdom synthesis, we disrupted the organization of actin filaments in the cell body with cytochalasin D at various time around dusk. We then measured the rhabdom size and also examined the ultrastructure of the photoreceptor cell body 3 h after extinguishing the light. When cytochalasin D was applied from either 1 h before or immediately after extinguishing the light, the rhabdom size did not increase, whereas vesicular sER accumulated in the cell body. In contrast, cytochalasin D applied to the eyes from 20 min after turning the light off did not inhibit rhabdom synthesis. These results indicate that the first 20 min after the light is turned off is particularly important for the transport of vesicular sER towards the rhabdom by the cell body actin filaments.

  14. Solar eclipse. The rise and 'dusk' of the Dutch PV innovation system

    Energy Technology Data Exchange (ETDEWEB)

    Negro, S.O.; Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Vasseur, V. [International Centre for Integrated Assessment and Sustainable Development, University Maastricht, P.O. Box 616, 6200 MD Maastricht (Netherlands); Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2012-07-01

    In this paper, we take the theoretical perspective of innovation system dynamics and apply this to Photovoltaic (PV) solar energy technology in the Netherlands. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build-up of innovation systems. We show that large fluctuations are present in the processes related to guidance of the search and market formation. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the implications for policy making.

  15. Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review

    Czech Academy of Sciences Publication Activity Database

    Walsh, A. P.; Haaland, S.; Forsyth, C.; Keesee, A. M.; Kissinger, J.; Li, K.; Runov, A.; Souček, Jan; Walsh, B. M.; Wing, S.; Taylor, M. G. G. T.

    2014-01-01

    Roč. 32, č. 7 (2014), s. 705-737 ISSN 0992-7689 R&D Projects: GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : magnetospheric physics * magnetosphere–ionosphere interactions * magnetospheric configuration and dynamics * solar-wind–magnetosphere interactions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.709, year: 2014 http://www.ann-geophys.net/32/705/2014/angeo-32-705-2014.html

  16. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    International Nuclear Information System (INIS)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; Manweiler, Jerry W.; Spence, Harlan E.

    2017-01-01

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

  17. From dusk till dawn: nocturnal and diurnal pollination in the epiphyte Tillandsia heterophylla (Bromeliaceae).

    Science.gov (United States)

    Aguilar-Rodríguez, P A; Krömer, T; García-Franco, J G; MacSwiney G, M C

    2016-01-01

    In order to compare the effectiveness of diurnal and nocturnal pollinators, we studied the reproductive biology and pollinators of Tillandsia heterophylla E. Morren, an epiphytic tank bromeliad endemic to southeastern Mexico. Since anthesis in T. heterophylla is predominantly nocturnal but lasts until the following day, we hypothesised that this bromeliad would receive visits from both diurnal and nocturnal visitors, but that nocturnal visitors would be the most effective pollinators, since they arrive first to the receptive flower, and that bats would be the most frequent nocturnal visitors, given the characteristics of the nectar. Flowering of T. heterophylla began in May and lasted until July. The species is fully self-compatible, with an anthesis that lasts for ca. 15-16 h. Mean volume of nectar produced per flower was 82.21 μl, with a mean sugar concentration of 6.33%. The highest volume and concentration of nectar were found at 20:00 h, with a subsequent decline in both to almost zero over the following 12-h period. T. heterophylla has a generalist pollination system, since at least four different morphospecies of visitors pollinate its flowers: bats, moths, hummingbirds and bees. Most of the pollinating visits corresponded to bats and took place in the early evening, when stigma receptivity had already begun; making bats the probable pollinator on most occasions. However, diurnal pollinators may be important as a 'fail-safe' system by which to guarantee the pollination of T. heterophylla. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Polarisation and propagation of Lion Roars in the dusk side Magnetosheath

    Czech Academy of Sciences Publication Activity Database

    Maksimovic, M.; Harvey, C. C.; Santolík, Ondřej; Lacombe, C.; De Conchy, Y.; Hubert, D.; Pantellini, F.; Cornilleau-Werhlin, N.; Dandouras, I.; Lucek, E. A.; Balogh, A.

    2001-01-01

    Roč. 19, - (2001), s. 1429-1438 ISSN 0992-7689 R&D Projects: GA ČR GA205/01/1064; GA MŠk ME 467 Institutional research plan: CEZ:AV0Z3042911 Keywords : Magnetospheric physics (magnetosheath * plasma waves and instabilities) * Radio science (radiowave propagation) Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.199, year: 2001

  19. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S.; Ragin, Ann B.; Hao, Zhifeng; Yang, Xiaowei

    2015-01-01

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases (i.e., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes. PMID:25927014

  20. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages.

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S; Ragin, Ann B; Hao, Zhifeng; Yang, Xiaowei

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases ( i.e ., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes.

  1. Vertical migration and dispersion of sprat ( Sprattus sprattus ) and herring ( Clupea harengus ) schools at dusk in the Baltic Sea

    DEFF Research Database (Denmark)

    Nilsson, Lars Anders Fredrik; Thygesen, Uffe Høgsbro; Lundgren, Bo

    2003-01-01

    , and that the dissolution of schools can be modelled by diffusion, i.e. active repulsion is not required. The field measurements were obtained during 3 days in March at one location in the Baltic Sea and included continuous hydroacoustical monitoring, trawl samples, and hydrographical CTD data. Echogram patterns were...

  2. Application of satellite remote sensing for mapping wind erosion risk and dusk emission-deposition in Inner Mongolia grassland, China

    NARCIS (Netherlands)

    Reiche, M.; Funk, R.; Zhang, Z.; Hoffmann, C.; Reiche, J.; Wehrhan, M.; Li, Y.; Sommer, M.

    2012-01-01

    Intensive grazing leads to land degradation and desertification of grassland ecosystems followed by serious environmental and social problems. The Xilingol steppe grassland in Inner Mongolia, China, which has been a sink area for dust for centuries, is strongly affected by the negative effects of

  3. Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds

    NARCIS (Netherlands)

    Da Silva, Arnaud; Samplonius, Jelmer Menno; Schlicht, Emmi; Valcu, Mihai; Kempenaers, Bart

    2014-01-01

    It is well established that artificial night lighting can influence animal orientation, but there is less information about its effects on other behaviors. Previous work suggested that light pollution can affect both seasonal and daily patterns of behavior. The aim of our study was to investigate

  4. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.

    Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  5. Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India

    Directory of Open Access Journals (Sweden)

    R. Sridharan

    2002-12-01

    Full Text Available The effects on the electrodynamics of the equatorial E- and F-regions of the ionosphere, due to the occurrence of the solar eclipse during sunset hours on 11 August 1999, were investigated in a unique observational campaign involving ground based ionosondes, VHF and HF radars from the equatorial location of Trivandrum (8.5° N; 77° E; dip lat. 0.5° N, India. The study revealed the nature of changes brought about by the eclipse in the evening time E- and F-regions in terms of (i the sudden intensification of a weak blanketing ES-layer and the associated large enhancement of the VHF backscattered returns, (ii significant increase in h' F immediately following the eclipse and (iii distinctly different spatial and temporal structures in the spread-F irregularity drift velocities as observed by the HF radar. The significantly large enhancement of the backscattered returns from the E-region coincident with the onset of the eclipse is attributed to the generation of steep electron density gradients associated with the blanketing ES , possibly triggered by the eclipse phenomena. The increase in F-region base height immediately after the eclipse is explained as due to the reduction in the conductivity of the conjugate E-region in the path of totality connected to the F-region over the equator along the magnetic field lines, and this, with the peculiar local and regional conditions, seems to have reduced the E-region loading of the F-region dynamo, resulting in a larger post sunset F-region height (h' F rise. These aspects of E-and F-region behaviour on the eclipse day are discussed in relation to those observed on the control day.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionospheric irregularities

  6. 75 FR 15721 - Back Bay National Wildlife Refuge, City of Virginia Beach, VA

    Science.gov (United States)

    2010-03-30

    ... advance scheduling, group educational opportunities. Outdoor facilities are open daily dawn to dusk... during January 2002. Meetings were advertised locally through news releases, paid [[Page 15722...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    To examine the simultaneous changes in the vertical electric field associated with this magnetic disturbance, the dawn–dusk potential is studied for every UT hours; the potential was obtained from Weimer model and SuperDARN radar. The comparison reveals the plausible situation for the superposition of dawn–dusk ...

  8. Effect of solar UV/EUV heating on the intensity and spatial distribution of Jupiter's synchrotron radiation

    Science.gov (United States)

    Kita, H.; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2013-10-01

    We analyzed the Very Large Array archived data observed in 2000 to determine whether solar ultraviolet (UV)/extreme ultraviolet (EUV) heating of the Jovian thermosphere causes variations in the total flux density and dawn-dusk asymmetry (the characteristic differences between the peak emissions at dawn and dusk) of Jupiter's synchrotron radiation (JSR). The total flux density varied by 10% over 6 days of observations and accorded with theoretical expectations. The average dawn-dusk peak emission ratio indicated that the dawn side emissions were brighter than those on the dusk side and this was expected to have been caused by diurnal wind induced by the solar UV/EUV. The daily variations in the dawn-dusk ratio did not correspond to the solar UV/EUV, and this finding did not support the theoretical expectation that the dawn-dusk ratio and diurnal wind velocity varies in correspondence with the solar UV/EUV. We tried to determine whether the average dawn-dusk ratio could be explained by a reasonable diurnal wind velocity. We constructed an equatorial brightness distribution model of JSR using the revised Divine-Garrett particle distribution model and used it to derive a relation between the dawn-dusk ratio and diurnal wind velocity. The estimated diurnal wind velocity reasonably corresponded to a numerical simulation of the Jovian thermosphere. We also found that realistic changes in the diurnal wind velocity could not cause the daily variations in the dawn-dusk ratio. Hence, we propose that the solar UV/EUV related variations were below the detection limit and some other processes dominated the daily variations in the dawn-dusk ratio.

  9. Long-term acoustical observations of the mesopelagic fish Maurolicus muelleri reveal novel and varied vertical migration patterns

    KAUST Repository

    Staby, A; Rø stad, Anders; Kaartvedt, Stein

    2011-01-01

    . The data revealed known patterns as normal diel vertical migration (DVM), midnight sinking between dusk and dawn, and periods without migrations, as well as novel behaviours consisting of early morning ascents, reverse diel vertical migrations

  10. External field characterization using CHAMP satellite data for ...

    Indian Academy of Sciences (India)

    The electrical conductivity of the subsurface can be investigated ... the field components have greater power in dusk ... Figure 3. Rotational transformation from GSM to SM frame. ..... second generation of the GFZ reference internal magnetic.

  11. Characteristics of > 290 keV magnetosheath ions

    Directory of Open Access Journals (Sweden)

    A. Rigas

    Full Text Available We performed a statistical analysis of 290-500 keV ion data obtained by IMP-8 during the years 1982-1988 within the earth's magnetosheath and analysed in detail some time periods withdistinct ion bursts. These studies reveal the following characteristics for magnetosheath 290-500 keV energetic ions: (a the occurrence frequency and the flux of ions increase with increasing geomagnetic activity as indicated by the Kp index; the occurrence frequency was found to be as high as P > 42% for Kp > 2, (b the occurrence frequency in the dusk magnetosheath was found to be slightly dependent on the local time and ranged between ~30% and ~46% for all Kp values; the highest occurrence frequency was detected near the dusk magnetopause (21 LT, (c the high energy ion bursts display a dawn-dusk asymmetry in their maximum fluxes, with higher fluxes appearing in the dusk magnetosheath, and (d the observations in the dusk magnetosheath suggest that there exist intensity gradients of energetic ions from the bow shock toward the magnetopause. The statistical results are consistent with the concept that leakage of magnetospheric ions from the dusk magnetopause is a semi-permanent physical process often providing the magnetosheath with high energy (290-500 keV ions.Key words. Magnetospheric physics (magnetosheath; planetary magnetospheres. Space plasma physics (shock waves.

  12. Quantitative simulation of a magnetospheric substorm 3. Plasmaspheric electric fields and evolution of the plasmapause

    International Nuclear Information System (INIS)

    Spiro, R.W.; Harel, M.; Wolf, R.A.; Reiff, P.H.

    1981-01-01

    Results of the Rice University substorm simulation have been used to investigate the penetration of substorm-associated electric fields into the plasmasphere. Near 4 R/sub E/ in the equatorial plane, our time dependent electric field model is characterized by eastward components in the dusk-midnight local time sector and westward components after midnight. Except for a small region just before dusk, the model predicts eastward electric field components throughout the daytime sector. The characteristic radial component is directed inward at all local times except for a small region just after dawn. These results compare favorably with available whistler and incoherent-scatter radar measurements obtained during magnetically disturbed periods. By assuming an initial plasmapause shape and by followig the computed E> x B> drift trajectories of plasma flux tubes from that initial boundary we have examined the short term evolution of the plasmapause during the substorm-like event of September 19, 1976. We find that narrow filamentary tails can be drawn out from the plasmasphere near dusk within hours of substorm onset. These tail-like appendages to the plasmasphere subsequently drift rapidly from the dusk sector toward the daytime magnetopause. Investigation of the large-scale time dependent flow of plasma in the evening sector indicates that some mid-latitude plasma flux tubes that drift eastward past the dusk terminator reverse their motion between dusk and midnight and begin to drift westward toward dusk. Such time dependent changes in flow trajectories may be related to the formation of F region ionization troughs

  13. Application of ground-truth for classification and quantification of bird movements on migratory bird habitat initiative sites in southwest Louisiana: final report

    Science.gov (United States)

    Barrow, Wylie C.; Baldwin, Michael J.; Randall, Lori A.; Pitre, John; Dudley, Kyle J.

    2013-01-01

    This project was initiated to assess migrating and wintering bird use of lands enrolled in the Natural Resources Conservation Service’s (NRCS) Migratory Bird Habitat Initiative (MBHI). The MBHI program was developed in response to the Deepwater Horizon oil spill in 2010, with the goal of improving/creating habitat for waterbirds affected by the spill. In collaboration with the University of Delaware (UDEL), we used weather surveillance radar data (Sieges 2014), portable marine radar data, thermal infrared images, and visual observations to assess bird use of MBHI easements. Migrating and wintering birds routinely make synchronous flights near dusk (e.g., departure during migration, feeding flights during winter). Weather radars readily detect birds at the onset of these flights and have proven to be useful remote sensing tools for assessing bird-habitat relations during migration and determining the response of wintering waterfowl to wetland restoration (e.g., Wetlands Reserve Program lands). However, ground-truthing is required to identify radar echoes to species or species group. We designed a field study to ground-truth a larger-scale, weather radar assessment of bird use of MBHI sites in southwest Louisiana. We examined seasonal bird use of MBHI fields in fall, winter, and spring of 2011-2012. To assess diurnal use, we conducted total area surveys of MBHI sites in the afternoon, collecting data on bird species composition, abundance, behavior, and habitat use. In the evenings, we quantified bird activity at the MBHI easements and described flight behavior (i.e., birds landing in, departing from, circling, or flying over the MBHI tract). Our field sampling captured the onset of evening flights and spanned the period of collection of the weather radar data analyzed. Pre- and post-dusk surveys were conducted using a portable radar system and a thermal infrared camera. Landbirds, shorebirds, and wading birds were commonly found on MBHI fields during diurnal

  14. Relationship between PC index and magnetospheric field-aligned currents measured by Swarm satellites

    DEFF Research Database (Denmark)

    Troshichev, О.; Sormakov, D.; Behlke, R.

    2018-01-01

    Abstract The relationship between the magnetospheric field-aligned currents (FAC) monitored by the Swarm satellites and the magnetic activity PC index (which is a proxy of the solar wind energy incoming into the magnetosphere) is examined. It is shown that current intensities measured in the R1...... between the PC index and the intensity of field-aligned currents in the R1 dawn and dusk layers: increase of FAC intensity in the course of substorm development is accompanied by increasing the PC index values. Correlation between PC and FAC intensities in the R2 dawn and dusk layers is also observed...

  15. Short communications

    African Journals Online (AJOL)

    At 18:30 (dusk) on 20 September 2007, six African Sheath-tailed Bats. Coleura afra which weigh between 10 and 12 g (Dunlop 1997) were observed leaving their day roost located under the roof of the residential house of the research station. (NB: the bats were identified from digital pictures and videos using the Kingdon ...

  16. Dendrohyrax arboreus

    African Journals Online (AJOL)

    with red paper to reduce glare, were automatically switched on at dusk and off at dawn. A minimum-maximum thermo- ... Eight categories of behaviour patterns were recognized: (i) Resting; lying in various positions within or .... Communication in the bat-eared fox Otocyon mega/otis. Symposium on Animal Communication, ...

  17. Flowering T Flowering Trees

    Indian Academy of Sciences (India)

    Adansonia digitata L. ( The Baobab Tree) of Bombacaceae is a tree with swollen trunk that attains a dia. of 10m. Leaves are digitately compound with leaflets up to 18cm. long. Flowers are large, solitary, waxy white, and open at dusk. They open in 30 seconds and are bat pollinated. Stamens are many. Fruit is about 30 cm ...

  18. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  19. Spatial distribution of upstream magnetospheric ≥50 keV ions

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We present for the first time a statistical study of \\geq50 keV ion events of a magnetospheric origin upstream from Earth's bow shock. The statistical analysis of the 50-220 keV ion events observed by the IMP-8 spacecraft shows: (1 a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT of the bow shock, (2 highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF configuration, and (3 a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s-1 and values of the index Kp > 2. The statistical results are consistent with (1 preferential leakage of ~50 keV magnetospheric ions from the dusk magnetopause, (2 nearly scatter free motion of ~50 keV ions within the magnetosheath, and (3 final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290-500 keV upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between ~16%-~34% in the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  20. Morphological characteristics of the antennal flagellum and its ...

    Indian Academy of Sciences (India)

    dusk and were stored dry in sealed glass tubes with silica .... La, labium; Lr, labrum; Md, mandible; Mx, maxilla; Oc, compound eyes; Pc, epicranium; Pl, pedicel; Sp, scape; Tr, long ..... cal distribution and the prevalence of the disease in a few.

  1. Visibility conditions and diel period affect small-scale spatio-temporal behaviour of pike Esox lucius in the absence of prey and conspecifics

    DEFF Research Database (Denmark)

    Nilsson, P A; Baktoft, Henrik; Boel, Mikkel

    2012-01-01

    Pike Esox lucius in the absence of prey and conspecifics were shown to have the highest habitat-change activity during dusk and to decrease preference for complex habitats in turbid water. As the behaviours indicate routine responses in the absence of behavioural interactions, E. lucius spatio...

  2. State Regulation of Heliport Design

    Science.gov (United States)

    2001-05-01

    Arpt Lgt Sked: Dusk-Dawn 81. Schedule for beacon; if lights on different from beacon list as a remark. If no beacon list light schedule. 82. Unicorn ...continued importance of hospital heliports and the rapidly growing use of instrument approach/departure procedures at such sites, is it appropriate

  3. What goes down must come up: symmetry in light-induced migration behaviour of Daphnia

    NARCIS (Netherlands)

    Van Gool, E.; Ringelberg, J.

    2003-01-01

    During a short period of the year, Daphnia may perform a phenotypically induced diel vertical migration. For this to happen, light-induced swimming reactions must be enhanced both at dawn and at dusk. Enhanced swimming in response to light intensity increase can be elicited by fish-associated

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Two extreme situations can be identified concerning the solar illumination of the lunar orbit,noon/midnight orbit,where the Sun vector is parallel to the spacecraft orbit plane and dawn/dusk orbit,where the Sun vector is perpendicular to the spacecraft orbit plane.This scenario directly affects the solar panel configuration.

  5. The effect of wind on foraging activity of the tenebrionid beetle ...

    African Journals Online (AJOL)

    1997-10-06

    C at the first observations to 23-28D C at dusk. A number of beetle species are known to occur on Kahani dune. Only three species were seen on this site during the. 137 period of observation, namely, Lepidochora discoidalis ...

  6. The near-earth magnetic field at 1980 determined from Magsat data

    Science.gov (United States)

    Langel, R. A.; Estes, R. H.

    1985-01-01

    Data from the Magsat spacecraft for November 1979 through April 1980 and from 91 magnetic observatories for 1978 through 1982 are used to derive a spherical harmonic model of the earth's main magnetic field and its secular variation. Constant coefficients are determined through degree and order 13 and secular variation coefficients through degree and order 10. The first degree external terms and corresponding induced internal terms are given as a function of Dst. Preliminary modeling using separate data sets at dawn and dusk local time showed that the dusk data contains a substantial field contribution from the equatorial electrojet current. The final data set is selected first from dawn data and then augmented by dusk data to achieve a good geographic data distribution for each of three time periods: (1) November/December, 1979; (2) January/February, 1980; (3) March/April, 1980. A correction for the effects of the equatorial electrojet is applied to the dusk data utilized. The solution included calculation of fixed biases, or anomalies, for the observation data.

  7. Cytokinin treatment and flower quality in Phalaenopsis orchids ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... We previously documented an N-6-benzyladenine (BA) protocol to increase spike and flower number in. Phalaenopsis .... Sigma) at dusk. The powders of BA, Kin, and 2-. iP were each dissolved in 1 N NaOH and diluted for spraying. The duration to anthesis, spike and flower number, spike length. (from the ...

  8. Spatial distribution of upstream magnetospheric ≥50 keV ions

    Directory of Open Access Journals (Sweden)

    G. Kaliabetsos

    Full Text Available We present for the first time a statistical study of geq50 keV ion events of a magnetospheric origin upstream from Earth's bow shock. The statistical analysis of the 50-220 keV ion events observed by the IMP-8 spacecraft shows: (1 a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT of the bow shock, (2 highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF configuration, and (3 a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s-1 and values of the index Kp > 2. The statistical results are consistent with (1 preferential leakage of ~50 keV magnetospheric ions from the dusk magnetopause, (2 nearly scatter free motion of ~50 keV ions within the magnetosheath, and (3 final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290-500 keV upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between ~16%-~34% in the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  9. Circulation of the polar thermosphere during geomagnetically quiet and active times as observed by Dynamics Explorer 2

    International Nuclear Information System (INIS)

    McCormac, F.G.; Killeen, T.L.; Thayer, J.P.; Hernandez, G.; Tschan, C.R.; Ponthieu, J.J.; Spencer, N.W.

    1987-01-01

    Neutral wind measurements obtained by instruments on board the Dynamics Explorer 2 (DE 2) spacecraft have been used to study the effects of geomagnetic activity on the circulation of the high-latitude neutral thermosphere for solar maximum conditions during the periods of November 1981 through January 1982 and November 1982 through January 1983. The data have been sorted and ordered according to the two geophysical indices Kp and (auroral electrojet) AE. Simple expressions have been derived which describe (1) the maximum antisunward wind speed in the geomagnetic polar cap, (2) the maximum sunward wind speeds in the dawn and dusk sectors of the auroral oval, and (3) the latitudinal extent of the polar cap antisunward neutral wind as functions of Kp and AE. The results show a positive correlation between the geomagnetic indices and the three characteristic features of the neutral circulation described above. Averaged vector wind fields in geomagnetic coordinates for Kp ≤ 2 and Kp ≥ 4 in both northern and southern hemispheres for the 6 months have been derived from the data. In doing this, a first-order invariance of the neutral wind circulation in geomagnetic coordinates as a function of universal time (UT) was assumed. The results show a two-cell circulation pattern in the northern winter hemisphere for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. A diminution of this cell occurs for reduced levels of geomagnetic activity

  10. Is the sex communication of two pyralid moths, Plodia interpunctella and Ephestia kuehniella, under circadian clock regulation?

    Science.gov (United States)

    Závodská, Radka; Fexová, Silvie; von Wowern, Germund; Han, Gui-Biao; Dolezel, David; Sauman, Ivo

    2012-06-01

    Females of the Indian meal moth, Plodia interpunctella, and females of the Mediterranean flour month, Ephestia kuehniella (both Lepidoptera: Pyralidae), exhibit daily rhythms in calling behavior. The peak in P. interpunctella calling occurs at dusk, whereas E. kuehniella calls preferentially at dawn. This behavior turned arrhythmic in P. interpunctella females in constant darkness (DD) and remained arrhythmic in constant light (LL), whereas E. kuehniella females showed a persistent rhythm in DD and suppression of the behavior in LL, indicating regulation by a circadian clock mechanism. The rhythm of male locomotor activity corresponded well with the sexual activity of females, reaching the peak at dusk in P. interpunctella and at dawn in E. kuehniella. An immunohistochemical study of the pheromone biosynthesis activating neuropeptide, corazonin, and pigment dispersing factor revealed distinct sets of neurons in the brain-subesophageal complex and in the neurohemal organs of the 2 species.

  11. Interactions of Insolation and Shading on Ability to Use Fluorescence Imaging to Detect Fecal Contaminated Spinach

    Directory of Open Access Journals (Sweden)

    Alan M. Lefcourt

    2017-10-01

    Full Text Available Fecal contamination of produce in fields is a recognized food safety risk, and it is a requirement that fields be surveyed for evidence of fecal contamination. It may be possible to increase the efficacy of such surveys using imaging techniques that rely on detection of fluorescence responses of fecal material to UV excitation. However, fluorescence responses are easily masked by ambient illumination. This study investigated the potential of using a shroud to reduce the impact of ambient illumination on responses measured using relatively inexpensive optical components. During periods of near peak insolation, even with full shrouding, results indicate that reliable detection would be problematic. Towards dusk, effective imaging could be accomplished even with a gap of 250 cm at the bottom of the shroud. Results suggest that imaging using relatively inexpensive components could provide the basis for detection of fecal contamination in produce fields if surveys were conducted during dawn or dusk, or at night.

  12. Statistical study of ion pitch-angle distributions

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Mcentire, R.W.; Lui, A.T.Y.; Krimigis, S.M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt. 9 references

  13. Observations of Energetic Particle Escape at the Magnetopause: Early Results from the MMS Energetic Ion Spectrometer (EIS)

    Science.gov (United States)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; hide

    2016-01-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  14. Don't go with the Flow: An Invitation to Magnetosheath and Foreshock Studies

    Science.gov (United States)

    Sibeck, D. G.

    2010-01-01

    This talk reviews the predictions of gasdynamic, magnetohydrodynamic, and kinetic models for the magnetosheath and foreshock and compares these predictions with observations by the recent Cluster and THEMIS missions. Topics of interest include: the depletion layer, dawn/dusk asymmetries, the transmission of solar wind discontinuities, the formation of hot flow anomalies and cavities in the foreshock, and flows accelerated by field-line tension. We conclude by discussing opportunities for magnetosheath imaging.

  15. Hemidactylus frenatus (Squamata: Gekkonidae): call frequency, movement and condition of tail in Costa Rica

    OpenAIRE

    Caty Frenkel

    2006-01-01

    Call frequency and movements of the gecko Hemidactylus frenatus were studied in Punta Morales, Costa Rica from April 1999 through May 2000. Call activity of H. frenatus was positively related to air temperature at night and throughout the year. Higher activity was at dusk, dawn, and during the hottest months. Call frequency was related with gecko abundance per month, although not during the night. More males and females had a regenerated tail compared to juveniles, the last ones could have it...

  16. Geometry of duskside equatorial current during magnetic storm main phase as deduced from magnetospheric and low-altitude observations

    Directory of Open Access Journals (Sweden)

    S. Dubyagin

    2013-03-01

    Full Text Available We present the results of a coordinated study of the moderate magnetic storm on 22 July 2009. The THEMIS and GOES observations of magnetic field in the inner magnetosphere were complemented by energetic particle observations at low altitude by the six NOAA POES satellites. Observations in the vicinity of geosynchronous orbit revealed a relatively thin (half-thickness of less than 1 RE and intense current sheet in the dusk MLT sector during the main phase of the storm. The total westward current (integrated along the z-direction on the duskside at r ~ 6.6 RE was comparable to that in the midnight sector. Such a configuration cannot be adequately described by existing magnetic field models with predefined current systems (error in B > 60 nT. At the same time, low-altitude isotropic boundaries (IB of > 80 keV protons in the dusk sector were shifted ~ 4° equatorward relative to the IBs in the midnight sector. Both the equatorward IB shift and the current strength on the duskside correlate with the Sym-H* index. These findings imply a close relation between the current intensification and equatorward IB shift in the dusk sector. The analysis of IB dispersion revealed that high-energy IBs (E > 100 keV always exhibit normal dispersion (i.e., that for pitch angle scattering on curved field lines. Anomalous dispersion is sometimes observed in the low-energy channels (~ 30–100 keV. The maximum occurrence rate of anomalous dispersion was observed during the main phase of the storm in the dusk sector.

  17. Adverse health effects associated with Islamic fasting -A literature review

    OpenAIRE

    Nania Mohamed Pakkir Maideen; Aََََbdurazak Jumale; Rajkapoor Balasubramaniam

    2017-01-01

    Introduction: Millions of Muslims across the world observe Islamic fasting during the holy month of Ramadan, as well as the other specific dates in the lunar calendar year. While fasting during this month, Muslims refrain from eating or drinking from dawn to dusk. Islamic fasting is similar to alternate day fasting (ADF) since it incorporates an average of 12 hours of fasting and 12 hours of feasting periods. This present review study is aimed to find out the common adverse health effects ass...

  18. The Magnetic Local Time Distribution of Energetic Electrons in the Radiation Belt Region

    Science.gov (United States)

    Allison, H. J.

    2017-12-01

    Using fourteen years of electron flux data from the National Oceanic and Atmospheric Administration Polar Operational Environmental Satellites (POES), a statistical study of the magnetic local time (MLT) distribution of the electron population is performed across a range of activity levels, defined by AE, AE*, Kp, solar wind velocity (Vsw), and VswBz. Three electron energies (>30, >100, and >300 keV) are considered. Dawn-dusk flux asymmetries larger than order of magnitude were observed for >30 and >100 keV electrons. For >300 keV electrons, dawn-dusk asymmetries were primarily due to a decrease in the average dusk-side flux beyond L* ˜ 4.5 that arose with increasing activity. For the >30 keV population, substorm injections enhance the dawn-side flux, which may not reach the dusk-side as the electrons can be on open drift paths and lost to the magnetopause. The asymmetries in the >300 keV population are attributed to the combination of magnetopause shadowing and >300 keV electron injections by large electric fields. We suggest that 3D radiation belt models could set the minimum energy boundary (Emin) to 30 keV or above at L* ˜6 during periods of low activity. However, for more moderate conditions, Emin should be larger than 100 keV and, for very extreme activities, ˜300 keV. Our observations show the extent that in-situ electron flux readings may vary during active periods due to the MLT of the satellite and highlight the importance of 4D radiation belt models to fully understand radiation belt processes.

  19. Cluster Observations of Particle Injections in the Exterior Cusp

    Science.gov (United States)

    Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.

    2014-12-01

    The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process takes place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is taking place near the exterior cusp.

  20. Medical Effects and Dosimetric Data from Nuclear Tests at Semipalatinsk

    Science.gov (United States)

    2006-10-01

    5 7 2 Displaced sex organs 3 11 7 Uterine prolapse and varicose labial veins 5 7 7 Total 130 273 119 The colpitis observed in middle-aged women was...breathing, and eye irritation. The skies were overcast and dusk fell; the cattle were restless, and howling dogs , their tails between their legs, would...Fibrocystic changes of the ovary 4 5 -- Cervical canal polyps 2 2 6 Uterine fi bromyoma 8 10 4 Posthysterectomy changes (radical hys- terectomy for cancer

  1. The tragedy of Julius Caesar: power, ideal and treason

    Directory of Open Access Journals (Sweden)

    Luís Roberto Barroso

    2018-01-01

    Full Text Available This paper briefly revisits the plot of William Shakespeare’s play The Tragedy of Julius Caesar and seeks to reflect on power and human behavior at the dusk of the Roman Republic. The play, in fact, portrays the tragedy of Brutus, who, moved by idealism and the impetus to protect the Republic, betrayed Caesar and participated in the conspiracy to kill him. The article ends with considerations about love, ideal and treason.

  2. The impact of quality of work life on the perfomance of employees of a South African Revenue Services branch / M P Khimba

    OpenAIRE

    Khimba, M P

    2011-01-01

    The pursuit for improved productivity through human resources has its beginning in the early 1900's. Taylor's scientific management principles created an awareness regarding human resources. It was earlier considered as a mere instrument of production ready to work from dawn to dusk under whatever conditions and being motivated by the lure of money. From then onwards research and experiments have been undertaken to understand human beings at work and the ways to improve their j...

  3. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    Science.gov (United States)

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  4. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Larsen, M.F.

    1991-01-01

    A spectral, time-varying thermospheric general circulation model has been used to study the nonlinear interaction at high latitudes between the tides propagating into the thermosphere from below and the circulation induced by magnetospheric forcing and in situ solar heating. The model is discrete in the vertical with 27 layers spaced by half a scale height. In the horizontal, the fields are expanded in a series of spherical harmonics using a triangular truncation at wave number 31, equivalent to a homogeneous global resolution with a minimum wavelength of 1,270 km. A hypothetical uniform grid point model would require a horizontal spacing of 417 km to describe the same minimum wavelength. In the high-latitude F region the tides affect the dusk vortex of the neutral flow very little, but the dawn vortex is either suppressed or amplified dependent upon the universal time and tidal phase. In the E region neutral flow, both the dusk and dawn vortices are shifted in local time by the tides, again as a function of universal time and tidal phase. At dusk a nonlinear amplification of the sunward winds occurs for certain combination of parameters, and at dawn the winds may be completely suppressed. Below 120 km altitude the magnetospheric forcing creates a single cyclonic vortex which is also sensitive to the high-latitude tidal structure

  5. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri.

    Science.gov (United States)

    Le Bihan, Thierry; Hindle, Matthew; Martin, Sarah F; Barrios-Llerena, Martin E; Krahmer, Johanna; Kis, Katalin; Millar, Andrew J; van Ooijen, Gerben

    2015-12-01

    Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975). © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dog and Cat Interactions in a Remote Aboriginal Community

    Directory of Open Access Journals (Sweden)

    Brooke Kennedy

    2018-04-01

    Full Text Available This study examined dog and cat demographics, roaming behaviours, and interspecific interactions in a remote Aboriginal island community using multiple methods. Our results revealed temporal differences between the roaming behaviours of dogs, cats, and wildlife. Dogs showed crepuscular behaviour, being active around dawn (5:30 a.m. to 9:30 a.m. and dusk (6:00 p.m. and 11:35 p.m.. The majority of cats were active between dawn (6:30 a.m. and dusk (7:30 p.m. and travelled shorter distances than dogs. However, some cats were also observed roaming between dusk and dawn, and were likely to be hunting since flightless wildlife were also recorded on our remote-sensing cameras during this time. These baseline data provide evidence to suggest that new management programs are needed to reduce the number of roaming cats and therefore their potential impacts on native wildlife. Collaborations between Aboriginal owners and other stakeholders is necessary to design innovative and effective animal management and policy on the island.

  7. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  8. Seasonal dependence of high-latitude electric fields

    International Nuclear Information System (INIS)

    de la Beaujardiere, O.; Leger, C.; Alcayde, D.; Fontanari, J.

    1991-01-01

    The seasonal dependence of the high-latitude electric field was investigated using Sondrestrom incoherent scatter radar data. Average ExB drifts were derived from 5 years of measurements centered around solar minimum. The electrostatic potentials that best fit the observed average electric field were calculated. It was found that the large-scale convection pattern significantly changes with season. This change involves the overall shape of the convection pattern, as well as the electric field intensity, and thus the total dawn-dusk potential across the polar cap. The cross polar cap potential drop is largest in fall, followed by winter, spring and summer. The small difference found between the summer and winter cross polar cap potential can be attributed to differing field-aligned potential drops. In view of the well-known relationship between field-aligned currents and parallel potential drop, this is consistent with the observations that Birkeland currents are larger in the summer than in winter. Changes in the overall shape of the convection pattern are consistent with the simple notion that the whole pattern is shifted toward the nightside as well as, to a lesser extent, toward the dawnside in summer as compared to winter. This assumption is based on the following observed effects: (1) The rotation of the overall convection pattern toward earlier local times with respect to the noon-midnight direction is maximum for summer on the dayside. (2) On the nightside, the Harang discontinuity is typically located within the radar field of view (Λ=67 to 82) in the winter averaged patterns, but it is equatorward of the field of view in summer. (3) The line that joins the dawn and dusk potential maxima is shifted toward the midnight sector in summer as compared to winter by about 5 degree. (4) In the dawn cell, the latitude of the convection reversal is the lowest during summer; in the dusk cell the latitude of the reversal is the lowest during winter

  9. Improving car drivers' perception of motorcycle motion through innovative headlight configurations.

    Science.gov (United States)

    Cavallo, Viola; Ranchet, Maud; Pinto, Maria; Espié, Stéphane; Vienne, Fabrice; Dang, Nguyen-Thong

    2015-08-01

    The most frequent cause of motorcycle accidents occurs when another vehicle violates the motorcycle's right-of-way at an intersection. In addition to detection errors, misperception of the approaching motorcycle's speed and time-to-arrival is another driver error that accounts for these accidents, although this error has been studied less often. Such misperceptions have been shown to be related to the small size of motorcycles and to their small angular velocity when approaching. In two experiments we tested the impact of different motorcycle headlight configurations in various ambient lighting conditions (daytime, dusk, and nighttime). The participants drove on a driving simulator and had to turn left across a line of vehicles composed of motorcycles and cars. The motorcycles were approaching at different speeds and were equipped with either a "standard" headlight, a "horizontal" configuration (added to the standard headlight were two lights on the rearview mirrors so as to visually increase the horizontal dimension of the motorcycle), a "vertical" configuration (one light on the rider's helmet and two lights on the fork were added to the standard headlight so as to increase the vertical dimension of the motorcycle), or a "combined" configuration (combining the horizontal and vertical configurations). The findings of the first experiment in nighttime conditions indicated that both the vertical and combined configurations significantly increased the gap car drivers accepted with respect to the motorcycle as compared to the standard configuration, and that the accepted gaps did not differ significantly from those accepted for cars. The advantage of the vertical and combined configurations showed up especially when the motorcycle's approach speed was high. The findings of the second experiment in dusk and daytime conditions indicated similar patterns, but the headlight-configuration effect was less pronounced at dusk, and nonsignificant during the day. The results

  10. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  11. Cassini Radio Occultations of Saturn's Ionosphere: Modeling a Variable Influx of Water into Saturn's Atmosphere

    Science.gov (United States)

    Moore, L.; Mendillo, M.

    2006-12-01

    The Saturn-Thermosphere-Ionosphere-Model (STIM), a global circulation model (GCM) of Saturn's upper atmosphere, is used to investigate a range of possible parameters that could lead to the profiles measured recently by the Radio Science Subsystem (RSS) aboard Cassini. Specifically, electron density observations of Saturn's equatorial ionosphere demonstrate a dawn/dusk asymmetry, a possible double peak, and a high degree of vertical structure and variability. On average, peak electron densities are larger at dusk than dawn (5400 cm-3 vs. 1700 cm-3) and the peak altitudes are lower at dusk than dawn (1880 km vs. 2360 km). Self-consistent, time-dependent 1D water diffusion calculations have been combined with the GCM in order to examine the possibility that a topside flux of neutral water into Saturn's atmosphere may provide a loss mechanism -- via charge exchange with protons -- that is sufficient to reproduce the observed ionosphere. Our previous modeling results indicated that a constant background influx of (0.5 -- 1.0) x 107 H2O cm-2 sec-1 was adequate in reproducing Cassini measurements on average [Moore et al., 2006], however the large observed variations in the vertical electron density profiles require additional complexities in the modeling. In this study we show that one possible source of the structuring observed in the electron density profiles could be from brief surges and/or reductions in the background water flux, which ultimately may be linked to geysers near Enceladus' southern pole. Moore, L., A.F. Nagy, A.J. Kliore, I. Mueller-Wodarg, J.D. Richardson, M. Mendillo (2006), Cassini radio occultations of Saturn's ionopshere: I. model comparisons using a constant water flux, submitted to GRL.

  12. Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field

    Science.gov (United States)

    El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  13. Local time dependence of the thermal structure in the Venusian equatorial region revealed by Akatsuki radio occultation measurements

    Science.gov (United States)

    Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.

    2017-12-01

    The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.

  14. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  15. Observations of subauroral ionospheric dynamics during SED plume passage at Millstone Hill

    Science.gov (United States)

    Zhang, S.; Erickson, P. J.; Coster, A. J.

    2017-12-01

    Storm enhanced density (SED) is a characteristic ionospheric storm time structure, with a significant plasma density enhancement in a narrow zone. SED structures often (but not always) span the continental US with a base in the US northeast at the afternoon and dusk sector, extending westward or northwest into the high latitude dayside cusp region. It is a typical and repeatable space weather phenomenon occurring during the main phase of magnetic storms with intensity ranging from active to disturbed levels. Observations of stormtime ionospheric density enhancement at subauroral latitudes have a long history, and were termed the 'dusk effect' until relatively recently, when dense networks of GNSS receivers have allowed us to view this structure with much finer spatial and temporal resolution. The formation of a SED plume is a topic under intensive community investigation, but in general it is believed that stormtime ionospheric dynamics and processes within the coupling magnetosphere-ionosphere-thermosphere system are responsible. For instance, poleward and sunward plasma drifts at the edge of the expanded dusk sector high-latitude convection can be important. Subauroral polarization stream (SAPS) are often observed at the poleward edge of the SED plume where ionospheric conductivity is low. SAPS is a huge westward ion flow that can convect ionospheric plasma from the afternoon or evening sector where solar photoionization production is waning, creating low density or density troughs. Stormtime penetration electric fields also exist, creating enhanced low and mid latitude upward ion drifts that move ionospheric plasma upward from the low altitude region where they are produced. This provides another important ionization source to contribute to maintaining the SED plume. This paper will provide analysis of the relative strength of these factors by using joint datasets of current geospace storm events obtained with the Millstone Hill incoherent scatter radar, GNSS

  16. Opening the cusp. [using magnetic field topology

    Science.gov (United States)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  17. Seasonal abundance of crustaceans associated with artisanal fishery of blue crab (Callinectes sapidus) in Sisal, Yucatan, Mexico

    OpenAIRE

    Celis-Sánchez, José Alfredo; Estrella-Canto, Arely de Jesús; Poot-López, Gaspar Román; González-Salas, Carlos; López-Rocha, Jorge Alberto

    2014-01-01

    Seasonal abundance and selectivity of the main crustacean species associated with blue crab fishing was studied at the port of Sisal, Yucatan, Mexico. For this purpose, 52 crab traps were used, which were divided into four parallel transects placed 100, 150, 200 and 250 m of the shoreline. Each transect consisted of 13 traps 20 m from each other. Traps were set at dusk and checked at dawn, standardizing the fishing effort to 17 hours/trap/day. A total of 832 organisms from eight species were ...

  18. Ramadan fasting and dental treatment considerations: a review.

    Science.gov (United States)

    Shaeesta, Khaleelahmed Bhavikatti; Prabhuji, M Lv; Shruthi, J R

    2015-01-01

    During the sacred month of Ramadan, Muslims abstain from the consumption of food from dawn until dusk. Extended fasting hours produce changes in the body's metabolism during this period. A majority of the population who fast also restrict themselves from undergoing dental treatments due to a fear of breaking the fast. Even among health professionals, a certain amount of uncertainty prevails about the implications of treating a patient who is fasting. To help clinicians carry out safe and effective treatment without hampering a patient's religious beliefs, the present article focuses on the effect of Ramadan fasting on the body's metabolism and the ramifications for treatment aspects, including medications and dental procedures.

  19. Local time asymmetry of Pc 4--5 pulsations and associated particle modulations at synchronous orbit

    International Nuclear Information System (INIS)

    Kokubun, S.; Erickson, K.N.; Fritz, T.A.; McPherron, R.L.

    1989-01-01

    Magnetic field and particle flux observations on board ATS 6 at synchronous altitude are used to examine the dawn-dusk asymmetry of characteristics of Pc 4--5 waves and associated particle flux modulation. Most waves at synchronous orbit having ground correlations are polarized in the azimuthal direction (A class) and are usually detected in the dawn sector. Waves with a radially oriented polarization ellipse (R-class) are almost never observed near the subsatellite point on the ground, except for the regular pulsations known as giant pulsation Pg, observed in the early morning. R class Pc 4 waves occur at all local times and have an occurrence peak in the afternoon

  20. Solar wind energy and electric field transfer to the Earth's magnetosphere VIA magnetopause reconnection

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.

    1981-01-01

    Some general expressions for the convection and parallel electric fields as well as for the energy transfer, due to magnetopause reconnection, are derived using a nose-reconnection model that takes into account the presence of the clefts. For the case of equal geomagnetic and magnetosheath field amplitudes, the expression for the power dissipated by the convection electric field reduces to the substorm parameter e widely discussed in the recent literature. This result suggests that magnetopause reconnection is defined at the nose with a tilted reconnection line, but that the convection electric field is related only to the dawn-dusk component of the reconnection electric field, as defined at high latitudes

  1. Studying internal and external magnetic fields in Japan using MAGSAT data

    Science.gov (United States)

    Fukushima, N. (Principal Investigator); Maeda, H.; Yukutake, T.; Tanaka, M.; Oshima, S.; Ogawa, K.; Kawamura, M.; Miyazaki, Y.; Uyeda, S.; Kobayashi, K.

    1980-01-01

    Examination of the total intensity data of CHRONIT on a few paths over Japan and its neighboring sea shows MAGSAT is extremely useful for studying the local magnetic anomaly. In high latitudes, the signatures of field aligned currents are clearly recognized. These include (1) the persistent basic pattern of current flow; (2) the more intense currents in the summer hemisphere than in the winter hemisphere; (3) more fluctuations in current intensities in summer dawn hours; and (4) apparent dawn-dusk asymmetry in the field-aligned current intensity between the north and south polar regions.

  2. Coherent radar observations of a storm sudden commencement having a preliminary reverse impulse

    International Nuclear Information System (INIS)

    McDiarmid, D.R.; Nielsen, E.

    1987-01-01

    Observations of the February 4, 1983, storm sudden commencement (ssc) by the STARE and SABRE radar systems are presented. The observing stations were in the dusk sector, where the ssc was accompanied by a preliminary reverse impulse (PRI). The radar data show the PRI to be a consequence of the ssc compression wave producing an initial antisunward flow. The polarization of the ssc electric field in the ionosphere is seen to have both longitudinal and latitudinal structure. The observations are discussed in terms of the propagation of the ssc disturbance throughout the magnetosphere

  3. Van Allen Probes Measurements of Energetic Particle Deep Penetration Into the Low L Region (L Storm on 8 April 2016

    Science.gov (United States)

    Zhao, H.; Baker, D. N.; Califf, S.; Li, X.; Jaynes, A. N.; Leonard, T.; Kanekal, S. G.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    Using measurements from the Van Allen Probes, a penetration event of tens to hundreds of keV electrons and tens of keV protons into the low L shells (L electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L shells, should be MLT localized.

  4. Low energy plasma observations at synchronous orbit

    International Nuclear Information System (INIS)

    Reasoner, D.L.; Lennartsson, W.

    1977-08-01

    The University of California at San Diego Auroral Particles Experiment on the ATS-6 Satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and plasma sheet populations. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods, this low energy plasma is often observed flowing sunward. In the dusk sector, enhanced plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection. (author)

  5. Solar wind energy transfer to the earth magnetosphere due to the magnetic junction in the magnetopause

    International Nuclear Information System (INIS)

    Gonzalez, A.L.C. de; Gonzalez-Alarcon, W.D.; Jardim, M.V.A.

    1983-01-01

    An expression for the energy transfer due to magnetopause reconnection, as well as related expressions for the convection and parallel electric fields, are presented. These expressions are derived from a reconnection model centered at the magnetopause nose, and that considers the presence of the clefts. The expression for the convection - electric field - related energy transfer reduces to the substorm parameter epsilon for the special case of equal magnetosheath and geomagnetic field amplitudes. This result suggests that the reconnection electric field is transmitted along a tilted reconnection line, but that the convection field is only related to the 'dawn to dusk' component of the reconnection - electric field. (Author) [pt

  6. Signatures of electric fields from high and low altitude particle distributions

    International Nuclear Information System (INIS)

    Mizera, P.F.; Fennell, J.F.

    1977-01-01

    Measurements of high altitude (<1.3 R/sub e/) ions and electrons at auroral energies are used to provide evidence of parallel electric field acceleration over the dusk to midnight auroral regions for both the north and south hemispheres. The data, taken on August 12, 1976 by charged particle spectrometers on the S3-3 satellite, show evidence of potential differences of approx.2 kV below and approx.1 kV above a satellite altitude of 7300 km

  7. La Cascade Restaurant at the Sheen Falls Lodge Hotel Dinner Menu, Winter, 2012

    OpenAIRE

    Sheen Falls Hotel

    2012-01-01

    “La Cascade Restaurant is one of the best restaurants in Kerry, Ireland boasting an elegant, classical dining room at Sheen Falls Lodge Hotel Kenmare with two Rosettes from the AA for its distinctive style and creative menus. With panoramic windows overlooking the Sheen Waterfalls and onto the bay, the sun's rays flood into the room as guests settle down to breakfast and plan their day. Then, as the evening light changes and dusk approaches, the gentle glow of candlelight and the sounds of t...

  8. A multipoint study of a substorm occurring on 7 December, 1992, and its theoretical implications

    DEFF Research Database (Denmark)

    Fox, N.J.; Cowley, S.W.H.; Davda, V.N.

    1999-01-01

    On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE...... a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven...

  9. Ulysses at jupiter: an overview of the encounter.

    Science.gov (United States)

    Smith, E J; Wenzel, K P; Page, D E

    1992-09-11

    In February 1992, the Ulysses spacecraft flew through the giant magnetosphere of Jupiter. The primary objective of the encounter was to use the gravity field of Jupiter to redirect the spacecraft to the sun's polar regions, which will now be traversed in 1994 and 1995. However, the Ulysses scientific investigations were well suited to observations of the Jovian magnetosphere, and the encounter has resulted in a major contribution to our understanding of this complex and dynamic plasma environment. Among the more exciting results are (i) possible entry into the polar cap, (ii) the identification of magnetospheric ions originating from Jupiter's ionosphere, lo, and the solar wind, (iii) observation of longitudinal asymmetries in density and discrete wave-emitting regions of the lo plasma torus, (iv) the presence of counter-streaming ions and electrons, field-aligned currents, and energetic electron and radio bursts in the dusk sector on high-latitude magnetic field lines, and (v) the identification of the direction of the magnetic field in the dusk sector, which is indicative of tailward convection. This overview serves as an introduction to the accompanying reports that present the preliminary scientific findings. Aspects of the encounter that are common to all of the investigations, such as spacecraft capabilities, the flight path past Jupiter, and unique aspects of the encounter, are presented herein.

  10. The configuration of the auroral distribution for interplanetary magnetic field Bz northward. 1. IMF Bx and By dependencies as observed by the Viking satellite

    International Nuclear Information System (INIS)

    Eliphinstone, R.D.; Jankowska, K.; Murphree, J.S.; Cogger, L.L.

    1990-01-01

    Viking images obtained throughout 1986 have been utilized in combination with IMP 8 satellite measurements of the interplanetary magnetic fields (IMF) to determine typical northern hemisphere auroral distributions for a variety of IMF B z positive conditions. Varying B y has an effect which is consistent with expected results. That is, B y positive implies high-latitude auroral arcs in the dusk sector while negative B y gives dawn sector polar arcs. A new result gives significant importance to the B x component of the IMF. B x toward the Sun (B y = 0) gives polar arcs on both dawn and dusk with comparatively weak UV emissions. With B x away from the Sun (B y = 0) a single Sun-aligned morning sector polar arc dominates the auroral distribution. Azimuthal angle changes to the IMF of only 45 degree seem to affect the global auroral distribution with time scales of less than 2-3 hours. Poleward boundaries of the aurora were found to have a strong dependence on the IMF azimuthal angle which varied according to the magnetic local time investigated

  11. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2000-06-01

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  12. Ramadan fasting and patients with renal diseases: A mini review of the literature.

    Science.gov (United States)

    Emami-Naini, Afsoon; Roomizadeh, Peyman; Baradaran, Azar; Abedini, Amin; Abtahi, Mohammad

    2013-08-01

    Fasting during the month of Ramadan is one of the five pillars of Islam. During this month, adult Muslims are obligated to refrain from eating and drinking from dawn to dusk. Although based on Islamic principles patients are exempted from fasting, each year, many Muslim patients express their willingness to observe the fast in Ramadan month to respect the cultural customs. There are concerns about the impact of fluid restriction and dehydration during Ramadan fasting for patients with renal diseases. In this study, we reviewed the PubMed, Google Scholar, EBSCO, SCIRUS, Embase, and DOAJ data sources to identify the published studies on the impact of Ramadan fasting on patients with renal diseases. Our review on published reports on renal transplant recipients revealed no injurious effect of Ramadan fasting for the renal graft function. Nearly all studies on this topic suggest that Ramadan fasting is safe when the function of the renal graft is acceptable and stable. Regarding the impact of Ramadan fasting on patients with chronic kidney disease, there is concern about the role of renal hypoperfusion in developing tubular cell injury. Finally, there is controversy between studies about the risk of dehydration in Ramadan in developing renal stones. There are uncertainties about the change in the incidence of renal colic in Ramadan month compared with the other periods of the year. Despite such discrepancies, nearly all studies are in agreement on consuming adequate amounts of water from dusk to dawn to reduce the risk of renal stone formation.

  13. MESSENGER Orbital Observations of Large-Amplitude Kelvin-Helmholtz Waves at Mercury's Magnetopause

    Science.gov (United States)

    Sundberg, Torbjorn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.

    2012-01-01

    We present a survey of Kelvi\\ n-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with non-linear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still sub -sonic, which implies that instability growth rates at Mercury's magnetopau are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10- 20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the post-noon and dusk-side sectors of the magnetopause. This asymmetry is like ly related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.

  14. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    International Nuclear Information System (INIS)

    Takahashi, K.; McEntire, R.W.; Cheng, C.Z.; Kistler, L.M.

    1990-01-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studies. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1,600 -2,100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number, m, estimated from an ion finite Larmor radius effect, is generally large (|m| ∼ 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate right-hand polarization, and propagate westward. The authors suggest that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties. The drift mirror instability is considered to be the mechanism for exciting the westward propagation waves. An analytical formula for the ion flux oscillations is derived on the basis of the nonlinear gyrokinetic theory. The observed correlation between the ion flux and the parallel magnetic field perturbation δB parallel can be adequately explained with this analytical formula

  15. Observational test of shock drift and Fermi acceleration on a seed particle population upstream of earth's bow shock

    Science.gov (United States)

    Anagnostopoulos, G. C.; Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    The efficiency of proposed shock acceleration mechanisms as they operate at the bow shock in the presence of a seed energetic particle population was examined using data from simultaneous observations of energetic solar-origin protons, carried out by the IMP 7 and 8 spacecraft in the vicinity of the quasi-parallel (dawn) and quasi-perpendicular (dusk) regions of the earth's bow shock, respectively. The results of observations (which include acceleration effects in the intensities of the energetic protons with energies as high as 4 MeV observed at the vicinity of the dusk bow shock, but no evidence for any particle acceleration at the energy equal to or above 50 keV at the dawn side of the bow shock) indicate that the acceleration of a seed particle population occurs only at the quasi-perpendicular bow shock through shock drift acceleration and that the major source of observed upstream ion populations is the leakage of magnetospheric ions of energies not less than 50 keV, rather than in situ acceleration.

  16. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Falthammar, C.G.

    1989-01-01

    Electric field measurements on the satellites GEOS-1, GEOS-2, ISEE-1, and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause, the average (dawn-to-dusk directed) tangential electric field component is typically obscured by irregular fluctuations of larger amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration, is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region

  17. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  18. Electron flux enhancement in the inner radiation belt during moderate magnetic storms

    Directory of Open Access Journals (Sweden)

    H. Tadokoro

    2007-06-01

    Full Text Available During moderate magnetic storms, an electron channel (300–1100 keV of the NOAA satellite has shown sudden electron flux enhancements in the inner radiation belt. After examinating the possibility of contamination by different energetic particles, we conclude that these electron flux enhancements are reliable enough to be considered as natural phenomena, at least for the cases of small to moderate magnetic storms. Here, we define small and moderate storms to be those in which the minimum Dst ranges between −30 and −100 nT. The electron flux enhancements appear with over one order of magnitude at L~2 during these storms. The enhancement is not accompanied by any transport of electron flux from the outer belt. Statistical analysis shows that these phenomena have a duration of approximately 1 day during the period, starting with the main phase to the early recovery phase of the storms. The flux enhancement shows a dawn-dusk asymmetry; the amount of increased flux is larger in the dusk side. We suggest that this phenomenon could not be caused by the radial diffusion but would be due to pitch-angle scattering at the magnetic equator. The inner belt is not in a stationary state, as was previously believed, but is variable in response to the magnetic activity.

  19. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu

    2008-01-01

    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  20. Study of the energy spectra of the major ion species in the ring-current region of the magnetosphere during geomagnetic storms

    International Nuclear Information System (INIS)

    Kistler, L.M.

    1987-01-01

    Using the University of Maryland/Max Planck Institute for Aeronomy Charge Energy Mass (CHEM) spectrometer on the AMPTE Charge Composition Explorer (CCE) spacecraft, the author examined the near-equatorial storm-time energy spectra of four major magnetospheric ions, H + , O + , He + , and He ++ over the energy range 1-300 keV/e in the L-range 3-6. The data were obtained during the main phase of all geomagnetic storms with minimum Dst less than -50 in the time period September 1984 to November 1985. During this period, the orbit of the CCE precessed such that the full range of local times was covered. When the spectra are organized by local time, certain features emerge. In particular, there is a dip in the spectra of all ions at 10-20 keV/e in the drawn-to-noon sector, while in the noon-to-dusk sector the proton distribution function drops off sharply below ∼5 keV. These spectra were compared with those predicted by a model of ion drift and loss in the magnetosphere. It was found that the spectra are most consistent with a Volland-Stern electric field with γ = 2 and with a rotation of the nominal dawn-to-dusk electric field eastward by two hours local time

  1. Magnetospheric convection and current system in the dayside polar cap

    International Nuclear Information System (INIS)

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  2. Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea.

    Science.gov (United States)

    Burivalova, Zuzana; Towsey, Michael; Boucher, Tim; Truskinger, Anthony; Apelis, Cosmas; Roe, Paul; Game, Edward T

    2018-02-01

    There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  3. Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward interplanetary magnetic field

    Science.gov (United States)

    Chen, Sheng-Hsien; Kivelson, Margaret G.; Gosling, Jack T.; Walker, Raymond T.; Lazarus, Allan J.

    1992-01-01

    On 15 Feb. 1978, the orientation of the interplanetary magnetic field (IMF) remained steadily northward for more than 12 hours. The ISEE 1 and 2 spacecraft were located near apogee on the dawn side flank of the magnetotail. IMP 8 was almost symmetrically located in the magnetosheath on the dusk flank and IMP 7 was upstream in the solar wind. Using plasma and magnetic field data, we show the following: (1) the magnetosheath flow speed on the flanks of the magnetotail steadily exceeded the solar wind speed by 20 percent; (2) surface waves with approximately a 5-min period and very non-sinusoidal waveform were persistently present on the dawn magnetopause and waves of similar period were present in the dusk magnetosheath; and (3) the magnetotail ceased to flare at an antisunward distance of 15 R(sub E). We propose that the acceleration of the magnetosheath flow is achieved by magnetic tension in the draped field configuration for northward IMF and that the reduction of tail flaring is consistent with a decreased amount of open magnetic flux and a larger standoff distance of the subsolar magnetopause. Results of a three-dimensional magnetohydrodynamic simulation support this phenomenological model.

  4. SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge

    Science.gov (United States)

    Mishin, E. V.

    2017-12-01

    We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.

  5. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    Science.gov (United States)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  6. Dynamics of the quiet polar cap

    International Nuclear Information System (INIS)

    Carlson, H.C. Jr.

    1990-01-01

    Work in the past has established that a few percent of the time, under northward interplanetary magnetic field and thus magnetically quiet conditions, sun aligned arcs are found in the polar cap with intensities greater than the order of a kilo Rayleigh in the visible. Here we extend this view. We first note that imaging systems with sensitivity down to tens of Rayleighs in the visible find sun aligned arcs in the polar cap far more often, closer to half the time than a few percent. Furthermore, these sun aligned arcs have simple electrodynamics. They mark boundaries between rapid antisunward flow of ionospheric plasma on their dawn side and significantly slower flow, or even sunward flow, on their dusk side. Since the sun aligned arcs are typically the order of 1000 km to transpolar in the sun-earth direction, and the order of 100 km or less in the dawn-dusk direction, they demarcate lines of strongly anisotropic ionospheric flow shears or convection cells. The very quiet polar cap (strongly northward IMF) is in fact characterized by the presence of sun aligned arcs and multiple highly anisotropic ionospheric flow shears. Sensitive optical images are a valuable diagnostic with which to study polar ionospheric convection under these poorly understood conditions. (author)

  7. Rocket and satellite observations of electric fields and ion convection in the dayside auroral ionosphere

    International Nuclear Information System (INIS)

    Marklund, G.; Heelis, R.A.

    1984-06-01

    Electric field observations from two high-altitude rocket flights in the polar cusp have been combined with satellite observations of ion drifts to infer details of the electric field and convection pattern of the dayside auroral ionosphere. A region of shear flow reversal can be inferred from the electric field observations on one flight near 15.30 MLT 20 minutes after the Dynamics Explorer 2 satellite crossed through the same region. The drift patterns observed by the two spacecrafts were very similar although shifted by 0.5 degrees, a shift which is expected from the observed change in the interplanetary magnetic field (IMF) B(sub)Z component during this time. A region of rotational flow reversal was covered by the other flight shortly after magnetic noon, at the same time the DE-2 satellite travelled along roughly the dawn-dusk meridian. By joining points of equal potential, integrated from the two datasets and assuming the reversal boundary to be an equipotential, the instantaneous convection pattern could be drawn showing crescent-shaped convection contours in the dusk cell and more circular shaped contours in the dawn cell. (author)

  8. The magnetic field of the equatorial magnetotail from 10 to 40 earth radii

    Science.gov (United States)

    Fairfield, D. H.

    1986-01-01

    A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.

  9. The interaction of a magnetic cloud with the Earth - Ionospheric convection in the Northern and Southern Hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions

    Science.gov (United States)

    Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.

    1993-01-01

    Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.

  10. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  11. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    Science.gov (United States)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  12. Several features of the earthward and tailward streaming of energetic protons (0.29--0.5 MeV) in the earth's plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Krimigis, S.M.

    1981-01-01

    The characteristics of earthward and tailward streaming of energetic protons (0.29--0.50 MeV) in the magnetotial at downstream distances of 20 to 40 R/sub E/ are examined with approx.5.5-min averaged data from the APL/JHU Charged Particle Measurements Experiment on board the IMP 7 and IMP 8 spacecraft. On the basis of observations from September 1972 to May 1978 it is found that the occurrence frequency of energetic magnetospheric protons streaming either tailward or earthward with a front-to-back flux ratio of >2 is at least 23%. Tailward streaming is found to be prevalent in the postmidnight plasma sheet, while earthward streaming is more frequent in the premidnight sector. The particle spectrum is progressively harder from the dawn flank to the dusk flank of the plasma sheet and is generally harder for tailward streaming than for earthward streaming. It is suggested that the dawn-dusk reversal in the dominant streaming direction results from an underlying circulation pattern of energetic protons in the magnetotail, tailward in the postmidnight region and earthward in the premidnight region

  13. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    Science.gov (United States)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  14. Abnormal evening vertical plasma drift and effects on ESF and EIA over Brazil-South Atlantic sector during the 30 October 2003 superstorm

    Science.gov (United States)

    Abdu, M. A.; de Paula, E. R.; Batista, I. S.; Reinisch, B. W.; Matsuoka, M. T.; Camargo, P. O.; Veliz, O.; Denardini, C. M.; Sobral, J. H. A.; Kherani, E. A.; de Siqueira, P. M.

    2008-07-01

    Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ˜1200 ms-1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper.

  15. A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the 'Y' component of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rees, D.; Fuller-Rowell, T.J.; Gordon, R.

    1986-01-01

    The strength and direction of the Interplanetary Magnetic Field (IMF) controls the transfer of solar wind momentum and energy to the high latitude thermosphere in a direct fashion. The sense of ''Y'' component of the IMF (BY) creates a significant asymmetry of the magnetospheric convection pattern as mapped onto the high latitude thermosphere and ionosphere. The resulting response of the polar thermospheric winds during periods when BY is either positive or negative is quite distinct, with pronounced changes in the relative strength of thermospheric winds in the dusk-dawn parts of the polar cap and in the dawn part of the auroral oval. In a study of four periods when there was a clear signature of BY, observed by the ISEE-3 satellite, with observations of polar winds and electric fields from the Dynamics Explorer-2 satellite and with wind observations by a ground-based Fabry-Perot interferometer located in Kiruna, Northern Sweden, it is possible to explain features of the high latitude thermospheric circulation using three dimensional global models including BY dependent, asymmetric, polar convection fields. Anomalously zonal wind velocities are often observed, for BY positive and when BY is negative. These are matched by the observation of strong anti-sunward polar-cap wind jets from the DE-2 satellite, on the dusk side with BY negative, and on the dawn side with BY positive. (author)

  16. Spatial distribution of rolled up Kelvin-Helmholtz vortices at Earth's dayside and flank magnetopause

    Directory of Open Access Journals (Sweden)

    M. G. G. T. Taylor

    2012-06-01

    Full Text Available The Kelvin-Helmholtz Instability (KHI can drive waves at the magnetopause. These waves can grow to form rolled-up vortices and facilitate transfer of plasma into the magnetosphere. To investigate the persistence and frequency of such waves at the magnetopause we have carried out a survey of all Double Star 1 magnetopause crossings, using a combination of ion and magnetic field measurements. Using criteria originally used in a Geotail study made by Hasegawa et al. (2006 (forthwith referred to as H2006, 17 candidate events were identified from the entire TC-1 mission (covering ~623 orbits where the magnetopause was sampled, a majority of which were on the dayside of the terminator. The relationship between density and shear velocity was then investigated, to identify the predicted signature of a rolled up vortex from H2006 and all 17 events exhibited some level of rolled up behavior. The location of the events had a clear dawn-dusk asymmetry, with 12 (71% on the post noon, dusk flank suggesting preferential growth in this region.

  17. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  18. Ion and electron Kappa distribution functions in the plasma sheet.

    Science.gov (United States)

    Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.

  19. The response of pot plants to reduction of energy consumption peaks in greenhouses. [Heating]. Potteplanters reaktion paa udjaevning af energiforbrugs spidser i vaeksthuse

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, L.H.; Adriansen, E.; Amsen, M.G.; Nielsen, O.F. (Danish Research Service for Plant and Soil Science, Research Centre for Horticulture, Dept. Hort. Engineering, Institute of Glasshouse Crops, Aarslev (DK))

    1989-01-01

    This experiment was started to avoid difficulties in energy supply, when big areas of greenhouses were connected to district heating. The aim of the experiment was to find ways to reduce energy consumption peaks at dawn and at dusk by means of simple techniques. This paper reports on the results of an experiment where five different pot plants were grown by a temperature control strategy based upon low day and high night room temperature set points (14 deg./22 deg. C) combined with reduced opening speed of the mixing valves. In general it may be concluded that it is possible to produce Chrysanthemum, Begonia, Kalanchoe, Hedera and Ficus with a temperature control strategy which reduces energy consumption peaks at dawn and at dusk without affecting the plant quality. However, it is necessary to apply growth retardants to Chrysanthemum and Kalanchoe to secure a good quality. The production time is reduced for Kalanchoe, increased for Chrysanthemum and Hedera and unchanged for Begonia and Ficus. (author).

  20. Drift resonance and stability of the Io plasma torus

    Science.gov (United States)

    Zhan, Jie; Hill, T. W.

    2000-03-01

    The observed local time asymmetry of the Io plasma torus is generally attributed to the presence of a persistent dawn-to-dusk electric field in the Jovian magnetosphere. The local time asymmetry is modulated at the System 3 rotation period of Jupiter's magnetic field, suggesting that the dawn-to-dusk electric field may be similarly modulated. We argue that such a System 3 modulation would have a profound disruptive effect on the observed torus structure if the torus were to corotate at exactly the System 3 rate: the torus would be a resonantly forced harmonic oscillator, and would disintegrate in a few rotation periods, contrary to observations. This destabilizing effect is independent of, and in addition to, the more familiar effect of the centrifugal interchange instability, which is also capable of disrupting the torus in a few rotation periods in the absence of other effects. We conclude that the observed (few percent) corotation lag of the torus is essential to preserving the observed long-lived torus structure by detuning the resonant frequency (the torus drift frequency) relative to the forcing frequency (System 3). A possible outcome of this confinement mechanism is a residual radial oscillation of the torus at the beat period (~10 days) between System 3 and the torus drift period.

  1. Electric fields in the magnetosphere - the evidence from ISEE, S3-3, GEOS and Viking

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1988-08-01

    Electric field measurements on the satellites S3-3, GEOS-1, GEOS-2, ISEE-1 and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause the average (dawn to dusk directed) tangential electric field component is typically obscured by irregular fluctuations of large amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region. (93 refs.) (author)

  2. Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2008-05-01

    Full Text Available We discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (ΣP. Here we introduce an ionospheric feedback as the variation of ΣP with the energy flux of precipitating magnetospheric electrons (εem. One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φm, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j||, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φi (and implicitely ΔΦ is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j|| of the order of tens of μA/m2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j|| and εem are higher than in the case of a uniform ΣP. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and ionospheric plasma properties. Brighter arcs are obtained for increased velocity shear in the LLBL; their spatial scale remains virtually unmodified. The field

  3. Plasmasphere dynamics in the duskside bulge region: A new look at old topic

    Science.gov (United States)

    Carpenter, D. L.; Giles, B. L.; Chappell, C. R.; Decreau, P. M. E.; Anderson, R. R.; Persoon, A. M.; Smith, A. J.; Corcuff, Y.; Canu, P.

    1993-01-01

    Data acquired during several multiday periods in 1982 at ground stations Siple, Halley, and Kerguelen and on satellites Dynamics Explorer 1, International Sun Earth Explorer 1, and GEOS 2 have been used to investigate thermal plasma structure and dynamics in the duskside plasmasphere bulge region of the Earth. The distribution of thermal plasma in the dusk bulge sector is difficult to describe realistically, in part because of the time integral manner in which the thermal plasma distribution depends upon on the effects of bulk cross-B flow and interchange plasma flows along B. While relatively simple MHD models can be useful for qualitatively predicting certain effects of enhanced convection on a quiet plasmasphere, such as an initial sunward entrainment of the outer regions, they are of limited value in predicting the duskside thermal plasma structures that are observed. Furthermore, use of such models can be misleading if one fails to realize that they do not address the question of the formation of the steep plasmapause profile or provide for a possible role of instabilities or other irreversible processes in plasmapause formation. Our specific findings, which are based both upon the present case studies and upon earlier work, include the following: (1) during active periods the plasmasphere appears to become divided into two entities, a main plasmasphere and a duskside bulge region. (2) in the aftermath of an increase in convection activity, the main plasmasphere tends (from a statistical point of view) to become roughly circular in equatorial cross section, with only a slight bulge at dusk; (3) the abrupt westward edge of the duskside bulge observed from whistlers represents a state in the evolution of sunward extending streamers; (4) in the aftermath of a weak magnetic storm, 10 to 30% of the plasma 'removed' from the outer plasmasphere appears to remain in the afternoon-dusk sector beyond the main plasmasphere. (5) outlying dense plasma structures may

  4. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea.

    Science.gov (United States)

    Thairu, Margaret W; Brunet, Johanne

    2015-05-01

    Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government

  5. Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt

    Science.gov (United States)

    Hu, Yun-peng; Chen, Lei; Huang, Jian-yu

    2017-08-01

    The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are

  6. Multi-point observations of Ion Dispersions near the Exterior Cusp with Cluster

    Science.gov (United States)

    Escoubet, C.-Philippe; Grison, Benjamin; Berchem, Jean; Trattner, Kralheinz; Pitout, Frederic; Richard, Robert; Taylor, Matt; Soucek, Jan; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick

    2014-05-01

    The exterior cusp is the most external region of the polar magnetosphere in direct contact with the plasma and the magnetic field from the solar wind. Unlike the rest of the magnetopause surface, the exterior cusp is a singular region with small and turbulent magnetic field and where large entry of plasma from solar origin takes place. The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process will take place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft were still in the "magnetotail" configuration with two perfect tetrahedra of 2000 km around apogee and turning into an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions in the dispersions, we obtain an altitude of the sources of these ions between 14 and 20 RE. Using Tsyganenko model, these sources are located on the dusk flank, past the terminator. In addition, before entering the cusp, the magnetopause crossing was characterized by a large shear in By and bipolar plasma flows, suggesting that reconnection was taking place near the exterior cusp. We will discuss the extent of the reconnection line along the flank of the magnetopause based on these observations.

  7. Controlling of merging electric field and IMF magnitude on storm-time changes in thermospheric mass density

    Directory of Open Access Journals (Sweden)

    Y. L. Zhou

    2013-01-01

    Full Text Available The controls of merging electrical field, Em, and IMF (interplanetary magnetic field magnitude, B, on the storm-time changes in upper thermospheric mass density are statistically investigated using GRACE accelerometer observations and the OMNI data of solar wind and IMF for 35 great storms during 2002–2006. It reveals the following: (1 The correlation coefficients between the air mass density changes and the parameters of Em and B are generally larger at lower latitudes than at higher latitudes, and larger in noon and midnight sectors than in dawn and dusk. (2 The most likely delay time (MLDT of mass density changes in respect to Em is about 1.5 h (4.5 h at high (low latitudes, having no distinct local time dependence, while it is 6 h at middle latitudes in all the local time sectors except for noon, which is longer than at low latitudes. A similar fact of longer delay time at mid-latitude is also seen for B. The MLDTs for B at various latitudes are all local time dependent distinctly with shorter delay time in noon/midnight sector and larger in dawn/dusk. Despite of widely spread of the delay time, IMF B exhibits still larger correlation coefficients with mass density changes among the interplanetary parameters. (3 The linear control factor of B on the density changes increases for large B, in contrast to somewhat saturation trend for larger Em. (4 The influence of B and Em on the mass densities shows different behavior for different types of storms. The influence intensity of Em is much stronger for CIR-driven than for CME-driven storm, while it is not so distinct for B. On the local time asymmetry of the influence, both Em and B have largest influence at noon sector for CME-driven storms, while an obviously larger intensification of the influence is found in dawn/dusk sector during CIR storms, especially for parameter Em.

  8. Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2008-05-01

    Full Text Available We discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (ΣP. Here we introduce an ionospheric feedback as the variation of ΣP with the energy flux of precipitating magnetospheric electrons (εem. One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φm, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j||, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φi (and implicitely ΔΦ is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j|| of the order of tens of μA/m2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j|| and εem are higher than in the case of a uniform ΣP. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and

  9. Radial and azimuthal distribution of Io's oxygen neutral cloud observed by Hisaki/EXCEED

    Science.gov (United States)

    Koga, R.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kimura, T.; Smith, H. T.

    2017-12-01

    We report the spatial distributions of oxygen neural cloud surrounding Jupiter's moon Io and along Io's orbit observed by the HISAKI satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exobase and move to corona ( 5.8 Io radii) mainly due to atmospheric sputtering. Io plasma torus is formed by ionization of these atoms by electron impact and charge exchange processes. It is essential to examine the dominant source of Io plasma torus, particularly in the vicinity of Io (5.8 Io radii; extended neutral clouds). The spatial distribution of oxygen and sulfur neutral clouds is important to understand the source. The extreme ultraviolet spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Hisaki satellite observed Io plasma torus continuously in 2014-2015, and we carried out the monitoring of the distribution of atomic oxygen emission at 130.4 nm. The emission averaged over the distance range of 4.5-6.5 Jovian radii on the dawn and dusk sides strongly depends on the Io phase angle (IPA), and has a emission peak between IPA of 60-90 degrees on the dawn side, and between 240-270 degrees on the dusk side, respectively. It also shows the asymmetry with respect to Io's position: the intensity averaged for IPA 60-90 degrees (13.3 Rayleighs (R)) is 1.2 times greater than that for IPA 90-120 degrees (11.1 R) on the dawn side. The similar tendency is found on the dusk side. Weak atomic oxygen emission (4 R) uniformly distributes in every IPA. We also examined the radial distribution of the oxygen neutral cloud during the same period and found the emission peak near Io's orbit with decreasing the intensity toward 8.0 Jupiter radii. The results show the high density component of the oxygen neutral cloud is concentrated around Io and extends mainly toward leading side of Io. In addition, the low density neutrals uniformly exist along Io's orbit. Both components extend radially outward up to 8 Jovian radii with

  10. The search for Ar in the lunar atmosphere using the Lunar Reconnaissance Orbiter's LAMP instrument.

    Science.gov (United States)

    Cook, J. C.; Stern, S. A.; Feldman, P. D.; Gladstone, R.; Retherford, K. D.; Greathouse, T. K.; Grava, C.

    2014-12-01

    The Apollo 17 mass spectrometer, LACE, first measured mass 40 particles in the lunar atmosphere, and over a nine-month period, detected variations correlated with the lunar day (Hoffman et al., 1973, LPSC, 4, 2865). LACE detected a high particle density at dusk (0.6-1.0x104 cm-3), decreasing through the lunar night to a few hundred cm-3, then increasing rapidly before dawn to levels 2-4 times greater than at dusk. No daytime measurements were made due to instrument saturation. Given the LACE measurements' periodic nature, and the Ar abundance in lunar regolith samples (Kaiser, 1972, EPSL, 13, 387), it was concluded that mass 40 was likely due to Ar. Benna et al. (2014, LPSC, 45, 1535) recently reported that the Neutral Mass Spectrometer (NMS) aboard LADEE also detected Ar (mass 40) with similar diurnal profiles. We report on UV spectra of the lunar atmosphere as obtained by the Lunar Reconnaissance Orbiter (LRO). Aboard LRO is the UV-spectrograph, LAMP (Lyman Alpha Mapping Project), spanning the spectral range 575 to 1965 Å. LAMP is typically oriented toward the surface and has been mapping the Moon since September 2009. LAMP also observes the tenuous lunar atmosphere when the surface is in darkness, but the atmospheric column below LRO is illuminated. We have previously used nadir oriented twilight observations to examine the sparse lunar atmosphere (Feldman et al., 2012, Icarus, 221, 854; Cook et al., 2013, Icarus, 225, 681; Stern et al., 2013, Icarus, 226, 1210; Cook & Stern 2014, Icarus, 236, 48). In Cook et al., 2013, we reported an upper limit for Ar of 2.3x104 cm-3. Since then, we have collected additional data and refined our search method by focusing on the regions (near equator) and local times (dawn and dusk) where Ar has been reported previously. We have carefully considered effective area calibration and g-factor accuracies and find these to be unlikely explanations for the order of magnitude differences. We will report new results, which provide much

  11. Field aligned current study during the solar declining- extreme minimum of 23 solar cycle

    Science.gov (United States)

    Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam

    Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.

  12. Neutral sheet crossings in the distant magnetotail

    International Nuclear Information System (INIS)

    Heikkila, W.J.; Slavin, J.A.; Smith, E.J.; Baker, D.N.; Zwickl, R.D.

    1985-01-01

    We have analyzed the magnetic field data from ISEE-3 in the distant magnetotail for 18 crossings of the cross-tail current sheet (or so-called natural sheet) to determine the direction of the normal component B/sub z/. The crossings occurred near the middle of the aberrated magnetotail (0 0.4 nT), consistent with closed field lines connected to the earth. In 3 cases B/sub z/ was very close to zero; in several instances there was structure in B/sub y/, suggesting localized currents with x or z directions. One may have been a magnetopause crossing. The strong preponderance of northward B/sub z/ favors a model of the magnetotail which is dominated by boundary layer plasma, flowing tailward on closed magnetic field lines, which requires the existence of an electric field in the sense from dusk to dawn. 37 refs., 15 figs., 1 tab

  13. Rise and fall: two sides of a coin of middle aged women's perceptions of reproductive: a qualitative study.

    Science.gov (United States)

    Reyhani, Mitra; Kazemi, Ashraf; Keshvari, Mahrokh

    2018-02-02

    The present study was conducted to determine the perceptions of middle-aged women of reproductive changes. The present study was a qualitative research with a content analysis approach. The participants were 30 middle-aged women whose perceptions of reproductive changes had been collected on in-depth semi-structured interviews. The data were analyzed using the Graneheim and Lundman's inductive content analysis method. The main themes extracted from the data were a sense of "fall" and "the beginning of a new life cycle." A feeling of fall was formed from the subthemes "deterioration of youth," "the dusk of femininity," and "fade-out of the gender roles." The theme "beginning of a new life cycle" was formed from the subthemes of "acceptance," "sophistication," and "maturity." Middle-aged women had a wide range of emotions experienced from the reproductive changes ranging from a feeling of decline to that of excellence and rise.

  14. Larval fish collected from sound-scattering layers in an offshore tropical area.

    Science.gov (United States)

    Castro, M S; Bonecker, A C T

    2017-12-01

    The composition of the larval fish assemblage in the sound-scattering layer of the continental shelf waters off the coast of south-eastern Brazil (12 and 22° S), a research project that is part of the Brazilian programme Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva (REVIZEE), is described. Samples were collected during daylight hours and at dusk at five oceanographic stations in the winter of 1999 using an Isaacs-Kidd Midwater Trawl (IKMT). The oceanographic stations were chosen based on the detection of plankton layers by acoustic observation. A total of 2192 larval fish were identified, comprising 52 families and 62 species. Maurolicus stehmanni (Sternoptychidae) was the most abundant species found within the study area, comprising 18·5% of all identified larvae, followed by Psilotris celsus (Gobiidae) at 10·9%. © 2017 The Fisheries Society of the British Isles.

  15. Toward a political analysis of the consequences of a world climate change produced by increasing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Schware, R.

    1980-01-01

    It was Hegel's extraordinarily deep and perceptive insight that mankind is caught up in a drama that cannot be fully understood until it has been played out. The owl of Minewa spreads its wings only with the falling of the dusk. On the more hopeful side is the fact that, although we cannot know the consequences of future interactions between climate and society, we can begin to work toward political solutions and gird ourselves for ominous trends that are now coming into view. The purpose of this paper is to identify one such trend, namely the increase of atmospheric temperatures due to increased carbon dioxide (CO/sub 2/) and lay some initial groundwork for political research related to climate-societal interactions.

  16. Oil-spill remote sensors : new tools that provide solutions to old problems

    International Nuclear Information System (INIS)

    Brown, C.E.; Fingas, M.F.; Goodman, R.H.

    1998-01-01

    A review of remote sensors used for oil spill detection and monitoring was presented. New technologies and developments in the area were highlighted. The infrared (IR) camera or a combination infrared/ultraviolet system are the two most commonly used sensors currently being used. They can detect oil under a variety of conditions, discriminate oil from some backgrounds and they have the lowest cost of any sensor. Their weakness is that they cannot identify oil on beaches, among weeds or debris, through fog, or at dawn and dusk. Also, water-in-oil emulsions are often not detected with infrared sensors. The ability of IR sensors to detect the thickness of spills was also discussed. Present day cameras use micro-bolometer technology making them more economical and practical to operate than older IR systems. The use of satellite imagery for tracking oil spills is one important new trend that can prove to be useful for wide-area searching. 37 refs

  17. Inductive electric field at the magnetopause

    International Nuclear Information System (INIS)

    Heikkila, W.J.

    1982-01-01

    The electric field data for two crossings of the magnetopause by ISEE-1 on November 20, 1977, have been analyzed with high time resolution. In both cases the electric field has a negative dawn-dusk component in the boundary layer, so it must reverse somewhere within the current layer to the positive value outside. If there is a component parallel to the moving magnetopause current it is small, and by no means obvious. In the case of the exit crossing from the boundary layer to the magnetosheath the data show that the electric field vector is turning for about two seconds at roughly the satellite spin rate; this changing direction suggests that the electric field has a curl. Such a curl could be caused by a travelling localized perturbation of the magnetopause surface current associated with impulsive plasma transport through the magnetopause

  18. Electric fields in the outer magnetosphere - Recent progress and outstanding problems

    International Nuclear Information System (INIS)

    Faelthammar, C.-G.

    1979-03-01

    The electric field is a crucial parameter in theories of solar wind interaction with the magnetosphere. During the IMS this parameter has, for the first time, been directly measured in the interacting regions: outer magnetosphere, magnetopause, magnetosheath, bow shock and the adjacent solar wind. Among the first results are the verification of a large-scale dawn-to-dusk tangential electric field component at the magnetopause of typically 1 - 2 mV/m and a corresponding power dissipation of 50 Wkm -2 . The normal component of the electric field is typically of the same order of magnitude as the tangential component. Fine-structure features, possibly related to the entry of plasma, remain to be analyzed. (author)

  19. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  20. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1999-03-01

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  1. Acceleration mechanisms for energetic particles in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Schiferl, S.; Fan, C.Y.; Hsieh, K.C.; Erickson, K.N.; Gloeckler, G.; Hovestadt, D.

    1982-01-01

    By analyzing data on energetic particle fluxes measured simultaneously with detector systems on several earth satellites, we searched for signatures of different acceleration mechanisms for these particles. One of the samples is an event observed on ATS-6 and IMP-7. IMP-7 was in the dusk quarter at 38 Rsub(E) while ATS-6 was located at local midnight at a distance of 6.6 Rsub(E). Although the flux variations as observed on the two spacecraft both showed 1.5 min. periodicity, there was a 40-second time lag with IMP-7 behind. The results indicate that the particles are accelerated by magnetic field line annihilation, with the ''x-point'' located at approximately 10 Rsub(E)

  2. Statistical analysis of monochromatic whistler waves near the Moon detected by Kaguya

    Directory of Open Access Journals (Sweden)

    Y. Tsugawa

    2011-05-01

    Full Text Available Observations are presented of monochromatic whistler waves near the Moon detected by the Lunar Magnetometer (LMAG on board Kaguya. The waves were observed as narrowband magnetic fluctuations with frequencies close to 1 Hz, and were mostly left-hand polarized in the spacecraft frame. We performed a statistical analysis of the waves to identify the distributions of their intensity and occurrence. The results indicate that the waves were generated by the solar wind interaction with lunar crustal magnetic anomalies. The conditions for observation of the waves strongly depend on the solar zenith angle (SZA, and a high occurrence rate is recognized in the region of SZA between 40° to 90° with remarkable north-south and dawn-dusk asymmetries. We suggest that ion beams reflected by the lunar magnetic anomalies are a possible source of the waves.

  3. SAPS effects on thermospheric winds during the 17 March 2013 storm

    Science.gov (United States)

    Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.

    2017-12-01

    Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.

  4. ABC 27-2 General bat activity measured with an ultrasound detector in a fragmented tropical landscape in Los Tuxtlas, Mexico

    Directory of Open Access Journals (Sweden)

    Estrada, A.

    2004-12-01

    Full Text Available Bat tolerance to neotropical forest fragmentation may be related to ability by bats to use available habitats in the modified environmental matrix. This paper presents data on general bat activity (for three hours starting at dusk measured with an ultrasound detector in a fragmented landscape in the region of Los Tuxtlas, Mexico. Bat activity was measured in continuous forests, forests fragments, forest-pasture edges, forest corridors, linear strips of vegetation, citrus groves, pastures and the vegetation present in local villages. The highest bat activity rates were recorded in the villages, in the forest fragments and in linear strips of vegetation. The lowest activity rates were detected in pasture habitats. Data suggest that native and man-made arboreal vegetation may be important for sustaining bat activity in fragmented landscapes.

  5. Digital hf radar observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Argo, P.E.

    1984-01-01

    Modern digital ionosondes, with both direction finding and doppler capabilities can provide large scale pictures of the Spread-F irregularity regions. A morphological framework has been developed that allows interpretation of the hf radar data. A large scale irregularity structure is found to be nightward of the dusk terminator, stationary in the solar reference frame. As the plasma moves through this foehn-wall-like structure it descends, and irregularities may be generated. Localized upwellings, or bubbles, may be produced, and they drift with the background plasma. The spread-F irregularity region is found to be best characterized as a partly cloudy sky, due to the patchiness of the substructures. 13 references, 16 figures

  6. Regulation of assimilate partitioning by daylength and spectral quality

    Energy Technology Data Exchange (ETDEWEB)

    Britz, S.J. [USDA-Climate Stress Lab., Beltsville, MD (United States)

    1994-12-31

    Photosynthesis is the process by which plants utilize light energy to assimilate and transform carbon dioxide into products that support growth and development. The preceding review provides an excellent summary of photosynthetic mechanisms and diurnal patterns of carbon metabolism with emphasis on the importance of gradual changes in photosynthetically-active radiation at dawn and dusk. In addition to these direct effects of irradiance, there are indirect effects of light period duration and spectral quality on carbohydrate metabolism and assimilate partitioning. Both daylength and spectral quality trigger developmental phenomena such as flowering (e.g., photoperiodism) and shade avoidance responses, but their effects on partitioning of photoassimilates in leaves are less well known. Moreover, the adaptive significance to the plants of such effects is sometimes not clear.

  7. Correspondence of vacuum ultraviolet aurora image with the inverted-V structure observed by Kyokko

    International Nuclear Information System (INIS)

    Kaneda, Eisuke; Mukai, Toshifumi; Hirao, Kunio.

    1982-01-01

    Since the Kyokko has been in an orbit with the inclination of 65.3 degree, various patterns of the inverted-V structure can be observed. Correspondence of vacuum ultraviolet aurora image with the inverted-V structure was studied. The energy-time diagrams were obtained. The inverted-V event occurrence map was made. The down-dusk asymmetry was recognized. The patterns of the inverted-V structure observed at present were not much different from previous ones. The observed aurora images showed not only the patterns of aurora, but also the state of aurora spreading in the polar region. Some of the observed results of energy characteristics and the aurora images are shown. (Kato, T.)

  8. On the origin of pre-reversal enhancement of the zonal equatorial electric field

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2009-05-01

    Full Text Available In November 2004, a large and variable interplanetary electric field (IEF was felt in the reference frame of the Earth. This electric field penetrated to the magnetic equator and, when the Jicamarca Radio Observatory (JRO was in the dusk sector, resulted in a reversal of the normal zonal component of the field. In turn, this caused a counter-electrojet (CEJ, a westward current rather than the usual eastward current. At the time of the normal pre-reversal enhancement (PRE of the eastward field, the Jicamarca incoherent scatter radar (ISR observed that the westward component became even more westward. Two of the three current explanations for the PRE depend on the neutral wind patterns. However, this unique event was such that the neutral wind-driven dynamos could not have changed. The implication is that the Haerendel-Eccles mechanism, which involves partial closure of the equatorial electrojet (EEJ after sunset, must be the dominant mechanism for the PRE.

  9. Large-scale, near-Earth, magnetic fields from external sources and the corresponding induced internal field

    Science.gov (United States)

    Langel, R. A.; Estes, R. H.

    1983-01-01

    Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  10. Longitudinal effects of ionospheric responses to substorms at middle and lower latitudes: a case study

    Directory of Open Access Journals (Sweden)

    X. Pi

    1995-08-01

    Full Text Available An ionospheric model is used to simulate total electron content (TEC disturbance events observed at middle and lower latitude sites near 75°W and 7°E longitudes. Within this longitudinal range, daytime TEC disturbances show patterns that are correlated with substrom activity seen in both auroral electrojet and ring current behavior. In modeling studies of the observed ionospheric effects, both electric field and neutral wind perturbations are examined as possible mechanisms. The morphological features of the required electric field perturbations near drawn and dusk are compared with those at other times to examine the local time characteristics of magnetospheric influence. Large-scale traveling atmospheric disturbances (TADs, an alternative candidate for the disturbance source, are also characterized and compared with known thermospheric behavior.

  11. Solar maximum ultraviolet spectrometer and polarimeter

    Science.gov (United States)

    Tandberg-Hanssen, E.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Hyder, C. L.; Michalitsianos, A. G.; Shine, R. A.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.

    1979-01-01

    The objectives of the UVSP experiment are to study solar ultraviolet radiations, particularly from flares and active regions, and to measure constituents in the terrestrial atmosphere by the extinction of sunlight at satellite dawn and dusk. The instrument is designed to observe the Sun at a variety of spectral and spatial resolutions in the range from 1150 to 3600 A. A Gregorian telescope with effective focal length of 1.8 m is used to feed a 1 m Ebert-Fastie spectrometer. A polarimeter containing rotatable magnesium fluoride waveplates is included behind the spectrometer entrance slit and will allow all four Stokes parameters to be determined. Velocities on the Sun can also be measured. The instrument is controlled by a computer which can interact with the data stream to modify the observing program. The observing modes, including rasters, spectral scans, velocity measurements, and polarimetry, are also described along with plans for mission operations, data handling, and analysis of the observations.

  12. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.

    2016-01-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  13. The Substructure of a Flux Transfer Event Observed by the MMS Spacecraft

    Science.gov (United States)

    Hwang, K.-J.; Sibeck, D. G.; Giles, B. L.; Pollock, C. J.; Gershman, D.; Avanov, L.; Paterson, W. R.; Dorelli, J. C.; Ergun, R. E.; Russel, C. T.; hide

    2016-01-01

    On 15 August 2015, MMS (Magnetospheric Multiscale mission), skimming the dusk magnetopause, detected an isolated region of an increased magnetic strength and bipolar Bn, indicating a flux transfer event (FTE). The four spacecraft in a tetrahedron allowed for investigations of the shape and motion of the FTE. In particular, high-resolution particle data facilitated our exploration of FTE substructures and their magnetic connectivity inside and surrounding the FTE. Combined field and plasma observations suggest that the core fields are open, magnetically connected to the northern magnetosphere from which high-energy particles leak; ion "D" distributions characterize the axis of flux ropes that carry old-opened field lines; counter streaming electrons superposed by parallel-heated components populate the periphery surrounding the FTE; and the interface between the core and draped regions contains a separatrix of newlyopened magnetic field lines that emanate from the X line above the FTE.

  14. A preliminary study of thermosphere and mesosphere wind observed by Fabry-Perot over Kelan, China

    Science.gov (United States)

    Yu, Tao; Huang, Cong; Zhao, Guangxin; Mao, Tian; Wang, Yungang; Zeng, Zhongcao; Wang, Jingsong; Xia, Chunliang

    2014-06-01

    A Fabry-Perot interferometer (FPI) system was deployed in Kelan (38.7°N, 111.6°E), center China in November 2011, which observes the airglows at wavelengths of 892.0 nm, 557.7 nm, and 630.0 nm from OH and OI emissions in the upper atmosphere, to derive the wind and temperature at heights around 87 km, 97 km, and 250 km, respectively. From late 2011 through 2013 a series of more than 4500 measurements at each height are validated according to manufacture data quality criteria. By using these data, the morphology of wind in the mesosphere and thermosphere is investigated in this study. Preliminary results are as follows: (1) As for the diurnal variation, meridional and zonal winds at heights of 87 km and 97 km, which are derived through 892.0 nm and 557.7 nm airglows, usually range from -50 m/s to 30 m/s and -50 m/s to 50 m/s, respectively, with typical random errors of about 6-10 m/s at 87 km and 2-3 m/s at 97 km. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, westward at middle night, and back to eastward at dawn. The monthly mean winds are in good agreement with those of HWM93 results. Meridional and zonal winds at a height of 250 km, which are derived through 630.0 nm nightglow, range from -110 m/s to 80 m/s with typical random errors of about 8-10 m/s. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, zero at middle night, and westward at dawn; and they are also well consistent with HWM93 results. (2) As for the seasonal variation, meridional winds at the heights of 87 km and 97 km have a visible annual variation at 12-17 LT and with a little semiannual variation at all other hours, but the zonal winds at the heights of 87 km and 97 km have a semiannual variation all night. The seasonal dependence of the winds, both meridional and zonal winds, at the height

  15. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  16. New forecasting methods of the intensity and time development of geomagnetic and ionospheric storms

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1981-01-01

    The main phase of a geomagnetic storm develops differently from one storm to another. A description is given of the solar wind quantity which controls directly the development of the main phase of geomagnetic storms. The parameters involved include the solar wind speed, the magnetic field intensity, and the polar angle of the solar wind magnetic field projected onto the dawn-dusk plane. A redefinition of geomagnetic storm and auroral activity is given. It is pointed out that geomagnetic disturbances are caused by the magnetic fields of electric currents which are generated by the solar wind-magnetosphere dynamo. Attention is given to approaches for forecasting the occurrence and intensity of geomagnetic storms and ionospheric disturbances

  17. Parallel electric fields in a simulation of magnetotail reconnection and plasmoid evolution

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.

    1990-01-01

    Properties of the electric field component parallel to the magnetic field are investigate in a 3D MHD simulation of plasmoid formation and evolution in the magnetotail, in the presence of a net dawn-dusk magnetic field component. The spatial localization of E-parallel, and the concept of a diffusion zone and the role of E-parallel in accelerating electrons are discussed. A localization of the region of enhanced E-parallel in all space directions is found, with a strong concentration in the z direction. This region is identified as the diffusion zone, which plays a crucial role in reconnection theory through the local break-down of magnetic flux conservation. 12 refs

  18. Coordinated observations of electron energy spectra and electrostatic cyclotron waves during diffuse auroras

    International Nuclear Information System (INIS)

    Fontaine, D.; Perraut, S.; Cornilleau-Wehrlin, N.; Aparicio, B.; Bosqued, J.M.; Rodgers, D.

    1986-01-01

    An auroral precipitation event lasting several hours in the dusk sector on June 2, 1982 is studied in conjunction with three instruments: the EISCAT European Incoherent Scatter radar based in Scandinavia, the GEOS-2 European geostationary spacecraft, and the ARCAD-3 French-Soviet polar spacecraft. Electron energy spectra between about 1 and 10 keV, computed from EISCAT measurements, were in agreement, during a diffuse aurora period, with direct observations onboard ARCAD-3, and also with the plasma sheet component (3-10 keV) measured onboard GEOS-2 and available at large pitch-angles. This last comparison suggested the quasi-isotropy of equatorial electron fluxes. The electrostatic electron cyclotron harmonic waves, also observed onboard GEOS-2, were not found to be intense enough to cause by themselves the strong pitch-angle diffusion of electrons of a few keV

  19. A mysterious dust clump in a disk around an evolved binary star system.

    Science.gov (United States)

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  20. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    Science.gov (United States)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  1. New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby

    Science.gov (United States)

    Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje; hide

    2008-01-01

    Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.

  2. Ionospheric convection response to changes of interplanetary magnetic field B-z component during strong B-y component

    DEFF Research Database (Denmark)

    Huang, C.S.; Murr, D.; Sofko, G.J.

    2000-01-01

    response to IMF Bz changes during strong IMF BZ. On March 23, 1995, B-x was small, B-y was strongly positive (7-11 nT), and the B-z polarity changed several times after 1300 UT. The dayside ionospheric convection is dominated by a large clockwise convection cell. The cell focus (the "eye" of the convection...... cell, or the largest change in the convection pattern, is limited roughly to the region between the previous cell focus and the new cell focus. Outside this region, the ionospheric flows could be greatly enhanced or weakened, while the convection pattern shape changes very little. When B-y is strong...... the dawn-dusk meridian plane, which is interpreted as propagation or expansion of newly generated convection cells in the cusp region. Other studies showed that the change in convection pattern in response to IMF reorientations is spatially fixed. In this paper, we investigate the ionospheric convection...

  3. The hot plasma environment at jupiter: ulysses results.

    Science.gov (United States)

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  4. Multiscale Currents Observed by MMS in the Flow Braking Region

    Science.gov (United States)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  5. Polar ionospheric responses to solar wind IMF changes

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    Full Text Available Auroral and airglow emissions over Eureka (89° CGM during the 1997-98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to ~1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100-150 m/s when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.

    Key words: Atmospheric composition and structure (airglow and aurora - Ionosphere (particle precipitation - Magnetospheric Physics (polar cap phenomena

  6. The Morphology of the Solar Wind Magnetic Field Draping on the Dayside of Mars and Its Variability

    Science.gov (United States)

    Fang, Xiaohua; Ma, Yingjuan; Luhmann, Janet; Dong, Yaxue; Brain, David; Hurley, Dana; Dong, Chuanfei; Lee, Christina O.; Jakosky, Bruce

    2018-04-01

    The magnetic field draping pattern in the magnetosheath of Mars is of interest for what it tells us about both the solar wind interaction with the Mars obstacle and the use of the field measured there as a proxy for the upstream interplanetary magnetic field (IMF) clock angle. We apply a time-dependent, global magnetohydrodynamic model toward quantifying the spatial and temporal variations of the magnetic field draping direction on the Martian dayside above 500-km altitude. The magnetic field and plasma are self-consistently solved over one Mars rotation period, with the dynamics of the field morphology considered as the result of the rotation of the crustal field orientation. Our results show how the magnetic field direction on the plane perpendicular to the solar wind flow direction gradually departs from the IMF as the solar wind penetrates toward the obstacle and into the tail region. This clock angle departure occurs mainly inside the magnetic pileup region and tailward of the terminator plane, exhibiting significant dawn-dusk and north-south asymmetries. Inside the dayside sheath region, the field direction has the greatest departure from the IMF-perpendicular component direction downstream of the quasi-parallel bow shock, which for the nominal Parker spiral is over the dawn quadrant. Thus, the best region to obtain an IMF clock angle proxy is within the dayside magnetosheath at sufficiently high altitudes, particularly over subsolar and dusk sectors. Our results illustrate that the crustal field has only a mild influence on the magnetic field draping direction within the magnetosheath region.

  7. Magnetosphere-thermosphere coupling: An experiment in interactive modeling

    International Nuclear Information System (INIS)

    Forbes, J.M.; Harel, M.

    1989-01-01

    The Rice convection model (RCM) is utilized to investigate the electrodynamic coupling between the inner magnetosphere and the thermosphere including the effects of EUV- and convection-driven neutral winds under quasi-equilibrium conditions. A unique aspect of the study is that the convection-driven winds are included self-consistently and interactively; that is, a steady state wind parameterization is written analytically in terms of the electrostatic potential, which is in turn included in a closed-loop calculation for the electric potential itself. Simulations are performed from 1,400 UT to 1,600 UT during the CDAW-6 interval on March 22, 1979, when the cross-cap electric potential attains values of order 140-180 kV. During the early phases of the disturbance when the normal shielding from high latitudes breaks down, the neutral winds do not modify appreciably the disturbance electric fields at middle and low latitudes. As the system approaches a quasi-equilibrium state, the neutral winds play a much more significant role. The convection driven component of the neutral wind similarly acts to reduce the southward field in the noon sector, but gives rise to an enhancement in the dusk sector field extending to middle latitudes. The parameterized Pedersen effective winds are of order 300 ms -1 and reflect the familiar two-cell pattern with antisunward flow over the polar cap and return flows in the dawn and dusk sectors. These amplitudes and similarity with the ion drift motions reflect the relatively large contributions to the Pedersen effective winds originating in the upper E region and lower F region of the ionosphere. Possibilities for introducing further sophistication into the wind parameterization are discussed, as well as ramifications of the present study on the possible merging of the RCM with the NCAR TGCM to attain a higher degree of self-consistency and reality in modelling efforts

  8. Plasmasheet boundary electric fields during substorms

    International Nuclear Information System (INIS)

    Pedersen, A.

    1985-01-01

    Electric field data from the ISEE-1 and GEOS-2 satellites have been studied during two substorms when ISEE-1 was in a favourable position in the magneto-tail and GEOS-2 was in the afternoon/evening sector of the geostationary orbit. Both electric field measurements were carried out with spherical double probes, separately by 73.5 m on ISEE-1, and 42 m on GEOS-2. In one case GEOS-2, in the afternoon sector, detected an increase of the dawn-to-dusk electric field during plasmasheet thinning and approximately 10 minutes prior to a substorm expansion. At the time of this expansion ISEE-1 was most likely near an X-line, on the Earthward side and detected Earthward antiE x antiB velocities, in excess of 500 km s -1 . In another example ISEE-1 was most likely near an X-line, on the tailward side, and observed tailward antiE x antiB velocities which were followed, 5-20 minutes later, by characteristic oscillating electric fields (time scales of 10s-30s) on GEOS-2 near 23 local time. Such signatures have on many occasions been connected with observations of westward travelling surges near the GEOS-2 conjugated area in Scandinavia. The ISEE-1 observations of large-dawn-to-dusk electric fields were concentrated to the outer boundary of the plasmasheet, and in the case of the westward travelling surge. GEOS-2 was most likely at the inner, Earthward edge of the plasmasheet. Time delays between ISEE-1 and GEOS-2 indicate a propagation velocity comparable to the antiE x antiB velocity

  9. Activity pattern of Cuniculus paca (Rodentia: Cuniculidae in relation to lunar illumination and other abiotic variables in the southern Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Fernanda Michalski

    2011-12-01

    Full Text Available Understanding what influences the activity of organisms is important for both ecological understanding and species conservation. Using data from 2,707 camera trap days distributed across 24 forest sites, we present quantitative analyses of the activity pattern of Cuniculus paca (Linnaeus, 1766 in southern Amazonia. We compared the activity pattern of this species across four designated subsets of the 24-hours diel cycle (dawn, dusk, day and night. Using linear regression models we tested the influence of season, temperature and rainfall on the activity patterns of C. paca (paca. We also evaluated the nocturnal photos of paca (N = 111 as a function of the degree of lunar illumination in order to test the prediction that pacas minimize their activity during moon phase when illumination is brighter. Pacas were not recorded during the day but were active at dawn, dusk and night time. We found differences in the influence of the abiotic variables on the nocturnal activity of pacas in the study area. There was no significant difference between the observed (expressed as the frequency of total counts of independent photos over the five classes of lunar illumination and the expected activity of pacas, based on the frequency of days in the lunar cycle with different classes of lunar illumination, whereas lunar illumination had a weak negative influence on the timing of paca activity (i.e. pacas were active closer to sunset with increasing lunar illumination. However, the timing of nocturnal activity in pacas was not influenced by season, temperature or rainfall. Our findings highlight the ecological plasticity of this Neotropical rodent which has a key function in the maintenance of Neotropical forests.

  10. Cluster observations of band-limited Pc 1 waves associated with streaming H+ and O+ ions in the high-altitude plasma mantle

    Science.gov (United States)

    Engebretson, M. J.; Kahlstorf, C. R. G.; Murr, D. L.; Posch, J. L.; Keiling, A.; Lavraud, B.; Rème, H.; Lessard, M. R.; Kim, E.-H.; Johnson, J. R.; Dombeck, J.; Grison, B.; Robert, P.; Glassmeier, K.-H.; Décréau, P. M. E.

    2012-10-01

    Bursts of band-limited Pc 1 waves (0.2 to ˜1.0 Hz) with normalized frequency f/fH+ ˜ 0.5 have been observed by the Cluster spacecraft during many passes through the high-latitude plasma mantle. These transverse, left-hand polarized waves are associated with regions of H+ and O+ ions streaming away from Earth along magnetic field lines at the same velocity (˜140 km/s). Waves were observed only when H+ fluxes increased by factors of 10-1000 and energies of both ion species increased by factors of up to 10. We present two satellite-ground conjunctions to demonstrate the high latitude localization of these waves and their ability to reach the polar ionosphere and two extended examples of waves and associated ion distribution functions near the southern dusk flank magnetopause. We also present the results of a search for all such events during Cluster's 2002 and 2003 passages through the magnetotail, with orbital precession covering dawn to dusk on Earth's night side (June through December). A total of 46 events (band-limited Pc 1-2 waves accompanied by a sustained population of streaming H+ and O+ ions, separated by at least 12 min) were observed on 29 days. The waves were generally associated with intervals of southward IMF Bz and/or large IMF By (times of active cusp reconnection), and often but not always occurred during the main phase or early recovery phase of magnetic storms. Analysis of selected events shows that the waves are associated with large H+ temperature anisotropy, and that the waves propagate opposite to the direction of the streaming ions. A wave instability analysis using the WHAMP code confirms that the generation of these waves, via the ion cyclotron instability, is basically consistent with known physics. Their extended region of wave growth is likely, however, to reach tailward significantly beyond the Cluster orbit.

  11. Cluster Observations of Ion Dispersions near the Exterior Cusp

    Science.gov (United States)

    Escoubet, C.; Grison, B.; Berchem, J.; Trattner, K. J.; Pitout, F.; Richard, R. L.; Taylor, M. G.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.

    2013-12-01

    The cusps are the places where the Earth's magnetic field lines, connected to the inner side of the magnetopause, converge. It is therefore the place where signatures of processes occurring near the subsolar point, in the tail lobes, as well as near the dawn and dusk flanks are observed. The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process will take place equatorward (for IMF southward), poleward (for IMF northward) or on the side (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft were still in the "magnetotail" configuration with two perfect tetrahedra of 2000 km around apogee and turning into an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. We will investigate the origin of the injections forming the dispersions and if these can be explained by the reconnection between the interplanetary magnetic field and the Earth's magnetic field.

  12. Geomagnetic response to sudden expansions of the magnetosphere

    International Nuclear Information System (INIS)

    Araki, Tohru; Nagano, Hiroshi

    1988-01-01

    The geomagnetic response to five successive sudden expansions of the magnetosphere was examined by the use of magnetic data observed on the ground and by satellites. At the geosynchronous orbit between 0800 and 1100 LT the magnetic field component parallel to Earth's rotation axis decreased successively. The amplitude and the fall time of each decrease were 20-30 nT and 2.5-3.5 min, respectively. The decrease was propagated about 10 min later to the distance of about 31 R E from Earth in the antisunward direction, indicating propagation speed of about 300 km/s. The H component of ground magnetograms from low-latitude stations showed decreases with waveform similar to that at the geosynchronous orbit, but each decrease at the dayside equator was greatly enhanced and preceded by a short small positive impulse. Each of the corresponding geomagnetic variations at high latitude stations consisted of two successive sharp pulses of opposite sense with 2-3 min duration. The dominant component and the sense of these high-latitude pulses were highly dependent upon local time and latitude. The distribution of equivalent ionospheric current arrows for each high-latitude pulse showed clear twin vortices centered at 70-76 degree geomagnetic latitude in the dayside and was approximately symmetric with respect to the noon meridian. The current direction of the vortices was reversed from the first pulse to the second. it suggests successive appearance of a dawn-to-dusk and then a dusk-to-dawn electric field, both of which were transmitted from the magnetosphere to the polar ionosphere. The effect of ionospheric currents due to these polar electric fields was superposed on the simple magnetic decrease produced by an expansion of the whole magnetosphere and produced the complex waveform distribution on the ground

  13. How does a carnivore guild utilise a substantial but unpredictable anthropogenic food source? Scavenging on hunter-shot ungulate carcasses by wild dogs/dingoes, red foxes and feral cats in south-eastern Australia revealed by camera traps.

    Directory of Open Access Journals (Sweden)

    David M Forsyth

    Full Text Available There is much interest in understanding how anthropogenic food resources subsidise carnivore populations. Carcasses of hunter-shot ungulates are a potentially substantial food source for mammalian carnivores. The sambar deer (Rusa unicolor is a large (≥ 150 kg exotic ungulate that can be hunted throughout the year in south-eastern Australia, and hunters are not required to remove or bury carcasses. We investigated how wild dogs/dingoes and their hybrids (Canis lupus familiaris/dingo, red foxes (Vulpes vulpes and feral cats (Felis catus utilised sambar deer carcasses during the peak hunting seasons (i.e. winter and spring. We placed carcasses at 1-km intervals along each of six transects that extended 4-km into forest from farm boundaries. Visits to carcasses were monitored using camera traps, and the rate of change in edible biomass estimated at ∼ 14-day intervals. Wild dogs and foxes fed on 70% and 60% of 30 carcasses, respectively, but feral cats seldom (10% fed on carcasses. Spatial and temporal patterns of visits to carcasses were consistent with the hypothesis that foxes avoid wild dogs. Wild dog activity peaked at carcasses 2 and 3 km from farms, a likely legacy of wild dog control, whereas fox activity peaked at carcasses 0 and 4 km from farms. Wild dog activity peaked at dawn and dusk, whereas nearly all fox activity occurred after dusk and before dawn. Neither wild dogs nor foxes remained at carcasses for long periods and the amount of feeding activity by either species was a less important predictor of the loss of edible biomass than season. Reasons for the low impacts of wild dogs and foxes on sambar deer carcass biomass include the spatially and temporally unpredictable distribution of carcasses in the landscape, the rapid rate of edible biomass decomposition in warm periods, low wild dog densities and the availability of alternative food resources.

  14. On propagating direction of ring current proton ULF waves observed by ATS 6 at 6.6 R/sub e/

    International Nuclear Information System (INIS)

    Su, S.; Konradi, A.; Fritz, T.A.

    1977-01-01

    From June 11 to September 16, 1974, the NOAA low-energy proton detector on board the ATS 6 satellite observed 71 cases of ultralow-frequency oscillations of proton flux intensities. The oscillation periods varied from 40 s to 6 min, and the events were observed most frequently during moderate geomagnetic conditions. The flux oscillations occurred at various local times, yet almost two thirds of the events were detected in the near-dusk region of the magentosphere. For a majority of the events in this set a substantial phase shift in flux oscillation was detected between different energy channels and/or between two oppositely oriented detector telescopes. The phase shift is mainly due to the finite gyroradius effect of the protons gyrating in the geomagnetic field. By examining this finite gyroradius effect on the perturbed particle distribution function associated with the wave in a nonuniform magnetic field we are able to determine the propagation direction of the wave from particle observations made by a single spacecraft. Although the type of wave and its excitation mechanism can only be conjectured at the present time, it is concluded that the wave propagates in the westward direction with a phase velocity of about 13 km/s. Furthermore, it also has a very small phase velocity approx.0.15 km/s propagating toward the earth. If the wave had been traveling 1 hour or so before it was observed near the dusk magnetosphere, it might have originated in the dark magnetosphere in associating with some changes in geophysical conditions. The statistical correlation between the times of the observed wave events and the onsets of the auroral magnetic bays indicates that although they seldom occurred simultaneously, 80% of the waves were observed within 1 hour of the bay onset. Therefore it is concluded that the condition of the magnetosphere after a substorm is favorable for the occurrence of the ring current proton ultralow-frequency waves

  15. How does a carnivore guild utilise a substantial but unpredictable anthropogenic food source? Scavenging on hunter-shot ungulate carcasses by wild dogs/dingoes, red foxes and feral cats in south-eastern Australia revealed by camera traps.

    Science.gov (United States)

    Forsyth, David M; Woodford, Luke; Moloney, Paul D; Hampton, Jordan O; Woolnough, Andrew P; Tucker, Mark

    2014-01-01

    There is much interest in understanding how anthropogenic food resources subsidise carnivore populations. Carcasses of hunter-shot ungulates are a potentially substantial food source for mammalian carnivores. The sambar deer (Rusa unicolor) is a large (≥ 150 kg) exotic ungulate that can be hunted throughout the year in south-eastern Australia, and hunters are not required to remove or bury carcasses. We investigated how wild dogs/dingoes and their hybrids (Canis lupus familiaris/dingo), red foxes (Vulpes vulpes) and feral cats (Felis catus) utilised sambar deer carcasses during the peak hunting seasons (i.e. winter and spring). We placed carcasses at 1-km intervals along each of six transects that extended 4-km into forest from farm boundaries. Visits to carcasses were monitored using camera traps, and the rate of change in edible biomass estimated at ∼ 14-day intervals. Wild dogs and foxes fed on 70% and 60% of 30 carcasses, respectively, but feral cats seldom (10%) fed on carcasses. Spatial and temporal patterns of visits to carcasses were consistent with the hypothesis that foxes avoid wild dogs. Wild dog activity peaked at carcasses 2 and 3 km from farms, a likely legacy of wild dog control, whereas fox activity peaked at carcasses 0 and 4 km from farms. Wild dog activity peaked at dawn and dusk, whereas nearly all fox activity occurred after dusk and before dawn. Neither wild dogs nor foxes remained at carcasses for long periods and the amount of feeding activity by either species was a less important predictor of the loss of edible biomass than season. Reasons for the low impacts of wild dogs and foxes on sambar deer carcass biomass include the spatially and temporally unpredictable distribution of carcasses in the landscape, the rapid rate of edible biomass decomposition in warm periods, low wild dog densities and the availability of alternative food resources.

  16. Local time distribution of the SSC-associated HF-Doppler frequency shifts

    International Nuclear Information System (INIS)

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.

    1985-01-01

    The HF-Doppler frequency shift observed at the storm's sudden commencement is composed of a frequency increase (+) and decrease (-), and classified into four types, SCF(+ -), SCF(- +), SCF(+) and SCF(-). Since the latter two types are special cases of the former two types, two different kinds of electrical field exist in the F region and cause the ExB drift motion of plasma. HUANG (1976) interpreted the frequency increase of SCF(+ -) as due to the westward induction electric field proportional to delta H/ delta t and the succeeding frequency decrease due to the eastward conduction electric field which produces ionospheric currents responsible for the magnetic increase on the ground. In spite of his success in interpreting the SCF(+ -), some other interpretations are needed for the explanation of the whole set of SCF's, particularly SCF(- +). Local time distributions of the SCF's are derived from 41 SCF's which are observed on the HF standard signal (JJY) as received in Okinawa (path length =1600 km) and Kokubunji (60 km). It is shown that the SCF(+ -) appears mainly during the day, whereas the SCF(- +) is observed during the night. The results indicate that the preliminary frequency shift (+) of SCF(+ -) and (-) of SCF(- +) is caused by a westward electric field in the dayside hemisphere, while by an eastward electric field in the nightside hemisphere. The main frequency shift (-) of SCF(+ -) and (+) of SCF(- +) is caused by the reversed electric field. Consequently, the preliminary frequency shift is caused by the dusk-to-dawn electric field, while the main frequency shift by the dawn-to-dusk electric field

  17. Statistical study of high-latitude plasma flow during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    G. Provan

    2004-11-01

    Full Text Available We have utilised the near-global imaging capabilities of the Northern Hemisphere SuperDARN radars, to perform a statistical superposed epoch analysis of high-latitude plasma flows during magnetospheric substorms. The study involved 67 substorms, identified using the IMAGE FUV space-borne auroral imager. A substorm co-ordinate system was developed, centred on the magnetic local time and magnetic latitude of substorm onset determined from the auroral images. The plasma flow vectors from all 67 intervals were combined, creating global statistical plasma flow patterns and backscatter occurrence statistics during the substorm growth and expansion phases. The commencement of the substorm growth phase was clearly observed in the radar data 18-20min before substorm onset, with an increase in the anti-sunward component of the plasma velocity flowing across dawn sector of the polar cap and a peak in the dawn-to-dusk transpolar voltage. Nightside backscatter moved to lower latitudes as the growth phase progressed. At substorm onset a flow suppression region was observed on the nightside, with fast flows surrounding the suppressed flow region. The dawn-to-dusk transpolar voltage increased from ~40kV just before substorm onset to ~75kV 12min after onset. The low-latitude return flow started to increase at substorm onset and continued to increase until 8min after onset. The velocity flowing across the polar-cap peaked 12-14min after onset. This increase in the flux of the polar cap and the excitation of large-scale plasma flow occurred even though the IMF Bz component was increasing (becoming less negative during most of this time. This study is the first to statistically prove that nightside reconnection creates magnetic flux and excites high-latitude plasma flow in a similar way to dayside reconnection and that dayside and nightside reconnection, are two separate time-dependent processes.

  18. Dynamical injections as the source of near geostationary quiet time particle spatial boundaries

    International Nuclear Information System (INIS)

    Mauk, B.H.; Meng, C.I.

    1983-01-01

    To test our understanding of quasi-stationary magnetospheric particle convection, we address here a particular class of particle feature (plasma dropouts at 0 eV to 5 keV) observed regularly by near geostationary satellites in the noon to dusk quadrant, often during the apparent absence of recent (hours) substorm activity. At first consideration the feature appears to result from the passage of the satellites toward and into the so-called ''forbidden zones'' of the quasi-stationary particle convection patterns. It is demonstrated here that the energy dispersion of the feature cannot be explained by simple stationary convection models even when loss processes are imposed on those particles that penetrate most closely to the earth. Also, the radial position of the feature does not vary with geomagnetic activity as expected from steady convection models. It is concluded that dynamical processes are responsible. However, models based on the modification of the so-called cross-tail field configuration against initial stationary convection patterns are rejected here because these models preserve the qualitative sense of the energy dispersions of the initial patterns. It is proposed that the spatial structures of pase (24 hours) dynamical, nightside particle injections determine to a great extent the character of the feature. It is shown that detailed simulations based on the double-spiraled ''injection boundary'' concept (used previously to reproduce the fast changing nighttime features) reproduce very well the character and dispersion senses of the noon-to-dusk feature by allowing the distributions to evolve for many hours. It is emphasized that the portion of the original injection boundary which gives rise to this feature of interest is the decidely ''non-Alfvenic'' portion

  19. Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2001-06-01

    Full Text Available Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel, but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here.Key words. Ionosphere (auroral

  20. Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  1. Application of a global magnetospheric-ionospheric current model for dayside and terminator Pi2 pulsations

    Science.gov (United States)

    Imajo, S.; Yoshikawa, A.; Uozumi, T.; Ohtani, S.; Nakamizo, A.; Chi, P. J.

    2017-12-01

    Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies; (1) the sense of the H component does not change a wide range of local time sectors at low latitudes; (2) the amplitude of the H component on the dayside is enhanced at the equator; (3) The D component reverses its phase near the dawn and dusk terminators; (4) the meridian of the D-component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator; (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator. These results are included in an accepted paper by Imajo et al. [2017JGR, DOI: 10.1002/2017JA024246].

  2. GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus: indication for a weak circadian clock in ungulates.

    Directory of Open Access Journals (Sweden)

    Erik P Ensing

    Full Text Available Long-term tracking using global positioning systems (GPS is widely used to study vertebrate movement ecology, including fine-scale habitat selection as well as large-scale migrations. These data have the potential to provide much more information about the behavior and ecology of wild vertebrates: here we explore the potential of using GPS datasets to assess timing of activity in a chronobiological context. We compared two different populations of deer (Cervus elaphus, one in the Netherlands (red deer, the other in Canada (elk. GPS tracking data were used to calculate the speed of the animals as a measure for activity to deduce unbiased daily activity rhythms over prolonged periods of time. Speed proved a valid measure for activity, this being validated by comparing GPS based activity data with head movements recorded by activity sensors, and the use of GPS locations was effective for generating long term chronobiological data. Deer showed crepuscular activity rhythms with activity peaks at sunrise (the Netherlands or after sunrise (Canada and at the end of civil twilight at dusk. The deer in Canada were mostly diurnal while the deer in the Netherlands were mostly nocturnal. On an annual scale, Canadian deer were more active during the summer months while deer in the Netherlands were more active during winter. We suggest that these differences were mainly driven by human disturbance (on a daily scale and local weather (on an annual scale. In both populations, the crepuscular activity peaks in the morning and evening showed a stable timing relative to dawn and dusk twilight throughout the year, but marked periods of daily a-rhythmicity occurred in the individual records. We suggest that this might indicate that (changes in light levels around twilight elicit a direct behavioral response while the contribution of an internal circadian timing mechanism might be weak or even absent.

  3. Distribution of O+ ions in the plasma sheet and locations of substorm onsets

    Science.gov (United States)

    Ono, Y.; Christon, S. P.; Frey, H. U.; Lui, A. T. Y.

    2010-09-01

    We discuss the effect of O+ ions on substorm onsets by examining the relation between the substorm onset location and the distribution of the O+/H+ number density ratio before the onset in the various regions within the plasma sheet (-8 RE > XGSM > -32 RE). We use 9-212 keV/e ion flux data observed by Geotail/Energetic Particles and Ion Composition (EPIC)/Suprathermal Ion Composition Spectrometer (STICS) instrument and the IMAGE/Far Ultra-Violet (FUV) substorm onset list presented by Frey et al. [Frey, H. U., S. B. Mende, V. Angelopoulos, and E. F. Donovan (2004), Substorm onset observations by IMAGE-FUV, J. Geophys. Res., 109, A10304, doi:10.1029/2004JA010607]. The results are summarized as follows. Substorm onsets, which we identify by auroral initial brightenings, are likely to occur in the more dusk-(dawn-)ward region when the O+/H+ number density ratio is high in the dusk (dawn) side. This property is observed only in the near-Earth plasma sheet (at -8 RE > XGSM > -14 RE). The above-mentioned property holds in each of two groups: substorm events due to internal instability of the magnetosphere (i.e., internally triggered substorms) and events due to external changes in the solar wind or the interplanetary magnetic field (i.e., externally triggered substorms). Thus, we conclude that the substorm onset location depends on the density of O+ ions in the near-Earth plasma sheet prior to onset, whether the substorm is triggered internally or externally.

  4. Local time distribution of the SSC-associated HF-Doppler frequency shifts

    Science.gov (United States)

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.

    1985-01-01

    The HF-Doppler frequency shift observed at the storm's sudden commencement is composed of a frequency increase (+) and decrease (-), and classified into four types, SCF(+ -), SCF(- +), SCF(+) and SCF(-). Since the latter two types are special cases of the former two types, two different kinds of electrical field exist in the F region and cause the ExB drift motion of plasma. HUANG (1976) interpreted the frequency increase of SCF(+ -) as due to the westward induction electric field proportional to delta H/ delta t and the succeeding frequency decrease due to the eastward conduction electric field which produces ionospheric currents responsible for the magnetic increase on the ground. In spite of his success in interpreting the SCF(+ -), some other interpretations are needed for the explanation of the whole set of SCF's, particularly SCF(- +). Local time distributions of the SCF's are derived from 41 SCF's which are observed on the HF standard signal (JJY) as received in Okinawa (path length =1600 km) and Kokubunji (60 km). It is shown that the SCF(+ -) appears mainly during the day, whereas the SCF(- +) is observed during the night. The results indicate that the preliminary frequency shift (+) of SCF(+ -) and (-) of SCF(- +) is caused by a westward electric field in the dayside hemisphere, while by an eastward electric field in the nightside hemisphere. The main frequency shift (-) of SCF(+ -) and (+) of SCF(- +) is caused by the reversed electric field. Consequently, the preliminary frequency shift is caused by the dusk-to-dawn electric field, while the main frequency shift by the dawn-to-dusk electric field.

  5. How Does a Carnivore Guild Utilise a Substantial but Unpredictable Anthropogenic Food Source? Scavenging on Hunter-Shot Ungulate Carcasses by Wild Dogs/Dingoes, Red Foxes and Feral Cats in South-Eastern Australia Revealed by Camera Traps

    Science.gov (United States)

    Forsyth, David M.; Woodford, Luke; Moloney, Paul D.; Hampton, Jordan O.; Woolnough, Andrew P.; Tucker, Mark

    2014-01-01

    There is much interest in understanding how anthropogenic food resources subsidise carnivore populations. Carcasses of hunter-shot ungulates are a potentially substantial food source for mammalian carnivores. The sambar deer (Rusa unicolor) is a large (≥150 kg) exotic ungulate that can be hunted throughout the year in south-eastern Australia, and hunters are not required to remove or bury carcasses. We investigated how wild dogs/dingoes and their hybrids (Canis lupus familiaris/dingo), red foxes (Vulpes vulpes) and feral cats (Felis catus) utilised sambar deer carcasses during the peak hunting seasons (i.e. winter and spring). We placed carcasses at 1-km intervals along each of six transects that extended 4-km into forest from farm boundaries. Visits to carcasses were monitored using camera traps, and the rate of change in edible biomass estimated at ∼14-day intervals. Wild dogs and foxes fed on 70% and 60% of 30 carcasses, respectively, but feral cats seldom (10%) fed on carcasses. Spatial and temporal patterns of visits to carcasses were consistent with the hypothesis that foxes avoid wild dogs. Wild dog activity peaked at carcasses 2 and 3 km from farms, a likely legacy of wild dog control, whereas fox activity peaked at carcasses 0 and 4 km from farms. Wild dog activity peaked at dawn and dusk, whereas nearly all fox activity occurred after dusk and before dawn. Neither wild dogs nor foxes remained at carcasses for long periods and the amount of feeding activity by either species was a less important predictor of the loss of edible biomass than season. Reasons for the low impacts of wild dogs and foxes on sambar deer carcass biomass include the spatially and temporally unpredictable distribution of carcasses in the landscape, the rapid rate of edible biomass decomposition in warm periods, low wild dog densities and the availability of alternative food resources. PMID:24918425

  6. Complete plasma dropouts at Vela satellites during thinning of the plasma sheet

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Hones, E.W. Jr.; Venkatesan, D.; Akasofu, S.; Bame, S.J.

    1975-01-01

    Five satellite years of Vela data are examined for plasma sheet thinnings. Complete proton disappearances (plasma dropouts) are the main subject here. During such times, the Vela satellite is temporarily in the high-latitude tail lobe. The distribution of such plasma dropouts within the magnetotail suggests that the semithickness of the plasma sheet near midnight seldom reaches less than 1 R/sub E/ during substorms and that the dawn and dusk portions of the plasma sheet remain thicker than the midnight portion. But it is also shown that the plasma sheet occasionally becomes very thin near the dusk magnetopause. No such severe thinnings of the plasma sheet are found near the dawn magnetopause. Plasma dropouts can occur regardless of the sign of the Z component of the IMF, but their frequency of occurrence seems to be greater when the Z component is negative.Three plasma dropouts which occurred in the midnight sector at unusually large distances from the estimated position of the neutral sheet were observed during geomagnetic storms. It is likely that the midnight sector of the plasma sheet can become very thick (approx.18 R/sub E/) at certain times during the main phase of storms. Detailed measurements in the plasma sheet were obtained near the beginning of a geomagnetic storm whose sc triggered a substorm. A compression of the plasma sheet at X/sub SM/approx. =-15 R/sub E/ occurred about 10 min after the sc onset at the earth and about 5 min after the start of plasma sheet thinning associated with the sc-related substorm. If compression-thinning of the plasma sheet initiated this substorm, the triggering action must have occurred earthward of X/sub SM/approx. =-15 R/sub E/

  7. Storm-enhanced plasma density and polar tongue of ionization development during the 15 May 2005 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2015-06-01

    We investigate the ionosphere's global response to the 15 May 2005 superstorm in terms of storm evolution and ionospheric electrodynamics. Our aim is to study the global distribution of plasma and the resultant large-scale ionospheric features including the equatorial ionization anomaly (EIA), storm-enhanced density (SED), and polar tongue of ionization (TOI). We have combined multi-instrument ionospheric data, solar and terrestrial magnetic data, and polar convection maps. Results reveal the prompt penetration of the interplanetary electric field to the polar region and then to the equator with a dusk-to-dawn polarity during the initial phase and with a dawn-to-dusk polarity during the main phase. This drove during the initial phase a weak eastward equatorial electrojet (EEJ) in the American sector at nighttime and a weak westward EEJ in the Indian-Australian sector at daytime. During the main phase, these EEJs intensified and changed polarities. SED and polar TOI development was observed prior to and during the initial phase at evening-premidnight hours over North America and during the main phase in the south at afternoon-evening hours in the Australian sector. During the main phase and early in the recovery phase, the EIA-SED structure was well formed in the Asian longitude sector. Then, polar TOI development was absent in the north because of the long distance from the magnetic pole but was supported in the south because of the closeness of daytime cusp and magnetic pole. Thus, the EIA-SED-TOI structure developed twice but each time in a different longitude sector and with different characteristics.

  8. Polarization patterns of the twilight sky

    Science.gov (United States)

    Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit

    2005-08-01

    Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.

  9. Outlying plasmasphere structure detected by whistlers

    International Nuclear Information System (INIS)

    Ho, D.; Carpenter, D.L.

    1976-01-01

    Whistlers recorded at Eights (L approximately equal to 4) and Byrd (L approximately equal to 7), Antarctica have been used to study large-scale structure in equatorial plasma density at geocentric distances approximately equal to 3 to 6 Rsub(E). The observations were made during conditions of magnetic quieting following moderate disturbance. The structures were detected by a 'scanning' process involving relative motion, at about one tenth of the Earth's angular velocity or greater, between the observed density features and the observing whistler station or stations. Three case studies are described, from 26 March 1965, 11 May 1965 and 29 August 1966. The cases support satellite results by showing outlying high density regions at approximately equal to 4 to 6 Rsub(E) that are separated from the main plasmasphere by trough-like depressions ranging in width from 0.2 to 1 Rsub(E). The structures evidently endured for periods of 12 hr or more. In the cases of deepest quieting their slow east-west motions with respect to the Earth are probably of dynamo origin. The cases observed during deep quieting (11 May 1965 and 29 August 1966) suggest the approximate rotation with the Earth of structure formed during previous moderate disturbance activity in the dusk sector. The third case, from 26 March 1965, may represent a structure formed near local midnight. The reported structures appear to be closely related to the bulge phenomenon. The present work supports other experimental and theoretical evidence that the dusk sector is one of major importance in the generation of outlying density structure. (author)

  10. Effect of the IMF By component on the ionospheric flow overhead at EISCAT: observations and theory

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    Full Text Available We have analysed a database of ∼300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (∼2100–0300 MLT, but also pre-dusk (∼1600–1700 MLT, which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20–30 m s–1 nT–1 in the midnight sector, and smaller, 10–20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than ∼5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a "penetrating" component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence

  11. Effect of the IMF By component on the ionospheric flow overhead at EISCAT: observations and theory

    Directory of Open Access Journals (Sweden)

    H. Khan

    2000-12-01

    Full Text Available We have analysed a database of ∼300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (∼2100–0300 MLT, but also pre-dusk (∼1600–1700 MLT, which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20–30 m s–1 nT–1 in the midnight sector, and smaller, 10–20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than ∼5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a "penetrating" component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence

  12. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    Full Text Available We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of upward

  13. Saturn's polar ionospheric flows and their relation to the main auroral oval

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2004-04-01

    Full Text Available We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of

  14. Response of the polar cap boundary and the current system to changes in IMF observed from the MAGSAT satellite in the southern hemisphere during summer

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Burrows, J.R.

    1987-01-01

    The magnetic field vector residuals observed from the Magsat satellite have been used to obtain the dependence of the polar cap boundary and the current system on IMF for quiet and mildly disturbed conditions. The study has been carried out for the summer months in the Southern Hemisphere. ''Shear reversals'' (SRs) in vector residuals indicative of the infinite current sheet approximation of the field-aligned currents (FACs) indicate roughly the polar cap boundary or the poleward boundary of the plasma sheet. This is also the poleward edge of the region 1 FACs. The SR is defined to occur at the latitude where the vector goes to minimum and changes direction by approximately 180 0 . It is found that SRs mainly occur when the interplanetary magnetic field (IMF) has a southward-directed Bsub(z) component and in the latitude range of about 70 0 -80 0 . SRs in the dusk sector occur predominantly when the azimuthal component Bsub(y) is positive and in the dawn sector when Bsub(y) is negative, irrespective of the sign of Bsub(z). These results agree with the known merging process of IMF with magnetopause field lines. When SRs occur on both dawn and dusk sectors, the residuals over the entire polar cap are nearly uniform in direction and magnitude, indicating negligible polar currents. Similar behaviour is observed during highly disturbed conditions usually associated with large negative values of Bsub(z). Forty-one Magsat orbits with such SRs are quantitatively modelled for preliminary case studies of the resulting current distribution. It is found that SRs, in the plane perpendicular to the geomagnetic field, for the current vectors and the magnetic vector residuals (perturbations relative to the unperturbed field) occur at almost the same latitudes. The electrojet intensities range from 1.2 x 10 4 to 6.5 x 10 5 A (amperes). A preliminary classification of polar cap boundary crossings characterized by vector rotations rather than SRs also shows that they tend to

  15. Transitions between states of magnetotail–ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2015-04-01

    Full Text Available In a case study, we investigate transitions between fundamental magnetosphere–ionosphere (M-I coupling modes during storm-time conditions (SYM-H between −100 and −160 nT driven by an interplanetary coronal mass ejection (ICME. We combine observations from the near tail, at geostationary altitude (GOES-10, and electrojet activities across the auroral oval at postnoon-to-dusk and midnight. After an interval of strong westward electrojet (WEJ activity, a 3 h long state of attenuated/quenched WEJ activity was initiated by abrupt drops in the solar wind density and dynamic pressure. The attenuated substorm activity consisted of brief phases of magnetic field perturbation and electron flux decrease at GOES-10 near midnight and moderately strong conjugate events of WEJ enhancements at the southern boundary of the oval, as well as a series of very strong eastward electrojet (EEJ events at dusk, during a phase of enhanced ring current evolution, i.e., enhanced SYM-H deflection within −120 to −150 nT. Each of these M-I coupling events was preceded by poleward boundary intensifications and auroral streamers at higher oval latitudes. We identify this mode of attenuated substorm activity as being due to a magnetotail state characterized by bursty reconnection and bursty bulk flows/dipolarization fronts (multiple current wedgelets with associated injection dynamo in the near tail, in their braking phase. The latter process is associated with activations of the Bostrøm type II (meridional current system. A transition to the next state of M-I coupling, when a full substorm expansion took place, was triggered by an abrupt increase of the ICME dynamic pressure from 1 to 5 nPa. The brief field deflection events at GOES-10 were then replaced by a 20 min long interval of extreme field stretching (Bz approaching 5 nT and Bx ≈ 100 nT followed by a major dipolarization (Δ Bz ≈ 100 nT. In the ionosphere the latter stage appeared as a "full-size" stepwise

  16. A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2004-03-01

    Full Text Available We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001 survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992. The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV, we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence

  17. A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2004-03-01

    Full Text Available We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001 survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992. The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV, we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the

  18. The diel vertical migration patterns and individual swimming behavior of overwintering sprat Sprattus sprattus

    KAUST Repository

    Solberg, Ingrid

    2016-11-27

    We addressed the behavioral patterns and DVM dynamics of sprat overwintering in a 150 m Norwegian fjord with increasing hypoxia by depth. An upward-facing echosounder deployed at the bottom and cabled to shore provided 4 months of continuous acoustic data. This enabled detailed studies of individual behavior, specifically allowing assessment of individual vertical migrations at dusk and dawn in relation to light, analysis of so-called rise-and-sink swimming, and investigation of the sprat’ swimming activity and behavior in severely hypoxic waters. Field campaigns supplemented the acoustic studies. The acoustic records showed that the main habitat for sprat was the upper ∼ 65 m where oxygen concentrations were ⩾ 0.7 mL O2 L-1. The sprat schooled at ∼ 50 m during daytime and initiated an upward migration about 1 hour prior to sunset. While some sprat migrated to surface waters, other individuals interrupted the ascent when at ∼20-30 m, and returned to deeper waters ∼ 20-50 min after sunset. Sprat at depth was on average larger, yet individuals made excursions to- and from upper layers. Sprat were swimming in a “rise and sink” pattern at depth, likely related to negative buoyancy. Short-term dives into waters with less than 0.45 mL O2 L-1 were interpreted as feeding forays for abundant overwintering Calanus spp. The deep group of sprat initiated a dawn ascent less than 1 hour before sunrise, ending at 20-30 m where they formed schools. They subsequently returned to deeper waters about ∼20 min prior to sunrise. Measurements of surface light intensities indicated that the sprat experienced lower light levels in upper waters at dawn than at dusk. The vertical swimming speed varied significantly between the behavioral tasks. The mixed DVM patterns and dynamic nocturnal behavior of sprat persisted throughout winter, likely shaped by individual strategies involving optimized feeding and predator avoidance, as well as relating to temperature, hypoxia and

  19. The Topology and Properties of Mercury's Tail Current Sheet

    Science.gov (United States)

    Al Asad, M.; Johnson, C.; Philpott, L. C.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury from March 2011 until April 2015, measuring the vector magnetic field inside and outside the magnetosphere. MESSENGER repeatedly encountered the tail current sheet (TCS) on the nightside of the planet. We examined 1s magnetic field data within 20 minutes of the magnetic equator position on 2435 orbit to characterize the shape and properties of Mercury's TCS and investigate its response to solar wind conditions. Identification of the TCS from vector magnetic field data used the following criteria: (1) a rapid rotation in the field direction from anti-sunward in the southern tail lobe to sunward in the northern lobe, accompanied by (2) a decrease in the field magnitude and (3) an increase in field variability. The current sheet was encountered on 606 orbits allowing the probability of encountering the tail current sheet in the equatorial plane to be mapped. Orbits on which the TCS was identified were binned spatially and superposed epoch analysis used to determine the field magnitude at the edge of the TCS, from which its time-averaged 3D shape was extracted. The TCS has an inner edge at 1.5 RM downtail in the midnight plane with a thickness of 0.34 RM, extends to the observation limit of 2.8 RM, decreasing in thickness to 0.28 RM. The thickness of the TCS increases in the dawn/dusk directions to 0.7 RM at 1.8 RM downtail and ± 1.5 RM from the noon-midnight plane and it warps towards the planet in the dawn/dusk directions. No strong correlations were found between the time-averaged shape and position of the TCS and solar wind conditions such as the solar wind ram pressure and the magnetic disturbance index, nor with parameters that control these conditions such as heliocentric distance. However, it is likely that the TCS does respond to these conditions on time scales too short to be characterized with MESSENGER data. In addition to mapping the shape of the

  20. Seasonal-longitudinal variability of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    W. J. Burke

    2004-09-01

    Full Text Available We compare seasonal and longitudinal distributions of more than 8300 equatorial plasma bubbles (EPBs observed during a full solar cycle from 1989-2000 with predictions of two simple models. Both models are based on considerations of parameters that influence the linear growth rate, γRT, of the generalized Rayleigh-Taylor instability in the context of finite windows of opportunity available during the prereversal enhancement near sunset. These parameters are the strength of the equatorial magnetic field, Beq, and the angle, α, it makes with the dusk terminator line. The independence of α and Beq from the solar cycle phase justifies our comparisons.

    We have sorted data acquired during more than 75000 equatorial evening-sector passes of polar-orbiting Defense Meteorological Satellite Program (DMSP satellites into 24 longitude and 12 one-month bins, each containing ~250 samples. We show that: (1 in 44 out of 48 month-longitude bins EPB rates are largest within 30 days of when α=0°; (2 unpredicted phase shifts and asymmetries appear in occurrence rates at the two times per year when α≈0°; (3 While EPB occurrence rates vary inversely with Beq, the relationships are very different in regions where Beq is increasing and decreasing with longitude. Results (2 and (3 indicate that systematic forces not considered by the two models can become important. Damping by interhemispheric winds appears to be responsible for phase shifts in maximum rates of EPB occurrence from days when α=0°. Low EPB occurrence rates found at eastern Pacific longitudes suggest that radiation belt electrons in the drift loss cone reduce γRT by enhancing E-layer Pedersen conductances. Finally, we analyze an EPB event observed during a magnetic storm at a time and place where α≈-27°, to illustrate how electric-field penetration from

  1. Energized Oxygen : Speiser Current Sheet Bifurcation

    Science.gov (United States)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs

  2. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  3. Dst and a map of average equivalent ring current: 1958-2007

    Science.gov (United States)

    Love, J. J.

    2008-12-01

    midnight and noon, but rather between dawn and dusk, with greatest mean disturbance occurring at dusk. As a result, proposed corrections to Dst for magnetopause and tail currents might be reasonably reconsidered.

  4. A statistical analysis of the location and width of Saturn's southern auroras

    Directory of Open Access Journals (Sweden)

    S. V. Badman

    2006-12-01

    Full Text Available A selection of twenty-two Hubble Space Telescope images of Saturn's ultraviolet auroras obtained during 1997–2004 has been analysed to determine the median location and width of the auroral oval, and their variability. Limitations of coverage restrict the analysis to the southern hemisphere, and to local times from the post-midnight sector to just past dusk, via dawn and noon. It is found that the overall median location of the poleward and equatorward boundaries of the oval with respect to the southern pole are at ~14° and ~16° co-latitude, respectively, with a median latitudinal width of ~2°. These median values vary only modestly with local time around the oval, though the poleward boundary moves closer to the pole near noon (~12.5° such that the oval is wider in that sector (median width ~3.5° than it is at both dawn and dusk (~1.5°. It is also shown that the position of the auroral boundaries at Saturn are extremely variable, the poleward boundary being located between 2° and 20° co-latitude, and the equatorward boundary between 6° and 23°, this variability contrasting sharply with the essentially fixed location of the main oval at Jupiter. Comparison with Voyager plasma angular velocity data mapped magnetically from the equatorial magnetosphere into the southern ionosphere indicates that the dayside aurora lie poleward of the main upward-directed field-aligned current region associated with corotation enforcement, which maps to ~20°–24° co-latitude, while agreeing reasonably with the position of the open-closed field line boundary based on estimates of the open flux in Saturn's tail, located between ~11° and ~15°. In this case, the variability in location can be understood in terms of changes in the open flux present in the system, the changes implied by the Saturn data then matching those observed at Earth as fractions of the total planetary flux. We infer that the broad (few degrees diffuse auroral emissions

  5. Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    Science.gov (United States)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee; Vervack, Ronald J.; Sarantos, Menelaos; Sprague, Ann L.

    2011-01-01

    Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This

  6. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar of the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Stone Chris M

    2012-01-01

    Full Text Available Abstract Background The purpose of this study was to determine whether the sugar-or-blood meal choice of Anopheles gambiae females one day after emergence is influenced by blood-host presence and accessibility, nectariferous plant abundance, and female size. This tested the hypothesis that the initial meal of female An. gambiae is sugar, even when a blood host is available throughout the night, and, if not, whether the use of a bed net diverts mosquitoes to sugar sources. Methods Females and males Senna didymobotrya plants. Simultaneously they had access to a human blood host, either for 8 h or for only 30 min at dusk and dawn (the remainder of the night being excluded by an untreated bed net. In a third situation, the blood host was not present. All mosquitoes were collected in the morning. Their wing lengths, an indicator of pre-meal energetic state, were measured, and their meal choice was determined by the presence of midgut blood and of fructose. Results Female sugar feeding after emergence was facultative. When a blood host was accessible for 8 h per night, 92% contained blood, and only 3.7% contained sugar. Even with the use of a bed net, 78% managed to obtain a blood meal during the 30 min of accessibility at dusk or dawn, but 14% of females were now fructose-positive. In the absence of a blood host, and when either one or six plants were available, a total of 21.7% and 23.6% of females and 30.8% and 43.5% of males contained fructose, respectively. Feeding on both sugar and blood was more likely with bed net use and with greater plant abundance. Further, mosquitoes that fed on both resources were more often small and had taken a sugar meal earlier than the blood meal. The abundance of sugar hosts also affected the probability of sugar feeding by males and the amount of fructose obtained by both males and females. Conclusion Even in an abundance of potential sugar sources, female An. gambiae appear to prefer a nearby human source of blood

  7. The effect of Ramadan fasting on thyroid hormones in 9‐13 years old pre‐menarche girls

    Directory of Open Access Journals (Sweden)

    Shohereh Bahrayni

    2013-12-01

    Full Text Available Introduction: Muslims fast from dawn to dusk during Ramadan. The effects of prolonged food deprivation on endocrine hormones have been studied in healthy adults but no previous study has investigated this effect on children. This study aimed to evaluate the feasible changes in serum level of thyroxin (T3, tetraiodothyronin (T4, thyroid stimulating hormone (TSH and body composition in pre-menarche girls. Methods: This cohort study was performed through Ramadan 2012. We enrolled fifty-eight 9-13years old girls (weight 34.20±7.96 kg, height 142.01±7.76 cm in two groups from (31  and 27 in fasted and non-fasted groups, respectively prior to Ramadan until afterwards. Weight and height of the subjects were measured using standard methods, and then Body Mass Index (BMI was calculated.  Body composition was measured using Bio Impedance Analyzer (BIA method.  Serum concentrations of T3, T4 and TSH hormones were measured by Radio Immunoassay (RIA. Paired t-test was used to compare result of each group before and after Ramadan. Independent t-test was used to compare two groups together. Tanner intervention variable was controlled by generalized linear models intervening test. SPSS.11 software was used for data analysis. Results: Ramadan fasting induces a significant decrease in BMI and weight on fasted group (p=0.005, p=0.044, respectively while a significant increase was observed in non-fasted group (p

  8. Raman lidar water vapor profiling over Warsaw, Poland

    Science.gov (United States)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  9. Observations of upflowing ionospheric ions in the mid-altitude cusp/cleft region with the Viking satellite

    International Nuclear Information System (INIS)

    Thelin, B.; Aparicio, B.; Lundin, R.

    1990-01-01

    Measurements of positive ions (0.1-10 keV) from the polar-orbiting Viking satellite have been obtained in the cusp/cleft region and have been tabulated in MLT versus invariant latitude plots to get a synoptic picture of the occurrence of upgoing auroral positive ions. A distinction was made between ion distributions with peak fluxes along B (ion beam) and those exhibiting flux maxima that are not field-aligned (conics). Both beams and conics are shown to be common auroral phenomena, whose frequencies of occurrence in MLT, invariant latitude, and altitude were studied. During the period of study (March-June 1986) the ion beams were more frequenty (about a factor of 2) in the dusk sector than in the dawn sector. This effect seemed to increase with magnetic activity but was mostly unchanged with the sign of the interplanetary magnetic field B y component. An investigation was also made of the invariant latitude dependence for beams and conics, where the dawn sector beams have a tendency to be lcoated toward higher invariant latitudes for both positive and negative B y components. The ion beams were observed primarily above 5,000 km with a frequency of occurrence increasing with altitude up to the satellite apogee at about 13,500 km. The ion conics were observed from above 7,000 km to be steadily increasing in altitude

  10. Polarization transition between sunlit and moonlit skies with possible implications for animal orientation and Viking navigation: anomalous celestial twilight polarization at partial moon.

    Science.gov (United States)

    Barta, András; Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Barta, Pál; Kovács, József; Csák, Balázs; Jankovics, István; Szabó, Gyula; Horváth, Gábor

    2014-08-10

    Using full-sky imaging polarimetry, we measured the celestial distribution of polarization during sunset and sunrise at partial (78% and 72%) and full (100%) moon in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We investigated the temporal change of the patterns of degree p and angle α of linear polarization of sunlit and moonlit skies at dusk and dawn. We describe here the position change of the neutral points of sky polarization, and present video clips about the celestial polarization transition at moonlit twilight. We found that at partial moon and at a medium latitude (47° 15.481' N) during this transition there is a relatively short (10-20 min) period when (i) the maximum of p of skylight decreases, and (ii) from the celestial α pattern neither the solar-antisolar nor the lunar-antilunar meridian can be unambiguously determined. These meridians can serve as reference directions of animal orientation and Viking navigation based on sky polarization. The possible influence of these atmospheric optical phenomena during the polarization transition between sunlit and moonlit skies on the orientation of polarization-sensitive crepuscular/nocturnal animals and the hypothesized navigation of sunstone-aided Viking seafarers is discussed.

  11. Snapshots of high-latitude electrodynamics using Viking and DMSP F7 observations

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Stasiewicz, K.; Murphree, J.S.; Pottelette, R.; Zanetti, L.J.; Potemra, T.A.; Hardy, D.A.; Rich, F.J.

    1988-01-01

    Simultandeous observations by the Viking an the DMSP F7 satellites have been used as input to a new method to obtain snapshot pictures of the auroral electrodynamics. In particular, an ''instantaneous'' global equipotential (or convection) pattern is calculated from distributions of field-aligned current and conductivity which are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic field and particle data from the two satellites. This convection pattern, which is of the normal two-cell type, with a weak dusk cell and a strong, elongated crescent-shape dawn cell (consistent with positive interplanetary magnetic field B/sub y/), agrees well with the Viking electric field data. The model and the observed potential profiles agree nicely along the entire Viking orbit except for two intervals above acceleration regions where deviations are to be expected (due to parallel electric fields). These regions are characterized by U-shaped potential minima, upward field-aligned currents, upgoing ion beams, and relatively intense auroral kilometric radiation. Thus, the model results are consistent with the Viking observations not only on a global scale but also on the scale of the auroral acceleration regions. The corresponding convection in the magnetosphere is obtained from a simple projection to the equatorial plane of the deduced two-cell convection pattern. From this location of the plasmapause is inferred. copyright American Geophysical Union 1988

  12. Preliminary study of Malaysian fruit bats species diversity in Lenggong Livestock Breeding Center, Perak: Potential risk of spill over infection

    Directory of Open Access Journals (Sweden)

    Muhammed Mikail

    2017-11-01

    Full Text Available Aim: Farms that are neighboring wildlife sanctuaries are at risk of spillover infection from wildlife, and the objective of this research is to examine the species diversity of Malaysian fruit bats in livestock farm in determining the possible risk of spill over infection to livestock. Materials and Methods: Fifty individual fruit bats were captured using six mists net, from May to July 2017. The nets were set at dusk (1830 h as bats emerge for foraging and monitored at every 30-min intervals throughout the night until dawn when they returned to the roost. The nets were closed for the day until next night, and captured bats were identified to species levels. Results: All the captured bats were mega chiropterans, and Cynopterus brachyotis was the highest captured species, representing 40% of the total capture. Shannon-Weiner index is 2.80, and Simpson index is 0.2. Our result suggests that there is a degree of species dominance with low diversity in Lenggong Livestock Breeding Center. Conclusion: We concluded that fruit bats are indeed, encroaching livestock areas and the species identified could be a potential source of infection to susceptible livestock. Hence, an active surveillance should be embarked on farms that border wildlife sanctuaries.

  13. Optical observations on the CRIT-II Critical Ionization Velocity Experiment

    International Nuclear Information System (INIS)

    Stenbaek-Nielsen, H.C.; Wescott, E.M.; Haerendel, G.; Valenzuela, A.

    1990-01-01

    A rocket borne Critical Ionization Velocity (CIV) experiment was carried out from Wallops Island at dusk on May 4, 1989. Two barium shaped charges were released below the solar terminator (to prevent photoionization) at altitudes near 400 km. The ambient ionospheric electron density was 5x10 5 cm -3 . The neutral barium jet was directed upwards and at an angle of nominally 45 degrees to B which gives approximately 3x10 23 neutrals with super critical velocity. Ions created by a CIV process in the region of the neutral jet would travel up along B into sunlight where they can be detected optically. Well defined ion clouds (max. brightness 750 R) were observed in both releases. An ionization rate of 0.8%s -1 (125s ionization time constant) can account for the observed ion cloud near the release field line, but the ionization rate falls off with increasing distance from the release. It is concluded that a CIV process was present in the neutral jet out to about 50 km from the release, which is significantly further than allowed by current theories

  14. Variations in the occurrence of SuperDARN F region echoes

    Directory of Open Access Journals (Sweden)

    M. Ghezelbash

    2014-02-01

    Full Text Available The occurrence of F region ionospheric echoes observed by a number of SuperDARN HF radars is analyzed statistically in order to infer solar cycle, seasonal, and diurnal trends. The major focus is on Saskatoon radar data for 1994–2012. The distribution of the echo occurrence rate is presented in terms of month of observation and magnetic local time. Clear repetitive patterns are identified during periods of solar maximum and solar minimum. For years near solar maximum, echoes are most frequent near midnight during winter. For years near solar minimum, echoes occur more frequently near noon during winter, near dusk and dawn during equinoxes and near midnight during summer. Similar features are identified for the Hankasalmi and Prince George radars in the northern hemisphere and the Bruny Island TIGER radar in the southern hemisphere. Echo occurrence for the entire SuperDARN network demonstrates patterns similar to patterns in the echo occurrence for the Saskatoon radar and for other radars considered individually. In terms of the solar cycle, the occurrence rate of nightside echoes is shown to increase by a factor of at least 3 toward solar maximum while occurrence of the near-noon echoes does not significantly change with the exception of a clear depression during the declining phase of the solar cycle.

  15. On the average configuration of the geomagnetic tail

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1978-03-01

    Over 3000 hours of IMP-6 magnetic field data obtained between 20 and 33 R sub E in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5 minute averages of B sub Z as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks than near midnight. The tail field projected in the solar magnetospheric equatorial plane deviates from the X axis due to flaring and solar wind aberration by an angle alpha = -0.9 y sub SM - 1.7, where y/sub SM/ is in earth radii and alpha is in degrees. After removing these effects the Y component of the tail field is found to depend on interplanetary sector structure. During an away sector the B/sub Y/ component of the tail field is on average 0.5 gamma greater than that during a toward sector, a result that is true in both tail lobes and is independent of location across the tail

  16. Average configuration of the geomagnetic tail

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1979-01-01

    Over 3000 hours of Imp 6 magnetic field data obtained between 20 and 33 R/sub E/ in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5-min averages of B/sub z/ as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks (B-bar/sub z/=3.γ) than near midnight (B-bar/sub z/=1.8γ). The tail field projected in the solar magnetospheric equatorial plane deviates from the x axis due to flaring and solar wind aberration by an angle α=-0.9 Y/sub SM/-2.7, where Y/sub SM/ is in earth radii and α is in degrees. After removing these effects, the B/sub y/ component of the tail field is found to depend on interplanetary sector structure. During an 'away' sector the B/sub y/ component of the tail field is on average 0.5γ greater than that during a 'toward' sector, a result that is true in both tail lobes and is independent of location across the tail. This effect means the average field reversal between northern and southern lobes of the tail is more often 178 0 rather than the 180 0 that is generally supposed

  17. Functional trophic composition of the ichthyofauna of forest streams in eastern Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Gabriel Lourenco Brejao

    2013-06-01

    Full Text Available This study aimed to describe the functional organization of the ichthyofauna of forest streams from northeastern Pará State, Brazil, based on behavioral observation of species' feeding tactics. Seven streams were sampled between June and November, 2010, during snorkeling sessions, totaling 91h 51min of visual censuses at day, dusk, and night periods. Seventy three species distributed in six orders, 26 families and 63 genera were observed, with dominance of Characiformes, followed by Siluriformes. From information gathered by ad libitum observations, each species was included in one of 18 functional trophic groups (FTGs, according to two main characteristics: (1 its most frequently observed feeding tactic; and (2 its spatial distribution in the stream environment, considering their horizontal (margins or main channel and vertical (water column dimensions. The most frequent FTGs observed were Nocturnal invertebrate pickers (9 species, Diurnal channel drift feeders (8 spp., Diurnal surface pickers (7 spp., and Ambush and stalking predators (6 spp.. The FTGs herein defined enable a comparative analysis of the structure and composition of ichthyofauna in different basins and environmental conditions, which presents an alternative approach to the use of taxonomic structure in ecological studies. The ichthyofauna classification based in FTGs proposed in this study is compared to three other classifications, proposed by Sazima (1986, Sabino & Zuanon (1998 and Casatti et al. (2001.

  18. EISCAT observations of plasma patches at sub-auroral cusp latitudes

    Directory of Open Access Journals (Sweden)

    J. Moen

    2006-09-01

    Full Text Available A sequence of 3 patches of high-density (1012 m−3 cold plasma on a horizontal scale-size of 300–700 km was observed near magnetic noon by the EISCAT VHF radar above Svalbard on 17 December 2001. The patches followed a trajectory towards the cusp inflow region. The combination of radar and all-sky observations demonstrates that the patches must have been segmented equatorward of the cusp/cleft auroral display, and hence their properties had not yet been influenced by cusp particle showers and electrodynamics on open flux tubes. The last patch in the sequence was intersected by radio tomography observations, and was found to be located adjacent to a broader region of the same high electron density further south. The patches occurred under moderately active conditions (Kp=3 and the total electron content (TEC of the high-density plasma was 45 TEC units. The train of patches appeared as a segmentation of the tongue of ionization. The sequence of patches occurred in association with a sequence of flow bursts in the dusk cell return flow. It is proposed that reconnection driven pulsed convection is able to create sub-auroral patches in the region where high density mid-latitude plasma is diverted poleward toward the cusp. It is the downward Birkeland current sheet located at the equatorward boundary of the flow disturbance that represents the actual cutting mechanism.

  19. EISCAT observations of plasma patches at sub-auroral cusp latitudes

    Directory of Open Access Journals (Sweden)

    J. Moen

    2006-09-01

    Full Text Available A sequence of 3 patches of high-density (1012 m−3 cold plasma on a horizontal scale-size of 300–700 km was observed near magnetic noon by the EISCAT VHF radar above Svalbard on 17 December 2001. The patches followed a trajectory towards the cusp inflow region. The combination of radar and all-sky observations demonstrates that the patches must have been segmented equatorward of the cusp/cleft auroral display, and hence their properties had not yet been influenced by cusp particle showers and electrodynamics on open flux tubes. The last patch in the sequence was intersected by radio tomography observations, and was found to be located adjacent to a broader region of the same high electron density further south. The patches occurred under moderately active conditions (Kp=3 and the total electron content (TEC of the high-density plasma was 45 TEC units. The train of patches appeared as a segmentation of the tongue of ionization. The sequence of patches occurred in association with a sequence of flow bursts in the dusk cell return flow. It is proposed that reconnection driven pulsed convection is able to create sub-auroral patches in the region where high density mid-latitude plasma is diverted poleward toward the cusp. It is the downward Birkeland current sheet located at the equatorward boundary of the flow disturbance that represents the actual cutting mechanism.

  20. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    Science.gov (United States)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  1. IMF By associated interhemispheric asymmetries in ionospheric convection and field-aligned currents

    Science.gov (United States)

    Kunduri, B.; Baker, J.; Ruohoniemi, J. M.; Clausen, L.; Ribeiro, A.

    2012-12-01

    The solar wind-magnetosphere interaction plays an important role in controlling the dynamics of ionospheric convection. It is widely known that the By component of IMF generates asymmetries in ionospheric convection between the northern and southern polar caps. Some studies show that IMF By-generated electric field penetrates into the closed magnetosphere producing differences in the high latitude ionospheric convection between hemispheres. The differences in convection were attributed to field-aligned potential drop between hemispheres resulting in flow of interhemispheric field aligned currents. In the current paper we present interhemispheric observations of high latitude ionospheric convection on closed field lines in the noon-dusk sector. The observations reveal that the convection is stronger in the northern (southern) hemisphere when IMF By is positive (negative) irrespective of season. The inter-hemispheric differences can be attributed to the flow of interhemispheric field aligned currents which support the existence of oppositely-directed zonal plasma flows in the closed field line regions, suppressing the convection in one hemisphere and aiding it in the other. We estimate the strength of these currents, analyze their characteristics and identify the various factors such as magnetic local time, magnetic latitude and ionospheric conductivity that impact them.

  2. Polar cap electric field structures with a northward interplanetary magnetic field

    International Nuclear Information System (INIS)

    Burke, W.J.; Kelley, M.C.; Sagalyn, R.C.; Smiddy, M.; Lai, S.T.

    1979-01-01

    Polar cap electric fields patterns are presented from times when the S3-2 Satellite was near the dawn-dusk meridian and IMF data were available. With B/sub z/> or =0.7γ, two characteristic types of electric field patterns were measured in the polar cap. In the sunlit polar cap the convection pattern usually consisted of four cells. Two of the cells were confined to the polar cap with sunward convection in the central portion of the cap. The other pair of cells were marked by anti-sunward flow along the flanks of the polar cap and by sunward flow in the auroral oval. These observations are interpreted in terms of a model for magnetic merging at the poleward wall of the dayside polar cusp. The sunward flow in the auroral zone is not predicted by the magnetic model and may be due to a viscous interaction between the solar wind and and magnetosphere. The second type, which was observed in some of the summer hemisphere passes and all of the winter ones, was characterized by an electric field pattern which was very turbulent, and may be related to inhomogeneous merging

  3. Fauna and Geographical Distribution of Scorpions in Ilam Province, South Western Iran.

    Science.gov (United States)

    Sharifinia, Narges; Gowhari, Iman; Hoseiny-Rad, Manijeh; Aivazi, Ali Ashraf

    2017-06-01

    Scorpions' stings and their own mortalities place them among the most important health and medical problems. The dreadful features and especially their poisonous stings are considered a major cause of human stress and abhorrence/phobia. The current study aimed to study the scorpion fauna of Ilam Province, south western Iran in order to manage scorpionism related problems. In this field-laboratory investigation during March 2014 to February 2015, different parts of Ilam Province were surveyed. Nine sampling parts were selected based on geographical situation, scorpionism reports, weather, flora, and local data. Capturing scorpion was done employing a black light, and a long forceps from dusk to midnight. The collected scorpions were placed to 70% ethyl alcohol. All specimens were determined based on the valid taxonomic keys, furthermore their sexes were studied. Out of the 391 collected scorpions, 11 species were identified as follows: Hottentotta saulcyi , Mesobuthus eupeus , Compsobuthus matthiesseni , Razianus zarudnyi , Hemiscorpius lepturus , Androctonus crassicauda , Orthochirus iranus , Odontobuthus bidentatus , Buthacus macrocentrus , Scorpio maurus , and Polisius persicus . Eleven species of Buthidae, Scorpionidae and Hemiscorpiidae families from high risk areas were identified. Despite the low surface of the province, such different species reveals a diverse scorpion fauna that, in turn, shows good and suitable habits of scorpions, as considered by health staff.

  4. Observations of significant flux closure by dual lobe reconnection

    Directory of Open Access Journals (Sweden)

    S. M. Imber

    2007-07-01

    Full Text Available We present an interval of dual lobe reconnection during which interplanetary magnetic field lines are captured by the magnetosphere by reconnecting at high latitudes in both the Northern and the Southern Hemispheres. This event was identified using measurements of the ionospheric convection flow and observations of the aurora using the SuperDARN radars and the IMAGE spacecraft. A cusp spot, characteristic of northward IMF, is clearly visible for a 30 min period enabling the ionospheric footprint of the Northern Hemisphere merging gap to be accurately determined. During the interval a strong burst of sunward flow across the dayside open/closed field line boundary (OCB is observed, which we interpret as the reconfiguration of the magnetosphere following a burst of reconnection. Noon-midnight and dawn-dusk keograms of the aurora show that the polar cap shrinks during the interval indicating that a large amount of flux was closed by the reconnection. Using the SuperDARN potential maps it is possible to calculate that the amount of flux closed during the interval is 0.13 GWb which represents approximately 10% of the pre-existing polar cap. The number of ions captured by the burst of dual lobe reconnection was calculated to be ~2.2×1031, more than sufficient to populate a cold, dense plasma sheet. That a dense plasma sheet was not subsequently observed is discussed in terms of subsequent changes in the IMF.

  5. Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System

    Science.gov (United States)

    Bonin, Timothy; Chilson, Phillip; Zielke, Brett; Fedorovich, Evgeni

    2013-01-01

    The evolution of the lower portion of the planetary boundary layer is investigated using the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial vehicle developed at the University of Oklahoma. The study focuses on the lowest 200 m of the atmosphere, where the most noticeable thermodynamic changes occur during the day. Between October 2010 and February 2011, a series of flights was conducted during the evening hours on several days to examine the vertical structure of the lower boundary layer. Data from a nearby Oklahoma Mesonet tower was used to supplement the vertical profiles of temperature, humidity, and pressure, which were collected approximately every 30 min, starting 2 h before sunset and continuing until dusk. From the profiles, sensible and latent heat fluxes were estimated. These fluxes were used to diagnose the portion of the boundary layer that was most affected by the early evening transition. During the transition period, a shallow cool and moist layer near the ground was formed, and as the evening progressed the cooling affected an increasingly shallower layer just above the surface.

  6. A circadian gene expression atlas in mammals: implications for biology and medicine.

    Science.gov (United States)

    Zhang, Ray; Lahens, Nicholas F; Ballance, Heather I; Hughes, Michael E; Hogenesch, John B

    2014-11-11

    To characterize the role of the circadian clock in mouse physiology and behavior, we used RNA-seq and DNA arrays to quantify the transcriptomes of 12 mouse organs over time. We found 43% of all protein coding genes showed circadian rhythms in transcription somewhere in the body, largely in an organ-specific manner. In most organs, we noticed the expression of many oscillating genes peaked during transcriptional "rush hours" preceding dawn and dusk. Looking at the genomic landscape of rhythmic genes, we saw that they clustered together, were longer, and had more spliceforms than nonoscillating genes. Systems-level analysis revealed intricate rhythmic orchestration of gene pathways throughout the body. We also found oscillations in the expression of more than 1,000 known and novel noncoding RNAs (ncRNAs). Supporting their potential role in mediating clock function, ncRNAs conserved between mouse and human showed rhythmic expression in similar proportions as protein coding genes. Importantly, we also found that the majority of best-selling drugs and World Health Organization essential medicines directly target the products of rhythmic genes. Many of these drugs have short half-lives and may benefit from timed dosage. In sum, this study highlights critical, systemic, and surprising roles of the mammalian circadian clock and provides a blueprint for advancement in chronotherapy.

  7. Sustainable manufacture of insect repellents derived from Nepeta cataria.

    Science.gov (United States)

    Patience, Gregory S; Karirekinyana, Ginette; Galli, Federico; Patience, Nicolas A; Kubwabo, Cariton; Collin, Guy; Bizimana, Jean Claude; Boffito, Daria C

    2018-02-02

    Malaria devastates sub-Saharan Africa; the World Health Organization (WHO) estimates that 212 million people contract malaria annually and that the plasmodium virus will kill 419 000 in 2017. The disease affects rural populations who have the least economic means to fight it. Impregnated mosquito nets have reduced the mortality rate but the Anopheles mosquitoes are changing their feeding patterns and have become more active at dusk and early morning rather than after 22h00 as an adaptation to the nets. Everyone is susceptible to the Anopheles at these times but infants and pregnant women are the most vulnerable to the disease. Plant-based mosquito repellents are as effective as synthetic repellents that protect people from bites. They are sustainable preventative measures against malaria not only because of their efficacy but because the local population can produce and distribute them, which represents a source of economic growth for rural areas. Here, we extract and test the essential oil nepetalactone from Nepeta cataria via steam distillation. Families in endemic areas of Burundi found them effective against bites but commented that the odor was pungent. An epidemiological study is required to establish its clinical efficacy.

  8. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  9. A comparison of field-aligned current signatures simultaneously observed by the MAGSAT and TIROS/NOAA spacecraft

    International Nuclear Information System (INIS)

    Kamide, Y.; Evans, D.S.; Cain, J.C.

    1984-01-01

    In order to examine the relative locations of auroral particle fluxes and field-aligned currents and to identify the main charge carriers of the field-aligned currents at auroral latitudes, nearly simultaneous data from the vector magnetometers on MAGSAT and of precipitating electrons with energies between 300 eV and 20 keV observed by TIROS-N and NOAA-6 are compared. For more than fifty cases, MAGSAT and TIROS and/or NOAA orbits occurred within two minutes (mostly within one minute) of each other in the dawn/dusk sectors, during the time the IMS meridian chains of ground magnetometers were operating from November, 1979 through January, 1980. The latitudinal boundaries of precipitating electrons are found to line up within 1 0 with those of the field-aligned current region. Major portions of the upward field-aligned currents in the poleward half of the evening-sector auroral oval and in the equatorward half of the morining-sector auroral oval appear to be carried by the precipitating keV electrons. (author)

  10. Response of the ionospheric convection pattern to a rotation of the interplanetary magnetic field on January 14, 1988

    International Nuclear Information System (INIS)

    Cumnock, J.A.; Heelis, R.A.; Hairston, M.R.

    1992-01-01

    Ionospheric convection signatures observed over the polar regions are provided by the DMSP F8 satellite. The authors consider five passes over the southern summer hemisphere during a time when the z component of the interplantary magnetic field was stable and positive and the y component changed slowly from positive to negative. Large-scale regions of sunward flow are observed at very high latitudes consistent with a strong z component. When B y and B z are positive, but B y is greater than B z , strong evidence exists for dayside merging in a manner similar to that expected when B z is negative. This signature is diminished as B y decreases and becomes smaller than B z resulting in a four-cell convection pattern displaced toward the sunward side of the dawn-dusk meridian. In this case the sign of B y affects the relative sizes of the two highest-latitude cells. In the southern hemisphere the duskside high-latitude cell is dominant for B y positive and the dawnside high-latitude cell is dominant for B y negative. The relative importance of possible electric field sources in the low-latitude boundary layer, the dayside cusp, and the lobe all need to be considered to adequately explain the observed evolution of the convection pattern

  11. Effects of melatonin on 2-deoxy-[1-14C]glucose uptake within rat suprachiasmatic nucleus

    International Nuclear Information System (INIS)

    Cassone, V.M.; Roberts, M.H.; Moore, R.Y.

    1988-01-01

    Previously, we have demonstrated that metabolic activity, shown by autoradiographic determination of 2-deoxy-[1- 14 C]glucose (2-DG) uptake, within the rat hypothalamic suprachiasmatic nuclei (SCN) was inhibited by subcutaneous injection of 1 mg/kg melatonin. To determine whether this effect was specific to a particular time of day, the effects of melatonin on 2-DG uptake were studied in several hypothalamic areas, including the SCN, supraoptic nuclei (SON), lateral hypothalamic area (LHA), and anterior hypothalamic area (AHA) every 4 h throughout the circadian day. In a second experiment, the effects of different melatonin doses were studied at the time of day at which melatonin had its maximal effect to determine the dose-response relationship of melatonin-induced inhibition of SCN 2-DG uptake. The data indicate that melatonin inhibited 2-DG uptake in the SCN alone at one time of day, primarily at circadian time (CT) 6 and CT10, 2-6 h before subjective dusk, and secondarily at CT22, just before subjective dawn. This effect was dose dependent with a 50% effective dose of 1.49 +/- 2.30 micrograms/kg. The temporal and dose-response characteristics of these effects are similar to those characterizing the entraining effects of melatonin on circadian patterns of locomotion and drinking

  12. Fear of darkness, the full moon and the nocturnal ecology of African lions.

    Science.gov (United States)

    Packer, Craig; Swanson, Alexandra; Ikanda, Dennis; Kushnir, Hadas

    2011-01-01

    Nocturnal carnivores are widely believed to have played an important role in human evolution, driving the need for night-time shelter, the control of fire and our innate fear of darkness. However, no empirical data are available on the effects of darkness on the risks of predation in humans. We performed an extensive analysis of predatory behavior across the lunar cycle on the largest dataset of lion attacks ever assembled and found that African lions are as sensitive to moonlight when hunting humans as when hunting herbivores and that lions are most dangerous to humans when the moon is faint or below the horizon. At night, people are most active between dusk and 10:00 pm, thus most lion attacks occur in the first weeks following the full moon (when the moon rises at least an hour after sunset). Consequently, the full moon is a reliable indicator of impending danger, perhaps helping to explain why the full moon has been the subject of so many myths and misconceptions.

  13. Roosting behavior of premigratory Dunlins (Calidris alpina)

    Science.gov (United States)

    Handel, Colleen M.; Gill, Robert E.

    1992-01-01

    We studied roosting behavior of Dunlins (Calidris alpina) during late summer along the coast of the Yukon-Kuskokwim Delta, Alaska, in relation to tidal cycle, time of day, time of season, and occurrence of predators. Within Angyoyaravak Bay, peak populations of 70,000-100,000 Dunlins occur each year. The major diurnal roost sites were adjacent to intertidal feeding areas, provided an unobstructed view of predators, and were close to shallow waters used for bathing. At one site studied intensively, roosting flocks formed at high water consistently during the day but rarely at night. On about 75% of the days, Dunlins also came to the roost at dawn and dusk when the tide was low. The size of the roosting flock, the length of time birds spent at the roost site, and behavior at the roost site were highly variable throughout the season and significantly affected by both tide level and time of day. Roosting behavior changed significantly between early and late August, as Dunlins underwent heavy wing and body molt, and began premigratory fattening. The reaction of Dunlins to potential predators, the formation of roosting flocks in response to light cues, and seasonal changes in social behavior at the roost site suggested that communal roosting behavior may be related not only to the risk of predation but also to behavior during migration.

  14. Effects of fasting in the holy month of Ramadan on the uric acid, urea, and creatinine levels: A narrative review

    Directory of Open Access Journals (Sweden)

    Sayed Alireza Mirsane

    2016-12-01

    Full Text Available Fasting during the month of Ramadan is one of the Five Pillars of Islam. During this holy month, healthy Muslims abstain from eating, drinking, and smoking from dawn to dusk. Although fasting is obligatory for every adult Muslim, if it has hazardous effects on the body, it is prohibited. Due to some Islamic principles, patients are exempted from fasting; however, due to the willingness of some individuals to fast, there are concerns about its effects on urea, uric acid, and creatine levels. Atypical levels of these compounds can cause serious disorders or indicate abnormal renal function. The present narrative review is aimed to investigate the effect of abnormally high levels of urea, uric acid, and creatinine on one’s health and effects of fasting during Ramadan on these indicators. Articles were searched from PubMed, Elsevier and Google Scholar and then they were evaluated. It can be concluded that fasting does not have any adverse effects on the urea, uric acid, and creatinine levels according to the above-mentioned studies.

  15. Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in rainbow trout, Salmo gairdneri

    International Nuclear Information System (INIS)

    Mugiya, Y.

    1987-01-01

    The relative role of calcium and organic matrix deposition in the formation of daily increments in otoliths was studied in in vitro preparations of otolith-containing sacculi of rainbow trout, Salmo gairdneri. Sacculi were incubated in a Ringer solution containing both 45 Ca and 3 H-glutamic acid for 2 hours at 6-h intervals throughout a 24-h period and then the uptake of these isotopes was determined for both otolith and saccular tissue fractions. Serum calcium and sodium concentrations were also analyzed for diurnal variations. Serum calcium concentrations varied diurnally by 8% in a single phasic pattern, reaching a peak at dusk (1600 h) and a nadir at night (2200 h), while sodium concentrations remained almost constant throughout a 24-h period. Diurnal variation in the otolith's uptake of calcium and glutamic acid showed discrete, antiphasic cycles. The rate of calcium uptake varied in a pattern closely resembling that of serum calcium (the peak at 1600 h and the nadir at 2200 h); glutamic acid uptake remained almost constant during the daytime and peaked at night (2200 h). The results indicate that in rainbow trout daily increments of otoliths are formed by the antiphasic deposition of calcium and organic matrix

  16. Resource Partitioning between Two Piranhas (Serrasalmus gibbus and Serrasalmus rhombeus in an Amazonian Reservoir

    Directory of Open Access Journals (Sweden)

    Júlio C. Sá-Oliveira

    2017-01-01

    Full Text Available The exploitation of resources by closely related species with similar niches may be mediated by differences in activity patterns, which may vary in nycthemeral scale and seasonal scale. Piranhas Serrasalmus gibbus and Serrasalmus rhombeus are Neotropical predators that occur sympatrically in many environments of the Amazon basin. To evaluate the strategies adopted by these two species in a restricted environment (a reservoir, nycthemeral and seasonal samples were made, identifying the composition of the diet and their activity patterns. A total of 402 specimens were collected: 341 S. gibbus and 61 S. rhombeus. Both species fed themselves primarily on fish, with some seasonal variation being found in S. gibbus during the flood season, when plant material was consumed. There was considerable temporal overlap in the foraging behavior of the two species, although S. rhombeus presented a bimodal pattern of abundance over the 24-hour cycle. S. rhombeus was more active during the nighttime, between dusk and early morning, whereas S. gibbus was active throughout the nycthemeral cycle. These findings indicate low levels of competition between the two species, which allowed for a considerable overlap in nighttime foraging, following distinct nycthemeral patterns of foraging activity and allowing their coexistence.

  17. Anthropophilic biting behaviour of Anopheles (Kerteszia neivai Howard, Dyar & Knab associated with Fishermen’s activities in a malaria-endemic area in the Colombian Pacific

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Escovar

    2013-12-01

    Full Text Available On the southwest Pacific Coast of Colombia, a field study was initiated to determine the human-vector association between Anopheles (Kerteszia neivai and fishermen, including their nearby houses. Mosquitoes were collected over 24-h periods from mangrove swamps, marshlands and fishing vessels in three locations, as well as in and around the houses of fishermen. A total of 6,382 mosquitoes were collected. An. neivai was most abundant in mangroves and fishing canoes (90.8%, while Anopheles albimanus was found indoors (82% and outdoors (73%. One An. neivai and one An. albimanus collected during fishing activities in canoes were positive for Plasmodium vivax , whereas one female An. neivai collected in a mangrove was positive for P. vivax . In the mangroves and fishing canoes, An. neivai demonstrated biting activity throughout the day, peaking between 06:00 pm-07:00 pm and there were two minor peaks at dusk and dawn. These peaks coincided with fishing activities in the marshlands and mangroves, a situation that places the fishermen at risk of contracting malaria when they are performing their daily activities. It is recommended that protective measures be implemented to reduce the risk that fishermen will contract malaria.

  18. Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys

    Science.gov (United States)

    Turk, Daniela; Yates, Kimberly K.; Vega-Rodriguez, Maria; Toro-Farmer, Gerardo; L'Esperance, Chris; Melo, Nelson; Ramsewak, Deanesch; Estrada, S. Cerdeira; Muller-Karger, Frank E.; Herwitz, Stan R.; McGillis, Wade

    2016-01-01

    Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC, with positive values at near-seafloor light levels >100–300 µEinstein m-2 s-1. During daylight hours, we detected an average NEP of 12.3 and 8.6 mmol O2 m-2 h-1 at the seagrass and coral reef site, respectively. At night, NEP at the seagrass site was relatively constant, while on the coral reef, net respiration was highest immediately after dusk and decreased during the rest of the night. At the seagrass site, NEC values ranged from 0.20 g CaCO3 m-2 h-1 during daylight to -0.15 g CaCO3 m-2 h-1 at night, and from 0.17 to -0.10 g CaCO3 m-2 h-1 at the coral reef site. There were no significant differences in pH and aragonite saturation states (Ωar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic.

  19. Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-04-01

    Full Text Available We study what effect a possible surface conductivity of Mercury has on the closure of magnetospheric currents by making six runs with a quasi-neutral hybrid simulation. The runs are otherwise identical but use different synthetic conductivity models: run 1 has a fully conducting planet, run 2 has a poorly conducting planet ( m and runs 3-6 have one of the hemispheres either in the dawn-dusk or day-night directions, conducting well, the other one being conducting poorly. Although the surface conductivity is not known from observations, educated guesses easily give such conductivity values that magnetospheric currents may close partly within the planet, and as the conductivity depends heavily on the mineral composition of the surface, the possibility of significant horizontal variations cannot be easily excluded. The simulation results show that strong horizontal variations may produce modest magnetospheric asymmetries. Beyond the hybrid simulation, we also briefly discuss the possibility that in the nightside there may be a lack of surface electrons to carry downward current, which may act as a further source of surface-related magnetospheric asymmetry. Key words. Magnetospheric physics (planetary magnetospheres; current systems; solar wind-magnetosphere interactions.6

  20. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  1. Autoreceptor Control of Peptide/Neurotransmitter Corelease from PDF Neurons Determines Allocation of Circadian Activity in Drosophila

    Directory of Open Access Journals (Sweden)

    Charles Choi

    2012-08-01

    Full Text Available Drosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral-ventral pacemaker neurons (LNvs that secrete the neuropeptide PDF (pigment dispersing factor. Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR-expressing dorsal clock neurons in organizing circadian activity. Although LNvs also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here, we show that (1 PDFR activation in LNvs shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions, and (2 this shift is mediated by stimulation of the Gα,s-cAMP pathway and a consequent change in PDF/neurotransmitter corelease from the LNvs. These results suggest another mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits.

  2. Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model

    Science.gov (United States)

    Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku

    2017-08-01

    In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.

  3. High latitude plasma convection: Predictions for EISCAT and Sondre Stromfjord

    International Nuclear Information System (INIS)

    Sojka, J.J.; Raitt, W.J.; Schunk, R.W.

    1979-01-01

    We have used a plasma convection model to predict diurnal patterns of horizontal drift velocities in the vicinity of the EISCAT incoherent scatter facility at Tromso, Norway and for Sondre Stromfjord, Greenland, a proposed new incoherent scatter facility site. The convection model includes the offset of 11.4 0 between the geographic and geomagnetic poles (northern hemisphere), the tendency of plasma to corotate about the geographic pole, and a magnetospheric electric field mapped to a circle about a center offset by 5 0 in the antisunward direction from the magnetic pole. Four different magnetospheric electric field configurations were considered, including a constant cross-tail electric field, asymmetric electric fields with enhancements on the dawn and dusk sides of the polar cap, and an electric field pattern that is not aligned parallel to the noon-midnight magnetic meridian. The different electric field configurations produce different signatures in the plasma convection pattern which are clearly identified. Both of the high-latitude sites are better suited to study magnetospheric convection effects than either Chatanika, Alaska or Millstone Hill, Massachusetts. Also, each site appears to have unique capabilities with regard to studying certain aspects of the magnetospheric electric field

  4. Beyond the average: Diverse individual migration patterns in a population of mesopelagic jellyfish

    KAUST Repository

    Kaartvedt, Stein; Titelman, Josefin; Rø stad, Anders; Klevjer, Thor A.

    2011-01-01

    We examined the diel behavior among the jellyfish Periphylla periphylla in Lurefjorden, Norway in a sampling campaign and by a > 3-month continuous acoustic study. Jellyfish distribution and behavior were recorded by an upward-facing, bottom-mounted echo sounder at 280-m depth. The population was typically divided into four groups, each with different behavior. Individuals of behavioral Mode 1 undertook synchronous diel vertical migrations (DVM) within the upper 100 m. Individuals of behavioral Mode 2, stayed at ~ 160-200-m depth during the day, and also exhibited synchronized DVM, ascending at dusk and descending at dawn. The smaller individuals of behavioral Mode 3 swam continuously up and down throughout both day and night, yet occurred below Mode 2 individuals in daytime (~ 200 m-bottom), while their vertical range encompassed the entire water column during night. Mode 4 behavior was displayed by large jellyfish located between ~ 130 m and the bottom. These animals shifted between remaining motionless and relocating in rapid steps during both day and night. These four main behavioral patterns persisted throughout the registration period, although the synchronously migrating Mode 2 behavior became weaker in spring. This acoustic study has unveiled more diverse migration behaviors than previously derived from net sampling and remote-operated vehicles methods and emphasizes the importance of studying individuals. DVM is complex because individuals in a plankton population may simultaneously engage in a range of various contrasting behaviors.

  5. Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma

    Science.gov (United States)

    Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.

    2003-08-01

    While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.

  6. The Effects of High Frequency ULF Wave Activity on the Spectral Characteristics of Coherent HF Radar Returns

    Science.gov (United States)

    Wright, D. M.; Yeoman, T. K.; Woodfield, E. E.

    2003-12-01

    It is now a common practice to employ ground-based radars in order to distinguish between those regions of the Earth's upper atmosphere which are magnetically conjugate to open and closed field lines. Radar returns from ionospheric irregularities inside the polar cap and cusp regions generally exhibit large spectral widths in contrast to those which exist on closed field lines at lower latitudes. It has been suggested that the so-called Spectral Width Boundary (SWB) might act as a proxy for the open-closed field line boundary (OCFLB), which would then be an invaluable tool for investigating reconnection rates in the magnetosphere. The exact cause of the increased spectral widths observed at very high latitudes is still subject to considerable debate. Several mechanisms have been proposed. This paper compares a dusk-sector interval of coherent HF radar data with measurements made by an induction coil magnetometer located at Tromso, Norway (66° N geomagnetic). On this occasion, a series of transient regions of radar backscatter exhibiting large spectral widths are accompanied by increases in spectral power of ULF waves in the Pc1-2 frequency band. These observations would then, seem to support the possibility that high frequency magnetospheric wave activity at least contribute to the observed spectral characteristics and that such wave activity might play a significant role in the cusp and polar cap ionospheres.

  7. Global Simulations of the Asymmetry in Forming Kelvin-Helmholtz Instability at Mercury

    Science.gov (United States)

    Paral, J.; Rankin, R.

    2013-12-01

    MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) is the first spacecraft to provide data from the orbit of Mercury. After the probe's insertion into the orbit on March 2011, the in situ measurements revealed a dawn-dusk asymmetry in the observations of Kelvin-Helmholtz (KH) instability. This instability forms at the magnetopause boundary due to the high shear of the plasma flows. The asymmetry in the observations is unexpected and largely unexplained, although it has been speculated that finite ion gyroradius effect plays an important role. The large gyroradius implies that kinetic effects are important and thus must be taken into account. We employ global ion hybrid-kinetic simulations to obtain a 2D model of Mercury's magnetosphere. This code treats ions as particles and follows the full trajectory while electrons act as a charge neutralizing fluid. The planet is treated as the perfect conductor placed in the streaming solar wind to form a quasi steady state of the magnetosphere. By placing a virtual probe in the simulation domain we obtain time series of the plasma parameters which can be compared to the observations by the MESSENGER spacecraft. The comparison of the KH instability is remarkably close to the observations of MESSENGER; to within a factor of two. The model also confirms the asymmetry in the observations. The ion density obtained from the computer model is shown together with velocity vectors (represented by arrows). The solid line represents the trajectory of the third flyby of MESSENGER on September 29, 2009.

  8. On the quiet-time Pc 5 pulsation events (spacequakes)

    International Nuclear Information System (INIS)

    Gupta, J.C.; Niblett, E.R.

    1979-01-01

    A quiet-time Pc 5 event (designated Spacequake) of March 18, 1974, first noted on the Fort Churchill magnetogram, was studied using global data. Its amplitude was found to be largest in the northern part of the auroral zone and its period seemed to increase with latitude. The clockwise polarization of the event noted at Baker Lake and higher latitudes changed to counterclockwise at Fort Churchill in X-Y, X-Z and Y-Z planes. The resonance of a field line (L approximately 10) excited due to an instability of the Kelvin-Helmholtz type may have given rise to the observed event. It is conjectured that the cause of instability at this altitude was internal convection of the magnetosphere. Similar quiet-time events from four Canadian observatories were selected from approximately 11 years of magnetograms and their statistical analysis revealed that (i) occurrences maximised near dawn and dusk (ii) the amplitude-latitude profile peaked at Great Whale River (L approximately 6.67), (iii) periods increased with increasing geomagnetic latitudes, (iv) a large number of events occurred in January, February and March every year, and (v) frequency of occurrence increased with increasing sunspot numbers. Comparison of these results with those available in the literature from analyses of satellite data clearly indicate that quiet-time Pc 5 events (Spacequakes) originate in the outer magnetosphere. (author)

  9. Interpretation of observed relations between solar wind characteristics and effects at ionospheric altitudes

    International Nuclear Information System (INIS)

    Cowley, S.W.H.

    1983-01-01

    This chapter discusses recent developments and remaining questions concerning the behavior of high latitude ionospheric flows and how they depend on solar wind conditions via magnetospheric coupling to the latter. The magnitude and direction of the interplanetary magnetic field (IMF) is found to be the primary factor. The relationships which have been found between the strength of high-latitude flows and solar wind and IMF conditions, and the inferences which can be drawn therefrom concerning the solar wind-magnetosphere coupling processes which result in convection are examined. The east-west asymmetries in highlatitude flows which are found to be associated with the B /SUB y/ (dawn-dusk) component of the IMF are investigated. Related asymmetries are shown to occur in the magnetosphere at large, and the unity of these effects as arising from one straightforward cause is stressed. Recent work on the ''reversed'' sunward flows which occur at high latitudes in association with strong B /SUB z/ in the IMF is described

  10. Armigeres subalbatus colonization of damaged pit latrines: a nuisance and potential health risk to residents of resettlement villages in Laos.

    Science.gov (United States)

    Hiscox, A; Hirooka, R; Vongphayloth, K; Hill, N; Lindsay, S W; Grandadam, M; Brey, P T

    2016-03-01

    During the resettlement of 6500 persons living around the Nam Theun 2 hydroelectric project in Laos, more than 1200 pour-flush latrines were constructed. To assess the role of these latrines as productive larval habitats for mosquitoes, entomological investigations using Centers for Disease Control (CDC) light traps, visual inspection and emergence trapping were carried out in over 300 latrines during the rainy seasons of 2008-2010. Armigeres subalbatus (Diptera: Culicidae) were nine times more likely to be found in latrines (mean catch: 3.09) than in adjacent bedrooms (mean catch: 0.37) [odds ratio (OR) 9.08, 95% confidence interval (CI) 6.74-15.11] and mosquitoes were active in and around 59% of latrines at dusk. Armigeres subalbatus was strongly associated with latrines with damaged or improperly sealed septic tank covers (OR 5.44, 95% CI 2.02-14.67; P resettlement villages. The scale-up of this simple, cheap intervention would have global impact in preventing the colonization of septic tanks by nuisance biting and disease-transmitting mosquitoes. © 2015 The Royal Entomological Society.

  11. Is Ramadan Fasting Cardio-protective? A Study in a Village of West Bengal

    Directory of Open Access Journals (Sweden)

    Aparajita Dasgupta

    2017-06-01

    Full Text Available Background: Islam is the second largest religion of the World (23% and Muslims are the second largest majority of Indian Republic (14.3%. Ramadan is the ninth and holiest month(Hijra of the 12-month Islamic calendar during which Muslims fast from dawn to dusk each day maintaining certain rules (consuming food/drink once, avoiding smoking and sexual activity, as well as impure thoughts, words and immoral behavior. It is observed by Muslims as a month of fasting to commemorate the first revelation of the Qur'an to Muhammad. Aims & Objectives: To evaluate the effect of Ramadan on cardio-metabolic profile among adult Muslims residing in rural West Bengal. Methods and Materials: The present study was a longitudinal community based study done among 43 Muslims residing in a village of West Bengal during 6thJune to 7th July 2016. Cardio-metabolic profile (physical activity, diet, BMI, blood pressure, blood lipids and glucose were assessed before, during and after Ramadan. Results: There was a significant reduction in VLDL and TG level while significant elevation in HDL level along with the reduction in Framingham risk score after fasting. All the anthropometric measurements along with blood pressure reduced significantly after Ramadan with significant reduction in intake of all micro-nutrients during Ramadan. However physical activity also reduced significantly during Ramadan. Conclusion: Our study had found no detrimental effects of Ramadan fasting on the contrary has an overall beneficial effect on cardiovascular profile was observed.

  12. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    Science.gov (United States)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  13. Seasonal and solar cycle variations in the ionospheric convection reversal boundary location inferred from monthly SuperDARN data sets

    Directory of Open Access Journals (Sweden)

    A. V. Koustov

    2016-02-01

    Full Text Available Multi-year (1995–2013 velocity data collected by the Super Dual Auroral Network (SuperDARN HF radars are considered to investigate seasonal and solar cycle variations of the convection reversal boundary (CRB location for interplanetary magnetic field (IMF Bz < 0. By considering monthly data sets we show that the CRB is at higher latitudes in summer between 1995 and 2007. The poleward shifts are on the order of 2–5°. After 2007, the seasonal effect weakens, and the highest latitudes for the CRB start to occur during the winter time. We show that the CRB latitudes decrease with an increase of the IMF transverse component at a rate of (1–2°/2 nT. Because of this effect, on average, the CRB latitudes are lower during high solar activity periods with stronger IMFs. We also confirm the effect of the CRB dawn-dusk shifts related to the IMF changes in the IMF By sign.

  14. Further determination of the characteristics of magnetospheric plasma vortices with Isee 1 and 2

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Birn, J.; Bame, S.J.; Asbridge, J.R.; Paschmann, G.; Sckopke, N.; Haerendel, G.

    1981-01-01

    Further studies of the vortices in magnetospheric plasma flow with the Los Alamos Scientific Laboratory/Max-Planck-Institut (LASL/MPI) fast plasma experiment on Isee 1 and 2 have revealed that the pattern of vortical flow has a wavelength of approx.20-40 R/sub E/ and moves tailward through the magnetosphere at speed of several hundred kilometers per second. The tendency toward vorticity pervades the total breadth of the plasma sheet tailward of the dawn-dusk meridian. The sense of rotation of the plasma flow (as viewed from above the ecliptic plane) is clockwise in the morningside of the plasma sheet and counterclockwise in the eveningside. The sense of rotation in the morning and evening boundary layers is reversed from that in the contiguous regions of the plasma sheet. The occurrence of vortical flow is independent of the level of geomagnetic activity but is associated with long-period geomagnetic pulsations. We believe that the source of the vortical motion is a Kelvin-Helmholtz instability of the plasma boundary layer's inner surface (i.e., the interface between the plasma sheet and the boundary layer) that has recently been proposed by Sonnerup [1980

  15. Substorm observations in the early morning sector with Equator-S and Geotail

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    1999-12-01

    Full Text Available Data from Equator-S and Geotail are used to study the dynamics of the plasma sheet observed during a substorm with multiple intensifications on 25 April 1998, when both spacecraft were located in the early morning sector (03–04 MLT at a radial distance of 10–11 RE. In association with the onset of a poleward expansion of the aurora and the westward electrojet in the premidnight and midnight sector, both satellites in the morning sector observed plasma sheet thinning and changes toward a more tail-like field configuration. During the subsequent poleward expansion in a wider local time sector (20–04 MLT, on the other hand, the magnetic field configuration at both satellites changed into a more dipolar configuration and both satellites encountered again the hot plasma sheet. High-speed plasma flows with velocities of up to 600 km/s and lasting 2–5 min were observed in the plasma sheet and near its boundary during this plasma sheet expansion. These high-speed flows included significant dawn-dusk flows and had a shear structure. They may have been produced by an induced electric field at the local dipolarization region and/or by an enhanced pressure gradient associated with the injection in the midnight plasma sheet.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; plasma sheet; storms and substorms

  16. Impact of the storm-time plasma sheet ion composition on the ring current energy density

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.

    2017-12-01

    The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].

  17. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    Science.gov (United States)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.

    2015-05-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  18. Void structure of O+ ions in the inner magnetosphere observed by the Van Allen Probes

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Tanaka, T.

    2016-12-01

    The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy 10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamics simulation and calculated the flux of O+ ions in the inner magnetosphere in accordance with the Liouville theorem. The simulated spectrograms are well consistent with the ones observed by Van Allen Probes. We suggest the following processes. (1) When magnetic reconnection starts, an intensive equatorward and tailward plasma flow appears in the plasma lobe. (2) The flow transports plasma from the lobe to the plasma sheet where the radius of curvature of the magnetic field line is small. (3) The intensive dawn-dusk electric field transports the O+ ions earthward and accelerates them nonadiabatically to an energy threshold; (4) the void structure appears at energies below the threshold.

  19. Long-term acoustical observations of the mesopelagic fish Maurolicus muelleri reveal novel and varied vertical migration patterns

    KAUST Repository

    Staby, A

    2011-11-15

    We studied the temporal dynamics in the vertical distribution of Maurolicus muelleri scattering layers (SL) by examining continuous acoustic recordings over a 15 mo period in Masfjorden, Norway, complemented by intermittent sampling campaigns. The data revealed known patterns as normal diel vertical migration (DVM), midnight sinking between dusk and dawn, and periods without migrations, as well as novel behaviours consisting of early morning ascents, reverse diel vertical migrations, and interrupted ascents in the evening. During the first autumn of the study, adult fish modified their normal DVM behaviour by suspending their migration in the evening, yet ascending toward the surface in the later part of the night to reach upper layers during dawn. This behaviour was not observed during the second autumn of the study. By mid- to end of November (1st autumn), adult fish had suspended the nocturnal ascent entirely, and in the subsequent period until the end of January, a fraction of the population rather performed limited reverse migrations, slightly shifting their vertical distribution upwards during the first part of the day. From January to March 2008, fish interrupted their evening ascent at apparently random intervals and returned to deeper waters, instead of completing a full ascent to the surface. Our study underlines the value of long-term recordings, with the results suggesting that M. muelleri has the capability of changing its behaviour in response to ontogeny and internal state (satiation and hunger) as well as to external stimuli.

  20. Diel resource partitioning among juvenile Atlantic Salmon, Brown Trout, and Rainbow Trout during summer

    Science.gov (United States)

    Johnson, James H.; McKenna, James E.

    2015-01-01

    Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.

  1. Snapshots of high-latitude electrodynamics using Viking and DMSP/F7 observations

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Murphree, J.S.; Pottelette, R.; Zanetti, L.J.; Potemra, T.A.; Hardy, D.A.; Rich, F.J.

    1988-02-01

    Simultaneous observations by the Viking and the DMSP/F7 satellites have been used in a new method to obtain snapshot pictures of the auroral electrodynamics. In particular, an 'instantaneous' global equipotential (or convection) pattern is calculated using field-aligned current and conductivity distributions that are qualitatively consistent with the Viking auroral imager data and quantitatively consistent with magnetic field and particle data from the two satellites. This convection pattern which is of the normal two-cell type, with a weak dusk cell and a strong, elongated crescent-shaped dawn cell (consistent with positive IMF B y ) agrees well with the Viking electric field data. The model and the observed potential profiles agree nicely along the entire Viking orbit except for two intervals above acceleration regions where deviations are to be expected (due to parallel electric fields). These regions are characterized by: U-shaped potential minima, upward field-aligned currents, upgoing ion beams and relatively intense AKR. The model results are thus consistent with the Viking observations not only on a global scale but also on the scale size of the auroral acceleration regions. The corresponding convection in the magnetosphere is illustrated by a simple projection of the deduced two-cell convection pattern to the equatorial plane. From this the instantaneous location of the plasmapause is inferred. (authors)

  2. AIS reception from a CubeSat in LEO

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter; Nielsen, Jens Frederik Dalsgaard

    2013-01-01

    The primary payloads on board the AAUSAT3 satellite are two different AIS receivers, one is a traditional hardware-based receiver, the other one is a software-defined radio receiver. The hardware-based receiver has been developed around an ADF-7020 transceiver, with an appropriate LNA in front...... into a low-Earth orbit with a semi-major axis of 7156 km, i.e. 800 km altitude, near circular, dusk-dawn Sun-synchronous orbit. From this orbit the AIS antenna system, which consists of a dipole antenna, has a foot print diameter of approximately 6000 km. During the first pass over the primary ground station...... at Aalborg University, basic telemetry and the first few AIS messages were downloaded. During the first 14 days of the mission, the two receivers managed to detect more than 100,000 different AIS messages from ships all around the world, and more than 35,000 of these messages have been successfully...

  3. A critical examination of the dual system theory in Ostrinia nubilalis.

    Science.gov (United States)

    Skopik, S D; Takeda, M; Holyoke, C W

    1981-11-01

    Beck's dual system theory (DST) is examined theoretically and experimentally by investigating the oviposition rhythm of Ostrinia nubilalis and its entrainment by light cycles. Several well-known circadian phenomena are not accounted for by the DST. 1) It does not generate transient cycles when light pulses fall during the advance portion of the circadian cycle. This is also reflected in DST-predicted phase-response curves (PRC's) for both Drosophila pseudoobscura and O. nubilalis. Steady-state phase advances are predicted to occur on day 1 after the light pulses by the DST, not several cycles later as has been observed in many cases. 2) It does not account for the observation that the magnitude of a phase shift (delta phi) is often a function of pulse duration of both delays and advances. The DST predicts the same + delta phi, for example, for a 0.5-h and a 6.0-h light pulse beginning 5.0 h after dusk. 3) The DST does not accurately predict steady-state phase relationships between the light cycle and the gating oscillation (P-system) in non-24-h light cycles. 4) The driver (S-system) is given the property of being temperature sensitive whereas the driven rhythm (P-system) is temperature compensated. This is contrary to accumulated data suggesting that the circadian pacemaker is temperature compensated.

  4. Infectious Disease and Grouping Patterns in Mule Deer.

    Directory of Open Access Journals (Sweden)

    María Fernanda Mejía Salazar

    Full Text Available Infectious disease dynamics are determined, to a great extent, by the social structure of the host. We evaluated sociality, or the tendency to form groups, in Rocky Mountain mule deer (Odocoileus hemionus hemionus from a chronic wasting disease (CWD endemic area in Saskatchewan, Canada, to better understand factors that may affect disease transmission. Using group size data collected on 365 radio-collared mule deer (2008-2013, we built a generalized linear mixed model (GLMM to evaluate whether factors such as CWD status, season, habitat and time of day, predicted group occurrence. Then, we built another GLMM to determine factors associated with group size. Finally, we used 3 measures of group size (typical, mean and median group sizes to quantify levels of sociality. We found that mule deer showing clinical signs of CWD were less likely to be reported in groups than clinically healthy deer after accounting for time of day, habitat, and month of observation. Mule deer groups were much more likely to occur in February and March than in July. Mixed-sex groups in early gestation were larger than any other group type in any season. Groups were largest and most likely to occur at dawn and dusk, and in open habitats, such as cropland. We discuss the implication of these results with respect to sociobiology and CWD transmission dynamics.

  5. Experimental test of the electromagnetic ion cyclotron instability within the earth's magnetosphere

    International Nuclear Information System (INIS)

    Mauk, B.H.; McPherron, R.L.

    1980-01-01

    The ATS-6 geostationary satellite has observed many examples of propagating, electromagnetic Alfven/ion cyclotron waves in both plasma particle and magnetic field data. These waves have been viewed predominantly near the afternoon and dusk regions of the earth's magnetosphere with normalized frequencies (ω/Ω/sub H/ + ) ranging between 0.05 and 0.5. Viewed from an average geomagnetic latitude of +10 0 , the waves have only been observed to propagate northward, suggesting that they are generated within the equatorial or minimum BETA regions. Two wave events have been chosen for detailed analysis. Both events appeared coincidentally with the encounter of cool plasma populations (5 eV) which joined the hot populations already present (10--40 keV). These coincidences suggest the popular, yet largely untested, electromagnetic ion cyclotron instability as the wave generation mechanism. As a test of this hypothesis, ion cyclotron amplification profiles are obtained by evaluating the linear growth rate integrals under the measured, anisotropic hot ion distributions. The measured frequencies for both of the chosen events are in good agreement with the quite restricted values which correspond to the peaks of the amplification profiles. As a result of magnetic field inhomogeneities, the interactions remain within the linear regime

  6. Acceleration of Magnetospheric Relativistic Electrons by Ultra-Low Frequency Waves: A Comparison between Two Cases Observed by Cluster and LANL Satellites

    Science.gov (United States)

    Shao, X.; Fung, S. F.; Tan, L. C.; Sharma, A. S.

    2010-01-01

    Understanding the origin and acceleration of magnetospheric relativistic electrons (MREs) in the Earth's radiation belt during geomagnetic storms is an important subject and yet one of outstanding questions in space physics. It has been statistically suggested that during geomagnetic storms, ultra-low-frequency (ULF) Pc-5 wave activities in the magnetosphere are correlated with order of magnitude increase of MRE fluxes in the outer radiation belt. Yet, physical and observational understandings of resonant interactions between ULF waves and MREs remain minimum. In this paper, we show two events during storms on September 25, 2001 and November 25, 2001, the solar wind speeds in both cases were > 500 km/s while Cluster observations indicate presence of strong ULF waves in the magnetosphere at noon and dusk, respectively, during a approx. 3-hour period. MRE observations by the Los Alamos (LANL) spacecraft show a quadrupling of 1.1-1.5 MeV electron fluxes in the September 25, 2001 event, but only a negligible increase in the November 2.5, 2001 event. We present a detailed comparison between these two events. Our results suggest that the effectiveness of MRE acceleration during the September 25, 2001 event can be attributed to the compressional wave mode with strong ULF wave activities and the physical origin of MRE acceleration depends more on the distribution of toroidal and poloidal ULF waves in the outer radiation belt.

  7. Evidence for Radiative Recombination of O+ Ions as a Significant Source of O 844.6 nm Emission Excitation

    Science.gov (United States)

    Waldrop, L.; Kerr, R. B.; Huang, Y.

    2018-04-01

    Photoelectron (PE) impact on ground-state O(3P) atoms is well known as a major source of twilight 844.6 nm emission in the midlatitude thermosphere. Knowledge of the PE flux can be used to infer thermospheric oxygen density, [O], from photometric measurements of 844.6 nm airglow, provided that PE impact is the dominant process generating the observed emission. During several spring observational campaigns at Arecibo Observatory, however, we have observed significant 844.6 nm emission throughout the night, which is unlikely to arise from PE impact excitation which requires solar illumination of either the local or geomagnetically conjugate thermosphere. Here we show that radiative recombination (RR) of O+ ions is likely responsible for the observed nighttime emission, based on model predictions of electron and O+ ion density and temperature by the Incoherent Scatter Radar Ionosphere Model. The calculated emission brightness produced by O + RR exhibits good agreement with the airglow data, in that both decay approximately monotonically throughout the night at similar rates. We conclude that the conventional assumption of a pure PE impact source is most likely to be invalid during dusk twilight, when RR-generated emission is most significant. Estimation of [O] from measurements of 844.6 nm emission demands isolation of the PE impact source via coincident estimation of the RR source, and the effective cross section for RR-generated emission is found here to be consistent with optically thin conditions.

  8. Comparison of radio data and model calculations of Jupiter's synchrotron radition 2. East--west asymmetry in the radiation belts as a functon of Jovian longitude

    International Nuclear Information System (INIS)

    de Pater, I.

    1981-01-01

    On the basis of comparison of radio data and model calculations of Jupiter's synchrotron radiaton the 'hot region' or east--west asymmetry in the planet's radiation belts is proposed to be due to the combined effect of an overabundance of electrons at jovicentric longitudes lambda/sub J/approx.240 0 --360 0 and the existence of a dusk dawn directed electric field over the inner magnetosphere, generated by the wind system in the upper atmosphere. The model calculations were based upon the magnetic field configurations derived from the Pioneer data by Acuna and Ness [1976] (the O 4 model) and Davis, Jones and Smith (quoted in Smith and Gulkis [1979]) (the P 11 (3,2)A model), with an electron distribution derived in the first paper of this series [de Pater, this issue]. We would infer from the calculations that the O 4 model gives a slightly better fit to the data; the relatively large number density at lambda/sub J/approx.240 0 --360 0 , however, might indicate the presence of even higher order moments in the field

  9. Fast Flows in the Magnetotail and Energetic Particle Transport: Multiscale Coupling in the Magnetosphere

    Science.gov (United States)

    Lin, Y.; Wang, X.; Fok, M. C. H.; Buzulukova, N.; Perez, J. D.; Chen, L. J.

    2017-12-01

    The interaction between the Earth's inner and outer magnetospheric regions associated with the tail fast flows is calculated by coupling the Auburn 3-D global hybrid simulation code (ANGIE3D) to the Comprehensive Inner Magnetosphere/Ionosphere (CIMI) model. The global hybrid code solves fully kinetic equations governing the ions and a fluid model for electrons in the self-consistent electromagnetic field of the dayside and night side outer magnetosphere. In the integrated computation model, the hybrid simulation provides the CIMI model with field data in the CIMI 3-D domain and particle data at its boundary, and the transport in the inner magnetosphere is calculated by the CIMI model. By joining the two existing codes, effects of the solar wind on particle transport through the outer magnetosphere into the inner magnetosphere are investigated. Our simulation shows that fast flows and flux ropes are localized transients in the magnetotail plasma sheet and their overall structures have a dawn-dusk asymmetry. Strong perpendicular ion heating is found at the fast flow braking, which affects the earthward transport of entropy-depleted bubbles. We report on the impacts from the temperature anisotropy and non-Maxwellian ion distributions associated with the fast flows on the ring current and the convection electric field.

  10. Colour As a Signal for Entraining the Mammalian Circadian Clock

    Science.gov (United States)

    Walmsley, Lauren; Hanna, Lydia; Mouland, Josh; Martial, Franck; West, Alexander; Smedley, Andrew R.; Bechtold, David A.; Webb, Ann R.; Lucas, Robert J.; Brown, Timothy M.

    2015-01-01

    Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. PMID:25884537

  11. Colour as a signal for entraining the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Lauren Walmsley

    2015-04-01

    Full Text Available Twilight is characterised by changes in both quantity ("irradiance" and quality ("colour" of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.

  12. Society and identity: Globalization and fragmentation

    Directory of Open Access Journals (Sweden)

    Krstić Predrag

    2017-01-01

    Full Text Available This paper aims to present and discuss theoretical apprehension that occurred nearly a quarter of a century ago, with the thematization and problematization of social identity. Pointing out that the terms fall into “identity crisis” when emerge from their self-evidences, the author testing how the same fate encountered the very concept of “identity” and presents contemporary social theorists’ interpretations of such a situation, at the same time testifying the landmarks of self-understanding of modernity. After exploring dominant current vision of the history of ideas – that self- and social-identity does not existed in Pre-Modern societies in the sense we understand it today, that Modern is its only homeland, and that with the “postmodern condition” occurs either its dusk or its serious transformation, that even if it is not completely rejected, it is replaced with multi-coded, “ fragmented” or “plural” identities – the conclusion suggests the possibility that maybe it is not about any particular epochal change and privilege or a curse to live in it, but about yet another fundamental transformation of social structures, transformation which is not unknown in the past and transformation that today, as always, produces distinct unease, uncertainty, risk, volatility, in terms of recognition of belonging and self-mission, life investment and role taking, in the world whose supports are no longer taken for granted.

  13. Yucca aloifolia (Asparagaceae) opts out of an obligate pollination mutualism.

    Science.gov (United States)

    Rentsch, Jeremy D; Leebens-Mack, Jim

    2014-12-01

    • According to Cope's 'law of the unspecialized' highly dependent species interactions are 'evolutionary dead ends,' prone to extinction because reversion to more generalist interactions is thought to be unlikely. Cases of extreme specialization, such as those seen between obligate mutualists, are cast as evolutionarily inescapable, inevitably leading to extinction rather than diversification of participating species. The pollination mutualism between Yucca plants and yucca moths (Tegeticula and Parategeticula) would seem to be locked into such an obligate mutualism. Yucca aloifolia populations, however, can produce large numbers of fruit lacking moth oviposition scars. Here, we investigate the pollination ecology of Y. aloifolia, in search of the non-moth pollination of a Yucca species.• We perform pollinator exclusion studies on Yucca aloifolia and a sympatric yucca species, Y. filamentosa. We then perform postvisit exclusion treatments, an analysis of dissected fruits, and a fluorescent dye transfer experiment.• As expected, Yucca filamentosa plants set fruit only when inflorescences were exposed to crepuscular and nocturnal pollinating yucca moths. In contrast, good fruit set was observed when pollinators were excluded from Y. aloifolia inflorescences from dusk to dawn, and no fruit set was observed when pollinators were excluded during the day. Follow up experiments indicated that European honeybees (Apis mellifera) were passively yet effectively pollinating Y. aloifolia flowers.• These results indicate that even highly specialized mutualisms may not be entirely obligate interactions or evolutionary dead ends. © 2014 Botanical Society of America, Inc.

  14. Sexual behavior and diel activity of citrus fruit borer Ecdytolopha aurantiana.

    Science.gov (United States)

    Bento, J M; Parra, J R; Vilela, E F; Walder, J M; Leal, W S

    2001-10-01

    Males and virgin females of the citrus fruit borer Ecdytolopha aurantiana Lima, displayed two flight peaks during a 24-hr period, one at dawn and the other at dusk in an orange grove near Gavião Peixoto, São Paulo, Brazil. During the day, when temperatures were highest and relative humidity lowest, most individuals rested on leaves in the lower and middle crown. Moths rapidly moved higher in the crown after sunset, and many were observed flying above the tree canopy. This behavior was mainly associated with mating. Males and virgin females marked with fluorescent powder of different colors were observed in the dark with the aid of a black light. Mating was observed only in the upper crown of citrus trees from 6:00 to 9:00 PM, with a peak (64%) between 7:00 and 8:00 PM. Males of E. aurantiana were captured in traps baited either with virgin females or female extracts, suggesting the use of a long-range sex pheromone. At close distance (1-2 cm), males and females displayed a short-range communication behavior, with males exposing hairpencils and vibrating their wings. Females were frequently stimulated to contact the body of a male before copulation. The mean duration of copulation was 1 hr 40 min.

  15. Autoreceptor Modulation of Peptide/Neurotransmitter Co-release from PDF Neurons Determines Allocation of Circadian Activity in Drosophila

    Science.gov (United States)

    Choi, Charles; Cao, Guan; Tanenhaus, Anne K.; McCarthy, Ellena v.; Jung, Misun; Schleyer, William; Shang, Yuhua; Rosbash, Michael; Yin, Jerry C.P.; Nitabach, Michael N.

    2012-01-01

    Drosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral ventral pacemaker neurons (LNvs) that secrete the neuropeptide PDF (Pigment Dispersing Factor). Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR)-expressing dorsal clock neurons in organizing circadian activity. While LNvs also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here we show that (1) PDFR activation in LNvs shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions and (2) this shift is mediated by stimulation of the Ga,s-cAMP pathway and a consequent change in PDF/neurotransmitter co-release from the LNvs. These results suggest a novel mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits. PMID:22938867

  16. Autoreceptor control of peptide/neurotransmitter corelease from PDF neurons determines allocation of circadian activity in drosophila.

    Science.gov (United States)

    Choi, Charles; Cao, Guan; Tanenhaus, Anne K; McCarthy, Ellena V; Jung, Misun; Schleyer, William; Shang, Yuhua; Rosbash, Michael; Yin, Jerry C P; Nitabach, Michael N

    2012-08-30

    Drosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral-ventral pacemaker neurons (LN(v)s) that secrete the neuropeptide PDF (pigment dispersing factor). Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR)-expressing dorsal clock neurons in organizing circadian activity. Although LN(v)s also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here, we show that (1) PDFR activation in LN(v)s shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions, and (2) this shift is mediated by stimulation of the Gα,s-cAMP pathway and a consequent change in PDF/neurotransmitter corelease from the LN(v)s. These results suggest another mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Roles of Magnetosphere-Ionosphere Coupling on Ring Current development: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 Geomagnetic Storm

    Science.gov (United States)

    Edmond, J. A.; Hill, S. C.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission obtained energetic neutral atom (ENA) images during a 4 day storm on 7-10 September 2015. The storm has two separate SYM/H minima, so we divide the storm into four intervals: first main phase, first recovery phase, second main phase, and second recovery phase. Simulations with the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI) are compared and contrasted with the TWINS observations. We find good agreement in most aspects of the storm. E. G. (1) the location of the ion pressure peaks are most often in the dusk-midnight sector, (2) the pitch angle distributions at the pressure peaks most often display perpendicular anisotropy, and (3) the energy spectra at the pressure peaks have similar maximum energies. There are, however, some exceptions to these general features. We describe and interpret these notable events. We also have examined particle paths determined from the CIMI model simulations to assist in the interpretation of the notable events.In this poster, we focus upon the features of the CIMI simulations with a self-consistent electric field and with the semi-empirical Weimer electric potential in relationship to the TWINS observations.

  18. Dynamical feedback between circadian clock and sucrose availability explains adaptive response of starch metabolism to various photoperiods

    Directory of Open Access Journals (Sweden)

    Francois Gabriel Feugier

    2013-01-01

    Full Text Available Plants deal with resource management during all their life. During the day they feed on photosynthetic carbon, sucrose, while storing a part into starch for night use. Careful control of carbon partitioning, starch degradation and sucrose export rates is crucial to avoid carbon starvation, insuring optimal growth whatever the photoperiod. Efficient regulation of these key metabolic rates can give an evolutionary advantage to plants. Here we propose a model of adaptive starch metabolism in response to various photoperiods. We assume the three key metabolic rates to be circadian regulated in leaves and that their phases of oscillations are shifted in response to sucrose starvation. We performed gradient descents for various photoperiod conditions to find the corresponding optimal sets of phase shifts that minimize starvation. Results at convergence were all consistent with experimental data: i diurnal starch profile showed linear increase during the day and linear decrease at night; ii shorter photoperiod tended to increase starch synthesis speed while decreasing its degradation speed during the longer night; iii sudden early dusk showed slower starch degradation during the longer night. Profiles that best explained observations corresponded to circadian regulation of all rates. This theoretical study would establish a framework for future research on feedback between starch metabolism and circadian clock as well as plant productivity.

  19. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam D Idoine

    Full Text Available Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell "waking up" from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.

  20. CAST explores the dark side of the Universe

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Following the search for axions, candidates for dark matter, CAST is widening its scientific horizon by searching for chameleons, hypothetical particles postulated as an explanation for dark energy.     CAST, CERN's axion solar telescope, moves on its rail to follow the Sun (for an hour and a half at dawn and an hour and a half at dusk). As the summer comes to an end, surveyors have set to work in the experimental hall of CAST, CERN’s axion solar telescope. They will spend around 10 days perfecting the alignment of the detector with respect to the position of the Sun, to within a thousandth of a radian. The Sun's course is visible from the one window in the CAST experimental hall just twice a year, in March and September. This is why the physicists are making the most of these few days to align their magnet precisely. For 12 years, CAST has been tracking the movement of the Sun for an hour and a half at dawn ...

  1. Vocalisation Repertoire of Female Bluefin Gurnard (Chelidonichthys kumu in Captivity: Sound Structure, Context and Vocal Activity.

    Directory of Open Access Journals (Sweden)

    Craig A Radford

    Full Text Available Fish vocalisation is often a major component of underwater soundscapes. Therefore, interpretation of these soundscapes requires an understanding of the vocalisation characteristics of common soniferous fish species. This study of captive female bluefin gurnard, Chelidonichthys kumu, aims to formally characterise their vocalisation sounds and daily pattern of sound production. Four types of sound were produced and characterised, twice as many as previously reported in this species. These sounds fit two aural categories; grunt and growl, the mean peak frequencies for which ranged between 129 to 215 Hz. This species vocalized throughout the 24 hour period at an average rate of (18.5 ± 2.0 sounds fish-1 h-1 with an increase in vocalization rate at dawn and dusk. Competitive feeding did not elevate vocalisation as has been found in other gurnard species. Bluefin gurnard are common in coastal waters of New Zealand, Australia and Japan and, given their vocalization rate, are likely to be significant contributors to ambient underwater soundscape in these areas.

  2. The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015

    Science.gov (United States)

    Jahn, J. M.; Goldstein, J.; Reeves, G. D.; Fernandes, P. A.; Skoug, R. M.; Larsen, B.; Spence, H. E.

    2017-12-01

    Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (> 30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.

  3. Diel Behavioral Activity Patterns in Adult Solitarious Desert Locust, Schistocerca gregaria (Forskål

    Directory of Open Access Journals (Sweden)

    Sidi Ould Ely

    2011-01-01

    Full Text Available The responses of adult solitarious desert locust to odors from a host plant were evaluated in a two-choice wind tunnel. Solitarious desert locusts collected from the field (Red Sea Coast were more attracted to volatiles from potted Heliotropium ovalifolium in scotophase than in photophase. The attraction towards the host plant odors rather than to clean air, in both photophase and scotophase, concurs with previous observations on oviposition preferences near these plants. Diel behavioral activity patterns of adult solitarious desert locusts Schistocerca gregaria (Forskål that were collected from the field in Port Sudan were investigated by monitoring, scanning, resting, taking off, and walking/running in a wind tunnel. Solitarious locusts that had been propagated in the laboratory for 20 generations were also observed for comparison. In both groups of locusts, insects were significantly more active after sunset and this activity attained peak level at 1-2 hours after dusk. Of the two groups, solitarious locusts collected from the field were significantly more active. In the scotophase, the former traversed distances that were about seven times those covered by laboratory-reared locusts. Overall, the results show that the repertoire of behavioral activities of solitarious locusts is maintained in laboratory-reared insects, albeit at a lower level. The implications of these observations in the behavioral ecology of the desert locust are discussed.

  4. Performance evaluation of locally developed black light trap for maize insects monitoring in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Ghanashyam Bhandari

    2017-12-01

    Full Text Available Till today, the light traps in Nepal are found using with traditional type, which have not being recognized internationally. These light traps were of low efficiency for trapping insects as compared to black light trap (BLT. The black light tube (F10T8/BL was used in newly constructed trap at National Maize Research Program (NMRP, Rampur, Chitwan, Nepal. Both traps were installed at the maize experimental field at NMRP during February to October, 2017. Data on insect numbers were recorded once in a week from dusk to down in two different days to minimize the light effects of each others. The total number of insects trapped in BLT was 2804 as compared to 868 in traditional light trap (TLT. Among the insect orders, Coleopterans were mostly trapped in BLT followed by Lepidopteron and Hemipterans. The results showed that the trapping efficiency of BLT was three fold higher than that of TLT. Therefore, black light trap was highly effective monitoring tool and its field applications are expected to be commercialized.

  5. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  6. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

    Science.gov (United States)

    Lukianova, R. Yu.; Bogoutdinov, Sh. R.

    2017-11-01

    An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y y generation of large-scale irregularities in the polar ionosphere.

  7. Characteristics of high-latitude precursor flows ahead of dipolarization fronts

    Science.gov (United States)

    Li, Jia-Zheng; Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Liu, Jiang; Pan, Dong-Xiao; Zong, Qiu-Gang

    2017-05-01

    Dipolarization fronts (DFs), earthward propagating structures in the magnetotail current sheet characterized by sharp enhancements of northward magnetic field, are capable of converting electromagnetic energy into particle kinetic energy. The ions previously accelerated and reflected at the DFs can contribute to plasma flows ahead of the fronts, which have been identified as DF precursor flows in both the near-equatorial plasma sheet and far from it, near the plasma sheet boundary. Using observations from the THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft, we show that the earthward particle and energy flux enhancements ahead of DFs are statistically larger farther away from the neutral sheet (at high latitudes) than in the near-equatorial region. High-latitude particle and energy fluxes on the DF dawnside are found to be significantly greater than those on the duskside, which is opposite to the dawn-dusk asymmetries previously found near the equatorial region. Using forward and backward tracing test-particle simulations, we then explain and reproduce the observed latitude-dependent characteristics of DF precursor flows, providing a better understanding of ion dynamics associated with dipolarization fronts.

  8. Substorm morphology of >100 keV protons

    International Nuclear Information System (INIS)

    Lundblad, J.Aa.; Soeraas, F.; Aarsnes, K.

    1978-06-01

    The latitudinal morphology of >100 keV protons at different local times has been studied as a function of substorm activity Acharacteristic pattern has been found: During quiet times there is an isotropic zone centered around 67 0 near midnight, but located on higher latitudes towards dusk and dawn. This zone moves slightly equatorward during the substorm growth phase. During the expansive phase the precipitation spreads poleward apparently to approximately 71 0 near midnight. The protons are precipitated over a large local time interval on the night side, but the most intense fluxes are found in the pre-midnight sector. A further poleward expansion, to more than 75 0 near midnight, seems to take place late in the substorm. Away from midnight the expansion reaches even higher latitudes. During the recovery phase the intensity of the expanded region decreases gradually; the poleward boundary is almost stationary if the interplanetary magnetic field has a northward component and no further substorm activity takes place. Mainly protons with energy below approximately 500 keV are precipitated in the expanded region. On the dayside no increase in the precipitation rates is found during substorm expansion, but late in the substorm an enhanced precipitation is found, covering several degrees of latitude. The low-latitude anisotropic precipitation zone is remarkably stable during substorms. A schematic model is presented and discussed in relation to earlier results. (Auth.)

  9. Quite time convection electric field properties derived from keV electron measurements at the inner edge of the plasma sheet by means of GEOS 2

    International Nuclear Information System (INIS)

    Reme, H.; Kremser, G.; Bahnsen, A.; Jespersen, M.; Hultqvist, B.; Borg, H.; Holmgren, L.Aa.

    1981-04-01

    From an analysis of the local time distribution of the electron upper energy limit reached by the geostationary satellite GEOS 2 in cutting through the innermost part of the electron plasma sheet during fairly quite condition the following results have been obtained, among others: An electric field model given by E = -grad(AR 4 sinphi), with the dusk singular point of the forbidden region boundary at 1500, instead of at 1800 MLT, is in quite good agreement with the observations. This means that effects due to the shielding by the hot plasma of the inner magnetosphere from the convection electric field are quite strong in situations of low disturbance level. The quiet time convection electric field strength at 2100 MLT in the geostationary orbit obtained from this analysis varies in the range 0.15 - 0.3 keV/Rsub(e). Six hours earlier or later in the satellite orbit the convection field is 4 times stronger. Also when the convection field varies, some information about its magnitude can be obtained from the keV electron measurements. (author)

  10. Energetic neutral atom imaging with the Polar CEPPAD/IPS instrument: Initial forward modeling results

    International Nuclear Information System (INIS)

    Henderson, M.G.; Reeves, G.D.; Moore, K.R.; Spence, H.E.; Jorgensen, A.M.; Roelof, E.C.

    1997-01-01

    Although the primary function of the CEP-PAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current, detailed modeling is required to extract the actual ion distributions. In this paper, the authors present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies

  11. Quasi-periodic 1-hour pulsations in the Saturn's outer magnetosphere

    Science.gov (United States)

    Rusaitis, L.; Khurana, K. K.; Walker, R. J.; Kivelson, M.

    2017-12-01

    Pulsations in the Saturn's magnetic field and particle fluxes of approximately 1-hour periodicity have been frequently detected in the outer Saturnian magnetosphere by the Cassini spacecraft since 2004. These particle and magnetic field enhancements have been typically observed more often in the dusk sector of the planet, and mid to high latitudes. We investigate nearly 200 of these events as detected by the magnetometer and the Cassini Low-Energy Magnetospheric Measurement System detector (LEMMS) data during the 2004-2015 time frame to characterize these pulsations and suggest their origin. The mechanism needed to produce these observed enhancements needs to permit the acceleration of the energetic electrons to a few MeV and a variable periodicity of enhancements from 40 to 90 minutes. We examine the relation of the oscillations to the periodic power modulations in Saturn kilometric radiation (SKR), using the SKR phase model of Kurth et al. [2007] and Provan et al. [2011]. Finally, we show that similar pulsations can also be observed at 2.5-D MHD simulations of Saturn's magnetosphere.

  12. Emergence periodicity of Phlebotomus argentipes annandale and brunetti (Diptera: psychodidae): A laboratory study.

    Science.gov (United States)

    Dinesh, D S; Singh, A; Kumar, V; Kesari, S; Kumar, A J; Kishore, K; Roy, S P; Bhattacharya, S K; Das, P

    2009-12-01

    Phlebotomus argentipes Annandale and Brunetti (Diptera: Psychodidae) is the vector for visceral leishmaniasis in India. The aspects of its biology such as feeding and man vector contact are associated with emergence periodicity of the adult. Hence, the present study was made to find out the actual emergence period of P. argentipes. Wild caught P. argentipes were confined in the rearing pots inside laboratory. The newly emerged adults were collected at hourly intervals and released in to separate polythene bags and were held at 4°C till death. Sand flies were segregated sex-wise after the death under a microscope. The emergence of adult was observed throughout the day. However, the male preferred dawn emergence and the female the dusk. Two peaks of emergence were found in a day; first one in the morning (0900h) and the second one in the evening (1800h). The ratio of both sexes was found to be about equal. The emergence of adult was found to be 77% out of total eggs laid, which was completed within 7-10 days from the 1st day of emergence under laboratory conditions (25°C to 31°C and 70% to 75% relative humidity). This study has important bearings to find out the actual time for personal protection against biting of sand flies to prevent the transmission of Kala-azar.

  13. Measurement of traffic parameters in image sequence using spatio-temporal information

    International Nuclear Information System (INIS)

    Lee, Daeho; Park, Youngtae

    2008-01-01

    This paper proposes a novel method for measurement of traffic parameters, such as the number of passed vehicles, velocity and occupancy rate, by video image analysis. The method is based on a region classification followed by spatio-temporal image analysis. Local detection region images in traffic lanes are classified into one of four categories: the road, the vehicle, the reflection and the shadow, by using statistical and structural features. Misclassification at a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. This capability of error correction results in the accurate estimation of traffic parameters even in high traffic congestion. Also headlight detection is employed for nighttime operation. Experimental results show that the accuracy is more than 94% in our test database of diverse operating conditions such as daytime, shadowy daytime, highway, urban way, rural way, rainy day, snowy day, dusk and nighttime. The average processing time is 30 ms per frame when four traffic lanes are processed, and real-time operation could be realized while ensuring robust detection performance even for high-speed vehicles up to 150 km h −1

  14. Implications of Circadian Rhythm in Dopamine and Mood Regulation.

    Science.gov (United States)

    Kim, Jeongah; Jang, Sangwon; Choe, Han Kyoung; Chung, Sooyoung; Son, Gi Hoon; Kim, Kyungjin

    2017-07-31

    Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

  15. Circadian Rhythm of Ambient Noise Off the Southeast Coast of India

    Science.gov (United States)

    Kannan, R.; Latha, G.; Prashanthi Devi, M.

    An ambient noise system consisting of a vertical linear hydrophone array was deployed in the shallow waters off Chennai, southeast coast of India from 1 August to 16 September 2013 to record ambient ocean noise of frequencies up to 10kHz. Biological sounds, which are broadband, short duration signals resulting from Terapon theraps, a native species, are a prominent feature of the ocean soundscape. Terapon activity peaks at 8pm and 11pm, and its presence is not observed after 12 midnight in both the months. In the other period, the ambient noise fluctuation is due to wind and vessel traffic. Hence, the present study focuses on the description of the ambient noise fluctuation over two 12h periods, i.e., 12 midnight-12 noon considered as period I, and 12 noon-12 midnight as period II in order to show the circadian rhythm of ambient noise. In this study area, Terapon vocalization reached 25dB above the ambient noise level and it dominates the short-term spectra records in the 0.4-4kHz range. All Terapon signals had daily patterns of sound production with highest levels of activity after dusk during the study period. The result shows that the circadian rhythm of ambient noise is mainly of biological sound generated by Terapon and it is reported first time in the shallow waters off the southeast coast of India.

  16. Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC Waves, ULF Pulsations, and an Electron Flux Dropout

    Science.gov (United States)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; hide

    2016-01-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dstwaves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  17. CAST reaches milestone but keeps on searching

    CERN Multimedia

    CERN Courier (september 2011 issue)

    2011-01-01

    After eight years of searching for the emission of a dark matter candidate particle, the axion, from the Sun, the CERN Axion Solar Telescope (CAST) has fulfilled its original physics programme.   Members of the CAST collaboration in July, together with dipole-based helioscope. CAST, the world’s most sensitive axion helioscope, points a recycled prototype LHC dipole magnet at the Sun at dawn and dusk, looking for the conversion of axions to X-rays. It incorporates four state-of-the-art X-ray detectors: three Micromegas detectors and a pn-CCD imaging camera attached to a focusing X-ray telescope that was recovered from the German space programme (see CERN Courier April 2010).  Over the years, CAST has operated with the magnet bores - the location of the axion conversion - in different conditions: first in vacuum, covering axion masses up to 20 meV/c2, and then with a buffer gas (4He and later 3He) at various densities, finally reaching the goal of 1.17 eV/c2 on 22 ...

  18. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  19. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2016-12-01

    Full Text Available The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models.We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  20. Determination of traffic intensity from camera images using image processing and pattern recognition techniques

    Science.gov (United States)

    Mehrübeoğlu, Mehrübe; McLauchlan, Lifford

    2006-02-01

    The goal of this project was to detect the intensity of traffic on a road at different times of the day during daytime. Although the work presented utilized images from a section of a highway, the results of this project are intended for making decisions on the type of intervention necessary on any given road at different times for traffic control, such as installation of traffic signals, duration of red, green and yellow lights at intersections, and assignment of traffic control officers near school zones or other relevant locations. In this project, directional patterns are used to detect and count the number of cars in traffic images over a fixed area of the road to determine local traffic intensity. Directional patterns are chosen because they are simple and common to almost all moving vehicles. Perspective vision effects specific to each camera orientation has to be considered, as they affect the size and direction of patterns to be recognized. In this work, a simple and fast algorithm has been developed based on horizontal directional pattern matching and perspective vision adjustment. The results of the algorithm under various conditions are presented and compared in this paper. Using the developed algorithm, the traffic intensity can accurately be determined on clear days with average sized cars. The accuracy is reduced on rainy days when the camera lens contains raindrops, when there are very long vehicles, such as trucks or tankers, in the view, and when there is very low light around dusk or dawn.

  1. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  2. Self-consistent theory of three-dimensional convection in the geomagnetic tail

    International Nuclear Information System (INIS)

    Birn, J.; Schindler, K.

    1983-01-01

    The self-consistent theory of time-dependent convection in the earth's magnetotail of Schindler and Birn (1982) is extended to three dimensions to include more realistic tail geometry and three-dimensional flow. We confirm that a steady state solution implies unrealistic tail geometry or large particle or energy losses that are unrealistic during quiet times and conclude therefore that as in the 2-dimensional case the magnetotail becomes time-dependent for typical convection electric fields. Explicit solutions are derived, even analytically, for the three-dimensional flow and the electric and magnetic field in a realistic tail geometry, and quantitative examples are presented. Consequences of time-dependent convection are demonstrated considering two idealized cases of magnetosphere response to solar wind changes: (1) uniform compression as the likely consequence of increasing (static, dynamic or magnetic) solar wind pressure; and (2) compression only in the z direction perpendicular to the plasma sheet as the probable consequence of a dawn to dusk external electric field (E/sub y/>0), corresponding to a southward interplanetary magnetic field component (B/sub z/ 0 with geomagnetic activity. Several other features, already present in the 2-dimensional theory, are confirmed

  3. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  4. Bio-Inspired Vision-Based Leader-Follower Formation Flying in the Presence of Delays

    Directory of Open Access Journals (Sweden)

    John Oyekan

    2016-08-01

    Full Text Available Flocking starlings at dusk are known for the mesmerizing and intricate shapes they generate, as well as how fluid these shapes change. They seem to do this effortlessly. Real-life vision-based flocking has not been achieved in micro-UAVs (micro Unmanned Aerial Vehicles to date. Towards this goal, we make three contributions in this paper: (i we used a computational approach to develop a bio-inspired architecture for vision-based Leader-Follower formation flying on two micro-UAVs. We believe that the minimal computational cost of the resulting algorithm makes it suitable for object detection and tracking during high-speed flocking; (ii we show that provided delays in the control loop of a micro-UAV are below a critical value, Kalman filter-based estimation algorithms are not required to achieve Leader-Follower formation flying; (iii unlike previous approaches, we do not use external observers, such as GPS signals or synchronized communication with flock members. These three contributions could be useful in achieving vision-based flocking in GPS-denied environments on computationally-limited agents.

  5. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  6. Plasma convection in the magnetotail lobes: statistical results from Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    S. Haaland

    2008-08-01

    Full Text Available A major part of the plasma in the Earth's magnetotail is populated through transport of plasma from the solar wind via the magnetotail lobes. In this paper, we present a statistical study of plasma convection in the lobes for different directions of the interplanetary magnetic field and for different geomagnetic disturbance levels. The data set used in this study consists of roughly 340 000 one-minute vector measurements of the plasma convection from the Cluster Electron Drift Instrument (EDI obtained during the period February 2001 to June 2007. The results show that both convection magnitude and direction are largely controlled by the interplanetary magnetic field (IMF. For a southward IMF, there is a strong convection towards the central plasma sheet with convection velocities around 10 km s−1. During periods of northward IMF, the lobe convection is almost stagnant. A By dominated IMF causes a rotation of the convection patterns in the tail with an oppositely directed dawn-dusk component of the convection for the northern and southern lobe. Our results also show that there is an overall persistent duskward component, which is most likely a result of conductivity gradients in the footpoints of the magnetic field lines in the ionosphere.

  7. Magsat - A new satellite to survey the earth's magnetic field

    Science.gov (United States)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  8. Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results

    Science.gov (United States)

    Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.

    2007-01-01

    The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.

  9. Comparison of time-restricted and ad libitum self-feeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon

    Science.gov (United States)

    Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang

    2017-07-01

    Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.

  10. Therapeutic treatments potentially mediated by melatonin receptors: potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy.

    Science.gov (United States)

    Witt-Enderby, Paula A; Radio, Nicholas M; Doctor, John S; Davis, Vicki L

    2006-11-01

    Melatonin's therapeutic potential is grossly underestimated because its functional roles are diverse and its mechanism(s) of action are complex and varied. Melatonin produces cellular effects via a variety of mechanisms in a receptor independent and dependent manner. In addition, melatonin is a chronobiotic agent secreted from the pineal gland during the hours of darkness. This diurnal release of melatonin impacts the sensitivity of melatonin receptors throughout a 24-hr period. This changing sensitivity probably contributes to the narrow therapeutic window for use of melatonin in treating sleep disorders, that is, at the light-to-dark (dusk) or dark-to-light (dawn) transition states. In addition to the cyclic changes in melatonin receptors, many genes cycle over the 24-hr period, independent or dependent upon the light/dark cycle. Interestingly, many of these genes support a role for melatonin in modulating metabolic and cardiovascular physiology as well as bone metabolism and immune function and detoxification of chemical agents and cancer reduction. Melatonin also enhances the actions of a variety of drugs or hormones; however, the role of melatonin receptors in modulating these processes is not known. The goal of this review is to summarize the evidence related to the utility of melatonin as a therapeutic agent by focusing on its other potential uses besides sleep disorders. In particular, its use in cancer prevention, osteoporosis and, as an adjuvant to other therapies are discussed. Also, the role that melatonin and, particularly, its receptors play in these processes are highlighted.

  11. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.

    Science.gov (United States)

    Reynolds, D R; Smith, A D; Chapman, J W

    2008-02-01

    Radar observations have consistently shown that high-altitude migratory flight in insects generally occurs after mass take-off at dusk or after take-off over a more extended period during the day (in association with the growth of atmospheric convection). In this paper, we focus on a less-studied third category of emigration - the 'dawn take-off' - as recorded by insect-monitoring radars during the summer months in southern England. In particular, we describe occasions when dawn emigrants formed notable layer concentrations centred at altitudes ranging from ca. 240 m to 700 m above ground, very probably due to the insects responding to local temperature maxima in the atmosphere, such as the tops of inversions. After persisting for several hours through the early morning, the layers eventually merged into the insect activity building up later in the morning (from 06.00-08.00 h onwards) in conjunction with the development of daytime convection. The species forming the dawn layers have not been positively identified, but their masses lay predominantly in the 16-32 mg range, and they evidently formed a fauna quite distinct from that in flight during the previous night. The displacement and common orientation (mutual alignment) characteristics of the migrants are described.

  12. ULF waves associated with enhanced subauroral proton precipitation

    Science.gov (United States)

    Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.

    Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.

  13. Believable Characters

    Science.gov (United States)

    El-Nasr, Magy Seif; Bishko, Leslie; Zammitto, Veronica; Nixon, Michael; Vasiliakos, Athanasios V.; Wei, Huaxin

    The interactive entertainment industry is one of the fastest growing industries in the world. In 1996, the U.S. entertainment software industry reported 2.6 billion in sales revenue, this figure has more than tripled in 2007 yielding 9.5 billion in revenues [1]. In addition, gamers, the target market for interactive entertainment products, are now reaching beyond the traditional 8-34 year old male to include women, Hispanics, and African Americans [2]. This trend has been observed in several markets, including Japan, China, Korea, and India, who has just published their first international AAA title (defined as high quality games with high budget), a 3D third person action game: Ghajini - The Game [3]. The topic of believable characters is becoming a central issue when designing and developing games for today's game industry. While narrative and character were considered secondary to game mechanics, games are currently evolving to integrate characters, narrative, and drama as part of their design. One can see this pattern through the emergence of games like Assassin's Creed (published by Ubisoft 2008), Hotel Dusk (published by Nintendo 2007), and Prince of Persia series (published by Ubisoft), which emphasized character and narrative as part of their design.

  14. Weberized Mumford-Shah Model with Bose-Einstein Photon Noise

    International Nuclear Information System (INIS)

    Shen Jianhong; Jung, Yoon-Mo

    2006-01-01

    Human vision works equally well in a large dynamic range of light intensities, from only a few photons to typical midday sunlight. Contributing to such remarkable flexibility is a famous law in perceptual (both visual and aural) psychology and psychophysics known as Weber's Law. The current paper develops a new segmentation model based on the integration of Weber's Law and the celebrated Mumford-Shah segmentation model (Comm. Pure Appl. Math., vol. 42, pp. 577-685, 1989). Explained in detail are issues concerning why the classical Mumford-Shah model lacks light adaptivity, and why its 'weberized' version can more faithfully reflect human vision's superior segmentation capability in a variety of illuminance conditions from dawn to dusk. It is also argued that the popular Gaussian noise model is physically inappropriate for the weberization procedure. As a result, the intrinsic thermal noise of photon ensembles is introduced based on Bose and Einstein's distributions in quantum statistics, which turns out to be compatible with weberization both analytically and computationally. The current paper focuses on both the theory and computation of the weberized Mumford-Shah model with Bose-Einstein noise. In particular, Ambrosio-Tortorelli's Γ-convergence approximation theory is adapted (Boll. Un. Mat. Ital. B, vol. 6, pp. 105-123, 1992), and stable numerical algorithms are developed for the associated pair ofnonlinear Euler-Lagrange PDEs

  15. Is motivation important to brook trout passage through culverts?

    Science.gov (United States)

    Goerig, Elsa; Castro-Santos, Theodore R.

    2017-01-01

    Culverts can restrict movement of stream-dwelling fish. Motivation to enter and ascend these structures is an essential precursor for successful passage. However, motivation is challenging to quantify. Here, we use attempt rate to assess motivation of 447 brook trout (Salvelinus fontinalis) entering three culverts under a range of hydraulic, environmental, and biological conditions. A passive integrated transponder system allowed for the identification of passage attempts and success of individual fish. Attempt rate was quantified using time-to-event analysis allowing for time-varying covariates and recurrent events. Attempt rate was greatest during the spawning period, at elevated discharge, at dusk, and for longer fish. It decreased during the day and with increasing number of conspecifics downstream of the culvert. Results also show a positive correlation between elevated motivation and successful passage. This study enhances understanding of factors influencing brook trout motivation to ascend culverts and shows that attempt rate is a dynamic phenomenon, variable over time and among individuals. It also presents methods that could be used to investigate other species’ motivation to pass natural or anthropogenic barriers.

  16. Bat Hunting and Bat-Human Interactions in Bangladeshi Villages: Implications for Zoonotic Disease Transmission and Bat Conservation.

    Science.gov (United States)

    Openshaw, J J; Hegde, S; Sazzad, H M S; Khan, S U; Hossain, M J; Epstein, J H; Daszak, P; Gurley, E S; Luby, S P

    2017-08-01

    Bats are an important reservoir for emerging zoonotic pathogens. Close human-bat interactions, including the sharing of living spaces and hunting and butchering of bats for food and medicines, may lead to spillover of zoonotic disease into human populations. We used bat exposure and environmental data gathered from 207 Bangladeshi villages to characterize bat exposures and hunting in Bangladesh. Eleven percent of households reported having a bat roost near their homes, 65% reported seeing bats flying over their households at dusk, and 31% reported seeing bats inside their compounds or courtyard areas. Twenty percent of households reported that members had at least daily exposure to bats. Bat hunting occurred in 49% of the villages surveyed and was more likely to occur in households that reported nearby bat roosts (adjusted prevalence ratio [aPR] 2.3, 95% CI 1.1-4.9) and villages located in north-west (aPR 7.5, 95% CI 2.5-23.0) and south-west (aPR 6.8, 95% CI 2.1-21.6) regions. Our results suggest high exposure to bats and widespread hunting throughout Bangladesh. This has implications for both zoonotic disease spillover and bat conservation. © 2016 Blackwell Verlag GmbH.

  17. Temporal and Spatial Foraging Behavior of the Larvae of the Fall Webworm Hyphantria cunea

    Directory of Open Access Journals (Sweden)

    Terrence D. Fitzgerald

    2015-01-01

    Full Text Available During their first three larval stadia, caterpillars of Hyphantria cunea (Lepidoptera: Arctiidae are patch-restricted foragers, confining their activity to a web-nest they construct in the branches of the host tree. Activity recordings of eight field colonies made over 46 colony-days showed that the later instars become central place foragers, leaving their nests at dusk to feed at distant sites and then returning to their nests in the morning. Colonies maintained in the laboratory showed that same pattern of foraging. In Y-choice laboratory experiments, caterpillars were slow to abandon old, exhausted feeding sites in favor of new food finds. An average of approximately 40% of the caterpillars in five colonies still selected pathways leading to exhausted sites at the onset of foraging bouts over those leading to new sites after feeding exclusively at the new sites on each of the previous four days. On returning to their nests in the morning, approximately 23% of the caterpillars erred by selecting pathways that led them away from the nest rather than toward it and showed no improvement over the course of the study. The results of these Y-choice studies indicate that, compared to other previously studied species of social caterpillars, the webworm employs a relatively simple system of collective foraging.

  18. 3D ion-scale dynamics of BBFs and their associated emissions in Earth's magnetotail using 3D hybrid simulations and MMS multi-spacecraft observations

    Science.gov (United States)

    Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.

    2017-12-01

    Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.

  19. MMS FEEPS Energetic Electron Microinjection Observations During 2015 Through October 2017

    Science.gov (United States)

    Fennell, J. F.; Turner, D. L.; Lemon, C.; Kavosi, S.; Spence, H. E.; Jaynes, A. N.; Blake, J. B.; Clemmons, J. H.; Baker, D. N.; Mauk, B.; Burch, J. L.; Cohen, I. J.

    2017-12-01

    During MMS traversals of the midnight to dusk local time regions energetic electron data showed many clusters of electron injections we call microinjections because of their short duration signatures. These microinjections of 50-400 keV electrons have energy dispersion signatures indicating that they gradient and curvature drifted from earlier local times. Multiple clusters of microinjection occurred during these traversals. We show detailed results from some microinjections taken with burst mode data. These high temporal resolution data showed that the electrons in the microinjections were trapped and had bidirectional field-aligned angular distributions. Drift calculations constrained by the observed electron dispersion times indicate the electrons had drifted from near the magnetopause hours earlier in local time. They were not observed in the midnight through pre-noon regions in 2015-2016. The 2015-2016 observations were limited to altitudes of 9 to 12 Re because the MMS apogee was 12 Re then. In March 2017, the MMS apogee was raised to 25 Re and we will show how these later microinjection observations compare to the earlier ones. These injection clusters are a new phenomenon in this region of the magnetosphere and with the higher orbit we will observe how close to the magnetopause they exist and possibly traverse the source regions. We will provide statistics on the occurrence of the injections and discuss possible sources and implications.

  20. Beyond the average: Diverse individual migration patterns in a population of mesopelagic jellyfish

    KAUST Repository

    Kaartvedt, Stein

    2011-11-01

    We examined the diel behavior among the jellyfish Periphylla periphylla in Lurefjorden, Norway in a sampling campaign and by a > 3-month continuous acoustic study. Jellyfish distribution and behavior were recorded by an upward-facing, bottom-mounted echo sounder at 280-m depth. The population was typically divided into four groups, each with different behavior. Individuals of behavioral Mode 1 undertook synchronous diel vertical migrations (DVM) within the upper 100 m. Individuals of behavioral Mode 2, stayed at ~ 160-200-m depth during the day, and also exhibited synchronized DVM, ascending at dusk and descending at dawn. The smaller individuals of behavioral Mode 3 swam continuously up and down throughout both day and night, yet occurred below Mode 2 individuals in daytime (~ 200 m-bottom), while their vertical range encompassed the entire water column during night. Mode 4 behavior was displayed by large jellyfish located between ~ 130 m and the bottom. These animals shifted between remaining motionless and relocating in rapid steps during both day and night. These four main behavioral patterns persisted throughout the registration period, although the synchronously migrating Mode 2 behavior became weaker in spring. This acoustic study has unveiled more diverse migration behaviors than previously derived from net sampling and remote-operated vehicles methods and emphasizes the importance of studying individuals. DVM is complex because individuals in a plankton population may simultaneously engage in a range of various contrasting behaviors.

  1. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  2. Bird on a (live) wire

    Energy Technology Data Exchange (ETDEWEB)

    Farr, M.

    2003-09-30

    Bird mortality as a result of contact with power lines is discussed. U. S. statistics are cited, according to which 174 million birds annually die as a result of contact with power lines, specifically when birds touch two phases of current at the same time. Raptors are particularly vulnerable to power-line electrocution due to their habit of perching on the highest vantage point available as they survey the ground for prey. Hydro lines located in agricultural areas, with bodies of water on one side and fields on the other, also obstruct flight of waterfowl as dusk and dawn when visibility is low. Various solutions designed to minimize the danger to birds are discussed. Among these are: changing the configuration of wires and cross arms to make them more visible to birds in flight and less tempting as perches, and adding simple wire markers such as flags, balloons, and coloured luminescent clips that flap and twirl in the wind. There is no evidence of any coordinated effort to deal with this problem in Ontario. However, a report is being prepared for submission to Environment Canada outlining risks to birds associated with the growing number of wind turbine power generators (negligible compared with power lines and communications towers), and offering suggestions on remedial measures. The Fatal Light Awareness Program (FLAP) also plans to lobby the Canadian Wildlife Service to discuss the possibility of coordinating efforts to monitor, educate about and ultimately reduce this form of bird mortality.

  3. Fear of darkness, the full moon and the nocturnal ecology of African lions.

    Directory of Open Access Journals (Sweden)

    Craig Packer

    Full Text Available Nocturnal carnivores are widely believed to have played an important role in human evolution, driving the need for night-time shelter, the control of fire and our innate fear of darkness. However, no empirical data are available on the effects of darkness on the risks of predation in humans. We performed an extensive analysis of predatory behavior across the lunar cycle on the largest dataset of lion attacks ever assembled and found that African lions are as sensitive to moonlight when hunting humans as when hunting herbivores and that lions are most dangerous to humans when the moon is faint or below the horizon. At night, people are most active between dusk and 10:00 pm, thus most lion attacks occur in the first weeks following the full moon (when the moon rises at least an hour after sunset. Consequently, the full moon is a reliable indicator of impending danger, perhaps helping to explain why the full moon has been the subject of so many myths and misconceptions.

  4. Solar wind energy transfer regions inside the dayside magnetopause

    International Nuclear Information System (INIS)

    Lundin, R.; Dubinin, E.

    1984-01-01

    PROGNOZ-7 high temporal resolution measurements of the ion composition and hot plasma distribution in the dayside high latitude boundary layer near noon have revealed that magnetosheath plasma may penetrate the dayside magnetopause and form high density, high β, magnetosheath-like regions inside the magnetopause. From these measurements it is demonstrated that the magnetosheath injection regions most probably play an important role in transferring solar wind energy into the magnetosphere. The transfer regions are characterized by a strong perpendicular flow towards dawn or dusk (depending on local time) but are also observed to expand rapidly along the boundary field lines. This increased flow component transverse to the local magnetic field corresponds to a predominantly radial electric field of up to several mV m -1 , which indicates that the injected magnetosheath plasma causes an enhanced polarization of the boundary layer. Polarization of the boundary layer can therefore be considered a result of a local MHD-process where magnetosheath plasma excess momentum is converted into electromagnetic energy (electric field), i.e. there is an MHD-generator. It was observed that the boundary layer is charged up to tens of kilovolts, a potential which may be highly variable on e.g. the presence of a momentum exchange by the energy transfer regions. (author)

  5. Global reconnection topology as inferred from plasma observations inside Kelvin-Helmholtz vortices

    Directory of Open Access Journals (Sweden)

    M. B. Bavassano Cattaneo

    2010-04-01

    Full Text Available During a long lasting period of northward interplanetary magnetic field and high solar wind speed (above 700 km/s, the Cluster spacecraft go across a number of very large rolled-up Kelvin-Helmholtz (KH vortices at the dusk magnetopause, close to the terminator. The peculiarity of the present event is a particular sequence of ions and electrons distribution functions observed repeatedly inside each vortex. In particular, whenever Cluster crosses the current layer inside the vortices, multiple field-aligned ion populations appear, suggesting the occurrence of reconnection. In addition, the ion data display a clear velocity filter effect both at the leading and at the trailing edge of each vortex. This effect is not present in the simultaneous electron data. Unlike other KH studies reported in the literature in which reconnection occurs within the vortices, in the present event the observations are not compatible with local reconnection, but are accounted for by lobe reconnection occurring along an extended X-line at the terminator in the Southern Hemisphere. The reconnected field lines "sink" across the magnetopause and then convect tailward-duskward where they become embedded in the vortices. Another observational evidence is the detected presence of solar wind plasma on the magnetospheric side of the vortices, which confirms unambiguously the occurrence of mass transport across the magnetopause already reported in the literature. The proposed reconnection scenario accounts for all the observational aspects, regarding both the transport process and the kinetic signatures.

  6. Risk Assessment to Dust Exposure in Room Maintenance

    Directory of Open Access Journals (Sweden)

    Saiku Rokhim

    2017-04-01

    Full Text Available As one of the particulate chemicals, dust could occur in most of the production process and can create interference for workers health and safety. As one of the air pollution sources, dust could became a potential hazard which exist in room maintenances. Protection to workers is a must in order to reduce the risk of respiratory tract syndrome that often could be found in this cases. The aim of this study is to conduct a risk assessment to dust exposure in room maintenance, which held by contractors in PT. X (Persero building in Surabaya. This is an cross sectional study with obsevation approach. The object of this research is the repairing  works. The results indicate that the activities which could produce dust, such as: walls sanding using sandpaper, the tiles dismantle, sawmilling, the wood fiber refining, grinding, mixing and stirring cast  materials, and room cleaning. Dust produced from a variety of works including sanddust, cement, lime, wood and dust mixed with paint. The results show that three types of works considere as high-risk activity (value > 12-25, 3 types of work consider as midle risk activities (value > 5-12, and one activity considered as a low-risk work (grades 1-5. The dusk factors controlling should be held regularly, in order to minimize the risk leveln againts the workers.

  7. Dancing in the dark: darkness as a signal in plants.

    Science.gov (United States)

    Seluzicki, Adam; Burko, Yogev; Chory, Joanne

    2017-11-01

    Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface. © 2017 John Wiley & Sons Ltd.

  8. DE 2 observations of disturbances in the upper atmosphere during a geomagnetic storm

    International Nuclear Information System (INIS)

    Miller, N.J.; Brace, L.H.; Spencer, N.W.; Carignan, G.R.

    1990-01-01

    Data taken in the dusk sector of the mid-latitude thermosphere at 275-450 km by instruments on board Dynamics Explorer 2 in polar orbit are used to examine the response of the ionosphere- thermosphere system during a geomagnetic storm. The results represent the first comparison of nearly simultaneous measurements of storm disturbances in dc electric fields, zonal ion convection, zonal winds, gas composition and temperature, and electron density and temperature, at different seasons in a common local time sector. The storm commenced on November 24, 1982, during the interaction of a solar wind disturbance with the geomagnetic field while the north-south component of the interplanetary magnetic field, B z , was northward. The storm main phase began while B z was turning southward. Storm-induced variations in meridional de electric fields, neutral composition, and N e were stronger and spread farther equatorward in the winter hemisphere. Westward ion convection was intense enough to produce westward winds of 600 m s - 1 via ion drag in the winter hemisphere. Frictional heating was sufficient to elevate ion temperatures above electron temperatures in both seasons and to produce large chemical losses of O + by increasing the rate of O + loss via ion-atom interchange. Part of the chemical loss of O + was compensated by upward flow of O + as the ion scale height adjusted to the increasing ion temperatures. In this storm, frictional heating was an important subauroral heat source equatorward to at least 53 degree invariant latitude

  9. Evaluation of super intense geomagnetic storms and related structures of the interplanetary medium through the observation of cosmic rays of high energy surface; Analise de tempestades geomagneticas super intensas e de estruturas do meio interplanetario relacionadas, atraves da observacao de raios cosmicos de superficie de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Jairo Francisco; Schuch, Nelson J., E-mail: savian@lacesm.ufsm.br, E-mail: njschuch@lacesm.ufsm.br [Centro Regional Sul de Pesquisas Espaciais - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Silva, Marlos Rockenbach da; Lago, Alisson dal; Gonzalez, Walter Demetrio, E-mail: marlos@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: gonzalez@dge.inpe.br [Instituto Nacional de Pesquisas Espaciais - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Munakata, Kazuoki [Physics Department, Shinshu University, Matsumoto (Japan)

    2005-04-15

    It is believed that the physical mechanism responsible for the transference of energy from the solar wind to the Earth magnetosphere is the reconnection between the interplanetary magnetic field and the terrestrial magnetic field (Tsurutani and Gonzalez, 1997). The necessary criterion for a intense geomagnetic storms to occur, Dst < -100nT, is the existence of a dawn-dusk interplanetary electric field larger than 5 mV/m, for a period larger than 3 hours. Cosmic rays have been studied as a natural phenomenon that can tell much about both Earth's environment in space and distant astrophysical processes (Jokipii, 2000). A solar disturbance propagating away from the Sun affects the pre-existing population of galactic cosmic rays in a number of ways. The most famous one is known as the 'Forbush decrease', which is a suppression of ground cosmic-ray counts observed during geomagnetic disturbances. The objective of this work is to study the response of the Southern Space Observatory ground Muon Telescope observations, installed in Sao Martinho da Serra, RS, Brazil, to 3 super intense geomagnetic storms, combining observation provided by L1 satellites and ground detectors. (author)

  10. Environmental influences on patterns of vertical movement and site fidelity of grey reef sharks (Carcharhinus amblyrhynchos at aggregation sites.

    Directory of Open Access Journals (Sweden)

    Gabriel M S Vianna

    Full Text Available We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies.

  11. Environmental influences on patterns of vertical movement and site fidelity of grey reef sharks (Carcharhinus amblyrhynchos) at aggregation sites.

    Science.gov (United States)

    Vianna, Gabriel M S; Meekan, Mark G; Meeuwig, Jessica J; Speed, Conrad W

    2013-01-01

    We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies.

  12. Correspondence between the ULF wave power spatial distribution and auroral oval boundaries

    Directory of Open Access Journals (Sweden)

    Kozyreva O.V.

    2016-06-01

    Full Text Available The world-wide spatial distribution of the wave power in the Pc5 band during magnetic storms has been compared with auroral oval boundaries. The poleward and equatorward auroral oval boundaries are estimated using either the British Antarctic Survey database containing IMAGE satellite UV observations of the aurora or the OVATION model based on the DMSP particle data. The “epicenter” of the spectral power of broadband Pc5 fluctuations during the storm growth phase is mapped inside the auroral oval. During the storm recovery phase, the spectral power of narrowband Pc5 waves, both in the dawn and dusk sectors, is mapped inside the auroral oval or around its equatorward boundary. This observational result confirms previously reported effects: the spatial/temporal variations of the Pc5 wave power in the morning/pre-noon sector are closely related to the dynamics of the auroral electrojet and magnetospheric field-aligned currents. At the same time, narrowband Pc5 waves demonstrate typical resonant features in the amplitude-phase latitudinal structure. Thus, the location of the auroral oval or its equatorward boundary is the preferred latitude for magnetospheric field-line Alfven resonator excitation. This effect is not taken into account by modern theories of ULF Pc5 waves, but it could be significant for the development of more adequate models.

  13. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  14. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    Science.gov (United States)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  15. Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia faba leaves

    International Nuclear Information System (INIS)

    Srivastava, A.; Zeiger, E.

    1995-01-01

    Zeaxanthin, antheraxanthin and violaxanthin concentrations in guard cells from sonicated abaxial epidermal peels of Vicia faba were measured from dawn to dusk, and compared with concentrations in mesophyll tissue of the same leaves. Measured changes in guard cell zeaxanthin and violaxanthin concentrations indicate that guard cells operate the xanthophyll cycle throughout the day. Mesophyll tissue had no detectable zeaxanthin at dawn, whereas guard cells had 30–50 mmol mol −1 chlorophyll a+b. On a chlorophyll basis, maximal zeaxanthin levels were 3–4 fold higher in guard cells than in mesophyll cells. Zeaxanthin concentrations tracked levels of photosynthetically active radiation (PAR) in both mesophyll and guard cells. In the mesophyll, most of the zeaxanthin changes occurred in mid-morning and mid-afternoon. In guard cells, zeaxanthin concentrations changed nearly linearly with PAR in the early morning and late afternoon, and closely tracked PAR levels throughout the day. Guard cell zeaxanthin concentrations were also closely correlated with stomatal apertures. The close relationship between zeaxanthin concentrations and PAR levels in guard cells indicates that zeaxanthin is well suited to function as a molecular photosensor in stomatal movements. (author)

  16. The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations

    Science.gov (United States)

    Yue, C.; Bortnik, J.; Thorne, R. M.; Ma, Q.; An, X.; Chappell, C. R.; Gerrard, A. J.; Lanzerotti, L. J.; Shi, Q.

    2017-12-01

    Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze 1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles show pancake, butterfly and isotropic distributions depending on their energy, MLT and L-shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as L-shell increases which is primarily caused by adiabatic transport. Furthermore, energetic H+ (> 10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. The different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.

  17. Diabetes Canada Position Statement for People with Types 1 and 2 Diabetes Who Fast During Ramadan.

    Science.gov (United States)

    Bajaj, Harpreet Singh; Abouhassan, Tyceer; Ahsan, Muhammad Rauf; Arnaout, Amel; Hassanein, Mohamed; Houlden, Robyn L; Khan, Tayyab; Khandwala, Hasnain; Verma, Subodh

    2018-04-27

    Fasting from dawn to dusk during Ramadan, including abstaining from water and food, is 1 of the pillars of Islam and is observed by the majority of Muslims. Most research concerning diabetes and fasting during Ramadan originates from Middle Eastern or South Asian countries; however, differences exist in hours of work and fasting, pharmacotherapy and blood glucose monitoring between these countries and Canada. An expert forum of 7 Canadian experts and 1 international expert collaborated to develop Canadian guidelines using the same evidence-based principles, with the exception of an independent methods review used for the Diabetes Canada clinical practice guidelines. Diabetes Canada scientific leadership and Canadian health-care providers performed independent external reviews. Religious leaders endorsed the position statement and provided letters of support. An informed patient participated in the position-statement development. Each recommendation was approved with 100% consensus of the expert forum. Recommendations for risk stratification, education, pharmacotherapy and blood glucose monitoring for adults with type 1 and type 2 diabetes who intend to fast during Ramadan have been developed. This is the first Canadian position statement on the topic of Ramadan fasting and diabetes. It was developed by an expert faculty and endorsed by Diabetes Canada, and provides guidance about pharmacotherapy and glucose monitoring for health-care providers so that they can assist Canadian Muslims living with diabetes to observe fasting during Ramadan safely. Copyright © 2018. Published by Elsevier Inc.

  18. Fuzzy approach for short term load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Chenthur Pandian, S.; Duraiswamy, K.; Kanagaraj, N. [Electrical and Electronics Engg., K.S. Rangasamy College of Technology, Tiruchengode 637209, Tamil Nadu (India); Christober Asir Rajan, C. [Department of Electrical and Electronics Engineering, Pondicherry Engineering College, Pondicherry (India)

    2006-04-15

    The main objective of short term load forecasting (STLF) is to provide load predictions for generation scheduling, economic load dispatch and security assessment at any time. The STLF is needed to supply necessary information for the system management of day-to-day operations and unit commitment. In this paper, the 'time' and 'temperature' of the day are taken as inputs for the fuzzy logic controller and the 'forecasted load' is the output. The input variable 'time' has been divided into eight triangular membership functions. The membership functions are Mid Night, Dawn, Morning, Fore Noon, After Noon, Evening, Dusk and Night. Another input variable 'temperature' has been divided into four triangular membership functions. They are Below Normal, Normal, Above Normal and High. The 'forecasted load' as output has been divided into eight triangular membership functions. They are Very Low, Low, Sub Normal, Moderate Normal, Normal, Above Normal, High and Very High. Case studies have been carried out for the Neyveli Thermal Power Station Unit-II (NTPS-II) in India. The fuzzy forecasted load values are compared with the conventional forecasted values. The forecasted load closely matches the actual one within +/-3%. (author)

  19. Energy transfer by magnetopause reconnection and the substorm parameter epsilon

    International Nuclear Information System (INIS)

    Gonzalez-Alarcon, W.D.; Gonzalez, A.L.C. de.

    1983-01-01

    An expression for the magnetopause reconnection power based on the dawn-dusk component of the reconnection electric field, that reduces to the substorm parameter epsilon for the limit that involves equal geomagnetic (B sub(G)) and magnetosheath (B sub(M)) magnetic field amplitudes at the magnetopause, is contrasted with the expression based on the whole reconnection electric field vector obtained by Gonzalez. The correlation examples of this report show that this (more general) expression for the reconnection power seems to correlate with the empirical dissipation parameter U sub(T) from Akasofu, with slightly better correlation coefficients than those obtained from similar correlations between the parameter epsilon and U sub(T). Thus, these (better) correlations show up for the more familiar values of the ratio B sub(G) / B sub(M) > 1. Nevertheless, the (expected) relatively small difference that seems to exist between these correlation coefficients suggests that, for practical purposes, the parameter epsilon could be used as well (instead of the more general expression) in similar correlation studies due to its impler format. On the other hand, studies that refer mainly to the difference in the magnitudes of epsilon and of the more general expression are expected to give results with less negligible differences. (Author) [pt

  20. Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoqing Pi

    2009-01-01

    Full Text Available The four-dimensional Global Assimilative Ionospheric Model (GAIM is applied to a study of ionospheric disturbances. The investigation is focused on disturbance features, particularly in the altitude and latitude dimensions, at low latitudes during a geomagnetic storm on 7 August 2006, under solar minimum conditions. The modeling of storm-time ionospheric state (electron density is conducted by assimilating an unprecedented volume of line-of-sight TEC data collected by the Global Positioning System (GPS occultation receivers on board six FORMOSAT-3/COSMIC satellites and geodetic-quality GPS receivers at two hundred globally-distributed ground tracking stations.With a band-limited Kalman filter technique to update the ionospheric state, the assimilative modeling reveals a pronounced enhancement in the equatorial anomaly in the East Asia sector during dusk and evening hours. The disturbance characteristics, obtained by comparing with the quiet conditions prior to the storm also modeled in this study through data assimilation, include lifted F layer and reduced electron density in the equatorial region, enhanced density at the magnetically conjugate anomaly latitudes, and tilted feature of density increase towards higher altitudes at lower latitudes. The characteristics are attributed to the enhanced plasma fountain effect driven by an enhanced eastward zonal electric field. These results enable us to distinguish the storm-time electric field perturbations clearly from other sources during the storm. The possible origins of electric field perturbations are also discussed, including penetration of the magnetospheric electric field and wind dynamo disturbances.

  1. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    Science.gov (United States)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  2. Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.; Reardon, Kevin P.; Bida, T. A.

    2013-01-01

    We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K.

  3. The response of the day side magnetosphere--ionosphere system to time-varying field line reconnection at the magnetopause. II. Erosion event of March 27, 1968

    International Nuclear Information System (INIS)

    Reid, G.C.; Holzer, T.E.

    1975-01-01

    The circuit analogy for the response of the coupled magnetosphere-ionosphere system to changes in day side field line reconnection rate is applied to real conditions and is used to calculate the expected variation in magnetopause position during the erosion event described by Aubry et al. (1970). Generally good agreement between observation and theory is found. The role of the dawn-dusk electric field responsible for magnetospheric convection is examined in some detail and is treated in the circuit analogy as the field due to an external generator connected across the circuit. It is found that the erosion process requires two distinct time constants for a proper description: (1) the time needed for magnetosheath plamsa to travel down the freshly reconnected field lines to the ionosphere and (2) roughly, the time required for the foot of a reconnected field line to travel one quarter of the total noon-midnight dimension of the polar cap. The second time constant is the dominant one and is not related to the ionospheric conductivity, as has been suggested previously. Examination of high-latitude magnetograms obtained during the erosion event discussed shows that the electric field oscillations predicted by the theory and observed by the spacecraft in terms of oscillations in the magnetopause position are also reflected in osci []lations in ionospheric current flow

  4. On the nature of the plasma sheet boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Hones, E.W. Jr. (Mission Research Corp., Los Alamos, NM (USA) Los Alamos National Lab., NM (USA))

    1990-01-01

    The regions of the plasma sheet adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving plasma directed primarily earthward and tailward along magnetic field lines. Measurements taken as satellites passed through one or the other of these boundary layers have frequently revealed near-earth mirroring of ions and a vertical segregation of velocities of both earthward-moving and mirroring ions with the fastest ions being found nearest the lobe-plasma sheet interface. These are features expected for particles from a distant tail source {bar E} {times} {bar B} drifting in a dawn-to-dusk electric field and are consistent with the source being a magnetic reconnection region. The plasma sheet boundary layers are thus understood as separatrix layers, bounded at their lobeward surfaces by the separatrices from the distant neutral line. This paper will review the observations that support this interpretation. 10 refs., 7 figs.

  5. Post-fire phenological behavior and breeding biology of the Spiranthera odoratissima A. St.-Hil. (Rutaceae

    Directory of Open Access Journals (Sweden)

    Mirley Luciene dos Santos

    2008-03-01

    Full Text Available The phenological behavior of species in response to cerrado stricken by fire is little known. A phenological and reproductive biological study of Spiranthera odoratissima was carried out in an anthropized area of cerrado sensu stricto affected by fire in Goiânia County, Goiás, Brazil. Phenolocial observations indicated that the individuals bloomed in synchrony three months after the fire. The phenological rhythms were associated with the seasonal pluviometric effects, a characteristic pattern of shrublet species of the cerrado. Theflowers are white with a sweet odor and are grouped in panicle inflorescences. The blossoming occurs during dusk and begins at around 16h. It offers pollen and nectar to its visitors. The species produces 32.8μl (± 3.4 of nectar with an average concentration of 16.4% (± 0.43 in equivalents of sucrose. The pollination system (phalenophily was proposed based on an analysis of the fl ower’s characteristics. Observed visitors were bees (Apis mellifera Linnaeus, flies, wasps, ants and beetles, but due to the inflorescence behavior, they were considered to be merely resource thieves. It was observed that Trigona spinipes Fabr. can act as a secondary pollinator during the pilling of pollen. The results of manual pollination and the incompatibility index (ISI indicate that the species is xenogamous and self-compatible.

  6. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini).

    Science.gov (United States)

    Streinzer, Martin; Huber, Werner; Spaethe, Johannes

    2016-10-01

    Stingless bees constitute a species-rich tribe of tropical and subtropical eusocial Apidae that act as important pollinators for flowering plants. Many foraging tasks rely on vision, e.g. spatial orientation and detection of food sources and nest entrances. Meliponini workers are usually small, which sets limits on eye morphology and thus quality of vision. Limitations are expected both on acuity, and thus on the ability to detect objects from a distance, as well as on sensitivity, and thus on the foraging time window at dusk and dawn. In this study, we determined light intensity thresholds for flight under dim light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8-1.7 mm thorax-width), and we found a strong negative correlation with light intensity thresholds (0.1-79 lx). Further, we measured eye size, ocelli diameter, ommatidia number, and facet diameter. All parameters significantly correlated with body size. A disproportionately low light intensity threshold in the minute Trigonisca pipioli, together with a large eye parameter P eye suggests specific adaptations to circumvent the optical constraints imposed by the small body size. We discuss the implications of body size in bees on foraging behavior.

  7. At What Time a Day Begins in the Korean History?

    Directory of Open Access Journals (Sweden)

    Sang-Hyeon Ahn

    2004-12-01

    Full Text Available We have reproduced the records of lunar occultation recorded in the History of Three Kingdoms, the History of the Koryo Dynasty, the Annals of the Choson Dynasty, the Daily Records of Royal Secretariat of the Choson Dynasty, and obtained the epochs of their realizations. We analysed these results to understand how the system of hours had been kept and when a day began. During most of the periods encompassed by these annals, the 12 double hours and the system of 100 divisions of the day had been used when the lunar and the solar eclipses were calculated by royal astronomers. In these systems, the starting point of a day is midnight. On the other hand, the five watch system of hours, in which a night is divided into five watches, was also used. In this system, a day begins at the sunrise. We found that the traditional twilight, called dusk and dawn and used in the east Asian countries, largely corresponds to the nautical twilight in modern concepts. This fact means that the Korean expressions and words for time system in every day life had originated from the five watch system of hours. We pointed out that the sunrise and sunset were convenient boundary lines to ancient astronomers, as well as to farmers in the agricultural society. Our results can be used to determine the exact epoch of each astronomical record in chronicles.

  8. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2001-05-01

    precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  9. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    electrons and isotropic ion precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.

    Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  10. Auroral electrojets and boundaries of plasma domains in the magnetosphere during magnetically disturbed intervals

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2006-09-01

    Full Text Available We investigate variations in the location and intensity of the auroral electrojets during magnetic storms and substorms using a numerical method for estimating the equivalent ionospheric currents based on data from meridian chains of magnetic observatories. Special attention was paid to the complex structure of the electrojets and their interrelationship with diffuse and discrete particle precipitation and field-aligned currents in the dusk sector. During magnetospheric substorms the eastward electrojet (EE location in the evening sector changes with local time from cusp latitudes (Φ~77° during early afternoon to latitudes of diffuse auroral precipitation (Φ~65° equatorward of the auroral oval before midnight. During the main phase of an intense magnetic storm the eastward currents in the noon-early evening sector adjoin to the cusp at Φ~65° and in the pre-midnight sector are located at subauroral latitude Φ~57°. The westward electrojet (WE is located along the auroral oval from evening through night to the morning sector and adjoins to the polar electrojet (PE located at cusp latitudes in the dayside sector. The integrated values of the eastward (westward equivalent ionospheric current during the intense substorm are ~0.5 MA (~1.5 MA, whereas they are 0.7 MA (3.0 MA during the storm main phase maximum. The latitudes of auroral particle precipitation in the dusk sector are identical with those of both electrojets. The EE in the evening sector is accompanied by particle precipitation mainly from the Alfvén layer but also from the near-Earth part of the central plasma sheet. In the lower-latitude part of the EE the field-aligned currents (FACs flow into the ionosphere (Region 2 FAC, and at its higher-latitude part the FACs flow out of the ionosphere (Region 1 FAC. During intense disturbances, in addition to the Region 2 FAC and the Region 1 FAC, a Region 3 FAC with the downward current was identified. This FAC is accompanied by diffuse

  11. Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2009-05-01

    Full Text Available Results pertaining to the response of the equatorial and low latitude ionosphere to a major geomagnetic storm that occurred on 15 May 2005 are presented. These results are also the first from the Indian zone in terms of (i GPS derived total electron content (TEC variations following the storm (ii Local low latitude electrodynamics response to penetration of high latitude convection electric field (iii effect of storm induced traveling atmospheric disturbances (TAD's on GPS-TEC in equatorial ionization anomaly (EIA zone. Data set comprising of ionospheric TEC obtained from GPS measurements, ionograms from an EIA zone station, New Delhi (Geog. Lat. 28.42° N, Geog. Long. 77.21° E, ground based magnetometers in equatorial and low latitude stations and solar wind data obtained from Advanced Composition Explorer (ACE has been used in the present study. GPS receivers located at Udaipur (Geog. Lat. 24.73° N, Geog. Long. 73.73° E and Hyderabad (Geog. Lat. 17.33° N, Geog. Long. 78.47° E have been used for wider spatial coverage in the Indian zone. Storm induced features in vertical TEC (VTEC have been obtained comparing them with the mean VTEC of quiet days. Variations in solar wind parameters, as obtained from ACE and in the SYM-H index, indicate that the storm commenced on 15 May 2005 at 02:39 UT. The main phase of the storm commenced at 06:00 UT on 15 May with a sudden southward turning of the Z-component of interplanetary magnetic field (IMF-Bz and subsequent decrease in SYM-H index. The dawn-to-dusk convection electric field of high latitude origin penetrated to low and equatorial latitudes simultaneously as corroborated by the magnetometer data from the Indian zone. Subsequent northward turning of the IMF-Bz, and the penetration of the dusk-to-dawn electric field over the dip equator is also discernible. Response of the low latitude ionosphere to this storm may be characterized in terms of (i enhanced background level of VTEC as compared to

  12. Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2009-05-01

    Full Text Available Results pertaining to the response of the equatorial and low latitude ionosphere to a major geomagnetic storm that occurred on 15 May 2005 are presented. These results are also the first from the Indian zone in terms of (i GPS derived total electron content (TEC variations following the storm (ii Local low latitude electrodynamics response to penetration of high latitude convection electric field (iii effect of storm induced traveling atmospheric disturbances (TAD's on GPS-TEC in equatorial ionization anomaly (EIA zone.

    Data set comprising of ionospheric TEC obtained from GPS measurements, ionograms from an EIA zone station, New Delhi (Geog. Lat. 28.42° N, Geog. Long. 77.21° E, ground based magnetometers in equatorial and low latitude stations and solar wind data obtained from Advanced Composition Explorer (ACE has been used in the present study. GPS receivers located at Udaipur (Geog. Lat. 24.73° N, Geog. Long. 73.73° E and Hyderabad (Geog. Lat. 17.33° N, Geog. Long. 78.47° E have been used for wider spatial coverage in the Indian zone. Storm induced features in vertical TEC (VTEC have been obtained comparing them with the mean VTEC of quiet days. Variations in solar wind parameters, as obtained from ACE and in the SYM-H index, indicate that the storm commenced on 15 May 2005 at 02:39 UT. The main phase of the storm commenced at 06:00 UT on 15 May with a sudden southward turning of the Z-component of interplanetary magnetic field (IMF-Bz and subsequent decrease in SYM-H index. The dawn-to-dusk convection electric field of high latitude origin penetrated to low and equatorial latitudes simultaneously as corroborated by the magnetometer data from the Indian zone. Subsequent northward turning of the IMF-Bz, and the penetration of the dusk-to-dawn electric field over the dip equator is also discernible. Response of the low latitude ionosphere to this storm may be characterized in terms of (i

  13. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    Science.gov (United States)

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  14. The Effect of Ramadan Fasting on Thyroid Hormones in 9‐13 Years Old Pre‐Menarche Girls

    Directory of Open Access Journals (Sweden)

    Shohereh Bahrayni

    2013-11-01

    Full Text Available Introduction: Muslims fast from dawn to dusk during Ramadan. The effects of prolonged food deprivation on endocrine hormones have been studied in healthy adults but no previous study has investigated this effect on children. This study aimed to evaluate the feasible changes in serum level of thyroxin (T3, tetraiodothyronin (T4, thyroid stimulating hormone (TSH and body composition in pre-menarche girls. Methods: This cohort study was performed through Ramadan 2012. We enrolled fifty-eight 9-13years old girls (weight 34.20±7.96 kg, height 142.01±7.76 cm in two groups from (31 and 27 in fasted and non-fasted groups, respectively prior to Ramadan until afterwards. Weight and height of the subjects were measured using standard methods, and then Body Mass Index (BMI was calculated. Body composition was measured using Bio Impedance Analyzer (BIA method. Serum concentrations of T3, T4 and TSH hormones were measured by Radio Immunoassay (RIA. Paired t-test was used to compare result of each group before and after Ramadan. Independent t-test was used to compare two groups together. Tanner intervention variable was controlled by generalized linear models intervening test. SPSS.11 software was used for data analysis. Results: Ramadan fasting induces a significant decrease in BMI and weight on fasted group (p=0.005, p=0.044, respectively while a significant increase was observed in non-fasted group (p<0.001. Although, T3 decreased significantly by fasting (p<0.001, it remained in the normal range. Hence, T4 decreased and TSH increased slightly in both groups. Conclusions: According to our findings, despite a significant reduction of T3 in fasting group, variation in thyroid hormones level remained in the normal range during Ramadan fasting.

  15. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  16. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2000-12-01

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  17. Attraction and consumption of methyl eugenol by male Bactrocera umbrosa Fabricius (Diptera: Tephritidae) promotes conspecific sexual communication and mating performance.

    Science.gov (United States)

    Wee, S L; Abdul Munir, M Z; Hee, A K W

    2018-02-01

    The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.

  18. Growth rate correlates negatively with protein turnover in Arabidopsis accessions.

    Science.gov (United States)

    Ishihara, Hirofumi; Moraes, Thiago Alexandre; Pyl, Eva-Theresa; Schulze, Waltraud X; Obata, Toshihiro; Scheffel, André; Fernie, Alisdair R; Sulpice, Ronan; Stitt, Mark

    2017-08-01

    Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO 2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day -1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    Science.gov (United States)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  20. Advancements in bait technology to control Glossina swynnertoni Austen, the species of limited distribution in Kenya and Tanzania border: A review.

    Science.gov (United States)

    Nagagi, Yakob P; Silayo, Richard S; Kweka, Eliningaya J

    2017-01-01

    Glossina swynnertoni is a savannah tsetse that is largely confined to the Serengeti-Mara [a very small part of East Africa covering northern Tanzania (Arusha and Manyara regions and parts of Shinyanga and Mara regions) extending Maasai Mara ecosystem in southwestern Kenya]. Nevertheless, it is of great concern to human and animal health and is one of the top target tsetse species for eradication. To achieve this eradication objective, it is important to know about its behaviour so that the appropriate tools/measures especially the right traps can be applied against it. In this paper G. swynnertoni is reviewed in terms of its behaviour, and development of traps for its survey and control. Glossina swynnertoni control is of paramount importance in Tanzania tourism industry and country's income. Since, G. swynnertoni is also distributed in national parks, control is vital as it might reduce tourists excursion/movement, by transmitting the African trypanosomiasis among travelers. Different literature search engines such as Google Scholar and PubMed were deployed for literature search. It was found that the behaviour of G. swynnertoni is relatively similar but unique from other tsetse flies. Its feeding cycle is 2½-3 days as opposed to 3-4 days observed in other tsetse species. The flight activity pattern varied between sex, with male having their peak at 1100-1200 hrs and females 1400-1600 hrs. The activity in both sexes decline rapidly towards the dusk (1700-1800 hrs). It was further that host odours, relatively smaller and vertically oriented devices, as well as host movement are the main attractive factors to this tsetse species, which can be exploited to design efficient artificial devices for control of G. swynnertoni . Therefore, due to its restricted distribution and threat it poses on tourism industry, deliberate efforts need to be made against G. swynnertoni as a next candidate to be eradicated using artificial bait technology.

  1. Restricted temporal access to food and anorexia in mice: Microstructure of eating within feeding opportunities.

    Science.gov (United States)

    Rowland, Neil E; Cervantez, Melissa; Robertson, Kimberly L

    2016-01-01

    Intake and body weight were recorded in a closed economy as male and female C57BL/6 mice progressed through either fixed interval (FI) or fixed unit price (FUP) schedules of cost for 20-mg food pellets. Access to food was constrained to four 40 min food opportunities (FOs) per day, spaced 4-h apart through the dark phase. Nose poke responses and pellet deliveries were collected at 10-s resolution to allow pellet-by-pellet analysis. In the FI protocol, mice maintained adequate food intake and body weight through the study, even though at the highest FI (50-s) they spent the entire 40-min FOs engaged in eating at or near the maximum rate allowed by the schedule. In the FUP protocol, mice greatly reduced their intake and lost weight at the highest FUP (50 responses/pellet). The analysis of response and pellet distributions showed these mice were not filling the FOs with responding and ate less at dusk (FO #1) and dawn (FO #4) than at FOs #2 and 3 in the middle of the night. The principal, and unexpected, sex difference was that females tended to eat more than males despite lower body weight, but behavioral changes as a function of feeding cost or schedule were qualitatively similar in both sexes. These results show that slow eating as imposed by an FI is not sufficient to produce hypophagia and, in the FUP protocol, hypophagia cannot be explained by slowed eating due to response requirements. We discuss the role of effort or time in FUP-induced anorexia, and suggest this murine model may emulate some aspects of human anorexia nervosa better than current activity-based protocols. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Behaviour of captive Ostrich chicks from 10 days to 5 months of age

    Directory of Open Access Journals (Sweden)

    Marina Freire Amado

    2011-07-01

    Full Text Available The behaviour of ostrich chicks bred in captivity was studied by using groups with 30 birds in five age groups: from 10 to 40 days of age; from 41 to 60 days of age; from 61 to 90 days of age; from 91 to 120 days of age and from 121 to 150 days of age. Six birds at each age were ringed around one of their feet and observed for four consecutive days for eight hours daily in three periods (in the morning, at noon and in the afternoon, following the "one-zero" method for sampling. The order for observation of behaviour of the six selected birds was performed randomly at every thirty minutes, totalling 16 periods or 80 minutes/bird/day. Fourteen types of behaviour were observed. There were differences among ages for behaviour like standing, walking, running, ingesting stones, ingesting feces, picking and attacking. Non-parametric-tests were used to analyse the behaviour according to age of the bird and to the periods of the day. There was a statistical difference between in the morning and at noon periods on behaviours standing, walking, eating ration and in litophagia, which were observed more frequently at the first hours of the day. When periods of the morning and afternoon were compared, the birds' age had a significant effect on behaviour sand bathing. When the periods noon/afternoon were compared, the behaviours which presented significant differences were walking, running, drinking water, eating ration, litophagia, coprophagia, dancing, sand bathing, whose occurrence was the highest during dusk. It was observed that the behaviour of young ostriches diverge according to the age and to day period.

  3. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Thomas Schendzielorz

    Full Text Available The biogenic amine octopamine (OA mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50 for activation of the OA-receptor decreased during the moth's activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.

  4. Knowledge, attitudes and practices of business travelers regarding malaria risk and prevention.

    Science.gov (United States)

    Weber, Roger; Schlagenhauf, Patricia; Amsler, Lorenz; Steffen, Robert

    2003-01-01

    This study aimed to determine the knowledge, attitudes and practices of Swiss business travelers with regard to malaria. Questionnaires printed in three languages were distributed by employers, travel agencies and tropical medicine specialists to business travelers with destinations in malaria endemic countries. In total, 401 questionnaires were evaluated. Thirty-three percent visited high-risk areas, 27% visited low-risk areas, and 40% visited only malaria-free areas within endemic countries. Among the investigated business travelers, 6% had experienced malaria infection, and 29% had previously had blood smears tested for malaria at least once. Almost all business travelers, 95%, knew that mosquitoes are the main vectors of malaria. The infection risk between dusk and dawn was known to 71%, and the incubation time to 36%. Apart from fever (99%) and headache (63%), other malaria symptoms were known to only 13% to 36% of the travelers. If signs of illness such as fever and headache occurred, 63% would react adequately and seek medical advice within 24 h. Only 16% of the travelers to African high-risk areas followed the recommended behavior concerning anti-mosquito and antimalarial strategies; 31% of those on trips to low-risk areas used an adequate protective strategy. Of the business travelers using chemoprophylaxis during travel, just 50% continued intake post travel, as requested, after leaving the endemic area. Business travelers are well informed regarding the mode of transmission and the risk of malaria at specific destinations but tend to comply poorly with anti-mosquito and chemoprophylactic strategies. The knowledge, attitudes and practices of business travelers with regard to malaria prevention need to be improved.

  5. Evolution of Storm-time Subauroral Electric Fields: RCM Event Simulations

    Science.gov (United States)

    Sazykin, S.; Spiro, R. W.; Wolf, R. A.; Toffoletto, F.; Baker, J.; Ruohoniemi, J. M.

    2012-12-01

    Subauroral polarization streams (SAPS) are regions of strongly-enhanced westward ExB plasma drift (poleward-directed electric fields) located just equatorward of the evening auroral oval. Several recently -installed HF (coherent scatter) radars in the SuperDARN chain at mid-latitudes present a novel opportunity for obtaining two-dimensional maps of ionospheric ExB flows at F-region altitudes that span several hours of the evening and nighttime subauroral ionosphere. These new and exciting observations of SAPS provide an opportunity and a challenge to coupled magnetosphere-ionosphere models. In this paper, we use the Rice Convection Model (RCM) to simulate several events where SAPS were observed by the mid-latitude SuperDARN chain. RCM frequently predicts the occurrence of SAPS in the subauroral evening MLT sector; the mechanism is essentially current closure on the dusk side where downward Birkeland currents (associated with the ion plasma sheet inner edge) map to a region of reduced ionospheric conductance just equatorward of the diffuse auroral precipitation (associated with the electron plasma sheet inner edge). We present detailed comparisons of model-computed ionospheric convection patterns with observations, with two goals in mind: (1) to analyze to what extent the observed appearance and time evolution of SAPS structures are driven by time variations of the cross polar cap potential drop (or, equivalently, the z-component of the interplanetary magnetic field), and (2) to evaluate the ability of the model to reproduce the spatial extent and magnitude of SAPS structures.

  6. Signatures of storm sudden commencements in geomagnetic H, Y and Z fields at Indian observatories during 1958−1992

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1999-11-01

    Full Text Available The work describes an intensive study of storm sudden commencement (SSC impulses in horizontal (H, eastward (Y and vertical (Z fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of ΔH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to ΔH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The ΔZ at SSC have a positive impulse as in ΔH. The ratio of ΔZ/ΔH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of ΔZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1 resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2 due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.Key words. Interplanetary physics (interplanetary shocks · Ionosphere (equatorial ionosphere · Magnetospheric physics (storms and substorms

  7. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    2003-07-01

    Full Text Available Using ionospheric data from the SuperDARN radar network and a DMSP satellite we obtain a comprehensive description of the spatial and temporal pattern of day-side reconnection. During a period of southward interplanetary magnetic field (IMF, the data are used to determine the location of the ionospheric projection of the dayside magnetopause reconnection X-line. From the flow of plasma across the projected X-line, we derive the reconnection rate across 7 h of longitude and estimate it for the total length of the X-line footprint, which was found to be 10 h of longitude. Using the Tsyganenko 96 magnetic field model, the ionospheric data are mapped to the magnetopause, in order to provide an estimate of the extent of the reconnection X-line. This is found to be ~ 38 RE in extent, spanning the whole dayside magnetopause from dawn to dusk flank. Our results are compared with previously reported encounters by the Equator-S and Geotail spacecraft with a reconnecting magnetopause, near the dawn flank, for the same period. The SuperDARN observations allow the satellite data to be set in the context of the whole magnetopause reconnection X-line. The total potential associated with dayside reconnection was ~ 150 kV. The reconnection signatures detected by the Equator-S satellite mapped to a region in the ionosphere showing continuous flow across the polar cap boundary, but the reconnection rate was variable and showed a clear spatial variation, with a distinct minimum at 14:00 magnetic local time which was present throughout the 30-min study period.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionoshere interactions – Space plasma physics (magnetic reconnection

  8. Traffic collisions between electric mobility devices (wheelchairs) and motor vehicles: Accidents, hubris, or self-destructive behavior?

    Science.gov (United States)

    LaBan, Myron M; Nabity, Thomas S

    2010-07-01

    This study had its genesis in a personally observed collision between a motor vehicle and a motorized wheelchair (electric mobility device) on a busy street in the middle of the block at an unmarked crossing. To the observer, at the time, this appeared to be a suicidal act. This investigation was initiated to both delineate the number of these crashes nationally and understand this phenomena as a potentially planned act of self-destruction. An initial survey of police reports was immediately frustrated by an inability to separate motor vehicle and electric mobility device collisions from the much larger group that involved ambulatory citizens because both types were classified together as "pedestrian" accidents. Instead, the search engine NexisLexis was used to identify 107 newspaper articles each of which described a motor vehicle and electric mobility device accident. In the motor vehicle and electric mobility device collisions, men predominated women (3:1 ratio) with an average age of 56 yrs. Sixty of these accidents were fatal. Ninety-four percent involved an electric mobility device and 6% a manual wheelchair. In 50% of the cases, the motor vehicle was a truck, van, or sport utility vehicle. Fifty percent occurred at dusk or dawn or at night. The electric mobility device occupant was cited as the guilty party in 39% of the cases and the driver of the motor vehicle in 27%. Twenty percent were unwitnessed hit-and-run accidents, whereas "no fault" was found in 8% of the cases. Although many accidents do happen by chance, when an electric mobility device operator openly challenges busy traffic by attempting to traverse it in the middle of the block at an unmarked crossing, predisposing psychosocial factors must also be considered. Hubris or premeditated self-destructive behavior or both need to be explored as preeminent issues with reference to the prodromal of the "accident process."

  9. Ionization and electric field properties of auroral arcs during magnetic quiescence

    International Nuclear Information System (INIS)

    Robinson, R.M.; Mende, S.B.

    1990-01-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm 2 s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern

  10. Diagnosing low earth orbit satellite anomalies using NOAA-15 electron data associated with geomagnetic perturbations

    Science.gov (United States)

    Ahmad, Nizam; Herdiwijaya, Dhani; Djamaluddin, Thomas; Usui, Hideyuki; Miyake, Yohei

    2018-05-01

    A satellite placed in space is constantly affected by the space environment, resulting in various impacts from temporary faults to permanent failures depending on factors such as satellite orbit, solar and geomagnetic activities, satellite local time, and satellite construction material. Anomaly events commonly occur during periods of high geomagnetic activity that also trigger plasma variation in the low Earth orbit (LEO) environment. In this study, we diagnosed anomalies in LEO satellites using electron data from the Medium Energy Proton and Electron Detector onboard the National Oceanic and Atmospheric Administration (NOAA)-15 satellite. In addition, we analyzed the fluctuation of electron flux in association with geomagnetic disturbances 3 days before and after the anomaly day. We selected 20 LEO anomaly cases registered in the Satellite News Digest database for the years 2000-2008. Satellite local time, an important parameter for anomaly diagnosis, was determined using propagated two-line element data in the SGP4 simplified general perturbation model to calculate the longitude of the ascending node of the satellite through the position and velocity vectors. The results showed that the majority of LEO satellite anomalies are linked to low-energy electron fluxes of 30-100 keV and magnetic perturbations that had a higher correlation coefficient ( 90%) on the day of the anomaly. The mean local time calculation for the anomaly day with respect to the nighttime migration of energetic electrons revealed that the majority of anomalies (65%) occurred on the night side of Earth during the dusk-to-dawn sector of magnetic local time.

  11. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    Science.gov (United States)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  12. Improving Night Time Driving Safety Using Vision-Based Classification Techniques.

    Science.gov (United States)

    Chien, Jong-Chih; Chen, Yong-Sheng; Lee, Jiann-Der

    2017-09-24

    The risks involved in nighttime driving include drowsy drivers and dangerous vehicles. Prominent among the more dangerous vehicles around at night are the larger vehicles which are usually moving faster at night on a highway. In addition, the risk level of driving around larger vehicles rises significantly when the driver's attention becomes distracted, even for a short period of time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two components work separately for the single purpose of alerting the driver in dangerous situations. The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful state to receive and process warnings; this is the driver drowsiness detection component. The driver drowsiness detection component uses infrared images of the driver to analyze his eyes' movements using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver's eyes show distraction and are closed for a longer than usual duration. Experimental results show that this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable to previous results using more sophisticated methods. The purpose of the second component is to alert the driver when the driver's vehicle is moving around larger vehicles at dusk or night time. The large vehicle detection component accepts images from a regular video driving recorder as input. A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features classifier, is proposed to avoid false negatives. In both components, we propose an improved version of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments were performed to test the effects of the MSR and each classifier, and the results are presented in experimental results section

  13. Disentangling woodland caribou movements in response to clearcuts and roads across temporal scales.

    Directory of Open Access Journals (Sweden)

    David Beauchesne

    Full Text Available Although prey species typically respond to the most limiting factors at coarse spatiotemporal scales while addressing biological requirements at finer scales, such behaviour may become challenging for species inhabiting human altered landscapes. We investigated how woodland caribou, a threatened species inhabiting North-American boreal forests, modified their fine-scale movements when confronted with forest management features (i.e. clearcuts and roads. We used GPS telemetry data collected between 2004 and 2010 on 49 female caribou in a managed area in Québec, Canada. Movements were studied using a use--availability design contrasting observed steps (i.e. line connecting two consecutive locations with random steps (i.e. proxy of immediate habitat availability. Although caribou mostly avoided disturbances, individuals nonetheless modulated their fine-scale response to disturbances on a daily and annual basis, potentially compromising between risk avoidance in periods of higher vulnerability (i.e. calving, early and late winter during the day and foraging activities in periods of higher energy requirements (i.e. spring, summer and rut during dusk/dawn and at night. The local context in which females moved was shown to influence their decision to cross clearcut edges and roads. Indeed, although females typically avoided crossing clearcut edges and roads at low densities, crossing rates were found to rapidly increase in greater disturbance densities. In some instance, however, females were less likely to cross edges and roads as densities increased. Females may then be trapped and forced to use disturbed habitats, known to be associated with higher predation risk. We believe that further increases in anthropogenic disturbances could exacerbate such behavioural responses and ultimately lead to population level consequences.

  14. It's like night and day: Diel net-effects on Cercopagidae densities in the Laurentian Great Lakes

    Science.gov (United States)

    Armenio, Patricia M.; Bunnell, David B.; Adams, Jean V.; Watson, Nicole M.; Woelmer, Whitney

    2017-01-01

    In the Laurentian Great Lakes, zooplankters are often sampled using standard ≤153 μm mesh nets without regard to the time of day they are collected. We sampled Cercopagidae during 2013–2014 in northern Lake Huron during day, dusk, and night using two different nets (a 0.5 m wide 153 μm mesh “standard” net and a 0.75 m wide 285 μm mesh “Bythotrephes” net) to determine if there were any differences in their sampled densities. Bythotrephes densities with the standard net were approximately 2.07-fold greater when captured at night than during the day. No time of day bias occurred with the Bythotrephes net. Nighttime Bythotrephes densities did not differ between the two net types. Cercopagis densities did not vary with net type or the time of day in this study, but future work should revisit this result given our low sample size and the low occurrence of Cercopagis in Lake Huron. To reduce bias and calculate accurate density estimates, Cercopagidae should be sampled at night if using a standard net or any time of day with the Bythotrephes net. Given the large impact of invasive predatory cladocerans Bythotrephes longimanus and Cercopagis pengoi on food webs since their invasion in the Laurentian Great Lakes in the 1980s, proper estimation of their densities is essential.

  15. Inductive electric fields in the magnetotail and their relation to auroral and substorm phenomena

    International Nuclear Information System (INIS)

    Pellinen, R.J.; Heikkila, W.J.

    1982-11-01

    The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly distrubed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale elctrostatic field directed from dawn to dusk over the magentotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudical energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field. An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area wiht dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge

  16. Pc 4-5 pulsations in the electric field at geostationary orbit (GEOS 2) triggered by sudden storm commencements

    International Nuclear Information System (INIS)

    Laakso, H.; Schmidt, R.

    1989-01-01

    A frequently observed feature in the electric field data on board GEOS 2 is the sudden occurrence of large-amplitude Pc 4-5 waves lasting from a few tens of minutes up to a few hours. For the events the authors have chosen it was found that the large-amplitude events (≥ 2 mV/m) are often accompanied by magnetic field data containing the signature of a compression of the magnetosphere. The occurrence of the compression coincides with the recording of an ssc (sudden storm commencement) on ground. The dc electric field measurements suggest that the Ex B/B 2 drift rapidly and temporarily rotates into a tailward plasma drift at 6.6 R E . The transient disturbances of the magnetopause also changed the widely scattered frequency distribution of the nearly always present fluctuations in the Pc 4-5 range into a narrow-band distribution, with frequently large amplitudes, after the occurrence of the ssc. The frequency distribution reveals a weak dependence on the local time such that the frequencies are close to 4 mHz near noon and abut 3 mHz near dawn and dusk. The rotational sense of polarization is left-handed between 0200 and 1200 LT and right-handed between 1400 and 2200 LT; a transition region exists between 1200 and 1400 LT. The authors argue that the transverse waves are the fundamental modes of the field line resonances while the compressional modes might be the fundamental modes and the second harmonics of the cavity resonances or the plasmasphere modes

  17. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    International Nuclear Information System (INIS)

    Fraser, B.J.; Samson, J.C.; Hu, Y.D.; McPherron, R.L.; Russell, C.T.

    1992-01-01

    Pc 2 electromagnetic ion cyclotron waves at 0.1 waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE 1 and 2 between L = 7.6 and 5.8 on an inbound near-equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ∼ 1.5 R E and penetrated ∼1 R E into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He + and the warm (0.1-16 keV/e) O + and He + heavy ion populations. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities (E x B)/B 2 were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Poynting fluxes calculated during the first 15 min of the event show wave energy propagation directions both parallel and antiparallel to the field. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event may be attributed to the modulation of this energy source by the Pc 5 waves seen at the same time. Overall, the results are considered an example of an electromagnetic ion cyclotron wave-particle interaction occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase

  18. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

    2012-09-01

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

  19. Dynamics of Ring Current and Electric Fields in the Inner Magnetosphere During Disturbed Periods: CRCM-BATS-R-US Coupled Model

    Science.gov (United States)

    Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.

    2010-01-01

    We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.

  20. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    Science.gov (United States)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  1. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2006-12-01

    Full Text Available At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003. At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a

  2. Validation of the stream function method used for reconstruction of experimental ionospheric convection patterns

    Directory of Open Access Journals (Sweden)

    P.L. Israelevich

    Full Text Available In this study we test a stream function method suggested by Israelevich and Ershkovich for instantaneous reconstruction of global, high-latitude ionospheric convection patterns from a limited set of experimental observations, namely, from the electric field or ion drift velocity vector measurements taken along two polar satellite orbits only. These two satellite passes subdivide the polar cap into several adjacent areas. Measured electric fields or ion drifts can be considered as boundary conditions (together with the zero electric potential condition at the low-latitude boundary for those areas, and the entire ionospheric convection pattern can be reconstructed as a solution of the boundary value problem for the stream function without any preliminary information on ionospheric conductivities. In order to validate the stream function method, we utilized the IZMIRAN electrodynamic model (IZMEM recently calibrated by the DMSP ionospheric electrostatic potential observations. For the sake of simplicity, we took the modeled electric fields along the noon-midnight and dawn-dusk meridians as the boundary conditions. Then, the solution(s of the boundary value problem (i.e., a reconstructed potential distribution over the entire polar region is compared with the original IZMEM/DMSP electric potential distribution(s, as well as with the various cross cuts of the polar cap. It is found that reconstructed convection patterns are in good agreement with the original modelled patterns in both the northern and southern polar caps. The analysis is carried out for the winter and summer conditions, as well as for a number of configurations of the interplanetary magnetic field.

    Key words: Ionosphere (electric fields and currents; plasma convection; modelling and forecasting

  3. Magnetospheric magnetic field modelling for the 2011 and 2012 HST Saturn aurora campaigns – implications for auroral source regions

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2014-06-01

    Full Text Available A unique set of images of Saturn's northern polar UV aurora was obtained by the Hubble Space Telescope in 2011 and 2012 at times when the Cassini spacecraft was located in the solar wind just upstream of Saturn's bow shock. This rare situation provides an opportunity to use the Kronian paraboloid magnetic field model to examine source locations of the bright auroral features by mapping them along field lines into the magnetosphere, taking account of the interplanetary magnetic field (IMF measured near simultaneously by Cassini. It is found that the persistent dawn arc maps to closed field lines in the dawn to noon sector, with an equatorward edge generally located in the inner part of the ring current, typically at ~ 7 Saturn radii (RS near dawn, and a poleward edge that maps variously between the centre of the ring current and beyond its outer edge at ~ 15 RS, depending on the latitudinal width of the arc. This location, together with a lack of response in properties to the concurrent IMF, suggests a principal connection with ring-current and nightside processes. The higher-latitude patchy auroras observed intermittently near to noon and at later local times extending towards dusk are instead found to straddle the model open–closed field boundary, thus mapping along field lines to the dayside outer magnetosphere and magnetopause. These emissions, which occur preferentially for northward IMF directions, are thus likely associated with reconnection and open-flux production at the magnetopause. One image for southward IMF also exhibits a prominent patch of very high latitude emissions extending poleward of patchy dawn arc emissions in the pre-noon sector. This is found to lie centrally within the region of open model field lines, suggesting an origin in the current system associated with lobe reconnection, similar to that observed in the terrestrial magnetosphere for northward IMF.

  4. Protection from solar ultraviolet radiation by clothing

    Energy Technology Data Exchange (ETDEWEB)

    Pailthorpe, M. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    The recently published Australia/New Zealand Standard AS/NZS 4399: l996 `Sun Protective Clothing - Evaluation and Classification` specifies an in vitro spectrophotometric method for the measurement of the ultraviolet (WR) transmission of textiles. Ultraviolet Protection Factors (UPF) are then calculated by convolving the UVR transmission data with standard CIE erythemal response data and ARL solar irradiance data. At the present time the scope of the standard is limited to loose fitting dry clothing. Virtually every textile parameter has an influence on the UPF of the finished garment and hence on the protection afforded to skin from the harmful effects of solar UVR radiation. Textile parameters such as fibre type, the method of spinning the yarn, fabric structure, cover factor, colorant, UVR absorbers and finishing methods determine the UPF of the fabric and hence must be controlled from batch to batch. Since garments generally shrink when washed, multiple wearing and washing cycles usually cause an increase in fabric UPF. Adventitious soiling of fabrics and the absorption of certain components of domestic laundry formulations, e g fluorescent whitening agents, increase fabric UPF ratings. Garments with a high degree of elasticity, e g nylon/lycra sportswear, that are stretched on to fit, will obviously have lower UPFs when stretched than when relaxed. In general fabrics worn in a wet state provide lower protection than when worn dry. On Australia`s most extreme summer day it has been estimated that there are 30 MEDs (minimal erythemal doses) in a dawn to dusk exposure. Thus outdoor workers should be provided with UPF 30 clothing, or better. Results from recent experiments using SK-II hairless mice dressed in UPF 50 `sunsuits` have shown that the mice developed no sun induced skin cancers on the skin areas protected by the UPF 50 fabric whereas multiple tumours developed on the unprotected skin.

  5. Snapping shrimp sound production patterns on Caribbean coral reefs: relationships with celestial cycles and environmental variables

    Science.gov (United States)

    Lillis, Ashlee; Mooney, T. Aran

    2018-06-01

    The rich acoustic environment of coral reefs, including the sounds of a variety of fish and invertebrates, is a reflection of the structural complexity and biological diversity of these habitats. Emerging interest in applying passive acoustic monitoring and soundscape analysis to measure coral reef habitat characteristics and track ecological patterns is hindered by a poor understanding of the most common and abundant sound producers on reefs—the snapping shrimp. Here, we sought to address several basic biophysical drivers of reef sound by investigating acoustic activity patterns of snapping shrimp populations on two adjacent coral reefs using a detailed snap detection analysis routine to a high-resolution 2.5-month acoustic dataset from the US Virgin Islands. The reefs exhibited strong diel and lunar periodicity in snap rates and clear spatial differences in snapping levels. Snap rates peaked at dawn and dusk and were higher overall during daytime versus nighttime, a seldom-reported pattern in earlier descriptions of diel snapping shrimp acoustic activity. Small differences between the sites in snap rate rhythms were detected and illustrate how analyses of specific soundscape elements might reveal subtle between-reef variation. Snap rates were highly correlated with environmental variables, including water temperature and light, and were found to be sensitive to changes in oceanographic forcing. This study further establishes snapping shrimp as key players in the coral reef chorus and provides evidence that their acoustic output reflects a combination of environmental conditions, celestial influences, and spatial habitat variation. Effective application of passive acoustic monitoring in coral reef habitats using snap rates or snapping-influenced acoustic metrics will require a mechanistic understanding of the underlying spatial and temporal variation in snapping shrimp sound production across multiple scales.

  6. Mercury's Solar Wind Interaction as Characterized by Magnetospheric Plasma Mantle Observations With MESSENGER

    Science.gov (United States)

    Jasinski, Jamie M.; Slavin, James A.; Raines, Jim M.; DiBraccio, Gina A.

    2017-12-01

    We analyze 94 traversals of Mercury's southern magnetospheric plasma mantle using data from the MESSENGER spacecraft. The mean and median proton number densities in the mantle are 1.5 and 1.3 cm-3, respectively. For sodium number density these values are 0.004 and 0.002 cm-3. Moderately higher densities are observed on the magnetospheric dusk side. The mantle supplies up to 1.5 × 108 cm-2 s-1 and 0.8 × 108 cm-2 s-1 of proton and sodium flux to the plasma sheet, respectively. We estimate the cross-electric magnetospheric potential from each observation and find a mean of 19 kV (standard deviation of 16 kV) and a median of 13 kV. This is an important result as it is lower than previous estimations and shows that Mercury's magnetosphere is at times not as highly driven by the solar wind as previously thought. Our values are comparable to the estimations for the ice giant planets, Uranus and Neptune, but lower than Earth. The estimated potentials do have a very large range of values (1-74 kV), showing that Mercury's magnetosphere is highly dynamic. A correlation of the potential is found to the interplanetary magnetic field (IMF) magnitude, supporting evidence that dayside magnetic reconnection can occur at all shear angles at Mercury. But we also see that Mercury has an Earth-like magnetospheric response, favoring -BZ IMF orientation. We find evidence that -BX orientations in the IMF favor the southern cusp and southern mantle. This is in agreement with telescopic observations of exospheric emission, but in disagreement with modeling.

  7. Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-04-01

    Full Text Available We study what effect a possible surface conductivity of Mercury has on the closure of magnetospheric currents by making six runs with a quasi-neutral hybrid simulation. The runs are otherwise identical but use different synthetic conductivity models: run 1 has a fully conducting planet, run 2 has a poorly conducting planet ( $sigma{=}10^{-8} Omega^{-1}$ m$^{-1}$ and runs 3-6 have one of the hemispheres either in the dawn-dusk or day-night directions, conducting well, the other one being conducting poorly. Although the surface conductivity is not known from observations, educated guesses easily give such conductivity values that magnetospheric currents may close partly within the planet, and as the conductivity depends heavily on the mineral composition of the surface, the possibility of significant horizontal variations cannot be easily excluded. The simulation results show that strong horizontal variations may produce modest magnetospheric asymmetries. Beyond the hybrid simulation, we also briefly discuss the possibility that in the nightside there may be a lack of surface electrons to carry downward current, which may act as a further source of surface-related magnetospheric asymmetry.

    Key words. Magnetospheric physics (planetary magnetospheres; current systems; solar wind-magnetosphere interactions.6

  8. Niche expansion, body size, and survival in Galápagos marine iguanas.

    Science.gov (United States)

    Wikelski, M; Wrege, Peter H

    2000-07-01

    Foraging theory predicts that dietary niche breadth should expand as resource availability decreases. However, Galápagos marine iguanas often die during algae shortages (El Niños) although land plants abound where they rest and reproduce. On Seymour Norte island, a subpopulation of iguanas exhibited unique foraging behavior: they consistently included the succulent beach plant B. maritima in their diet. We investigated the consequences of land-plant feeding for body size and survival. Batis-eaters supplemented their algae diet both before and after intertidal zone foraging, and more Batis was eaten during tides unfavorable for intertidal zone foraging (dawn and dusk). Larger, energy-constrained iguanas fed more on land than did smaller animals. Compared to intertidal zone algae, Batis was 39% lower in caloric content (1.6 vs. 2.6 kcal g -1 dry mass), 56% lower in protein (8.3 vs. 18.9% dry mass) and 57% lower in nitrogen (1.3 vs. 3.0% dry mass). In spite of its lower nutrient value, iguanas that supplemented their diet with this plant were able to attain nearly twice the body size of other iguanas on the island. Age estimates indicate that many Batis-eaters survived repeated El Niño episodes during which animals of their relative size-class experienced high mortality on other islands. The larger animals were, however, completely dependent upon this supplementary source of food to maintain condition, and all perished in the 1997-1998 El Niño when high tides inundated and killed Batis on Seymour Norte Island. We hypothesize that Batis feeding developed as a local foraging tradition, and that dietary conservatism and strong foraging site fidelity explain why the inclusion of land plants in the diet has been observed in only a single population. Ultimately, a unique algae-adapted hindgut morphology and physiology may limit a switch from marine to terrestrial diet.

  9. Is there an endogenous tidal foraging rhythm in marine iguanas?

    Science.gov (United States)

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  10. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  11. Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989

    International Nuclear Information System (INIS)

    Greenspan, M.E.; Rasmussen, C.E.; Burke, W.J.; Abdu, M.A.

    1991-01-01

    Early on March 14, 1989, a thermal plasma probe on the Defense Meteorological Satellite Program (DMSP) F9 spacecraft detected extensive and dramatic decreases in the ion density at 840 km, near 2130 LT, during two consecutive transequatorial passes over South America. The order of magnitude decreases in the ion density extended more than 4,000 km along the satellite track. The depletions were accompanied by upward and westward plasma drifts, both in excess of 100 m/s. Their onsets and terminations were marked by extremely sharp density gradients. A partial depletion was detected over the eastern Pacific during the following orbit. The DMSP F9 ground track passed slightly west of a Brazilian total electron content (TEC) station and two Brazilian ionosondes during the first depletion encounter. The TEC fell far below normal during the night of March 13-14. The ionosonde measurements indicate that, in the hour after sunset, before DMSP passed through the depletions, the F 2 layer rose rapidly and disappeared, but at the time of the first depletion encounter, h m F 2 was decreasing over one of the stations. The authors develop a phenomenological model reconciling DMSP F8, F9 and ground-based measurements. The calculations show that rapid upward drifts sustained for several hours can produce depletions in the equatorial ion density with sharp gradients at their high-latitude boundaries, consistent with the data. They discuss possible contributing mechanisms for generating these upward drifts. These include direct penetration of the magnetospheric electric field to low latitudes, the electric fields generated by the disturbance dynamo, and the effects of conductivity gradients near the dusk terminator and the South Atlantic anomaly

  12. Comparison of foE and M(3000)F2 variability at Ibadan, Singapore and Slough

    Science.gov (United States)

    Somoye, E. O.; Onori, E. O.; Akala, A. O.

    2013-01-01

    The variability, VR, of critical frequency of E-layer, foE, and ionospheric propagation factor, M(3000)F2 at Ibadan (7.4°N, 3.9°E, 6°S dip) is investigated for local time, seasonal and solar cycle variations. Latitudinal influence of these characteristics is sought by comparison with foE VR and M(3000)F2 VR of Slough ( 51.5°N, 359.4°E, 66.5°N dip) in the European sector, and Singapore (1.3°N,103.8°E, 17.6°S dip) in the Asian sector. While the pattern of foE VR is similar to those of other F2 characteristics with characteristic peaks around dawn and dusk, M(3000)F2 VR shows no clear diurnal trend.A lower bound of foE VR is usually 3% while the maximum VR ranges between 8% and13% at post-sunrise and pre-sunset hours at all the epochs, M(3000)F2 VR is however lower during MSA (about 9%) than during LSA and HSA when it is 4% to about 12-14%. Generally, daytime M(3000)F2 VR is greater than that of foE VR by between 5% and 10%. Furthermore, no latitudinal difference is observed in both characteristics during both HSA and MSA. While nighttime M(3000)F2 VR is about half that of nighttime foF2 VR (the critical frequency of F2-layer ) VR, daytime VR of both characteristics are about equal during the three epochs at Ibadan. For Slough, nighttime M(3000)F2 VR and nighttime foF2 VR as well as the daytime VR of both characteristics are about equal. This difference is most likely due to latitudinal effect.

  13. The Harang reversal and the interchange stability of the magnetotail

    Science.gov (United States)

    Ohtani, Shinichi; Gkioulidou, Matina; Wang, Chih-Ping; Wolf, Richard A.

    2016-04-01

    The present study addresses steady convection in the plasma sheet in terms of the interchange stability with special attention to the Harang reversal. The closure of the tail current with a field-aligned current (FAC) results from the divergence/convergence of the pressure gradient current. If the magnetotail is in a steady state, the associated change of local plasma pressure p has to balance with its advective change. Accordingly, for adiabatic transport, the flux tube entropy parameter pVγ increases and decreases along the convection path in regions corresponding to downward and upward FACs, respectively. This requirement, along with the condition for the interchange stability imposes an important constraint on the direction of convection especially in the regions of downward FACs. It is deduced that for the dusk cell, the convection in the downward R2 current has to be directed azimuthally duskward, which follows the sunward, possibly dawnward deflected, convection in the region of the premidnight upward R1 current. This duskward turn of convection takes place in the vicinity of the R1-R2 demarcation, and it presumably corresponds to the Harang reversal. For the dawn cell the convection in the postmidnight downward R1 current has to deflect dawnward, and then it proceeds sunward in the upward R2 current. The continuity of the associated ionospheric currents consistently reproduces the assumed FAC distribution. The proposed interrelationships between the convection and FACs are also verified with a quasi-steady plasma sheet configuration and convection reproduced by a modified Rice Convection Model with force balance.

  14. Comparisons of Simulated and Observed Sub-Auroral Polarization Stream (SAPS) during the 17 March 2013 Storm

    Science.gov (United States)

    Chen, M.; Lemon, C.; Sazykin, S. Y.; Wolf, R.; Anderson, P. C.

    2016-12-01

    Sub-Auroral Polarization Streams (SAPS), characterized by large subauroral E x B velocities that span from dusk to the early morning sector for high magnetic activity, result from strong magnetosphere-ionosphere coupling. We investigate how electron and ion precipitation and the ionospheric conductance affect the simulated development of the SAPS electric field for the 17 March 2013 storm. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the SAPS. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. Ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. The electron and proton contributions to the auroral conductance in the RCM-E are calculated using the empirical Robinson et al. [JGR, 1987] and Galand and Richmond [JGR, 2001] equations, respectively. The "background" ionospheric conductance is based on parameters from the International Reference Ionosphere [Bilitza and Reinisch, JASR, 2008] but modified to include the effect of specified ionospheric troughs. Parameterized simulations will aid in understanding the underlying physical process. We compare simulated precipitating particle energy flux and E x B velocities with DMSP observations where SAPS are observed during the 17 March 2013 storm. Analysis of discerpancies between the simulation results and data will aid us in assessing needed improvements in the model.

  15. Foraging behavior of Melipona rufiventris Lepeletier (Apinae; Meliponini in Ubatuba, SP, Brazil

    Directory of Open Access Journals (Sweden)

    AO. Fidalgo

    Full Text Available This study describes how the foraging activity of Melipona rufiventris is influenced by the environment and/or by the state of a colony. Two colonies were studied in Ubatuba, SP (44° 48’ W and 23° 22’ S from July/2000 to June/2001. These colonies were classified as strong (Colony 1 and intermediate (Colony 2 according to their general conditions: population and brood comb size and number of food pots. The bees were active from dawn to dusk. The number of pollen loads presented a positive correlation with relative humidity (r s = 0.401; p <0.01 and was highest between 70 and 90%. However, it was negatively correlated with temperature (r s = -0.228; p <0.01 showing a peak between 18 and 23 °C. The number of nectar loads presented a positive correlation with temperature (r s = 0.244; p <0.01 and light intensity (r s = 0.414; p <0.01; it was greater between 50 and 90% of relative humidity and 20 and 30 °C of temperature. They collected more nectar than pollen throughout the day, and were more active between 6 and 9 hours. Workers from Colony 1 (strong collected nectar in greater amounts and earlier than those from Colony 2 (intermediate. The number of pollen, nectar and resin loads varied considerably between the study days. Peaks of pollen collection occurred earlier in months with longer days and in a hotter and more humid climate. The foraging behavior of M. rufiventris is probably affected by the state of the colony and by environmental conditions, notably temperature, relative humidity, light intensity and length of the day.

  16. THEMIS satellite observations of hot flow anomalies at Earth's bow shock

    Directory of Open Access Journals (Sweden)

    C. Chu

    2017-03-01

    Full Text Available Hot flow anomalies (HFAs at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS satellite data from 2007 to 2009. The events were classified as young or mature and also as regular or spontaneous hot flow anomalies (SHFAs. The dataset has 17 young SHFAs, 49 mature SHFAs, 15 young HFAs, and 55 mature HFAs. They span a wide range of magnetic local times (MLTs from approximately 7 to 16.5 MLT. The largest ratio of solar wind to HFA core density occurred near dusk and at larger distances from the bow shock. In this study, HFAs and SHFAs were observed up to 6.3 RE and 6.1 RE (Earth radii, respectively, upstream from the model bow shock. HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs of the highest event core ion temperatures were not seen at the flanks. The ratio of HFA ion temperature increase to HFA electron temperature increase is highest around 12 MLT and slightly duskward. For SHFAs, (Tihfa∕Tisw/(Tehfa∕Tesw generally increased with distance from the bow shock. Both mature and young HFAs are more prevalent when there is an approximately radial interplanetary magnetic field. HFAs occur most preferentially for solar wind speeds from 550 to 600 km s−1. The correlation coefficient between the HFA increase in thermal energy density from solar wind values and the decrease in kinetic energy density from solar wind values is 0.62. SHFAs and HFAs do not show major differences in this study.

  17. Spatio-temporal segregation of calling behavior at a multispecies fish spawning site in Little Cayman

    Science.gov (United States)

    Cameron, K. C.; Sirovic, A.; Jaffe, J. S.; Semmens, B.; Pattengill-Semmens, C.; Gibb, J.

    2016-02-01

    Fish spawning aggregation (FSA) sites are extremely vulnerable to over-exploitation. Accurate understanding of the spatial and temporal use of such sites is necessary for effective species management. The size of FSAs can be on the order of kilometers and peak spawning often occurs at night, posing challenges to visual observation. Passive acoustics are an alternative method for dealing with these challenges. An array of passive acoustic recorders and GoPro cameras were deployed during Nassau grouper (Epinephelus striatus) spawning from February 7th to 12th, 2015 at a multispecies spawning aggregation site in Little Cayman, Cayman Islands. In addition to Nassau grouper, at least 10 other species are known to spawn at this location including tiger grouper (Mycteroperca tigris), red hind (Epinephelus guttatus), black grouper (Mycteroperca bonaci), and yellowfin grouper (Mycteroperca venenosa). During 5 days of continuous recordings, over 21,000 fish calls were detected. These calls were classified into 15 common types. Species identification and behavioral context of unknown common call types were determined by coupling video recordings collected during this time with call localizations. There are distinct temporal patterns in call production of different species. For example, red hind and yellowfin grouper call predominately at night with yellowfin call rates increasing after midnight, and black grouper call primarily during dusk and dawn. In addition, localization methods were used to reveal how the FSA area was divided among species. These findings facilitate a better understanding of the behavior of these important reef fish species allowing policymakers to more effectively manage and protect them.

  18. The daytime cycle in dust aerosol direct radiative effects observed in the central Sahara during the Fennec campaign in June 2011

    KAUST Repository

    Banks, Jamie R.

    2014-12-16

    © 2014. American Geophysical Union. All Rights Reserved. The direct clear-sky radiative effect (DRE) of atmospheric mineral dust is diagnosed over the Bordj Badji Mokhtar (BBM) supersite in the central Sahara during the Fennec campaign in June 2011. During this period, thick dust events were observed, with aerosol optical depth values peaking at 3.5. Satellite observations from Meteosat-9 are combined with ground-based radiative flux measurements to obtain estimates of DRE at the surface, top-of-atmosphere (TOA), and within the atmosphere. At TOA, there is a distinct daytime cycle in net DRE. Both shortwave (SW) and longwave (LW) DRE peak around noon and induce a warming of the Earth-atmosphere system. Toward dusk and dawn, the LW DRE reduces while the SW effect can switch sign triggering net radiative cooling. The net TOA DRE mean values range from -9 Wm-2 in the morning to heating of +59 Wm-2 near midday. At the surface, the SW dust impact is larger than at TOA: SW scattering and absorption by dust results in a mean surface radiative cooling of 145Wm-2. The corresponding mean surface heating caused by increased downward LW emission from the dust layer is a factor of 6 smaller. The dust impact on the magnitude and variability of the atmospheric radiative divergence is dominated by the SW cooling of the surface, modified by the smaller SW and LW effects at TOA. Consequently, dust has a mean daytime net radiative warming effect on the atmosphere of 153Wm-2.

  19. On microscopic stress nonequilibrium: Application to the magnetopause

    International Nuclear Information System (INIS)

    Wu, Z.J.

    1986-01-01

    The main purpose of this paper is to propose the concept of microscopic stress nonequilibrium (or simply micro-nonequilibrium) in plasma physics. This concept arises as a consequence of the insolubility of the steady-state Vlasov-Maxwell equations (or the kinetic-field equations in general) under certain conditions. In what follows: (1) A general stress equilibrium condition for tangential plasma discontinuities is derived from the Maxwell tensor and the plasma stress tensor. (2) An equivalent equilibrium condition, which takes the form of equations of motion of a ''fictitious particle'', is also derived from the above condition. (3) A general solution of the distribution functions is derived according to Jeans's theorem or Liouville's theorem for the solar wind particles in a tangential magnetopause. (4) This solution is applied to the equilibrium condition to investigate the equilibrium state of the tangential magnetopause. Both Parker's tail-region and Wu's dawn-side ''nonequilibria''are confirmed to be micro-nonequilibria because of the violation of the above equilibrium condition. (5) The effects of various factors in micro-nonequilibria are discussed. It is found that randomly trapped particles and inwards electric field in the magnetopause layer generally cannot relieve the dawn-side or tail-region micro-nonequilibria; and that a northward magnetic field in the solar wind generally can suppress the dawn-side nonequilibrium, while a southward field can jeopardize a dusk-side Vlasov equilibrium. (6) Discussion: The concept of ''micro-nonequilibrium'' may become of importance in basic plasma dynamics. It is also possible that the micro-nonequilibrium may play a fundamental role in solar wind particles entering the magnetopause and in magnetospheric substorms

  20. SuperDARN HOP radars observation of ionospheric convection associated with low-latitude aurora observed at Hokkaido, Japan

    Science.gov (United States)

    Nishitani, N.; Hori, T.; Kataoka, R.; Ebihara, Y.; Shiokawa, K.; Otsuka, Y.; Suzuki, H.; Yoshikawa, A.

    2016-12-01

    The SuperDARN HOkkaido Pair of (HOP) radars, consisting of the Hokkaido East (2006-) and West (2014-) radars, are the SuperDARN radars located at the lowest geomagnetic latitude (36.5 degrees), and have been continuously measuring ionospheric convection at high to subauroral and middle latitudes with high temporal resolutions (Japan from 15 to 19 UT on March 17, 2015 and from 1900 to 2030 UT on December 20, 2015, identified using optical instruments such as all-sky CCD camera, wide field of view digital camera and meridian scanning photometer. Both events occurred during the main phase of the relatively large geomagnetic storms with minimum Dst of -223 nT and -170 nT respectively. The ionospheric convection at mid-latitude regions associated with the low-latitude auroral emission is characterized by (1) transient equatorward flows up to about 500 m/s in the initial phase of the emission (the geomagnetic field data at Paratunka, Far East Russia show corresponding negative excursions), and (2) sheared flow structure consisting of westward flow (about 500 m/s) equatorward of eastward flow (1000 m/s), with the equatorward boundary of auroral emission embedded in the westward flow region which expanded up to below 50 deg geomagnetic latitude. These observations imply that the electric field / convection distribution plays important roles in continuously generating the low latitude auroral emission. In particular the observation of the equatorward flow (dawn-dusk electric field) up to as low as about 50 deg geomagnetic latitude is the direct evidence for the presence of electric field to drive ring current particles into the plasmaspheric regions.

  1. Properties and origin of energetic particles at the duskside of the Earth's magnetosheath throughout a great storm

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1999-09-01

    Full Text Available We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from  X @ -15 to -40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz @ 0 nT. We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these "exodus channels". The time profiles for energetic protons and "tracer" O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM = 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.Key words. Magnetospheric physics (magnetosheath; magnetotail boundary layers; storms and substorms

  2. EFFECTS OF RAMADAN FASTING ON BLOOD PRESSURE IN NORMOTENSIVE MALES.

    Science.gov (United States)

    Samad, Fatima; Qazi, Fahd; Pervaiz, Mohammad B; Kella, Danesh K; Mansoor, Maryah; Osmani, Bushra Z; Mir, Fazia; Kadir, Muhammad Masood

    2015-01-01

    Research has been done to investigate the effect of intermittent complete fasting on human physiological parameters but the effect of fasting on blood pressure remains relatively unexplored. Research in animal models suggests a hypotensive effect with an undetermined mechanism. Muslims worldwide fast daily from dawn to dusk throughout the Islamic month of Ramadan. This study was to investigate the proposed hypotensive effect of Ramadan fasting in males over A period of 20 days and to study the relationship of the pattern of blood pressure variation with body mass index change. A repeated measures observational study design was implemented with convenient sampling. Study group included 40 normotensive, non-smoker males with no known comorbidities between the ages of 18-40 who fasted daily in the month of Ramadan. One set of BP readings, each, was taken one week before the start of Ramadan and on the 7th, 14th and 21st day of Ramadan which included pre and post Iftar measurements along with other variables. Data was analysed by repeated measures ANOVA using SPSS. The differences were compared with critical values generated by Tukey's Method. There was a significant drop in systolic BP of 7.61 mmHg before Iftar, 2.72 mm-Hg after Iftar (peffect of Ramadan on diastolic BP (p<0.005), the drop being 3.19 mmHg. The drop in body mass index was significant only before Iftar at 0.3 kg/m2 (p<0.005). Pulse rate showed a significant drop of 7.79 bpm before Iftar and a significant rise of 3.96 bpm (p<0.005). Intermittent fasting causes a drop in both systolic and diastolic blood pressure in normotensive males.

  3. Crepuscular flight activity of an invasive insect governed by interacting abiotic factors.

    Directory of Open Access Journals (Sweden)

    Yigen Chen

    Full Text Available Seasonal and diurnal flight patterns of the invasive walnut twig beetle, Pityophthorus juglandis, were assessed between 2011 and 2014 in northern California, USA in the context of the effects of ambient temperature, light intensity, wind speed, and barometric pressure. Pityophthorus juglandis generally initiated flight in late January and continued until late November. This seasonal flight could be divided approximately into three phases (emergence: January-March; primary flight: May-July; and secondary flight: September-October. The seasonal flight response to the male-produced aggregation pheromone was consistently female-biased (mean of 58.9% females. Diurnal flight followed a bimodal pattern with a minor peak in mid-morning and a major peak at dusk (76.4% caught between 1800 and 2200 h. The primarily crepuscular flight activity had a Gaussian relationship with ambient temperature and barometric pressure but a negative exponential relationship with increasing light intensity and wind speed. A model selection procedure indicated that the four abiotic factors collectively and interactively governed P. juglandis diurnal flight. For both sexes, flight peaked under the following second-order interactions among the factors when: 1 temperature between was 25 and 30 °C and light intensity was less than 2000 lux; 2 temperature was between 25 and 35 °C and barometric pressure was between 752 and 762 mba (and declined otherwise; 3 barometric pressure was between 755 and 761 mba and light intensity was less than 2000 lux (and declined otherwise; and 4 temperature was ca. 30 °C and wind speed was ca. 2 km/h. Thus, crepuscular flight activity of this insect can be best explained by the coincidence of moderately high temperature, low light intensity, moderate wind speed, and low to moderate barometric pressure. The new knowledge provides physical and temporal guidelines for the application of semiochemical-based control techniques as part of an IPM

  4. Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977

    International Nuclear Information System (INIS)

    Wolf, R.A.; Harel, M.; Spiro, R.W.; Voigt, G.; Reiff, P.H.; Chen, C.

    1982-01-01

    We present preliminary results of applying the Rice convection model to the early main phase of the magnetic storm of July 29, 1977. The computer model self-consistently computes electric fields and currents, as well as plasma distributions and velocities, in the inner-magnetosphere/ionosphere system. In the equatorial plane, the region modeled includes geocentric distances less than about the magnetopause standoff distance. Particle loss, parallel electric fields, and neutral winds are neglected. On the basis of solar wind parameters and the AL index as input, the model predicts the injection of plasma-sheet plasma to form a substantial storm time ring current. The total strength of the model-predicted ring current agrees accurately with the observed Dst index. Comparison of the model results with electric fields and Birkeland currents measured by S3-3 shows qualitative agreement but interesting quantitative discrepancies. During this event, region 1 currents, which in standard convection theory would connect to the outer magnetosphere, are observed as low as 60 0 invariant latitude at dawn and dusk. We examine the possibility that the magnetic field might be so highly inflated that 60 0 field lines extend to the outer magnetosphere. In the model, distortion of the inner edge of the plasma sheet by the magnetospheric compression associated with the sudden commencement temporarily disturbs the normal Birkeland-current pattern. The normal tendency for the plasma sheet's inner edge to shield low L alues from the convection electric field is also temporarily disrupted. Normal Birkeland currents and shielding reassert themselves after about an hour. Time-integrated Joule heating in the model ionosphere over the first 5.5 hours of the storm main phase is about half the increase in model ring-current energy

  5. Dispersive O+ conics observed in the plasma-sheet boundary layer with CRRES/LOMICS during a magnetic storm

    Directory of Open Access Journals (Sweden)

    M. Wüest

    1996-06-01

    Full Text Available We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS on the Combined release and radiation effects satellite (CRRES together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+ simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at L~7.5 near dusk, magnetic local time (MLT, and at a magnetic latitude of –23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet.

  6. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  7. Plasma drifts associated with a system of sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Mende, S.B.; Doolittle, J.H.; Robinson, R.M.; Vondrak, R.R.; Rich, F.J.

    1988-01-01

    A series of four sun-aligned arcs passed over Sondre Stromfjord, Greenland, on the night of the 17th and 18th of February, 1985. Observations of these arcs were made using the Sondrestrom incoherent scatter radar and an intensified all-sky imaging TV system that was operated at the radar site. The first of the four arcs crossed the Sondre Stromfjord meridian just before local midnight moving westward, and the other three arcs followed at approximately half-hour intervals. When we account for the earth's rotation, the arc drift in an inertial frame was eastward, or dusk to dawn. The half-hour interval between meridian crossings of the arcs implies that the mean spacing between the arcs was 180 km. A Defense Meteorological Satellite Program (DMSP) F6 satellite pass at 0110 UT revealed the presence of highly structured electron and ion precipitation throughout the polar cap. The DMSP visible imager detected a single, sun-aligned arc associated with the largest peak in precipitating electron flux. This arc was also observed at Thule, Greenland, with an intensified film camera. These observations suggest that at least one of the arcs that were observed at Sondre Stromfjord extended across a large part of the polar cap. The radar at Sondre Stromfjord measured electron density and ion drift velocities associated with the four arcs. The radar drift measurements were superimposed on the all-sky video images to determine the location of the measurements relative to the arcs. Plasma drifts outside the arcs were found to be both sunward and antisunward, while within the arcs the drifts were predominantly antisunward. The variability of the drifts in the direction parallel to the arcs indicates that the electric fields were highly structured even though the configuration and motion of the arcs were well behaved

  8. Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2008-12-01

    Full Text Available To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ultimately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive B_y shows positive and negative, respectively, at higher magnetic latitudes than -70°. For negative B_z, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive B_z have opposite sign. Negative IMF B_z has a stronger effect on the vorticity than does positive B_z.

  9. Characterizing Ion Flows Across a Dipolarization Front

    Science.gov (United States)

    Arnold, H.; Drake, J. F.; Swisdak, M.

    2017-12-01

    In light of the Magnetospheric Multiscale Mission (MMS) moving to study predominately symmetric magnetic reconnection in the Earth's magnetotail, it is of interest to investigate various methods for determining the relative location of the satellites with respect to the x line or a dipolarization front. We use a 2.5 dimensional PIC simulation to explore the dependence of various characteristics of a front, or flux bundle, on the width of the front in the dawn-dusk direction. In particular, we characterize the ion flow in the x-GSM direction across the front. We find a linear relationship between the width of a front, w, and the maximum velocity of the ion flow in the x-GSM direction, Vxi, for small widths: Vxi/VA=w/di*1/2*(mVA2)/Ti*Bz/Bxwhere m, VA, di, Ti, Bz, and Bx are the ion mass, upstream Alfven speed, ion inertial length, ion temperature, and magnetic fields in the z-GSM and x-GSM directions respectively. However, once the width reaches around 5 di, the relationship gradually approaches the well-known theoretical limit for ion flows, the upstream Alfven speed. Furthermore, we note that there is a reversal in the Hall magnetic field near the current sheet on the positive y-GSM side of the front. This reversal is most likely due to conservation of momentum in the y-GSM direction as the ions accelerate towards the x-GSM direction. This indicates that while the ions are primarily energized in the x-GSM direction by the front, they transfer energy to the electromagnetic fields in the y-GSM direction. The former energy transfer is greater than the latter, but the reversal of the Hall magnetic field drags the frozen-in electrons along with it outside of the front. These simulations should better able researchers to determine the relative location of a satellite crossing a dipolarization front.

  10. Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance

    Science.gov (United States)

    Ludvigsen, Martin; Berge, Jørgen; Geoffroy, Maxime; Cohen, Jonathan H.; De La Torre, Pedro R.; Nornes, Stein M.; Singh, Hanumant; Sørensen, Asgeir J.; Daase, Malin; Johnsen, Geir

    2018-01-01

    Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms’ response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity. PMID:29326985

  11. Adverse health effects associated with Islamic fasting -A literature review

    Directory of Open Access Journals (Sweden)

    Nania Mohamed Pakkir Maideen

    2017-09-01

    Full Text Available Introduction: Millions of Muslims across the world observe Islamic fasting during the holy month of Ramadan, as well as the other specific dates in the lunar calendar year. While fasting during this month, Muslims refrain from eating or drinking from dawn to dusk. Islamic fasting is similar to alternate day fasting (ADF since it incorporates an average of 12 hours of fasting and 12 hours of feasting periods. This present review study is aimed to find out the common adverse health effects associated with Islamic fasting and the preventive measures to be followed to avoid them. Methods: The literature was reviewed through searching in databases such as PubMed, Google Scholar, and reference lists to identify the related articles. Results: Many health benefits have been attributed to Islamic fasting, including the reduced risk of cardiovascular diseases, diabetes, cancer, hypertension, and asthma. On the other hand, some studies have mentioned a few health problems associated with Islamic fasting, such as headaches, heartburn, constipation, dehydration, decreased sleep quality, and anemia, which may occur in some fasting individuals during Ramadan. Conclusion: Islamic fasting could be beneficial for health if it is performed correctly. During Ramadan, fasting individuals are advised to adhere to a balanced diet that contains sufficient portions of fruits and vegetables, whole grains, pulses, meat, fish, milk, and dairy products. Moreover, fasting individuals must drink adequate fluids, such as water, fresh fruit juices, and soups, in order to prevent the possible adverse health effects associated with Islamic fasting.

  12. Ionospheric F-region response to the 26 September 2011 geomagnetic storm in the Antarctica American and Australian sectors

    Directory of Open Access Journals (Sweden)

    E. Correia

    2017-10-01

    Full Text Available The ionospheric response at middle and high latitudes in the Antarctica American and Australian sectors to the 26–27 September 2011 moderately intense geomagnetic storm was investigated using instruments including an ionosonde, riometer, and GNSS receivers. The multi-instrument observations permitted us to characterize the ionospheric storm-enhanced density (SED and tongues of ionization (TOIs as a function of storm time and location, considering the effect of prompt penetration electric fields (PPEFs. During the main phase of the geomagnetic storm, dayside SEDs were observed at middle latitudes, and in the nightside only density depletions were observed from middle to high latitudes. Both the increase and decrease in ionospheric density at middle latitudes can be attributed to a combination of processes, including the PPEF effect just after the storm onset, dominated by disturbance dynamo processes during the evolution of the main phase. Two SEDs–TOIs were identified in the Southern Hemisphere, but only the first episode had a counterpart in the Northern Hemisphere. This difference can be explained by the interhemispheric asymmetry caused by the high-latitude coupling between solar wind and the magnetosphere, which drives the dawn-to-dusk component of the interplanetary magnetic field. The formation of polar TOI is a function of the SED plume location that might be near the dayside cusp from which it can enter the polar cap, which was the case in the Southern Hemisphere. Strong GNSS scintillations were observed at stations collocated with SED plumes at middle latitudes and cusp on the dayside and at polar cap TOIs on the nightside.

  13. Comment on Lockwood and Davis, "On the longitudinal extent of magnetopause reconnection pulses"

    Directory of Open Access Journals (Sweden)

    W. J. Heikkila

    1999-02-01

    Full Text Available Lockwood and Davis (1996 present a concise description of magnetopause reconnection pulses, with the claimed support of three types of observations: (1 flux transfer events (FTE, (2 poleward-moving auroral forms on the dayside, and (3 steps in cusp ion dispersion characteristics. However, there are a number of errors and misconceptions in the paper that make their conclusions untenable. They do not properly take account of the fact that the relevant processes operate in the presence of a plasma. They fail to notice that the source of energy (a dynamo with E · J<0 must be close to the region of dissipation (the electrical load with E · J>0 in transient phenomena, since energy (or information cannot travel faster than the group velocity of waves in the medium (here the Alfvén velocity VA. In short, Lockwood and Davis use the wrong contour in their attempt to evaluate the electromotive force (emf. This criticism goes beyond their article: a dynamo is not included in the usual definition of reconnection, only the reconnection load. Without an explicit source of energy in the assumed model, the idea of magnetic reconnection is improperly posed. Recent research has carried out a superposed epoch analysis of conditions near the dayside magnetopause and has found the dynamo and the load, both within the magnetopause current sheet. Since the magnetopause current is from dawn to dusk, the sign of E · J reflects the sign of the electric field. The electric field reverses, within the magnetopause; this can be discovered by an application of Lenz's law using the concept of erosion of the magnetopause. The net result is plasma transfer across the magnetopause to feed the low latitude boundary layer, at least partly on closed field lines, and viscous interaction as the mechanism by which solar wind plasma couples to the magnetosphere.

  14. Is Ramadan Fasting Cardio-protective? A Study in a Village of West Bengal

    Directory of Open Access Journals (Sweden)

    Aparajita Dasgupta

    2017-06-01

    Full Text Available Background: Islam is the second largest religion of the World (23% and Muslims are the second largest majority of Indian Republic (14.3%. Ramadan is the ninth and holiest month(Hijra of the 12-month Islamic calendar during which Muslims fast from dawn to dusk each day maintaining certain rules (consuming food/drink once, avoiding smoking and sexual activity, as well as impure thoughts, words and immoral behavior. It is observed by Muslims as a month of fasting to commemorate the first revelation of the Qur'an to Muhammad. Aims & Objectives: To evaluate the effect of Ramadan on cardio-metabolic profile among adult Muslims residing in rural West Bengal. Methods and Materials: The present study was a longitudinal community based study done among 43 Muslims residing in a village of West Bengal during 6thJune to 7th July 2016. Cardio-metabolic profile (physical activity, diet, BMI, blood pressure, blood lipids and glucose were assessed before, during and after Ramadan. Results: There was a significant reduction in VLDL and TG level while significant elevation in HDL level along with the reduction in Framingham risk score after fasting. All the anthropometric measurements along with blood pressure reduced significantly after Ramadan with significant reduction in intake of all micro-nutrients during Ramadan. However physical activity also reduced significantly during Ramadan. Conclusion: Our study had found no detrimental effects of Ramadan fasting on the contrary has an overall beneficial effect on cardiovascular profile was observed.

  15. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides

    KAUST Repository

    Busserolles, Fanny de

    2017-11-09

    Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides\\' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.

  16. Fauna of phlebotomine sand flies (Diptera, Psychodidae in areas with endemic American cutaneous leishmaniasis in the State of Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo Silva de Almeida

    2013-03-01

    Full Text Available Fauna of phlebotomine sand flies (Diptera, Psychodidae in areas with endemic American cutaneous leishmaniasis in the State of Mato Grosso do Sul, Brazil. The aim of this study was to investigate the ecological aspects of the main vectors of American cutaneous leishmaniasis (ACL in four monitoring stations situated in the municipalities of Naviraí, Nova Andradina, Novo Horizonte do Sul and Rio Verde de Mato Grosso. For each monitoring station, the captures of sand flies were undertaken each month from July 2008 to June 2010 using CDC and Shannon traps. The CDC traps were installed simultaneously for three consecutive nights in three collection sites: intradomicile, peridomicile and edge of the forest. A Shannon trap was installed from dusk to 10 pm, inside the forest, one night per month. A total of 7,651 sand flies belonging to nine genera and twenty-nine species were captured. Nyssomyia neivai (52.95%, Psathyromyia hermanlenti (10.91%, Psathyromyia runoides (9.16%, Nyssomyia whitmani (7.95%, Psathyromyia aragaoi (4. 89%, Nyssomyia antunesi (3.14% and Evandromyia bourrouli (2.20% were the most frequent species. Approximately 65% of the sand flies were collected in the forest environment. The municipalities presented significantly different indexes of species diversity. Naviraí presented the lowest species diversity index, however, it showed the highest abundance. Novo Horizonte do Sul had the highest species diversity index, but the lowest abundance (< 5%. It is noteworthy the occurrence of vector species of Leishmania in the areas studied, especially in Naviraí, where Ny. neivai presented high frequencies which may explain the increased number of ACL cases in this municipality.

  17. The hamster clock phase-response curve from summerlike light:dark cycles and its role in daily and seasonal timekeeping.

    Science.gov (United States)

    Alleva, John J; Alleva, Frederic R

    2002-11-01

    We address the subject of entrainment of the hamster clock by the day:night cycle in summer when the sun sets after 6 PM and rises before 6 AM (nights cycles were simulated by 6 light:dark (LD) cycles with D estrus and wheel running in hamsters. The onset of estrus was observed every 4 d in the same hamsters as a phase marker of their 24 h clock. On the day before an experimental estrus, preceded and followed by control onsets, a dark period was imposed to cover a putative 6 PM-6 AM light-sensitive period (LSP). This was scanned with a light pulse (and periodic 5 sec bell alarms) lasting 5-240 min. Shifts in onset of estrus on the next day were plotted vs. the end of the light pulse for PM times ("dusk") and its onset for AM times ("dawn"). The resulting phase shifts from the six SLDs were similar, permitting their combination into a single phase-response curve (PRC) of 1605 shifts. This SLD composite PRC rose at 10:15 PM, peaked at 2 AM (81 min advanced shift), fell linearly to 5:55 AM, and then abruptly to normal at 6 AM (no shift). Peak shift was unaffected by light pulse duration or intensity, or hamster age. The SLD composite PRC lacked the 6 PM-9 PM curve of delayed shifts present in reported PRCs from LD 12 h:12 h and DD. However, a two-pulse experiment showed that all light from 6 PM to L-off was needed to block (balance) the advancing action of a 5 min morning light pulse, thereby maintaining entrainment. A working hypothesis to explain daily entrainment and seasonal fertility in the golden hamster is illustrated. A nomenclature for labeling the phases of the hamster clock (circadian time) is proposed.

  18. Comportamento exófilo de Anopheles darlingi Root, em região meridional do Brasil Exophilic behavior of Anopheles darlingi Root in a Southern Region of Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1987-08-01

    Full Text Available Observou-se o comportamento da população "Araraquara" de Anopheles darlingi, em seu ambiente original e em relação à sua atividade exófila com isca humana. As coletas foram realizadas às margens do rio Jacaré-Pepira, no Município de Dourado, Estado de São Paulo, Brasil. O ciclo nictemeral caracteriza-se pelo aspecto bimodal, com os dois picos correspondentes a cada crepúsculo, ou seja, vespertino e matutino. O seu detalhamento permitiu detectar bimodalidade secundária, subdividindo cada pico em um eocrepuscular precedendo ao intracrepuscular propriamente dito. A variação sazonal revelou aumento do número de mosquitos na estação chuvosa e quente e nítido declínio na seca e fria. Embora com dados insuficientes, houve indícios de que o An. albitarsis local, apresente também ritmo bimodal em seu ciclo diário de atividade.Fortnightly 25-hour catches, with human bait, were carried out in a modified environment of the "Jacaré-Pepira" River, Dourado County, S. Paulo, Brazil which is the original region of the "Araraquara" strain of Anopheles darlingi. The exophylic biting activity was mostly nocturnal with bimodal rhythm, showing two clear peaks corresponding, respectively, to dusk and dawn. Going into crepuscular details two secondary peaks were observed, an eocrepuscular preceding the intracrepuscular one As, by means of chromosome arrangement studies, this population was found to have low polymorphism, it is supposed that those rhythms are, in a good measure, of endogenous command. The number of mosquitoes biting increased during the hot, wet season and decreased remarkably during the dry, cold one. There was some evidence that An albitarsis may also show a bimodality in its nocturnal biting activity rhythm.

  19. Mars Exospheric Temperature Trends as Revealed by MAVEN NGIMS Measurements

    Science.gov (United States)

    Bougher, Stephen W.; Olsen, Kirk; Roeten, Kali; Bell, Jared; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Jakosky, Bruce

    2015-11-01

    The Martian dayside upper thermosphere and exosphere temperatures (Texo) have been the subject of considerable debate and study since the first Mariner ultraviolet spectrometer (UVS) measurements (1969-1972), up to recent Mars Express SPICAM UVS measurements (2004-present) (e.g., see reviews by Stewart 1987; Bougher et al. 2000, 2014; Müeller-Wodarg et al. 2008; Stiepen et al. 2014). Prior to MAVEN, the Martian upper atmosphere thermal structure was poorly constrained by a limited number of both in-situ and remote sensing measurements at selected locations, seasons, and periods scattered throughout the solar cycle. Nevertheless, it is recognized that the Mars orbit eccentricity determines that both the solar cycle and seasonal variations in upper atmosphere temperatures must be considered together. The MAVEN NGIMS instrument measures the neutral composition of the major gas species (e.g. He, N, O, CO, N2, O2, NO, Ar and CO2) and their major isotopes, with a vertical resolution of ~5 km for targeted species and a target accuracy of <25% for most of these species (Mahaffy et al. 2014; 2015). Corresponding temperatures can now be derived from the neutral scale heights (especially CO2, Ar, and N2) (e.g. Mahaffy et al. 2015; Bougher et al. 2015). Texo mean temperatures spanning ~200 to 300 km are examined for both Deep Dip and Science orbits over 11-February 2015 (Ls ~ 290) to 14-July 2015 (Ls ~ 12). During these times, dayside sampling below 300 km occurred from the dusk terminator, across the dayside, and approaching the dawn terminator. NGIMS temperatures are investigated to extract spatial (e.g. SZA) and temporal (e.g. orbit-to-orbit, seasonal, solar rotational) variability and trends over this sampling period. Solar and seasonal driven trends in Texo are clearly visible, but orbit-to-orbit variability is significant, and demands further investigation to uncover the major drivers that are responsible.

  20. Urban malaria risk in sub-Saharan Africa: where is the evidence?

    Science.gov (United States)

    Byrne, Neville

    2007-03-01

    It is essential that the precautions that are advisable for travel in sub-Saharan Africa, including antimalarial prophylaxis, are supported by evidence. Sub-Saharan Africa accounts for 90% of global malaria cases and the more serious falciparum form predominates. The risk of malaria transmission is qualitatively much greater in rural than urban areas. However, there is little quantitative data on the risk in urban areas on which to base a risk assessment. Rapid urban population growth and trends of tourism to urban-only (rather than rural) areas both support the need to focus attention on the level of risk in malaria endemic African cities. There is evidence in urban settings that the reduced intensity of malaria transmission is due to a decline in the level of parasitism in the local population and reduced anophelism. The most useful evidence for an urban risk assessment is the entomological inoculation rate (EIR) which is generally below 30 infective bites per person per year. Transmission is acknowledged to be much lower in central urban areas compared with peri-urban areas or rural areas. Transmission is local and focal because the anopheles mosquito has a limited flight range of several kilometres. The risk assessment should examine nocturnal activities outside an air-conditioned environment (because the anopheline mosquito only bites between dusk and dawn) and the level of adherence to accompanying protective measures. Several studies have noted the protection air-conditioning provides against malaria. Evidence of low occupational risk for airline crew, unprotected by prophylaxis, from brief layovers of several nights in quality hotels in 8 endemic cities is explored. A literature search examines the evidence of environmental surveys and entomological inoculation rates. The limitations of the available data are discussed, including the highly focal nature of malaria transmission.

  1. Night-time radial plasma drifts and coupling fluxes at L = 2.3 from whistler mode measurements

    International Nuclear Information System (INIS)

    Andrews, M.K.

    1980-01-01

    A method recently reported for measuring radial drifts in the equatorial plane, and ionosphere-magnetosphere coupling fluxes from the Doppler shifts and group delays on whistler mode signals is applied to VLF transmissions from station NLK on 18.6kHz. Data from 22 nights, primarily during the months November to February, are analysed. When averaged over a time of about 90 min, drifts found are accurate to +-20ms -1 , corresponding to an equatorial electric field accuracy of +-0.05mVm -1 , and fluxes, to +-1.5 x 10 12 el m -2 s -1 (two hemisphere total). Given currently accepted values of coupling fluxes, the flux accuracy is of marginal value on individual nights, but useful information on average behaviour may be obtained. It is found that fluxes generally contribute less than 20% to the measured Doppler shift, most of which is therefore produced by cross-L drifts. To an accuracy of about 20% then, Doppler data alone may give information on these drifts. Doppler shift data previously accumulated over a number of years and relating to signals in ducts near L = 2.3 are re-examined. Dominating the nightly behaviour is an inward drift which reaches a maximum of approximately 100m s -1 as the duct ends cross the dusk terminator, and an outward drift at dawn of the same magnitude which is intitiated when the duct end crosses the terminator in the E or lower F-region. In some months, separate effects can be seen corresponding to sunrise at each end of the duct. (author)

  2. Dark or short nights: differential latitudinal constraints in nestling provisioning patterns of a nocturnally hunting bird species.

    Directory of Open Access Journals (Sweden)

    Markéta Zárybnická

    Full Text Available In diurnal bird species, individuals breeding at high latitudes have larger broods than at lower latitudes, which has been linked to differences in the daily time available for foraging. However, it remains unclear how latitude is linked with parental investment in nocturnal species. Here, we investigate nestling provisioning rates of male Tengmalm's owls in two populations at different latitudes (Czech Republic 50 °N; Finland 63 °N with the help of cameras integrated into nest boxes. Clutch sizes were smaller in the Czech population (CZ: 5.1 ± 0.1; FIN: 6.6 ± 0.1, but given the higher nestling mortality in the Finnish population, the number of fledglings did not differ between the two populations (CZ: 3.5 ± 0.3; FIN: 3.9 ± 0.2. Nestling provisioning patterns varied within days, over the reproductive season and between the two sites. Males delivered most food at dusk and dawn, having peak delivery rates at sun angles of -11° to -15° at both sites, and males increased the prey delivery rates with higher nestling requirements. Given the longer nights during summer in the Czech Republic compared to Finland, Czech males only showed a small shift in their delivery peak during the night from -17° in April to -14° in July. In contrast, Finnish males shifted their peak of prey delivery from -11° in April to -1° in July. Consequently, Czech males had a longer hunting time per night around midsummer when feeding young (360 min than Finnish males (270 min. This suggests that nocturnal owl species in northern populations are constrained by the short nights during the breeding season, which can limit the number of young they can raise. Moreover, owls in northern populations are additionally constrained through the unpredictable changes in food availability between years, and both these factors are likely to influence the reproductive investment between populations.

  3. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  4. MHD dynamo action in space plasmas

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1984-05-01

    Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)

  5. Complementary approaches to understanding the plant circadian clock

    Directory of Open Access Journals (Sweden)

    Ozgur E. Akman

    2010-02-01

    Full Text Available Circadian clocks are oscillatory genetic networks that help organisms adapt to the 24-hour day/night cycle. The clock of the green alga Ostreococcus tauri is the simplest plant clock discovered so far. Its many advantages as an experimental system facilitate the testing of computational predictions. We present a model of the Ostreococcus clock in the stochastic process algebra Bio-PEPA and exploit its mapping to different analysis techniques, such as ordinary differential equations, stochastic simulation algorithms and model-checking. The small number of molecules reported for this system tests the limits of the continuous approximation underlying differential equations. We investigate the difference between continuous-deterministic and discrete-stochastic approaches. Stochastic simulation and model-checking allow us to formulate new hypotheses on the system behaviour, such as the presence of self-sustained oscillations in single cells under constant light conditions. We investigate how to model the timing of dawn and dusk in the context of model-checking, which we use to compute how the probability distributions of key biochemical species change over time. These show that the relative variation in expression level is smallest at the time of peak expression, making peak time an optimal experimental phase marker. Building on these analyses, we use approaches from evolutionary systems biology to investigate how changes in the rate of mRNA degradation impacts the phase of a key protein likely to affect fitness. We explore how robust this circadian clock is towards such potential mutational changes in its underlying biochemistry. Our work shows that multiple approaches lead to a more complete understanding of the clock.

  6. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  7. Comprehensive simulation study on local and global development of auroral arcs and field-aligned potentials

    International Nuclear Information System (INIS)

    Watanabe, Tomohiko; Oya, Hiroshi; Watanabe, Kunihiko; Sato, Tetsuya.

    1992-10-01

    Extensive three-dimensional computer simulations of the magnetosphere-ionosphere (M-I) coupling are performed to study self-excitation of auroral arcs with special emphasis on 1) nonlinear evolution of the feedback instability in the M-I coupling system, 2) controlling mechanisms of the auroral arc structure, 3) formation of a field-aligned electric potential structure in association with the development of the feedback instability, and 4) effects of the parallel potential generation on auroral arc development. It is reconfirmed that the feedback instability produces a longitudinally elongated, latitudinally striated structure where the upward field-aligned current and the ionospheric density are locally enhanced. The following important new features are revealed. 1) The global distribution of the striation structure is primarily governed by the magnetospheric convection pattern and the ionospheric density distribution. 2) There appears a significant dawn-dusk asymmetry in the auroral arc formation, even though the apparent geometrical relationship is symmetric. 3) The recombination effect plays a significant role in the global, as well as local, development of the auroral arc structure. The nonlinearity of recombination, in conjunction with the closure of an arc-associated local field-aligned current system, acts to destroy an old arc and creates a new arc in a different but adjacent position. 4) A V-shaped field aligned potential structure is created in association with an auroral arc. Rapid increase in the electron density and the local upward field-aligned current of an arc arises as a result of enhanced ionization by precipitating electrons accelerated by the parallel potential. 5) A drastic oscillatory behavior of appearance and disappearance of auroral arcs is obtained when the ionization effect is strong. The period is primarily given by the Alfven bounce time. (J.P.N.)

  8. Multi-instrumentation observations of a transpolar arc in the northern hemisphere

    Directory of Open Access Journals (Sweden)

    A. Goudarzi

    2008-02-01

    Full Text Available A transpolar arc was imaged by the FUV instrument on the IMAGE spacecraft during a 3-h interval on 5 February 2002. Observations indicate that a burst of reconnection in the geomagnetic tail, which was not associated with a substorm, was responsible for the formation of the arc. The arc initially formed across the central polar cap, extending from near midnight to noon such that the polar cap was approximately divided in half. The subsequent motion of the arc was controlled by the amount of open flux being added to the dawn sector cap from a magnetopause reconnection site on the post-noon side of the magnetosphere. The dayside reconnection happened during a period when the IMF By component was dominant, although the Bz component initially remained positive, and resulted in strong westward azimuthal flows in the noon sector. The arc continued to move towards the duskside auroral oval after the IMF Bz turned southward. A keogram of the FUV/WIC auroral observations along the dawn-dusk meridian provides further evidence of the expansion and contraction of the polar cap during the period in which different IMF orientations occurred. Furthermore, comparing images from IMAGE and ionospheric convection flow from SuperDARN measurements, vortical convection flows occurred exactly at the time and location of the formation of the transpolar arc and subsequently followed the head of the transpolar arc as it moved across the polar cap. The observations are consistent with the prediction of a recent model for the formation of the transpolar cap by the closure of open flux in the geomagnetic tail, and its subsequent motion through changes in the open flux distribution within the polar cap.

  9. Multi-instrumentation observations of a transpolar arc in the northern hemisphere

    Directory of Open Access Journals (Sweden)

    A. Goudarzi

    2008-02-01

    Full Text Available A transpolar arc was imaged by the FUV instrument on the IMAGE spacecraft during a 3-h interval on 5 February 2002. Observations indicate that a burst of reconnection in the geomagnetic tail, which was not associated with a substorm, was responsible for the formation of the arc. The arc initially formed across the central polar cap, extending from near midnight to noon such that the polar cap was approximately divided in half. The subsequent motion of the arc was controlled by the amount of open flux being added to the dawn sector cap from a magnetopause reconnection site on the post-noon side of the magnetosphere. The dayside reconnection happened during a period when the IMF By component was dominant, although the Bz component initially remained positive, and resulted in strong westward azimuthal flows in the noon sector. The arc continued to move towards the duskside auroral oval after the IMF Bz turned southward. A keogram of the FUV/WIC auroral observations along the dawn-dusk meridian provides further evidence of the expansion and contraction of the polar cap during the period in which different IMF orientations occurred. Furthermore, comparing images from IMAGE and ionospheric convection flow from SuperDARN measurements, vortical convection flows occurred exactly at the time and location of the formation of the transpolar arc and subsequently followed the head of the transpolar arc as it moved across the polar cap. The observations are consistent with the prediction of a recent model for the formation of the transpolar cap by the closure of open flux in the geomagnetic tail, and its subsequent motion through changes in the open flux distribution within the polar cap.

  10. Statistical characterization of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Kunduri, B.; Baker, J. B.; Ruohoniemi, J. M.; Erickson, P. J.; Coster, A. J.; Oksavik, K.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow region of westward directed plasma convection typically observed in the dusk-midnight sector equatorward of the main auroral oval. SAPS plays an important role in mid-latitude space weather dynamics and has a controlling influence on the evolution of large-scale plasma features, such as Storm Enhanced Density (SED) plumes. In this study, data from North American mid-latitude SuperDARN radars collected between January 2011 and December 2014 have been used to compile a database of SAPS events for statistical analysis. We examine the dependence of SAPS velocity magnitude and direction on geomagnetic activity and magnetic local time. The lowest speed limit and electric fields observed during SAPS are discussed and histograms of SAPS velocities for different Dst bins and MLAT-MLT locations are presented. We find significant differences in SAPS characteristics between periods of low and high geomagnetic activity, suggesting that SAPS are driven by different mechanisms during storm and non-storm conditions. To further explore this possibility, we have characterized the SAPS location and peak speed relative to the ionospheric trough specified by GPS Total Electron Content (TEC) data from the MIT Haystack Madrigal database. A particular emphasis is placed on identifying the extent to which the location, structure, and depth of the trough may play a controlling influence on SAPS speeds during storm and non-storm periods. The results are interpreted in terms of the current paradigm for active thermosphere-ionosphere feedback being an important component of SAPS physics.

  11. Large-Scale Structure and Dynamics of the Sub-Auroral Polarization Stream (SAPS)

    Science.gov (United States)

    Baker, J. B. H.; Nishitani, N.; Kunduri, B.; Ruohoniemi, J. M.; Sazykin, S. Y.

    2017-12-01

    The Sub-Auroral Polarization Stream (SAPS) is a narrow channel of high-speed westward ionospheric convection which appears equatorward of the duskside auroral oval during geomagnetically active periods. SAPS is generally thought to occur when the partial ring current intensifies and enhanced region-2 field-aligned currents (FACs) are forced to close across the low conductance region of the mid-latitude ionospheric trough. However, recent studies have suggested SAPS can also occur during non-storm periods, perhaps associated with substorm activity. In this study, we used measurements from mid-latitude SuperDARN radars to examine the large-scale structure and dynamics of SAPS during several geomagnetically active days. Linear correlation analysis applied across all events suggests intensifications of the partial ring current (ASYM-H index) and auroral activity (AL index) are both important driving influences for controlling the SAPS speed. Specifically, SAPS flows increase, on average, by 20-40 m/s per 10 nT of ASYM-H and 10-30 m/s per 100 nT of AL. These dependencies tend to be stronger during the storm recovery phase. There is also a strong local time dependence such that the strength of SAPS flows decrease by 70-80 m/s for each hour of local time moving from dusk to midnight. By contrast, the evidence for direct solar wind control of SAPS speed is much less consistent, with some storms showing strong correlations with the interplanetary electric field components and/or solar wind dynamic pressure, while others do not. These results are discussed in the context of recent simulation results from the Rice Convection Model (RCM).

  12. The electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Valladares, C.E.; Carlson, H.C. Jr.

    1991-01-01

    The authors report here measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stromfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area (order 10 3 km by 10 3 km) maps of altitude profiles for observed electron and ion gas number densities, temperatures and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities (N e , T e , T i , V, E, Σ p , Σ H ), horizontal and field-aligned currents, joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc. Strong electron temperature enhancements (>2,000 K) are found as expected within the sheets of ionizing particle precipitation. Dawn to dusk decreases in the antisunward plasma flow of order 1 km s -1 , across order 100 km, correspond to peak electron densities of order 10 5 cm -3 down to altitudes as low as 120 km, and upward currents of order 1 μA m -2 . These data also lead to important implications for the physics of polar cap arcs. The high-velocity (antisunward flow on the dawnside) edge of the arc marks the location of strong persistent Joule heating driven by downward Poynting flux. The deposition rate into the atmosphere of the net electromagnetic energy well exceeds the net particle energy deposited by the ionizing energetic electron flux. This heating is a substantial source of heat into the polar thermosphere

  13. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Science.gov (United States)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  14. Comparisons of management practices and farm design on Australian commercial layer and meat chicken farms: Cage, barn and free range.

    Science.gov (United States)

    Scott, Angela Bullanday; Singh, Mini; Toribio, Jenny-Ann; Hernandez-Jover, Marta; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Lee, Amanda; Groves, Peter

    2017-01-01

    There are few published studies describing the unique management practices, farm design and housing characteristics of commercial meat chicken and layer farms in Australia. In particular, there has been a large expansion of free range poultry production in Australia in recent years, but limited information about this enterprise exists. This study aimed to describe features of Australian commercial chicken farms, with particular interest in free range farms, by conducting on-farm interviews of 25 free range layer farms, nine cage layer farms, nine barn layer farms, six free range meat chicken farms and 15 barn meat chicken farms in the Sydney basin bioregion and South East Queensland. Comparisons between the different enterprises (cage, barn and free range) were explored, including stocking densities, depopulation procedures, environmental control methods and sources of information for farmers. Additional information collected for free range farms include range size, range characteristics and range access. The median number of chickens per shed was greatest in free range meat chicken farms (31,058), followed by barn meat chicken (20,817), free range layer (10,713), barn layer (9,300) and cage layer farms (9,000). Sheds had cooling pads and tunnel ventilation in just over half of both barn and free range meat chicken farms (53%, n = 8) and was least common in free range layer farms (16%, n = 4). Range access in free range meat chicken farms was from sunrise to dark in the majority (93%, n = 14) of free range meat chicken farms. Over half of free range layer farms (56%, n = 14) granted range access at a set time each morning; most commonly between 9:00 to 10.00am (86%, n = 12), and chickens were placed back inside sheds when it was dusk.

  15. Magnetosheath electrostatic turbulence

    International Nuclear Information System (INIS)

    Rodriguez, P.

    1979-01-01

    By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath

  16. Motion of charged particles in the magnetosphere

    International Nuclear Information System (INIS)

    Mukherjee, G.K.; Rajaram, R.

    1981-01-01

    The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant shows maximum variation for particles close to 90 0 pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity. (orig.)

  17. On the propagation of bubbles in the geomagnetic tail

    Directory of Open Access Journals (Sweden)

    J. Birn

    2004-04-01

    Full Text Available Using three-dimensional magnetohydrodynamic simulations, we investigate the propagation of low-entropy magnetic flux tubes ("bubbles" in the magnetotail. Our simulations address fundamental properties of the propagation and dynamics of such flux tubes rather than the actual formation process. We find that the early evolution, after a sudden reduction of pressure and entropy on a localized flux tube, is governed by re-establishing the balance of the total pressure in the dawn-dusk and north-south directions through compression on a time scale less than about 20s for the typical magnetotail. The compression returns the equatorial pressure to its original unperturbed value, due to the fact that the magnetic field contributes only little to the total pressure, while farther away from the equatorial plane the magnetic field compression dominates. As a consequence the pressure is no longer constant along a flux tube. The subsequent evolution is characterized by earthward propagation at speeds of the order of 200-400km/s, depending on the initial amount of depletion and the cross-tail extent of a bubble. Simple acceleration without depletion does not lead to significant earthward propagation. It hence seems that both the entropy reduction and the plasma acceleration play an important role in the generation of fast plasma flows and their propagation into the near tail. Earthward moving bubbles are found to be associated with field-aligned current systems, directed earthward on the dawnward edge and tailward on the duskward edge. This is consistent with current systems attributed to observed bursty bulk flows and their auroral effects.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheetnguage:

  18. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    Science.gov (United States)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  19. Survey of Pc3-5 ULF velocity oscillations in SuperDARN THEMIS-mode data: Occurrence statistics and driving mechanisms

    Science.gov (United States)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B.; Lin, D.; Bland, E. C.; Hartinger, M.; Scales, W.

    2017-12-01

    Ultra-low frequency (ULF: 1 mHz-10 Hz) waves are believed to play an important role in the energization and transport of plasma within the magnetosphere-ionosphere system, as well as the transfer of energy from the solar wind. Most previous statistical studies of ionospheric ULF waves using Super Dual Auroral Radar Network (SuperDARN) data have been constrained to the Pc5 band ( 1-7 mHz) and/or one or two radars covering a limited range of latitudes. This is partially due to lack of a database cataloging high time resolution data and an efficient way to identify wave events. In this study, we conducted a comprehensive survey of ULF wave signatures in the Pc3-5 band using 6 s resolution data from all SuperDARN radars in the northern hemisphere operating in THEMIS-mode from 2010 to 2016. Numerical experiments were conducted to derive dynamic thresholds for automated detection of ULF waves at different frequencies using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition and geomagnetic activity level dependence have been studied. We found Pc5 events dominate at high latitudes with a most probable frequency of 2 mHz while Pc3-4 are relatively more common at mid-latitudes on the nightside with a most probable frequency of 11 mHz. At high latitudes the occurrence rate of poloidal Pc3-5 peaks in the dusk sector and in winter while at mid-latitudes the poloidal Pc3-4 occurrence rate peaks at pre-midnight. This pre-midnight occurrence peak becomes more prominent with increasing AE index value, in equinox and during southward IMF, which suggests many of these events are most likely Pi2 pulsations associated with magnetotail dynamics during active geomagnetic intervals.

  20. Diving of great shearwaters (Puffinus gravis in cold and warm water regions of the South Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Robert A Ronconi

    Full Text Available BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis, the largest member of this genus. This study reports the first high sampling rate (2 s of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50% dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving.

  1. First Look at Results from the Metal Oxide Space Cloud (MOSC) Experiment

    Science.gov (United States)

    Caton, R. G.; Pedersen, T. R.; Parris, R. T.; Groves, K. M.; Bernhardt, P. A.; Cannon, P. S.

    2013-12-01

    During the moon down period from 28 April to 10 May 2013, the NASA Sounding Rocket Program successfully completed a series of two launches from the Kwajalein Atoll for the Air Force Research Laboratory's Metal Oxide Space Cloud (MOSC) experiment. Payloads on both Terrier Improved Orion rockets flown during the mission included two 5 kg of canisters of Samarium (Sm) powder in a thermite mix for immediate expulsion and vaporization and a two-frequency Coherent Electromagnetic Radio Tomography (CERTO) beacon provided by the Naval Research Laboratory. The launches were carefully timed for dusk releases of Sm vapor at preselected altitudes creating artificially generated layers lasting several hours. A host of ground sensors were deployed to fully probe and characterize the localized plasma cloud produced as a result of charge exchange with the background oxygen (Sm + O → SmO+ + e-). In addition to incoherent scatter probing of the ionization cloud with the ALTAIR radar, ground diagnostics included GPS and CERTO beacon receivers at five locations in the Marshall Islands. Researchers from QinetiQ and the UK MOD participated in the MOSC experiment with the addition of an HF transmitting system and an array of receivers distributed across multiple islands to examine the response of the HF propagation environment to the artificially generated layer. AFRL ground equipment included a pair of All-Sky Imagers, optical spectrographs, and two DPS-4D digisondes spaced ~200 km apart providing vertical and oblique soundings. As the experimental team continues to evaluate the data, this paper will present a first look at early results from the MOSC experiment. Data collected will be used to improve existing models and tailor future experiments targeted at demonstrating the ability to temporarily control the RF propagation environment through an on-demand modification of the ionosphere. Funding for the launch was provided by the DoD Space Test Program.

  2. Seasonal patterns in the nocturnal distributionand behavior of the mesopelagic fish Maurolicus muelleri at high latitudes

    KAUST Repository

    Prihartato, Perdana

    2015-02-17

    Acoustic scattering layers (SL) ascribed to pearlside Maurolicus muelleri were studied in Masfjorden, Norway, using upward-looking echo sounders cabled to shore for continuous long-term measurements. The acoustic studies were accompanied by continuous measurements of surface light and supplemented with intermittent field campaigns. From autumn to spring, young M. muelleri formed an SL in the upper ∼75 to 150 m in the daytime, characterized by migration to near-surface water near dusk, subsequent \\'midnight sinking\\', followed by a dawn ascent before a return to the daytime habitat. Light levels were ∼1 order of magnitude lower during the dawn ascent than for ascent in the afternoon, with the latter terminating before fish reached upper layers on ∼1/3 of the nights from late November to mid-April. Adults showed less tendency of migration during autumn and winter, until the SLs of young and adults merged in late spring, and thereafter displayed coherent migration behavior. The midnight sinking became progressively deeper from autumn to winter but was strongly reduced from mid-May when the darkest nocturnal light intensity (PAR) at the surface was above 10-3 μmol m-2 s-1. The pearlside took on schooling in upper waters during the even lighter nights in early June, with minimum light of ∼5 × 10-3 to 10-1 μmol m-2 s-1 at the surface. Nocturnal schooling ceased in early July, and midnight sinking reappeared in mid-August. We suggest that the strong variation in nocturnal light intensity at high latitudes provides changing trade-offs between visual foraging and avoiding predators and hence varying time budgets for feeding in the upper, productive layers.

  3. Hemidactylus frenatus (Squamata: Gekkonidae: call frequency, movement and condition of tail in Costa Rica

    Directory of Open Access Journals (Sweden)

    Caty Frenkel

    2006-12-01

    Full Text Available Call frequency and movements of the gecko Hemidactylus frenatus were studied in Punta Morales, Costa Rica from April 1999 through May 2000. Call activity of H. frenatus was positively related to air temperature at night and throughout the year. Higher activity was at dusk, dawn, and during the hottest months. Call frequency was related with gecko abundance per month, although not during the night. More males and females had a regenerated tail compared to juveniles, the last ones could have it complete or regenerated. Females moved longer distances than males and juveniles. Adults were found higher on walls. Males and females were recaptured more times than juveniles, and the period of time between their recaptures was longer. Members of this population do not seem to be as aggressive to other geckos as mentioned in the literature. Rev. Biol. Trop. 54 (4: 1125-1130. Epub 2006 Dec. 15Estudié la frecuencia de canto y el desplazamiento de la lagartija Hemidactylus frenatus en Punta Morales, CostaRica. La frecuencia de canto se corelaciona positivamente con la temperatura ambiental durante la noche y con la temperatura a lo largo del año. La mayor actividad fue al anochecer, al amanecer y durante los meses más calurosos. La abundancia mensual de lagartijas se relacionó con la frecuencia de canto, no así la abundancia por noche. Las colas regeneradas son más frecuentes en hembras y machos que en las lagartijas jóvenes. Las hembras se desplazaron mayores distancias que machos y jóvenes. Los adultos se encontraban más alto en las paredes de los edificios. Los machos y hembras se recapturaron más veces que los jóvenes, y el tiempo entre recapturas fue mayor. Esta población no parece ser tan agresiva como se menciona en la literatura

  4. Individual foraging strategies reveal niche overlap between endangered galapagos pinnipeds.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis and sea lions (Zalophus wollebaeki share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0-80 m depth and mostly at 19-22 h. Most sea lion dives also occurred at night (63%, between 0-40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19-22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0-30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h, depth during overlapping time (21-24 m, and foraging range (37.7%. Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging "hot spot" for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during

  5. Closed model of the earth's magnetosphere

    International Nuclear Information System (INIS)

    Piddington, J.H.

    1979-01-01

    The existence of large-scale motions within the earth's magnetosphere and that of a long magnetotail were predicted in 1960 as results of a hypothetical frictional interaction between the solar wind and the geomagnetic field. The boundary layer model of this interaction involves the flow of magnetosheath plasma in a magnetospheric boundary layer. The flow is across magnetic field lines, and so the layer must be polarized, with a space charge field nearly balancing the induction field V x B. The space charge tends to discharge through the ionosphere, thus providing some magnetic and related activity as well as the Lorentz frictional force. This closed magnetosphere model has been largely neglected in favor of the reconnection model but is now strongly supported by observational results and their interpretation as follows. (1) The evidence for the reconnection model, increasing activity with a southward interplanetary field and invasion of the polar caps by flare particles, is shown to be equally compatible with the closed field model. (2) The magnetotail grows by the motions of closed flux tubes through the dawn and dusk meridians, a process which depends on the nature of the boundary between magnetosphere and magnetosheath plasmas and perhaps also on the solar wind dynamo. Both of these features depend, in turn, on the direction of the interplanetary magnetic field. (3) Closed field lines entering the tail may be stretched to a few tens of earth radii and then contract back to the corotating magnetosphere. Others enter the long tail and are stretched to hundreds of earth radii and so are pervious to fast solar particles. (4) A new model of the magnetospheric substorm involves the entry of closed field lines into the tail and their rapid return to the corotating magnetosphere. The return is due, first, to the release of their trapped plasma as it becomes electrically polarized and, second, to mounting magnetic and plasma stresses in the inflated magnetotail

  6. Geomagnetosystem: charged particle trajectories in the geomagnetic tail

    International Nuclear Information System (INIS)

    Propp, K.E.

    1983-01-01

    The interaction between the solar wind and the magnetic field of the earth results in the formation of a long tail-like structure extending antisolarward. Of central importance in the explanations of the causes and processes involved in the earth's aurorae is the study of the manner in which the magnetotail is formed and maintained. A realistic model of the steady state magnetic field structure is formulated. The magnetic field model is comprised of the geomagnetic dipole field, the field due to the forward magnetopause currents, and the field due to the magnetotail current system. The values and derivatives of the model magnetic field are made available for any position within the geomagnetosystem as the output from specially designed computer subprograms. By numerically integrating both the exact and the guidingcenter approximation equations of motion the motions of protons with energies from 2 eV to 20 keV were studied. All possible pitch and phase angles were used along with the energies to determine a complete range of starting velocities at the center of the magnetotail 40 earth radii distant from the earth. Considerable pitch angle scattering during traversals of the equatorial plane was observed. Nevertheless, the following results were obtained: 1) the phase averaged exact motion results agree well with the phase independent guidingcenter approximation, 2) the dawn to dusk drift velocity in the equatorial region of the tail is nearly independent of pitch angle, 3) the drift velocity which is due to both field line curvature and field gradient is proportional to the proton energy and is approximately as given adiabatic approximations for energies up to 20 keV

  7. Three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere: The generation of field-aligned currents

    International Nuclear Information System (INIS)

    Ogino, T.

    1986-01-01

    A global computer simulation of the interaction of the solar wind with the earth's magnetosphere was executed by using a three-dimensional magnetohydrodynamic model. As a result, we were able to reproduce quasi-steady-state magnetospheric configurations and a Birkeland field-aligned current system which depend on the polarity of the z component of the interplanetary magnetic field (IMF). Twin convection cells and a dawn to dusk electric potential of 30--100 kV appeared at the equator in the magnetosphere. Four types of field-aligned currents were observed. Region 1 and 2 field-aligned currents generated for all IMF conditions were 0.6--1.0 x 10 6 A and 0.15--0.61 x 10 6 A, respectively, in the total current. Region 1 currents at high latitudes are generated from the field-aligned vorticity at the flanks through a viscous interaction and are strengthened by a twisting of open magnetic field lines in the tail region for southward IMF. On the other hand, the low-latitude region 2 currents probably are generated mainly from the inner pressure gradient of the plasma sheet. The region 1 current obtained from the simulation was in good agreement with an estimate from our theoretical analysis of the localized Alfven mode. The other two types of field-aligned currents are the dayside magnetopause currents in the dayside cusp region, which increase for northward IMF, and the dayside cusp currents for southward IMF. The cusp currents are associated with a twisting of open magnetic field lines in the magnetopause region

  8. Alien Asteroid Belt Compared to our Own

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.

  9. Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC Waves, ULF Pulsations, and an Electron Flux Dropout

    Science.gov (United States)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; Macdowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; hide

    2016-01-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst<100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  10. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  11. Observations of low-frequency radio emissions in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Filbert, P.C.; Kellogg, P.J.

    1989-01-01

    A study is made of electromagnetic radiation in the Earth's magnetosphere in the frequency range between 10 kHz and 80 kHz using data from the University of Minnesota Plasma Wave Experiment aboard the IMP 6 satellite. Two types of radio emissions are investigated. First is the nonthermal continuum radiation, it is found that discrete enhancements above ambient levels are correlated with enhancements of the magnetic substorm index AE and appear to follow the onset of the negative bay feature of the AU index by about 20 min or so. The directions of these discrete source regions of continuum radiation are measured as a function of time, and movement of the source region in a dusk-to-dawn direction is directly observed. This drift motion is used to measure the energy of the generating electrons by a time-of-flight method, and a range between 10 keV and 50 keV is found in agreement with previous studies. A second type of radiation is also observed which correlates with auroral kilometric radiation (AKR) on a time scale of ∼ 1 min. This radiation lies between 10 and 60 kHz with a spectral peak near 30 kHz and is found to have a source direction very near that of the coincident AKR. The lower frequency of the spectral peak, in conjunction with the analysis of the spin-modulated wave data, suggests a source location at a higher elevation than the higher-frequency AKR indicating a source altitude of roughly 3 Earth radii

  12. Microhabitat ecology of semi-aquatic Varanus flavescens (Reptilia: Varanidae in altered habitats

    Directory of Open Access Journals (Sweden)

    Mijanur K. M. Rahman

    2016-10-01

    Full Text Available A potential microhabitat is very important for the survival and successful reproduction of any wildlife species. In this study we assessed the microhabitat characteristics of Varanus flavescens in the human altered ecosystems of Chalan beel area, Baraigram, Natore by flowing the Visual Encounter Survey method and by using several important material. A semi-aquatic microhabitat of canal and river was preferred by the species as compared to other identified microhabitats. The slow moving water of the river and canal was fresh and somewhat cloudy in character but stagnant water of the pond and beel (floodplain was semitransparent having lots of phytoplankton and zooplankton. The soil was mostly silty clay. As the study species is cold blooded, the environmental variables like soil, air and water temperatures inside and outside of the microhabitat play major roles for their activity patterns. In order to regulate their body temperature, during a hot sunny day they were more active within the shady area of the microhabitats but at dawn and dusk they were more seen in the sunny areas where temperature was relatively higher. In winter months, the monitor lizards were almost inactive. During that time of the year they live inside the burrow to avoid the extreme cold and foggy weather but during heavy sunshine they come outside of the hole for thermoregulation purpose for a certain time. We noticed that extensive agricultural practice and the excessive use of insecticides may be having a detrimental effect on the microhabitat features important to this semiaquatic lizard. Still the study species is more seen in the human altered ecosystems of Bangladesh. So, to ensure their existence in our close proximity there is an urgent need to create consciousness of the people regarding this beneficial non-venomous species and their respective microhabitat.

  13. Assessment of Ramadan Education and Knowledge Among Diabetic Patients.

    Science.gov (United States)

    Almalki, Mussa Hussain; Hussen, Ibtihal; Khan, Shawana A; Almaghamsi, Abdulrahman; Alshahrani, Fahad

    2018-01-01

    During Ramadan, Muslims fast from dawn until dusk for one lunar month every year. Most of the Muslim patients with diabetes are unaware of the potential complications that can occur while fasting, such as hypoglycemia. The aim of this study is to assess the the patient education level and patients' overall awareness of any possible complications that could occur while fasting during Ramadan and to determine how these patients deal with these complications. We conducted a cross-sectional study and surveyed diabetic patients about their diabetes-related knowledge over a period of 4 months from the outpatient clinic at the Obesity, Endocrine, and Metabolism Center at King Fahad Medical City. Patients were included if they were ≥16 years and if they had been receiving treatment for at least 1 year before the study, irrespective of the medications used; patients were also asked about the presence or absence of complications. This study included 477 patients (325 women and 152 men). Most patients (297; 62.3%) had type 2 diabetes. The patients' mean age was 39.72 ± 15.29 years, and the mean duration of diabetes was 10.80 ± 5.88 years. During the preceding Ramadan, 76% of patients reported fasting, whereas 58% said that they monitored their blood glucose levels once per day. Hypoglycemic episodes were reported in 60.3% of cases with type 2 diabetes and in 8.3% of cases with type 1 diabetes. Among those who had hypoglycemia, 2.8% of patients with type 1 diabetes and 17.8% with type 2 diabetes broke their fast. Finally, 54% of patients reported that their health care providers offered them instructions on diabetes management during Ramadan. Ramadan health education in diabetes can encourage, improve, and guide patients to change their lifestyles during Ramadan while minimizing the risk of acute complications.

  14. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  15. Usage Proposal of a common urban decorative tree (Salix alba L.) to monitor the dispersion of gaseous mercury: A case study from Turda (Romania).

    Science.gov (United States)

    Esbrí, J M; Cacovean, H; Higueras, P

    2018-02-01

    Closure of chloralkali plants poses a risk of abandonment of important sources of gaseous mercury. In this work, an assessment has been made of the potential for pollution from one of these plants in the proximity of a densely populated town in central Romania. The work involved a comparison between two major types of monitoring survey: biomonitoring using leaves of a tree common in urban environments; and LUMEX-based gaseous mercury analysis. For biomonitoring, 21 samples from Salix alba L. trees were taken in Turda area. Atmospheric monitoring included two mobile surveys and one at a fixed location. The results from both monitoring systems show similarities in gaseous mercury dispersion patterns, with high mercury contents clearly related to the presence of the chloralkali plant. Particularly high levels were measured in the following situations: (i) in a 'smog' area related with thermal inversion and (ii) during dusk. Direct monitoring suffered from limitations in acquiring information, especially in a medium-long time range, but biomonitoring provided these data and is capable of covering studies on temporary trends or comparative assessments between European cities with contrasting gaseous mercury sources. The thermal speciation of mercury contents indicates that the whole fraction of mercury in leaves corresponds to organic mercury. This finding implies a non-reversible uptake process, which in turn ensures the applicability of this technique to biomonitor long-term exposure. As a conclusion, the assessment of gaseous mercury pollution based on biomonitoring using S. alba has proven to be a useful, reliable and cost-effective methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mercury's Na Exosphere from MESSENGER Data

    Science.gov (United States)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas