WorldWideScience

Sample records for duration balloon experiment

  1. Power Systems Design for Long Duration Ballooning

    Science.gov (United States)

    Stilwell, Bryan; Chuzel, Alain

    2016-01-01

    The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.

  2. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  3. A New Paradigm in Space Based Experiments Using Rubber Balloons

    CERN Document Server

    Chakrabarti, Sandip K; Palit, Sourav; Chakraborty, Subhankar; Mondal, Sushanta; Bhattacharyya, Arnab; Middya, Susanta; Chakrabarti, Sonali

    2013-01-01

    Indian Centre for Space Physics is engaged in long duration balloon borne experiments with typical payloads less than ~ 3kg. Low cost rubber balloons are used. In a double balloon system, the booster balloon lifts the orbiter balloon to its cruising altitude where data is taken for a long time. Here we present results of muon detections and recent solar activities, including the light curves and flare spectra in the 20-100keV range. We not only show that we have successfully obtained several flares and there spectra at different altitudes, we also found that the high energy X-ray flux of strong flares at altitudes of 10-13 km (the flight altitude of commercial planes) could be more than the contribution due to cosmic rays.

  4. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  5. Attitude determination for balloon-borne experiments

    CERN Document Server

    Gandilo, N N; Amiri, M; Angile, F E; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Dore, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of SPIDER, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. ...

  6. High altitude balloon experiments at IIA

    Science.gov (United States)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  7. Experiments with Helium-Filled Balloons

    Science.gov (United States)

    Zable, Anthony C.

    2010-12-01

    The concepts of Newtonian mechanics, fluids, and ideal gas law physics are often treated as separate and isolated topics in the typical introductory college-level physics course, especially in the laboratory setting. To bridge these subjects, a simple experiment was developed that utilizes computer-based data acquisition sensors and a digital gram scale to estimate the molar mass of the gas in an inflated balloon. In this experiment, the comparable density of an inflated balloon to that of atmospheric air introduces a significant role for buoyancy that must be accounted for. The ideal gas law approximation is assumed for both the isolated gas mixture within the balloon and the surrounding air, which defines the relationship between the gas pressure, volume, temperature, and molar quantity. Analysis of the forces associated with the inflated balloon with the incorporation of Archimedes' principle and the ideal gas law into Newton's second law results in an experimental method for the measurement of the molar mass and mole fraction of a gas that is easy to implement yet academically challenging for students. The following narrative describes the basic setup of this experiment, along with a sample set of data as acquired and analyzed by a typical physics student from one of my classes.

  8. Novel Ultralow-Weight Metal Rubber Sensor System for Ultra Long-Duration Scientific Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, ultralow mass density, and non-intrusive sensor system for ultra long duration balloons that will operate in the most...

  9. The association between intrauterine balloon tamponade duration and postpartum hemorrhage outcomes.

    Science.gov (United States)

    Einerson, Brett D; Son, Moeun; Schneider, Patrick; Fields, Ian; Miller, Emily S

    2017-03-01

    Intrauterine balloon tamponade is an effective treatment for postpartum hemorrhage when first-line treatments fail. The optimal duration of intrauterine balloon tamponade for management of postpartum hemorrhage is unclear. The objective of the study was to determine whether intrauterine balloon tamponade removal >12 hours of duration is associated with postpartum hemorrhage-related clinical outcomes. This was a retrospective cohort study of women with postpartum hemorrhage from 2007 through 2014 who underwent intrauterine balloon tamponade. We excluded failures of intrauterine balloon tamponade (intrauterine balloon expulsion with duration tamponade for 2-12 hours were compared with those who underwent intrauterine balloon tamponade for >12 hours. Examined postpartum hemorrhage-related clinical outcomes included estimated blood loss after intrauterine balloon tamponade placement, blood product transfusion, use of adjuvant measures to control postpartum hemorrhage after intrauterine balloon tamponade (either uterine artery embolization or hysterectomy), and maternal intensive care unit admission. Secondary outcomes examined included postpartum fever and hospital length of stay. Multivariable logistic regression models were used to control for confounding variables. Of 274 eligible women, 206 (75%) underwent intrauterine balloon tamponade for >12 hours and 68 (25%) underwent intrauterine balloon tamponade for 2-12 hours. The median estimated blood loss after intrauterine balloon tamponade placement (190 vs 143 mL, P = .116) as well as the frequencies of blood product transfusion (62.1% vs 51.5%, P = .120), transfusion of ≥4 U of packed red blood cells (17.0% vs 14.7%, P = .659), uterine artery embolization (15.1% vs 16.2%, P = .823), hysterectomy (0.0% vs 1.5%, P = .248), and intensive care unit admission (8.7% vs 7.4%, P = .721), was not statistically different between the groups, and this lack of association persisted in multivariable regressions

  10. Special considerations for qualifying thin films for super pressure pumpkin ultra long duration balloon missions

    Science.gov (United States)

    Said, Magdi A.

    2004-01-01

    The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.

  11. The IMaX polarimeter for the solar telescope SUNRISE of the NASA long duration balloon program

    Science.gov (United States)

    Alvarez-Herrero, A.; Martínez-Pillet, V.; Del Toro Iniesta, J. C.; Domingo, V.

    2010-06-01

    On June 8th 2009 the SUNRISE mission was successfully launched. This mission consisted of a 1m aperture solar telescope on board of a stratospheric balloon within the Long Duration Balloon NASA program. The flight followed the foreseen circumpolar trajectory over the Artic and the duration was 5 days and 17 hours. One of the two postfocal instruments onboard was IMaX, the Imaging Magnetograph eXperiment. This instrument is a solar magnetograph which is a diffraction limited imager capable to resolve 100 km on the solar surface, and simultaneously a high sensitivity polarimeter (Aeroespacial field and it is an important precedent for future space missions such as Solar Orbiter from ESA. Among these novel technologies the utilization of Liquid Crystal Variable Retarders (LCVRs) as polarization modulators and a LiNbO3 etalon as tunable spectral filter are remarkable. Currently the data obtained is being analyzed and the preliminary results show unprecedented information about the solar dynamics.

  12. Beam tests of the balloon-borne ATIC experiment

    CERN Document Server

    Ganel, O; Ahn, H S; Ampe, J; Bashindzhagian, G L; Case, G; Chang, H; Ellison, S; Fazely, A; Gould, R; Granger, D; Gunasingha, R M; Guzik, T G; Han, Y J; Isbert, J; Kim, H J; Kim, K C; Kim, S K; Kwon, Y; Panasyuk, M Y; Panov, A; Price, B; Samsonov, G; Schmidt, W K H; Sen, M; Seo, E S; Sina, R; Sokolskaya, N; Stewart, M; Voronin, A; Wagner, D; Wang, J Z; Wefel, J P; Wu, J; Zatsepin, V

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurements from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide information about some of the most fundamental questions in astroparticle physics today. ATIC's design centers on an 18 radiation length (X0) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75λint graphite target. In September 1999, the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000–January 2001 and again in December 2002–January 2003, ATIC flew on the first two of a series of long-duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam tests, including energy resolutions for electrons and protons at several beam energies from 100 to 375 G...

  13. Low-Weight, Durable, and Low-Cost Metal Rubber Sensor System for Ultra Long Duration Scientific Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, low-cost, ultra low mass density, and non-intrusive sensor system for ultra long duration balloons (ULDB) that will...

  14. The IMaX polarimeter for the solar telescope SUNRISE of the NASA long duration balloon program

    Directory of Open Access Journals (Sweden)

    Domingo V.

    2010-06-01

    Full Text Available On June 8th 2009 the SUNRISE mission was successfully launched. This mission consisted of a 1m aperture solar telescope on board of a stratospheric balloon within the Long Duration Balloon NASA program. The flight followed the foreseen circumpolar trajectory over the Artic and the duration was 5 days and 17 hours. One of the two postfocal instruments onboard was IMaX, the Imaging Magnetograph eXperiment. This instrument is a solar magnetograph which is a diffraction limited imager capable to resolve 100 km on the solar surface, and simultaneously a high sensitivity polarimeter (<10-3 and a high resolution spectrograph (bandwidth <70mÅ. The magnetic vectorial map can be extracted thanks to the well-know Zeeman effect, which takes place in the solar atoms, allowing to relate polarization and spectral measurements to magnetic fields. The technological challenge of the IMaX development has a special relevance due to the utilization of innovative technologies in the Aeroespacial field and it is an important precedent for future space missions such as Solar Orbiter from ESA. Among these novel technologies the utilization of Liquid Crystal Variable Retarders (LCVRs as polarization modulators and a LiNbO3 etalon as tunable spectral filter are remarkable. Currently the data obtained is being analyzed and the preliminary results show unprecedented information about the solar dynamics.

  15. Cosmic ray abundance measurements with the CAKE balloon experiment

    CERN Document Server

    Cecchini, S; Giacomelli, G; Manzoor, S; Medinaceli, E; Patrizii, L; Togo, V

    2005-01-01

    We present the results from the CAKE (Cosmic Abundance below Knee Energy) balloon experiment which uses nuclear track detectors. The final experiment goal is the determination of the charge spectrum of CR nuclei with Z $>$ 30 in the primary cosmic radiation. The detector, which has a geometric acceptance of $\\sim$ 1.7 m$^2$sr, was exposed in a trans-mediterranean stratospheric balloon flight. Calibrations of the detectors used (CR39 and Lexan), scanning strategies and algorithms for tracking particles in an automatic mode are presented. The present status of the results is discussed

  16. Proliferation kinetics of paramecium tetraurelia in balloon-borne experiments

    Energy Technology Data Exchange (ETDEWEB)

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Rousseille, R.; Planel, H.

    1982-06-01

    Experiments were carried out to demonstrate the effect of cosmic radiation, at a balloon-flight ceiling of about 36,500 m (120,000 ft) on single-cell organism proliferation. Paramecium tetraurelia were placed in air-tight containers and maintained at 25 degrees +/- 0.1 degrees C. Cellular growth was determined by cell count, either after recovery or during the flight, by means of an automatic fixation device. Dosimetry was performed by a tissue equivalent proportional counter and was of about 0.5 mrad/h. Flight ceiling duration ranged from 48 min - 22 h. A secondary stimulating effect of growth rate, preceded by a temporary decrease, was observed after recovery. Because of the high bacterial concentration in the trans-Mediterranean flight culture medium, the temporary drop of the growth rate, due to the radiolysis products, disappears. Researchers consider that the stimulating effect can be the result of enzymatic intracellular scavenging of radiolysis products generated in the cell.

  17. Novel short-duration heating balloon dilatation with uniform temperature distribution: the heating conditions to suppress neo-intimal hyperplasia.

    Science.gov (United States)

    Kunio, M; Shimazaki, N; Arai, T; Sakurada, M

    2011-01-01

    We investigate the relation between the influences on smooth muscle cells and the chronic performances of our novel short-duration heating balloon dilatation to reveal the heating conditions which can suppress the neo-intimal hyperplasia after our heating dilatations. The temperature of prototype balloon catheter surface was measured during short-duration heating balloon dilatation ex vivo. There existed 2 °C temperature variations in the long direction of prototype balloon catheter at a maximum. The neo-intimal hyperplasia occupancy rate after our short-duration heating dilatations were measured in vivo porcine study. The neo-intimal hyperplasia was suppressed most at 75 °C in balloon peak temperature in vivo. The estimated dead rate of smooth muscle cells at this condition was about 13% by the Arrhenius equation. We think that the suppression of neo-intimal hyperplasia was obtained after our short-duration heating dilatation due to the proper decrease of smooth muscle cells by heating and no thermal damages to the adventitia and surrounding tissues.

  18. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    Science.gov (United States)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  19. Hyperspectral Polarimeter for Monitoring Balloon Strain Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's latest generation of superpressure, ultra long duration balloons (ULDB) extend the flight time for stratospheric experiments to levels previously unattainable...

  20. Special Considerations for Qualifying Thin Films for Supper Pressure Pumpkin Ultra Long Duration Balloon (ULDB) Missions

    Science.gov (United States)

    Said, M.

    Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in

  1. Adapted ECC ozonesonde for long-duration flights aboard boundary-layer pressurised balloons

    Science.gov (United States)

    Gheusi, François; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clenet, Antoine; Derrien, Solène; Doerenbecher, Alexis; El Amraoui, Laaziz; Fontaine, Alain; Hache, Emeric; Jambert, Corinne; Jaumouillé, Elodie; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2016-12-01

    Since the 1970s, the French space agency CNES has developed boundary-layer pressurised balloons (BLPBs) with the capability to transport lightweight scientific payloads at isopycnic level and offer a quasi-Lagrangian sampling of the lower atmosphere over very long distances and durations (up to several weeks).Electrochemical concentration cell (ECC) ozonesondes are widely used under small sounding balloons. However, their autonomy is limited to a few hours owing to power consumption and electrolyte evaporation. An adaptation of the ECC sonde has been developed specifically for long-duration BLPB flights. Compared to conventional ECC sondes, the main feature is the possibility of programming periodic measurement sequences (with possible remote control during the flight). To increase the ozonesonde autonomy, the strategy has been adopted of short measurement sequences (2-3 min) regularly spaced in time (e.g. every 15 min). The rest of the time, the sonde pump is turned off. Results of preliminary ground-based tests are first presented. In particular, the sonde was able to provide correct ozone concentrations against a reference UV-absorption ozone analyser every 15 min for 4 days. Then we illustrate results from 16 BLBP flights launched over the western Mediterranean during three summer field campaigns of the ChArMEx project (http://charmex.lsce.ipsl.fr): TRAQA in 2012, and ADRIMED and SAFMED in 2013. BLPB drifting altitudes were in the range 0.25-3.2 km. The longest flight lasted more than 32 h and covered more than 1000 km. Satisfactory data were obtained when compared to independent ozone measurements close in space and time. The quasi-Lagrangian measurements allowed a first look at ozone diurnal evolution in the marine boundary layer as well as in the lower free troposphere. During some flight segments, there was indication of photochemical ozone production in the marine boundary layer or even in the free troposphere, at rates ranging from 1 to 2 ppbv h -1, which

  2. The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    CERN Document Server

    Gudmundsson, J E; Amiri, M; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Doré, O; Filippini, J P; Fraisse, A A; Gambrel, A; Gandilo, N N; Hasselfield, M; Halpern, M; Hilton, G C; Holmes, W; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z; MacTavish, C J; Mason, P V; Megerian, K; Moncelsi, L; Montroy, T E; Morford, T A; Nagy, J M; Netterfield, C B; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Shariff, J A; Soler, J D; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; Wiebe, D V; Young, E

    2015-01-01

    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.

  3. The thermal design, characterization, and performance of the SPIDER long-duration balloon cryostat

    Science.gov (United States)

    Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Dore, O.; Filippini, J. P.; Fraisse, A. A.; Gambrel, A.; Gandilo, N. N.; Hasselfield, M.; Halpern, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z.; MacTavish, C. J.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Montroy, T. E.; Morford, T. A.; Nagy, J. M.; Netterfield, C. B.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Wiebe, D. V.; Young, E.

    2015-12-01

    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid 4 He to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle 3 He adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.

  4. Scientific ballooning in Brazil

    Science.gov (United States)

    Corrêa, R.; Rinke, E.; Fernandes, J. O.; Villela, T.

    We present an overview of the scientific ballooning activities that took place in Brazil over the past 30 years as well as the current ongoing efforts in the area. We also briefly describe the balloon launching facility that exists at the Instituto Nacional de Pesquisas Espaciais (National Institute for Space Research) — INPE. Up to now, over 100 scientific balloon experiments, related to Astrophysics, Aeronomy, and Geophysics were launched from Brazil taking advantage of the country's continental dimensions, a well-defined rain season, and a low population density, which offer excellent conditions for scientific ballooning activities. Balloons with volumes up to 500,000 cubic meters can be launched from INPE's balloon launching base (latitude S 22° 4' 2″; longitude W 044° 58' 41″). The availability of good roads and several inland airports in Brazil provides the necessary structure for safe payload retrieval and its rapid return to the balloon base. There are several airports throughout Brazil that can also be used as balloon launching bases, mainly in the country's Eastern region. Overflights of more than 1,000 kilometers are possible and easily attained. Balloon flights ranging from a few hours to long duration flights can be safely verified. The constant climate monitoring through the use of weather satellites information received at INPE provides the necessary data to determine the necessary conditions for a long duration flight. INPE's Center for Weather Forecast and Climate Studies (CPTEC) provides the necessary weather forecast support for launch and payload retrieval.

  5. Modified ECC ozone sonde for long-duration flights aboard isopicnic drifting balloons

    Science.gov (United States)

    Gheusi, Francois; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clénet, Antoine; Fontaine, Alain; Jambert, Corinne; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2015-04-01

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPB) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electrochemical concentration cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (owing to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPB. The mechanical elements (Teflon pump and motor) and the electrochemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, a strategy has been adopted of short measurement sequences (typically 2-3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Consequently, the measurement sequence is typically composed of a one-minute spin-up period after the pump has been turned on, followed by a one- to two-minute acquisition period. All time intervals can be adjusted before and during the flight. Results of a preliminary ground-based test in spring 2012 are first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then we illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during summer field campaings in 2012 and 2013 (TRAQA and ChArMEx programmes). BLPB drifting

  6. A high-altitude balloon experiment to probe stratospheric electric fields from low latitudes

    Science.gov (United States)

    Gurubaran, Subramanian; Shanmugam, Manu; Jawahar, Kaliappan; Emperumal, Kaliappan; Mahavarkar, Prasanna; Buduru, Suneel Kumar

    2017-02-01

    The Earth's electrical environment hosts a giant electrical circuit, often referred to as the global electric circuit (GEC), linking the various sources of electrical generators located in the lower atmosphere, the ionosphere and the magnetosphere. The middle atmosphere (stratosphere and mesosphere) has been traditionally believed to be passively transmitting electric fields generated elsewhere. Some observations have reported anomalously large electric fields at these altitudes, and the scientific community has had to revisit the earlier hypothesis time and again. At stratospheric altitudes and especially at low latitudes, horizontal electric fields are believed to be of ionospheric origin. Though measurements of these fields from a balloon platform are challenging because of their small magnitudes (around a few mV m-1), a suitably designed long-duration balloon experiment capable of detecting such small fields can provide useful information on the time evolution of ionospheric electric fields, which is otherwise possible only using radar or satellite in situ measurements. We present herein details of one such experiment, BEENS (Balloon Experiment on the Electrodynamics of Near Space), carried out from a low-latitude site in India. The instrument package for this experiment is comprised of four deployable booms for measurements of horizontal electric fields and one inclined boom for vertical electric field measurements, all equipped with conducting spheres at the tip. The experiment was conducted from Hyderabad (17.5° N, 78.6° E) during the post-midnight hours on 14 December 2013. In spite of a few shortcomings we report herein, a noticeable feature of the observations has been the detection of horizontal electric fields of ˜ 5 mV m-1 at the stratospheric altitudes of ˜ 35 km.

  7. NASA balloon: Aircraft ranging, data and voice experiment

    Science.gov (United States)

    Wishna, S.; Hamby, C.; Reed, D.

    1972-01-01

    A series of tests to evaluate, at L-band, the ranging, voice, and data communications concepts proposed for the air traffic control experiment of the Applications Technology Satellite-F are described. The ground station facilities, balloon platforms and the aircraft were supplied by the European Space Research Organization. One ground simulation and two aircraft flights at low elevation angles were conducted. Even under high interference conditions good performance was obtained for both voice communications and side tone ranging. High bit errors occurred in the data channels resulting in false commands. As a result of the experience gained in operating the equipment in an aircraft environment several recommendations were made for improving the equipment performance.

  8. Understanding cosmic rays with Balloon and Space Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Picozza, P., E-mail: piergiorgio.picozza@roma2.infn.it [University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy); INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Di Felice, V. [INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2013-10-15

    Measurements of cosmic rays provide important information on their sources and on the mechanisms of acceleration and propagation of cosmic particles through the Galaxy. Positrons and antiprotons in cosmic rays are also the major candidates for searching signals from annihilation of dark matter and contributions from other exotic sources as nearby pulsars. Many balloon-borne experiments have been performed since the sixties, obtaining important results that strongly suggested the realization of the PAMELA and Fermi satellite missions, the latter mainly for gamma rays, and AMS-02 on the ISS. The precision of the measurements and the high statistics highlighted unexpected features in the cosmic particle energy spectra that are setting strong constraints to the nature of Dark Matter and are contributing to change our basic vision of their origin and propagation. The continuous particle detection in space experiments is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms.

  9. The long duration flight of the TopHat experiment

    DEFF Research Database (Denmark)

    Silverberg, R. F.; Aguirre, J.; Bezaire, J.;

    2003-01-01

    The TopHat instrument was designed to operate on the top of a high altitude balloon. From this location, the experiment could efficiently observe using a clean beam with extremely low contamination from the far side lobes of the instrument beam. The experiment was designed to scan a large portion...

  10. Double balloon enteroscopy in the old: Experience from China

    Institute of Scientific and Technical Information of China (English)

    Qiong He; Bing Xiao; Ya-Li Zhang; Bo Jiang; Yang Bai; Fa-Chao Zhi; Qiang Zhang; Jian-Dong Li; Ya-Dong Wang; Tian-Mo Wan; Zhen-Yu Chen; De-Shou Pan; Jian-Qun Cai; Si-De Liu

    2012-01-01

    AIM:To evaluate the safety,efficacy and management of double balloon enteroscopy (DBE) carried out in those aged individuals with suspicious small intestine diseases.METHODS:DBE is a wonderful invention of the past decade and is widely used as an examination tool for the gastrointestinal tract.From January 2003 to July 2011,data from patients who were ≥ 65 years old and underwent DBE examination in the Nanfang Hospital were included in a retrospective analysis.RESULTS:Fifty-nine individuals were found and subsequently analyzed.The mean age was 69.63 ± 3.89 years (range 65-84),34 were males.Indications for DBE were melena/hematochezia (36 cases),abdominal pain (15 cases),diarrhea (3 cases),stool change (1 case),weight loss (1 case),vomiting (2 cases),and de bilitation (1 case).The average duration of symptoms was 33.34 ± 64.24 mo.Twenty-seven patients suffered from age-related diseases.Severe complications were not found during and after DBE.Comparison between systolic and diastolic blood pressure before and after DBE was statistically significant (mean ± SD,P < 0.01,P < 0.05,respectively).Small bowel pathologies were found by DBE in 35 patients,definite diagnoses were made in 31 cases,and detection rate and diagnostic yield for DBE were 68.6% and 60.8%,respectively.CONCLUSION:DBE is a safe and effective method for gastrointestinal examination in the aged population.Aging alone is not a risk factor for elderly patients with suspicious gastrointestinal diseases and thorough preparation prior to the DBE procedure should be made for individuals with multiple diseases especially cardiopulmonary disorders.

  11. EBEX: A balloon-borne CMB polarization experiment

    CERN Document Server

    Reichborn-Kjennerud, Britt; Ade, Peter; Aubin, Françcois; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Sagiv, Ilan; Smecher, Graeme; Stivoli, Federico; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-01-01

    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from \\ell = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constrain...

  12. Design and Implementation of an experiment-specific Payload Orientation Platform for balloon-borne Experiment .

    Science.gov (United States)

    Devarajan, Anand; Rodi, Ashish; Ojha, Devendra

    2012-07-01

    To investigate the mesospheric dynamics and its coupling to the upper atmospheric regions above, a Balloon-borne optical Investigation of Regional-atmospheric Dynamics (BIRD) experiment was jointly conducted by Physical Research Laboratory Ahmedabad and Boston University, on 08 March 2010 from TIFR Balloon Facility, Hyderabad. Along with the BIRD payload, a nano payload of University of York, Canada was also flown for aerosol studies during sunset. The balloon carrying a 335kg BIRD payload was launched at 1052 hrs, reached a float altitude of 34.8km amsl at 1245 hrs and was allowed to float till 1825 hrs before it was parachuted down. To achieve the experimental objectives, it was essential that the payload Gandola, comprising of two optical spectrographs, is programmed to rotate azimuthally in 3 steps of 30 degrees each from East-West (E-W) to North-South (N-S) direction, stop at each step for 5 minutes for data acquisition, return to the original E-W position and keep repeating the sequence continuously with a provision to start or stop the orientation from Ground station through telecommand. To meet these unique requirements, we designed developed and implemented a Payload Orientation Platform (POP), using flux-gate magnetometer for direction-finding, which worked satisfactorily in the BIRD flight. This paper presents an overview of the POP implemented, focuses on the design considerations of the associated electronics and finally presents the results of the performance during the entire balloon flight.

  13. The atmospheric nightglow in the 300-400 nm wavelength Results by the balloon-borne experiment 'BABY'

    CERN Document Server

    Catalano, O; Biondo, B; Celi, F; Di Raffaele, R; Giarrusso, S; Linsley, J; Lo Bue, A; Mangano, A; Russo, F

    2002-01-01

    The balloon-borne experiment, named BAckground BYpass (BABY) belongs to a wider program that has as its final goal the detection and study of high-energy cosmic rays from space (satellite, Space Station). An information of fundamental importance for this class of projects concerns the nighttime background light. The instrument designed to detect fluorescence photons is basically composed of two collimated photomultipliers: a single photon-counting PMT and a charge integration PMT. We briefly report the details of the design, operation and performance of the detector, which was designed and completely built at the IFCAI-CNR Institute in Palermo. Preliminary analysis and results of the nocturnal background in the range of 300-400 nm are presented for the whole duration of the flight during the 1998 Mediterranean balloon flight campaign. A substantial part of the flight was at night over the sea.

  14. Intraoperative balloon angioplasty using fogarty artertial embolectomy balloon catheter for creation of arteriovenous fistula for hemodialysis: single center experience.

    Science.gov (United States)

    Jin, Moran; Yoon, Young Chul; Wi, Jin Hong; Lee, Yang-Haeng; Han, Il-Yong; Park, Kyung-Taek

    2015-04-01

    The purpose of this study was to evaluate the use of a Fogarty arterial embolectomy catheter (Fogarty catheter) in intraoperative balloon angioplasty of the cephalic vein, in order to determine its effect on the patency of arteriovenous fistulas (AVFs) created for hemodialysis access. A total of 156 patients who underwent creation of an AVF were divided into two groups, based whether a Fogarty catheter was used during AVF creation. Group A (89 patients) comprised the patients who underwent balloon angioplasty with a Fogarty catheter during the operation. Group B (67 patients) included the patients in whom a Fogarty catheter was not used during the operation. Patient records were reviewed retrospectively and documented. The patency rate was determined by the Kaplan-Meier method. The records of 156 patients who underwent the creation of an AVF from January 2007 to October 2011 were included. The mean follow-up duration was 40.2±19.4 months (range, 1 to 97 months). The patency rates in group A at 12, 36, and 72 months were 83.9%±3.9%, 78.3%±4.6%, and 76.3%±4.9%, respectively, while the corresponding patency rates in group B were 92.5%±3.2%, 82.8%±0.5%, and 79.9%±5.7%, respectively. The patency rates in group B were found to be slightly higher than those in group A, but the difference was not statistically significant (p=0.356). Intraoperative balloon angioplasty of the cephalic vein using the Fogarty catheter is a simple and easily reproducible procedure, and it can be helpful in increasing AVF patency in cases of insufficient runoff or a suboptimal cephalic vein.

  15. [A new balloon-expandable plastic endoprosthesis. Initial report of experience with the malleable thermostent].

    Science.gov (United States)

    Beck, A

    1990-07-01

    A new system of balloon-expandable stents for different purposes is presented. A special plastic material that can be shaped by a hot balloon technique or other internal or external heating modalities has been developed. The plastic material - a distant derivative of polyurethane - is caprolactone, which is soft from 52 degrees C to 70 degrees C. Using balloon techniques, the "thermo-stent" can be modeled to suit the form of the vessels, the bile ducts or the bronchial tree, as required. The balloon can be heated simply by means of a warm NaCl solution, electric matter in the balloon itself or microwaves. The plastic material can even be heated directly, which is especially beneficial if the stent needs to be thicker, e.g. in the bronchial tree, by an electric network within the plastic material, which heats the material to the necessary temperature by electric current. When the balloon is cooled after the dilatation the new form, the plastic has been modeled to is maintained exactly. The advantages of this thermo-stent will be the perfect adaptation to every individual situation in the intraluminal vessels, the bile ducts, and even the bronchi. The problems encountered hitherto with conventional metallic stents, e.g. high thrombogenicity, risk of metal intoxication or metallic rupture of filaments, have not be seen so far in animal experiments.

  16. Balloon UV Experiments for Astronomical and Atmospheric Observations

    CERN Document Server

    Sreejith, A G; Sarpotdar, Mayuresh; Nirmal, K; Ambily, S; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-01-01

    The ultraviolet (UV) window has been largely unexplored through balloons for astronomy. We discuss here the development of a compact near-UV spectrograph with ?ber optics input for balloon ights. It is a modi?ed Czerny-Turner system built using o?-the-shelf components. The system is portable and scalable to di?erent telescopes. The use of re ecting optics reduces the transmission loss in the UV. It employs an image-intensi?ed CMOS sensor, operating in photon counting mode, as the detector of choice. A lightweight pointing system developed for stable pointing to observe astronomical sources is also discussed, together with the methods to improve its accuracy, e.g. using the in-house build star sensor and others. Our primary scienti?c objectives include the observation of bright Solar System objects such as visible to eye comets, Moon and planets. Studies of planets can give us valuable information about the planetary aurorae, helping to model and compare atmospheres of other planets and the Earth. The other ma...

  17. Percutaneous trigeminal ganglion balloon compression : experience in 40 patients.

    Directory of Open Access Journals (Sweden)

    Natarajan M

    2000-10-01

    Full Text Available Forty patients of trigeminal neuralgia were treated with percutaneous trigeminal ganglion balloon compression. Symptoms had been present since six months to twenty years. The age ranged between 23 years and 73 years. All the patients had immediate relief from pain. Two had already undergone trigeminal cistern rhizolysis. One patient had foramen ovale stenosis. After the procedure, all the patients had mild to moderate degree of ipsilateral facial sensory loss which included buccal mucosa and anterior 2/3rd of the tongue. Facial dysaesthesia (anaesthesia dolorosa was seen in only one case, who had mild involvement lasting one week. Thirty patients had altered taste sensation, probably due to general somatic sensory loss. Five patients had herpes perioralis. In this study group, two patients had already undergone microvascular decompression. All the patients were followed for a period ranging from one to eighteen months. Balloon compression technique seems to be better than injection of alcohol, glycerol or radio frequency lesion. Recurrence of pain was noted in 3 patients after one year.

  18. Search for Cosmic-Ray Antiparticles with Balloon-borne and Space-borne Experiments

    CERN Document Server

    von Doetinchem, Ph

    2009-01-01

    This thesis discusses two different approaches for the measurement of cosmic-ray antiparticles in the GeV to TeV energy range. The first part of this thesis discusses the prospects of antiparticle flux measurements with the proposed PEBS detector. The project allots long duration balloon flights at one of Earth's poles at an altitude of 40 km. GEANT4 simulations were carried out which determine the atmospheric background and attenuation especially for antiparticles. The second part covers the AMS-02 experiment which will be installed in 2010 on the International Space Station at an altitude of about 400 km for about three years to measure cosmic rays without the influence of Earth's atmosphere. The present work focuses on the anticoincidence counter system (ACC). The ACC is needed to reduce the trigger rate during periods of high fluxes and to reject external particles crossing the tracker from the side or particles resulting from interactions within the detector which would otherwise disturb the clean charge...

  19. The TopHat experiment: A balloon-borne instrument for mapping millimeter and submillimeter emission

    DEFF Research Database (Denmark)

    Silverberg, R.F.; Cheng, E.S.; Aguirre, J.E.

    2005-01-01

    The TopHat experiment was designed to measure the anisotropy in the cosmic microwave background radiation on angular scales from 0.degrees 3 to 30 degrees and the thermal emission from both Galactic and extragalactic dust. The balloon-borne instrument had five spectral bands spanning frequencies...

  20. Open-Access Single Balloon Enteroscopy: A Tertiary Care Experience.

    Science.gov (United States)

    Holman, Nathan; Wallace, Kristin; Moore, J Matthew; Brock, Andrew S

    2015-12-01

    To compare single balloon enteroscopy (SBE) between patients seen in consultation by a member of our gastroenterology team with those performed as open-access cases. Retrospective study of all patients who underwent SBE at a single tertiary care center from April 2008 to January 2012. Open- and closed-access procedures were compared in terms of diagnostic and therapeutic yield, adverse events, and procedural success. A total of 125 SBEs were performed on 125 patients. The mean age was 63.1 (53% men) years. In all, 43 procedures were performed open access and 82 after face-to-face consultation. Indications included anemia/gastrointestinal bleeding (110), abdominal pain (8), and other (7). Diagnostic yield for open- and closed-access procedures was 53% and 60%, respectively (P = 0.501) and therapeutic yield was 37% and 52%, respectively (P = 0.11). Overall technical success was 91% with no difference between the groups (P = 0.27). There were no major adverse events in either group. SBE can be performed as an open-access procedure without compromise to safety or diagnostic yield.

  1. Scientific ballooning in India: recent developments

    Science.gov (United States)

    Joshi, M. N.; Damle, S. V.

    The National Scientific Balloon Facility (NBF) of the Tata Institute of Fundamental Research (TIFR) has been conducting regular balloon flights for various experiments in the areas of Space Astronomy and Atmospheric Sciences. A continuous improvement in all aspects of Scientific Ballooning through a sustained R and D programme ensures uptodate services and a better handle on the design specifications for the balloon. Recent developments in balloon grade films, continuous improvements in design specifications, balloon manufacturing methods, flight operational procedures and improved balloon flight capabilities have resulted in a greatly improved flight performance in the last five years. A launch capability upgradation programme in terms of new launch spool and new launch vehicle has been initiated to be able to safely launch balloons with gross lifts upto 3500 kg, balloon volumes upto 450,000 m^3 and payloads upto 1400 kg. A series of steps have been initiated to improve long duration flight capabilities. In this paper, we present details on some of these aspects of Scientific Ballooning in India.

  2. An Overview of High-Altitude Balloon Experiments at the Indian Institute of Astrophysics

    CERN Document Server

    Safonova, Margarita; Sreejith, A G; Mathew, Joice; Sarpotdar, Mayuresh; Ambily, S; Nirmal, K; Talnikar, Sameer; Hadigal, Shripathy; Prakash, Ajin; Murthy, Jayant

    2016-01-01

    The High-Altitude Ballooning programme began at Indian Institute of Astrophysics, Bangalore, in the year 2011 with the primary purpose of developing and flying low-cost scientific payloads on a balloon-borne platform. Some of the science goals are studies of the phenomena occurring in the upper atmosphere, of airglow and zodiacal light, and observations of extended astronomical objects such as, for example, comets, from near space (20 to 30 km). A brief summary and results of the tethered flights carried out at CREST campus are given in Ref.~1. Here we present a complete overview of the 9 free-flying balloon experiments conducted from March 2013 to November 2014. We describe the launch procedures, payloads, methods of tracking and recovery of the payloads. Since we fall in the light/medium balloon category, the weight of the payload is limited to less than 5 kg --- we use a 3-D printer to fabricate lightweight boxes and structures for our experiments. We are also developing in-house lightweight sensors and co...

  3. Effects of user experience and method in the inflation of endotracheal tube pilot balloon on cuff pressure.

    Science.gov (United States)

    Ozer, A B; Demirel, I; Gunduz, G; Erhan, O L

    2013-01-01

    Endotracheal tube cuff pressure (ETCP) is recommended to be maintained between 20-30 cm H2O limits. While insufficient inflation of ETC may cause aspirations, over-inflation of it may lead to damage in tracheal epithelium. We planned to investigate the effects of user experience and cuff pressure inflation method differences following endotracheal tube cuff pressure and complaints about it. Two hundred and fifty patients planned for general anaesthesia were included in this study. ETC was inflated by users with different experience according to leakage or pilot balloon palpation techniques. ETCPs were measured by manometer at three periods (5 and 60 minutes after endotracheal intubation, and before extubation). Complaints about it were recorded in post anaesthetic care unit and 24 hours postoperatively. Though we found experience of user had significant effect on the ETCP regulations, we observed inflation methods did not have any effect. However we found ETCP was higher than normal range with experienced users. A correlation was observed between cuff pressure and anaesthesia duration with postoperative complaints. Our study concluded that the methods used do not have any significant advantage over one another. While ETC inflated at normal pressure increases as user's experience increases, experience alone is not enough in adjusting ETCP. A manometer should be used in routine inflation of ETC instead of conventional methods. CP and anaesthesia duration have correlations with some postoperative complaints.

  4. Planning and managing the development of the protoMIRAX balloon experiment by using ECSS standards

    Science.gov (United States)

    Santiago Júnior, Valdivino; Braga, Joao

    2012-07-01

    In this paper, we present a tailoring of the European Cooperation for Space Standardization (ECSS) standards in order to plan and manage the development of the balloon-borne high energy astrophysics experiment protoMIRAX. ECSS standards are supported and have been used by several space agencies in Europe and also at Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil to develop space applications. Our approach is to develop a balloon system based on a set of standards used for critical satellite applications, aiming to obtain not only the success of the protoMIRAX experiment but also to test in near-space environment several subsystems that can be reused in INPE's satellite missions. We show our tailoring taking into account the main ECSS disciplines related to management, such as project planning and implementation and risk management, and discuss the current status of development of the protoMIRAX experiment.

  5. EBEX-IDS: A Balloon-Borne Experiment to Observe and Separate Galactic Dust from Cosmic Inflation Signals

    Science.gov (United States)

    Hanany, Shaul

    Measurements of the imprint of inflationary gravity waves on the cosmic microwave background radiation are currently limited by uncertainty in the properties of polarized galactic dust. A balloon-borne platform probing frequency bands that are not accessible from the ground is uniquely suited to drastically reduce this uncertainty. We propose to advance the technology readiness level of EBEX-IDS, a long-duration balloon-borne experiment that will measure the polarization of galactic dust at 360 GHz with 36 times lower power spectrum noise, compared to the Planck satellite. EBEX-IDS will have 20,562 detectors, spread over 7 frequency bands between 150 and 360 GHz. Using its high sensitivity and broad-bandwidth EBEX-IDS will determine the spectral index of polarized dust emission and its B-mode power spectrum at 150 GHz with an unprecedented accuracy of 0.04% and signal-to-noise ratio (SNR) of 42, respectively. EBEX-IDS proposes to use three types of sinuous antenna multichroic pixels (SAMPs) that are readout with a frequency domain multiplexed system. To advance the TRL if these technologies, we will fabricate and characterize SAMPs with the appropriate properties for use at the balloon environment. We will investigate low power readout systems that are suitable for use aboard EBEX-IDS. We will implement a prototype end-to-end system in the laboratory consisting of SAMP wafers and the intended readout system, and measure its noise, frequency response, and power consumption properties. The work will be carried out by a postdoctoral fellow and graduate student at the University of Minnesota, and a newly hired person at the University of California, Berkeley.

  6. BioEnterics Intragastric Balloon (BIB) versus Spatz Adjustable Balloon System (ABS): Our experience in the elderly.

    Science.gov (United States)

    Russo, Teresa; Aprea, Giovanni; Formisano, Cesare; Ruggiero, Simona; Quarto, Gennaro; Serra, Raffaele; Massa, Guido; Sivero, Luigi

    2017-02-01

    The BioEnterics Intragastric Balloon (BIB) and the Spatz Adjustable Balloon System (ABS) are in fact recommended for weight reduction as a bridge to bariatric surgery. We retrospected studied patients with body mass index (BMI) and age ranges of 37-46 and 70-80 years, respectively, who had undergone BIB from January 2010 to July 2012 and prospected studied patients who had undergone Spatz balloon from July 2012 to August 2014. The aim of this study is to compare BIB and Spatz in terms of weight loss, complications, and maintenance of weight after removal. For both procedures, the median weight loss was 20 ± 3 kg, median BMI at the end of the therapy was 32 ± 2, and no severe complication occurred.

  7. Reflood experiments in rod bundles with flow blockages due to clad ballooning

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.K.; Kim, J.; Kim, K.; Kim, B.J.; Park, J.K.; Youn, Y.J.; Choi, H.S.; Song, C.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    Clad ballooning and the resulting partial flow blockage are one of the major thermal-hydraulic concerns associated with the coolability of partially blocked cores during a loss-of-coolant accident (LOCA). Several in-pile tests have shown that fuel relocation causes a local power accumulation and a high thermal coupling between the clad and fuel debris in the ballooned regions. However, previous experiments in the 1980s did not take into account the fuel relocation phenomena and resulting local power increase in the ballooned regions. The present paper presents the results of systematic investigations on the coolability of rod bundles with flow blockages. The experiments were mainly performed in 5 x 5 rod bundles, 2 x 2 rod bundles and other test facilities. The experiments include a reflood heat transfer, single-phase convective heat transfer, flow redistributions phenomena, and droplet break-up behavior. The effects of the fuel relocation and resulting local power increase were investigated using a 5 x 5 rod bundle. The fuel relocation phenomena increase the peak cladding temperature.

  8. Sensor System for Super-Pressure Balloon Performance Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-duration balloon flights are an exciting new area of scientific ballooning, enabled by the development of large super-pressure balloons. As these balloons...

  9. Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon

    Science.gov (United States)

    Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.

    2015-09-01

    The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.

  10. The protoMIRAX Hard X-ray Imaging Balloon Experiment

    CERN Document Server

    Braga, João; Avila, Manuel A C; Penacchioni, Ana V; Sacahui, J Rodrigo; Santiago, Valdivino A de; Mattiello-Francisco, Fátima; Strauss, Cesar; Fialho, Márcio A A

    2015-01-01

    The protoMIRAX hard X-ray imaging telescope is a balloon-borne experiment developed as a pathfinder for the MIRAX satellite mission. The experiment consists essentially in a coded-aperture hard X-ray (30-200 keV) imager with a square array (13$\\times$13) of 2mm-thick planar CZT detectors with a total area of 169 cm$^2$. The total, fully-coded field-of-view is $21^{\\circ}\\times 21^{\\circ}$ and the angular resolution is 1$^{\\circ}$43'. In this paper we describe the protoMIRAX instrument and all the subsystems of its balloon gondola, and we show simulated results of the instrument performance. The main objective of protoMIRAX is to carry out imaging spectroscopy of selected bright sources to demonstrate the performance of a prototype of the MIRAX hard X-ray imager. Detailed background and imaging simulations have been performed for protoMIRAX balloon flights. The 3$\\sigma$ sensitivity for the 30-200 keV range is ~1.9 $\\times$ 10$^{-5}$ photons cm$^{-2}$ s$^{-1}$ for an integration time of 8 hs at an atmospheric ...

  11. Evaluation of ECMWF ERA-40 temperature and wind in the lower tropical stratosphere since 1988 from past long-duration balloon measurements

    Directory of Open Access Journals (Sweden)

    T. Christensen

    2007-07-01

    Full Text Available The temperature and wind of the ECMWF ERA-40 reanalysis in the tropical lower stratosphere during the period 1988–2001 has been evaluated by comparison with independent in situ measurements of 21 IR Montgolfier and superpressure long-duration balloon flights performed by CNES from Pretoria (26° S in South Africa in 1988–1989, Latacunga (1° S in Ecuador in 1991–1998 and Bauru (22° S in Brazil in 2000–2001. The ERA-40 temperature displays a bias varying progressively from +1.16 K in 1988–1989, to +0.26 K in 1994–1996 and −0.46 K after 1998, the latter being fully consistent with recent evaluations of ECMWF operational analysis from radio occultation and in situ long-duration balloon observations. The amplitude of the bias and its evolution are very similar to the results of a previous evaluation from radiosondes in 1991–2003, suggesting that the origin of the drift of ERA-40 might be mainly due to errors in the series of satellite measurements of MSU, replaced by AMSU in 1998, assimilated in the model.

    The ERA-40 zonal wind speed in the lower stratosphere appears slightly overestimated by 0.7–1.0 m/s on average in both the tropics and equatorial region, that is by 5–10% compared to the average 10–20 m/s wind speed. This bias, fully consistent with a recent evaluation of ECMWF operational analysis in 2004, is found constant during the whole 1988–2001 period, suggesting a shortfall in the variabililty of ERA-40 horizontal winds in the lower stratosphere in the tropics and the equatorial region. Finally calculated trajectories using ERA-40, frequently used for analysing field observations, are found in error compared to that of the balloons by ±500 km after 5 days and ±1000 km after 10 days.

  12. GRAPE - A Balloon-Borne Gamma-Ray Polarimeter Experiment

    CERN Document Server

    Bloser, P F; Macri, J R; McConnell, M L; Narita, T; Ryan, J M

    2005-01-01

    This paper reviews the development status of GRAPE (the Gamma-Ray Polarimeter Experiment), a hard X-ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X-rays in the 50-300 keV energy range. We are particularly interested in X-rays that are emitted from solar flares and gamma-ray bursts (GRBs), although GRAPE could also be employed in the study of other astrophysical sources. Accurately measuring the polarization of the emitted radiation will lead to a better understating of both emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high-Z crystal scintillator. The azimuthal distribution of photon scatters from the plastic array into the central calorimeter provides a measure of the polarization fraction and polarization angle of the incident radiation. The design of the detector provides sensitivity over a large field-of-view (>pi steradian). The design facilitates the fabrication of large area arrays w...

  13. ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon

    Science.gov (United States)

    Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro

    2015-09-01

    This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.

  14. Meaurement of Cosmic Ray elemental composition from the CAKE balloon experiment

    CERN Document Server

    Cecchini, S; Giacomelli, G; Medinaceli, E; Patrizii, L; Sirri, G; Togo, V

    2009-01-01

    CAKE (Cosmic Abundances below Knee Energies) was a prototype balloon experiment for the determination of the charge spectra and of abundances of the primary cosmic-rays (CR) with Z$>$10. It was a passive instrument made of layers of CR39 and Lexan nuclear track detectors; it had a geometric acceptance of $\\sim$0.7 m$^2$sr for Fe nuclei. Here, the scanning and analysis strategies, the algorithms used for the off-line filtering and for the tracking in automated mode of the primary cosmic rays are presented, together with the resulting CR charge distribution and their abundances.

  15. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  16. Study of the properties of Cosmic rays and solar X-Ray Flares by balloon borne experiments

    CERN Document Server

    Chakrabarti, S K; Chakraborty, S; Palit, S; Mondal, S K; Bhattacharya, A; Midya, S; Chakrabarti, S

    2013-01-01

    Indian Centre for Space Physics is engaged in pioneering balloon borne experiments with typical payloads less than ~ 3.5kg. Low cost rubber balloons are used to fly them to a height of about 40km. In a double balloon system, the booster balloon lifts the orbiter balloon to its cruising altitude where data is taken for a longer period of time. In this Paper, we present our first scientific report on the variation of Cosmic Rays and muons with altitude and detection of several solar flares in X-rays between 20keV and 100keV. We found the altitude of the Pfotzer maximum at Tropic of Cancer for cosmic rays and muons and catch several solar flares in hard X-rays. We find that the hard X-ray (> 40keV) sky becomes very transparent above Pfotzer maximum. We find the flare spectrum to have a power-law distribution. From these studies, we infer that valuable scientific research could be carried out in near space using low cost balloon borne experiments. Published in Online version of Indian Journal of Physics.

  17. Preliminary Results from the GPS-Reflections Mediterranean Balloon Experiment (GPSR MEBEX)

    Science.gov (United States)

    Garrison, James L.; Ruffini, Giulio; Rius, Antonio; Cardellach, Estelle; Masters, Dallas; Armathys, Michael; Zavorotny, Valery

    2000-01-01

    An experiment to collect bistatically scattered GPS signals from a balloon at 37 km altitude has been conducted. This experiment represented the highest altitude to date that such signals were successfully recorded. The flight took place in August 1999 over the Mediterranean sea, between a launch in Sicily and recovery near Nerpio, a town in the Sierra de Segura, Albacete province of Huelva, Spain. Results from this experiment are presented, showing the waveform shape as compared to theoretical calculations. These results will be used to validate analytical models which form the basis of wind vector retrieval algorithms. These algorithms are already being validated from aircraft altitudes, but may be applied to data from future spaceborne GPS receivers. Surface wind data from radiosondes were used for comparison. This experiment was a cooperative project between NASA, the IEEC in Barcelona, and the University of Colorado at Boulder.

  18. Preliminary Results from the GPS-Reflections Mediterranean Balloon Experiment (GPSR-MEBEX)

    Science.gov (United States)

    Garrison, James L.; Ruffini, Giulio; Rius, Antonio; Cardellach, Estelle; Masters, Dallas; Armatys, Michael; Zavorotny, Valery; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    An experiment to collect bistatically scattered GPS signals from a balloon at 37 km altitude has been conducted. This experiment represented the highest altitude to date that such signals were successfully recorded. The flight took place in August 1999 over the Mediterranean sea, between a launch in Sicily and recovery near Nerpio, a town in the Sierra de Segura, Albacete province of Huelva, Spain. Results from this experiment are presented, showing the waveform shape as compared to theoretical calculations. These results will be used to validate analytical models which form the basis of wind vector retrieval algorithms. These algorithms are already being validated from aircraft altitudes, but may be applied to data from future spacebourne GPS receivers. Surface wind data from radiosondes were used for comparison. This experiment was a cooperative project between NASA, the IEEC in Barcelona, and the University of Colorado at Boulder.

  19. Performance of Large Area X-ray Proportional Counters in a Balloon Experiment

    CERN Document Server

    Roy, J; Dedhia, D K; Manchanda, R K; Shah, P B; Chitnis, V R; Gujar, V M; Parmar, J V; Pawar, D M; Kurhade, V B

    2016-01-01

    ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3$^{\\circ}$ $\\times$ 3$^{\\circ}$ versus FOV of 1$^{\\circ}$ $\\times$ 1$^{\\circ}$ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laborator...

  20. The High Altitude Balloon Experiment demonstration of acquisition, tracking, and pointing technologies (HABE-ATP)

    Science.gov (United States)

    Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.

    1995-01-01

    The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target

  1. [Balloon pulmonary valvuloplasty, 15-year experience at the Siglo XXI IMSS National Medical Center].

    Science.gov (United States)

    Juárez Rodríguez, Mariano; Alva Espinosa, Carlos; Ledesma Velasco, Mariano; Lázala Rodríguez, Gustavo; Jiménez Arteaga, Santiago; Sánchez Soberanes, Agustín; Ortegón Cardeña, José; David Gómez, Felipe; Hernández González, Martha; Magaña Serrano, José

    2003-01-01

    To evaluate 15 years of experience with balloon pulmonary valvuloplasty in a single third level health care center. Hundred-fifty patients underwent the procedure, 73 (48%) men and 77 (52%) women, mean age 10.5 +/- 11.3 years. The initial systolic gradient decreased from 86 +/- 35 to 21.67 +/- 12.20 mm Hg, p < 0.001, whereas the initial right ventricular systolic pressure decreased from 106 +/- 34.8 to 53 +/- 27 mm Hg, p < 0.0001. At the end of the follow-up, 48 +/- 44 months, the systolic gradient was 13.43 +/- 8.73 mm Hg, p < 0.001. Major complications occurred in 9 (6.4%) patients. Immediate technical success was achieved in 111 (74%) patients and failure in 39 (26%). At the end of the follow-up period, successful outcomes were achieved in 104 (89.6%); in contrast, failures were present in 12 (10.4%) patients, p < 0.001. Death occurred in 2 (1.33%) patients. The predictors for failure were age < 1.5 +/- 1-33 years (p < 0.004), dysplastic valve (p < 0.001), high initial systolic gradient (p < 0.002), and high initial systolic right ventricular pressure (p < 0.0001). Balloon pulmonary valvuloplasty is an effective, safe, and first choice treatment for congenital pulmonary valve stenosis.

  2. Development of a Simple Attitude Control System for Newly Constructed Balloon-Borne Experiments

    Science.gov (United States)

    Saito, Yoshitaka; Iijima, Issei; Nonaka, Naoki; Yamada, Kazuhiko; Ishikawa, Yuji; Kan'no, Makoto; Kishimoto, Yuji; Gunji, Shuichi; Sato, Tetsuya; Mihara, Tatehiro; Anabuki, Naohisa; Ohta, Yukihiro; Yamauchi, Manabu; Hayashida, Kiyoshi

    A simple attitude control system for a balloon experiment has been developed. This system aims to achieve an accuracy of 0.1 deg in azimuth for a small payload with a diameter of 1.5 m and a moment of inertia of 100 kg·m2. It will be first flown with the Polarimetry for High ENErgy X-rays (PHENEX) experiment, which is to observe the polarization of astronomical objects in the hard X-ray energy region. The system is composed of the attitude sensors (sun sensors, geomagnetic aspect sensors, and an optical fiber gyro), read-out modules, CPU, output modules (PC104 based boards), and actuators (a torsion relief motor and a reaction wheel motor with their drivers). In this paper, after introducing these modules, the properties of the sensors and the control system based on the ground will be reviewed.

  3. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  4. Performance of large area x-ray proportional counters in a balloon experiment

    Science.gov (United States)

    Roy, J.; Agrawal, P. C.; Dedhia, D. K.; Manchanda, R. K.; Shah, P. B.; Chitnis, V. R.; Gujar, V. M.; Parmar, J. V.; Pawar, D. M.; Kurhade, V. B.

    2016-10-01

    ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3 ∘ × 3 ∘ versus FOV of 1 ∘ × 1 ∘ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laboratory tests, calibration and the detector characteristics is presented here. The details of the experiment and background counting rates of the 2 LAXPCs at the float altitude of about 41 km are presented in different energy bands. The bright black hole X-ray binary Cygnus X-1 (Cyg X-1) was observed in the experiment for ˜ 3 hours. Details of Cyg X-1 observations, count rates measured from it in different energy intervals and the intensity variations of Cyg X-1 detected during the observations are presented and briefly discussed.

  5. Pumpkin Balloon

    OpenAIRE

    Nishimura, Jun; 西村, 純

    1992-01-01

    The Pumpkin shaped balloons, which are the extreme case of the heart-type balloons had been studied as one of the promising candidate of the super pressure balloons. Here, detailed studies for the features of the pumpkin balloons are described, particularly by comparing with those of the spherical shaped super pressure balloons.

  6. New synchrotron powder diffraction facility for long-duration experiments

    Science.gov (United States)

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  7. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  8. Huygens Atmospheric Structure Instrument (HASI) test by a stratospheric balloon experiment

    Science.gov (United States)

    Fulchignoni, M.; Gaborit, V.; Aboudam, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Lion Stoppato, P.

    2002-09-01

    We developped a series of balloon experiments parachuting a 1:1 scale mock up of the Huygens probe from an altitude larger than 30 km in order to simulate at planetary scale the final part of the descent of the probe in the Titan atmosphere. The Earth atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, with the exception of temperature. A first balloon experiment has been carried out in June 2001 and the results have been reported at the last DPS (V. Gaborit et al., BAAS 33, 38.03) The mock up of the probe descending in the Titan atmosphere for the Huygens Cassini Mission has been successfully launched with stratospheric balloon from Italian Space Agency Base "Luigi Broglio" in Sicily and recovered on May 30th 2002. The probe has been lifted at 32 km altitude and then released to perform a 45 minutes descent decelerated by parachute, to simulate Huygens mission at Titan. Preliminary aerodynamics study of the probe has focused on the achievement of a descent velocity profile and a spin rate profile, satisfying the Huygens mission to Titan requirements. The descent velocity and spin rate have been calculated by solving a system of ODE describing the translational and rotational motion of the probe trough the earth atmosphere during parachute aided descent Results of these calculations have driven the choice of an appropriate angle of attack of the blades in the bottom of the probe and ballast weight during flight. The probe is hosting spares of HASI sensors, housekeeping sensors and other dedicated sensors, Beagle II UV Sensors and Huygens SSP Tilt Sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. Main goals are i) to verify sensor performance and perform a realistic functional test in dynamical and environmental conditions similar to those during the descent in Titan atmosphere; ii) to investigate impact at ground to check the

  9. Measurement of cosmic-ray antiproton spectrum at solar minimum with a long-duration balloon flight in Antarctica

    CERN Document Server

    Abe, K; Haino, S; Hams, T; Hasegawa, M; Horikoshi, A; Kim, K C; Kusumoto, A; Lee, M H; Makida, Y; Matsuda, S; Matsukawa, Y; Mitchell, J W; Nishimura, J; Nozaki, M; Orito, R; Ormes, J F; Sakai, K; Sasaki, M; Seo, E S; Shinoda, R; Streitmatter, R E; Suzuki, J; Tanaka, K; Thakur, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons has been measured in the range 0.17 to 3.5 GeV, based on 7886 antiprotons collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The antiproton spectrum measured by BESS-Polar II shows good consistency with secondary antiproton calculations. Cosmologically primary antiprotons have been searched for by comparing the observed and calculated antiproton spectra. The BESS-Polar II result shows no evidence of primary antiprotons originating from the evaporation of PBH.

  10. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  11. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  12. Balloon-augmented Onyx endovascular ligation: initial human experience and comparison with coil ligation.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark D; Toth, Gabor; Hussain, M Shazam; Hui, Ferdinand K

    2015-08-01

    Carotid artery sacrifice remains an important procedure for cerebral vascular disorders despite the development of new endovascular devices. Conventional carotid artery sacrifice with detachable coils alone often requires numerous coils to complete occlusion. To describe the initial human experience with balloon-augmented Onyx and coil vessel sacrifice based on our previous experience with animals. We performed a retrospective review of patients who underwent carotid artery sacrifice between 2008 and 2012 in accordance with local investigational review board approval. Two methods were used to occlude carotid arteries-namely, combined Onyx and coil embolization and traditional coil embolization. We compared the two methods for the cost of embolizate, time to occlude the vessels, and the number of coils. Eight consecutive patients (combined group n=3, traditional group n=5) were assessed. The median cost of embolic material was $6321 in the combined Onyx and coil embolization group and $29 996 in the traditional coil embolization group. The median time from first coil placement to achievement of vessel occlusion was 52 min in the Onyx group and 113 min in the coil embolization group. The median number of coils used was 4 in the Onyx group and 35 in the coil embolization group (p<0.05). No symptomatic complications or recurrences were seen in the combined group. Balloon-augmented Onyx endovascular ligation may reduce costs and fluoroscopy times during vessel sacrifice. Further studies in a larger number of patients are needed to confirm these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Catalogue of electron precipitation events as observed in the long-duration cosmic ray balloon experiment

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Stozhkov, Yu. I.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.

    2016-11-01

    Since the International Geophysical Year (1957), the Lebedev Physical Institute performs the regular measurements of charged particle fluxes in the Earth's atmosphere (from the ground level up to 30-35 km) at several latitudes. The unique experimental data base obtained during 58 years of cosmic rays observations in the atmosphere allows to investigate temporal, spatial and energetic characteristics of galactic and solar cosmic rays as well as the role of charged particles in the atmospheric processes. Analysis of this data base also revealed a special class of numerous events caused by energetic electron precipitation recorded in the atmosphere at polar latitudes. In this paper we present Catalogue of electron precipitation events observed in the polar atmosphere during 1961-2014 and briefly outline the previous results of this data set analysis.

  14. Clefting in pumpkin balloons

    Science.gov (United States)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  15. Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antarctica

    CERN Document Server

    Abe, K; Haino, S; Hams, T; Hasegawa, M; Horikoshi, A; Itazaki, A; Kim, K C; Kumazawa, T; Kusumoto, A; Lee, M H; Makida, Y; Matsuda, S; Matsukawa, Y; Matsumoto, K; Mitchell, J W; Myers, Z; Nishimura, J; Nozaki, M; Orito, R; Ormes, J F; Picot-Clemente, N; Sakai, K; Sasaki, M; Seo, E S; Shikaze, Y; Shinoda, R; Streitmatter, R E; Suzuki, J; Takasugi, Y; Takeuchi, K; Tanaka, K; Thakur, N; Yamagami, T; Yamamoto, A; Yoshida, T; Yoshimura, K

    2015-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.2-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.3-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from AMS-01, ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.3 GV to 160 GV a...

  16. The Cosmic-Ray Proton and Helium Spectra measured with the CAPRICE98 balloon experiment

    CERN Document Server

    Boezio, M; Schiavon, Paolo; Vacchi, A; Zampa, N; Bergström, D; Carlson, P J; Francke, T; Hansen, P; Mocchiutti, E; Suffert, Martin; Hof, M; Kremer, J; Menn, W; Simon, M; Ambriola, M; Bellotti, R; Cafagna, F; Ciacio, F; Circella, M; De Marzo, C N; Finetti, N; Papini, P; Piccardi, S; Spillantini, P; Vannuccini, E; Bartalucci, S; Ricci, M; Casolino, M; De Pascale, M P; Morselli, A; Picozza, P; Sparvoli, R; Mitchell, J W; Ormes, J F; Stephens, S A; Streitmatter, R E; Bravar, U; Stochaj, S J

    2003-01-01

    A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV/n. The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy spectra at the top of the atmosphere can be represented by (1.27+-0.09)x10^4 E^(-2.75+-0.02) particles (m^2 GeV sr s)^-1, where E is the kinetic energy, for protons between 20 and 350 GeV and (4.8+-0.8)x10^2 E^(-2.67+...

  17. Provider experiences with improvised uterine balloon tamponade for the management of uncontrolled postpartum hemorrhage in Kenya.

    Science.gov (United States)

    Natarajan, Abirami; Alaska Pendleton, Anna; Nelson, Brett D; Ahn, Roy; Oguttu, Monica; Dulo, Lidu; Eckardt, Melody J; Burke, Thomas F

    2016-11-01

    To understand healthcare providers' experiences with improvised uterine balloon tamponade (UBT) for the management of uncontrolled postpartum hemorrhage (PPH). In a qualitative descriptive study, in-depth semi-structured interviews were conducted between November 2014 and June 2015 among Kenyan healthcare providers who had previous experience with improvising a UBT device. Interviews were conducted, audio-recorded, and transcribed. Overall, 29 healthcare providers (14 nurse-midwifes, 7 medical officers, 7 obstetricians, and 1 clinical officer) were interviewed. Providers perceived improvised UBT as valuable for managing uncontrolled PPH. Reported benefits included effectiveness in arresting hemorrhage and averting hysterectomy, and ease of use by providers of all levels of training. Providers used various materials to construct an improvised UBT. Challenges to improvising UBT-e.g. searching for materials during an emergency, procuring male condoms, and inserting fluid via a small syringe-were reported to lead to delays in care. Providers described their introduction to improvised UBT through both formal and informal sources. There was universal enthusiasm for widespread standardized training. Improvised UBT seems to be a valuable second-line treatment for uncontrolled PPH that can be used by providers of all levels. UBT might be optimized by integrating a standard package across the health system. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Status of JEM-EUSO and its test experiments EUSO-Balloon and TA-EUSO

    Directory of Open Access Journals (Sweden)

    Haungs Andreas

    2013-06-01

    Full Text Available The JEM-EUSO mission will explore the origin of the extreme energy cosmic rays (EECRs through the observation of their arrival directions and energies. The super-wide-field telescope looks down from the International Space Station onto the night sky to detect UV photons fluorescence and Cherenkov photons emitted from air showers generated by EECRs in the Atmosphere. Such a space detector offers the opportunity to observe a huge volume of atmosphere at once and will achieve unprecedented statistical accuracy within a few years of operation. The JEM-EUSO mission will be installed on the Japanese module of the International Space Station. Two test experiments are currently prepared; one to observe the fluorescence background from the edge of the Atmosphere (EUSO-Balloon, and the other to demonstrate, on ground, the capability of all sub-systems of the EUSO instrument (TA-EUSO. In this paper a short review on the scientific objectives and an update of the instrument definition, performances and status of the mission, as well as of the status of the two preceded test experiments will be given.

  19. Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s

    Science.gov (United States)

    Fishman, Gerald J.

    2008-01-01

    Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.

  20. Balloon-assisted guide catheter positioning to overcome extreme cervical carotid tortuosity: technique and case experience

    OpenAIRE

    Peeling, Lissa; Fiorella, David

    2013-01-01

    Background and significance We describe a method by which to efficiently and atraumatically achieve distal positioning of a flexible guiding catheter beyond extreme cervical tortuosity using a hypercompliant temporary occlusion balloon. Methods A retrospective review of a prospective neuroendovascular database was used to identify cases in which a hypercompliant balloon catheter (Hyperform or Hyperglide, ev3/Covidien, Irvine, California, USA; Scepter or Scepter XC, Alisa Viejo, California, US...

  1. Preliminary experience with drug-coated balloon angioplasty in primary percutaneous coronary intervention

    Institute of Scientific and Technical Information of China (English)

    Hee; Hwa; Ho; Julian; Tan; Yau; Wei; Ooi; Kwok; Kong; Loh; Than; Htike; Aung; Nwe; Tun; Yin; Dasdo; Antonius; Sinaga; Fahim; Haider; Jafary; Paul; Jau; Lueng; Ong

    2015-01-01

    We evaluated the clinical feasibility of using drugcoated balloon(DCB) angioplasty in patients undergoingprimary percutaneous coronary intervention(PPCI). Between January 2010 to September 2014,89 STelevation myocardial infarction patients(83% male,mean age 59 ± 14 years) with a total of 89 coronary lesions were treated with DCB during PPCI. Clinical outcomes are reported at 30 d follow-up. Left anterior descending artery was the most common target vessel for PCI(37%). Twenty-eight percent of the patients had underlying diabetes mellitus. Mean left ventricular ejection fraction was 44% ± 11%. DCB-only PCI was the predominant approach(96%) with the remaining 4% of patients receiving bail-out stenting. Thrombolysis in Myocardial Infarction(TIMI) 3 flow was successfully restored in 98% of patients. An average of 1.2 ± 0.5 DCB were used per patient,with mean DCB diameter of 2.6 ± 0.5 mm and average length of 23.2 ± 10.2 mm. At 30-d follow-up,there were 4 deaths(4.5%). No patients experienced abrupt closure of the infarctrelated artery and there was no reported target-lesion failure. Our preliminary experience showed that DCB angioplasty in PPCI was feasible and associated with a high rate of TIMI 3 flow and low 30-d ischaemic event.

  2. Balloon Dilatation of Pediatric Subglottic Laryngeal Stenosis during the Artificial Apneic Pause: Experience in 5 Children

    Directory of Open Access Journals (Sweden)

    J. Lisý

    2014-01-01

    Full Text Available Introduction. Balloon dilatation is a method of choice for treatment of laryngeal stenosis in children. The aim of procedure in apneic pause is to avoid new insertion of tracheostomy cannula. Patients and Methods. The authors performed balloon dilatation of subglottic laryngeal strictures (SGS in 5 children (3 girls and 2 boys without tracheotomy. Two of them with traumatic and inflammatory SGS had a tracheal cannula removed in the past. The other 3 children with postintubation SGS had never had a tracheostomy before. The need for tracheostomy due to worsening stridor was imminent for all of them. Results. The total of seven laryngeal dilatations by balloon esophagoplasty catheter in apneic pause was performed in the 5 children. The procedure averted the need for tracheostomy placement in 4 of them (80%. Failure of dilatation in girl with traumatic stenosis and concomitant severe obstructive lung disease led to repeated tracheostomy. Conclusion. Balloon dilatation of laryngeal stricture could be done in the absence of tracheostomy in apneic pause. Dilatation averted threatening tracheostomy in all except one case. Early complication after the procedure seems to be a negative prognostic factor for the outcome of balloon dilatation.

  3. Neural circuitry underlying perception of duration depends on language experience.

    Science.gov (United States)

    Gandour, Jack; Wong, Donald; Lowe, Mark; Dzemidzic, Mario; Satthamnuwong, Nakarin; Tong, Yunxia; long, Yunxia; Lurito, Joseph

    2002-11-01

    Thai, a language which exhibits a phonemic opposition in vowel length, allows us to compare temporal patterns in linguistic and nonlinguistic contexts. Functional MRI data were collected from Thai and English subjects in a speeded-response, selective attention paradigm as they performed same/different judgments of vowel duration and consonants (Thai speech) and hum duration (nonspeech). Activation occurred predominantly in left inferior prefrontal cortex in both speech tasks for the Thai group, but only in the consonant task for the English group. The Thai group exhibited activation in the left mid superior temporal gyrus in both speech tasks; the English group in the posterior superior temporal gyrus bilaterally. In the hum duration task, peak activation was observed bilaterally in prefrontal cortex for both groups. These crosslinguistic data demonstrate that encoding of complex auditory signals is influenced by their functional role in a particular language.

  4. Cleft formation in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  5. Morbid Obesity: treatment with Bioenterics Intragastric Balloon (BIB), psychological and nursing care: our experience.

    Science.gov (United States)

    Sivero, Luigi; Galloro, Giuseppe; Ruggiero, Simona; Alessandro Telesca, Donato; Russo, Teresa; Amato, Maurizio; Di Palma, Immacolata; Iovino, Speranza; Amato, Bruno; Sivero, Stefania; Forestieri, Pietro

    2016-01-01

    Obesity is considered a chronic disease, difficult to treat, and is the first cause of death in the world that is predictable. The surgical approach is limited to patients with severe obesity but there is an intermediate group who are not candidates for immediate surgery. The BioEnterics Intragastric Balloon (BIB) is recommended for weight reduction as a bridge to bariatric surgery. All patients in the study underwent a psychological evaluation prior to placement of the BIB.

  6. Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Penacchioni, A. V., E-mail: ana.penacchioni@inpe.br; Braga, J., E-mail: joao.braga@inpe.br; Castro, M. A., E-mail: manuel.castro@inpe.br; Sacahui, J. R., E-mail: rodrigo.sacahui@inpe.br; D’Amico, F., E-mail: flavio.damico@inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos (Brazil)

    2015-12-17

    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (CG) region during balloon flights in Brazil (∼ −23° of latitude and an altitude of ∼40 km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and of three sources in the GC: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.

  7. Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    CERN Document Server

    Penacchioni, A V; Castro, M A; D'Amico, F

    2015-01-01

    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modeled the meridian transits of the Crab Nebula and the Galatic Centre region during balloon flights in Brazil ($\\sim -23^{\\circ}$ of latitude and an altitude of $\\sim 40 \\thinspace$ km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and of three sources in the Galactic Centre region: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.

  8. First-in-Human Experience With the Gore Balloon-Expandable Covered Endoprosthesis in Iliac Artery Occlusive Disease.

    Science.gov (United States)

    Holden, Andrew; Merrilees, Stephen; Buckley, Brendan; Connor, Brigid; Colgan, Frances; Hill, Andrew

    2017-02-01

    To report the first-in-human iliac artery experience of a new balloon-expandable covered endoprosthesis. A prospective, single-center pilot study recruited 30 symptomatic patients (mean age 64 years; 18 men) to evaluate the safety and early efficacy of the new Gore balloon-expandable covered endoprosthesis for the treatment of de novo or restenotic common and/or external iliac artery lesions. According to protocol, up to 2 discrete lesions could be treated with a maximum total treated length ≤110 mm. Follow-up included clinical evaluation with duplex ultrasound at 1, 6, and 12 months. Data are presented through 12-month follow-up. The primary safety endpoint was a composite of device- or procedure-related death, myocardial infarction, or amputation in the treated leg within 30 days of the index procedure. Multiple performance outcomes were also evaluated. The primary 30-day safety endpoint was 0%. Per-subject estimates of primary patency, freedom from target lesion revascularization, and freedom from target vessel revascularization were 100% at 1 and 6 months and 96.6% at 12 months. Estimates of assisted primary and secondary patency were both 100% at 12 months. Freedom from major adverse events at 12 months was 100%. Most patients experienced improvements in Rutherford category, ankle-brachial index, and functional status that were sustained to 12 months. This positive first-in-human experience with the Gore balloon-expandable covered endoprosthesis suggests this device will have an important role in the management of aortoiliac occlusive disease.

  9. Challenges of the opto-mechanical conceptual design of a small far-IR balloon experiment

    Science.gov (United States)

    Dournaux, Jean-Laurent; Berthod, Christophe; Horville, David; Huet, Jean-Michel; Laporte, Philippe; Wiedner, Martina; Romanow, Alexia; Krieg, Jean-Michel; Pagani, Laurent; Evrard, Jean; Gomes, Albert; Jouret, Martine

    2014-07-01

    Astronomers require more and more precise instruments for their observations. Here we describe the challenges encountered in the optical and mechanical designs of the CIDRE (Campagne d'Identification du Deutérium par Réception hEtérodyne) project, which was to be flown on a high altitude balloon at 40 km. The project aimed to measure the transitions of the HD molecule at 2.675 THz band and some other THz lines in our galaxy. The astronomers asked to fly the biggest possible telescope in a standard balloon gondola, and required high pointing accuracy (7 arcsec). In January 2014, the technical project, including the optical and mechanical designs, was evaluated to be of excellent standard, but, for all that, the project was cancelled because of financial constraints. Nevertheless the phase A study allowed us to identify the optical and mechanical challenges of balloon projects and we were able to come up with a simple design, that fulfilled all the requirements. The 900 mm primary mirror and the rest of the optics were designed to be supported by a sandwich-panel composite structure with carbon epoxy skins and aluminum honeycomb core to improve the mechanical stiffness and the thermal behavior of the instrument without increasing its mass or its complexity. In this paper, we describe the optical design and the mechanical structure of the instrument. Finite element analysis is carried out to estimate the gravitational flexure and the thermal deformations, which can both harm the pointing accuracy and the performances of the instrument. These simulations show that the proposed design would fulfill the different requirements (pointing accuracy, landing survival as well as the dynamic behavior).

  10. Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment

    CERN Document Server

    Marrocchesi, P S; Bagliesi, M G; Basti, A; Bigongiari, G; Castellina, A; Ciocci, M A; Di Virgilio, A; Lomtatze, T; Ganel, O; Kim, K C; Lee, M H; Ligabue, F; Lutz, L; Maestro, P; Malinine, A; Meucci, M; Millucci, V; Morsani, F; Seo, E S; Sina, R; Wu, J; Wu, J; Yoon, Y S; Zei, R; Zinn, S Y

    2010-01-01

    CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission designed to collect direct data on the elemental composition and individual energy spectra of cosmic rays. Two instrument suites have been built to be flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for the second flight, scheduled for December 2005, was calibrated with electron and proton beams at CERN. A calibration procedure based on the study of the longitudinal shower profile is described and preliminary results of the beam test are presented.

  11. Measurement of polar stratospheric NO2 from the 23rd and 24th Japanese Antarctic Research Expedition (JARE) balloon experiments

    Science.gov (United States)

    Shibasaki, K.; Iwagami, N.; Ogawa, T.

    1985-01-01

    As a part of the Japanese activities of MAP in the Antarctica, balloon-borne measurements of the stratospheric NO2 profile were planned and carried out by the JARE 23rd and 24th wintering parties. Few results have been reported so far as the stratospheric NO2 profile at high latitude. There were no reported balloon measurements carried out in the Southern Hemisphere. Profiles are presented for the first balloon-borne measurement of the stratospheric NO2 in the Antarctica. Three balloons named JA21, JA25 and JA26 were launched from Syowa Station (69 deg S, 35.6 deg E) using 5000 cu. cm plastic balloons. JA21 balloon was launched on November 24, 1982, and JA25 and JA26 balloons on November 12 and 20, 1983, respectively.

  12. BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

    Science.gov (United States)

    Benton, S. J.; Ade, P. A.; Amiri, M.; Angilè, F. E.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Devlin, M. J.; Dober, B.; Doré, O. P.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Fukui, Y.; Galitzki, N.; Gambrel, A. E.; Gandilo, N. N.; Golwala, S. R.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. D.; Klein, J.; Korotkov, A. L.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Matthews, T. G.; Megerian, K. G.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; Nagy, J. M.; Netterfield, C. B.; Novak, G.; Nutter, D.; O'Brient, R.; Ogburn, R. W.; Pascale, E.; Poidevin, F.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Thomas, N. E.; Trangsrud, A.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Tucker, R. S.; Turner, A. D.; Ward-Thompson, D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and power systems. For accurate timing control to tie everything together, the system operates in a fully synchronous manner. BLASTbus electronics have been successfully deployed to the South Pole, and own on stratospheric balloons.

  13. BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

    CERN Document Server

    Benton, S J; Amiri, M; Angilè, F E; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Doré, O P; Dowell, C D; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Gandilo, N N; Golwala, S R; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Ogburn, R W; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescope's attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and powe...

  14. Balloon kyphoplasty: an experience of 38 patients with painful osteoporotic vertebral compressive fractures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiang; ZOU De-wei; HAI Yong; MA Hua-song; BAI Ke-wen

    2006-01-01

    Objective: To evaluate the efficacy and safety of percutaneous balloon kyphoplasty as a new therapy for patients with painful osteoporotic vertebral compressive fractures of the lumbar and thoracic spine.Methods: A retrospective analysis was conducted in 38 consecutive patients (28 females, 10 males), whose ages ranged from 56 to 82 years (mean age 72 years). The symptom- and sign-positive spinal segment was identified by MRI. The time between onset of symptoms and surgical intervention ranged from 2 days to 1 year. 62 segments (36 thoracic, 26 lumbar) were treated in this cohort. The pain score estimated by Visual Analog Scale and activity degree were assessed immediately after operation and at 1-, 6-,and 12-month postoperative follow-up. Preoperative and postoperative anterior, midline vertebral heights in fractured vertebrae were measured on lateral radiographs to evaluate the effect of the procedure.Results: The method achieved a swift pain relief associated with an evidently increased weight-bearing ability. The pain score was reduced from 8. 2 to 2.4 points.The anterior and midline vertebral heights in 62 fractured vertebral bodies increased up to 82.76% ±26.84%,88.82 % ± 21.75 % and the wedge decreased from 15 to 8 degrees. This effect persisted at least over a period of two years. The procedure did not induce narrowing of the spinal canal and no severe complications occurred.Conclusions: Balloon kyphoplasty can result in immediate clinical improvement of mobility and pain relief,increase vertebral body height, and quickly return patient's activity. The short-term results are approved excellent, and the long-term results need further judgment.

  15. Performance of the high-altitude balloon experiment Roto-lok drive gimbal systems

    Science.gov (United States)

    Schulthess, Marcus R.; Ardaman, Andrew A.; Baugh, Steven; Carson, Donald G.

    1994-07-01

    This paper presents and discusses laboratory performance measurements of a Roto-Lok drive system for the HABE azimuth and elevation gimbals. The HABE system is a 7,000 lb acquisition tracking and pointing (ATP) balloon-launched vehicle. The primary azimuth and elevation drive systems are zero-backlash torque multipliers referred to by the trade name Roto-Lok rotary drive and designed by Sagebrush Technology, Inc. The Roto-Lok used in the azimuth gimbal has a limited 320 deg of angular travel; therefore, it is supplemented with a secondary drive element to provide unlimited travel. This secondary drive is used to counteract the gross angles resulting from the freely rotating nature of the untethered balloon system. The Roto-Lok drive is used for the fine tracking and pointing of the gimbals. Both the azimuth and elevation Rota-Lok drives are tandem drives with an end-to-end ratio of 72:1. Performance specifications developed from the mission requirements are compared against the actual system performance measurements. The entire gimbaled azimuth and elevation systems are required to point in inertial space to less than 250 (mu) rad RMS over the band DC to 100 Hz for each axis. Performance measurements better than the specification were measured. The primary gimbal base-motion disturbances, however, are due to the motor cogging torque or torque ripple. A brief discussion of the measurement methods and the control system used to drive the gimbals is presented. Several system anomalies, such as the structural compliance between the drive element and the inertial rate sensors and the coarse gear backlash, are discussed in terms of their impact on the gimbal control system.

  16. [Recanalization of the peripheral arteries by laser thermal balloon angioplasty. 2 years of clinical experience].

    Science.gov (United States)

    Riambau Alonso, V; Masotti Centol, M; Latorre Vilallonga, J; Viver Manresa, E; Crexells Figueres, C; Oriol Palou, A

    1991-01-01

    Laser angioplasty represents an attractive alternative to overcome the limitations of balloon angioplasty. We describe our results with laser thermal balloon angioplasty (LTBA) in the treatment of atherosclerosis obliterans in the lower limbs after two years clinical follow up. We also analyse the influence of lesion characteristics on immediate results. Thirty seven patients (34 men), whose mean age was 58 +/- 9 years, were included in this study. Occlusive arterial disease (Fontaine stage II-IV), with 39 significant haemodynamic arterial lesions were present in all of them. Ankle/brachial Doppler index was O,51 +/- 0,17. Eighteen lesions were located in the iliac area (13 stenoses 2,3 +/- 1 cm of length and 5 occlusions 4,2 +/- 3 cm) and 21 lesions in femoro-popliteal area (5 stenoses 2,6 +/- 2 cm and 16 occlusions 5,7 +/- 3 cm). A percutaneous procedure was used in 38 cases and only in one case a femoral dissection was necessary. The laser source was argon in 26 cases and Nd-YAG in 13. The overall immediate angiographic and clinical success was 85% (89% in iliac lesions and 81% in femoropopliteal lesions; 100% in stenoses and 70% in occlusions). The presence of occlusion (p less than 0,01) and/or calcium (p less than O,05) influenced negatively the immediate results. No major complications were observed. Seven (17%) minor complications occurred, but no emergency surgery was necessary. The ankle/brachial Doppler index after treatment was 0,82 +/- 0,21. Cumulative clinical patency was 91% for successfully treated patients after two years follow up. We conclude that LTBA represents an effective and less aggressive way to treat atherosclerosis obliterans.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Stratospheric Balloon Platforms for Near Space Access

    Science.gov (United States)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries

  18. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    CERN Document Server

    Misawa, R; Ade, P; Andre, Y; deBernardis, P; Bouzit, M; Charra, M; Crane, B; Dubois, J P; Engel, C; Griffin, M; Hargrave, P; Leriche, B; Longval, Y; Maes, S; Marty, C; Marty, W; Masi, S; Mot, B; Narbonne, J; Pajot, F; Pisano, G; Ponthieu, N; Ristorcelli, I; Rodriguez, L; Roudil, G; Salatino, M; Savini, G; Tucker, C

    2014-01-01

    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.

  19. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    Science.gov (United States)

    Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; Bernardis, P. de; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Longval, Y.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Mot, B.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-08-01

    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project, which aims at characterizing one of these foreground sources, the polarized continuum emission by dust in the diffuse interstellar medium. The PILOT experiment also constitutes a test-bed for using multiplexed bolometer arrays for polarization measurements. This paper presents the instrument and its expected performances. Performance measured during ground calibrations of the instrument and in flight will be described in a forthcoming paper.

  20. SiPM-based azimuthal position sensor in ANITA-IV Hi-Cal Antarctic balloon experiment

    Science.gov (United States)

    Novikov, A.; Besson, D.; Chernysheva, I.; Dmitrenko, V.; Grachev, V.; Petrenko, D.; Prohira, S.; Shustov, A.; Ulin, S.; Uteshev, Z.; Vlasik, K.

    2017-01-01

    Hi-Cal (High-Altitude Calibration) is a balloon-borne experiment that will be launched in December, 2016 in Antarctica following ANITA-IV (Antarctic Impulsive Transient Antenna) and will generate a broad-band pulse over the frequency range expected from radiation induced by a cosmic ray shower. Here, we describe a device based on an array of silicon photomultipliers (SiPMs) for determination of the azimuthal position of Hi-Cal. The angular resolution of the device is about 3 degrees. Since at the float altitude of ˜38 km the pressure will be ˜0.5 mbar and temperature ˜ - 20 °C, the equipment has been tested in a chamber over a range of corresponding pressures (0.5 ÷ 1000) mbar and temperatures (-40 ÷ +50) °C.

  1. Results of the ISEDE Experiment Encompassing Disaggregated Electronics on an all Inflatable Satellite on Board the BEXUS 16 Balloon

    Science.gov (United States)

    Sinn, T.; de Franca Queiroz, T.; Brownlie, F.; Allan, A.; Leite, L.; Rowan, A.; Gillespie, J.; Vasile, M.

    2015-09-01

    Traditional satellites have a rigid structure defining the basic configuration of the satellite and holding in place all subsystems. A variation of the shape or configuration of the satellite is normally achieved through the use of deployable structures or appendices (antennas, solar anays, booms, etc.). Although modern structural solutions are modular and multifunctional, the structure of a satellite still represents a significant portion of its mass and a limitation on the achievable configuration, extension of deployable components and packing efficiency during launch. The goal of this project is to design and build an initial prototype of an all-inflatable satellite with disaggregated electronics for deployment on-board a BEXUS balloon as proof of concept. The idea is to use inflatable cell structures as support for all the subsystems composing a typical nano-satellite. Each subsystem and component is mounted on a different cell. Cells are both individually inflated and individually controlled. The aim is to design and build an inflatable satellite, demonstrating the deployment, communication among components and local control enabling structure shape adaption via soft robotic actuators and micro pumps. The experiment will deploy two inflatable structures made of 5x2 cells which are packed in a lOxlOxlOcm3 cubesat reaching a size of 70x18x14cm3 once deployed. Flexible circuitry was used to mount all the electronic subsystems on the surface of the folded inflatable. The experiment was flown onboard the BEXUS16 stratospheric balloon to an altitude of 27,3km for 2 hours and 45mm from the Swedish space port ESRANGE on the 8th of October 2013 proving the functionality of the disaggregated electronics.

  2. Comparison of Impact Duration Between Experiment and Theory From Charpy Impact Test

    Directory of Open Access Journals (Sweden)

    Muhammad Said N.B.

    2016-01-01

    Full Text Available This study presents the comparison of impact duration between experiment and theory from impact signal through a Charpy test. Recently, the number of accidents on the highway has been increased and it depends on the impact duration of material that have the ability to provide adequate protection to passengers from harmful and improve occupant survivability during crash event. Charpy impact test was implemented on different material and thickness but at the same striker velocity. Impact signal is obtained through the strain gauge that has been installed to striker hammer and connected to frequency data acquisition system. Collected signal is then analysed to identify the time period during impact before fractured. Result from both experiment and theory shows an increment to the impact duration as thickness is increased. Charpy test shows that aluminium 6061-T6 has a higher impact duration compared to carbon steel 1050.

  3. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Stiehl, gregory M.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  4. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  5. The Long Duration Exposure Facility - A shuttle transported low cost technology experiment carrier

    Science.gov (United States)

    Dibattista, J. D.

    1975-01-01

    The Long Duration Exposure Facility (LDEF) is a passive spacecraft capable of remaining in space for extended periods. Its primary role is to accommodate advanced spacecraft technology experiments. The LDEF is space-shuttle delivered and retrieved. With retrieval, it offers unique opportunities to study, in ground-based laboratories, results from a wide variety of experiments after exposure in space.

  6. The Long Duration Exposure Facility - A shuttle transported low cost technology experiment carrier

    Science.gov (United States)

    Dibattista, J. D.

    1975-01-01

    The Long Duration Exposure Facility (LDEF) is a passive spacecraft capable of remaining in space for extended periods. Its primary role is to accommodate advanced spacecraft technology experiments. The LDEF is space-shuttle delivered and retrieved. With retrieval, it offers unique opportunities to study, in ground-based laboratories, results from a wide variety of experiments after exposure in space.

  7. Astronomy from the Upper Stratosphere: Key Discoveries and New Opportunities from High Altitude Scientific Balloons

    Science.gov (United States)

    Fissel, Laura M.

    2017-01-01

    Stratospheric balloons offer a near-space astronomy platform for a small fraction of the cost of an equivalent satellite. These balloons can lift scientific payloads of up to 6,000 lbs as high as 40 km above the Earth’s surface (above >99.5% of the atmosphere). In this presentation I will discuss the contribution that scientific balloon experiments have made to astronomy, from the early days when astronomers had to accompany their telescopes to the stratosphere, to the present era where automated payloads are in some cases able to achieve a pointing precision of better than an arcsecond. In particular, I will discuss the important contributions that balloon telescopes have made to our current understanding of the Universe through detailed measurements of the Cosmic Microwave Background. I will also show how recent observations from sub-millimeter balloon telescopes such as BLAST and BLASTPol have been used to study both star formation and magnetic fields of nearby giant molecular clouds in unprecedented detail, and also to constrain models of interstellar dust composition. With improving ballooning technology, such as NASA’s new Super-Pressure Balloon program, we will soon have the capability for science flights of several months (rather than weeks) duration, thus beginning an exciting new era in balloon astronomy.

  8. Preliminary results from the high resolution gamma-ray and hard x-ray spectrometer (HIREGS) '92-'93 long duration balloon flight in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Lin, R.P.; Feffer, P.T.; Slassi, S.; Whiteside, W.; Smith, D.M.; Hurley, K.C.; Kane, S.R.; McBride, S.; Primbsch, J.H.; Youssefi, K.; Zimmer, G. (Univ. of California, Berkeley, CA (United States)); Pelling, R.M. (Univ. of California, San Diego, CA (United States)); Cotin, F.; Lavigne, J.M.; Rouaix, G.; Vedrenne, G.; Pehl, R.; Cork, C.; Luke, P.; Madden, N.; Malone, D.

    1993-01-01

    HIREGS consists of an array of twelve 6.7 cm diameter x 6.1 cm long liquid nitrogen-cooled segmented germanium detectors enclosed in a bismuth germanate (BGO) active anticoincidence shield. A CsI front collimator defines a 24 degree FWHM field-of-view. The energy resolution is one to several keV FWHM over the instrument energy range of 20 keV to 16 MeV. HIREGS was flown on a 10-day (31 Dec 92--10 Jan 93) circumpolar balloon flight from McMurdo Station, Antarctica. 30.5 hours of observation were obtained between 31 Dec 0400-2130 UT and 1 Jan 0600-1900 UT. Because the Sun was inactive during the flight, only one small flare was detected on 31 Dec 1933 UT. Excellent high resolution [open quotes]quiet[close quotes] Sun hard X-ray and gamma-ray spectra were obtained. These provide stringent upper limits for solar gamma-ray line and hard X-ray and gamma-ray continuum emission, which in turn can constrain the storage and/or continuous acceleration of ions and electrons by the Sun.

  9. Performance characteristics of retrograde single-balloon endoscopy: A single center experience

    Institute of Scientific and Technical Information of China (English)

    Kaci E Christian; Karan Kapoor; Eric M Goldberg

    2016-01-01

    AIM: To evaluate the technical success, diagnostic yield(DY) and therapeutic potential of retrograde single balloon enteroscopy(rS BE). METHODS: A retrospective review of 136 rS BE procedures performed at a tertiary academic referral center from January 2006 and September 2013 was completed. Patient characteristics including age, gender and inpatient status were collected. The indication for the procedure was categorized into one of three groups: Obscure gastrointestinal bleeding(GIB), evaluation for Crohn’s disease and abnormal imaging. Procedural characteristics including insertion depth(ID), procedure time, concordance with pre-procedural imaging and complications were also recorded. Lastly, DY, defined as the percentage of cases producing either a definitive diagnosis or findings that could explain clinical symptoms and therapeutic yield(TY), defined as the percentage of cases in which a definitive intervention was performed, were determined. Mucosal tattooing and biopsy alone were not included in the TY. RESULTS: A total of 136 rS BE procedures were identified. Mean patient age was 57.5(± 16.2) years, 67(49.2%) were male, and 110(80.9%) procedures were performed on an outpatient basis. Indications for rS BE included GIB in 55(40.4%), evaluation of inflammatory bowel disease(IBD) in 29(21.3%), and imaging suggestive of pathology other than GIB or IBD in 43(31.6%). Nine(6.6%) rS BEs were performed for other indications. Mean ID was 68.3(± 39.3) cm proximal to the ileocecal valve and mean time to completion was 41.7(± 15.5) min. Overall, 73(53.7%) cases were diagnostic and 25(18.4%) cases were therapeutic in which interventions(argon plasma coagulation, stricture dilatation, polypectomy, etc.) were performed. Pre-procedural imaging was performed in 88(64.7%) patients. Endoscopic concordance of positive imaging findings was seen in 31(35.2%) cases. Follow up data was available in 93(68.4%) patients; 2(2.2%) reported post-procedural abdominal pain within 30 d

  10. Inquiry-Based Learning in Remote Sensing: A Space Balloon Educational Experiment

    Science.gov (United States)

    Mountrakis, Giorgos; Triantakonstantis, Dimitrios

    2012-01-01

    Teaching remote sensing in higher education has been traditionally restricted in lecture and computer-aided laboratory activities. This paper presents and evaluates an engaging inquiry-based educational experiment. The experiment was incorporated in an introductory remote sensing undergraduate course to bridge the gap between theory and…

  11. Initial Experience with Balloon-Occluded Trans-catheter Arterial Chemoembolization (B-TACE) for Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Mitsunari, E-mail: mitunari@med-shimane.u.ac.jp; Yoshizako, Takeshi, E-mail: yosizako@med.shimane-u.ac.jp; Nakamura, Tomonori, E-mail: t-naka@med.shimane-u.ac.jp; Nakamura, Megumi, E-mail: megumi@med.shimane-u.ac.jp; Yoshida, Rika, E-mail: yoshidar@med.shimane-u.ac.jp; Kitagaki, Hajime, E-mail: kitagaki@med.shimane-u.ac.jp [Shimane University Faculty of Medicine, Department of Radiology (Japan)

    2016-03-15

    PurposeThis study was performed to evaluate the accumulation of lipiodol emulsion (LE) and adverse events during our initial experience of balloon-occluded trans-catheter arterial chemoembolization (B-TACE) for hepatocellular carcinoma (HCC) compared with conventional TACE (C-TACE).MethodsB-TACE group (50 cases) was compared with C-TACE group (50 cases). The ratio of the LE concentration in the tumor to that in the surrounding embolized liver parenchyma (LE ratio) was calculated after each treatment. Adverse events were evaluated according to the Common Terminology Criteria for Adverse Effects (CTCAE) version 4.0.ResultsThe LE ratio at the level of subsegmental showed a statistically significant difference between the groups (t test: P < 0.05). Only elevation of alanine aminotransferase was more frequent in the B-TACE group, showing a statistically significant difference (Mann–Whitney test: P < 0.05). While B-TACE caused severe adverse events (liver abscess and infarction) in patients with bile duct dilatation, there was no statistically significant difference in incidence between the groups. Multivariate logistic regression analysis suggested that the significant risk factor for liver abscess/infarction was bile duct dilatation (P < 0.05).ConclusionThe LE ratio at the level of subsegmental showed a statistically significant difference between the groups (t test: P < 0.05). B-TACE caused severe adverse events (liver abscess and infarction) in patients with bile duct dilatation.

  12. The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

    CERN Document Server

    Pillet, V Martinez; Alvarez-Herrero, A; Domingo, V; Bonet, J A; Fernandez, L Gonzalez; Jimenez, A Lopez; Pastor, C; Blesa, J L Gasent; Mellado, P; Piqueras, J; Aparicio, B; Balaguer, M; Ballesteros, E; Belenguer, T; Rubio, L R Bellot; Berkefeld, T; Collados, M; Deutsch, W; Feller, A; Girela, F; Grauf, B; Heredero, R L; Herranz, M; Jeronimo, J M; Laguna, H; Meller, R; Menendez, M; Morales, R; Suarez, D Orozco; Ramos, G; Reina, M; Ramos, J L; Rodriguez, P; Sanchez, A; Uribe-Patarroyo, N; Barthol, P; Gandorfer, A; Knoelker, M; Schmidt, W; Solanki, S K; Dominguez, S Vargas

    2010-01-01

    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The s...

  13. Universal stratospheric balloon gradiometer

    Science.gov (United States)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    , which should be not less than 10 m. A brief description of this instrument is provided in the report. The SBMG is certified for the use in Russia for "zero-pressure" balloon "VAL 120" capable of drifting at about 30 km height. The obtained data are used in solving the problems of deep sounding of the Earth’s crust magnetic structure - an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. Examples of the experiments (data) obtained by SBMG (including along the 9000 km flight track), as a new opportunities in geomagnetism for researchers that could use this device, are shown here. To avoid magnetic noise the sensor of the upper magnetometer is located at 35 meters above the main suspension basket of the balloon (in the small magnetic noise place). As we know, people have a problem to find such places (with a relatively low level of magnetic noise) at other types of balloons. So, for the other types of balloons we have developed and investigated balloon gradiometer with sensors located at a distance of 50 m down from the main suspension basket of the balloon. This decision is optimal for the "superpressure" balloons. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each of three instrumental containers (uniformly placed along a vertical 6 km line) may be reaching 50 kg. More than ten testing flights (1986-2013) at stratospheric altitudes (20-30 km) have proven the reliability of this system.

  14. The Design, Development and Test of Balloonborne and Groundbased Lidar Systems. Volume 2. Flight Test of Atmospheric Balloon Lidar Experiment, ABLE 2

    Science.gov (United States)

    1991-06-01

    Balloon Lidar E-xperiment) is part of Air Force Phillips Laboratory’s continuing interest in developing techniques for making remote measurements of...shaft is rotated until the two pointing mirrors are reflecting away from the payload. Using an autocollimator, the reticula pattern reflected from the...laser pointing mirror is made coincident with the reticula pattern reflected from the receiver pointing mirror by adjusting the mounting of the former

  15. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  16. Numerical simulation of laboratory experiments in detention pond routing with long rainfall duration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper establishes a numerical detention pond volume model based on the hydrological continuity equation and the Runge-Kutta numerical method. Experiments for the conditions of both steady and unsteady flow have been used to verify the model. In unsteady flow cases, the outflow hydrograph by numerical simulation are fairly consistent with experimental value. Both experimental and numerical results indicate that wider rectangular sharp-crested weirs or larger rectangular slot tend to induce greater outflow discharges, which undesirably cut down the detention volume. Experiments show that the necessary detention volume of rectangular slot is smaller than that of the rectangular sharp-crested weir for a constant flood peak reduction. That is, the rectangular slot is the recommended outflow device when flood peak reduction is the design criteria. The study also shows that necessary detention volume of the short rainfall duration is less than that of the long rainfall duration under constant allowable maximum discharge.

  17. Short-duration low-gravity experiments - Time scales, challenges and results

    Science.gov (United States)

    Rosenberger, F.

    1993-01-01

    Short-duration low-gravity experiments can be conducted either in drop tubes and drop towers, or on sounding rockets and aircraft on ballistic trajectories. While these facilities offer more frequent flight opportunities and higher cost effectiveness than orbiting spacecraft, their relatively short low-gravity times are often perceived as limiting their utility to only a narrow range of applications and research areas. In this review it is shown, based on scaling laws for diffusive transport of momentum, species and heat, radiative heat transfer and capillarity-driven motion, that with proper consideration of the characteristic length scales, a host of phenomena can be meaningfully investigated during a few seconds. This usefulness of short-duration low-gravity facilities is illustrated with numerous results of recent studies of solidification, combustion, transport in multiphase systems, statics and dynamics of liquid surfaces, magnetic Benard convection, fluid management, transport properties and the graviperception in cells.

  18. An implementation of Software Defined Radios for federated aerospace networks: Informing satellite implementations using an inter-balloon communications experiment

    Science.gov (United States)

    Akhtyamov, Rustam; Cruz, Ignasi Lluch i.; Matevosyan, Hripsime; Knoll, Dominik; Pica, Udrivolf; Lisi, Marco; Golkar, Alessandro

    2016-06-01

    Novel space mission concepts such as Federated Satellite Systems promise to enhance sustainability, robustness, and reliability of current missions by means of in-orbit sharing of space assets. This new paradigm requires the utilization of several technologies in order to confer flexibility and re-configurability to communications systems among heterogeneous spacecrafts. This paper illustrates the results of the experimental demonstration of the value proposition of federated satellites through two stratospheric balloons interoperating with a tracking ground station through Commercial Off-The-Shelf Software Defined Radios (SDRs). The paper reports telemetry analysis and characterizes the communications network that was realized in-flight. Furthermore, it provides details on an in-flight anomaly experienced by one of the balloons, which was recovered through the use of the federated technology that has been developed. The anomaly experienced led to the early loss of the directional link from the ground station to the affected stratospheric balloon node after 15 min in flight. Nevertheless, thanks to the federated approach among the systems, the ground station was still able to retrieve the balloon's data in real time through the network system, for which the other balloon operated as a federated relay for 45 min in flight, uninterrupted. In other words, the federated approach to the system allowed triplicating the useful lifetime of the defective system, which would have not been possible to realize otherwise. Such anomaly coincidentally demonstrated the value of the federated approach to space systems design. The paper paves the way for future tests on space assets.

  19. Scientific Ballooning Activities and Recent Developments in Technology and Instrumentation of the TIFR Balloon Facility, Hyderabad

    Science.gov (United States)

    Buduru, Suneel Kumar

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.

  20. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Biasotti, M. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cei, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Ceriale, V.; Corsini, D.; Fontanelli, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Galli, L.; Gallucci, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gatti, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Incagli, M.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Spinella, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Vaccaro, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  1. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  2. Obesity and gastric balloon

    Directory of Open Access Journals (Sweden)

    Mohammed I Yasawy

    2014-01-01

    Full Text Available Background: The obesity epidemic, which is among the most common nutritional disorders, is rising rapidly worldwide. It leads to several health problems such as metabolic disorders, stroke, and even cancer. Efforts to control obesity with exercise and diet have a limited value in obese patients and different approaches to do this have been tried. In this paper, we share our experience with bioenteric intragastric balloon (BIB in treating obesity: Its safety, tolerability, and its efficacy in weight reduction. Materials and Methods: From January 2009 to September 2012, a total of 190 gastric balloons was inserted on patients at the endoscopy unit in King Fahd Hospital of the University, Al-Khobar. This is an evaluation of the first 100 patients. All the patients had a body mass index of over 30 kg/m 2 and were within the age range of 17-55 with a mean age of 32 years. After consent, preballoon investigation tests and anesthesia evaluation, BIB was inserted under monitored anesthesia care sedation in the endoscopy suite. The balloon was filled with 500-700 mls of stained saline. All patients′ were given an analgesic and antiemetic for a week and antisecretory proton pump inhibitor′s for 6 months. Diet and the importance of the exercise were part of the preballoon insertion phase and protocol. The balloon was removed after 6-12 months. Results: The weight loss response to BIB in the 100 patients are classified into four groups: In the uncooperative, noncompliant patients - the maximum weight loss was 7 kg, while in the most compliant patients the weight loss reached up to 39 kg. In addition, there was significant improvement into diabetes mellitus, hypertension, dyslipidemia, and fatty liveras. Its safety and tolerability were extremely acceptable. Conclusion: Our data indicates that in well-selected patients, BIB is an effective device, which with minimum complications helps to achieve body weight loss and resolve many obesity related

  3. Long Duration Multi-hohlraum X-ray Sources for Eagle Nebula Laboratory Experiments

    Science.gov (United States)

    Kane, Jave; Heeter, Robert; Martinez, David; Casner, Alexis; Villette, Bruno; Mancini, Roberto; Pound, Marc

    2013-10-01

    A novel foam-filled multi-hohlraum long-duration x-ray source has been demonstrated at the Omega EP laser and used to obtain L-band spectra of photoionized Ti. A larger scale version of the source will be used in the Science on NIF Eagle Nebula experiments studying dynamic evolution of distinctive pillar and cometary structures in star-forming clouds, where the long duration and directionality of photoionizing radiation from nearby stars generates new classes of flows and instabilities. At NIF, a target representing an astrophysical molecular cloud will be placed several mm from an x-ray source lasting 40-100 ns. At EP, three hohlraums were illuminated in sequence with 3.3 kJ pulses lasting 6 ns, or 4.3 kJ pulses lasting 10 ns, generating 18 or 30 ns of x-ray output at 90-100 eV color temperature. Performance of the source was validated using the μ DMX and VSG spectrometers, ASBO VISAR, and x-ray pinhole imagery. The HYDRA code suggests the EP-scale source can also be shot at NIF with at least 10 kJ per hohlraum. The multi-hohlraum source concept has potential further application to hard x-ray sources, soft x-ray backlighters, and nonlinear ablative hydrodynamics. Prepared by LLNL under Contract DE-AC52-07NA27344. J. Kane supported by DOE OFES grant HEDLP LAB 11-583.

  4. Balloon contribution to the HyMeX (Hydrological in the Mediterranean Experiment) project: results and lessons of the deployment.

    Science.gov (United States)

    Berthou, Ségolène; Verdier, Nicolas; Drobinski, Philippe; Basdevant, Claude; Doerenbecher, Alexis; Fesquet, Clement; Durand, Pierre; Cocquerez, Philippe

    HyMeX is an international project that aims at improving our understanding of the water cycle and its variability over the Mediterranean Basin, with emphases on extreme events by means of monitoring and modelling the Mediterranean coupled system. In this frame, Boundary Layer Pressurized Balloons (BLPB) were part of the numerous instruments deployed during two special observation periods (SOPs) in autumn 2012 and winter 2013. Scientific instrumentation on board includes pressure, humidity, temperature sensors and a 3D GPS from which the balloon velocity can be deduced. Whether assimilated in models or directly used as observed data, balloons measurements allow to better understand the moisture transport contribution to Mediterranean heavy precipitation and the effect of air/sea interactions at mesoscale during Mistral/Tramontana events on ocean convection. Different stages were necessary for the deployment of the BLPB. First, the determination of the BLPB flight specifications (launch sites, flight altitude,...) was done using trajectory analysis based on ECMWF (I)FS and Météo-France (ARPEGE, AROME) Numerical Weather Forecast models for meteorological situations corresponding to the HyMeX ``target event'' (heavy precipitation in fall; Mistral/Tramontana in winter). BLPBs were calibrated to fly near or below the top of the boundary layer. An assimilation system was also developed to assimilate in real time the BLPB’s data into the Météo-France Numerical Weather Forecast prediction system. The BLPB were successfully deployed during the two HyMeX special observation periods (SOP) in fall 2012 (5 September - 6 November) and winter 2013 (1 February - 15 March): begin{enumerate} The BAMED SOP1 balloon campaign, dedicated to the study of heavy precipitation events (HPE), took place in Minorca (Baleares). The CNES team with the help and support of the scientists launched 19 BLPBs from San Luis airport. Trajectories sampled a large sector of the Mediterranean Sea

  5. Endovascular treatment for dural arteriovenous fistula at the foramen magnum: report of five consecutive patients and experience with balloon-augmented transarterial Onyx injection.

    Science.gov (United States)

    Liang, Guobiao; Gao, Xu; Li, Zhiqing; Wang, Xiaogang; Zhang, Haifeng; Wu, Zhongxue

    2013-05-01

    Foramen magnum dural arteriovenous fistulas (DAVF) with perimedullary venous drainage represent a small minority of intracranial DAVF, and only a number of small series with limited cases have been reported. The purpose of this retrospective study is to summarize experience of transarterial Onyx embolisation in the treatment of these lesions, with emphasis on the balloon-augmented technique. Five consecutive patients with DAVF at the foramen magnum were treated by transarterial embolisation using the Onyx system. Their symptoms included myelopathy (n=4) and SAH (n=1). Suppliers were from the vertebral artery (VA) (n=4), occipital artery (OA) (n=4), and ascending pharyngeal artery (APA) (n=2), with drainage to the perimedullary veins. After catheterization of the dilated supplier, the fistulous connections, proximal draining veins and appropriate distal segment of the feeders of these DAVF were transarterial embolized using Onyx-18. In three patients, balloon-augmented technique was used to assist embolisation. The technical feasibility of the procedure, angiographic results, and clinical outcome were evaluated. In every case, complete obliteration was achieved. Neither intraprocedural vessel rupture nor other procedure-related complications occurred. The results remained stable in all patients on follow-up angiograms (mean, 7.2 months). At the last clinical follow-up (mean, 17.6 months), two patients showed complete resolution of the initial symptoms, and three patients showed significant improvement. We found that Onyx embolisation is a feasible and safe alternative to open surgery in the treatment of selective DAVF at the foramen magnum. The balloon-augmented technique widens indications for transarterial Onyx packing of these lesions, and improved safety of the procedure. Copyright © 2013. Published by Elsevier Masson SAS.

  6. Double-balloon enteroscopy: Indications, approaches, diagnostic and therapeutic yield, and safety. Early experience at a single center.

    Science.gov (United States)

    García-Correa, J J E; Ramírez-García, J J; García-Contreras, L F; Fuentes-Orozco, C; Irusteta-Jiménez, L; Michel-Espinoza, L R; Carballo Uribe, A S; Torres Chávez, J A; González-Ojeda, A

    2017-05-12

    Double-balloon enteroscopy has been improving the visualization of the entire intestine for more than a decade. It is a complementary method in the study of intestinal diseases that enables biopsies to be taken and treatments to be administered. Our aim was to describe its main indications, insertion routes, diagnostic/therapeutic yield, and complications. All patients referred to our unit with suspected small bowel pathology were included. The insertion route (oral/anal) was determined through diagnostic suspicion. The variables measured were: insertion route, small bowel examination extent, endoscopic diagnosis/treatment, biopsy/histopathology report, complications, and surgical findings. The study included 28 double-balloon enteroscopies performed on 23 patients, of which 10 were women and 13 were men (mean age of 52.95 years). The oral approach was the most widely used (n=21), the main indication was overt small bowel bleeding (n=16), and the general diagnostic yield was 65.21%. The therapeutic intervention rate was 39.1% and the procedure was effective in all the cases. The most widely used treatment was argon plasma therapy (n=7). The complication rate was 8.6%; one patient presented with low blood pressure due to active bleeding and another had deep mucosal laceration caused by the argon plasma. Double-balloon enteroscopy is a safe and efficacious method for the study and management of small bowel diseases, with an elevated diagnostic and therapeutic yield. Copyright © 2017 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  7. Approaching the knee -- balloon-borne observations of cosmic ray composition

    CERN Document Server

    Cherry, M L

    2005-01-01

    Below the knee in the cosmic ray spectrum, balloon and spacecraft experiments offer the capability of direct composition and energy measurements on the primary particles. A major difficulty is obtaining enough exposure to extend the range of direct measurements sufficiently high in energy to permit overlap with ground-based observations. Presently, balloon and space measurements extend only up to ~100 TeV, well below the range of ground-based experiments. The prospect of Ultra-Long Duration Balloon missions offers the promise of multiple long flights that can build up exposure. The status of balloon measurements to measure the high energy proton and nuclear composition and spectrum is reviewed, and the statistical considerations involved in searching for a steepening in the spectrum are discussed. Given the very steeply falling spectrum, it appears unlikely that balloon experiments will be able to extend the range of direct measurements beyond 1000 TeV any time in the near future. Especially given the recent ...

  8. NASA's Rodent Research Project: Validation of Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen

  9. Wearing weighted backpack dilates subjective visual duration: the role of functional linkage between weight experience and visual timing.

    Science.gov (United States)

    Jia, Lina; Shi, Zhuanghua; Feng, Wenfeng

    2015-01-01

    Bodily state plays a critical role in our perception. In the present study, we asked the question whether and how bodily experience of weights influences time perception. Participants judged durations of a picture (a backpack or a trolley bag) presented on the screen, while wearing different weight backpacks or without backpack. The results showed that the subjective duration of the backpack picture was dilated when participants wore a medium weighted backpack relative to an empty backpack or without backpack, regardless of identity (e.g., color) of the visual backpack. However, the duration dilation was not manifested for the picture of trolley bag. These findings suggest that weight experience modulates visual duration estimation through the linkage between the wore backpack and to-be-estimated visual target. The congruent action affordance between the wore backpack and visual inputs plays a critical role in the functional linkage between inner experience and time perception. We interpreted our findings within the framework of embodied time perception.

  10. Short-term follow-up results of percutaneous mitral balloon valvuloplasty: A single-center experience

    Directory of Open Access Journals (Sweden)

    Abdulkadir Yıldız

    2014-12-01

    Full Text Available Objective: We sought to analyze short-term clinical, echocardiographic, and hemodynamic consequences of percutaneous mitral balloon valvuloplasty (PMBV in the treatment of rheumatic mitral stenosis (MS in our clinic. Methods: We retrospectively reviewed 53 patients (49 females, 5 males; mean age 38±11 years who underwent PMBV for moderate or severe MS between January 2010 and October 2014. Procedural success was defined as the reaching a mitral valve area (MVA >1.5 cm2 and absence of grade 3 mitral regurgitation. Results: We were able to perform PMBV in 48 of 53 patients (91% and all the procedures that were completed were successful. PMBV couldn’t be performed in 3 patients due to inability to pass the mitral valve, 1 patient due to membranous obstructive vena cava and 1 patient due inability to perform septostomi. Two patients who underwent successful PMBV became symptomatic after an average of 14 months follow-up and mitral valve replacement was performed due to moderate-to-severe MS. Patients were followed for an average of 13 ± 8 months and atrial fibrillation development or embolic complications were not observed. Conclusion: Percutaneous mitral balloon valvuloplasty procedure is a safe and effective treatment approach with high success and low complication rates in experienced centers.

  11. Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment

    CERN Document Server

    Ahn, H S; Bagliesi, M G; Beatty, J J; Bigongiari, G; Boyle, P J; Brandt, T J; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Jeon, J A; Kim, K C; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinin, A; Marrocchesi, P S; Minnick, S A; Mognet, S I; Nam, S; Nutter, S L; Park, I H; Park, N H; Seo, E S; Sina, R; Swordy, S P; Wakely, S P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2008-01-01

    We present new measurements of heavy cosmic-ray nuclei at high energies per- formed during the first flight of the balloon-borne cosmic-ray experiment CREAM (Cosmic-Ray Energetics And Mass). This instrument uses multiple charge detectors and a transition radiation detector to provide the first high accuracy measurements of the relative abundances of elements from boron to oxygen up to energies around 1 TeV/n. The data agree with previous measurements at lower energies and show a relatively steep decline (~E$^-0.6$ to E$^-0.5$) at high energies. They further show the source abundance of nitrogen relative to oxygen is ~10% in the TeV/n region.

  12. Composition and energy spectra of cosmic-ray primaries in the energy range 10 13-10 15 eV/particle observed by Japanese-Russian joint balloon experiment

    Science.gov (United States)

    Apanasenko, A. V.; Sukhadolskaya, V. A.; Derbina, V. A.; Fujii, M.; Galkine, V. I.; Getsov, G. G.; Hareyama, M.; Ichimura, M.; Ito, S.; Kamioka, E.; Kitami, T.; Kobayashi, T.; Kolesnikov, V. D.; Kopenkin, V.; Kotunova, N. M.; Kuramata, S.; Kuriyama, Y.; Lapshin, V. I.; Managadze, A. K.; Matsutani, H.; Mikami, H.; Misnikova, N. P.; Mukhamedshin, R. A.; Namiki, M.; Nanjo, H.; Nazarov, S. N.; Nikolsky, S. I.; Ohe, T.; Ohta, S.; Osedlo, V. I.; Oshuev, D. S.; Podorozhny, D. M.; Publichenko, P. A.; Rakobolskaya, I. V.; Roganova, T. M.; Saito, M.; Sazhina, G. P.; Semba, H.; Shabanova, Yu. N.; Shibata, T.; Sugimoto, H.; Sveshnikova, L. G.; Takahashi, K.; Tsuchiya, T.; Taran, V. M.; Yajima, N.; Yamagami, T.; Yamamoto, K.; Yashin, I. V.; Zamchalova, E. A.; Zatsepin, G. T.; Zayarnaya, I. S.; Runjob Collaboration

    2001-10-01

    We report experimental results obtained by the emulsion chambers on board of the long duration balloon. We have been carrying out the trans-Siberian-continental balloon flight since 1995, and the results from 1995 to 1996 experiments are presented here. Total exposure of these two years amounts to 231.5 m 2 h at the average altitude of ˜32 km. The energy range covers 10-500 TeV for proton-primary, 3-70 TeV/n for helium-primary, and 1-5 TeV/n for Fe-group ( Z=26-28), though statistics of heavy components is not yet enough. Our preliminary data show that the spectra of the proton and the helium have nearly the same power indices ˜2.80, while those of heavier ones become gradually harder as the mass gets heavier, for instance the index is ˜2.70 for CNO-group and ˜2.55 for Fe-group. It is remarkable that a very high energy proton with multi-PeV is detected in 1995 experiment, and the estimated flux of this event coincides with a simple extrapolation from the energy spectrum with the power index 2.8 observed in the range 10-500 TeV. It indicates that there is no spectral break at around 100 TeV, in contrast to the maximum energy predicted by the current shock-wave acceleration model. This evidence requires some modification on the acceleration and/or propagation mechanism. Also we present all-particle spectrum and the average primary mass in the energy range 20-1000 TeV/particle. Our preliminary data show no drastic change in mass composition over the wide energy range, at least up to 1 PeV/particle, though the statistics is not yet enough to confirm it concretely. The flight performance and the procedure of the analysis, particularly the energy determination methods and the detection efficiency calculation are also given.

  13. Financial impact of reducing door-to-balloon time in ST-elevation myocardial infarction: a single hospital experience.

    Science.gov (United States)

    Khot, Umesh N; Johnson-Wood, Michele L; Geddes, Jason B; Ramsey, Curtis; Khot, Monica B; Taillon, Heather; Todd, Randall; Shaikh, Saeed R; Berg, William J

    2009-07-26

    The impact of reducing door-to-balloon time on hospital revenues, costs, and net income is unknown. We prospectively determined the impact on hospital finances of (1) emergency department physician activation of the catheterization lab and (2) immediate transfer of the patient to an immediately available catheterization lab by an in-house transfer team consisting of an emergency department nurse, a critical care unit nurse, and a chest pain unit nurse. We collected financial data for 52 consecutive ST-elevation myocardial infarction patients undergoing emergency percutaneous intervention from October 1, 2004-August 31, 2005 and compared this group to 80 consecutive ST-elevation myocardial infarction patients from September 1, 2005-June 26, 2006 after protocol implementation. Per hospital admission, insurance payments (hospital revenue) decreased ($35,043 +/- $36,670 vs. $25,329 +/- $16,185, P = 0.039) along with total hospital costs ($28,082 +/- $31,453 vs. $18,195 +/- $9,242, P = 0.009). Hospital net income per admission was unchanged ($6962 vs. $7134, P = 0.95) as the drop in hospital revenue equaled the drop in costs. For every $1000 reduction in total hospital costs, insurance payments (hospital revenue) dropped $1077 for private payers and $1199 for Medicare/Medicaid. A decrease in hospital charges ($70,430 +/- $74,033 vs. $53,514 +/- $23,378, P = 0.059), diagnosis related group relative weight (3.7479 +/- 2.6731 vs. 2.9729 +/- 0.8545, P = 0.017) and outlier payments with hospital revenue>$100,000 (7.7% vs. 0%, P = 0.022) all contributed to decreasing ST-elevation myocardial infarction hospitalization revenue. One-year post-discharge financial follow-up revealed similar results: Insurance payments: $49,959 +/- $53,741 vs. $35,937 +/- $23,125, P = 0.044; Total hospital costs: $39,974 +/- $37,434 vs. $26,778 +/- $15,561, P = 0.007; Net Income: $9984 vs. $9159, P = 0.855. All of the financial benefits of reducing door-to-balloon time in ST-elevation myocardial

  14. Nationwide Eclipse Ballooning Project

    Science.gov (United States)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  15. Ballooning behavior in the golden orbweb spider Nephilapilipes (Araneae: Nephilidae

    Directory of Open Access Journals (Sweden)

    Vanessa M.J. Lee

    2015-01-01

    Full Text Available Ballooning, a mode of aerial dispersal in spiders, is an innate behavior that requires appropriate physiological and meteorological conditions. Although only rarely reported in the golden orbweb spiders, family Nephilidae, the large geographic distributions of most nephilids—in particular of Nephila species—would imply that these spiders likely routinely disperse by ballooning in spite of giant female sizes. Here we study ballooning behavior in the golden orbweb spider Nephila pilipes (Fabricius, 1793. Specifically, we test for the propensity of spiderlings to deploy ballooning as a dispersal mechanism. We subjected a total of 59 first-instar spiderlings to a wind experiment at two wind speeds (2.17 ± 0.02 m s-1 and 3.17 ± 0.02 m s-1 under laboratory conditions. Under an average wind speed of 3.17 m s-1, none of the spiderlings exhibited pre-ballooning or ballooning behavior. However, at an average wind speed of 2.17 m s-1, 53 (89.8% spiderlings showed pre-ballooning behavior, and 17 (32.1% of the pre-ballooners ultimately ballooned. Our results concur with prior reports on spiderlings of other families that pre-ballooning behavior is a requirement for ballooning to occur. Furthermore, although we cannot rule out other dispersal mechanisms such as synanthropic spread, our findings suggest that the widespread N. pilipes uses ballooning to colonize remote oceanic islands.

  16. Percutaneous closure of atrial septal defects without balloon sizing in adults: Experience of a tertiary referral center

    Directory of Open Access Journals (Sweden)

    Hasan Kaya

    2013-03-01

    Full Text Available Objective: We aimed to evaluate our clinical experienceand short-term results of percutaneous closure of secundumtype atrial septal defects (ASD in adults.Methods: We studied 71 patients (49 female, 22 male,mean age 35±14 years undergoing percutaneous closureof ASD between January 2010-October 2012 in ourclinic. All procedures were performed under sedoanalgesiawithout balloon sizing. Clinical characteristics of patients,properties of percutaneous closure intervention,complications and short-term results are evaluated.Results: Defect diameter measured by transesophagealechocardiographic examination was 19.8±6.4 mm. Devicesize used for percutaneous closure was 24.7±6.7mm. Procedure was successfully performed in 67 patients(94%. Four patients were referred for surgery because ofprocedural failure. During procedure, a patient developedtransient 2nd degree AV block, and another developeddevice thrombosis. Residual shunt was detected in threepatients at first day control echocardiographic examination.In the follow-up of 13±8 months, no residual shunt,embolic or arrhythmic complications were observed.Conclusion: Percutaneous closure of secundum ASD isa safe and effective method with high success and lowcomplication rates in experienced centers. J Clin Exp Invest2013; 4 (1: 67-72Key words: Secundum atrial septal defect, percutaneousclosure, sedoanalgesia, transesophageal echocardiography

  17. Modeling of hydrological drought durations and magnitudes: Experiences on Canadian streamflows

    Directory of Open Access Journals (Sweden)

    Tribeni C. Sharma

    2014-07-01

    New hydrological insights for the region: Approach based on the extreme number theorem predicted satisfactorily drought durations at monthly and annual time scales and was also found comparable to Markov chain of order-one for predicting monthly drought durations. The approach was found less satisfactory for predicting drought durations at weekly time scale but the performance was found to improve with the use of Markov chain of order-two. At annual, monthly, and weekly time scales, the relationship (magnitude = intensity × duration proved satisfactory for predicting drought magnitudes with the assumption that truncated normal distribution performs well for modeling the drought intensity. For predicting drought magnitudes at monthly and weekly time scales, the Markov chain proved more satisfactory with one order lower than the order that was used for predicting drought durations. Markov chain of order-one modeled durations satisfactorily at weekly time scale with uniform truncation levels corresponding to flows equivalent to 90% and 95%.

  18. Long duration flights management

    Science.gov (United States)

    Sosa-Sesma, Sergio; Letrenne, Gérard; Spel, Martin; Charbonnier, Jean-Marc

    Long duration flights (LDF) require a special management to take the best decisions in terms of ballast consumption and instant of separation. As a contrast to short duration flights, where meteorological conditions are relatively well known, for LDF we need to include the meteorological model accuracy in trajectory simulations. Dispersions on the fields of model (wind, temperature and IR fluxes) could make the mission incompatible with safety rules, authorized zones and others flight requirements. Last CNES developments for LDF act on three main axes: 1. Although ECMWF-NCEP forecast allows generating simulations from a 4D point (altitude, latitude, longitude and UT time), result is not statistical, it is determinist. To take into account model dispersion a meteorological NCEP data base was analyzed. A comparison between Analysis (AN) and Forecast (FC) for the same time frame had been done. Result obtained from this work allows implementing wind and temperature dispersions on balloon flight simulator. 2. For IR fluxes, NCEP does not provide ascending IR fluxes in AN mode but only in FC mode. To obtain the IR fluxes for each time frame, satellite images are used. A comparison between FC and satellites measurements had been done. Results obtained from this work allow implementing flux dispersions on balloon flight simulator. 3. An improved cartography containing a vast data base had been included in balloon flight simulator. Mixing these three points with balloon flight dynamics we have obtained two new tools for observing balloon evolution and risk, one of them is called ASTERISK (Statistic Tool for Evaluation of Risk) for calculations and the other one is called OBERISK (Observing Balloon Evolution and Risk) for visualization. Depending on the balloon type (super pressure, zero pressure or MIR) relevant information for the flight manager is different. The goal is to take the best decision according to the global situation to obtain the largest flight duration with

  19. Measurements of gondola motion on a stratospheric balloon flight

    CERN Document Server

    Safonova, Margarita; Sreejith, A G; Sarpotdar, Mayuresh; Ambily, S; Prakash, Ajin; Mathew, Joice; Murthy, Jayant; Anand, Devarajan; Kapardhi, B V N; Kumar, B Suneel; Kulkarni, P M

    2016-01-01

    Balloon experiments are an economically feasible method of conducting observations in astronomy that are not possible from the ground. The astronomical payload may include a telescope, a detector, and a pointing/stabilization system. Determining the attitude of the payload is of primary importance in such applications, to accurately point the detector/telescope to the desired direction. This is especially important in generally unstable lightweight balloon flights. However, the conditions at float altitudes, which can be reached by zero pressure balloons, could be more stable, enabling accurate pointings. We have used the Inertial Measurement Unit (IMU), placed on a stratospheric zero pressure balloon, to observe 3-axis motion of a balloon payload over a fight time of 4.5 hours, from launch to the float altitude of 31.2 km. The balloon was launched under nominal atmospheric conditions on May 8th 2016, from a Tata Institute of Fundamental Research Balloon Facility, Hyderabad.

  20. GHOST balloons around Antarctica

    Science.gov (United States)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  1. Wearing weighted backpack dilates subjective visual duration: The role of functional linkage between weight experience and visual timing

    Directory of Open Access Journals (Sweden)

    Lina eJia

    2015-09-01

    Full Text Available Bodily state plays a critical role in our perception. In the present study, we asked the question whether and how bodily experience of weights influences time perception. Participants judged durations of a picture (a backpack or a trolley bag presented on the screen, while wearing different weight backpacks or without backpack. The results showed that the subjective dura-tion of the backpack picture was dilated when participants wore a medium weighted backpack relative to an empty backpack or without backpack, regardless of identity (e.g., color of the visual backpack. However, the duration dilation was not manifested for the picture of trolley bag. These findings suggest that weight experience modulates visual duration estimation through the linkage between the wore backpack and to-be-estimated visual target. The con-gruent action affordance between the wore backpack and visual inputs plays a critical role in the functional linkage between inner experience and time perception. We interpreted our findings within the framework of embodied time perception.

  2. Reducing the duration of paired-comparison experiments for visual quality assessment

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren; Korhonen, Jari

    2013-01-01

    The subjective methodology of paired comparison is currently recognized as the most precise methodology. However, it is not widely used because it implies a larger number of assessments than other methodologies and therefore a longer test duration. In this paper we investigate how sorting...

  3. Preliminary Electric Field Results From A Multiple Balloon Campaign to Study Relativistic Electron Loss

    Science.gov (United States)

    Bering, E. A.; Kokorowski, M.; Holzworth, R. H.; Sample, J. G.; McCarthy, M. P.; Smith, D. M.; Parks, G. K.; Millan, R. M.; Woodger, L.; Reddell, B. D.; Lay, E.; Bale, S. D.; Pulupa, M.; O'Brien, T. P.; Blake, J. B.; Lin, R. P.; Moraal, H.; Stoker, P.; Hughes, A. R.; Collier, A. B.

    2005-05-01

    The MINIS balloon campaign was successfully conducted in January 2005 to investigate relativistic electron loss mechanisms. Quantifying and understanding losses is an integral part of understanding the variability of relativistic electrons in the radiation belts. Balloon-based experiments directly measure precipitation and thus provide a method for quantifying losses, while the nearly stationary platform allows for the separation of temporal and spatial variations. A new class of precipitation event, characterized by extremely hard spectra, short durations, and complex temporal structure, occurring in the evening to midnight sector, was discovered by the INTERBOA balloon in 1996 and studied further by the MAXIS balloon in 2000. The MINIS campaign provided the first opportunities for multi-point measurements of electron precipitation up to MeV energies, including simultaneous measurements at different longitudes and at near-conjugate locations. Two balloons, each carrying an X-ray spectrometer for measuring the bremsstrahlung produced as electrons precipitate into the atmosphere, were launched from Churchill, Manitoba at 0850 UT on 21 January 2005 and 0140 UT on 25 January 2005. Four balloons, each carrying an X-ray spectrometer, a Z-axis search coil magnetometer, and a 3-axis electric field instrument providing DC electric field and VLF measurements in 3 frequency bands, were launched from the South African Antarctic Station (SANAE IV). The Southern launches took place at 1400 UT on 17 January, 1309 UT on 19 January, 2115 UT on 20 January, and 0950 UT on 24 January 2005. In this paper, we present the preliminary results from the MINIS South electric field instrumentation. We have good DC and VLF electric field data from all payloads, and the payload rotation mechanism worked in all four as well. The campaign began with two large solar flares. In the post-flare environment, some very magnetospherically active periods are included in our data, with strong and

  4. Preliminary X-ray Results From A Multiple Balloon Campaign to Study Relativistic Electron Loss

    Science.gov (United States)

    Sample, J. G.; Kokorowski, M.; Millan, R. M.; McCarthy, M.; Holzworth, R. H.; Bering, E. A.; Parks, G. K.; Woodger, L.; Reddell, B. D.; Lay, E.; Pulupa, M.; Bale, S.; O'Brien, T. P.; Blake, J. B.; Lin, R. P.; Moraal, H.; Stoker, P.; Hughes, A. R.; Collier Cameron, A.; Smith, D. M.

    2005-05-01

    The MINIS balloon campaign was successfully conducted in January 2005 to investigate relativistic electron loss mechanisms. Quantifying and understanding losses is an integral part of understanding the variability of relativistic electrons in the radiation belts. Balloon-based experiments directly measure precipitation and thus provide a method for quantifying losses, while the nearly stationary platform allows for the separation of temporal and spatial variations. A new class of precipitation event, characterized by extremely hard spectra, short durations, and complex temporal structure, occurring in the evening to midnight sector, was discovered by the INTERBOA balloon in 1996 and studied further by the MAXIS balloon in 2000. The MINIS campaign provided the first opportunities for multi-point measurements of electron precipitation up to MeV energies, including simultaneous measurements at different longitudes and at near-conjugate locations. Two balloons, each carrying an X-ray spectrometer for measuring the bremsstrahlung produced as electrons precipitate into the atmosphere, were launched from Churchill, Manitoba at 0850 UT on 21 January 2005 and 0140 UT on 25 January 2005. Four balloons, each carrying an X-ray spectrometer, a Z-axis search coil magnetometer, and a 3-axis electric field instrument providing DC electric field and VLF measurements in 3 frequency bands, were launched from the South African Antarctic Station (SANAE IV). The Southern launches took place at 1400 UT on 17 January, 1309 UT on 19 January, 2115 UT on 20 January, and 0950 UT on 24 January 24 2005. In this paper, we present the preliminary results from the MINIS North and South X-ray data. The first and second Southern payloads observed a rarely-seen phenomenon: gamma-ray line emission from nuclear interactions of solar protons in the Earth's atmosphere. When the solar particles abated, there were numerous opportunities for simultaneous observations of MeV precipitation from multiple

  5. Preliminary experience with balloon kyphoplasty for the treatment of painful osteoporotic compression fractures; Ballon-Kyphoplastie zur Behandlung schmerzhafter osteoporotischer Wirbelkoerperfrakturen - Technik und erste Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, K.; Urbach. H. [Bonn Univ. (Germany). Radiologische Klinik; Stoffel, M; Ringel, F.; Rao, G.; Roesseler, L.; Meyer, B. [Bonn Univ. (Germany). Neurochirurgische Klinik

    2003-12-01

    Purpose: To describe the technique and to evaluate the safety and efficacy of percutaneous kyphoplasty as a new treatment in patients with painful osteoporotic vertebral body compression fractures of the lumbar and thoracic spine. Materials and Methods: In this prospective study balloon kyphoplasty was performed in 34 consecutive patients (25 females, 9 males; mean age 75 years) with 56 painful osteoporotic vertebral fractures (from T6-L5), of which 22 showed a posterior wall involvement and -retropulsion on preoperative CT. The median duration of symptoms was 9.7 weeks. Symtomatic levels were identified by correlating the clinical presentation with MRI, conventional radiographs and CT including bone-densitometry. Pre- and postoperative examinations (radiographs, CT) as well as Karnofsky and visual analogy pain scores (Visual Analog Scale=VAS) were documented and compared to evaluate the success of the procedure. Results: The median Karnofsky score improved from 40% (pre-) to 70% (post-treatment). Simultaneously, median pain scores (VAS) decreased from 64 (pre-) to 21 (post-treatment) (p<0.001). Perioperative morbidity included one transient L2 nerve root bruise. The procedure led to a partial restoration of the height of the vertebral body by reducing the median sagittal index from 11.5 to 5 . In none of our patients, the procedure led to worsening of the fracture-induced narrowing of the spinal canal. Clinically asymptomatic cement leakage occurred in 10 cases, with leakage 4 times into the paraspinal space, 3 times into the spinal canal and 3 times into the disc space. Conclusion: Balloon kyphoplasty is a safe and effective procedure. It is applicable even in fractures with posterior wall involvement since it is a low-pressure technique in contrast to vertebroplasty and restores vertebral body height partially. It results in immediate clinical improvement of mobility and pain relief. While short-term results are excellent, follow-up data have to be awaited for

  6. Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics

    Science.gov (United States)

    Casner, A.; Martinez, D.; Smalyuk, V.; Masse, L.; Kane, J. O.; Villette, B.; Fariaut, J.; Oudot, G.; Liberatore, S.; Mancini, R. C.; Remington, B. A.; Heeter, R. F.

    2015-12-01

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. We report on the first results acquired on NIF with the ablative Rayleigh-Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored to accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6-10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.

  7. Efficacy of a coaxial system with a compliant balloon catheter for navigation of the Penumbra reperfusion catheter in tortuous arteries: technique and case experience.

    Science.gov (United States)

    Takahira, Kazuki; Kataoka, Taketo; Ogino, Tatsuya; Endo, Hideki; Nakamura, Hirohiko

    2017-04-01

    OBJECTIVE The authors describe a method by which they easily and atraumatically navigate a large-bore reperfusion catheter of the Penumbra system to an embolus by using a coaxial system with a compliant balloon catheter in patients with tortuous arteries. METHODS A retrospective review of the prospective endovascular database was performed to identify cases in which a coaxial system with a compliant balloon catheter (Scepter C, MicroVention/Terumo; or TransForm C, Stryker Neurovascular) and a large-bore reperfusion catheter of the Penumbra system (Penumbra, Inc.) was used. The authors achieved a stable guiding sheath position and delivered the coaxial system with a compliant balloon catheter and a large-bore reperfusion catheter. Then, the balloon was inflated somewhat when the distal tip of the balloon was slightly advanced from the tip of the reperfusion catheter, and together the coaxial system was advanced to an embolus over a 0.014-in guidewire, even around the corner. When the distal tip of the balloon catheter reached the embolus, the authors deflated the balloon and navigated the large-bore reperfusion catheter to the embolus. Finally, the aspiration of the embolus with the Penumbra MAX pump was begun. RESULTS Between May 2014 and September 2015, the authors used this technique in 17 cases: 16 cases of middle cerebral artery occlusion (including 5 cases of internal carotid artery occlusion) and 1 case of basilar artery occlusion (age range 36-88 years, mean age 74.7 years, 13 men). For the reperfusion catheter of the Penumbra system, the 5MAX ACE was used in 15 cases, and the 5MAX was used in 2 cases. As a compliant balloon catheter, the Scepter C was used in 16 cases, and the TransForm C was used in 1 case. The technique was successful in 16 cases (94.1%). No parent artery dissections were noted in any cases. Catheter-induced vasospasm was noted in 1 case, but the vasospasm was transient. CONCLUSIONS A coaxial system with a compliant balloon catheter can

  8. Successful use of BT-Cath(®) balloon tamponade in the management of postpartum haemorrhage due to placenta previa.

    Science.gov (United States)

    Uygur, D; Altun Ensari, T; Ozgu-Erdinc, A S; Dede, H; Erkaya, S; Danisman, A N

    2014-10-01

    To investigate efficacy of the BT-Cath(®) in cases of uncontrollable haemorrhage due to placenta previa. Retrospective study of women treated with the BT-Cath in the event of postpartum haemorrhage (PPH) due to placenta previa, despite optimal management with medical treatment. Between 2011 and 2013, 237 women had placenta previa (0.45%) at the study hospital. This study evaluated 53 women who underwent uterine tamponade with a BT-Cath. Haemostasis was achieved in 45 women (85%), and hysterectomy was required in six women (11%). Two women required repeat laparotomy. The mean duration of balloon tamponade was 9.8h (standard deviation 6.4h). When the relationship between balloon volume and treatment success was evaluated, the area under the receiver operating characteristic curve was 0.803 (95% confidence interval 0.633-0.973; p=0.007) and the optimal cut-off point was 220ml, with sensitivity of 88% and specificity of 71%. The intra-uterine BT-Cath is simple to use, even among clinicians with little experience, and is an effective treatment choice in patients with PPH due to placenta previa when medical treatment is unsuccessful. Minimal inflation of the balloon, a shorter period of intra-uterine balloon tamponade and early deflation of the balloon are recommended. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  10. Optical coherence tomography monitoring of angioplasty balloon inflation in a deployment tester

    Science.gov (United States)

    Azarnoush, Hamed; Vergnole, Sébastien; Bourezak, Rafik; Boulet, Benoit; Lamouche, Guy

    2010-08-01

    We present an innovative integration of an intravascular optical coherence tomography probe into a computerized balloon deployment system to monitor the balloon inflation process. The high-resolution intraluminal imaging of the balloon provides a detailed assessment of the balloon quality and, consequently, a technique to improve the balloon manufacturing process. A custom-built swept-source optical coherence tomography system is used for real-time imaging. A semicompliant balloon with a nominal diameter of 4 mm is fabricated for the experiments. Imaging results correspond to balloon deployment in air and inside an artery phantom. A characterization of the balloon diameter, wall thickness, compliance, and elastic modulus is provided, based on image segmentation. Using the images obtained from the probe pullback, a three-dimensional visualization of the inflated balloon is presented.

  11. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  12. Advanced-warning system risk-reduction experiments: the Multispectral Measurements Program (MSMP) and the Balloon Altitude Mosaic Measurements (BAMM)

    Science.gov (United States)

    Hasegawa, Ken R.

    2000-12-01

    MSMP and BAMM were commissioned by the Air Force Space Division (AFSD) in the late seventies to generate data in support of the Advanced Warning System (AWS), a development activity to replace the space-based surveillance satellites of the Defense Support Program (DSP). These programs were carried out by the Air Force Geophysics Laboratory with planning and mentoring by Irving Spiro of The Aerospace Corporation, acting on behalf of the program managers, 1st Lt. Todd Frantz, 1st Lt. Gordon Frantom, and 1st Lt. Ken Hasegawa of the technology program office at AFSD. The motivation of MSMP was the need for characterizing the exhaust plumes of the thrusters aboard post-boost vehicles, a primary target for the infrared sensors of the proposed AWS system. To that end, the experiments consisted of a series of Aries rocket launches from White Sands Missile Range in which dual payloads were carried aloft and separately deployed at altitudes above 100 km. One module contained an ensemble of sensors spanning the spectrum from the vacuum ultraviolet to the long wave infrared, all slaved to an rf tracker locked onto a beacon on the target module. The target was a small pressure-fed liquid-propellant rocket engine, a modified Atlas vernier, programmed for a series of maneuvers in the vicinity of the instrument module. As part of this program, diagnostic measurements of the target engine exhaust were made at Rocketdyne, and shock tube experiments on excitation processes were carried out by staff members of Calspan.

  13. BESS and its future prospect for polar long duration flights

    Science.gov (United States)

    Yamamoto, A.; Abe, K.; Anraku, K.; Asaoka, Y.; Fujikawa, M.; Fuke, H.; Haino, S.; Imori, M.; Izumi, K.; Maeno, T.; Makida, Y.; Matsui, N.; Matsumoto, H.; Matsunaga, H.; McDonald, F. B.; Mitchell, J.; Mitsui, T.; Moiseev, A.; Motoki, M.; Nishimura, J.; Nozaki, M.; Orito, S.; Ormes, J. F.; Righter, D.; Saeki, T.; Sanuki, T.; Sasaki, M.; Seo, E. S.; Shikaze, Y.; Sonoda, T.; Streitmatter, R.; Suzuki, J.; Tanaka, K.; Tanizaki, K.; Ueda, I.; Wang, J. Z.; Yajima, N.; Yamagami, T.; Yamamoto, Y.; Yamaoka, H.; Yamato, K.; Yoshida, T.; Yoshimura, K.; BESS Collaboration

    The Balloon-borne Experiment with a Superconducting Spectrometer, BESS, aims to study elementary particle/antiparticle phenomena in the early history of the Universe. The instrument has a unique feature of a thin superconducting solenoid magnet enabling a large geometrical acceptance with a horizontally cylindrical configuration. Seven balloon flights have been successfully carried out since 1993. More than 10 3 comic-ray antiproton have been unambiguously detected, and the energy spectrum has been measured with the characteristic peak at 2 GeV. The search for cosmic-ray antihelium brought the upper-limit of the antihelium/helium ratio down to < 10 -6. To extend the highly sensitive measurements, we are planning polar long duration flights in Antarctica focusing on the very low energy antiproton spectrum towards the solar-minimum in the next decade.

  14. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    Science.gov (United States)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  15. Thermal performance modeling of NASA s scientific balloons

    Science.gov (United States)

    Franco, H.; Cathey, H.

    The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed

  16. Clinical Experience with a Hybrid Procedure Using the Adherent Clot Catheter for Salvage of Thrombosed Hemodialysis Access: A Comparison with the Standard Fogarty Balloon Catheter.

    Science.gov (United States)

    Yang, Yu Sung; Han, Kyu Dam; Choi, Eun Hye; Park, Young Sam; Seo, Yeon Ho; Kim, Cheol Seung

    2015-03-01

    This study aimed to compare the efficacy of two different catheters in hybrid surgery for salvage of thrombosed hemodialysis accesses. The hybrid salvage procedure (surgical thrombectomy followed by endovascular angioplasty) of the thrombosed hemodialysis access, was performed using adherent clot (AC) catheter in 140 cases and Fogarty balloon catheter in 68 cases. Procedure-related outcomes such as the clot removal status, clinical success, complications, and primary patency rates were analyzed retrospectively. The proportion of cases with good clot removal scores in the AC catheter and Fogarty balloon catheter groups was 77.9% and 91.2%, respectively (P=0.018). Clinical success was achieved in 90.7% of the cases in the AC catheter group and in 98.5% of the cases in the balloon catheter group (P=0.035). The mean patency rates of the two groups were 50.7% and 63.2% at 3 months, 40.7% and 47.1% at 6 months, and 17.9% and 19.1% at 12 months. The complication rates (12.1% and 5.9%) and primary patency rates between the two catheters were not statistically different (P=0.328). On the analysis of the patency rate on access type of autologous (P=0.169) and prothetic graft (P=0.423), there was no significant difference between the two catheter groups. In terms of clot removal and clinical success, the AC catheter did not demonstrate better outcomes than the Fogarty balloon catheter. However, primary patency was not related to the type of catheter. Adherent clot catheter can be a useful alternative to Fogarty balloon catheter for thrombosed hemodialysis access.

  17. Pumpkins and onions and balloon design

    Science.gov (United States)

    Winker, J. A.

    The reach for a capability to make long flights (months) with heavy payloads (tonnes) has long been pursued. The closest we have come is with polar flights devoid of a significant diurnal cycle. Superpressure technology, with its ability to survive diurnal cycles, is an obvious choice, but materials limitations have been an obstacle to realizing these ambitious goals. Now comes an assortment of new synthetic materials, coupled with a special variety of superpressure balloon which, in combination, is poised to yield a solution for our enhanced duration/payload quest. In this paper we are looking not at materials, but only at a balloon concept. This concept is a "natural shape" oblate spheroid balloon whose shape is chosen to exploit properties of component materials, particularly newly available ones. The current variation of this concept is called a "pumpkin" balloon. The most visible work on this shape is that done by France's CNES, Japan's ISAS, and in the USA by NASA's Wallops Flight Facility. But the basic design idea is not new; it extends back at least a half century. This paper traces the origins of the shape, its evolution through various iterations, and it speculates on some of the recent thinking regarding construction details.

  18. Modulation of the mismatch negativity (MMN) to vowel duration changes in native speakers of Finnish and German as a result of language experience.

    Science.gov (United States)

    Kirmse, Ursula; Ylinen, Sari; Tervaniemi, Mari; Vainio, Martti; Schröger, Erich; Jacobsen, Thomas

    2008-02-01

    While crucial for phoneme distinctions in the Finnish language, mere vowel duration is of lower relevance as a phonetically distinctive cue in the German language. To investigate the pre-attentive processing of vowel duration between these two languages, the mismatch negativity (MMN), a component of the auditory event-related potential (ERP) that is an index of automatic auditory change detection, was measured in Finnish and German native speakers for vowel duration changes embedded in the pseudoword sasa. Vowel duration changes thereby were presented as a shortening or a lengthening of either the first- or second-syllable vowel. An additional non-speech condition measured the MMN to duration and frequency changes in tones. In both language groups, diminished MMN amplitudes for the shortening of vowel duration in the word-final syllable suggested a generally more difficult discrimination of vowel duration in a word-final position. Further, shorter MMN latencies for the Finns than the Germans for vowel duration as well as tone duration deviants suggested a generally higher sensitivity to duration contrasts in the Finnish language group. No latency difference between the groups was found for tone frequency processing. Moreover, the Finns, but not the Germans, showed a leftward shift of the MMN scalp distribution for changes in vowel duration, whereas the MMN topography was highly similar between both groups in the tone condition. An enhanced phonetic processing of vowel duration changes and possibly an enhanced processing of sound duration in general is thus indicated for the Finns as a result of their extensive linguistic experience with phonetically distinctive vowel duration contrasts in the native language.

  19. Development of a balloon volume sensor for pulsating balloon catheters.

    Science.gov (United States)

    Nolan, Timothy D C; Hattler, Brack G; Federspiel, William J

    2004-01-01

    Helium pulsed balloons are integral components of several cardiovascular devices, including intraaortic balloon pumps (IABP) and a novel intravenous respiratory support catheter. Effective use of these devices clinically requires full inflation and deflation of the balloon, and improper operating conditions that lead to balloon under-inflation can potentially reduce respiratory or cardiac support provided to the patient. The goal of the present study was to extend basic spirographic techniques to develop a system to dynamically measure balloon volumes suitable for use in rapidly pulsating balloon catheters. The dynamic balloon volume sensor system (DBVSS) developed here used hot wire anemometry to measure helium flow in the drive line from console to catheter and integrated the flow to determine the volume delivered in each balloon pulsation. An important component of the DBVSS was an algorithm to automatically detect and adjust flow signals and measured balloon volumes in the presence of gas composition changes that arise from helium leaks occurring in these systems. The DBVSS was capable of measuring balloon volumes within 5-10% of actual balloon volumes over a broad range of operating conditions relevant to IABP and the respiratory support catheter. This includes variations in helium concentration from 70-100%, pulsation frequencies from 120-480 beats per minute, and simulated clinical conditions of reduced balloon filling caused by constricted vessels, increased driveline, or catheter resistance.

  20. Mars Solar Balloon Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  1. Venus Altitude Cycling Balloon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ISTAR Group ( IG) and team mate Thin Red Line Aerospace (TRLA) propose a Venus altitude cycling balloon (Venus ACB), an innovative superpressure balloon...

  2. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    Science.gov (United States)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  3. Concept report: Experimental vector magnetograph (EXVM) operational configuration balloon flight assembly

    Science.gov (United States)

    1993-01-01

    The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.

  4. [Balloon occlusion test of the internal carotid artery for evaluating resectability of blood vessel infiltrating cervical metastasis of advanced head and neck cancers--Heidelberg experience].

    Science.gov (United States)

    Dietz, A; von Kummer, R; Adams, H P; Kneip, M; Galito, P; Maier, H

    1993-11-01

    During the last two years 17 patients of the ENT-Department of the University of Heidelberg suffering from squamous-cell carcinomas of the head and neck underwent a balloon occlusion test of the internal carotid artery (ICA). The investigation was performed because of tumorous infiltration of the large cervical vessels. The balloon occlusion of the ICA was accomplished at the Department of Neuroradiology of the University of Heidelberg. While stopping bloodflow in the ICA of one side for 15-20 min, clinical, electrophysiological and Doppler sonographic monitoring was performed, to detect severe cerebral complications. The specific electrophysiological monitoring contained the detection of MSSEP's (median nerve stimulated somatosensorial evoked potentials) and TCMEP's (transcortical motor evoked potentials) during test occlusion. Balloon occlusion was not possible in three patients because of severe arteriosclerosis. Test occlusion had to be discontinued in three patients because of clinical complications (temporary amaurosis, orthostatic complications). Finally, seven patients showed contraindications during test occlusion for permanent occlusion of the ICA. Four patients had a permanent occlusion of the ICA after tumour resection. In two patients the ICA was removed without problems in test occlusion. The third patient underwent a permanent carotid occlusion because of bleeding complications (in spite of poor clinical tolerance of the test occlusion). In the fourth patient, only intraoperative neuromonitoring with MSSEP's was conducted before permanent carotid occlusion. All four patients did not show any neurological deficits after resection of the ICA. Neurophysiological monitoring played an important role in predicting cerebral complications after permanent occlusion of the ICA.

  5. Emergent intracranial balloon angioplasty and bailout self-expandable stent placement in acute large vessel occlusion of the anterior circulation: Experience of a single institution

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin; Seo, Jung Hwa; Jeong, Hae Woong [Busan Paik Hospital, Inje University, Busan (Korea, Republic of)

    2017-06-15

    To evaluate the outcomes of angioplasty for recanalization after acute ischemic stroke (AIS). The study population was selected from 134 patients who underwent endovascular revascularization therapy (ERT) for AIS between October 2011 and May 2014. Of those 134 patients, 39 who underwent balloon angioplasty with or without stent insertion were included in this study. Balloon angioplasty was the primary treatment for nine patients and a rescue method for 30 patients. The revascularization rate at 7 days, procedure-related complications, and clinical outcomes at 3 months were analyzed. The occlusion sites were the middle cerebral artery (n = 26), intracranial internal carotid artery (n = 10), and middle cerebral artery branch (n = 3). Angioplasty achieved successful revascularization (Thrombolysis in Cerebral Ischemia grade 2b–3) in 76.9% of patients. Computed tomography angiography performed 7 days post-procedure revealed a maintained reperfusion in 82.8% of successful cases. Only two patients had symptomatic intracerebral hemorrhage. At the 3-month follow-up, 18 (48.6%) and 10 (27.0%) patients showed good and poor functional outcomes, respectively (modified Rankin Scale scores, 0–2 and 5–6). Emergent balloon angioplasty and bailout self-expandable stent placement may be safe and effective for achieving successful revascularization in acute large vessel occlusion of the anterior circulation. It could be a feasible rescue method as well as a primary method for ERT.

  6. Efficient coordination of swarms of sensor-laden balloons for persistent, in situ, real-time measurement of hurricane development*

    Science.gov (United States)

    Bewley, Thomas; Meneghello, Gianluca

    2016-10-01

    Accurate long-term forecasts of the path and intensity of severe hurricanes are imperative to protect property and save lives. Extensive real-time measurements within hurricanes, especially near their core, are essential for supplementing the limited relevant information accessible by satellites in order to improve such forecasts. Current operational methods for obtaining in situ information, such as dropsondes and repeated manned and unmanned aircraft flights over and within hurricanes, are both expensive and limited in duration. In the present work it is demonstrated by numerical experiments how a swarm of robust, inexpensive, buoyancy-controlled, sensor-laden balloons might be deployed and controlled in an energetically efficient, coordinated fashion, for days at a time, to continuously monitor relevant properties (pressure, humidity, temperature, and wind speed) of a hurricane as it develops. Rather than fighting its gale-force winds, the strong and predictable stratification of these winds is leveraged to efficiently disperse the balloons into a favorable time-evolving distribution. An iterative bootstrap approach is envisioned in which (a) sensor balloons are used to help improve the available computational estimate of the uncertain and underresolved flow field of the hurricane and (b) this (imprecise) estimate of the hurricane flow field is leveraged to improve the distribution of the sensor balloons, which then better facilitates (a), etc. The control approach envisioned in this ambitious effort is a combination of (centrally computed) model predictive control for coordination at the largest scales, which is the focus of the present paper, coupled with a feedback control strategy (decentrally computed, on the balloons themselves), for smaller-scale corrections. Our work indicates that, following such an approach, certain target orbits of interest within the hurricane can be continuously sampled by some balloons, while others make repeated sweeps between the

  7. Balloon observations of spatial coherence in the Global Circuit

    Science.gov (United States)

    Holzworth, R. H.; Polar Patrol Balloon Team

    The first campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was carried out at Syowa Station in Antarctica during 1990-1991 and 1992-1993. Based on the results of the 1st-PPB experiment, the next campaign (2nd-PPB) was carried out in the austral summer of 2002-2003. This paper will present the global circuit results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (3 balloons). Payloads of these 3 flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a "Balloon Cluster" is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ˜ 60 to ˜ 500 km. This paper will present the global circuit observations with emphasis on the times of apparent spatial variation in the vertical fair weather field.

  8. Search for Signatures of Inflation with the EBEX Balloon-Borne Instrument

    Science.gov (United States)

    Hanany, Shaul

    EBEX (E and B EXperiment) is a balloon-borne experiment designed to measure the polarization of the cosmic microwave background radiation. It is a long-duration payload equipped with an array of 1564 bolometric transition edge sensors. The unique combination of sensitivity, resolution and sky coverage enables unprecedented power to constrain inflationary models and to determine the amplitude of the matter power spectrum through measurement of the gravitational lensing of CMB photons. The experiment is optimized to take full advantage of the balloon-borne environment in its frequency coverage, and to measure the yet unknown properties of Galactic dust polarization. EBEX completed a test flight in June of 2009 from Ft. Sumner, NM, and a second end- to-end integration campaign in the summer of 2011. Important milestones have been achieved including the first operation of any transition edge sensor (TES) bolometer in a balloon-borne environment, the first demonstration of any multiplexed readout of TES bolometers in space-like conditions, the first operation of a polarimeter based on continuous rotation of a half-wave plate by means of a superconducting magnetic bearing, and validation of the EBEX optical system and end-to-end polarimetry. The EBEX instrument is now being readied for its first long duration flight, which is scheduled to take place in December 2012, just before the start of this proposed grant period. In this proposal we are requesting funding to analyze and publish the science data generated during the first EBEX science flight. In addition to its science goals EBEX is a technology pathfinder for other experiments and for a future NASA satellite mission. It continues to provide excellent training grounds for student and post-docs. Already 6 Ph.D. theses have been produced based on the project and 7 more are anticipated.

  9. [Double-balloon enteroscopy: experience in the Hospital de Especialidades del Centro Médico Nacional Siglo XXI IMSS, Mexico City].

    Science.gov (United States)

    Blancas Valencia, Juan Manuel; Paz Flores, Víctor Manuel; Yokota, Alejo Miyamoto; Huerta Fosado, Blanca Rosa; Meneses, Luis Fernando; Piccini Larco, Julio Roberto; Mejía Cuan, Luis Alvaro

    2005-01-01

    The methods used for the study of the small bowel are not ideal. Double-balloon enteroscopy is a new alternative with therapeutic potential. Evaluate the utility, efficacy and safety of double-balloon enteroscopy in Mexico. Adult patients seen in the Hospital de Especialidades Centro Médico Nacional Siglo XXI, Mexico City who were being studied for: chronic diarrhea, obscure gastrointestinal hemorrhage, weight-loss and chronic anemia were included in the study. Anterograde (oral) and retrograde (anal) approaches were used and study time, findings and complications were evaluated. Thirty-one enteroscopies were performed, 15 were anterograde, 8 retrograde and 8 were performed via both routes, in 23 patients studied between February and October, 2004; 10 of them were women and 13 men with ages ranging from 25 to 80 years. Fourteen patients were sedated and 9 patients were anesthetized. Study time varied form 55 to 90 minutes. With the anterograde route the ileum was reached in 56.6% of cases, 39.1% the jejunum and only in one patient (4.3%) the whole intestine was explored. With the retrograde route in 62.5% of cases the jejunum was explored and 37.5% the ileum. Four patients with obscure gastrointestinal bleeding and 1 patient with chronic anemia had vascular ecstasies, and in 40% of patients there was no identifiable cause. In 2 patients with intestinal stenosis biopsies revealed intestinal lymphoma in one and ischemic injury in another one. The adverse effects were mild and transitoru. Double-balloon enteroscopy is a safe diagnostic and therapeutic method that is useful in cases of obscure hemorrhage, chronic anemia; small bowel pathology was found in 64.7% of cases.

  10. NASA Super Pressure Balloon

    Science.gov (United States)

    Fairbrother, Debbie

    2017-01-01

    NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tone of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.

  11. Space Weather Ballooning

    Science.gov (United States)

    Phillips, Tony; Johnson, Sam; Koske-Phillips, Amelia; White, Michael; Yarborough, Amelia; Lamb, Aaron; Herbst, Anna; Molina, Ferris; Gilpin, Justin; Grah, Olivia; Perez, Ginger; Reid, Carson; Harvey, Joey; Schultz, Jamie

    2016-10-01

    We have developed a "Space Weather Buoy" for measuring upper atmospheric radiation from cosmic rays and solar storms. The Buoy, which is carried to the stratosphere by helium balloons, is relatively inexpensive and uses off-the-shelf technology accessible to small colleges and high schools. Using this device, we have measured two Forbush Decreases and a small surge in atmospheric radiation during the St. Patrick's Day geomagnetic storm of March 2015.

  12. Who experiences seclusion? An examination of demographics and duration in a public acute inpatient mental health service.

    Science.gov (United States)

    Chavulak, Jacinta; Petrakis, Melissa

    2017-07-01

    Restrictive interventions such as seclusion may occur during an acute mental health crisis. Such interventions are experienced by people as traumatic and counter to recovery. The current study aimed to investigate the use of seclusion and who was secluded amongst patients presenting with psychotic symptomology. All acute inpatient admissions were examined across a 12-month period January-December 2013. Electronic and paper records were accessed and audited for all 655 admissions. There were 91 admissions that included a seclusion and 200 seclusion events. There were 79 unique patients who experienced seclusion. For those experiencing seclusion: two-thirds were male, 49% were either homeless or had no fixed abode, 32% received case management in the community prior to their inpatient stay, and 56% were unemployed or not in the workforce. The median and mode duration of seclusion was 4 h. By understanding seclusion interventions better, changes can be made to enhance practice. This descriptive research into seclusion has clarified the demographics of who is most likely to experience seclusion, for how long, and the implications for reducing restrictive interventions. How the social work role could contribute to reforms to protect and enhance the rights and well-being of marginalized members of our communities, at their most vulnerable, is considered.

  13. Role of Muscle Morphology in Jumping, Sprinting, and Throwing Performance in Participants With Different Power Training Duration Experience.

    Science.gov (United States)

    Methenitis, Spyridon K; Zaras, Nikolaos D; Spengos, Konstantinos M; Stasinaki, Angeliki-Nikoletta E; Karampatsos, Giorgos P; Georgiadis, Giorgos V; Terzis, Gerasimos D

    2016-03-01

    The aim of the study was to examine the correlation between muscle morphology and jumping, sprinting, and throwing performance in participants with different power training duration experience. Thirty-six power-trained young men were assigned to 3 groups according to the length of their power training: less experienced (muscle cross-sectional area (CSA) with anthropometry. The vastus lateralis architecture and fiber type composition were evaluated with ultrasonography and muscle biopsies, respectively. When all subjects were considered as 1 group (n = 36), jumping performance was correlated with LBM, fascicle length, and type II fiber CSA; sprinting performance was correlated with estimated thigh muscle CSA alone; and shot throwing was correlated with LBM and type I, IIA fiber CSA. In the least experienced group, the LBM of the lower extremities was the most significant contributor for power performance, whereas in the moderately experienced group, the LBM, architectural properties, and type II fiber percentage CSA were the most significant contributors. For the experienced group, fascicle length and type II fiber percentage CSA were the most significant factors for power performance. These data suggest that jumping performance is linked with muscle morphology, regardless of strength or power training. The vastus lateralis muscle morphology could only partially explain throwing performance, whereas it cannot predict sprinting performance. Power performance in experienced participants rely more on the quality of the muscle tissue rather than the quantity.

  14. An investigation of electrostatically deposited radionuclides on latex balloons

    Energy Technology Data Exchange (ETDEWEB)

    Price, T.; Caly, A., E-mail: Terry.Price@gmail.com [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2012-07-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  15. Breakthrough in Mars balloon technology

    Science.gov (United States)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  16. MAXIS Balloon Observations of Electron Microburst Precipitation

    Science.gov (United States)

    Millan, R. M.; Hunter, A. E.; McCarthy, M. P.; Lin, R. P.; Smith, D. M.

    2003-12-01

    Quantifying and understanding losses is an integral part of understanding relativistic electron variability in the radiation belts. SAMPEX observations indicate that electron microburst precipitation is a major loss mechanism during active periods; the loss of relativistic electrons during a six hour period due to microburst precipitation was recently estimated to be comparable to the total number of trapped electrons in the outer zone (Lorentzen et al., 2001). Microburst precipitation was first observed from a balloon (Anderson and Milton, 1964), but these early measurements were only sensitive to MAXIS 2000 long duration balloon campaign. MAXIS was launched from McMurdo Station in Antarctica carrying a germanium spectrometer, a BGO scintillator and two X-ray imagers designed to measure the bremsstrahlung produced by precipitating electrons. The balloon circumnavigated the south pole in 18 days covering magnetic latitudes ranging from 58o-90o South. During the week following a moderate geomagnetic storm (with Dst reaching -91 nT), MAXIS detected a total of over 16 hours of microburst precipitation. We present high resolution spectra obtained with the MAXIS germanium spectrometer which allow us to determine the precipitating electron energy distribution. The precipitating distribution will then be compared to the trapped distribution measured by the GPS and LANL satellites. We also examine the spatial distribution of the precipitation.

  17. Titan Balloon Convection Model Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  18. Intrauterine tamponade balloon use in the treatment of uterine inversion

    OpenAIRE

    Haeri, Sina; Rais, Sheliza; Monks, Brian

    2015-01-01

    Uterine inversion is a rare but life-threatening obstetrical emergency that occurs when the fundus of the uterus prolapses through the cervix, hence turning the uterus inside out. In this case report, we present our experience using an intrauterine tamponade balloon for management of uterine inversion, and a review of the literature. The utility of an intrauterine tamponade balloon in cases of uterine inversion, especially when maternal medical conditions preclude the use of uterotonics, or r...

  19. The Hubble party balloon and the expanding universe

    Science.gov (United States)

    Zendri, G.; Rosi, T.; Oss, S.

    2016-09-01

    We show that the metaphor of the inflated balloon used to describe expanding space-time according to the Hubble law can be transformed into a simple laboratory experiment. We obtain, in terms of measured recession speeds and distances of ink dots drawn on a party balloon, easy renditions of various cosmological models, such as the static one and the Einstein-De Sitter universe.

  20. Buddy balloon for TAVI.

    Science.gov (United States)

    Balkin, Jonathan; Silberman, Shuli; Almagor, Yaron

    2013-11-15

    Percutaneous transfemoral aortic valve replacement is a new rapidly evolving technique that has made significant progress in recent years. The technology is however limitted and in some cases has resulted in failure to deliver the prosthetic valve. We describe a new technique using a buddy balloon, from the contralateral femoral artery, to assist in crossing the native aortic valve in those cases where extreme calcification and or tortuosity have caused the delivery system to hang up on the aortic wall. The technique is easily applied and facilitates the success of the procedure in cases which may otherwise have to be converted to open surgical aortic valve replacement.

  1. A Methane Balloon Inflation Chamber

    Science.gov (United States)

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  2. High-Altitude Ballooning Program at the Indian Institute of Astrophysics

    CERN Document Server

    Nayak, A; Safonova, M; Murthy, Jayant

    2013-01-01

    We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bangalore. Recent advances in balloons as well as in electronics have made possible scientific payloads at costs accessible to university departments. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but to also explore phenomena occurring in the upper atmosphere, including sprites and meteorite impacts, using balloon-borne payloads. This paper discusses the results of three tethered balloon experiments carried out at the CREST campus of IIA, Hosakote and our plans for the future. We also describe the stages of payload development for these experiments.

  3. Superpressure Balloon Design Using Nonlinear Viscoelasticity

    Science.gov (United States)

    Rand, James; Rand, James; Wakefield, David

    Stratospheric balloon platforms are used extensively by scientists for a variety of purposes. The typical balloon used today is the zero pressure natural shape fabricated from a thin film of linear low density polyethylene. This material has been found to possess a variety of desirable characteristics suitable to this environment. This film will remain ductile at very low temperatures which will permit it to develop large strains if necessary to satisfy equilibrium considerations. However, in order to achieve long duration flight without significant changes in altitude, the balloon should be pressurized to the extent necessary to maintain constant volume during typical variations in temperature. In the past, pressurized balloons were fabricated from other materials in order to achieve significant increases in strength. Thin films of polyester or polyimide have been used to make relatively small spheres capable of long duration flight. Unfortunately, these materials do not have the ductility of polyethylene at low temperature and are somewhat more fragile and subject to damage. In recent years various organizations have attempted to use the characteristic shape of a pumpkin to limit the stresses in a balloon envelope to that which can be accommodated by laminated fabric materials. While developing the design, analysis and construction techniques for this type of system, the use of polyethylene has been successfully demonstrated to provide a reliable envelope. This shape is achieved by using high strength members in the meridional direction to carry the very high loads generated by the pressure. These so called "tendons" have very low elongation and serve to limit the deformation of the film in that direction. However, earlier designs attempted to limit the stresses in the circumferential direction by using a lobe angle to control the stress. Unfortunately this has led to a number of stability problems with this type of balloon. In order to control the stability of

  4. Effect of oxygen deficiency on response of CR-39 on board scientific balloons

    CERN Document Server

    Fujii, M; Osawa, A; Saitô, T; Yamamoto, K; Hasebe, T; Nakamura, T; Sasaki, H; Yanagita, T; Aglietta, M; Vernetto, S; Castellina, A; Fulgione, W; Saavedra, O; Trinchero, G C

    1999-01-01

    We should be careful about the effect of oxygen deficiency on polymeric track detectors even at balloon altitude. Results of balloon experiments and calibration experiments in a vacuum chamber at different pressures show that the effect of oxygen deficiency becomes serious at a pressure below 10 hPa.

  5. Evolution of NASA Scientific Ballooning and Particle Astrophysics Research

    Science.gov (United States)

    Jones, William Vernon

    2017-01-01

    Particle astrophysics research has a history in ballooning that spans over 100 years, ever since Victor Hess discovered cosmic rays on a manned balloon in 1912. The NASA Particle Astrophysics Program currently covers the origin, acceleration and transport of Galactic cosmic rays, plus the Nature of Dark Matter and Ultrahigh Energy Neutrinos. Progress in each of these topics has come from sophisticated instrumentation flown on Long Duration Balloon (LDB) flights around Antarctica for more than two decades. Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging opportunities that promise major steps forward for these and other objectives. NASA has continued development and qualification flights leading to SPB flights capable of supporting 1000 kg science instruments to 33 km for upwards of hundred day missions, with plans for increasing the altitude to 38 km. This goal is even more important now, in view of the Astro2010 Decadal Study recommendation that NASA should support Ultra-Long Duration Balloon (ULDB) flight development for studies of particle astrophysics, cosmology and indirect detection of dark matter. The mid-latitude test flight of an 18.8 MCF SPB launched from Wanaka, NZ in 2015 achieved 32 days of nearly constant altitude exposure, and an identical SPB launched from Wanaka in 2016 with a science payload flew for 46 days. Scientific ballooning as a vital infrastructure component for cosmic ray and general astrophysics investigations, including training for young scientists, graduate and undergraduate students, leading up to the 2020 Decadal Study and beyond, will be presented and discussed.

  6. Report on the Brazilian Scientific Balloon Program

    Science.gov (United States)

    Braga, Joao

    2016-07-01

    We report on the recent scientific ballooning activities in Brazil, and present the plans for the next few years. Recent technological developments, especially on telecommunications and gondola attitude control systems will be reported. We also present the recent progress achieved in the development of the protoMIRAX balloon experiment. protoMIRAX is a balloon-borne hard X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The experiment consists essentially in a hard X-ray coded-aperture imager to operate in the 20-200 keV energy range. The detector plane is a square array of 196 10mm x 10mm x 2mm CdZnTe (CZT) planar detectors. A collimator defines a fully-coded field-of-view of 20 x 20 degrees, with 7 x 7 degrees of full sensitivity and an angular resolution of 1.7 degrees. We describe the final stages of development and testing of the front-end electronics, with charge preamplifiers, LNAs, shapers and Wilkinson-type ADCs customized for these detectors. We also show detailed Monte Carlo simulations of the flight background and the expected flight images of bright sources performed with the use of GEANT4.

  7. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  8. Cutting balloons for the treatment of vascular stenoses

    Energy Technology Data Exchange (ETDEWEB)

    Tsetis, Dimitrios [University Hospital of Heraklion, Department of Radiology, Medical School of Crete, Heraklion (Greece); Morgan, Robert; Belli, Anna-Maria [St George' s Hospital, Department of Radiology, London (United Kingdom)

    2006-08-15

    The aim of this article is to review the mechanism, technical characteristics, biological response and clinical applications of cutting balloon angioplasty in peripheral vessels. The cutting balloon is a non-compliant, balloon catheter equipped with three-to-four microtome-sharp atherotomes. When used appropriately, it is safe and easy to use, with a high immediate success rate and few complications, provided oversizing is avoided. There is some evidence that pre-dilation with a standard or high-pressure balloon may also predispose to vascular rupture. The cutting balloon has proved to be beneficial in treating difficult complex lesions in the coronary arteries. Early experience in non-coronary vessels shows that cutting balloon angioplasty can be used to treat peripheral bypass anastomotic and haemodialysis fistula stenoses that are resistant to conventional high-inflation pressures. Its application in de novo peripheral arterial lesions and non-coronary in-stent restenosis is still under discussion. Theoretically, this device induces a smaller degree of vessel wall injury localised to the area of incisions and sparing the interincisional segments; however, this postulated reduction in restenosis rates has not been confirmed in clinical practice. (orig.)

  9. The 24-Month Results of the Lutonix Global SFA Registry: Worldwide Experience With Lutonix Drug-Coated Balloon.

    Science.gov (United States)

    Thieme, Marcus; Von Bilderling, Peter; Paetzel, Christian; Karnabatidis, Dimitrios; Perez Delgado, Julio; Lichtenberg, Michael

    2017-08-28

    The Global SFA Registry sought to assess safety, clinical benefit, and outcomes of the Lutonix 035 drug-coated balloon (DCB) in a heterogeneous, real-world patient population at 12 and 24 months. Numerous clinical studies have evaluated the use of angioplasty for revascularization of femoropopliteal arteries in peripheral arterial disease with restenosis rates of 40% to 60% at 6 to 12 months. Data from recent studies document decreased restenosis rates and improvement in patency in patients receiving angioplasty of femoropopliteal arteries with DCBs. The multicenter, prospective study enrolled 691 patients in 38 centers from 10 countries treated with the Lutonix 035 DCB in femoropopliteal lesions. The primary safety endpoint was freedom from a composite of target vessel restenosis, major index limb amputation, and device- or procedure-related death at 30 days. The primary effectiveness endpoint was freedom from target lesion restenosis at 12 months. Secondary endpoints were acute device and procedural success and clinically assessed primary patency. Freedom at 30 days from the composite safety endpoint was 99.4%. Freedom from target lesion restenosis was 93.4%/89.3% for the overall population, 93.2%/88.2% for long lesions up to 500 mm, and 90.7%/84.6% for in-stent restenosis at 12/24 months. Clinically assessed primary patency by Kaplan-Meier estimates was 85.4%/75.6% at 12/24 months. More than 76% of patients showed improvement of at least 1 Rutherford category. The Global SFA Registry 24-month outcomes confirm the Lutonix 035 DCB is a safe and effective long-term treatment option in real-world patients with peripheral arterial disease with superficial femoral artery lesions, also in long lesions and in-stent restenosis. (Lutonix Global SFA Registry; NCT01864278). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  11. Vessel wall temperature estimation for novel short term thermal balloon angioplasty: study of thermal environment.

    Science.gov (United States)

    Kaneko, Kenji; Nakatani, Eriko; Futami, Hikaru; Ogawa, Yoshifumi; Arai, Tsunenori; Fukui, Masaru; Shimamura, Satoshi; Kawabata, Takashi

    2005-01-01

    We have been proposing novel thermal balloon angioplasty, photo-thermo dynamic balloon angioplasty (PT-DBA). PTDBA realized thermal injury and low pressure dilatation that can prevent restenosis in chronic phase. We aim to determine the most efficient heating condition suit to individual symptom with pre-operation thermal simulation. We analyzed the flow dynamics and heat convection inside the balloon, and investigated heat conduction of balloon film to establish the temperature estimation method among vessel wall. Compared with ex vivo temperature measurement experiment, we concluded that the factors need to be considered for the establishment would be the heat conduction of the flow inside PTDB, heat conduction at the balloon film, and contact thermal resistance between the balloon film and vessel wall.

  12. US Monthly Pilot Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly winds aloft summary forms summarizing Pilot Balloon observational data for the United States. Generally labeled as Form 1114, and then transitioning to Form...

  13. US Daily Pilot Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pilot Balloon observational forms for the United States. Taken by Weather Bureau and U.S. Army observers. Period of record 1918-1960. Records scanned from the NCDC...

  14. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  15. Interglacial Durations

    Science.gov (United States)

    Mangili, Clara; McManus, Jerry F.; Raynaud, Dominique

    2014-05-01

    In the context of future global warming induced by human activities, it is essential to assess the role of natural climatic variations. Precise knowledge of the duration of past interglacial periods is fundamental to the understanding of the potential future evolution of the Holocene. Past ice age cycles provide a natural laboratory for exploring the progression and duration of interglacial climate. Palaeorecords from ice, land and oceans extend over the last 800 ka, revealing eight glacial-interglacial cycles, with a range of insolation and greenhouse gas influences. The interglacials display a correspondingly large variety of intensity and duration, thus providing an opportunity for major insights into the mechanisms involved in the behaviour of interglacial climates. A comparison of the duration of these interglacials, however, is often difficult, as the definition of an interglacial depends on the archive that is considered. Therefore, to compare interglacial length and climate conditions from different archives, a consistent definition of interglacial conditions is required, ideally one that is not bound to the method nor to the archive under consideration. Here we present a method to identify interglacials and to calculate their length by mean of a simple statistical approach. We based our method on ~ 400 ka windows of time to determine mean climatic conditions while allowing for the possibility of long term evolution of the climatic baseline. For our study of interglacials of the past 800 ka, we used two windows that largely align with the pre- (800-430 ka ago) and post- (430-0 ka ago) mid-Brunhes event (MBE), although the resulting conclusions are not sensitive to this particular division. We applied this method to the last 800 ka of a few palaeoclimate records: the deuterium ice core (EDC) record as a climatic proxy, the benthic δ18O stack (LR04) as a proxy for sea level/ice volume, ice core (Vostok, EDC) atmospheric CO2 and additional records. Although

  16. Balloon dilation versus Amplatz dilation during ultrasound-guided percutaneous nephrolithotomy for staghorn stones

    Institute of Scientific and Technical Information of China (English)

    Ren Minghua; Zhang Cheng; Fu Weijun; Fu Yiming; Ma Li; Zhao Weiming; Xu Wanhai

    2014-01-01

    Background Amplatz dilation and balloon dilation are different methods in creating the accesses during percutaneous nephrolithotomy (PCNL).The aim of this study was to review the surgical experiences of managing staghorn calculi by Amplatz dilation and balloon dilation for 3 years.Methods We retrospectively analyzed clinical data from 125 patients (129 kidneys)with staghorn kidney stones who underwent PCNL from January 2010 to December 2012,of whom 60 patients underwent Amplatz dilation (AD group) and 65 underwent balloon dilation (BD group) during PCNL.Results The AD and BD groups were similar in age,male-female ratio,stone burden,stone type,hydronephrosis,and proportion of patients who had undergone extracorporeal lithotripsy.However,these two groups showed significant differences in terms of duration of percutaneous access (15.1±3.6) minutes vs.(10.0±3.3) minutes,one-attempt success rate of dilation via a single access 88.9% (72/81) vs.97.8% (91/93),hemoglobin drop after surgery (3.5±0.9) g/dl vs.(1.7±0.9) g/dl,number of cases requiring intraoperative and postoperative blood transfusion 27.9% (n=17) vs.13.2% (n=9),changes of central venous pressure before and after surgery (2.3±1.2) cmH2O vs.(1.2±0.7) cmH2O,number of patients who experienced postoperative fever >37.5℃ 21 (34.4%) vs.13 (19.1%) (all P <0.05).No injury of adjacent organs,including pleura,liver,spleen,or bowel,was noted in patients.Conclusions During ultrasound-guided PCNL for staghorn stones,balloon dilation and Amplatz dilation are all effective and safe.Compared with Amplatz dilation,balloon dilation is a better choice,as it has a higher access creation success rate,shorter access creation time less blood loss,and lower proportions of circulatory overload and postoperative fever.

  17. The University of Alberta High Altitude Balloon Program

    Science.gov (United States)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  18. The Extreme Universe Space Observatory Super Pressure Balloon Mission

    Science.gov (United States)

    Wiencke, Lawrence; Olinto, Angela; Adams, Jim; JEM-EUSO Collaboration

    2017-01-01

    The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. A long duration flight of at least 50 nights launched from Wanaka NZ is planned for 2017. We describe completed instrument, and the planned mission. We acknowledge the support of NASA through grants NNX13AH53G and NNX13AH55G.

  19. Near Space Lab-Rat Experimentation using Stratospheric Balloon

    Science.gov (United States)

    Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter

    2016-07-01

    First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.

  20. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    Science.gov (United States)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  1. Second-generation endometrial ablation technologies: the hot liquid balloons.

    Science.gov (United States)

    Vilos, George A; Edris, Fawaz

    2007-12-01

    Hysteroscopic endometrial ablation (HEA) was introduced in the 1980s to treat menorrhagia. Its use required additional training, surgical expertise and specialized equipment to minimize emergent complications such as uterine perforations, thermal injuries and excessive fluid absorption. To overcome these difficulties and concerns, thermal balloon endometrial ablation (TBEA) was introduced in the 1990s. Four hot liquid balloons have been introduced into clinical practice. All systems consist of a catheter (4-10mm diameter), a silicone balloon and a control unit. Liquids used to inflate the balloons include internally heated dextrose in water (ThermaChoice, 87 degrees C), and externally heated glycine (Cavaterm, 78 degrees C), saline (Menotreat, 85 degrees ) and glycerine (Thermablate, 173 degrees C). All balloons require pressurization from 160 to 240 mmHg for treatment cycles of 2 to 10 minutes. Prior to TBEA, preoperative endometrial thinning, including suction curettage, is optional. Several RCTs and cohort studies indicate that the advantages of TBEA include portability, ease of use and short learning curve. In addition, small diameter catheters requiring minimal cervical dilatation (5-7 mm) and short duration of treatment cycles (2-8 min) allow treatment under minimal analgesia/anesthesia requirements in a clinic setting. Following TBEA serious adverse events, including thermal injuries to viscera have been experienced. To minimize such injuries some surgeons advocate the use of routine post-dilatation hysteroscopy and/or ultrasonography to confirm correct intrauterine placement of the balloon prior to initiating the treatment cycle. After 10 years of clinical practice, TBEA is thought to be the preferred first-line surgical treatment of menorrhagia in appropriately selected candidates. Economic modeling also suggested that TBEA may be more cost-effective than HEA.

  2. Development of ultra-thin polyethylene balloons for high altitude research upto mesosphere

    CERN Document Server

    Kumar, B Suneel; Ojha, D K; Peter, G Stalin; Vasudevan, R; Anand, D; Kulkarni, P M; Reddy, V Anmi; Rao, T V; Sreenivasan, S

    2014-01-01

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 microns for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000 grams rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenisation of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 microns for fabrication of balloons capable of penetrating mesosphere ...

  3. Spatial distribution of meteorological parameters around 900 hPa level over the Arabian Sea and Indian Ocean regions during the IFP-99 of the INDOEX programme as revealed from the constant altitude balloon experiments conducted from Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Appu, K.S.; Nair, S.M.; Kunhikrishnan, P.K.; Moorthy, K.K.; Sarode, P.R.; Rao, L.V.G.; Bajpai, S.R.; Prakash, L.H.; Viswanathan, G.; Mitra, A.P.; Sadourny, R.; Basdevant, C.; Ethe, C.; Ovarlez, H.; Chapuis, R.; Dartiguelongue, B.; Vianeys, P.

    . Data and method of analysis Balloon positions were precisely obtained in all the flights from the GPS system but vertical positions were not accu- rate. Altitude informations were thus missed. But the height information was available from the pressure... Turbulence, Wiley, New York, 1984, p. 160. ACKNOWLEDGEMENTS. The Balloon Campaign could be successfully conducted only due to the whole hearted support received from Goa University; National Institute of Oceanography, Goa; IMD Office at Goa, and NCMRWF...

  4. Theoretical study of electronic damage in single particle imaging experiments at XFELs for pulse durations 0.1 - 10 fs

    CERN Document Server

    Gorobtsov, O Yu; Kabachnik, N M; Vartanyants, I A

    2015-01-01

    X-ray free-electron lasers (XFELs) may allow to employ the single particle imaging (SPI) method to determine the structure of macromolecules that do not form stable crystals. Ultrashort pulses of 10 fs and less allow to outrun complete disintegration by Coulomb explosion and minimize radiation damage due to nuclear motion, but electronic damage is still present. The major contribution to the electronic damage comes from the plasma generated in the sample that is strongly dependent on the amount of Auger ionization. Since the Auger process has a characteristic time scale on the order of femtoseconds, one may expect that its contribution will be significantly reduced for attosecond pulses. Here, we study the effect of electronic damage on the SPI at pulse durations from 0.1 fs to 10 fs and in a large range of XFEL fluences to determine optimal conditions for imaging of biological samples. We analyzed the contribution of different electronic excitation processes and found that at fluences higher than $10^{13}$-$...

  5. Impact of ablator thickness and laser drive duration on a platform for supersonic, shockwave-driven hydrodynamic instability experiments

    Science.gov (United States)

    Wan, W. C.; Malamud, G.; Shimony, A.; Di Stefano, C. A.; Trantham, M. R.; Klein, S. R.; Soltis, J. D.; Shvarts, D.; Drake, R. P.; Kuranz, C. C.

    2017-03-01

    We discuss changes to a target design that improved the quality and consistency of data obtained through a novel experimental platform that enables the study of hydrodynamic instabilities in a compressible regime. The experiment uses a laser to drive steady, supersonic shockwave over well-characterized initial perturbations. Early experiments were adversely affected by inadequate experimental timescales and, potentially, an unintended secondary shockwave. These issues were addressed by extending the 4x1013 W/cm2 laser pulse from 19 ns to 28 ns, and increasing the ablator thickness from 185 μm to 500 μm. We present data demonstrating the performance of the platform.

  6. An analysis of the deployment of a pumpkin balloon on mars

    Science.gov (United States)

    Rand, J.; Phillips, M.

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, which produces stress resultants determined by the volume of the system, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. The application of this technology to very large systems is currently being demonstrated by NASA's Ultra Long Duration Balloon (ULDB) Program. However, this type of balloon has certain features that may be exploited to produce a system far more robust than a comparable sphere during deployment, inflation, and operation for long periods of time. When this concept is applied to a system designed to carry two kilograms in the atmosphere of Mars, the resulting balloon is small enough to alter the construction techniques and produce an envelope which is free of tucks and folds which may cause uncontrolled stress concentrations. A technique has been demonstrated where high strength tendons may be pretensioned prior to installation along the centerline of each gore. Since this position is the shortest distance between the apex and nadir of the balloon, the tendons will automatically resist the forces caused by deployment and inflation and thereby protect the thin film gas barrier from damage. A suitable balloon has been designed for this type of mission using five-micron Mylar Type C film for the gas barrier and P O braided cables for the meridionalB load carrying members. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a ten-kilogram system suspended at the nadir of the balloon. As the

  7. Design and Calibrations of the Protomirax Balloon Telescope and the Brazilian Scientific Balloon Program

    Science.gov (United States)

    Braga, Joao; D'Amico, Flavio; Avila, Manuel

    2012-07-01

    In this presentation we report on the recent scientific ballooning activities in Brazil, including important international collaborations, and present our plan for the next few years. We also present the recent progress achieved in the design of the detector system of the protoMIRAX balloon experiment and report on the scientific balloon activities in Brazil. protoMIRAX is a balloon-borne X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The experiment consists essentially in an X-ray (30-200 keV) coded-aperture imager which employs a square array of 196 10mm x 10mm x 2mm CdZnTe (CZT) planar detectors made by eV Products in the USA. A collimator defines a fully-coded field-of-view of 20o x 20o, with 4o x 4o of full sensitivity. The final angular resolution will depend on the mask pattern used. In this paper we describe the design and development of the detector plane, including the front-end electronics. Preamplifiers and shaping amplifiers, customized for these detectors, were designed and built at INPE. Laboratory spectral measurements show an energy resolution of 12.0% at 60 keV, of which 10.6% is due to intrinsic electronics noise measured with a pulser at similar pulse height levels. We present spectral results obtained in the laboratory as well as initial calibration results of the acquisition system designed to get positions and energies in the detector plane. We show simulations of the coded-aperture images with different mask designs and iterative reconstruction methods.

  8. Balloon Exoplanet Nulling Interferometer (BENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  9. Structure variations of pumpkin balloon

    Science.gov (United States)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  10. Yellow Balloon in a Briar Patch.

    Science.gov (United States)

    Cooper, Frank; Fitzmaurice, Robert W.

    1978-01-01

    As part of a meteorology unit, sixth grade science students launched helium balloons with attached return postcards. This article describes Weather Service monitoring of the balloons and postcard return results. (MA)

  11. Intrauterine tamponade balloon use in the treatment of uterine inversion.

    Science.gov (United States)

    Haeri, Sina; Rais, Sheliza; Monks, Brian

    2015-01-06

    Uterine inversion is a rare but life-threatening obstetrical emergency that occurs when the fundus of the uterus prolapses through the cervix, hence turning the uterus inside out. In this case report, we present our experience using an intrauterine tamponade balloon for management of uterine inversion, and a review of the literature. The utility of an intrauterine tamponade balloon in cases of uterine inversion, especially when maternal medical conditions preclude the use of uterotonics, or reinversion is observed should be kept in mind.

  12. Frictional healing and sealing in anhydrite-filled faults: from short duration experiments to long-term CO2 storage

    Science.gov (United States)

    Pluymakers, Anne; Bakker, Elisenda; Samuelson, Jon; Spiers, Christopher

    2014-05-01

    The efficacy of long-term subsurface CO2 storage requires that the stored gas remains isolated from the atmosphere for thousands of years. Faults crosscutting the reservoir and topseal system of storage sites are considered one of the most likely leakage pathways, especially if reactivation leads to fault dilation. For a proper risk assessment it is important to know if CO2 affects the self-sealing potential of fault gouges, as well as how it affects strength recovery after fault slip ceases (frictional healing). A thorough understanding of the physical processes operating in the fault gouge will help to extrapolate the data from short-term experimental time scales to long-term storage time scales. Anhydrite is a common caprock mineral in many hydrocarbon fields worldwide, and particularly in the Netherlands. In cases where faults crosscut the caprock, it is likely that these contain fine-grained, anhydrite-rich, damage material, or "fault gouge". Therefore, we have performed two sets of experiments: 1) fault shearing experiments on simulated anhydrite fault gouge, to investigate the frictional behavior of anhydrite faults, and 2) compaction creep experiments, to investigate the potential for self-sealing. All experiments were performed under pressure and temperature conditions representative for CO2 storage conditions (set 1: T = 80-150°C; normal stress = 25MPa; Pf = 15MPa; set 2: T = 80°C; stress = 5-12MPa and P¬f = 15MPa). The use of different pore fluid phases (air, vacuum, water, CO2 saturated solution, moist CO¬2 and dry CO2), as well as the range in pressures and temperatures, allows us to study the effect of the in-situ conditions on the frictional behavior, and also to identify the mechanisms responsible for the compaction behavior. Our results indicate that in both types of experiments water plays an essential role, by enhancing both fault-healing (type 1) and fault-sealing potential (type 2). The compaction experiments indicate fault sealing in fine

  13. Solidification under zero gravity: A Long Duration Exposure Facility (LDEF) experiment for an early space shuttle mission

    Science.gov (United States)

    Bailey, J. A.; Whitfield, J. K.

    1976-01-01

    The preliminary design of two series of simple experiments the objectives of which are to determine the effect of an absence of gravity on (1) the general morphology of the structure, (2) location of ullage space, and (3) magnitude of surface tension driven convection, during the solidification of several metallic and nonmetallic systems is described. Details of the investigative approach, experimental procedure, experimental hardware, data reduction and analysis, and anticipated results are given.

  14. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Program. Together, these validation flight findings demonstrate the capability to support long-duration RR on the ISS to achieve both basic science and biomedical objectives.

  15. Ballonnen in zee = balloons as marine litter

    NARCIS (Netherlands)

    Franeker, van J.A.

    2008-01-01

    Releasing balloons seems harmless. However, remains of balloons, especially valves and ribbons are becoming a common and persistent type of marine litter found on beaches. Following Dutch Queens day 2007, large numbers of Dutch balloons were found in Normandy, France. Animals may become entangled in

  16. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  17. Ballonnen in zee = balloons as marine litter

    NARCIS (Netherlands)

    Franeker, van J.A.

    2008-01-01

    Releasing balloons seems harmless. However, remains of balloons, especially valves and ribbons are becoming a common and persistent type of marine litter found on beaches. Following Dutch Queens day 2007, large numbers of Dutch balloons were found in Normandy, France. Animals may become entangled in

  18. Welfare Benefits, Minimum Wage Rate and the Duration of Welfare Spells: Evidence from a Natural Experiment in Canada

    OpenAIRE

    Fortin, Bernard; Lacroix, Guy

    1997-01-01

    In this paper we analyze the impact of benefits on the length of welfare spells. It introduces a ``natural experiment'' approach of comparing the length of welfare spells before and after a major reform of the welfare program that took place in the Province of Québec in August 1989. An important feature of this reform was the abolishment of discrimination based on age that applied to the benefits single individuals and childless couples below the age of 30 were entitled to. With the reform, t...

  19. Immediate Outcome of Balloon Mitral Valvuloplasty with JOMIVA Balloon during Pregnancy

    Science.gov (United States)

    Ramasamy, Ramona; Kaliappan, Tamilarasu; Gopalan, Rajendiran; Palanimuthu, Ramasmy; Anandhan, Premkrishna

    2017-01-01

    Introduction Rheumatic mitral stenosis is the most common Valvular Heart Disease encountered during pregnancy. Balloon Mitral Valvuloplasty (BMV) is one of the treatment option available if the symptoms are refractory to the medical management and the valve anatomy is suitable for balloon dilatation. BMV with Inoue balloon is the most common technique being followed worldwide. Over the wire BMV is a modified technique using Joseph Mitral Valvuloplasty (JOMIVA) balloon catheter which is being followed in certain centres. Aim To assess the immediate post procedure outcome of over the wire BMV with JOMIVA balloon. Materials and Methods Clinical and echocardiographic parameters of pregnant women with significant mitral stenosis who underwent elective BMV with JOMIVA balloon in our institute from 2005 to 2015 were analysed retrospectively. Severity of breathlessness (New York Heart Association Functional Class), and duration of pregnancy was included in the analysis. Pre procedural echocardiographic parameters which included severity of mitral stenosis and Wilkin’s scoring were analysed. Clinical, haemodynamic and echocardiographic outcomes immediately after the procedure were analysed. Results Among the patients who underwent BMV in our Institute 38 were pregnant women. Twenty four patients (63%) were in New York Heart Association (NYHA) Class III. All of them were in sinus rhythm except two (5%) who had atrial fibrillation. Thirty four patients (89.5%) were in second trimester of pregnancy at the time of presentation and four (10.5%) were in third trimester. Echocardiographic analysis of the mitral valve showed that the mean Wilkin’s score was 7.3. Mean mitral valve area pre procedure was 0.8 cm2. Mean gradient across the valve was 18 mmHg. Ten patients (26.5%) had mild mitral regurgitation and none had more than mild mitral regurgitation. Thirty six patients had pulmonary hypertension as assessed by tricuspid regurgitation jet velocity. All of them underwent BMV

  20. NuMED CHEATHAM-PLATINUM STENT AND BALLOON IN BALLOON DELIVERY CATHETER FOR TREATMENT OF NATIVE COARCTATION OF THE AORTA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ COARCTATION of the aorta (CoA) is a congenital heart defect involving a narrowing of the aorta. The narrowed segment called coarctation is most likely to happen in the segment just after the aortic arch. The narrowing can be removed by surgery or sometimes by a nonsurgical balloon dilation. However, aortic coarctation may recur even after successful surgery or balloon dilation. Fortunately, coarctation can now be treated with nonsurgical balloon dilation associated with implanting a stent using cardiac catheterization. Herein we reported our experience in a 19-year-old boy with CoA who underwent successful covered Cheatham-Platinum (CP) stent implantation for the coarctation.

  1. Balloon Study of the Global Circuit: Spatial Coherence and Correlation with Lightning Observations

    Science.gov (United States)

    Holzworth, R. H.; Bering, E. A.; Kokorowski, M.; Reddell, B.; Kadokura, A.; Yamagishi, H.; Sato, N.; Ejiri, M.; Hirosawa, H.; Yamagami, T.; Torii, S.; Tohyama, F.; Nakagawa, M.; Okada, T.

    2004-12-01

    The second campaign of the Polar Patrol Balloon (PPB) experiment (2nd-PPB) was carried out at Syowa Station in Antarctica during 2002-2003. This paper will present the global circuit results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (3 balloons). Payloads of these 3 flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a ``Balloon Cluster'' is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ˜60 to ˜500 km. This paper will present the global circuit observations with emphasis on the times of apparent spatial variation in the vertical fair weather field. This paper will also present stratospheric conductivity observations with emphasis on the temporal and spatial variations that were observed. Finally, the inferred current density will be compared with data from the WWLL (TOGA) lightning monitor experiment.

  2. Meteorological Support in Scientific Ballooning

    Science.gov (United States)

    Schwantes, Chris; Mullenax, Robert

    2017-01-01

    The weather affects every portion of a scientific balloon mission, from payload integration to launch, float, and impact and recovery. Forecasting for these missions is very specialized and unique in many aspects. CSBF Meteorology incorporates data from NWSNCEP, as well as several international meteorological organizations, and NCAR. This presentation will detail the tools used and specifics on how CSBF Meteorology produces its forecasts.

  3. Pseudoperforation during kissing balloon angioplasty.

    Science.gov (United States)

    Panetta, Carmelo J; Fasseas, Panayotis; Raveendran, Ganesh; Garratt, Kirk N

    2004-11-01

    We describe a case of apparent perforation during kissing balloon angioplasty of a bifurcation lesion. There was no evidence of perforation on follow-up angiography or via intravascular ultrasound. Possible etiologies include minimal perforation that immediately sealed postdeflation or forced contrast into the microvascular bed via a proximal side branch.

  4. Simulating clefts in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  5. Stability of the pumpkin balloon

    Science.gov (United States)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  6. Clinical Usefulness of Bakri Balloon Tamponade in the Treatment of Massive Postpartum Uterine Hemorrhage.

    Science.gov (United States)

    Nagai, Sayori; Kobayashi, Hiroaki; Nagata, Tomomi; Hiwatashi, Sayuri; Kawamura, Toshihiko; Yokomine, Daisaku; Orita, Yuji; Oki, Toshimichi; Yoshinaga, Mitsuhiro; Douchi, Tsutomu

    2016-01-01

    Intrauterine globe-shaped metreurynter tamponade has been used for some time to treat massive postpartum hemorrhage (PPH). More recently, the Bakri balloon has come into use to treat PPH. It is made of silicon, possesses a drainage lumen, and has a sausage-like spindle shape. The aim of the present study was to investigate the clinical usefulness of Bakri balloon tamponade for massive PPH. Subjects in the present study comprised 5 patients with uterine atony, 3 with placenta previa, and 2 with low-lying placenta. All patients exhibited massive PPH and resistance to conventional hemostatic managements. Bakri balloon tamponade was appliedto these 10 patients. The mean amounts of uterine bleeding (average ± SD) before and after Bakri insertion were2,732 ± 1,397 mL and 380 ± 376 mL, respectively. The median (third-first quartile ranges) volume of salineinflating the balloon was 200 mL (300-150 mL). The median (third-first quartile ranges) indwelling duration of Bakri balloon was 24 hours (24-11 hrs). The overall success rate of Bakri balloon tamponade was 90% (9/10).There were no cases of slipping out or complications regarding balloon placement. Our findings suggest that Bakri balloon tamponade may be applied to the treatment of massive PPH in uterine atony and placenta previa.The Bakri balloon appears to have the following merits: (1) easy insertion into the uterine cavity and low rate of slipping out, (2) proper conformability to the hemorrhagic area due to its spindle shape, (3) ability to monitor blood loss through the drainage lumen even after insertion.

  7. [Bakri balloon tamponade for severe post-partum haemorrhage: efficiency and fertility outcomes].

    Science.gov (United States)

    Alouini, S; Bedouet, L; Ramos, A; Ceccaldi, C; Evrard, M L; Khadre, K

    2015-02-01

    To evaluate efficiency of Bakri balloon tamponade (BB) to stop severe post-partum haemorrhage (PPH) and fertility outcomes. Retrospective study including all patients who underwent Bakri balloon tamponade for severe PPH between January 2009 and December 2013. The objectives were to stop PPH by BB and to evaluate the fertility after Bakri balloon tamponade. Sixty-one women had a Bakri balloon inserted in utero for severe PPH. The PPH was stopped in 55 patients out of 61 (88%). The reasons of severe PPH were uterine atony in 44 cases (72%), placental retention in 10 cases, placenta praevia in 3 cases, and cervical or vaginal tears in 4 cases. In one third of cases, the pregnancy was complicated by diabetes, placenta praevia, hypertensive troubles. A cesarean section or an instrumental delivery was performed for one third of patients. The mean duration of the Bakri balloon insertion was of 7 hours [5-9] and the mean filling of the balloon was of 350 ml [205-450]. The mean blood loss was of 1600 [1200-2250]. Sixty-three percent of patients (n=38) received red blood cells transfusion. The BB was efficient after a vaginal delivery or after a caesarean section and in all cases of placenta praevia. In 6 cases, the BB was inefficient and uterine embolisation or a surgical procedure was performed to stop PPH. Nine women underwent a new pregnancy after the insertion of Bakri balloon for severe PPH and 3 delivered healthy newborns. Bakri balloon tamponade is a minimally invasive intrauterine device efficient to stop severe post-partum haemorrhage. New pregnancies and deliveries are possible after tamponade by Bakri balloon. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. A challenge to the highest balloon altitude

    Science.gov (United States)

    Saito, Y.; Akita, D.; Fuke, H.; Iijima, I.; Izutsu, N.; Kato, Y.; Kawada, J.; Matsuzaka, Y.; Mizuta, E.; Namiki, M.; Nonaka, N.; Ohta, S.; Sato, T.; Seo, M.; Takada, A.; Tamura, K.; Toriumi, M.; Yamagami, T.; Yamada, K.; Yoshida, T.; Matsushima, K.; Tanaka, S.

    2012-02-01

    Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.

  9. Drug-Coated Balloon Venoplasty for In-Stent Restenosis in a Patient With Recurrent Pulmonary Vein Stenosis Post Ablation for Atrial Fibrillation: Initial Experience With a New Treatment Technique.

    Science.gov (United States)

    Rosenberg, Jonathan; Fisher, Westby G; Guerrero, Mayra; Smart, Steve; Levisay, Justin; Feldman, Ted; Salinger, Michael

    2016-05-01

    Pulmonary vein stenosis (PVS) is an uncommon but serious complication following radiofrequency ablation for atrial fibrillation. Occurrence of this complication has risen with increased rates of ablation procedures, with >50,000 AF ablation procedures performed per year, and can occur within weeks to months post procedure. Currently, the main therapies for PVS include percutaneous interventions with balloon angioplasty and stenting, but these treatments are complicated by a high rate of restenosis. The optimal treatment for recurrent pulmonary vein in-stent restenosis has not been determined. We describe the novel use of a paclitaxel drug-coated balloon for the treatment of in-stent restenosis of the pulmonary veins.

  10. Comparative study of proliferation kinetics of paramecium tetraurelia aboard a satellite and a balloon flight

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, R.; Richoilley, G.; Gasset, G.; Planel, H. (Faculte de Medecine, Toulouse-Purpan (France))

    1982-05-17

    A possible effect of cosmic rays on cell proliferation was investigated in cultures of Paramecium tetraurelia during a stratospheric balloon flight, with the techniques already used for the CYTOS experiments, performed aboard the orbital station Salyut 6. The results show that the stimulating effect of space on cell proliferation, reported in the CYTOS experiments, also occurs in the balloon flight. The respective roles of cosmic rays and weightlesness in the biological responses are discussed.

  11. AIAA Educator Academy: The Space Weather Balloon Module

    Science.gov (United States)

    Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.

    2013-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each

  12. Utility of birefringence changes due to collagen thermal denaturation rate process analysis: vessel wall temperature estimation for new short term heating balloon angioplasty

    Science.gov (United States)

    Kaneko, Kenji; Shimazaki, Natsumi; Gotoh, Maya; Nakatani, Eriko; Arai, Tsunenori

    2007-02-01

    Our photo thermal reaction heating architecture balloon realizes less than 10 s short term heating that can soften vessel wall collagen without damaging surrounding tissue thermally. New thermal balloon angioplasty, photo-thermo dynamic balloon angioplasty (PTDBA) has experimentally shown sufficient opening with 2 atm low pressure dilation and prevention of chronic phase restenosis and acute phase thrombus in vivo. Even though PTDBA has high therapeutic potential, the most efficient heating condition is still under study, because relationship of treatment and thermal dose to vessel wall is not clarified yet. To study and set the most efficient heating condition, we have been working on establishment of temperature history estimation method from our previous experimental results. Heating target of PTDBA, collagen, thermally denatures following rate process. Denaturation is able to be quantified with measured collagen birefringence value. To express the denaturation with equation of rate process, the following ex vivo experiments were performed. Porcine extracted carotid artery was soaked in two different temperature saline baths to enforce constant temperature heating. Higher temperature bath was set to 40 to 80 degree Celsius and soaking duration was 5 to 40 s. Samples were observed by a polarizing microscope and a scanning electron microscope. The birefringence was measured by polarizing microscopic system using Brace-Koehler compensator 1/30 wavelength. The measured birefringence showed temperature dependency and quite fit with the rate process equation. We think vessel wall temperature is able to be estimated using the birefringence changes due to thermal denaturation.

  13. Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

    Directory of Open Access Journals (Sweden)

    Aliye Filiz

    2014-01-01

    Full Text Available Objectives. Balloon dilation laryngoplasty has been suggested as an alternative treatment to open surgical treatment of acquired subglottic stenosis in children. We describe long-term outcomes of balloon dilation for acquired subglottic stenosis in children. Methods. The medical charts of children who had balloon dilation for subglottic stenosis secondary to intubation were reviewed. Data included demographics, relevant history and physical examination, diagnostic workup, and management. Outcomes of balloon dilation were assessed based on improvement in preoperative symptoms, grading of stenosis, complications, and need for additional procedures. Results. Three children (2 male, 1 female, age range: 14 weeks–1 year underwent balloon dilation for acquired subglottic stenosis. Patients presented with stridor and increased work of breathing. Duration of intubation ranged from 2 days to 3 weeks. Patients became symptomatic 5 days to 6 weeks after extubation. Grade of subglottic stenosis was II in 2 patients and III in one. Subglottic stenosis patients had 2-3 dilations within 2–10 weeks. All patients were asymptomatic during 14–21-month follow-up. Conclusions. Serial balloon dilation was safe and successful method to manage acquired subglottic stenosis in this group of children. No recurrence was noted in a follow-up more than a year after resolution of symptoms.

  14. Long-term outcomes of balloon dilation for acquired subglottic stenosis in children.

    Science.gov (United States)

    Filiz, Aliye; Ulualp, Seckin O

    2014-01-01

    Objectives. Balloon dilation laryngoplasty has been suggested as an alternative treatment to open surgical treatment of acquired subglottic stenosis in children. We describe long-term outcomes of balloon dilation for acquired subglottic stenosis in children. Methods. The medical charts of children who had balloon dilation for subglottic stenosis secondary to intubation were reviewed. Data included demographics, relevant history and physical examination, diagnostic workup, and management. Outcomes of balloon dilation were assessed based on improvement in preoperative symptoms, grading of stenosis, complications, and need for additional procedures. Results. Three children (2 male, 1 female, age range: 14 weeks-1 year) underwent balloon dilation for acquired subglottic stenosis. Patients presented with stridor and increased work of breathing. Duration of intubation ranged from 2 days to 3 weeks. Patients became symptomatic 5 days to 6 weeks after extubation. Grade of subglottic stenosis was II in 2 patients and III in one. Subglottic stenosis patients had 2-3 dilations within 2-10 weeks. All patients were asymptomatic during 14-21-month follow-up. Conclusions. Serial balloon dilation was safe and successful method to manage acquired subglottic stenosis in this group of children. No recurrence was noted in a follow-up more than a year after resolution of symptoms.

  15. Balloon occlusion of the internal iliac arteries in the multidisciplinary management of placenta percreta

    DEFF Research Database (Denmark)

    Clausen, Caroline; Stensballe, Jakob; Albrechtsen, Charlotte K;

    2013-01-01

    Objective. To evaluate our experience with prophylactic balloon occlusion of the internal iliac arteries as a part of a multidisciplinary algorithm for the management of placenta percreta. Design. Consecutive case series. Setting. Rigshospitalet, Copenhagen University Hospital, Denmark. Sample....... Prophylactic balloon occlusion of the internal iliac arteries as part of a multidisciplinary algorithm allowed for a safe management of all cases in our consecutive series of 17 women with placenta percreta. However, intraoperative blood loss and transfusion requirements were significant. We have therefore...... decided to modify our multidisciplinary algorithm to include balloon occlusion of the common iliac arteries rather than the internal iliac arteries....

  16. Status of the Balloon-Borne X-ray Polarimetry Mission X-Calibur

    Science.gov (United States)

    Krawczynski, Henric; Kislat, Fabian; Stuchlik, David; Okajima, Takashi; de Geronimo, Gianluigi

    2016-04-01

    We report on the status of the balloon borne hard X-ray polairmetry mission X-Calibur. The missions combines a focussing hard X-ray mirror from the InFOCuS collaboration with a scattering polarimeter and the WASP (Wallops Arc Second Pointer) pointing system. The mission is scheduled for a conventonal ~1 day balloon flight in Fall 2016 and a long duration (~30 day) balloon flight from McMurdo (Ross Island) in 2018/2019. X-Calibur will allow us to measure ~5% polarization fractions for strong sources with a Crab-like enegry spectra and fluxes. The science targets of the first balloon flights will include the stellar mass black holes GRS 1915+105 and Cyg X-1, Her X-1, Sco X-1, and the Crab nebula and pulsar. The long duration balloon flight will target several X-ray binaries and the extragalactic mass accreting supermassive black hole Cen A. In this contribution we give an update on the status of the mission, and the expected science return.

  17. Low Cost Balloon programme of Indian Centre for Space Physics

    Science.gov (United States)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  18. A Spreadsheet Simulation Tool for Terrestrial and Planetary Balloon Design

    Science.gov (United States)

    Raquea, Steven M.

    1999-01-01

    During the early stages of new balloon design and development, it is necessary to conduct many trade studies. These trade studies are required to determine the design space, and aid significantly in determining overall feasibility. Numerous point designs then need to be generated as details of payloads, materials, mission, and manufacturing are determined. To accomplish these numerous designs, transient models are both unnecessary and time intensive. A steady state model that uses appropriate design inputs to generate system-level descriptive parameters can be very flexible and fast. Just such a steady state model has been developed and has been used during both the MABS 2001 Mars balloon study and the Ultra Long Duration Balloon Project. Using Microsoft Excel's built-in iteration routine, a model was built. Separate sheets were used for performance, structural design, materials, and thermal analysis as well as input and output sheets. As can be seen from figure 1, the model takes basic performance requirements, weight estimates, design parameters, and environmental conditions and generates a system level balloon design. Figure 2 shows a sample output of the model. By changing the inputs and a few of the equations in the model, balloons on earth or other planets can be modeled. There are currently several variations of the model for terrestrial and Mars balloons, as well there are versions of the model that perform crude material design based on strength and weight requirements. To perform trade studies, the Visual Basic language built into Excel was used to create an automated matrix of designs. This trade study module allows a three dimensional trade surface to be generated by using a series of values for any two design variables. Once the fixed and variable inputs are defined, the model automatically steps through the input matrix and fills a spreadsheet with the resulting point designs. The proposed paper will describe the model in detail, including current

  19. The Advanced Scintillator Compton Telescope (ASCOT) balloon project

    Science.gov (United States)

    Bloser, Peter F.; Sharma, Tejaswita; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.; Wright, Alex M.

    2016-07-01

    applied to a 1 cubic meter instrument on a long-duration balloon or Explorer platform.

  20. Utility of a scoring balloon for a severely calcified lesion: bench test and finite element analysis.

    Science.gov (United States)

    Kawase, Yoshiaki; Saito, Naritatsu; Watanabe, Shin; Bao, Bingyuan; Yamamoto, Erika; Watanabe, Hiroki; Higami, Hirooki; Matsuo, Hitoshi; Ueno, Katsumi; Kimura, Takeshi

    2014-04-01

    We aimed to investigate the effectiveness of a scoring balloon catheter in expanding a circumferentially calcified lesion compared to a conventional balloon catheter using an in vitro experiment setting and elucidate the underlying mechanisms of this ability using a finite element analysis. True efficacy of the scoring device and the underlying mechanisms for heavily calcified coronary lesions are unclear. We employed a Scoreflex scoring balloon catheter (OrbusNeich, Hong Kong, China). The ability of Scoreflex to dilate a calcified lesion was compared with a conventional balloon catheter using 3 different sized calcium tubes. The thickness of the calcium tubes were 2.0, 2.25, and 2.5 mm. The primary endpoints were the successful induction of cracks in the calcium tubes and the inflation pressures required for inducing cracks. The inflation pressure required for cracking the calcium tubes were consistently lower with Scoreflex (p finite element analysis revealed that the first principal stress applied to the calcified plaque was higher by at least threefold when applying the balloon catheter with scoring elements. A scoring balloon catheter can expand a calcified lesion with lower pressure than that of a conventional balloon. The finite element analysis revealed that the concentration of the stress observed in the outside of the calcified plaque just opposite to the scoring element is the underlying mechanism of the increased ability of Scoreflex to dilate the calcified lesion.

  1. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon

    OpenAIRE

    Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric

    2016-01-01

    This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with differ...

  2. Basic development of a small balloon-mounted telemetry and its operation system by university students

    Science.gov (United States)

    Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki

    In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling

  3. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    Science.gov (United States)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  4. Intragastric balloon and multidisciplinary team

    Directory of Open Access Journals (Sweden)

    R. A. Mazure

    Full Text Available Background: The intragastric balloon is widely used for weight reduction in obese patients, but results are variable. We describe our results enhancing the importance of a Multidisciplinary Team (MT taking part in the treatment. Methods: A retrospective review was done concerning a total of 119 balloons , placed in 116 patients, under endoscopic control and conscious sedation, from May 2001 until August 2006. 49 patients were prepared and recommended to be followed by a MT in a physical unit, at least every 15 days during 6 months. 67 were indicated and followed by other colleagues, without MT. Removal was performed 6 months later. Results: Concerning our 49 patients, mean age was 38, 1 years, 31 female and 18 males, with BMI ranged between 32 and 63, average of 42. The average decrease of weight excess was 31, 85% (-4, 45-80, 4%, and the BMI diminished 5,3 points (from 13,6 to gain of 0,9. The treatment failed in 34,6 % of our patients -including 4 patients lost of follow-up (8, 16%-, compared with 53, 8% of patients without structured MT for selection and follow-up. Physical exercise enhanced markedly the results with 45, 8% of excess of weight loss in women and 39, 7% in males, compared with 14, 6 and 15, 6% in patients who didn't follow the program. The weight loss was mostly fat mass, 89,9% in men and 75,6% in women.- The results maintenance was obtained in 40% of patients one year later. There were no major complications; one balloon had to be removed at 3 weeks because of intolerance, another at 5 months because of gastroesophageal reflux. Conclusions: BIB is an effective help to achieve a short term weight loss in obese patients; nevertheless, good and long lasting results will depend on the modification of life style obtained by a multidisciplinary approach.

  5. Paraplegia following intraaortic balloon circulatory assistance

    Directory of Open Access Journals (Sweden)

    Benício Anderson

    1999-01-01

    Full Text Available Intraaortic balloon counterpulsation is frequently used in patients experiencing severe ventricular dysfunction following maximal drug therapy. However, even with the improvement of percutaneous insertion techniques, the procedure has always been followed by vascular, infectious, and neurological complications. This article describes a case of paraplegia due to intraaortic balloon counterpulsation in the postoperative period of cardiac surgery.

  6. Optical coherence tomography layer thickness characterization of a mock artery during angioplasty balloon deployment

    Science.gov (United States)

    Azarnoush, Hamed; Vergnole, Sébastien; Boulet, Benoît; Lamouche, Guy

    2011-03-01

    Optical coherence tomography (OCT) is used to study the deformation of a mock artery in an angioplasty simulation setup. An OCT probe integrated in a balloon catheter provides intraluminal real-time images during balloon inflation. Swept-source OCT is used for imaging. A 4 mm semi-compliant polyurethane balloon is used for experiments. The balloon is inflated inside a custom-built multi-layer artery phantom. The phantom has three layers to mock artery layers, namely, intima, media and adventitia. Semi-automatic segmentation of phantom layers is performed to provide a detailed assessment of the phantom deformation at various inflation pressures. Characterization of luminal diameter and thickness of different layers of the mock artery is provided for various inflation pressures.

  7. Field-Line Localized Destabilization of Ballooning Modes in Three-Dimensional Tokamaks

    Science.gov (United States)

    Willensdorfer, M.; Cote, T. B.; Hegna, C. C.; Suttrop, W.; Zohm, H.; Dunne, M.; Strumberger, E.; Birkenmeier, G.; Denk, S. S.; Mink, F.; Vanovac, B.; Luhmann, L. C.; ASDEX Upgrade Team

    2017-08-01

    Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n =2 error field and during a moderate level of edge localized mode mitigation. The observed ballooning modes are localized to the field lines which experience one of the two zero crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium. This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.

  8. Integrating Balloon and Satellite Operation Data Centers for Technology Readiness Assessment

    Science.gov (United States)

    Mattiello-Francisco, Fátima; Fernandes, Jose Oscar

    2016-07-01

    Stratospheric balloon-borne experiments have been one of the most effective ways to validate innovative space technology, taking the advantage of reduced development cycles and low cost in launching and operation. In Brazil, the National Institute for Space Research (INPE) has balloon and satellite ground infrastructures since the 1970´s and the 1990´s, respectively. In the recent past, a strategic approach was adopted on the modernization of balloon ground operation facilities for supporting the protoMIRAX experiment, an X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The strategic target was to reuse the SATellite Control System (SATCS), a software framework developed to control and monitor INPÉs satellites, for balloon operation. This paper presents the results of that effort and the new ongoing project, a computer-based framework named I2Bso, which strategic target is to Integrate INPÉs Balloon and Satellite Operation data centers. The I2Bso major purpose is to support the continuous assessment of an innovative technology after different qualification flights either on board balloons or satellites in order to acquire growing evidence for the technology maturity.

  9. Gamma Ray and Very Low Frequency Radio Observations from a Balloon-Borne Platform

    Science.gov (United States)

    Quinn, C.; Sheldon, A.; Cully, C. M.; Davalos, A.; Osakwe, C.; Galts, D.; Delfin, J.; Duffin, C.; Mansell, J.; Russel, M.; Bootsma, M.; Williams, R.; Patrick, M.; Mazzino, M. L.; Knudsen, D. J.

    2015-12-01

    The University of Calgary's Student Organization for Aerospace Research (SOAR) built an instrument to participate in the High Altitude Student Platform (HASP) initiative organized by Louisiana State University and supported by the NASA Balloon Program Office (BPO) and the Louisiana Space Consortium (LaSPACE). The HASP platform will be launched in early September 2015 from Fort Sumner, New Mexico and will reach heights of 36 kilometers with a flight duration of 15 to 20 hours. The instrument, Atmospheric Phenomenon Observer Gamma/VLF Emissions Experiment (APOGEE), measures Terrestrial Gamma-Ray Flashes (TGF) and sferics from lightning strikes with the use of Geiger tubes and a VLF detector. TGFs, which are quick bursts of high energy radiation that can occur alongside lightning, are believed to be the result of Relativistic Runaway Electron Avalanche (RREA). RREA occurs when a large number of relativistic electrons overcome atmospheric frictional forces and accelerate to relativistic velocities which excite secondary electrons that collide with the atmosphere causing bremsstrahlung radiation. Lightning strikes also produce sferics within the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands which can be detected and used to locate the strikes. The goal of APOGEE is to further investigate the link between TGFs and RREA. These phenomena are very difficult to measure together as Bremsstrahlung radiation is easily detected from space but ionospheric reflection facilitates surface detection of sferics. A high altitude balloon provides a unique opportunity to study both phenomena using one instrument because both phenomena can easily be detected from its altitude. APOGEE has been designed and built by undergraduate students at the University of Calgary with faculty assistance and funding, and is equipped with three devices for data collection: a camera to have visual conformation of events, a series of Geiger Tubes to obtain directional gamma readings, and

  10. 经股动脉球囊扩张式主动脉瓣置换术的初步经验%Aortic valve replacement via transfemoral balloon dilation: an initial experience

    Institute of Scientific and Technical Information of China (English)

    陆清声; 景在平; 洪毅; 吴宏; 王志农; 李卫萍; 张勇学; 李南; 马宇; 秦永文

    2011-01-01

    Objective To discuss the feasibility of treating patients with severe aortic valve stenosis by aortic valve replacement via transfemoral balloon dilation. Methods Three patients with severe aortic valve stenosis, who could not tolerate traditional open surgery, were chosen to receive aortic valve replacement via transfemoral balloon dilation. Results All the three operations were successfully done by transfemoral approach, including one assisted by transapical puncture. The aortic valve function of patients was improved, and there was no related complication or death. Conclusion Aortic valve replacement via transfemoral balloon dilation can be used for treatment of Chinese patients with severe aortic valve stenosis; but which demands more detailed preoperative preparation, evaluation, and surgical manipulation.%目的 探讨经股动脉球囊扩张式主动脉瓣置换术治疗严重主动脉瓣狭窄患者的可行性.方法 选取3例严重主动脉瓣钙化狭窄的患者,术前评估无法耐受传统开放手术,行经股动脉球扩式主动脉瓣置换术.结果 3例均经股动脉完成,其中1例经心尖穿刺辅助完成.3例手术全部成功,术后患者主动脉瓣功能显著改善,无并发症,无死亡.结论 经股动脉球扩式主动脉瓣置换术可用于国人严重主动脉瓣狭窄患者,但在术前准备与评估、术中操作等方面提出了更高的要求.

  11. MIPAS Ozone Validation by Stratospheric Balloon and Aircraft Measurements

    Science.gov (United States)

    Cortesi, U.; Blom, C. E.; Camy-Peyret, C.; Chance, K.; Davies, J.; Goutail, F.; Kuttippurath, J.; McElroy, C. T.; Mencaraglia, F.; Oelhaf, H.; Petritoli, A.; Pirre, M.; Pommereau, J. P.; Ravegnani, F.; Renard, J. B.; Strong, K.

    2004-08-01

    A number of in situ and remote sensing techniques for the measurement of upper tropospheric and stratospheric O3 content was employed during dedicated experiments of the ESABC programme, aiming at the validation of the ENVISAT chemistry payload. In this paper, we will be focusing on the validation of MIPAS off-line products, by presenting the results of the intercomparison between MIPAS O3 vertical profiles and aircraft and balloon correlative measurements. First priority is given to the validation of processor v4.61 data, but individual results of 2002 and 2003 balloon observations are also compared with MIPAS O3 non operational data. Some general remarks are finally expressed, along with specific recommendation to fully exploit the available ESABC validation dataset

  12. A Sensitivity Analysis of fMRI Balloon Model

    KAUST Repository

    Zayane, Chadia

    2015-04-22

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  13. Laringoplastia com balão em crianças com estenose subglótica em evolução: experiência de um hospital terciário Balloon laryngoplasty in children with acute subglottic stenosis: experience of a tertiary-care hospital

    Directory of Open Access Journals (Sweden)

    Claudia Schweiger

    2011-12-01

    Full Text Available O manejo da estenose subglótica (ESG em crianças continua sendo um desafio para os otorrinolaringologistas. A laringoplastia com balão (LPB consiste num procedimento endoscópico, descrito inicialmente em 1984, para tratamento de estenoses da via aérea alta, apresentando várias vantagens em relação a outras técnicas cirúrgicas e com resultados promissores. OBJETIVO: Apresentar a nossa experiência com a realização de LPB em pacientes pediátricos com ESG. MATERIAL E MÉTODO: Estudo prospectivo de pacientes pediátricos com diagnóstico de ESG pós-extubação em evolução (ainda com tecido de granulação. Realizou-se laringoscopia direta sob anestesia geral e dilatação do segmento estenótico com cateter de angioplastia. Os pacientes foram acompanhados e nova laringoscopia foi realizada uma semana após o procedimento inicial. RESULTADOS: Foram incluídas no estudo oito crianças no período de junho de 2009 a outubro de 2010. Destas, quatro apresentavam ESG Grau 3, três apresentavam ESG Grau 2 e uma, ESG Grau 1. Na laringoscopia direta de revisão, apenas duas apresentavam ESG residual assintomática (Grau 1, sendo que as outras seis apresentavam via aérea normal e estavam assintomáticas. CONCLUSÃO: A LPB parece ser um tratamento efetivo para ESG em evolução. Necessitamos mais estudos para sabermos a eficácia, a segurança e as indicações deste procedimento.Management of subglottic stenosis (SGS in children is still a challenge to Otorhinolaryngologists. Balloon laryngoplasty (BLP is an endoscopic procedure, first described in 1984 for the treatment of airway stenosis. It shows promising results and seems to be more effective than other procedures. AIM: To present our experience with BLP in children with SGS. MATERIAL AND METHOD: Prospective study of children diagnosed with acute subglottic stenosis, i.e., stenosis with granulation tissue. They underwent direct laryngoscopy under general anesthesia and dilatation of the

  14. Antideuteron Sensitivity for the GAPS Experiment

    CERN Document Server

    Aramaki, T; Boggs, S E; von Doetinchem, P; Fuke, H; Mognet, S I; Ong, R A; Perez, K; Zweerink, J

    2015-01-01

    The General Antiparticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antiparticles, especially antideuterons. The GAPS antideuteron measurement utilizes distinctive detection methods using atomic X-rays and charged particles from the decay of exotic atoms as well as the timing and stopping range of the incoming particle, which together provide excellent antideuteron identification. Prior to the future balloon experiment, an accelerator test and a prototype flight were successfully conducted in 2005 and 2012 respectively, in order to verify the GAPS detection concept. This paper describes how the sensitivity of GAPS to antideuterons was estimated using a Monte Carlo simulation along with the atomic cascade model and the Intra-Nuclear Cascade model. The sensitivity for the GAPS antideuteron search obtained using this method is 2.0 $\\times 10^{-6}$ [m$^{-2}$s$^{-1}$sr$^{-1}$(GeV/$n$)$^{-1}$] for the proposed long duration balloon program (LDB, 35 days $\\times$ 3...

  15. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  16. Airborne Internet Providing Tethered Balloon System

    Directory of Open Access Journals (Sweden)

    Suvriti Dhawan1

    2015-12-01

    Full Text Available In this paper we shall introduce a new system for providing wireless network communication over a specified area using ’lighter than air’ balloons. This technology will replace the existing fiber optic network system. This will be done by using a tethered balloon along with the payload (containing a receiver, a transmitter and a radio communication device.This payload will be suspended from the ground at an altitude (depending on the area of coverage required. Users under this area will be able to access this system directly for internet connectivity. This system can be used over large areas like universities, companies and societies to provide internet facility to their users through Wi-Fi or over an area where the user is specified (commercial purposes. Currently Google is working on similar idea called the ’Google Loon’ in which they use high altitude balloons which float at an altitude twice as high as air planes and the weather. They recently tested this system over New-Zealand by providing internet to their pilot testers on ground. Their balloons not being stationary, move with directional winds and have to be replaced one after the other to maintain consistency. This can be a huge problem over the areas where upper atmospheric winds are not in favorable direction. We can resolve this problem by using our stationary tethered balloon system which can communicate with the loon balloons to provide internet facility over a desired area. Moreover when our balloon will communicate with the loon balloon it will increase the coverage area as the loon balloon has to communicate to a point which is above the ground. Our system will not only replace the existing fiber optic system but it will also be selfsustaining i.e. It will generate its own power using solar panels.

  17. Stratospheric electric field measurements with transmediterranean balloons

    Science.gov (United States)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  18. The balloon and the airship technological heritage

    Science.gov (United States)

    Mayer, N. J.

    1981-01-01

    The balloon and the airship are discussed with emphasis on the identification of commonalities and distinctions. The aerostat technology behind the shape and structure of the vehicles is reviewed, including a discussion of structural weight, internal pressure, buckling, and the development of a stable tethered balloon system. Proper materials for the envelope are considered, taking elongation and stress into account, and flight operation and future developments are reviewed. Airships and tethered balloons which are designed to carry high operating pressure with low gas loss characteristics are found to share similar problems in low speed flight operations, while possessing interchangeable technologies.

  19. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  20. A balloon-borne integrating nephelometer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.S.; Apple, M.L. (Sandia National Labs., Albuquerque, NM (USA)); Weiss, R.E. (Radiance Research, Seattle, WA (USA))

    1990-09-01

    A balloon-borne integrating nephelometer has been successfully developed and flown by Sandia National Laboratories and Radiance Research. This report details instrument design, calibration and data conversion procedure. Free and tethered balloon transport and telemetry systems are described. Data taken during March 1989 South-Central New Mexico free flight ascents are presented as vertical profiles of atmospheric particle scattering coefficient, temperature and balloon heading. Data taken during December 1989 Albuquerque, New Mexico tethered flights are also presented as vertical profiles. Data analysis shows superior instrument performance. 5 refs., 22 figs.

  1. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  2. Trajectories of Rubber Balloons used in Balloon Releases: Theory and Application

    CERN Document Server

    Glaschke, Patrick

    2011-01-01

    Balloon releases are one of the main attractions of many fairs. Helium filled rubber balloons are released to carry postcards over preferably long distances. Although such balloons have been considered in atmospheric sciences and air safety analysis, there is only scarce literature available on the subject. This work intends to close this gap by providing a comprehensive theoretical overview and a thorough analysis of real-life data. All relevant physical properties of a rubber balloon are carefully modelled and supplemented by weather observations to form a self-contained trajectory simulation tool. The analysis of diverse balloon releases provided detailed insight into the flight dynamics and potential optimisations. Helium balloons are found to reach routinely altitudes above 10 km. Under optimal conditions, they could stay more than 24 hours airborne while reaching flight distances close to 3000 km. However, external weather effects reduce the typical lifetime to 2-5 hours.

  3. Improving uv resistance of high strength fibers used in large scientific balloons

    Science.gov (United States)

    Said, M.; Gupta, A.; Seyam, A.; Mock, G.; Theyson, T.

    For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran, Spectra, Kevlar and, PBO (Zylon). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strenthg, breaking elongation, modulus, etc) of untreated, unexposed to UV fibers

  4. "ASSESSMENT OF BALLOON VALVULOPLASTY IN COMPARISON WITH SURGICAL VALVOTOMY FOR CONGENITAL AORTIC STENOSIS"

    Directory of Open Access Journals (Sweden)

    P. Akbari Asbagh A. Shahmohammadi

    2004-09-01

    Full Text Available Soon after successful results of balloon valvuloplasty in treatment of congenital pulmonary stenosis, use of this technique for relief of congenital aortic stenosis (AS was attempted in different parts of the world. With the purpose of assessment the value of valvuloplasty in comparison with surgical valvotomy in relief of congenital AS, we retrospectively studied 115 patients with valvar AS, 48 of whom underwent balloon valvuloplasty (mean age 9.63 years, and 67 subjected to surgical aortic valvotomy (mean age 10.32 years, in a six year period from 1991 to 1997 at Rajaie heart hospital. Comparison of balloon valvuloplasty with surgical valvotomy revealed that reduction in the mean pressure gradient in balloon valvuloplasty group was greater than those subjected to surgical valvotomy (73.54 vs. 45.03 mmHg, P < 0.0001. Decreased incidence of aortic insufficiency and mortality in balloon valvuloplasty in comparison with surgical valvotomy are other notable points in this study. Although it is difficult to compare the results of the two procedures and determine their different indications, our successful experience with balloon valvuloplasty for congenital AS and the safety of this procedure encourage us to use this technique for the patients with congenital AS more than ever. These results must be supported by future studies.

  5. Diagnostic and therapeutic direct peroral cholangioscopy using an intraductal anchoring balloon

    Institute of Scientific and Technical Information of China (English)

    Mansour A Parsi; Tyler Stevens; John J Vargo

    2012-01-01

    AIM:To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy (DPOC).METHODS:Consecutive patients referred for diagnostic or therapeutic peroral cholangioscopy were evaluated in a prospective cohort study.The patients underwent DPOC using an intraductal anchoring balloon,which was recently introduced to allow consistent access to the biliary tree with an ultraslim upper endoscope.The device was later voluntarily withdrawn from the market by the manufacturer.RESULTS:Fourteen patients underwent DPOC using the anchoring balloon.Biliary access with an ultraslim upper endoscope was accomplished in all 14 patients.In 12 (86%) patients,ductal access required sphincteroplasty with a 10-mm dilating balloon.Intraductal placement of the ultraslim upper endoscope allowed satisfactory visualization of the biliary mucosa to the level of the confluence of the right and left hepatic ducts in 13 of 14 patients (93%).Therapeutic interventions by DPOC were successfully completed in all five attempted cases (intraductal biopsy in one and DPOC guided laser lithotripsy in four).Adverse events occurred in a patient on immunosuppressive therapy who developed an intrahepatic biloma at the site of the anchoring balloon.This required hospitalization and antibiotics.Repeat endoscopic retrograde cholangiopancreatography 8 wk after the index procedure showed resolution of the biloma.CONCLUSION:Use of this anchoring balloon allowed consistent access to the biliary tree for performance of diagnostic and therapeutic DPOC distal to the biliary bifurcation.

  6. Endoscopic minor papilla balloon dilation for the treatment of symptomatic pancreas divisum.

    Science.gov (United States)

    Yamamoto, Natsuyo; Isayama, Hiroyuki; Sasahira, Naoki; Tsujino, Takeshi; Nakai, Yousuke; Miyabayashi, Koji; Mizuno, Suguru; Kogure, Hirofumi; Sasaki, Takashi; Hirano, Kenji; Tada, Minoru; Koike, Kazuhiko

    2014-08-01

    A subpopulation of patients with pancreas divisum experience symptomatic events such as recurrent acute pancreatitis and chronic pancreatitis. Minor papilla sphincterotomy has been reported as being an effective treatment. The aim of this study was to evaluate the safety and efficacy of endoscopic balloon dilation for the minor papilla. Between 2000 and 2012, 16 patients were retrospectively included in this study. After endoscopic balloon dilation for the minor papilla was received, a pancreatic stent or a nasal pancreatic drainage catheter was placed for 1 week. If a stricture or obstruction was evident, it was treated with balloon dilation followed by long-term stent placement (1 year). When an outflow of pancreatic juice was disturbed by a pancreatic stone, endoscopic stone extraction was performed. Balloon dilation and stent placement were achieved and were successful in all the cases (16/16; 100%). Clinical improvement was achieved in 7 (84.7%) of the 9 patients with recurrent acute pancreatitis and in 6 (85.7%) of the 7 patients with chronic pancreatitis. Early complications were observed in 1 (6.3%) patient. Pancreatitis or bleeding related to balloon dilation was not observed. Endoscopic balloon dilation for the minor papilla is feasible for the management of symptomatic pancreas divisum.

  7. Status of balloon production for KamLAND-Zen 800 kg phase

    Science.gov (United States)

    Obara, S.

    2017-02-01

    KamLAND-Zen is an experiment for neutrinoless double beta decay (0 ν 2 β) search with 136Xe, based on the large liquid scintillator detector KamLAND. KamLAND-Zen includes 16.5 m3 xenon loaded liquid scintillator in a 3.16 m diameter nylon balloon (inner-balloon) with 25 μm wall thickness. KamLAND-Zen 400 (383 kg 136Xe used) released a lower limit on the 0 ν 2 β half-life of 136Xe. However, the sensitivity is limited by the contamination of radioactive backgrounds from the inner-balloon. Then, we planned KamLAND-Zen 800, upgrading the detector with a new inner-balloon of 3.84 m diameter with 800 kg 136Xe and 31.4 m3 liquid scintillator. We present the current status of KamLAND-Zen, the new mini-balloon construction and methods to avoid background contaminations. In addition, the development of a scintillating balloon for future upgrades in order to remove the radioactive decay chain daughter nuclei bismuth is also introduced.

  8. Heat Transfer Experiment of End-wall in Short Duration Wind Tunnel%短周期风洞叶栅端壁换热试验研究

    Institute of Scientific and Technical Information of China (English)

    任战鹏; 朱惠人; 李红才

    2012-01-01

    实验对短周期风洞中无气膜孔和带气膜孔时涡轮叶片端壁的换热做了实验研究,得出了无气膜孔端壁换热系数和叶栅入口雷诺数、出口马赫数之间的变化关系.另外得出了带气膜孔端壁在不同的叶栅入口雷诺数、出口马赫数、流量比时对换热系数的影响.实验结果表明:无气膜孔端壁上的换热系数分别在不同的叶栅入口雷诺数和出口马赫数下有着明显的变化;带气膜孔端壁上换热系数随流量比和叶栅入口雷诺数的增大而增大,而在低流量比时马赫数对端壁换热系数没有明显的影响.%The heat transfer at the end-wall with holes, as well as the one without them, of a turbine blade are researched experimentally in the short duration wind tunnel. The relationship amongst the heat transfer coefficient of the end-wall without holes, the Reynolds number at the inlet of leading edge of the turbine blade, and the Mach numbers at the outlet are determined. The influence of inlet Reynolds number, outlet Mach number and flow ratio respectively on the heat transfer coefficient at the end-wall with holes are also determined. The experiment results show that: first, the coefficient of the end-wall without holes varies obviously as the inlet Reynolds number or the outlet Mach number varies; second, the coefficient of the end-wall with holes increases as either the flow rate or the outlet Mach number increases, which would not be affected at a low flow rate. These results have an important value for reference for the research upon the characters of heat transfer at the end-wall.

  9. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    Science.gov (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.

  10. Balloon-Assisted Fistula Sealing Procedure for Symptomatic Tarlov Cysts.

    Science.gov (United States)

    Zheng, Xuesheng; Li, Shiting; Sheng, Hansong; Feng, Baohui; Zhang, Nu; Xie, Chaoran

    2016-04-01

    Tarlov cyst is an abnormal expansion of the spinal nerve sleeve, and it communicates with the subarachnoid cavity via a perineural fistula. This study presents our experience of a balloon-assisted fistula sealing procedure in treating Tarlov cyst. Twenty-two patients with symptomatic Tarlov cysts were surgically treated. An emulsion balloon was placed into the lumbar subarachnoid cistern through a trocar, so as to temporarily block cerebrospinal fluid flow, then the thecal sac was opened and the inlet of the fistula was sealed by suture of a muscular patch and reinforced by fibrin glue. Finally, the cyst wall was imbricated and the bony cavity was filled with pedicled muscle flaps. Comparing the preoperative and postoperative pain scores according to visual analog scale, 2 patients were slightly improved and 18 patients were substantially improved, including 3 completely pain-free cases. Only 2 patients were unchanged in pain, and both of them had multiple cysts. As a whole, the postoperative pain score was much better than the preoperative score (2.4 vs. 7.5; P cyst recurrence was found in 1 patient. The balloon-assisted fistula sealing procedure is safe and effective for Tarlov cyst, especially for the single cyst. It is a good complement to the cyst wall imbricating procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Shielded Mars Balloon Launcher (SMBL) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences, along with its partner Vertigo Industries, proposes a novel approach to deployment of balloon-based payloads into the Martian atmosphere....

  12. Magnetometer for Balloons and UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will investigate a new, low-cost approach to atomic magnetometry that is suited for operation from UAVs and research balloons. Atomic...

  13. Retrieving Balloon Data in Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration —   NASA has plans to fly stratospheric ULDBs for missions of 100 days or more in the next few years. As these balloons circumnavigate the globe multiple times,...

  14. MRI temperature mapping during thermal balloon angioplasty.

    Science.gov (United States)

    Shmatukha, Andriy V; Bakker, Chris J G

    2006-04-21

    Knowledge on the thermal dose delivered during thermal balloon angioplasty (TBA) is desirable to understand why TBA's outcome varies widely among patients and why it is subject to high restenosis rates. In its conventional implementation, TBA involves injection of a heated medium into a balloon positioned within a stenotic blood vessel. The medium injection causes flow, motion and susceptibility-redistribution artefacts that are devastating to the proton resonance frequency shift (PRFS) technique of MRI temperature mapping. Here, we propose to separate in time medium injection and heating by first inflating a balloon with a medium at an initial temperature, and then by heating the medium up using laser light. The separation is shown to eliminate all the mentioned artefacts and to enable real-time MRI temperature mapping using the PRFS technique. Accurate and reliable temperature maps were acquired in a TBA balloon itself and in the surrounding phantom tissue during heat application.

  15. BLAST: A balloon-borne, large-aperture, submillimetre telescope

    Science.gov (United States)

    Wiebe, Donald Victor

    BLAST is a balloon-borne large-aperture, submillimetre telescope, which makes large area (1--200 square degree) surveys of Galactic and extragalactic targets. Since BLAST observes in the stratosphere, it is able to make broad-band observations between 200 mum and 550 mum which are difficult or impossible to perform from the ground. BLAST has been designed to probe star formation both in the local Galaxy and in the high redshift (z = 1--4) universe. Because BLAST is flown on an unmanned stratospheric balloon platform, it has been designed to be able to operate autonomously, without needing operator intervention to perform its scientific goals. This thesis includes an overview of the design of the BLAST platform, with emphasis on the command and control systems used to operate the telescope. BLAST has been flown on two long-duration balloon flights. The first of these, from Esrange, Sweden in June of 2005, acquired ˜70 hours of primarily Galactic data. During the second flight, from Willy Field, Antarctica in December of 2006, BLAST acquired ˜225 hours of both Galactic and extragalactic data. Operational performance of the platform during these two flights is reviewed, with the goal of providing insight on how future flights can be improved. Reduction of the data acquired by these large-format bolometer arrays is a challenging procedure, and techniques developed for BLAST data reduction are reviewed. The ultimate goal of this reduction is the generation of high quality astronomical maps which can be used for subsequent portions of data analysis. This thesis treats, in detail, the iterative, maximum likelihood map maker developed for BLAST. Results of simulations performed on the map maker to characterise its ability to reconstruct astronomical signals are presented. Finally, astronomical maps produced by this map maker using real data acquired by BLAST are presented, with a discussion on non-physical map pathologies resulting from the data reduction pipeline and

  16. Balloon Measurements of Electric Fields in Thunderstorms: A Modern Version of Benjamin Franklin's Kite

    Science.gov (United States)

    Marshall, T. C.; Stolzenburg, M.

    2006-12-01

    One of Benjamin Franklin's most famous experiments was the kite experiment, which showed that thunderstorms are electrically charged. It is not as commonly noted that the kite experiment was also one of the the first attempts to make an in situ measurement of any storm parameter. Franklin realized the importance of making measurements close to and within storms, and this realization has been shared by later atomspheric scientists. In this presentation we focus on a modern version of Franklin's kite--instrumented balloons--used for in situ measurements of electric field and other storm parameters. In particular, most of our knowledge of the charge structure inside thunderstorms is based on balloon soundings of electric field. Balloon measurements of storm electricity began with the work of Simpson and colleagues in the 1930's and 1940's. The next major instrumentation advances were made by Winn and colleagues in the 1970's and 1980's. Today's instruments are digital versions of the Winn design. We review the main instrument techniques that have allowed balloons to be the worthy successors to kites. We also discuss some of the key advances in our understanding of thunderstorm electrification made with in situ balloon-borne instruments.

  17. Balloon borne arcsecond pointer feasibility study

    Science.gov (United States)

    Ward, Philip R.; Deweese, Keith D.

    2003-08-01

    A major hurdle in extending the range of experiments for which balloon vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. In this paper, the foundation for a high fidelity controller simulation is presented and it is shown that sub-arcsecond pointing stability can be achieved for a large instrument pointing at an inertial target. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is introduced with a coarse azimuth pointer and a pitch-yaw gimbal mount for fine pointing. An analysis and demonstration of the necessity in eliminating static friction are provided along with a solution to eliminate static friction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. This paper establishes that the proposed control strategy can be made robustly stable with significant design margins. Also demonstrated is the efficacy of the proposed system in rejecting disturbances larger than those considered realistic.

  18. PoGOLino: a scintillator-based balloon-borne neutron detector

    CERN Document Server

    Kole, Merlin; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2014-01-01

    PoGOLino is a balloon-borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors that make use of LiCAF, a novel neutron sensitive scintillator, sandwiched by BGO crystals for background reduction. The experiment was launched on March 20th 2013 from the Esrange Space Centre, Northern Sweden (geomagnetic latitude of $65^\\circ$), for a three hour flight during which the instrument took data up to an altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.

  19. The Use of Zylon Fibers in ULDB Balloons

    Science.gov (United States)

    Zimmerman, M.; Seely, L.; McLaughlin, J.

    Early in the development of the ULDB balloon, Zylon (PBO) was selected as the tendon material due to its favorable stress-strain properties. It is a next generation super fiber whose strength and modulus are almost double those of the p-Aramid fibers. In addition there are two versions of the Zylon, As Spun (AS) and High Modulus (HM). Data will be presented on why the HM was chosen. Early in the development process, it was learned that this material exhibited an unusual sensitivity to degradation by ambient light. This is in addition to the expected sensitivity to UV radiation (Ultraviolet). The fiber manufacturer reported all of these properties in their literature. Due to the operating environment of the ULDB (Ultra Long Duration Balloon) it is necessary to protect the tendons from both visible and UV radiation. Methods to protect the tendons will be discussed. In addition, information on the long term exposure of the braided tendon over a thirty-six month period in a controlled manufacturing plant will be provided.

  20. "I see the light!" trans-carotid balloon valvuloplasty in neonates and small infants utilizing continuous trans-esophageal echo guidance.

    Science.gov (United States)

    Lucas, Victor

    2015-11-01

    Continuous echo guidance may add to the safety of neonatal aortic balloon valvuloplasty Trans-carotid access is an alternative route to aortic balloon valvuloplasty in neonates Proof of preferred procedure (surgical or catheter based), procedure setting, and access site remains elusive as the disease is infrequent and single center experience remains small.

  1. Imaging Sunlit Aurora from Balloon

    Science.gov (United States)

    Lummerzheim, D.; Zhou, X.

    2012-12-01

    Since 1892 when aurora was first imaged by Martin Brendel, useful auroral images have been obtained only when the aurora is in darkness. While UV imagers onboard satellite provide global auroral dynamics, the sunlit aurora in the UV band is overwhelmed by the UV airglow that has the same wavelengths with the UV auroral emissions. The visible band imaging is feasible only when the aurora is in darkness to avoid the sunlight contamination. However, sunlit aurora (such as dayside aurora) is closely related to the solar wind - magnetosphere - ionosphere coupling. In addition, limited land area has badly restricted the capability of imaging dayside aurora from the northern hemisphere and nightside aurora from the southern hemisphere. We have confirmed that sunlit aurora can be imaged using a near-infrared (NIR) camera on board the balloon platform flying in Antarctica or Arctic. This method provides a unique capability for dayside and conjugate auroral investigations. Scientific questions that can be addressed by such observations include how does the dayside aurora respond to solar wind transient variations? Are auroras hemispherically symmetric? Are auroral forms and their variations under sunlight the same as those in darkness? etc. The new method is also cost effective comparing to space-borne imagers, and offers capabilities not obtainable from space and the ground. With the accomplishment of identifying auroral dynamics in sunlight and darkness, in the south and north simultaneously, our knowledge and understanding of auroral phenomenon and its causes will be expanded.

  2. 长时间滚压泵辅助循环管理体会%The management experience of long duration roller pump ventricular assist device

    Institute of Scientific and Technical Information of China (English)

    王中; 王试福; 王大勇

    2011-01-01

    目的 总结本院51例心脏术后心脏和/或肺功能不全滚压泵长时间辅助循环(VAD)管理经验.方法 51例心脏术后患者因心脏和/或肺功能不全而难以脱离体外循环,采用滚压泵进行长时间心肺功能辅助,根据患者心肺功能状态分别采用全心辅助和单纯左心辅助两种辅助方式,辅助期间尽可能提供满意的灌注流量,重视各种脏器保护,注意维持内环境稳定,妥善调节前后负荷之间的关系.结果 全心辅助43例(其中单纯呼吸功能不全13例,全心功能不全27例,呼吸功能不全合并左心功能不全3例),单纯左心辅助8例.VAD时间360~1020(679±29)min,辅助后脱机或在IABP辅助下脱机并存活至出ICU 23例,辅助后不能脱机17例,辅助后脱机或在IABP辅助下脱机但术后10 d内死于ICU 11例.结论 心脏术后因心肺功能不全而难以脱离体外循环时应积极对衰竭器官进行辅助.选择适当辅助方式,精心进行流量调控,妥善进行前、后负荷管理,维持稳定内环境状态,可提高辅助成功率.%OBJECTIVE To summarize the management experience of long duration roller pump ventricular assist device ( VAD ) for left heart assistance in 51 post cardiac surgery patients with heart and/or lung dysfunction. METHODS Ventricular assist devices of roller pump were used for 51 patients who couldn't wean off ECC because of heart and/or lung dysfunction. According to patients' heart and lung condition, biventricular assist advice and left ventricular assist device were used respectively. During assistance,satisfactoryperfusion blood flow was provided and much attention was paid to the conservation of major organs. Body internal environment was maintained in normal status. The relationship between preload and afterload of the heart was adjusted adequately. RESULTS Biventricular assist device was used in 43 cases ( pure respiratory insufficiency 13 cases, biventricular dysfuntion 27 cases, respiratory

  3. Initial Results from the ANITA 2006-2007 Balloon Flight

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, P.W.; /Hawaii U.; Allison, P.; /Hawaii U.; Barwick, S.W.; /UC, Irvine; Beatty, J.J.; /Ohio State U.; Besson, D.Z.; /Kansas U.; Binns, W.R.; /Washington U., St. Louis; Chen, C.; /SLAC; Chen, P.; /SLAC; Clem, J.M.; /Delaware U.; Connolly, A.; /University Coll. London; Dowkontt, P.F.; /Washington U., St. Louis; DuVernois, M.A.; /Minnesota U.; Field, R.C.; /SLAC; Goldstein, D.; /UC, Irvine; Goodhue, A.; /UCLA; Hast, C.; /SLAC; Hebert, C.L.; /Hawaii U.; Hoover, S.; /UCLA; Israel, M.H.; /Washington U., St. Louis; Kowalski, J.; /Hawaii U.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /Hawaii U. /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U. /UC, Irvine

    2011-11-16

    We report initial results of the Antarctic Impulsive Transient Antenna (ANITA) 2006-2007 Long Duration Balloon flight, which searched for evidence of the flux of cosmogenic neutrinos. ANITA flew for 35 days looking for radio impulses that might be due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. In our initial high-threshold robust analysis, no neutrino candidates are seen, with no physics background. In a non-signal horizontal-polarization channel, we do detect 6 events consistent with radio impulses from extensive air showers, which helps to validate the effectiveness of our method. Upper limits derived from our analysis now begin to eliminate the highest cosmogenic neutrino models.

  4. Estimating duration intervals

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); B.L.K. Vroomen (Björn)

    2003-01-01

    textabstractDuration intervals measure the dynamic impact of advertising on sales. More precise, the p per cent duration interval measures the time lag between the advertising impulse and the moment that p per cent of its effect has decayed. In this paper, we derive an expression for the duration

  5. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    Science.gov (United States)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    , resulting in easier engineering and development of the mission. The paper describes flight experiences on implementation of the flight tracking and recovery package over several balloon flights.

  6. Overview Of The Scientific Balloon Activity in Sweden 2014-2016

    Science.gov (United States)

    Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent

    2016-07-01

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon

  7. Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations

    Science.gov (United States)

    Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.

    1994-01-01

    A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.

  8. Near ultraviolet spectrograph for balloon platform

    Science.gov (United States)

    Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2015-06-01

    Small and compact scientific payloads may be easily designed constructed and own on high altitude balloons. Despite the fact that large orbital observatories provide accurate observations and statistical studies of remote and/or faint space sources, small telescopes on board balloons or rockets are still attractive because of their low cost and rapid response time. We describe here a near ultraviolet (NUV) spectrograph designed to be own on a high{altitude balloon platform. Our basic optical design is a modified Czerny-Turner system using off the shelf optics. We compare different methods of aberration corrections in such a system. We intend the system to be portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in UV. We plan on using an image intensified CMOS sensor operating in photon counting mode as the detector of choice.

  9. Japan-Indo collaboration on balloon observations

    Science.gov (United States)

    Makino, Fumiyoshi

    Japan-Indo collaboration on balloon observations of cosmic X-ray sources was started in 1969 by the late S. Hayakawa of Nagoya Univ. and B. V. Sreekantan of TIFR. Cosmic background X-ray and soft gamma-ray spectra, simultaneous X-ray and optical flux variation, and size of X-ray emitting region of Crab Nebula were observed successfully by balloon flights at Hyderabad in 1969-1975. H. Shibai of Nagoya Univ. and T. N. Rengarajan of TIFR have organized collaboration on far infrared sky survey at wavlength of 150 micron emitted from CII. By employing improved detectors, CII distribution of Orion Nebula has been obtained in good accuracy by more than ten balloon flights in 1999-2008.

  10. Residual stenosis after conventional balloon angioplasty for hemodialysis shunt failure: treatment with metallic stent placement and post-balloon dilatation.

    Science.gov (United States)

    Kariya, Shuji; Tanigawa, Noboru; Kojima, Hiroyuki; Komemushi, Atsushi; Shiraishi, Tomokuni; Kawanaka, Toshiaki; Sawada, Satoshi

    2005-02-01

    The usefulness of metallic stent placement and post-balloon dilatation was investigated for patients with residual stenosis after conventional percutaneous transluminal balloon angioplasty (balloon PTA) of dialysis shunt vessels. Among 92 patients who had received balloon PTA for dialysis shunt vessels, seven patients who showed a residual waist on the balloon even under maximum inflation were enrolled in this study. In these patients with residual stenosis after balloon PTA, we inserted a stent in the residual stenosis, and post-balloon dilatation was immediately applied using the same balloon catheter. After balloon PTA, the average percent diameter stenosis declined to 45.5 +/- 7.30%, and the stenosis was further improved to an average of 19.3 +/- 7.09% after the placement of a stent and the additional balloon PTA. The average percent diameter dilatation of the balloon before the placement of a stent was 65.8 +/- 12.7%, while the average dilatation increased to 84.1 +/- 8.96% after the placement of a stent. Dialysis became possible immediately after the procedure in all cases. Metallic stent placement and post-balloon dilatation was effective for patients with residual stenosis after conventional balloon PTA of dialysis shunt vessels.

  11. 75 FR 33838 - National Environmental Policy Act; Scientific Balloon Program

    Science.gov (United States)

    2010-06-15

    ... SPACE ADMINISTRATION National Environmental Policy Act; Scientific Balloon Program AGENCY: National... Draft Programmatic Environmental Assessment (PEA) and Draft Finding of No Significant Impact (FONSI) for NASA's Scientific Balloon Program. SUMMARY: Pursuant to the National Environmental Policy Act of...

  12. Optimising a balloon-borne polarimeter in the hard X-ray domain: From the PoGOLite Pathfinder to PoGO+

    Science.gov (United States)

    Chauvin, M.; Jackson, M.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Takahashi, H.; Pearce, M.

    2016-09-01

    PoGOLite is a balloon-borne hard X-ray polarimeter dedicated to the study of point sources. Compton scattered events are registered using an array of plastic scintillator units to determine the polarisation of incident X-rays in the energy range 20-240 keV. In 2013, a near circumpolar balloon flight of 14 days duration was completed after launch from Esrange, Sweden, resulting in a measurement of the linear polarisation of the Crab emission. Building on the experience gained from this Pathfinder flight, the polarimeter is being modified to improve performance for a second flight in 2016. Such optimisations, based on Geant4 Monte Carlo simulations, take into account the source characteristics, the instrument response and the background environment which is dominated by atmospheric neutrons. This paper describes the optimisation of the polarimeter and details the associated increase in performance. The resulting design, PoGO+, is expected to improve the Minimum Detectable Polarisation (MDP) for the Crab from 19.8% to 11.1% for a 5 day flight. Assuming the same Crab polarisation fraction as measured during the 2013 flight, this improvement in MDP will allow a 5σ constrained result. It will also allow the study of the nebula emission only (Crab off-pulse) and Cygnus X-1 if in the hard state.

  13. Optimising a balloon-borne polarimeter in the hard X-ray domain: from the PoGOLite Pathfinder to PoGO+

    CERN Document Server

    Chauvin, Maxime; Kawano, Takafumi; Kiss, Mózsi; Kole, Merlin; Mikhalev, Victor; Moretti, Elena; Takahashi, Hiromitsu; Pearce, Mark

    2016-01-01

    PoGOLite is a balloon-borne hard X-ray polarimeter dedicated to the study of point sources. Compton scattered events are registered using an array of plastic scintillator units to determine the polarisation of incident X-rays in the energy range 20 - 240 keV. In 2013, a near circumpolar balloon flight of 14 days duration was completed after launch from Esrange, Sweden, resulting in a measurement of the linear polarisation of the Crab emission. Building on the experience gained from this Pathfinder flight, the polarimeter is being modified to improve performance for a second flight in 2016. Such optimisations, based on Geant4 Monte Carlo simulations, take into account the source characteristics, the instrument response and the background environment which is dominated by atmospheric neutrons. This paper describes the optimisation of the polarimeter and details the associated increase in performance. The resulting design, PoGO+, is expected to improve the Minimum Detectable Polarisation (MDP) for the Crab from ...

  14. There is a Text in 'The Balloon'

    DEFF Research Database (Denmark)

    Elias, Camelia

    2009-01-01

    From the Introduction: Camelia Elias' "There is a Text in 'The Balloon': Donald Barthelme's Allegorical Flights" provides its reader with a much-need and useful distinction between fantasy and the fantastic: "whereas fantasy in critical discourse can be aligned with allegory, in which a supernatu......From the Introduction: Camelia Elias' "There is a Text in 'The Balloon': Donald Barthelme's Allegorical Flights" provides its reader with a much-need and useful distinction between fantasy and the fantastic: "whereas fantasy in critical discourse can be aligned with allegory, in which...

  15. Cutting balloon angioplasty for intrastent restenosis treatment

    Directory of Open Access Journals (Sweden)

    João Orávio de Freitas Jr

    1999-05-01

    Full Text Available We describe here two patients with angiographic diagnosis of intrastent restenosis and regional myocardial ischemia. One stent restenosis was located in a native coronary artery and the other in a vein graft. Both were treated with cutting balloon angioplasty (CBA, inflated at low pressures. Angiographic success was obtained and both patients were discharged in the day after the procedure. Cutting balloon angioplasty using low inflation pressures achieved important luminal gains, in these two cases of intrastent restenosis. Further studies are necessary before the effectiveness of this procedure can be precisely defined.

  16. On the inflation of a rubber balloon

    Science.gov (United States)

    Vandermarlière, Julien

    2016-12-01

    It is a well-known fact that it is difficult to start a balloon inflating. But after a pressure peak that occurs initially, it becomes far easier to do it! The purpose of this article is to establish the experimental pressure-radius chart for a rubber balloon and to compare it to the theoretical one. We will demonstrate that the barometer of a smartphone is a very suitable tool to reach this goal. We hope that this phenomenon will help students realize that sometimes very simple questions can lead to very interesting and counterintuitive science.

  17. Balloon observations of Galactic cosmic ray helium before and during a Forbush decrease

    Science.gov (United States)

    Clem, J. M.; Guzik, T. G.; Lijowski, M.; Wefel, J. P.; Beatty, J. J.; Ficenec, D. J.; Tobias, S.; Mitchell, J. W.; Mckee, S.; Nutter, S.

    1993-01-01

    The energy spectrum of Galactic cosmic ray helium was measured in two different balloon experiments launched four days apart from Canada: SMILI-I on Sept 1, 1989 and MASS on Sept 5, 1989. A slow Forbush decrease began on Sept 4, 1989 and had not reached its maximum at the time of the MASS flight. Comparison of the balloon measurements shows a fractional decrease of 0.37 to 0.15 in the Helium flux between 200 and 450 MeV/nucleon (1.2-2.0 GV). The rigidity dependence is analyzed in two models and found to be steeper than previous observations. Interplanetary particle data and ground-based Neutron Monitor results are consistent with the balloon observations. Probable sources for this Forbush decrease are discussed.

  18. Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope

    CERN Document Server

    Soler, J D; Amiri, M; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, C; Contaldi, C C; Crill, B P; Doré, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Gambrel, A E; Gandilo, N N; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Kuo, C L; MacTavish, C J; Mason, P V; Megerian, K G; Moncelsi, L; Nagy, J M; Netterfield, C B; O'Brient, R; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Shariff, J A; Trangsrud, A; Tucker, C; Tucker, R S; Turner, A D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    We introduce the light-weight carbon fiber and aluminum gondola designed for the SPIDER balloon-borne telescope. SPIDER is designed to measure the polarization of the Cosmic Microwave Background radiation with unprecedented sensitivity and control of systematics in search of the imprint of inflation: a period of exponential expansion in the early Universe. The requirements of this balloon-borne instrument put tight constrains on the mass budget of the payload. The SPIDER gondola is designed to house the experiment and guarantee its operational and structural integrity during its balloon-borne flight, while using less than 10% of the total mass of the payload. We present a construction method for the gondola based on carbon fiber reinforced polymer tubes with aluminum inserts and aluminum multi-tube joints. We describe the validation of the model through Finite Element Analysis and mechanical tests.

  19. Balloon observations of Galactic cosmic ray helium before and during a Forbush decrease

    Science.gov (United States)

    Clem, J. M.; Guzik, T. G.; Lijowski, M.; Wefel, J. P.; Beatty, J. J.; Ficenec, D. J.; Tobias, S.; Mitchell, J. W.; Mckee, S.; Nutter, S.

    1993-01-01

    The energy spectrum of Galactic cosmic ray helium was measured in two different balloon experiments launched four days apart from Canada: SMILI-I on Sept 1, 1989 and MASS on Sept 5, 1989. A slow Forbush decrease began on Sept 4, 1989 and had not reached its maximum at the time of the MASS flight. Comparison of the balloon measurements shows a fractional decrease of 0.37 to 0.15 in the Helium flux between 200 and 450 MeV/nucleon (1.2-2.0 GV). The rigidity dependence is analyzed in two models and found to be steeper than previous observations. Interplanetary particle data and ground-based Neutron Monitor results are consistent with the balloon observations. Probable sources for this Forbush decrease are discussed.

  20. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    CERN Document Server

    Soler, J D; Angilè, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Galitzki, N; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Mroczkowski, A; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Thomas, N E; Truch, M D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully flown in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  1. Promising results after balloon dilatation of the Eustachian tube for obstructive dysfunction

    DEFF Research Database (Denmark)

    Wanscher, Jens H; Svane-Knudsen, Viggo

    2014-01-01

    INTRODUCTION: As the first ear, nose and throat department in Denmark, we introduced balloon dilatation of the Eustachian tube as a treatment of obstructive dysfunction in the summer of 2012. We present our preliminary experiences with this new treatment in adults. MATERIAL AND METHODS: Preoperat...

  2. Auditory Risk of Exploding Hydrogen-Oxygen Balloons

    Science.gov (United States)

    Gee, Kent L.; Vernon, Julia A.; Macedone, Jeffrey H.

    2010-01-01

    Although hydrogen-oxygen balloon explosions are popular demonstrations, the acoustic impulse created poses a hearing damage risk if the peak level exceeds 140 dB at the listener's ear. The results of acoustical measurements of hydrogen-oxygen balloons of varying volume and oxygen content are described. It is shown that hydrogen balloons may be…

  3. 21 CFR 884.5050 - Metreurynter-balloon abortion system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine...

  4. Discounted Duration Calculus

    DEFF Research Database (Denmark)

    Ody, Heinrich; Fränzle, Martin; Hansen, Michael Reichhardt

    2016-01-01

    To formally reason about the temporal quality of systems discounting was introduced to CTL and LTL. However, these logic are discrete and they cannot express duration properties. In this work we introduce discounting for a variant of Duration Calculus. We prove decidability of model checking...... for a useful fragment of discounted Duration Calculus formulas on timed automata under mild assumptions. Further, we provide an extensive example to show the usefulness of the fragment....

  5. Intraoperative aortic balloon occlusion in patients with placenta previa and/or placenta accreta: a retrospective study.

    Science.gov (United States)

    Luo, Fangyuan; Xie, Lan; Xie, Ping; Liu, Siwei; Zhu, Yue

    2017-04-01

    To introduce the primary experience of using aortic balloon catheters during cesarean section for placenta previa and/or placenta accreta. From January 2013 to May 2015, 43 patients who were preoperatively diagnosed with major placenta previa and/or placenta accreta and who underwent prophylactic aortic catheterization before caesarean section (CS) were included in the study. We analyzed the clinical data of the study population. Surgery- and catheterization-related complications were also reported. Major placenta previa or placenta accreta was surgically confirmed in 42 patients, 28 of whom had both conditions. The mean patient age was 32.3 ± 5.5 years, whereas the median gestational age at delivery was 260 (range, 153-280) days. Twenty-nine (67.4%) patients had previously undergone CS, and 13 (30%) patients had undergone emergency surgery for antenatal hemorrhage. The median estimated blood loss during surgery was 500 (range, 100-3,000) mL, and the median duration of occlusion was 20 (range, 5-32) minutes. Hysterectomy was performed in five (11.6%) patients and uterine artery embolization in two (4.6%) patients. Two patients with placenta percreta experienced surgery-related complications, and two patients required hospital readmission. No major catheterization-related complications were observed. Forty-two live births were recorded, and the Apgar score of the infants at 5 minutes was > 7. Intraoperative aortic balloon occlusion is a relatively safe method for treating placenta previa and/or placenta accreta during scheduled and emergency CS and might be helpful to prevent hysterectomy and embolization in women wishing to preserve fertility. Copyright © 2017. Published by Elsevier B.V.

  6. Demonstration of a Balloon Borne Arc-second Pointer Design

    Science.gov (United States)

    Deweese, K.; Ward, P.

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement The test results of a demonstration prototype of the design with similar ability are also presented Discussion of a high fidelity controller simulation for design analysis is presented The flexibility of the flight train is represented through generalized modal analysis A multiple controller scheme is utilized for coarse and fine pointing Coarse azimuth pointing is accomplished by an established pointing system with extensive flight history residing above the gondola structure A pitch-yaw gimbal mount is used for fine pointing providing orthogonal axes when nominally on target Fine pointing actuation is from direct drive dc motors eliminating backlash problems An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided A unique bearing hub design is introduced that eliminates static friction from the system dynamics A control scheme involving linear

  7. Balloon-borne CALET prototype payload (bCALET)

    Science.gov (United States)

    Ueyama, Yoshitaka; Torii, Shoji; Kasahara, Katsuaki; Murakami, Hiroyuki; Ozawa, Shunsuke; Akaike, Yosui; Nakai, Mikio; Aiba, Toshihide; Kai, Yuuichirou; Tamura, Tadahisa; Yoshida, Kenji; Katayose, Yusaku; Saito, Yoshitaka; Fuke, Hideyuki; Kawada, Jiro; Mizuta, Eiichi; Marrocchesi, Pier Simone; Kim, Meyoung; Bigongiari, Gabriele

    The CALorimetric Electron Telescope (CALET) payload will be installed in the Japanese Experiment Module Exposed Facility (JEM-EF) of the International Space Station (ISS). We have been developing a balloon borne payload to evaluate the performance of CALET by carring out precursor flights for the electron observation in 1-1000 GeV. The first flight of bCALET was done in 2006, and the enhanced version, bCALET-2, was successfully flown in 2009. In this paper, we describe the bCALET-3 payload which is composed of Imaging Calorimeter (IMC), Total Absorption Calorimeter (TASC) and Silicon pixel Array (SIA). IMC has an area of 320mm × 320mm, and is consisted 8 x-y layers of scintillating fiber belts inserted below tungsten plates for a fine imaging of shower particles. TASC is constructed by 6 layers of BGO scintillator blocks with an area of 300mm × 300mm, for measuring the total energy deposit of incoming shower particles. SIA owns to measure the charge number of incoming particle. Each component has very similar function with CALET with about half the area of CALET. We are planning to carry out the balloon experiment by bCALET-3 in November, 2010 for the test of the CALET capability of observing the electrons.

  8. Long distance cell communication using spherical tether balloons

    Science.gov (United States)

    Manchanda, R. K.; Rajagopalan, Vasudevan; Vasudevan, Rajagopalan; Mehrotra, R. K.; Sreenivasan, S.; Pawaskar, M.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar; Kulkarni, P. M.

    A proof-of-concept experiment was conducted for long-range cell communication for rural tele-phony and internet. We designed and fabricated a spherical tether balloon to carry the con-ventional micro base transceiver station (BTS) along with three slotted antenna to cover 2-pi radius. AC power and optical fiber were anchored along with the tether line. A special fre-quency license was obtained from Wireless Planning Commission (WPC) wing of Department of Telecommunication (DoT), India for the period of experiment so as not to affect the opera-tional networks. The experiments were carried out for different BTS heights up to 500 meter. Signal measurement both in data mode and voice quality were done in different quadrant using mobile vans. This paper describes the methodology (under patenting) and utility of technique for operational application.

  9. How to perform combined cutting balloon and high pressure balloon valvuloplasty for dogs with subaortic stenosis.

    Science.gov (United States)

    Kleman, Mandi E; Estrada, Amara H; Maisenbacher, Herbert W; Prošek, Robert; Pogue, Brandon; Shih, Andre; Paolillo, Joseph A

    2012-01-01

    Subvalvular aortic stenosis (SAS) is one of the most common congenital cardiac malformations in dogs. Unfortunately, the long term success rate and survival data following either open heart surgery or catheter based intervention has been disappointing in dogs with severe subaortic stenosis. Medical therapy is currently the only standard recommended treatment option. A cutting balloon dilation catheter has been used successfully for resistant coronary artery and peripheral pulmonary arterial stenoses in humans. This catheter is unique in that it has the ability to cut, or score, the stenotic region prior to balloon dilatation of the stenosis. The use of cutting balloon valvuloplasty combined with high pressure valvuloplasty for dogs with severe subaortic stenosis has recently been reported to be a safe and feasible alternative therapeutic option. The following report describes this technique, outlines the materials required, and provides some 'tips' for successful percutaneous subaortic balloon valvuloplasty. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Single-balloon versus double-balloon bipedicular kyphoplasty for osteoporotic vertebral compression fractures.

    Science.gov (United States)

    Wang, Heng; Sun, Zhenzhong; Wang, Zhiwen; Jiang, Weimin

    2015-04-01

    Twenty-eight patients with osteoporotic vertebral compression fractures (OVCF) were treated with single-balloon bipedicular kyphoplasty (Group A), and 40 patients were treated with double-balloon bipedicular kyphoplasty (Group B). Visual Analogue Scale (VAS) score, vertebral height, and kyphotic angle (KA) were evaluated pre-operatively, post-operatively (3 days after surgery) and at final follow-up. Operative time, X-ray exposure frequency and costs were recorded. The mean operative time and X-ray exposure frequency in Group A were greater than in Group B (pkyphoplasty is a safe and cost-effective surgical method for the treatment of OVCF. It can achieve pain relief comparable with double-balloon bipedicular kyphoplasty. However, double-balloon bipedicular kyphoplasty is more efficacious in terms of the restoration of vertebral height and reduction of KA, and the operative time and X-ray exposure frequency are lower.

  11. Laser-driven short-duration heating angioplasty: chronic artery lumen patency and histology in porcine iliac artery

    Science.gov (United States)

    Shimazaki, Natsumi; Kunio, Mie; Naruse, Sho; Arai, Tsunenori; Sakurada, Masami

    2012-02-01

    We proposed a short-duration heating balloon angioplasty. We designed a prototype short-duration heating balloon catheter that can heat artery media to 60-70°C within 15-25 s with a combination of laser-driven heat generation and continuous fluid irrigation in the balloon. The purpose of this study was to investigate chronic artery lumen patency as well as histological alteration of artery wall after the short-duration heating balloon dilatation with porcine healthy iliac artery. The short-term heating balloon dilated sites were angiographically patent in acute (1 hour) and in chronic phases (1 and 4 weeks). One week after the dilatation, smooth muscle cells (SMCs) density in the artery media measured from H&E-stained specimens was approx. 20% lower than that in the reference artery. One and four weeks after the dilatations, normal structure of artery adventitia was maintained without any incidence of thermal injury. Normal lamellar structure of the artery media was also maintained. We found that the localized heating restricted to artery media by the short-duration heating could maintain adventitial function and artery normal structure in chronic phase.

  12. Icon Duration and Development.

    Science.gov (United States)

    Gummerman, Kent; And Others

    In this study, developmental changes in duration of the icon (visual sensory store) were investigated with three converging tachistoscopic tasks. (1) Stimulus interuption detection (SID), a variation of the two-flash threshold method, was performed by 29 first- and 32 fifth-graders, and 32 undergraduates. Icon duration was estimated by stimulus…

  13. An Automated System for Measuring Microphysical and Radiative Cloud Characteristics from a Tethered Balloon

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul Lawson

    2004-03-15

    OAK-B135 The rate of climate change in polar regions is now felt to be a harbinger of possible global warming. Long-lived, relatively thin stratus clouds play a predominant role in transmitting solar radiation and trapping long wave radiation emitted from open water and melt ponds. In situ measurements of microphysical and radiative properties of Arctic and Antarctic stratus clouds are needed to validate retrievals from remote measurements and simulations using numerical models. While research aircraft can collect comprehensive microphysical and radiative data in clouds, the duration of these aircraft is relatively short (up to about 12 hours). During the course of the Phase II research, a tethered balloon system was developed that supports miniaturized meteorological, microphysical and radiation sensors that can collect data in stratus clouds for days at a time. The tethered balloon system uses a 43 cubic meter balloon to loft a 17 kg sensor package to altitudes u p to 2 km. Power is supplied to the instrument package via two copper conductors in the custom tether. Meteorological, microphysical and radiation data are recorded by the sensor package. Meteorological measurements include pressure, temperature, humidity, wind speed and wind direction. Radiation measurements are made using a 4-pi radiometer that measures actinic flux at 500 and 800 nm. Position is recorded using a GPS receiver. Microphysical data are obtained using a miniaturized version of an airborne cloud particle imager (CPI). The miniaturized CPI measures the size distribution of water drops and ice crystals from 9 microns to 1.4 mm. Data are recorded onboard the sensor package and also telemetered via a 802.11b wireless communications link. Command signals can also be sent to the computer in the sensor package via the wireless link. In the event of a broken tether, a GMRS radio link to the balloon package is used to heat a wire that burns 15 cm opening in the top of the balloon. The balloon and

  14. The laser driven short-term heating balloon catheter: Relation between the chronic neointimal hyperplasia formation and thermal damage to arterial smooth muscle cells.

    Science.gov (United States)

    Shimazaki, Natsumi; Hayashi, Tomoaki; Kunio, Mie; Igami, Yuka; Arai, Tsunenori; Sakurada, Masami

    2010-01-01

    We proposed a novel laser-driven short-term heating angioplasty to realize restenosis-suppressive angioplasty for peripheral artery disease. In this study, we investigated the chronic intimal hyperplasia formation after the short-term heating dilatation in vivo, as well as the thermal damage calculation on arterial smooth muscle cells (SMCs). The prototype short-term heating balloon catheter with 5.0, 5.5, 6.0 mm φ in balloon diameter and 25 mm in balloon length were employed. The short-term heating dilatation was performed in porcine iliac arteries with dilatation conditions of 75°C (N=4) and 65°C (N=5) as peak balloon temperature, 18 ± 4s as heating duration, 3.5 atm as balloon dilatation pressure. Four weeks after the balloon dilatation, the balloon-dilated artery segments were extracted and were stained with HE and picrosirius red for histological observation. In the case of 75°C as the peak balloon temperature, neointimal hyperplasia formation was significantly reduced. In this case, the SMCs density in the artery media measured from the HE-stained specimen was 20% lower than that in the reference artery. According to the thermal damage calculation, it was estimated that the SMCs lethality in artery media after the short-term heating angioplasty was 20% in the case of 75°C as the peak balloon temperature. We demonstrated that the short-term heating dilatation reduced the number of SMCs in artery media. We think this SMCs reduction might contribute to the suppression of chronic neointimal hyperplasia.

  15. Under Pressure: Intraluminal Filling Pressures of Postpartum Hemorrhage Tamponade Balloons.

    Science.gov (United States)

    Antony, Kathleen M; Racusin, Diana A; Belfort, Michael A; Dildy, Gary A

    2017-04-01

    Objective Uterine tamponade by fluid-filled balloons is now an accepted method of controlling postpartum hemorrhage. Available tamponade balloons vary in design and material, which affects the filling attributes and volume at which they rupture. We aimed to characterize the filling capacity and pressure-volume relationship of various tamponade balloons. Study Design Balloons were filled with water ex vivo. Intraluminal pressure was measured incrementally (every 10 mL for the Foley balloons and every 50 mL for all other balloons). Balloons were filled until they ruptured or until 5,000 mL was reached. Results The Foley balloons had higher intraluminal pressures than the larger-volume balloons. The intraluminal pressure of the Sengstaken-Blakemore tube (gastric balloon) was initially high, but it decreased until shortly before rupture occurred. The Bakri intraluminal pressure steadily increased until rupture occurred at 2,850 mL. The condom catheter, BT-Cath, and ebb all had low intraluminal pressures. Both the BT-Cath and the ebb remained unruptured at 5,000 mL. Conclusion In the setting of acute hemorrhage, expeditious management is critical. Balloons that have a low intraluminal pressure-volume ratio may fill more rapidly, more easily, and to greater volumes. We found that the BT-Cath, the ebb, and the condom catheter all had low intraluminal pressures throughout filling.

  16. Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations

    Science.gov (United States)

    Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue

    2017-07-01

    In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17-18.5 km and latitudes of 60-85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5-1.4 K and a warm bias of 0.4-2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9-2.3 m s-1 and a bias below ±0.5 m s-1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15-60 % for temperature and 30-60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4-12 % and error growth rates of 60-170 km day-1 for 15-day trajectories. Dispersion

  17. Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations

    Directory of Open Access Journals (Sweden)

    L. Hoffmann

    2017-07-01

    Full Text Available In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2, and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17–18.5 km and latitudes of 60–85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5–1.4 K and a warm bias of 0.4–2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9–2.3 m s−1 and a bias below ±0.5 m s−1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15–60 % for temperature and 30–60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC, where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4–12 % and error growth rates

  18. Estimated probability of becoming a case of drug dependence in relation to duration of drug-taking experience: a functional analysis approach.

    Science.gov (United States)

    Vsevolozhskaya, Olga A; Anthony, James C

    2016-06-29

    Measured as elapsed time from first use to dependence syndrome onset, the estimated "induction interval" for cocaine is thought to be short relative to the cannabis interval, but little is known about risk of becoming dependent during first months after onset of use. Virtually all published estimates for this facet of drug dependence epidemiology are from life histories elicited years after first use. To improve estimation, we turn to new month-wise data from nationally representative samples of newly incident drug users identified via probability sampling and confidential computer-assisted self-interviews for the United States National Surveys on Drug Use and Health, 2004-2013. Standardized modules assessed first and most recent use, and dependence syndromes, for each drug subtype. A four-parameter Hill function depicts the drug dependence transition for subgroups defined by units of elapsed time from first to most recent use, with an expectation of greater cocaine dependence transitions for cocaine versus cannabis. This study's novel estimates for cocaine users one month after first use show 2-4% with cocaine dependence; 12-17% are dependent when use has persisted. Corresponding cannabis estimates are 0-1% after one month, but 10-23% when use persists. Duration or persistence of cannabis smoking beyond an initial interval of a few months of use seems to be a signal of noteworthy risk for, or co-occurrence of, rapid-onset cannabis dependence, not too distant from cocaine estimates, when we sort newly incident users into subgroups defined by elapsed time from first to most recent use. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    Science.gov (United States)

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  20. Report on the Activities of National Balloon Facility, Hyderabad

    Science.gov (United States)

    Vasudevan, Rajagopalan; Sreenivasan, S.; Suneel Kumar, B.; Kulkarni, P. M.

    2012-07-01

    More than five and half decades back, the Indian Balloon Group at Tata Institute of Fundamental Research, Mumbai started development of stratospheric zero pressure balloon technology and today it is one among the leading balloon groups in the world. For the past 40 years, the Institute has been operating a Scientific Balloon Facility at Hyderabad and carried out 478 balloon flights for various disciplines of space sciences like primary cosmic ray studies, X ray, Gamma Ray, Infra Red Astronomies and Atmospheric science maintaining 100% success rate during the past nine years. The Balloon Facility has the capability to build balloons of volume up to 750,000 Cu.M. as well as carrying out R & D in all aspects of scientific ballooning like balloon engineering, balloon material development, general and flight support instrumentation. A continued effort in R & D for ultra thin balloon material for High Altitude Sounding Flights has resulted in lowering the thickness of the proven indigenous Antrix film initially from 6 to 3.8 microns in the first phase and further reduction to 2.7 microns in the second phase. A test balloon of volume 5000 Cu.M. using the 2.7 micron film attained a record altitude of 45.0 Km. amsl with 1 Kg. GPS sonde payload. A 60,000 Cu.M. balloon fabricated out of 3.8 micron film capable of reaching 47 Km. Altitude with 10 Kg. Payload is awaiting trial. This report briefly describes our balloon activities during the past two years. In atmospheric sciences, aerosol studies were made with OPC,QCM,Aethelometer, Nephelometer,MWR, CIMEL Sun Photometer and Raman LIDAR.Measuments of vertical profile of Meteorological parameters and ozone upto stratosphere using GPS Radiosonde and Ozone sonde is made respectively.Study of Ionospheric tomography is done with CADI and CRABEX.

  1. REcanalisation and Balloon-Oriented Puncture for Re-Insertion of Dialysis Catheter in Nonpatent Central Veins (REBORN).

    Science.gov (United States)

    Too, Chow Wei; Sayani, Raza; Lim, Elvin Yuan Ting; Leong, Sum; Gogna, Apoorva; Teo, Terence K

    2016-08-01

    To describe a technique involving REcanalisation and Balloon-Oriented puncture for Re-insertion of dialysis catheter in Nonpatent central veins (REBORN) and to report long-term results. This is a retrospective study of ten subjects in whom dialysis catheters were inserted using the REBORN technique from March 2012 to October 2014 and followed up till April 2016. Data on the duration of catheter usage, complications and reasons for removal were obtained. Seven patients had partially occluded lower internal jugular veins (IJV) recanalised in an antegrade fashion via a more cranial puncture. The balloon was then inflated at usual puncture site with an 18G needle. The collapsed balloon was cannulated with a guide wire, and both balloon and guide wire were advanced together into the superior vena cava. This was followed by tunnelled catheter placement using standard techniques. Two patients had catheters placed in the subclavian vein using a similar antegrade technique, and one patient had catheter placed via the left IJV following retrograde recanalisation from a right femoral puncture. Mean duration of catheter use was 278 days (range 32-503). Three catheters were removed due to matured arteriovenous accesses. Four patients had successful catheter change over the same subcutaneous track due to catheter malfunction. One catheter was removed after 7 months because of sepsis. No complications were reported. The REBORN technique allows for the preservation of central veins for future haemodialysis access, which can be challenging in patients requiring long-term dialysis.

  2. Combining Undergraduate Student Curriculum, Research, and Outreach: High-altitude Balloon and Rockets

    Science.gov (United States)

    Davis, E. J.; Nielsen, K.

    2015-12-01

    The Society of Physics Students chapter at Utah Valley University (UVU) recently established a high altitude balloon project to provide students with research opportunities. This highly successful program involves students not only from physics but also from other STEM fields and non-STEM subjects, and as such acts as a unique outreach program for the department of physics. Examples of experiments performed with the balloon project are: 3D-acceleration measurements, altitude/pressure/temperature measurements, ozone monitoring, bio-aerosol collection, and solar panel performance output. All these experiment are designed and build by groups of students either as part of research projects or through class participation as the projects link with the curriculum in several courses. Most recently, a group of UVU students have initiated the implementation of small rockets capable of carrying payloads to this high-altitude program. Both balloon and rocket platforms are fundamental in-situ measuring techniques for numerous geoscience subjects, and are arguably best illustrated by the NASA balloon and sounding rocket programs. In this presentation, we give an overview of the program and how it is 1) being implemented into the curriculum, 2) provide unique research opportunities for students, and 3) specific outreach activities.

  3. Duration of load revisited

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Sørensen, John Dalsgaard

    2007-01-01

    were formed. Four groups were subjected to short-term strength tests, and four groups were subjected to long-term tests. Creep and time to failure were moni-tored. Time to failure as a function of stress level was established and the reliability of stress level assessment was discussed. A significant...... mechanosorptive effect was demonstrated both in terms of increased creep and shortening of time to failure. The test results were employed for the calibration of four existing duration of load models. The effect of long-term loading was expressed as the stress level SL50 to cause failure after 50 years of loading...... and of the short-term and long-term strengths. For permanent and imposed library loads, reliability-based estimation of the load duration factor gave almost the same results as direct, deterministic calibration. Keywords: Creep, damage models, duration of load, equal rank assumption, load duration factor, matched...

  4. Modeling the Water Balloon Slingshot

    Science.gov (United States)

    Bousquet, Benjamin D.; Figura, Charles C.

    2013-01-01

    In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments,…

  5. Balloon-borne gamma-ray polarimetry

    CERN Document Server

    Pearce, Mark

    2011-01-01

    The physical processes postulated to explain the high-energy emission mechanisms of compact astrophysical sources often yield polarised soft gamma rays (X-rays). PoGOLite is a balloon-borne polarimeter operating in the 25-80 keV energy band. The polarisation of incident photons is reconstructed using Compton scattering and photoelectric absorption in an array of phoswich detector cells comprising plastic and BGO scintillators, surrounded by a BGO side anticoincidence shield. The polarimeter is aligned to observation targets using a custom attitude control system. The maiden balloon flight is scheduled for summer 2011 from the Esrange Space Centre with the Crab and Cygnus X-1 as the primary observational targets.

  6. On the long duration accelerometric signals coming from the International Space Station during the SODI-IVIDIL and SODI-DCMIX2 experiments

    Science.gov (United States)

    Saez, Nuria; Shevtsova, Valentina; Ruiz, Xavier; Simon, M. Jose; Marcos, Rosa; Gavalda, Fina

    Diffusion/thermodiffusion is a very long physical process on Earth and also in the International Space Station. This special characteristic makes that the proper conduct of experiments like the past SODI-IVIDIL (Selectable Optical Diagnostics Instrument - Influence of VIbrations on DIffusion of Liquids) or the recent SODI-DCMIX2 (Selectable Optical Diagnostics Instrument - Diffusion Coefficients in MIXtures) requires a special care in the sense that NASA vibratory limit requirements [1] must be maintained for hours. In terms of digital signal processing, the corresponding long signals introduce two additional mandatory considerations in touch with their Gaussian and stationary nature. The study of mechanical nonlinearities using High Order Statistical Analysis, HOSA, techniques has recently been reported for different runs of the SODI-IVIDIL experiment [3]. In the present work we will use all these techniques to carefully extent this analysis to the different accelerometric runs of the present SODI-DCMIX2 experiment. Concerning the signals, downloaded from the NASA Principal Investigator Microgravity Services, PIMS, website [2], and focusing on their stationary nature, we firstly consider the information obtained using the classical Short-Time Fourier Transform, STFT, which maps a long signal into a spectrogram, that is to say, resumes a complete experiment into a two-dimensional function of time and frequency. But, the information obtained in this way is limited because, as the Heisenberg uncertainty principle applied to time-frequency couples indicate, one cannot know the exact time-frequency representation of a signal, equivalently, one cannot know what spectral components exist at what instances of times. In the case of non-stationary signals we will introduce wavelet analysis, in particular the Continuous Wavelet Transform, CWT, which maps the signal into a scalogram of wavelet coefficients, that is to say, into a two-dimensional function of scales and time

  7. A technical strategy for carotid artery stenting: suboptimal prestent balloon angioplasty without poststenting balloon dilatation.

    Science.gov (United States)

    Jin, Sung-Chul; Kwon, O-Ki; Oh, Chang Wan; Jung, Cheolkyu; Han, Moon Gu; Bae, Hee-Joon; Lee, Sang Hyung; Jung, Young Sub; Han, Moon Hee; Kang, Hyun-Seung

    2010-11-01

    Traditional carotid artery stenting (CAS) consists of predilatation, optional deployment of embolic protection devices, stenting, and poststent angioplasty. Each step carries a risk of thromboembolism. To design a new and simplified procedural protocol, suboptimal balloon angioplasty without routine poststenting balloon dilatation, and to describe the efficacy this protocol in terms of procedural risks and angiographic and clinical outcomes. Over a period of 6 years, 161 carotid artery stenoses in 156 consecutive patients were treated by CAS with embolic protection devices. Among them, 110 lesions in 107 patients (68.3%) were treated by our simplified method (symptomatic, > 50% stenosis; asymptomatic, > 70% stenosis). Overall, 98 lesions (88.3%) had severe stenosis (> 70%). The mean stenosis was reduced from 77% to 10% after CAS. A persistent neurological deficit developed in 2 patients from thromboembolism. Hemodynamic insufficiency developed in 14 lesions during CAS (12.7%). The ipsilateral stroke and mortality rate was 4.5% within 1 month after CAS (asymptomatic, 3.6%; symptomatic, 4.8%). Over a mean of 19 months of follow-up, additive angioplasty was performed in 2 patients as a result of progressive restenosis (≥ 50%). A comparison of the balloon sizes of the prestent angioplasty for group 1 (balloon, ≤ 4 mm) and group 2 (balloon, ≥ 5 mm) showed no difference in restenosis between the groups at 15 months of follow-up after CAS. Our CAS technique with suboptimal prestenting angioplasty without routine use of poststenting dilatation is safe, simple, and efficient with acceptable risks.

  8. The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for 2006-2007 balloon flight

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, P. W. [Univ. of Hawaii, Manoa, HI (United States); Allison, P. [Univ. of Hawaii, Manoa, HI (United States); Barwick, S. W. [Univ. of California, Irvine, CA (United States); Beatty, J. J. [The Ohio State Univ., Columbus, OH (United States); Besson, D. Z. [Univ. of Kansas, Lawrence, KS (United States); Binns, W. R. [Washington Univ., St. Louis, MO (United States); Chen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Chen, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Clem, J. M. [Univ. of Delaware, Newark, DE (United States); Connolly, A. [Univ. College London, London (United Kingdom); Dowkontt, P. F. [Washington Univ., St. Louis, MO (United States); DuVernois, M. A. [Univ. of Minnesota, Minneapolis, MN (United States); Field, R. C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Goldstein, D. [Univ. of California, Irvine, CA (United States); Goodhue, A. [Univ. of California, Los Angeles, CA (United States); Hast, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hebert, C. L. [Univ. of Hawaii, Manoa, HI (United States); Hoover, S. [Univ. of California, Los Angeles, CA (United States); Israel, M. H. [Washington Univ., St. Louis, MO (United States); Learned, J. G. [Univ. of Hawaii, Manoa, HI (United States). et al.

    2009-05-23

    In this article, we present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.

  9. Double balloon enteroscopy examinations in general anesthesia

    Institute of Scientific and Technical Information of China (English)

    Laszlo; Zubek; Lena; Szabo; Peter; Laszlo; Lakatos; Janos; Papp; Janos; Gal; Gabor; Elo

    2010-01-01

    AIM:To demonstrate that the double balloon enteroscopy(DBE) can be safely performed in general anesthesia with intubation.METHODS:We performed a retrospective examination between August 2005 and November 2008 amongpatients receiving intubation narcosis due to DBE examination.The patients were grouped based on sex,age and physical status.Anesthesia records includedduration of anesthesia,quantity of medication usedand anesthesia-related complications.We determinedthe frequency of complications in the differen...

  10. Burn Injury Arise From Flying Balloon Toys

    OpenAIRE

    Yalcin Kulahci; Fatih Zor; Mehmet Bozkurt; Serdar Ozturk; Mustafa Sengezer

    2007-01-01

    Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloon...

  11. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  12. MASA's Ultra-Long Duration Balloon Project - Teaching an Old Dog New Tricks

    Science.gov (United States)

    Smith, I.; Cutts, J.

    1999-01-01

    The leviathan silently slides through the upper atmosphere of the blue planet, its eye steadily staring into the cold, dark recesses of deep space. Periodically the eye looks at different points in the blackness while processing the information it sees.

  13. Angry Birds realized: water balloon launcher for teaching projectile motion with drag

    Science.gov (United States)

    Edwards, Boyd F.; Sam, David D.; Christiansen, Michael A.; Booth, William A.; Jessup, Leslie O.

    2014-05-01

    A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable initial velocity vector and a balanced launch platform. The design facilitates quantitative explorations of the dependence of the balloon range and time of flight on the initial speed, launch angle, and projectile mass, in an environment where quadratic air drag is important. Presented are theory and experiments that characterize this drag, and theory and experiments that characterize the nonlinear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can be carried out with inexpensive and readily available tools and materials. The launcher provides an engaging way to teach projectile motion and elastic energy to students of a wide variety of ages.

  14. The influence of hook type, angler experience, and fish size on injury rates and the duration of capture in an Alaskan catch-and-release rainbow trout fishery

    Science.gov (United States)

    Meka, J.M.

    2004-01-01

    Owing to concerns about the high incidence of past hooking injuries in Alagnak River rainbow trout Oncorhynchus mykiss, fish were captured with spin- and fly-fishing gear with barbed and barbless circle and "J" hooks to determine gear types contributing to injury. Landing and hook removal times were measured for a portion of fish captured, and the anatomical hooking location, hooking scar locations, bleeding intensity, angler experience, and fish size were recorded for all captured fish. Approximately 62% of fish captured experienced at least one new hooking injury, and 29% of fish had at least one past hooking injury. Small fish sustained higher new injury and bleeding rates, but large fish had higher past injury rates. Injury rates were higher for barbed J hooks, barbed J hooks took longer to remove, and fish caught by spin-fishing were injured more frequently than fish caught by fly-fishing. Fewer fly-fishing-caught fish were injured using circle hooks, and circle hooks tended to hook fish in only one location, generally in the jaw. Barbed J hooks were more efficient at landing fish, and J hooks were more efficient at landing fish than circle hooks. Novice anglers injured proportionally more fish than experienced anglers, primarily during hook removal. Landing time was positively correlated with fish size, and experienced anglers took longer to land fish than novices because they captured larger fish. These results suggest that a reduction in hooking injuries may be achieved by using circle hooks as an alternative to J hooks and barbless J hooks to reduce injury and handling time, yet catch efficiency for both methods would be reduced. Although fish captured with barbless J hooks and circle hooks had fewer injuries, it is important to note that each hook type also caused significant injury, and angler education is recommended to promote proper hook removal techniques.

  15. The Windkesselventricle with guiding balloon as a new approach for assisted circulation.

    Science.gov (United States)

    Unger, F; Deutsch, M; Enenkel, H; Fasching, W; Losert, U; Polzer, K; Stellwag, F; Thoma, H; Wolner, E; Navratil, J

    1976-01-01

    A simple method was developed to aid the patient with low cardiac output syndrome following cardiac surgery. The concept was shown to be feasible in electric circulatory analog studies and verified in 20 dog experiments. A Dacron graft (end-to-side) through the right second intercostal space connects the ascending aorta to the subcutaneously implanted, ellipsoidal-shaped artifical ventricle. A spherical polyurethane balloon is positioned in the aorta distal to the Dacron graft via the femoral artery. The ventricle and balloon are pneumatically driven synchronously with the ECG. In natural systole the balloon is inflated, occluding the aorta, and the artificial ventricle sucks the entire stroke volume. In natural diastole the balloon deflates and the artificial ventricle ejects the blood into the peripheral arteries. With this system it is possible to maintain a normal systemic pressure and have high hemodynamic efficiency. The left ventricular systolic pressure is 85 percent unloaded. The systolic wave is turned 180 degrees to the natural. After treatment, the device can be removed without thoracotomy.

  16. Cutting balloon angioplasty for resistant venous stenoses of dialysis access: immediate and patency results.

    Science.gov (United States)

    Wu, Chih-Cheng; Wen, Szu-Chi

    2008-02-01

    To evaluate the technical success, safety and patency of cutting balloon angioplasty for the treatment of resistant dialysis access stenoses. Cutting balloon angioplasty has been proposed to be useful in treating resistant dialysis access stenoses. However, they are based on experience with very limited cases and formal patency data is insufficient. The author retrospectively reviewed 896 percutaneous transluminal angioplasty (PTA) procedures for the treatment of dysfunctional or thrombotic dialysis access. Thirty-seven of 623 patients with native fistulas and 23 of 273 patients with synthetic grafts had residual stenoses of more than 30% after conventional PTA at an inflation pressure of 24 atm for 60 sec. In these 60 patients, additional cutting balloon PTA was performed. The overall technical success rate was 96.7% and clinical success rate was 98.3%. Only one patient experienced mild local extravasation. The postintervention primary patency rates for native fistula group (N = 37) were 100%, 86.4%, and 67.5% at 1-month, 3-month, and 6-month; the postintervention primary patency rates for synthetic graft group (N = 23) were 87.0%, 60.9%, and 34.2% at 1-month, 3-month, and 6-month respectively. For resistant venous stenoses of dialysis access, cutting balloon PTA is effective, safe, and seems to provide comparative primary patency as suggested by guidelines. Copyright 2008 Wiley-Liss, Inc.

  17. Peripheral Applications of Drug-Coated Balloons: Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Krokidis, Miltiadis, E-mail: mkrokidis@hotmail.com; Spiliopoulos, Stavros, E-mail: stavspiliop@upatras.gr; Katsanos, Konstantinos, E-mail: katsanos@med.upatras.gr; Sabharwal, Tarun, E-mail: tarun_sabharwal@yahoo.co.uk [Guy' s and St. Thomas' Hospitals, NHS Foundation Trust, Department of Radiology (United Kingdom)

    2013-04-15

    Drug-coated balloon (DCB) technologies represent the latest and hottest development in the field of endovascular treatment of peripheral arterial disease. Initial experience with paclitaxel-coated balloon use in the femoral artery has demonstrated lower mid-term restenosis and superior mid-term clinical outcomes in terms of improved wound healing and reduced repeat angioplasty rates compared with standard balloon angioplasty. Many companies are presently developing and/or improving DCB catheters and therefore ongoing, technical improvements of the already existing platforms, new drugs, and innovative carriers are expected. The ongoing basic research studies and various multicenter randomized, controlled trials that are currently in progress will offer valuable scientific insights regarding the long-term effectiveness and other crucial issues, such as efficacy in various vascular beds, optimal balloon dosage, and post angioplasty antiplatelet therapy. Future applications of these devices also could include in-stent restenosis, anastomotic stenosis of surgical bypass, and benign stenoses of the central venous system. The authors envision that DCB angioplasty will evolve to a major paradigm shift in the endovascular treatment of occlusive vascular diseases.

  18. Balloon laryngoplasty for acquired subglottic stenosis in children: predictive factors for success

    Directory of Open Access Journals (Sweden)

    Rebecca Maunsell

    2014-10-01

    Full Text Available INTRODUCTION: The treatment of subglottic stenosis in children remains a challenge for the otorhinolaryngologist, and may involve both endoscopic and open surgery. OBJECTIVE: To report the experience of two tertiary facilities in the treatment of acquired subglottic stenosis in children with balloon laryngoplasty, and to identify predictive factors for success of the technique and its complications. METHODS: Descriptive, prospective study of children diagnosed with acquired subglottic stenosis and submitted to balloon laryngoplasty as primary treatment. RESULTS: Balloon laryngoplasty was performed in 37 children with an average age of 22.5 months; 24 presented chronic subglottic stenosis and 13 acute subglottic stenosis. Success rates were 100% for acute subglottic stenosis and 32% for chronic subglottic stenosis. Success was significantly associated with acute stenosis, initial grade of stenosis, children of a smaller age, and the absence of tracheostomy. Transitory dysphagia was the only complication observed in three children. CONCLUSION: Balloon laryngoplasty may be considered the first line of treatment for acquired subglottic stenosis. In acute cases, the success rate is 100%, and although the results are less promising in chronic cases, complications are not significant and the possibility of open surgery remains without prejudice.

  19. SPIDER: A Balloon-borne Large-scale CMB Polarimeter

    CERN Document Server

    Crill, B P; Battistelli, E S; Benton, S; Bihary, R; Bock, J J; Bond, J R; Brevik, J; Bryan, S; Contaldi, C R; Dore, O; Farhang, M; Fissel, L; Golwala, S R; Halpern, M; Hilton, G; Holmes, W; Hristov, V V; Irwin, K; Jones, W C; Kuo, C L; Lange, A E; Lawrie, C; MacTavish, C J; Martin, T G; Mason, P; Montroy, T E; Netterfield, C B; Pascale, E; Riley, D; Ruhl, J E; Runyan, M C; Trangsrud, A; Tucker, C; Turner, A; Viero, M; Wiebe, D

    2008-01-01

    Spider is a balloon-borne experiment that will measure the polarization of the Cosmic Microwave Background over a large fraction of a sky at 1 degree resolution. Six monochromatic refracting millimeter-wave telescopes with large arrays of antenna-coupled transition-edge superconducting bolometers will provide system sensitivities of 4.2 and 3.1 micro K_cmb rt s at 100 and 150 GHz, respectively. A rotating half-wave plate will modulate the polarization sensitivity of each telescope, controlling systematics. Bolometer arrays operating at 225 GHz and 275 GHz will allow removal of polarized galactic foregrounds. In a 2-6 day first flight from Alice Springs, Australia in 2010, Spider will map 50% of the sky to a depth necessary to improve our knowledge of the reionization optical depth by a large factor.

  20. Intra-Aortic Balloon Pump Rupture and Entrapment

    Directory of Open Access Journals (Sweden)

    Artan Jahollari

    2014-01-01

    Full Text Available Intra-aortic balloon pump is used frequently to support a failing myocardium in cardiac patients. Due to the invasive nature of this device, usage is accompanied by consistent risk of complications. Balloon rupture, although it occurs rarely, may lead to entrapment if diagnosis delays. A 78-year male who underwent cardiac surgery experienced balloon rupture and entrapment in the right femoral artery during the postoperative follow-up. Surgical extraction under local anesthesia was performed and the patient had an uneventful course. Fast and gentle solution of the problem is necessary to prevent further morbidity or mortality related to a retained balloon catheter in these delicate patients.

  1. Balloon Borne Arc-Second Pointer Feasibility Study

    Science.gov (United States)

    Ward, Philip R.; DeWeese, Keith D.

    2003-01-01

    For many years scientists have been utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The foundation for a high fidelity controller simulation is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is introduced for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static fiction are provided. A unique bearing hub design is introduced that eliminates static fiction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. This paper establishes that the proposed control strategy can be made robustly stable with significant design margins. Also demonstrated is the efficacy of the proposed system in rejecting disturbances larger than those considered realistic. Finally, we see that sub arc-second pointing stability can be achieved for a large instrument pointing at an inertial target.

  2. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: First results from balloon and unmanned aerial vehicle flights

    Directory of Open Access Journals (Sweden)

    J.-B. Renard

    2015-09-01

    Full Text Available In the companion paper (Renard et al., 2015, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10–20 μm in diameter in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i tethered balloons deployed in urban environments in Vienna (Austria and Paris (France, (ii pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment – ChArMEx campaigns, (iii meteorological sounding balloons launched in the western Mediterranean region (ChArMEx and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign. More focus is put on measurements performed in the Mediterranean during (ChArMEx and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  3. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  4. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    Science.gov (United States)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  5. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    CERN Document Server

    Matthews, Tristan G; Angilè, Francesco E; Benton, Steven J; Chapin, Edward L; Chapman, Nicholas L; Devlin, Mark J; Fissel, Laura M; Fukui, Yasuo; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Klein, Jeffrey; Korotkov, Andrei L; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, Calvin B; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek

    2013-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 {\\mu}m. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry (The optical data were published in 1998 by J. Rizzo and collaborators.). The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I,...

  6. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  7. Duration Calculus: Logical Foundations

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Chaochen, Zhou

    1997-01-01

    The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...

  8. The Duration of Development

    NARCIS (Netherlands)

    J. Tinbergen (Jan)

    1995-01-01

    textabstractThe author considers the problem of the duration of development and its consequences for development assistance, in the developing as well as developed countries. Emphasis is given to the influence of development aid and it is argued that the time dimension has important policy implicati

  9. AUTOPERFUSION BALLOON CATHETER FOR COMPLICATED CORONARY ANGIOPLASTY - A PROSPECTIVE-STUDY WITH RETROSPECTIVE CONTROLS

    NARCIS (Netherlands)

    DEMUINCK, ED; VANDIJK, RB; DENHEIJER, P; MEEDER, JG; LIE, KI

    1992-01-01

    Prolonged angioplasty balloon inflation with an autoperfusion balloon for failed conventional coronary angioplasty, was compared with emergency surgery for this condition. Restenosis was assessed 6 weeks after successful intervention with the autoperfusion balloon. Forty consecutive patients with pe

  10. AUTOPERFUSION BALLOON CATHETER FOR COMPLICATED CORONARY ANGIOPLASTY - A PROSPECTIVE-STUDY WITH RETROSPECTIVE CONTROLS

    NARCIS (Netherlands)

    DEMUINCK, ED; VANDIJK, RB; DENHEIJER, P; MEEDER, JG; LIE, KI

    1992-01-01

    Prolonged angioplasty balloon inflation with an autoperfusion balloon for failed conventional coronary angioplasty, was compared with emergency surgery for this condition. Restenosis was assessed 6 weeks after successful intervention with the autoperfusion balloon. Forty consecutive patients with

  11. [Treatment of carotid-cavernous fistula using a detachable balloon catheter--a case report and review].

    Science.gov (United States)

    Chono, Y; Abe, H; Sasaki, H; Abe, S; Takei, H; Koiwa, M; Saito, H

    1983-01-01

    A case of post-traumatic carotid cavernous fistula, successfully treated by a detachable balloon catheter, is reported. A 55-year-old housewife was admitted to the author's department on 25th August, 1980. Three months prior to admission, she complained of right tinnitus following a traffic accident and then developed right chemosis and exophthalmus. A selective right internal carotid angiography revealed rapid filling of the carotid cavernous fistula. Under general anesthesia, the patient was treated by the maneuver after Debrun. Since it appeared necessary to employ the second balloon, the first one was released gently being inflated only with the contrast medium. During the procedure, the neck of the balloon was incidentally snapped upward and, then, the fistula was eventually occluded preserving the carotid flow as was verified by a control angiography. The bruit was abolished immediately after the procedure and all ocular symptoms disappeared during the following a few weeks. A skull film showed a deflation of the balloon at 4 weeks postoperatively, but clinical and angiographic follow-up examinations at 9 months thereafter revealed no signs or symptoms of recurrence. This Debrun's procedure is being widely accepted for a carotid cavernous fistula as a relatively simpler, safer, and more effective one comparing with the conventional methods. Our experiment on dogs, however, indicated that rupture of the balloon is not always avoidable even with a smaller volume than its maximum capacity and some resistance was felt during introduction of the co-axial catheter. Thus, it appeared mandatory to improve and quality control the balloon and the catheter. In the case presented here, a follow-up angiography showed no recurrence of the fistula except for an asymptomatic pseud-aneurysmal pouch, even though the balloon was inflated only with the contrast medium and was deflated within 4 weeks. These findings suggest possibility of successful, and long-lasting outcome

  12. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  13. Malignant Arrhythmia in Apical Ballooning Syndrome: Risk Factors and Outcomes

    Directory of Open Access Journals (Sweden)

    Samuel J. Asirvatham

    2008-08-01

    Full Text Available Objectives: We sought to determine the frequency and outcomes with symptomatic arrhythmia in patients with apical ballooning syndrome (ABS. Methods: A retrospective review of the Mayo Clinic Angiography database was conducted to identify patients who met the Mayo criteria for ABS. Patients with documented arrhythmias formed the study group, and 31 randomly selected patients with ABS but without arrhythmia formed the control group.Results: Out of 105 patients identified with ABS, 6 (5.7% women aged 69 +/- 9 years experienced significant arrhythmia (ventricular fibrillation, asystole, 2 patients died, and 1 required permanent pacemaker implantation. When compared with controls, the study group showed no significant difference with respect to ECG characteristics (QT, QRS duration or axis except for R-R interval variability (see comments below (30.6±6 vs 14.5±17 p = 0.0004, QTc, and P-R interval. Patients without arrhythmia were more likely to be on beta-blocker therapy than the study population (33% vs 80.6% p = 0.02. Conclusion: Life-threatening arrhythmia is uncommon (5.7% with ABS despite marked, structural abnormalities. When arrhythmias do occur, the outcome is poor. Prominent variability in R-R intervals appears to be predictive of significant arrhythmias in ABS. The role of beta-blocker therapy in preventing arrhythmia with ABS requires further investigation.

  14. Balloon laryngoplasty for subglottic stenosis caused by orotracheal intubation at a tertiary care pediatric hospital.

    Science.gov (United States)

    Avelino, Melissa Gomes Ameloti; Fernandes, Edson Junior de Melo

    2014-01-01

    Introduction In recent years, there has been a reduction in mortality rates in neonatal intensive care units (NICUs) due to the impact of modern technological advances in the perinatal field. As a consequence, prolonged orotracheal intubation is used more frequently, and there has been an increase in acquired subglottic stenosis (SGS) in children. Subglottic stenosis is a narrowing of the endolarynx and one of the most common causes of stridor and respiratory distress in children. The laryngoplasty balloon has proven effective in dealing with stenosis both as primary and secondary treatments, after open surgery, with the added advantage of being less invasive and not requiring external access. Materials and Methods This study involved children from pediatric intensive care units or NICUs suffering from respiratory distress and who presented an endoscopic diagnosis of Myer and Cotton grade I to III SGS. These patients underwent balloon laryngoplasty with different numbers of interventions depending on the response in each individual case. Results All the patients responded satisfactorily to the balloon laryngoplasty. None required tracheostomy after treatment and all remained asymptomatic even after 6-month follow-up. One patient required just 1 dilation, 4 required 2, 3 underwent the procedure 3 times, and another had 5 dilations. Conclusion The experience presented here is that of balloon laryngoplasty post-orotracheal intubation SGS with very satisfactory results at a tertiary care pediatric hospital. Although the number of patients is limited, our incidence corroborates other studies that demonstrate the efficacy and safety of balloon dilatation in the treatment of SGS.

  15. Balloon Laryngoplasty for Subglottic Stenosis Caused by Orotracheal Intubation at a Tertiary Care Pediatric Hospital

    Directory of Open Access Journals (Sweden)

    Avelino, Melissa Gomes Ameloti

    2014-01-01

    Full Text Available Introduction In recent years, there has been a reduction in mortality rates in neonatal intensive care units (NICUs due to the impact of modern technological advances in the perinatal field. As a consequence, prolonged orotracheal intubation is used more frequently, and there has been an increase in acquired subglottic stenosis (SGS in children. Subglottic stenosis is a narrowing of the endolarynx and one of the most common causes of stridor and respiratory distress in children. The laryngoplasty balloon has proven effective in dealing with stenosis both as primary and secondary treatments, after open surgery, with the added advantage of being less invasive and not requiring external access. Materials and Methods This study involved children from pediatric intensive care units or NICUs suffering from respiratory distress and who presented an endoscopic diagnosis of Myer and Cotton grade I to III SGS. These patients underwent balloon laryngoplasty with different numbers of interventions depending on the response in each individual case. Results All the patients responded satisfactorily to the balloon laryngoplasty. None required tracheostomy after treatment and all remained asymptomatic even after 6-month follow-up. One patient required just 1 dilation, 4 required 2, 3 underwent the procedure 3 times, and another had 5 dilations. Conclusion The experience presented here is that of balloon laryngoplasty post–orotracheal intubation SGS with very satisfactory results at a tertiary care pediatric hospital. Although the number of patients is limited, our incidence corroborates other studies that demonstrate the efficacy and safety of balloon dilatation in the treatment of SGS.

  16. Word Durations in Non-Native English

    Science.gov (United States)

    Baker, Rachel E.; Baese-Berk, Melissa; Bonnasse-Gahot, Laurent; Kim, Midam; Van Engen, Kristin J.; Bradlow, Ann R.

    2010-01-01

    In this study, we compare the effects of English lexical features on word duration for native and non-native English speakers and for non-native speakers with different L1s and a range of L2 experience. We also examine whether non-native word durations lead to judgments of a stronger foreign accent. We measured word durations in English paragraphs read by 12 American English (AE), 20 Korean, and 20 Chinese speakers. We also had AE listeners rate the `accentedness' of these non-native speakers. AE speech had shorter durations, greater within-speaker word duration variance, greater reduction of function words, and less between-speaker variance than non-native speech. However, both AE and non-native speakers showed sensitivity to lexical predictability by reducing second mentions and high frequency words. Non-native speakers with more native-like word durations, greater within-speaker word duration variance, and greater function word reduction were perceived as less accented. Overall, these findings identify word duration as an important and complex feature of foreign-accented English. PMID:21516172

  17. Thrombus aspiration catheter is a Dottering balloon.

    Science.gov (United States)

    Sheshagiri Rao, D; Barik, Ramachandra; Prasad, Akula Siva

    2016-01-01

    Coronary angiogram in a young man with history of STEMI with delayed presentation revealed subtotal occlusion of left anterior descending artery (LAD) with large thrombotic filling defect distal to the critical lesion. PCI was preferred without delay because of ongoing chest pain. Several runs of thrombus aspiration failed to detect any visible thrombus. However, the immediate angiogram after thrombus aspiration showed complete distal embolization of the thrombus which could have been achieved by Dottering or balloon dilatation. In contrary to the general perception, does thrombus aspiration push more thrombus than it can aspirate?

  18. Ballooning Spiders: The Case for Electrostatic Flight

    CERN Document Server

    Gorham, Peter W

    2013-01-01

    We consider general aspects of the physics underlying the flight of Gossamer spiders, also known as ballooning spiders. We show that existing observations and the physics of spider silk in the presence of the Earth's static atmospheric electric field indicate a potentially important role for electrostatic forces in the flight of Gossamer spiders. A compelling example is analyzed in detail, motivated by the observed "unaccountable rapidity" in the launching of such spiders from H.M.S. Beagle, recorded by Charles Darwin during his famous voyage.

  19. Pneumothorax, music and balloons: A case series

    Directory of Open Access Journals (Sweden)

    Shiferaw Dejene

    2013-01-01

    Full Text Available We describe two cases of spontaneous pneumothorax in young healthy adults with no underlying structural lung disease. The onset of pneumothorax was following physical activity including playing musical instruments and blowing of balloons. There is sparse data evaluating the pathophysiology of primary spontaneous pneumothorax in relation to increased mouth pressures. These cases highlight the possible physical effect of valsalva manoeuvre on transpulmonary pressures, and the potential risk of developing pneumothorax in otherwise healthy individuals. This aspect of pneumothorax development is worthy of further exploration, to better elucidate the mechanism and enhance our understanding of this common respiratory presentation.

  20. Double-balloon endoscopy: Who needs it?

    DEFF Research Database (Denmark)

    Hendel, J.W.; Vilmann, P.; Jensen, T.

    2008-01-01

    Objective. Double-balloon endoscopy (DBE) made the small bowel accessible to inspection and therapy in its entirety. However, DBE is a time-consuming procedure that requires a highly skilled endoscopist, several nurses and - more often than not - anesthesiological support. This makes the selectio...... within the next 12 months. Conclusions. CE can be applied as a screening procedure for DBE and allows for an approximately two-thirds reduction in the need for DBE as well as enabling a choice to be made between the oral and anal route Udgivelsesdato: 2008...

  1. Stratospheric composition from balloon based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mencaraglia, F.; Carli, B. [Ist. per le Ricerche sulle Onde Elettromagnetiche, Firenze (Italy); Bonetti, A.; Ciarpallini, P. [Univ. di Firenze (Italy); Carlotti, M.; Lepri, G. [Univ. di Bologna (Italy); Alboni, F.; Cortesi, U.; Ridolfi, M. [Fondazione per la Metereologia Applicata, Firenze (Italy)

    1995-12-31

    Measurements of the composition of the earth`s atmosphere is of fundamental importance for the study of atmospheric chemistry and for developing models that can predict the evolution of the atmosphere itself. Here, the chemical composition of the lower stratosphere has been measured using a polarizing interferometer operating in the far infrared and submillimetric spectral region. The instrument was flown three times (in 1992, 1993 and 1994) from the NSBF balloon base (Fort Sumner, New Mexico) in coincidence with overpasses of the UARS satellite, for a total of about 50 hours of measurements. In this paper the authors report some of the results obtained from the data analysis made up to now.

  2. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  3. Duration of symptoms

    DEFF Research Database (Denmark)

    Hansen, Olfred; Larsen, Susanne; Bastholt, Lars

    2005-01-01

    PURPOSE: To study the relationship between the durations of symptoms before the start of radiotherapy and treatment outcome in Stage I-III glottic cancer. METHODS AND MATERIALS: From 1965 to 1997, 611 glottic cancer patients from the Southern Region of Denmark were treated with primary radiotherapy....... A total of 544 patients fulfilled the criteria for inclusion to the study (Stage I-III glottic cancer, a duration of symptoms less than or equal to 36 months, primary radiotherapy with at least 50 Gy and sufficient data for analysis). The total radiation dose ranged from 50.0 to 71.6 Gy in 22 to 42...... of symptoms was a significant factor (p symptoms was statistically...

  4. CNES super pressure balloons upgrade for Strateole-2 campaign

    Science.gov (United States)

    Venel, Stephanie; Cocquerez, Philippe; Hertzog, Albert

    2016-07-01

    The French Space Agency, CNES, has developed, since about twelve years ago, super pressure balloons (SPB) that float on constant density (isopycnic) surfaces in the lowermost stratosphere, carrying 40 to 50 kg payloads, during typically three months. These SPB have been successfully deployed in flotilla of about 20 balloons for different scientific campaigns all over the world in different configuration sizes from 8,5 to 12 m diameter, mainly to document the chemistry and dynamics of the atmosphere, to study gravity waves, and to provide in-situ atmospheric profiles thanks to the NCAR driftsonde payload. The SPB housekeeping gondola used from 2005 to 2011 now needs to be upgraded in order to increase the flights' safety and to improve its performance with up to date equipment's. The control center will also be redesigned. These modifications take into account the experience acquired during the last SPB campaigns, mainly during CONCORDIASI, with 19 flights over Antarctica from September 2010 to January 2011. After a successful preliminary design review, the project is now conducting the detailed conception phase. This new system is developed for STRATEOLE-2, a project dedicated to the coupling processes between the troposphere and the stratosphere in the deep tropics, using several types of instruments, both for in situ and remote measurements in the atmosphere. STRATEOLE -2 includes two measurement campaigns, three years spaced to study the quasi biennial oscillation. Since the scientific payloads are fully self-standing, some technical solutions will be common with the CNES housekeeping gondola, such as the renewable power system. This paper will describe the STRATEOLE-2 project and the developments in progress for the SPB system upgrade.

  5. Reversible transient apical ballooning syndrome with coronary lesions

    Institute of Scientific and Technical Information of China (English)

    Yunshan Cao; Min Zhang; Xiang Li; Ping Xie; Lynn Cronin

    2009-01-01

    Transient apical ballooning syndrome(Tako-Tsubo syndrome or ampulla cardiomyopathy) occurs predominantly in women over 60 years of age with a history of recent physical or psychological stress. We present a case of a male patient with reversible transient apical ballooning syndrome with significant coronary lesions and other ECG changes that did not explain the clinical symptoms.

  6. 21 CFR 870.1350 - Catheter balloon repair kit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catheter balloon repair kit. 870.1350 Section 870... repair kit. (a) Identification. A catheter balloon repair kit is a device used to repair or replace the... effect the repair or replacement. (b) Classification. Class III (premarket approval). (c) Date PMA...

  7. 14 CFR 61.115 - Balloon rating: Limitations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Balloon rating: Limitations. 61.115 Section 61.115 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... takes a practical test in a balloon with an airborne heater: (1) The pilot certificate will contain a...

  8. Apical Ballooning Syndrome: A Complication of Dual Chamber Pacemaker Implantation

    Science.gov (United States)

    Abu Sham'a, Raed A. H; Asher, Elad; Luria, David; Berger, Michael; Glikson, Michael

    2009-01-01

    Apical ballooning is a cardiac syndrome (Takotsubo Cardiomyopathy) described as a typical form of acute transient left ventricular dysfunction. While its onset has often been associated with emotionally or physically stressful situations, it has an overall favorable prognosis. We describe here a case of transient apical ballooning following permanent pacemaker implantation. PMID:19652736

  9. Design and Status of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): An Interferometer at the Edge of Space

    Science.gov (United States)

    Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.; Maher, S. F.; Mentzell, J. E.; Mundy, L. G.; Rizzo, M. J.; Silverberg, R. F.; Staguhn, J. G.

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  10. The Deformation Rate of Smooth Muscle Cells in Vessel Walls After Short-Duration Heating Dilatation in a Porcine Model Ex Vivo and In Vivo.

    Science.gov (United States)

    Kunio, Mie; Arai, Tsunenori

    2012-09-01

    We have proposed a novel short-duration thermal angioplasty with uniform temperature distribution. Although the dilatation mechanism of our short-duration heating dilatation was reported in our previous study, the influences on smooth muscle cells (SMCs) are not sufficiently understood. We studied the influences on SMCs in terms of shape change and discussed the relationship between the SMCs' shape change and dilatation mechanism ex vivo and in vivo. We found that the SMCs were fixed in the stretched condition after our short-duration heating dilatation both ex vivo and in vivo. The deformation rate of SMCs' shape, measured by the cells' nuclei, was increased with rising balloon maximum temperature (T(balloon)), and the same tendency was observed for the arterial dilatation rate. We hypothesize that the SMCs were fixed in the stretched condition because the arterial dilatation with our short-duration heating dilatation was performed without any plastic deformations of the vessel wall, causing the vessel wall itself to be stretched. We also prospect that the reasons for the positive correlation between the deformation rate of SMCs' shape and T(balloon) are that (i) the area heated over 60 °C was expanded with rising T(balloon), and (ii) the arterial dilatation rate was also increased with rising T(balloon).

  11. An overview of instrumentation capabilities for Scientific ballooning in India

    Science.gov (United States)

    Devarajan, Anand; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Bangaru, Kapardhi; Trivedi, Dharmesh; Rodi, Ashish; Ojha, Devendra; Koli, Santosh

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) in India, launches scientific balloons for research in the field of astronomy, astrobiology and atmospheric sciences. TIFR-BF not only has the capability to design, fabricate and launch zero-pressure balloons, but also provide operational and engineering support for launching them. The Control Instrumentation Group (CIG) at the balloon facility handles all electronics related to telemetry, telecommand, tracking, real-time data display, data storage, air-safety and payload recovery. In the recent past, it has designed and developed customized electronics and payload orientation mechanism to meet specific experimental objectives. Small, inexpensive and rugged industrial grade radio data modems were successfully deployed in balloon flights for low bit rate data and image telemetry. This paper will provide an overview and in-flight performance of some of the recent developments in instrumentation and electronics systems. Our plans for future upgradations will also be discussed.

  12. A Rare and Serious Unforeseen Complication of Cutting Balloon Angioplasty

    Directory of Open Access Journals (Sweden)

    Praveen Vemula

    2014-01-01

    Full Text Available Cutting balloon angioplasty (CBA is one of the adept ways of treating “in-stent restenosis.” Various complications related to cutting balloon angioplasty have been reported including arterial rupture, delayed perforation and fracture of microsurgical blades. Here we report a very unusual and inadvertent extraction of a stent previously deployed in the ramus intermedius coronary branch by a cutting balloon catheter. This required repeat stenting of the same site for an underlying dissection. Even though stent extraction is a rare complication it can be serious due to dissection, perforation, and closure of the artery. Physicians performing coronary artery interventions would need to be aware of this rare and serious complication especially if any difficulty is encountered while withdrawing the cutting balloon. Therefore, after removal, cutting balloon should be examined thoroughly for possible stent dislodgment or extraction when used for “in-stent restenosis.”

  13. EUSO-Balloon: The first flight

    Science.gov (United States)

    Scotti, Valentina; Osteria, Giuseppe

    2016-07-01

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the International Space Station (ISS). The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies of JEM-EUSO detectors and to measure the UV background. The JEM-EUSO instrument consists of UV telescope designed to focus the signal of the UV tracks generated by Extreme Energy Cosmic Rays propagating in Earth's atmosphere, onto a finely pixelized UV camera. The EUSO-Balloon instrument, smaller than the one designed for the ISS, was launched on August 2014 from Timmins (Ontario, Canada). The flight lasted about five hours and the instrument reached a float altitude of about 40 km. From this altitude the telescope registered, at a rate of 400 000 frames/s, the nightglow background on forests, lakes and clouds, as well as city lights and artificial air showers tracks generated by means of a laser installed on an helicopter flying inside its field of view. In this contribution we will describe the instrument and its performance during the first flight.

  14. Global kinetic ballooning mode simulations in BOUT++

    Science.gov (United States)

    Ma, C. H.; Xu, X. Q.

    2017-01-01

    We report on simulation results of a 3+1 gyro-Landau-fluid (GLF) model in BOUT++ framework, which contributes to increasing the physics understanding of the edge turbulence. We find that there is no second stability region of kinetic ballooning modes (KBM) in the concentric circular geometry. The first unstable β of KBM decreases below the ideal ballooning mode threshold with increasing {ηi} . In order to study the KBM in the real tokamak equilibrium, we find that the approximation of shifted circular geometry (β \\ll {{\\varepsilon}2} ) is not valid for a high β global equilibrium near the second stability region of KBM. Thus we generate a series of real equilibria from a global equilibrium solver CORSICA, including both Shafranov shift and elongation effects, but not including bootstrap current. In these real equilibria, the second stability region of KBM are observed in our global linear simulations. The most unstable mode for different β are the same while the mode number spectrum near the second stability region is wider than the case near the first stability region. The nonlinear simulations show that the energy loss of an ELM keeps increasing with β, because the linear drive of the turbulence remains strong for the case near the second stability region during profile evolution.

  15. A constitutive equation for stratospheric balloon materials

    Science.gov (United States)

    Rand, J.; Sterling, J.

    The selection of a suitable material for use as a reliable stratospheric balloon gas barrier and structural component is based on a variety of desired properties. In order to achieve the required combination of weight per unit area, helium permeation, strength, flexibility and toughness at low temperatures, low density polyethylene has been used for the last half century. During the last decade, linear low density polyethylene (LLDPE) has been found to have even better properties for this application. Thin films extruded from this type resin have been found to have time dependent properties which should be understood in order to make an intelligent analysis of the balloon. This paper describes the current effort to characterize a 38 micron coextrusion of LLDPE as a nonlinearly viscoelastic material. The resulting constitutive equation may be used to accurately describe the time dependent creep and/or relaxation of this film when subjected to a biaxial state of stress. Recent laboratory data have been used to modify an existing model of LLDPE to account for differences caused by the coextrusion process. The new model will facilitate structure design optimization and reliability assessment, and may further be utilized as a predictive tool to benefit in-flight operations. Unfortunately, current structural analysis techniques based on linear elastic properties will predict stresses in excess of those which actually exist. An example will be presented which demonstrates the magnitude of this error when nonlinear behavior is ignored.

  16. EUSO-Balloon: The first flight

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Valentina, E-mail: scottiv@na.infn.it; Osteria, Giuseppe

    2016-07-11

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the International Space Station (ISS). The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies of JEM-EUSO detectors and to measure the UV background. The JEM-EUSO instrument consists of UV telescope designed to focus the signal of the UV tracks generated by Extreme Energy Cosmic Rays propagating in Earth's atmosphere, onto a finely pixelized UV camera. The EUSO-Balloon instrument, smaller than the one designed for the ISS, was launched on August 2014 from Timmins (Ontario, Canada). The flight lasted about five hours and the instrument reached a float altitude of about 40 km. From this altitude the telescope registered, at a rate of 400 000 frames/s, the nightglow background on forests, lakes and clouds, as well as city lights and artificial air showers tracks generated by means of a laser installed on an helicopter flying inside its field of view. In this contribution we will describe the instrument and its performance during the first flight.

  17. Precision Cosmic Ray physics with space-born experiment

    Science.gov (United States)

    Incagli, Marco

    2016-07-01

    More than 100 years after their discoveries, cosmic rays have been extensively studied, both with balloon experiments and with ground observatories. More recently, the possibility of mounting detectors on satellites or on the International Space Station has allowed for a long duration (several years) continuous observation of primary cosmic rays, i.e. before their interaction with the earth atmosphere, thus opening a new regime of precision measurements. In this review, recent results from major space experiments, as Pamela, AMS02 and Fermi, as well as next generation experiments proposed for the International Space Station, for standalone satellites or for the yet to come Chinese Space Station, will be presented. The impact of these experiment on the knowledge of Cosmic Ray propagation will also be discussed.

  18. Are drug-coated balloons cost effective for femoropopliteal occlusive disease? A comparison of bare metal stents and uncoated balloons.

    Science.gov (United States)

    Poder, Thomas G; Fisette, Jean-François

    2016-07-01

    To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.

  19. THE KISSING BALLOON TECHNIQUE WITH 2 OVER-THE-WIRE BALLOON CATHETERS THROUGH A SINGLE 8-FRENCH GUIDING CATHETER

    NARCIS (Netherlands)

    DENHEIJER, P; BERNINK, PJLM; VANDIJK, RB; TWISK, SPM; LIE, KI

    1991-01-01

    Some of the newer over-the-wire coronary angioplasty catheters have shaft sizes of 3.0 French (F) or less. The inner diameter of modern 8-F guiding catheters is large enough to accommodate two of such balloon catheters. We report a kissing balloon procedure with two over-the-wire catheters through a

  20. THE KISSING BALLOON TECHNIQUE WITH 2 OVER-THE-WIRE BALLOON CATHETERS THROUGH A SINGLE 8-FRENCH GUIDING CATHETER

    NARCIS (Netherlands)

    DENHEIJER, P; BERNINK, PJLM; VANDIJK, RB; TWISK, SPM; LIE, KI

    Some of the newer over-the-wire coronary angioplasty catheters have shaft sizes of 3.0 French (F) or less. The inner diameter of modern 8-F guiding catheters is large enough to accommodate two of such balloon catheters. We report a kissing balloon procedure with two over-the-wire catheters through a

  1. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    Science.gov (United States)

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  2. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) and BLASTPol

    Science.gov (United States)

    Pascale, Enzo; Pascale

    2013-01-01

    Balloon observations from Antarctica have proven an effective and efficient way to address open Cosmological questions as well as problems in Galactic astronomy. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) is a sub-orbital mapping experiment which uses 270 bolometric detectors to image the sky in three wavebands centred at 250, 350 and 500 μm with a 1.8 m telescope. In the years before Herschel launched, BLAST provided data of unprecedented angular and spectral coverage in frequency bands close to the peak of dust emission in star forming regions in our Galaxy, and in galaxies at cosmological distances. More recently, BLASTPol was obtained by reconfiguring the BLAST focal plane as a submillimetric polarimeter to study the role that Galactic magnetic fields have in regulating the processes of star-formation. The first and successful BLASTPol flight from Antarctica in 2010 is followed by a second flight, currently scheduled for the end of 2012.

  3. Balloon Type Elasticity Sensing of Left Ventricular Tissue for Small Experimental Animals

    Science.gov (United States)

    Higashimori, Mitsuru; Ishii, Ryohei; Tadakuma, Kenjiro; Kaneko, Makoto; Tamaki, Syunsuke; Sakata, Yasushi; Yamamoto, Kazuhiro

    This paper describes an elasticity sensing system for a left ventricular tissue of small experimental animal. We first show the basic concept of the proposed method, where a ring shaped specimen is dilated by a balloon type probe with pressure based control and the elasticity is estimated by using the stress and strain information. We introduce the dual cylinder model for approximating the strengths of material of the specimen and the balloon. Based on this model, we can derive the Young's modulus of the specimen. After showing the developed experimental system, we show basic experiments using silicone specimens. We finally show a couple of experimental results using rat and mouse, where specimens with HFPEF (Heart Failure with Preserved Ejection Fraction) can be separated from normal specimens.

  4. Fetus-supporting flexible manipulator with balloon-type stabilizer for endoscopic intrauterine surgery.

    Science.gov (United States)

    Liao, Hongen; Suzuki, Hirokazu; Matsumiya, Kiyoshi; Masamune, Ken; Dohi, Takeyoshi; Chiba, Toshio

    2008-09-01

    Minimally invasive endoscopic fetal surgery enables intrauterine intervention with reduced risk to the mother and fetus. A novel surgical manipulator is described for stabilizing the fetus and restraining it from floating free during endoscopic intrauterine surgery. We designed and fabricated a prototype fetus-supporting manipulator equipped with flexible joint and bending mechanisms and a soft balloon stabilizer. The flexible joint and bending mechanisms enable the stabilizer to reach the target sites within the confined space of the uterus under the guidance of an ultrasound device. The balloon stabilizer could be inserted into the uterus through a small incision. The accuracy evaluation showed that the maximum error of the bending mechanism was as small as 7 mm and the standard deviation of the joint mechanism was just 1.6 degrees. In the experiments using a fetus model, the manipulator could be well controlled with guidance from ultrasound images and its bending mechanism with the balloon stabilizer could be clearly visualized while stabilizing the fetus model. The manipulator has the potential to be used in minimally invasive intrauterine surgery, although further improvements and experiments remain to be carried out.

  5. Geodesic Acoustic Propagation and Ballooning Mode Formalism

    Science.gov (United States)

    Li, M. B.; Diamond, P. H.; Young, G. G.; Arakawa, M.

    2005-10-01

    Relevance of ballooning formalism (BMF) in nonlinear interaction of toroidal electromagnetic drift waves in the presence of zonal flows and Geodesic Acoustic Oscillation (GAO) is critically examined from a physical argument of radial propagation of wave packets. To achieve the quasi-translational invariance of poloidal harmonics which is necessary for the BMF, the geodesic curvature induced transfer [1] of fluctuation energy in radial direction should occur faster than the time scale of physical interest. Of course, this does not happen necessarily in drift-Alfven (DALF) turbulence simulations [2]. This observation casts considerable doubts on the applicability of various codes based on the BMF concept to nonlinear electromagnetic problems. [1] B. Scott, Phys. Letters A 320 (2003) 53. [2] B. Scott, New J. Phys 7 (2005) 92.

  6. The Norwegian Sounding Rocket and Balloon Program

    Science.gov (United States)

    Skatteboe, Rolf

    2001-08-01

    The status and recent developments of the Norwegian Sounding Rocket and Balloon Program are presented with focus on national activities and recent achievements. The main part of the Norwegian program is sounding rocket launches conducted by Andøya Rocket Range from the launch facilities on Andøya and at Svalbard. For the majority of the programs, the scientific goal is investigation of processes in the middle and upper atmosphere. The in situ measurements are supplemented by a large number of ground-based support instruments located at the ALOMAR Observatory. The ongoing and planned projects are described and the highlights of the latest completed projects are given. The scientific program for the period 2001-2003 will be reviewed. Several new programs have been started to improve the services available to the international science comunity. The Hotel Payload project and MiniDusty are important examples that will be introduced in the paper. Available space related infrastructure is summarized.

  7. Intragastric balloon: ethics, medical need and cosmetics.

    Science.gov (United States)

    Kotzampassi, Katerina; Shrewsbury, Anne D

    2008-01-01

    The development of the intragastic balloon as a safe, noninvasive, alternative method to weight reduction raises all the ethical questions routinely faced by practitioners of other forms of cosmetic surgery. In the case of the morbidly, severely or merely obese, the surgeon is faced with a medical decision in a situation defined by medical parameters. The case of the overweight or normal may, however, create an ethical dilemma in which the doctor is forced to make decisions of a nonmedical nature, for which his training has not prepared him, and relating essentially to his personal attitudes and moral beliefs, culture and the recognition that 'if I don't, somebody else--possibly less competent--will'.

  8. CTO revascularization: Obstacles and options in balloon nonpenetrable lesions.

    Science.gov (United States)

    Topaz, On

    2017-07-01

    CTO lesions resisting balloon crossing are located in moderate/severe tortuous coronary arteries contain more moderate/severe calcification burden and carry a higher J-CTO score as compared with balloon crossable CTO lesions. CTO lesions resisting balloon crossing do not constitute a homogenous group. In 25% of the patients, the resisting CTO was caused by stent restenosis and thrombus is an integral component of CTO in addition to calcium and fibrosis. The excimer laser and rotational/orbital atherectomy are among useful debulking technologies capable of creating a "pilot recanalization channel" in the CTO that enables completion of the revasularization. © 2017 Wiley Periodicals, Inc.

  9. Balloon dilation of congenital supravalvular pulmonic stenosis in a dog

    Science.gov (United States)

    Treseder, Julia R.

    2017-01-01

    Percutaneous balloon valvuloplasty is considered the standard of care for treatment of valvular pulmonic stenosis, a common congenital defect in dogs. Supravalvular pulmonic stenosis is a rare form of pulmonic stenosis in dogs and standard treatment has not been established. Although, there have been reports of successful treatment of supravalvular pulmonic stenosis with surgical and stenting techniques, there have been no reports of balloon dilation to treat dogs with this condition. Here, a case of supravalvular pulmonic stenosis diagnosed echocardiographically and angiographically in which a significant reduction in pressure gradient was achieved with balloon dilation alone is presented. PMID:27297421

  10. Results of the first EUSO-Balloon flight

    Science.gov (United States)

    Miyamoto, H.; Bertaina, M.; JEM-EUSO Collaboration

    2016-05-01

    EUSO-Balloon, a balloon-borne diffractive fluorescence telescope, was launched by the French Space Agency ONES from the Timmins base in Ontario (Canada) on August 25th in 2014. After reaching the floating altitude of about 38 km, EUSO-Balloon imaged the UV background for more than 5 hours before descending to ground using the key technologies of JEM-EUSO. A detailed and precise measurement of the UV background in different atmospheric and ground conditions was achieved. The instrument proved the capability of detecting Extensive Air Showers (EAS) by observing laser tracks with similar characteristics. This contribution will summarise the first results obtained concerning all the topics described above.

  11. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Pretolesi, F.; Derchi, L.E. [Dept. of Radiology, University of Genoa (Italy); Redaelli, G.; Papagni, L. [IRCCS, Ist. Auxologico Italiano, Milan (Italy)

    2001-04-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  12. Pointing control for the SPIDER balloon-borne telescope

    CERN Document Server

    Shariff, Jamil A; Amiri, Mandana; Benton, Steven J; Bock, Jamie J; Bond, J Richard; Bryan, Sean A; Chiang, H Cynthia; Contaldi, Carlo R; Crill, Brendan P; Doré, Olivier P; Farhang, Marzieh; Filippini, Jeffrey P; Fissel, Laura M; Fraisse, Aurelien A; Gambrel, Anne E; Gandilo, Natalie N; Golwala, Sunil R; Gudmundsson, Jon E; Halpern, Mark; Hasselfield, Matthew; Hilton, Gene C; Holmes, Warren A; Hristov, Viktor V; Irwin, Kent D; Jones, William C; Kermish, Zigmund D; Kuo, Chao-Lin; MacTavish, Carolyn J; Mason, Peter V; Megerian, Krikor G; Moncelsi, Lorenzo; Morford, Tracy A; Nagy, Johanna M; Netterfield, C Barth; O'Brient, Roger; Rahlin, Alexandra S; Reintsema, Carl D; Ruhl, John E; Runyan, Marcus C; Soler, Juan D; Trangsrud, Amy; Tucker, Carole E; Tucker, Rebecca S; Turner, Anthony D; Weber, Alexis C; Wiebe, Donald V; Young, Edward Y

    2014-01-01

    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in az...

  13. Balloon Pump with Floating Valves for Portable Liquid Delivery

    Directory of Open Access Journals (Sweden)

    Yuya Morimoto

    2016-03-01

    Full Text Available In this paper, we propose a balloon pump with floating valves to control the discharge flow rates of sample solutions. Because the floating valves were made from a photoreactive resin, the shapes of the floating valves could be controlled by employing different exposure patterns without any change in the pump configurations. Owing to the simple preparation process of the pump, we succeeded in changing the discharge flow rates in accordance with the number and length of the floating valves. Because our methods could be used to easily prepare balloon pumps with arbitrary discharge properties, we achieved several microfluidic operations by the integration of the balloon pumps with microfluidic devices. Therefore, we believe that the balloon pump with floating valves will be a useful driving component for portable microfluidic systems.

  14. Low Cost Variable Conductance Heat Pipe for Balloon Payload Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While continuously increasing in complexity, the payloads of terrestrial high altitude balloons need a thermal management system to reject their waste heat and to...

  15. 10 meter Sub-Orbital Large Balloon Reflector (LBR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Besides serving as a launch vehicle, the carrier balloon provides a stable mount for the enclosed telescope. Looking up, the LBR will serve as a telescope. Looking...

  16. Absence of Bacteria on Coronary Angioplasty Balloons from Unselected Patients

    DEFF Research Database (Denmark)

    Hansen, Gorm Mørk; Nilsson, Martin; Nielsen, Claus Henrik

    2015-01-01

    if bacterial DNA from primarily oral bacteria could be detected on coronary angioplasty balloons by use of an optimized sampling process combined with an internally validated sensitive polymerase chain reaction (PCR) assay. Coronary angioplasty balloons and control samples from a total of 45 unselected...... angioplasty balloons are unlikely to be useful for detection of bacteria with current PCR techniques in unselected patients with coronary artery disease, more studies are warranted to determine the extent to which bacteria contribute to atherosclerosis and its clinical manifestations and whether the presence......, and translocation of bacteria from the oral cavity to the coronary arteries may play a role in the development of coronary artery disease. Very few studies have used angioplasty balloons for in vivo sampling from diseased coronary arteries, and with varying results. Therefore, the aim of this study was to assess...

  17. Ohmic scaling based on current diffusive ballooning mode

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Masatoshi; Itoh, Sanae [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi; Itoh, Kimitaka

    1996-01-01

    Based on the anomalous transport model due to current diffusive ballooning mode turbulence, the global energy confinement time in a tokamak with Ohmic heating is theoretically studied. Relations to empirical scaling laws are also discussed. (author)

  18. Cosmic-Ray Background Flux Model based on a Gamma-Ray Large-Area Space Telescope Balloon Flight Engineering Model

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T

    2004-09-03

    Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4{pi} sr), the sensitive energy range of the instrument ({approx} 10 MeV to 100 GeV) and abundant components (proton, alpha, e{sup -}, e{sup +}, {mu}{sup -}, {mu}{sup +} and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functions in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.

  19. TU-AB-201-07: Image Guided Endorectal HDR Brachytherapy Using a Compliant Balloon Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, G; Goodman, K [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2015-06-15

    Purpose: High dose rate endorectal brachytherapy is an option to deliver a focal, high-dose radiotherapy to rectal tumors for patients undergoing non-operative management. We investigate a new multichannel, MR compatible applicator with a novel balloon-based design to provide improved treatment geometry. We report on the initial clinical experience using this applicator. Methods: Patients were enrolled on an IRB-approved, dose-escalation protocol evaluating the use of the anorectal (AR-1) applicator (Ancer Medical, Hialeah, FL), a multichannel applicator with two concentric balloons. The inner balloon supports 8 source lumens; the compliant outer balloon expands to separate the normal rectal wall and the source lumens, yet deforms around a firm, exophytic rectal mass, leading to dose escalation to tumor while sparing normal rectum. Under general anesthesia, gold fiducial markers were inserted above and below the tumor, and the AR applicator was placed in the rectum. MRI-based treatment plans were prepared to deliver 15 Gy in 3 weekly fractions to the target volume while sparing healthy rectal tissue, bladder, bowel and anal muscles. Prior to each treatment, CBCT/Fluoroscopy were used to place the applicator in the treatment position and confirm the treatment geometry using rigid registration of the CBCT and planning MRI. After registration of the applicator images, positioning was evaluated based on the match of the gold markers. Results: Highly conformal treatment plans were achieved. MR compatibility of the applicator enabled good tumor visualization. In spite of the non-rigid nature of the applicators and the fact that a new applicator was used at each treatment session, treatment geometry was reproducible to within 2.5 mm. Conclusions: This is the first report on using the AR applicator in patients. Highly conformal plans, confidence in MRI target delineation, in combination with reproducible treatment geometry provide encouraging feedback for continuation with

  20. Percutaneous anterolateral balloon kyphoplasty for metastatic lytic lesions of the cervical spine.

    Science.gov (United States)

    Lykomitros, Vasilis; Anagnostidis, Kleovoulos S; Alzeer, Ziad; Kapetanos, George A

    2010-11-01

    The purpose of our report is to describe a new application of kyphoplasty, the percutaneous anterolateral balloon kyphoplasty that we performed in two cases of metastatic osteolytic lesions in cervical spine. The first patient, aged 48 years, with primary malignancy in lungs had two metastatic lesions in C2 and C6 vertebrae. Patient's complaints were about pain and restriction of movements (due to the pain) in the cervical spine. The second patient, aged 70 years, with primary malignancy in stomach, had multiple metastatic lesions in thoracolumbar spine and C3, C4 and C5 vertebrae without neurological symptoms. The main symptoms were from cervical spine with severe pain even in bed rest and systematic use of opiate-base analgesic. The preoperative status was evaluated with X-rays, CT scan, MRI scan and with Karnofsky score and visual analogue pain (VAS) scale. Both patients underwent percutaneous anterolateral balloon kyphoplasty via the anterolateral approach in cervical spine under general anaesthesia. No clinical complications occurred during or after the procedure. Both patients experienced pain relief immediately after balloon kyphoplasty and during the following days. The stiffness also resolved rapidly and cervical collars were removed. VAS score significantly improved from 85 and 95 preoperatively to 30 in both patients. Karnofsky score showed also improvement from 40 and 30 preoperatively to 80 and 70, respectively, at the final follow-up (7 months after the procedure). Fluoroscopy-guided percutaneous anterolateral balloon kyphoplasty proved to be safe and effective minimally invasive procedure for metastatic osteolytic lesions of the cervical spine, reducing pain and avoiding vertebral collapse. Experience and attention are necessary in order to avoid complications.

  1. Venous air embolism in consecutive balloon kyphoplasties visualised on CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tins, Bernhard J.; Cassar-Pullicino, Victor N.; Lalam, Radhesh; Haddaway, Mike [Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Radiology, Oswestry, Shropshire (United Kingdom)

    2012-09-15

    We noted a large amount of intravenous gas during balloon kyphoplasty on CT imaging. Formal assessment to understand the extent, possible causes and implications was undertaken. Ten consecutive cases of balloon kyphoplasty were performed under general anaesthesia in the prone position, on a single vertebral level using a two-step technique under combined fluoroscopic and CT guidance. CT of the affected vertebra was performed before, after, and intermittently during the procedure. In 2 cases delayed CT was carried out in the supine position. Gas was seen on CT imaging, but not on conventional fluoroscopy. The gas is most likely to be air introduced during the procedure and was seen in the epidural and paravertebral venous plexus, posterior intercostal veins, renal veins, IVC and azygos vein. The average measured volume of gas seen on the post-procedure CT imaging was 1.07 mL, range 0.16-3.97 mL. There was no correlation of the measured amount of gas to the procedure duration or location, the use of a curette or the injected cement volume. Delayed CT in the supine position no longer showed air in the local venous system. Balloon kyphoplasty is associated with the fluoroscopically invisible introduction of air into the vertebral and paravertebral veins and deep systemic veins and is likely to be much more extensive than identified on CT imaging. There is potential for serious air embolism in kyphoplasty and if there is a sudden deterioration in patient condition during the procedure the possibility of this complication needs to be considered. (orig.)

  2. An improved balloon snake for HIFU image-guided system.

    Science.gov (United States)

    Li, Zhong-Bing; Xu, Xian-Ze; Le, Yi; Xu, Feng-Qiu

    2014-07-01

    Target segmentation in ultrasound images is a key step in the definition of the intro-operative planning of high-intensity focused ultrasound therapy. This paper presents an improvement for the balloon snake in segmentation. A sign function, designed by the edge map and the moving snake, is added to give the direction of the balloon force on the moving snake separately. Segmentation results are demonstrated on ultrasound images and the effectiveness and convenience shown in applications.

  3. Analysis of current diffusive ballooning mode in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Morihisa [Faculty of Engineering, Okayama University, Okayama (Japan); Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-07-01

    The effect of finite gyroradius on the current diffusive ballooning mode is examined. Starting from the reduced MHD equations including turbulent transports, coupling with drift motion and finite gyroradius effect of ions, we derive a ballooning mode equation with complex transport coefficients. The eigenfrequency, saturation level and thermal diffusivity are evaluated numerically from the marginal stability condition. Preliminary results of their parameter dependence are presented. (author)

  4. Duration judgements over multiple elements

    Directory of Open Access Journals (Sweden)

    Inci eAyhan

    2012-11-01

    Full Text Available We investigated the limits of the number of events observers can simultaneously time. For single targets occurring in one of eight positions sensitivity to duration was improved for spatially pre-cued items as compared to post-cued items indicating that exogenous driven attention can improve duration discrimination. Sensitivity to duration for pre-cued items was also marginally better for single items as compared to eight items indicating that even after the allocation of focal attention, distracter items can interfere with the encoding of duration. For an eight item array discrimination was worse for post-cued locations as compared to pre-cued locations indicating both that attention can improve duration discrimination performance and that it was not possible to access a perfect memory trace of the duration of eight elements. The interference from the distracters in the pre-cued eight item array may reflect some mandatory averaging of target and distracter events. To further explore duration averaging we asked subjects to explicitly compare average durations of multiple item arrays against a single item standard duration. Duration discrimination thresholds were significantly lower for single elements as compared to multiple elements, showing that averaging, either automatically or intentionally, impairs duration discrimination. There was no set size effect. Performance was the same for averages of two and eight items, but performance with even an average of two items was worse than for one item. This was also true for sequential presentation indicating poor performance was not due to limits on the division of attention across items. Rather performance appears to be limited by an inability to remember or aggregate duration information from two or more items. Although it is possible to manipulate perceived duration locally, there appears to be no perceptual mechanisms for aggregating local durations across space.

  5. Evaluation of a balloon constant rate infusion system for treatment of septic arthritis, septic tenosynovitis, and contaminated synovial wounds: 23 cases (2002-2005).

    Science.gov (United States)

    Meagher, Daniel T; Latimer, Federico G; Sutter, W Wes; Saville, William J A

    2006-06-15

    OBJECTIVE-To determine clinical findings and outcome in horses treated by means of a balloon constant rate infusion system. DESIGN-Retrospective case series. ANIMALS-23 horses. PROCEDURES-Medical records of horses examined at The Ohio State University veterinary teaching hospital from 2002 to 2005 that had septic arthritis, septic tenosynovitis, or penetration of a synovial structure and in which treatment involved a balloon constant rate infusion system were searched. Information pertaining to signalment, history, physical examination findings, clinicopathologic data, treatment, and duration of hospitalization was recorded. RESULTS-Mean+/- SD duration of hospitalization was 11.5+/-5.26 days. No correlation between duration of clinical signs and duration of hospitalization or duration of infusion pump use was detected, but correlations between WBC count and duration of hospitalization and WBC and duration of infusion-pump use were observed. All horses survived to discharge. Follow-up information was obtained on 17 horses, 16 of which were alive at the time of follow-up. Twelve of 13 horses for which followup information was available for at least 5 months were alive 5 months or longer after discharge. Thirteen of the 16 horses alive at follow-up were reported by owners as not lame, whereas the remaining 3 were mildly lame or intermittently moderately lame or had developed angular limb deformity in the contralateral limb. CONCLUSIONS AND CLINICAL RELEVANCE-Balloon constant rate infusion systems may be used effectively in treatment of septic arthritis, septic tenosynovitis, and contaminated synovial wounds. Clinical response and long-term outcome appeared to be comparable to results obtained with other techniques.

  6. Development of a tiny tandem balloon system for atmospheric observation

    Science.gov (United States)

    Saito, Yoshitaka; Yamada, Kazuhiko; Fujiwara, Masatomo

    2016-07-01

    A tandem balloon system with a combination of a zero-pressure balloon on top and a super-pressure balloon on the bottom has a unique trajectory characteristic, with different flight altitudes between day and night and thus with ascending and descending motions at dawn and dusk, respectively. This characteristic provides a unique opportunity to explore the atmosphere, e.g., the upper tropospheric and lower stratospheric region with cross-tropopause measurements twice a day. We started development of a tiny tandem balloon system using a 10 m^{3} super-pressure balloon and a 100 m^{3} zero-pressure balloon, with a capability of carrying 3 kg of payload. One of the scientific targets is to measure water vapor, cloud particles, and temperature around the tropical tropopause which is the entry point of the stratospheric and mesospheric meridional circulation. For the data transfer, the iridium satellite communication module, SBD9603 is used. In this paper, the current status of the development will be reported.

  7. CdZnTe Background Measurement at Balloon Altitudes

    CERN Document Server

    Bloser, P F; Narita, T; Harrison, F

    1998-01-01

    We report results of an experiment conducted in May 1997 to measure CdZnTe background and background reduction schemes in space flight conditions similar to those of proposed hard X-ray astrophysics missions. A 1 cm^2 CdZnTe detector was placed adjacent to a thick BGO anticoincidence shield and flown piggybacked onto the EXITE2 scientific balloon payload. The planar shield was designed to veto background countsproduced by local gamma-ray production in passive material and neutron interactions in the detector. The CdZnTe and BGO were partially surrounded by a Pb-Sn-Cu shield to approximate the grammage of an X-ray collimator, although the field of view was still ~2 pi sr. At an altitude of 127000 feet we find a reduction in background by a factor of 6 at 100 keV. The non-vetoed background is 9 X 10^{-4} cts /cm^2-sec-keV at 100 keV, about a factor of 2 higher than that of the collimated (4.5 deg FWHM) EXITE2 phoswich detector. We compare our recorded spectrum with that expected from simulations using GEANT and...

  8. Resuscitative Endovascular Balloon Occlusion of the Aorta: Pushing Care Forward.

    Science.gov (United States)

    Teeter, William; Romagnoli, Anna; Glaser, Jacob; Fisher, Andrew D; Pasley, Jason; Scheele, Brian; Hoehn, Melanie; Brenner, Megan

    Resuscitative endovascular balloon occlusion of the aorta (REBOA), used to temporize noncompressible and junctional hemorrhage, may be deployable to the forward environment. Our hypothesis was that nonsurgeon physicians and high-level military medical technicians would be able to learn the theory and insertion of REBOA. US Army Special Operations Command medical personnel without prior endovascular experience were included. All participants received didactic instruction of the Basic Endovascular Skills for Trauma Course™ together, with individual evaluation of technical skills. A pretest and a posttest were administered to assess comprehension. Four members of US Army Special Operations Command-two nonsurgeon physicians, one physician assistant, and one Special Operations Combat Medic-were included. REBOA procedural times moving from trial 1 to trial 6 decreased significantly from 186 ± 18.7 seconds to 83 ± 10.3 seconds (ρ < .0001). All participants demonstrated safe REBOA insertion and verbalized the indications for REBOA insertion and removal through all trials. All five procedural tasks were performed correctly by each participant. Comprehension and knowledge between the pretest and posttest improved significantly from 67.6 ± 7.3% to 81.3 ± 8.1% (ρ = .039). This study demonstrates that nonsurgeon and nonphysician providers can learn the steps required for REBOA after arterial access is established. Although insertion is relatively straightforward, the inability to gain arterial access percutaneously is prohibitive in providers without a surgical skillset and should be the focus of further training. 2017.

  9. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    CERN Document Server

    Pascale, E; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Marsden, G; Martin, P G; Martin, T G; Mauskopf, P; Netterfield, C B; Olmi, L; Patanchon, G; Rex, M; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Wiebe, D V

    2007-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 micron. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250 micron. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of ~30" post-flight pointing reconstruction to ~<5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. Since a test-flight in ...

  10. Construction and test of a tungsten/Sci-Fi imaging calorimeter for the CREAM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S. [Department of Physics, University of Siena/INFN, 56 v.Roma, Banchi di Sotto 55, 53100 Siena (Italy)]. E-mail: marrocchesi@pi.infn.it; Ahn, H.S. [Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 (United States); Bagliesi, M.G. [Department of Physics, University of Siena/INFN, 56 v.Roma, Banchi di Sotto 55, 53100 Siena (Italy); Basti, A. [Department of Physics, University of Siena/INFN, 56 v.Roma, Banchi di Sotto 55, 53100 Siena (Italy); Bigongiari, G. [Department of Physics, University of Siena/INFN, 56 v.Roma, Banchi di Sotto 55, 53100 Siena (Italy); Castellina, A. [IFSI sez. di Torino, 4 Corso Fiume, 10133 Torino (Italy); Ganel, O. [Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 (United States); Lee, M.H. [Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 (United States); Lomtadze, T. [INFN sez. di Pisa, 1291 v.Livornese S.Piero a Grado, 56010 Pisa (Italy); Lutz, L. [Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 (United States); Maestro, P. [Department of Physics, University of Siena/INFN, 56 v.Roma, Banchi di Sotto 55, 53100 Siena (Italy); Malinine, A. [Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 (United States); Meucci, M. [Department of Physics, University of Siena/INFN, 56 v.Roma, Banchi di Sotto 55, 53100 Siena (Italy); Millucci, V. [Department of Physics, University of Siena/INFN, 56 v.Roma, Banchi di Sotto 55, 53100 Siena (Italy); Morsani, F. [INFN sez. di Pisa, 1291 v.Livornese S.Piero a Grado, 56010 Pisa (Italy); Seo, E.S. [Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 (United States); Zinn, S.Y. [Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2004-12-11

    Cosmic Ray Energetics And Mass (CREAM) is a balloon-borne experiment designed to perform direct measurements of cosmic ray composition over the elemental range from proton to iron to the supernova energy scale of 1015eV in a series of balloon flights using the new Ultra Long Duration Balloon (ULDB) capability under development by NASA. The first flight of CREAM will take place at the end of 2004 from Antarctica. The instrument includes a sampling tungsten/scintillating fiber calorimeter preceded by a graphite target with scintillating fiber hodoscopes, a pixelated silicon charge detector, a transition radiation detector and a segmented timing-based particle-charge detector. The thin ionization calorimeter has been designed to operate in the range of energies from a few hundred GeV to 1PeV providing imaging capability in the reconstruction of the showers originating from the interaction of primary nuclei in the carbon target. A twin calorimeter for the second CREAM payload has been built and tested at CERN. Its construction technique and preliminary test results are presented.

  11. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group.

    OpenAIRE

    Serruys, P.W.; de Jaegere, P; Kiemeneij, F.; Macaya, C; Rutsch, W; Heyndrickx, G.; Emanuelsson, H.; Marco, J.; Legrand, Victor; Materne, P.

    1994-01-01

    BACKGROUND: Balloon-expandable coronary-artery stents were developed to prevent coronary restenosis after coronary angioplasty. These devices hold coronary vessels open at sites that have been dilated. However, it is unknown whether stenting improves long-term angiographic and clinical outcomes as compared with standard balloon angioplasty. METHODS: A total of 520 patients with stable angina and a single coronary-artery lesion were randomly assigned to either stent implantation (262 patients)...

  12. Space-quality data from balloon-borne telescopes: the High Altitude Lensing Observatory (HALO)

    CERN Document Server

    Rhodes, Jason; Booth, Jeffrey; Massey, Richard; Liewer, Kurt; Smith, Roger; Amara, Adam; Aldrich, Jack; Berge, Joel; Bezawada, Naidu; Brugarolas, Paul; Clark, Paul; Dubbeldam, Cornelis M; Ellis, Richard; Frenk, Carlos; Gallie, Angus; Heavens, Alan; Henry, David; Jullo, Eric; Kitching, Thomas; Lanzi, James; Lilly, Simon; Lunney, David; Miyazaki, Satoshi; Morris, David; Paine, Christopher; Peacock, John; Pellegrino, Sergio; Pittock, Roger; Pool, Peter; Refregier, Alexandre; Seiffert, Michael; Sharples, Ray; Smith, Alexandra; Stuchlik, David; Taylor, Andy; Teplitz, Harry; Vanderveld, R Ali; Wu, James

    2012-01-01

    We present a method for attaining sub-arcsecond pointing stability during sub- orbital balloon flights, as designed for in the High Altitude Lensing Observatory (HALO) concept. The pointing method presented here has the potential to perform near-space quality optical astronomical imaging at 1-2% of the cost of space-based missions. We also discuss an architecture that can achieve sufficient thermomechanical stability to match the pointing stability. This concept is motivated by advances in the development and testing of Ultra Long Duration Balloon (ULDB) flights which promise to allow observation campaigns lasting more than three months. The design incorporates a multi-stage pointing architecture comprising: a gondola coarse azimuth control system, a multi-axis nested gimbal frame structure with arcsecond stability, a telescope de-rotator to eliminate field rotation, and a fine guidance stage consisting of both a telescope mounted angular rate sensor and guide CCDs in the focal plane to drive a fast-steering ...

  13. The TRACER instrument: A balloon-borne cosmic-ray detector

    Science.gov (United States)

    Ave, M.; Boyle, P. J.; Brannon, E.; Gahbauer, F.; Hermann, G.; Höppner, C.; Hörandel, J. R.; Ichimura, M.; Müller, D.; Obermeier, A.; Romero-Wolf, A.

    2011-10-01

    We describe a large-area detector for measurements of the intensity of cosmic-ray nuclei in balloon-borne exposures. In order to observe individual nuclei at very high energies, the instrument employs transition radiation detectors (TRD) whose energy response extends well beyond 10 4 GeV amu -1. The TR measurement is performed with arrays of single-wire proportional tubes interleaved with plastic-fiber radiators. An additional energy determination comes from the specific ionization in gas and its relativistic rise which is also measured with proportional tubes. The tubes also determine the trajectory of each cosmic-ray nucleus with mm-resolution. In total, nearly 1600 tubes are used. The instrument is triggered by large-area plastic scintillators. The scintillators, together with acrylic Cherenkov counters, also determine the nuclear charge Z of each cosmic-ray particle, measure the energy in the GeV amu -1 region, and discriminate against low-energy background. We describe the details of this detector system, and discuss its performance in three high-altitude balloon flights, including two long-duration flights in 2003 and 2006 at Antarctic and Arctic latitudes, respectively. Scientific results from these flights are summarized, and possible future developments are reviewed.

  14. The Balloon-Based Manometry Evaluation of Swallowing in Patients with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Jerzy Tomik

    2017-03-01

    Full Text Available The aim of the study was to analyse the disturbances of the oro-pharyngeal swallowing phase of dysphagia in amyotrophic lateral sclerosis (ALS patients with the use of specific manometric measurements and to evaluate their plausible association with the duration of the disease. Seventeen patients with ALS were evaluated with manometric examinations of the oral and pharyngeal part of the gastrointestinal tract. Tests were carried out by using the oesophageal balloon-based method with four balloon transducers located 5 cm away from each other. The following manometric parameters were analysed: the base of tongue contraction (BTC and the upper oesophageal sphincter pressure (UESP, and the hypopharyngeal suction pump (HSP as well as the oro-pharyngeal, pharyngeal and hypopharyngeal transit time and average pharyngeal bolus velocity (oropharyngeal transit time (OTT, pharyngeal transit time (PTT, hypopharyngeal transit time (HTT and average pharyngeal bolus velocity (APBV, respectively. Manomatric examinations during swallowing in patients with ALS showed significant weakness of BTC, a decrease of HSP and a decrease of the velocity of bolus transit inside the pharynx which were particularly marked between the first and the third examination. Manometric examinations of the oro-pharyngeal part of the gastrointestinal tract are useful and supportive methods in the analysis of swallowing disturbances in ALS patients.

  15. The Efficacy of Endoscopic Papillary Balloon Dilation for Patients with Acute Biliary Pancreatitis

    Directory of Open Access Journals (Sweden)

    Wei-Chih Sun

    2015-01-01

    Full Text Available Background. No study investigated the efficacy and safety of endoscopic papillary balloon dilation (EPBD for the treatment of acute biliary pancreatitis (ABP. Method. We retrospectively reviewed the effects of EPBD on patients with ABP from February 2003 to December 2012. The general data, findings of image studies, details of the procedure, and outcomes after EPBD were analyzed. Result. Total 183 patients (male/female: 110/73 were enrolled. The mean age was 65.9 years. Among them, 155 patients had mild pancreatitis. The meantime from admission to EPBD was 3.3 days. Cholangiogram revealed filling defects inside the common bile duct (CBD in 149 patients. The mean dilating balloon size was 10.5 mm and mean duration of the dilating procedure was 4.3 minutes. Overall, 124 patients had gross stones retrieved from CBD. Four (2.2% adverse events and 2 (1.1% intraprocedure bleeding incidents but no procedure-related mortality were noted. Bilirubin and amylase levels significantly decreased after EPBD. On average, patients resumed oral intake within 1.4 days. The clinical parameters and outcomes were similar in patients with different severity of pancreatitis. Conclusion. EPBD can be effective and safe for the treatment of ABP, even in patients presenting with severe disease.

  16. Ballooning mode spectrum in general toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.; Glasser, A.H.

    1982-04-01

    A WKB formalism for constructing normal modes of short-wavelength ideal hydromagnetic, pressure-driven instabilities (ballooning modes) in general toroidal magnetic containment devices with sheared magnetic fields is developed. No incompressibility approximation is made. A dispersion relation is obtained from the eigenvalues of a fourth order system of ordinary differential equations to be solved by integrating along a line of force. Higher order calculations are performed to find the amplitude equation and the phase change at a caustic. These conform to typical WKB results. In axisymmetric systems, the ray equations are integrable, and semiclassical quantization leads to a growth rate spectrum consisting of an infinity of discrete eigenvalues, bounded above by an accumulation point. However, each eigenvalue is infinitely degenerate. In the nonaxisymmetric case, the rays are unbounded in a four dimensional phase space, and semiclassical quantization breaks down, leading to broadening of the discrete eigenvalues and accumulation point of the axisymmetric case into continuum bands. Analysis of a model problem indicates that the broadening of the discrete eigenvalues is numerically very small, the dominant effect being broadening of the accumulation point.

  17. Percutaneous balloon valvuloplasty in mitral stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyung; Oh, Byung Hee; Park, Kyung Ju; Kim, Seung Hyup; Lee, Young Woo; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1989-02-15

    Percutaneous balloon valvuloplasty(PBV) was successfully performed in 8 mitral stenosis patients for recent 3 months. Five patients have aortic insufficiencies also and two patients have mitral regurgitations below grade II/IV. All patients showed sinus rhythm on EKG, and had no mitral valvular calcification on echocardiography and fluoroscopy. PBV resulted in an increase in mitral valve area from 1.22{+-}0.22 to 2.57{+-}0.86 cm{sup 2}, a decrease in mean left atrial pressure from 23.4{+-}9.6 to 7.5{+-}3.4 mmHg and a decrease in mean mitral pressure gradient from 21.3{+-}9.4 to 6.8{+-}3.1 mmHg. There were no significant complications except 2 cases of newly appeared and mildly aggravated mitral regurgitation. We believe that PBV will become a treatment modality of choice replacing surgical commissurotomy or valve replacement in a group of mitral stenosis patients, because of its effectiveness and safety.

  18. Kissing balloon inflation in percutaneous coronary interventions.

    Science.gov (United States)

    Sgueglia, Gregory A; Chevalier, Bernard

    2012-08-01

    Bifurcation lesions are the most frequently approached complex coronary lesions in everyday interventional practice. Bifurcations complexity relies essentially on their very specific anatomy that is imperfectly handled by current coronary devices and, despite dedicated techniques and drug-eluting stents, percutaneous coronary interventions directed toward the treatment of bifurcations are technically demanding and require proper execution. Kissing balloon (KB) inflation was the first specific bifurcation technique to have been developed for percutaneous bifurcation interventions and continues to currently play an important role. Indeed, KB has been proposed to optimize stent apposition, improve side branch access while correcting stent deformation or distortion. Over the years, the KB technique has been deeply investigated by many different methods, from bench testing and computer simulations to in vivo intravascular imaging and clinical studies, producing a large amount of data pointing out the benefits and limitations of the technique. We sought to provide here a comprehensive overview of all those aspects. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull 2007; 6(4.000: 291-296

  20. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  1. Intragastric balloon followed by diet vs intragastric balloon followed by another balloon: a prospective study on 100 patients.

    Science.gov (United States)

    Genco, Alfredo; Cipriano, Massimiliano; Bacci, Vincenzo; Maselli, Roberta; Paone, Emanuela; Lorenzo, Michele; Basso, Nicola

    2010-11-01

    Aim of this study is to compare the efficacy of BioEnterics Intragastric Balloon (BIB®) followed by diet with BIB followed by another BIB. A prospective study was designed: a homogeneous group of 100 obese patients (age range 25-35, BMI range 40.0-44.9, M/F ratio 1/4) was allocated into two groups according to procedure: BIB (6 months) followed by diet therapy (7 months; group A = 50 pts), BIB positioning followed by another BIB after 1 month (group B = 50 pts). Baseline demographics were similar in both groups (Group A 10M/40F; mean age 31.4 ± 2.6; range 25-35; mean weight 106.3 ± 12.5 Kg; range 88-150; mean BMI 42.6±2.7 Kg/m(2); range 40.2-43.8; Group B 10M/40F; mean age 32.1 ± 2.1; range 25-35; mean weight 107.1 ± 11.9 Kg; range 90-150; mean BMI 42.9 ± 2.3; range 40.2-43.9). In both groups, weight loss parameters (Kg, BMI, and % EBL) were considered. Statistics were by Fisher's exact test (p < 0.05 was considered significant). At the time of 1st BIB removal, weight loss parameters in both groups were not significantly different: Group A: mean weight was 83.7±19.1 (range 52-151); mean BMI 34.2 ± 3.9 (range 32.4-43.8); and mean %EBL 43.5 ± 21.1 (range 0-68). Group B: mean weight was 84.9 ± 18.3 (range 50-148); mean BMI 34.8 ± 3.3 (range 32.4-43.8); and mean % EBL 45.2 ± 22.5% (range 0-68). At the study end, weight loss parameters were significantly lower in patients who underwent consecutive BIB (p < 0.05): mean BMI was 30.9 ± 7.2 Kg/m(2) (range 24-40), and 35.9 ± 9.7 Kg/m(2) (range 34-42); mean % EBL was 51.9 ± 24.6% (range 0-100) and 25.1 ± 26.2% (range 0-100) in group B and A, respectively. As compared with diet, a second intragastric balloon can be positioned without difficulties, achieving good results with continuous weight loss.

  2. [Balloon dilatation of the cartilaginous portion of the Eustachian tube in the children presenting with relapsing exudative otitis media].

    Science.gov (United States)

    Burova, O V; Bogomil'sky, M R; Polunin, M M; Soldatsky, Yu L

    2016-01-01

    The objective of the present study was to evaluate the effectiveness and the safety of balloon dilatation of the cartilaginous portion of the Eustachian tube in the children presenting with relapsing exudative otitis media. A total of 15 children (22 ears) at the age from 3 to 16 years suffering from relapsing exudative otitis media over 18 months in duration were available for the examination. Neither conservative nor surgical treatment produced any stable beneficial effect in these patients. Acoustic impedancometry yielded type B tympanograms. All the children were treated with the use of balloon dilatation of the cartilaginous portion of the Eustachian tube under endotracheal anesthesia. The follow-up examination carried out within 6--8 weeks after the treatment revealed the complete recovery of the function of the middle ear (type A tympanograms) in 11 (73.3%) children. Partial restoration of this function (as evidenced by type C tympanogram) was documented in 4 children. These patients underwent the second course of conservative therapy that resulted in the complete restoration of the function of the middle ear. It is concluded that balloon dilatation of the cartilaginous portion of the Eustachian tube in the children presenting with relapsing exudative otitis media provides the efficient and safe approach to the management of this condition. Being a minimally invasive method, it has good prospects for the practical application and is worth further investigation.

  3. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  4. Nuclear Polar VALOR: An ASRG-Enabled Venus Balloon Mission Concept

    Science.gov (United States)

    Balint, T. S.; Baines, K. H.

    2008-12-01

    In situ exploration of Venus is expected to answer high priority science questions about the planet's origin, evolution, chemistry, and dynamics as identified in the NRC Decadal Survey and in the VEXAG White Paper. Furthermore, exploration of the polar regions of Venus is key to understanding its climate and global circulation, as well as providing insight into the circulation, chemistry, and climatological processes on Earth. In this paper we discuss our proposed Nuclear Polar VALOR mission, which would target one of the polar regions of Venus, while building on design heritage from the Discovery class VALOR concept, proposed in 2004 and 2006. Riding the strong zonal winds at 55 km altitude and drifting poleward from mid-latitude this balloon-borne aerial science station (aerostat) would circumnavigate the planet multiple times over its one- month operation, extensively investigating polar dynamics, meteorology, and chemistry. Rising and descending over 1 km altitude in planetary waves - similar to the two VEGA balloons in 1985 - onboard instrumentation would accurately and constantly sample and measure other meteorological and chemical parameters, such as atmospheric temperature and pressure, cloud particle sizes and their local column abundances, the vertical wind component, and the chemical composition of cloud-forming trace gases. As well, when viewed with terrestrial radio telescopes on the Earth-facing side of Venus, both zonal and meridional winds would be measured to high accuracy (better than 10 cm/sec averaged over an hour). Due to three factors: the lack of sunlight near the poles; severe limitations on the floating mass-fraction available for a power source; and the science requirements for intensive and continuous measurements of the balloon's environment and movement, a long-duration polar balloon mission would require a long-lived internal power source in a relatively lightweight package. For our concept we assumed an Advanced Stirling Radioisotope

  5. Extradural balloon obliteration of the empty sella report of three cases (intrasellar balloon obliteration).

    Science.gov (United States)

    Gazioğlu, N; Akar, Z; Ak, H; Işlak, C; Koçer, N; Seçkin, M S; Kuday, C

    1999-01-01

    Empty sella syndrome is an anatomical and clinical entity composed of intrasellar reposition of the CSF and compression of the pituitary tissue, resulting in a clinical picture of headache, visual field defect, CSF rhinorrhea and some mild endocrinological disturbances. While some cases are primary with no appreciable aetiology, secondary cases are associated with prior operation or radiotherapy of the region. In our series, 3 patients with primary empty sella syndrome were treated by the current approach of extradural filling of the sellar cavity. This technique was first described by Guiot and widely accepted thereafter. We used a detachable silicon balloon filled with HEMA or liquid silicone for obliteration of the sellar cavity and obtained clinically satisfactory results without complications. Visual symptoms regressed and headache disappeared. But at long term follow-up all the balloons were found to be deflated. Despite the facility and efficacy of the technique we do not recommend it in the treatment of the empty sella because the filling of the sella is only transient and relapses may occur.

  6. Coolability of ballooned VVER bundles with pellet relocation

    Energy Technology Data Exchange (ETDEWEB)

    Hozer, Z.; Nagy, I.; Windberg, P.; Vimi, A. [AEKI, P.O.box 49, Budapest, H-1525 (Hungary)

    2009-06-15

    During a LOCA incident the high pressure in the fuel rods can lead to clad ballooning and the debris of fuel pellets can fill the enlarged volume. The evaluation of the role of these two effects on the coolability of VVER type fuel bundles was the main objective of the experimental series. The tests were carried out in the modified configuration of the CODEX facility. 19-rod electrically heated VVER type bundle was used. The test section was heated up to 600 deg. C in steam atmosphere and the bundle was quenched from the bottom by cold water. Three series of tests were performed: 1. Reference bundle with fuel rods without ballooning, with uniform power profile. 2. Bundle with 86% blockage rate and with uniform power profile. The blockage rate was reached by superimposing hollow sleeves on all 19 fuel rods. 3. Bundle with 86% blockage rate and with local power peak in the ballooned area. The local power peak was produced by the local reduction the cross section of the internal heater bar inside of the fuel rods. In all three bundle configurations three different cooling water flow-rates were applied. The experimental results confirmed that a VVER bundle with even 86% blockage rate remains coolable after a LOCA event. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. Earlier tests on the coolability of ballooned bundles were performed only with Western type bundles with square fuel lattice. The present test series was the first confirmation of the coolability of VVER type bundles with triangular lattice. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front. The first tests indicated that the effect of local power peak was less significant on the delay of cooling down than the effect of ballooning. (authors)

  7. Balloon dacryocystoplasty: Incomplete versus complete obstruction of the nasolacrimal system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min; Lee, Sang Hoon; Han, Young Min; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul [Chung Ang University College of Medicine, Seoul (Korea, Republic of); Song, Ho Young [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1993-07-15

    Balloon dilatation of nasolacrimal drainage apparatus was attempted for the treatment of stenoses or obstructures of the nasolacrimal system in 49 eyes of 41 consecutive patients with complete obstructions and 16 eyes of 14 patients with incomplete obstructions. These two groups were compared with regards to the effectiveness of balloon dacryocystoplasty. All patients suffered from severe epiphora had already undergone multiple probings. A 0.018 inch hair or ball guide wire was introduced through the superior punctum into the inferior meatus of the nasal cavity and pulled out through the nasal aperture using a hemostat under nasal endoscopy. A deflated angiography balloon catheter was then introduced in a retrograde direction and dilated under fluoroscopic control. No major complications occurred in any of the patients. At 7 days after balloon dilatation, 25 of 49 eyes with complete obstruction demonstrated improvement in epiphora (initial success rate: 51.0%) and among them 17 eyes showed complete resolution of symptoms. Reocclusion occurred in 12 of the 25 eyes with initial improvement at the 2 months follow up. For the 16 eyes with incomplete obstruction, and improvement of epiphora was attained in 11 eyes (initial success rate 68.8%): 5 of these eyes showed complete resolution of epiphora, and 3 was failed to maintain initial improvement at the 2 month follow up. Although this study demonstrate that results of balloon dacryocystoplasty are not encouraging because of the high failure and recurrence rate, balloon dacryocystoplasty is a simple and safe nonsurgical technique that can be used to treat for obstructions of the nasolacrimal system. In addition, balloon dacryocystoplasty shows better results in incomplete obstruction than in complete obstruction than complete obstruction of the nasolacrimal system.

  8. Development of a super-pressure balloon with a diamond-shaped net --- result of a ground inflation test of a 2,000 cubic-meter balloon ---

    Science.gov (United States)

    Saito, Yoshitaka; Nakashino, Kyoichi; Akita, Daisuke; Matsushima, Kiyoho; Shimadu, Shigeyuki; Goto, Ken; Hashimoto, Hiroyuki; Matsuo, Takuma

    2016-07-01

    A light super-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m^{3} balloon. Beginning from a demonstration test of the net-balloon with a 10 m^{3} balloon in 2010, we have been polished the net-balloon through ground inflation tests and flight tests, including a flight test of a 3,000 m ^{3} balloon in the tandem balloon configuration with a 15,000 m^{3} zero-pressure balloon in 2012, and a flight test of a 10 m^{3} balloon in the tandem balloon configuration with a 2 kg rubber balloon in 2013, as reported in the last COSPAR. In 2014, we developed a 5,000 m^{3} balloon and performed a ground inflation test to find that the balloon burst from a lip panel for termination with a differential pressure of 425 Pa. It was due to a stress concentration at the edge of a thick tape attached along the termination mechanism. In 2015, we modified the balloon by adding tapes on the lip panel to avoid the stress concentration, and also shorten the net length to leave some margin of the film and performed a ground inflation test again to find the balloon showed asymmetrical deployment and burst from the edge of the net with a differential pressure of 348 Pa. We consider it is due to the margin of the film along the circumferential direction, and proposed a gore shape which circumference length is kept as determined by the pumpkin shape of the balloon but setting meridian length longer than that. We developed a 10 m^{3} balloon with the gore design to find that the balloon deployed symmetrically and showed the burst pressure of 10,000 Pa. In 2016, we are going to develop a 2,000 m^{3} balloon with the gore design and perform its ground inflation test. In this paper, we are going to report its result with the sequence of the development.

  9. B-MINE, the balloon-borne microcalorimeter nuclear line explorer

    DEFF Research Database (Denmark)

    Silver, E; Schnopper, H; Jones, C

    2001-01-01

    introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band....... This combination provides a reduced background, an energy resolution of 50 eV and a 3sigma sensitivity in 10(6) s of 3.3 x 10(-7) ph cm(-2) s(-1) at 68 keV. During the course of a long duration balloon flight, B-MINE could carry out a detailed study of the Ti-44 emission line centroid and width in CAS A....

  10. B-MINE, the balloon-borne microcalorimeter nuclear line explorer

    DEFF Research Database (Denmark)

    Silver, E.; Schnopper, H.; Jones, C.

    2002-01-01

    introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band....... This combination provides a reduced background, an energy resolution of 50 eV and a 3σ sensitivity in 106 s of 3.3 × 10-7 ph cm-2 s-1 at 68 keV. During the course of a long duration balloon flight. B-MINE could carry out a detailed study of the 44Ti emission line centroid and width in CASA....

  11. B-MINE, the balloon-borne microcalorimeter nuclear line explorer

    DEFF Research Database (Denmark)

    Silver, E; Schnopper, H; Jones, C

    2001-01-01

    introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band....... This combination provides a reduced background, an energy resolution of 50 eV and a 3sigma sensitivity in 10(6) s of 3.3 x 10(-7) ph cm(-2) s(-1) at 68 keV. During the course of a long duration balloon flight, B-MINE could carry out a detailed study of the Ti-44 emission line centroid and width in CAS A....

  12. Material Properties Analysis of Structural Members in Pumpkin Balloons

    Science.gov (United States)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  13. Examining the whole bowel, double balloon enteroscopy:Indications, diagnostic yield and complications

    Institute of Scientific and Technical Information of China (English)

    Fatih Saygili; Saba Mukaddes Saygili; Erkin Oztas

    2015-01-01

    Double balloon enteroscopy (DBE) is an advanced typeof endoscopic procedure which brings the advantage ofreaching the whole small bowel using anterograde orthe retrograde route. This procedure is both diagnosticand interventional for a variety of small intestinaldiseases, such as vascular lesions, tumors, polypsand involvement of inflammatory bowel diseases.Main indication is the diagnosis and treatment ofmid-gastrointestinal bleeding according to the recentpublished data all over the world. The complicationrates seem to be higher than conventional proceduresbut growing experience is lowering them and improvingthe procedure to be safe and well tolerated. Thisreview is about the technique, indications, diagnosticimportance and complications of DBE according to theliterature growing since 2001.

  14. Design and characterization of TES bolometers and SQUID readout electronics for a balloon-borne application

    CERN Document Server

    Hubmayr, Johannes; Bissonnette, Eric; Dobbs, Matt; Hanany, Shaul; Lee, Adrian T; MacDermid, Kevin; Meng, Xiaofan; Sagiv, Ilan; Smecher, Graeme

    2009-01-01

    We present measurements of the electrical and thermal properties of new arrays of bolometeric detectors that were fabricated as part of a program to develop bolometers optimized for the low photon background of the EBEX balloon-borne experiment. An array consists of 140 spider-web transition edge sensor bolometers microfabricated on a 4" diameter silicon wafer. The designed average thermal conductance of bolometers on a proto-type array is 32 pW/K, and measurements are in good agreement with this value. The measurements are taken with newly developed, digital frequency domain multiplexer SQUID readout electronics.

  15. Ballooning osteolysis in 71 failed total ankle arthroplasties.

    Science.gov (United States)

    Singh, Gurpal; Reichard, Theresa; Hameister, Rita; Awiszus, Friedemann; Schenk, Katja; Feuerstein, Bernd; Roessner, Albert; Lohmann, Christoph

    2016-08-01

    Background and purpose - Aseptic loosening is a major cause of failure in total ankle arthroplasty (TAA). In contrast to other total joint replacements, large periarticular cysts (ballooning osteolysis) have frequently been observed in this context. We investigated periprosthetic tissue responses in failed TAA, and performed an element analysis of retrieved tissues in failed TAA. Patients and methods - The study cohort consisted of 71 patients undergoing revision surgery for failed TAA, all with hydroxyapatite-coated implants. In addition, 5 patients undergoing primary TAA served as a control group. Radiologically, patients were classified into those with ballooning osteolysis and those without, according to defined criteria. Histomorphometric, immunohistochemical, and elemental analysis of tissues was performed. Von Kossa staining and digital microscopy was performed on all tissue samples. Results - Patients without ballooning osteolysis showed a generally higher expression of lymphocytes, and CD3+, CD11c+, CD20+, and CD68+ cells in a perivascular distribution, compared to diffuse expression. The odds of having ballooning osteolysis was 300 times higher in patients with calcium content >0.5 mg/g in periprosthetic tissue than in patients with calcium content ≤0.5 mg/g (p < 0.001). Interpretation - There have been very few studies investigating the pathomechanisms of failed TAA and the cause-effect nature of ballooning osteolysis in this context. Our data suggest that the hydroxyapatite coating of the implant may be a contributory factor.

  16. Restenosis following balloon dilation of benign esophageal stenosis

    Institute of Scientific and Technical Information of China (English)

    Ying-Sheng Cheng; Ming-Hua Li; Ren-Jie Yang; Hui-Zhen Zhang; Zai-Xian Ding; Qi-Xin Zhuang; Zhi-Ming Jiang; Ke-Zhong Shang

    2003-01-01

    AIM: To elucidate the mechanism of restenosis following balloon dilation of benign esophageal stenosis.METHODS: A total of 49 rats with esophageal stenosis were induced in 70 rats using 5 ml of 50 % sodium hydroxide solution and the double-balloon method, and an esophageal restenosis (RS) model was developed by esophageal stenosis using dilation of a percutaneous transluminal coronary angioplasty (PTCA) balloon catheter. These 49 rats were divided into two groups: rats with benign esophageal stricture caused by chemical burn only (control group, n=21) and rats with their esophageal stricture treated with balloon catheter dilation (experimental group, n=28). Imaging analysis and immunohistochemistry were used for both quantitative and qualitative analyses of esophageal stenosis and RS formation in the rats, respectively.RESULTS: Cross-sectional areas and perimeters of the esophageal mucosa layer, muscle layer, and the entire esophageal layers increased significantly in the experimental group compared with the control group. Proliferating cell nuclear antigen (PCNA) was expressed on the 5th day after dilation, and was still present at 1 month. Fibronectin (FN)was expressed on the 1st day after dilation, and was still present at 1 month.CONCLUSION: Expression of PCNA and FN plays an important role in RS after balloon dilation of benign esophageal stenosis.

  17. Complexity Analysis of Balloon Drawing for Rooted Trees

    CERN Document Server

    Lin, Chun-Cheng; Poon, Sheung-Hung; Fan, Jia-Hao

    2010-01-01

    In a balloon drawing of a tree, all the children under the same parent are placed on the circumference of the circle centered at their parent, and the radius of the circle centered at each node along any path from the root reflects the number of descendants associated with the node. Among various styles of tree drawings reported in the literature, the balloon drawing enjoys a desirable feature of displaying tree structures in a rather balanced fashion. For each internal node in a balloon drawing, the ray from the node to each of its children divides the wedge accommodating the subtree rooted at the child into two sub-wedges. Depending on whether the two sub-wedge angles are required to be identical or not, a balloon drawing can further be divided into two types: even sub-wedge and uneven sub-wedge types. In the most general case, for any internal node in the tree there are two dimensions of freedom that affect the quality of a balloon drawing: (1) altering the order in which the children of the node appear in...

  18. Maternal outcomes after uterine balloon tamponade for postpartum hemorrhage.

    Science.gov (United States)

    Martin, Emmanuelle; Legendre, Guillaume; Bouet, Pierre-Emmanuel; Cheve, Marie-Therese; Multon, Olivier; Sentilhes, Loïc

    2015-04-01

    To evaluate maternal outcomes following uterine balloon tamponade in the management of postpartum hemorrhage. Retrospective case-series. Two French hospitals, a level 3 university referral center and a level 2 private hospital. All women who underwent balloon tamponade treatment for primary postpartum hemorrhage. Uterine tamponade was used after standard treatment of postpartum hemorrhage had failed. The study population was divided into two groups, successful cases where the bleeding stopped after the balloon tamponade, and failures requiring subsequent surgery or embolization. Success rates. Uterine tamponade was used in 49 women: 30 (61%) after vaginal delivery and 19 (39%) after cesarean section. Uterine atony was the main cause of hemorrhage (86%). The overall success rate was 65%. Of 17 failures, surgery was required in 16 cases, including hysterectomy in 11, and uterine artery embolization in one case. Demographic and obstetric characteristics did not differ significantly between the success and failure groups. No complications were directly attributed to the balloon tamponade in the postpartum period. Two women had a subsequent full-term pregnancy without recurrence of postpartum hemorrhage. Balloon tamponade is an effective, safe and readily available method for treating primary postpartum hemorrhage and could reduce the need for invasive procedures. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.

  19. Stratospheric balloons from Esrange - current and future capabilities

    Science.gov (United States)

    Norberg, O.

    Stratospheric balloon operations have been carried out at the Swedish Space Corporation's rocket, balloon and satellite operations base Esrange since 1974; approximately 550 stratospheric balloons have been launched during this period. The facility, located in northern Sweden at 68 degrees north, is fully equipped with a large launch pad, payload and flight train preparation hangars, telemetry stations, recovery helicopters, and supporting infrastructure. Many of the scientific balloons launched are CNES missions. This paper will present the possibilities for scientific and technical balloon missions at high latitudes and with a vast landing area in northern Sweden, Finland, and Russia. The proximity to the Arctic polar vortex makes Esrange an ideal base for studies of for example the ozone destruction process in the Arctic. A new option proposed by the Swedish Space Corporation and NASA is to perform week-long missions from the south of Sweden to western Canada. A newly developed line-of-sight telemetry system, E-LINK, for high bit-rates (> 2 Mbps both downlink and uplink) and based on the Ethernet communication standard is also described.

  20. Feasibility and mortality of airway balloon dilation in a live rabbit model.

    Science.gov (United States)

    Visaya, Jiovani M; Ward, Robert F; Modi, Vikash K

    2014-03-01

    Endoscopic balloon dilation is commonly performed in children with airway stenosis, but guidelines are needed for selecting safe and effective balloon inflation parameters. To determine the feasibility and safety of airway balloon dilation in live rabbits using a range of balloon diameters and pressures. Prospective animal study using 32 adult New Zealand white rabbits with 1-week follow-up performed at an academic animal research facility. Rabbits underwent endoscopic laryngeal balloon dilation with diameters ranging from 6 to 10 mm and pressures of 5 to 15 atm. Rabbits were observed for intraoperative complications and postoperative morbidity. All rabbit airways were sized to a 4-0 endotracheal tube (5.4-mm outer diameter). Balloon dilation was performed safely with no intraoperative complications in 25 of 30 cases. One rabbit developed transient cyanosis during balloon inflation. Three rabbits died while undergoing dilation with 10-mm balloons, and another rabbit developed respiratory failure shortly after the procedure. All rabbits that died perioperatively lacked endoscopic evidence of airway obstruction or gross trauma. Four rabbits developed postoperative feeding difficulties that did not correlate with balloon diameter or inflation pressure. Endoscopic balloon dilation is generally well tolerated in New Zealand white rabbits. Intraoperative mortality from cardiopulmonary arrest reaches 50% when the balloon diameter exceeds the airway diameter by 4.6 mm. Postoperative feeding difficulties may occur with any balloon diameter or inflation pressure. Additional animal studies are necessary to determine the short- and long-term histologic effects of balloon dilation on the airway.

  1. Voice prosthesis insertion after endoscopic balloon-catheter dilatation in case of a stenotic hypopharyngo-oesophageal junction.

    Science.gov (United States)

    Móricz, Péter; Gerlinger, Imre; Solt, Jeno; Somogyvári, Krisztina; Pytel, József

    2007-12-01

    Stenosis of the hypopharyngo-oesophageal junction can be a rare complication of laryngectomy and/or partial pharyngectomy and makes the insertion of voice prosthesis extremely difficult. This study describes the authors' experiences gained by endoscopic balloon-catheter dilatation of hypopharyngo-oesophageal stenoses prior to implantation of voice prostheses in four cases. In two patients a single balloon-catheter dilatation resulted in wide enough pharyngo-oesophageal lumen on the long run. The average prosthesis wearing-times were 6.8 months in case 1 and 4.6 months in case 2, corresponding to the published literature data. In case 3, repeated dilatation of the pharyngo-oesophageal transition had proved to be unsuccessful despite taking every effort with the endoscopic balloon-catheter method. Having excised the stenotic segment, reconstruction with pectoralis major myocutaneous flap (PMMF) was indicated. Eighteen months later, a repeated restenosis was observed and a free jejunal flap needed to be performed as a final solution. In case 4, the insertion was carried out into a previously dilated jejunal free flap, which became gradually ischemic and stenotic since the major head-and neck procedure was carried out that resulted in prosthesis rejection after just 1 week. The authors emphasize that correct indication of pedicled and free flaps in head and neck reconstruction is a prerequisite from the aspect of prevention of pharyngo-oesophageal strictures. Endoscopic balloon-catheter dilatation is a safe and established method for dilatating hypopharyngo-oesophageal stenoses of different origin. The procedure provides maximum patient benefit with minimal trauma and morbidity; moreover, facilitates insertion of voice prostheses. However, a single balloon-catheter dilatation cannot always result in wide enough oesophageal lumen on the long run (case 3). Insertion of a voice prosthesis into a previously dilated ischemic jejunal segment is challenging and avoidable due

  2. Design optimization of stent and its dilatation balloon using kriging surrogate model.

    Science.gov (United States)

    Li, Hongxia; Liu, Tao; Wang, Minjie; Zhao, Danyang; Qiao, Aike; Wang, Xue; Gu, Junfeng; Li, Zheng; Zhu, Bao

    2017-01-11

    Although stents have great success of treating cardiovascular disease, it actually undermined by the in-stent restenosis and their long-term fatigue failure. The geometry of stent affects its service performance and ultimately affects its fatigue life. Besides, improper length of balloon leads to transient mechanical injury to the vessel wall and in-stent restenosis. Conventional optimization method of stent and its dilatation balloon by comparing several designs and choosing the best one as the optimal design cannot find the global optimal design in the design space. In this study, an adaptive optimization method based on Kriging surrogate model was proposed to optimize the structure of stent and the length of stent dilatation balloon so as to prolong stent service life and improve the performance of stent. A finite element simulation based optimization method combing with Kriging surrogate model is proposed to optimize geometries of stent and length of stent dilatation balloon step by step. Kriging surrogate model coupled with design of experiment method is employed to construct the approximate functional relationship between optimization objectives and design variables. Modified rectangular grid is used to select initial training samples in the design space. Expected improvement function is used to balance the local and global searches to find the global optimal result. Finite element method is adopted to simulate the free expansion of balloon-expandable stent and the expansion of stent in stenotic artery. The well-known Goodman diagram was used for the fatigue life prediction of stent, while dogboning effect was used for stent expansion performance measurement. As the real design cases, diamond-shaped stent and sv-shaped stent were studied to demonstrate how the proposed method can be harnessed to design and refine stent fatigue life and expansion performance computationally. The fatigue life and expansion performance of both the diamond-shaped stent and sv

  3. NRL tethered balloon measurements at San Nicolas Island during FIRE IFO 1987

    Science.gov (United States)

    Gerber, Hermann; Gathman, Stuart; James, Jeffrey; Smith, Mike; Consterdine, Ian; Brandeki, Scott

    1990-01-01

    An overview is given of the tethered balloon measurements made during the First ISCCP Regional Experiment (FIRE) marine stratocumulus intensive field observations (IFO) at San Nicolas Island in 1987. The instrument utilized on the balloon flights, the 17 flights over a 10 day period, the state of the data analysis, and some preliminary results are described. A goal of the measurements with the Naval Research Laboratory (NRL) balloon was to give a unique and greatly improved look at the microphysics of the clear and cloud-topped boundary layer. For this goal, collocated measurements were made of turbulence, aerosol, cloud particles, and meteorology. Two new instruments which were expected to make significant contributions to this effort were the saturation hygrometer, capable of measuring 95 percent less than RH 105 percent (with an accuracy of 0.05 percent near 100 percent) and used for the first time in clouds; and the forward scatter meter which gives in situ LWC measurements at more than 10 Hz. The data set, while unfortunately only partially simultaneous with the bulk of the FIRE stratocumulus observations, is unique and worthwhile in its own right. For the first time accurate RH measurements near 100 percent have been made in-cloud; although, the use of the saturation hygrometer reflected a learning experience which will result is substantially better performance the next time. These measurements were made in conjunction with other microphysical measurements such as aerosol and cloud droplet spectra, and perhaps most important of all, they were all collocated with bivane turbulence measurements thus permitting flux calculations. Thus the analysis of this data set, which consisted of about 50 percent stratocumulus cases including increasing and decreasing partial cloud cover, should lead to new insights on the physical mechanisms which drive the boundary-layer/cloud/turbulence system.

  4. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G.; Pirre, M.; Robert, C. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B.; Louvet, Y.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C.C. [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y. [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D. [Reims Univ., 51 (France). Faculte des Sciences

    1997-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  5. Tokamak resistive magnetohydrodynamic ballooning instability in the negative shear regime

    Institute of Scientific and Technical Information of China (English)

    Shi Bing-Ren; Lin Jian-Long; Li Ji-Quan

    2007-01-01

    Improved confinement of tokamak plasma with central negative shear is checked against the resistive ballooning mode. In the negative shear regime, the plasma is always unstable for purely growing resistive ballooning mode. For a simplest tokamak equilibrium model, the s-α model, characteristics of this kind of instability are fully clarified by numerically solving the high n resistive magnetohydrodynamic ballooning eigen-equation. Dependences of the growth rate on the resistivity, the absolute shear value, the pressure gradient are scanned in detail. It is found that the growth rate is a monotonically increasing function of a while it is not sensitive to the changes of the shear s, the initial phase θ0 and the resistivity parameter εR.

  6. Ideal MHD Ballooning modes, shear flow and the stable continuum

    CERN Document Server

    Taylor, J B

    2012-01-01

    There is a well established theory of Ballooning modes in a toroidal plasma. The cornerstone of this is a local eigenvalue lambda on each magnetic surface - which also depends on the ballooning phase angle k. In stationary plasmas lambda(k) is required only near its maximum, but in rotating plasmas its average over k is required. Unfortunately in many case lambda(k) does not exist for some range of k, because the spectrum there contains only a stable continuum. This limits the application of the theory, and raises the important question of whether this "stable interval" gives rise to significant damping. This question is re-examined using a new, simplified, model - which leads to the conclusion that there is no appreciable damping at small shear flow. In particular, therefore, a small shear flow should not affect Ballooning mode stability boundaries.

  7. Ideal ballooning modes, shear flow and the stable continuum

    Science.gov (United States)

    Taylor, J. B.

    2012-11-01

    There is a well-established theory of ballooning modes in a toroidal plasma. The cornerstone of this is a local eigenvalue λ on each magnetic surface—which also depends on the ballooning phase angle k. In stationary plasmas, λ(k) is required only near its maximum, but in rotating plasmas its average over k is required. Unfortunately in many cases λ(k) does not exist for some range of k, because the spectrum there contains only a stable continuum. This limits the application of the theory, and raises the important question of whether this ‘stable interval’ gives rise to significant damping. This question is re-examined using a new, simplified, model—which leads to the conclusion that there is no appreciable damping at small shear flow. In particular, therefore, a small shear flow should not affect ballooning mode stability boundaries.

  8. Balloon vetebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures

    NARCIS (Netherlands)

    Verlaan, JJ; van Helden, WH; Oner, FC; Verbout, AJ; Dhert, WJA

    2002-01-01

    Study Design. A human cadaveric model was used to evaluate balloon vertebroplasty in traumatic vertebral fractures. Objectives. To assess the feasibility and safety of balloon vertebroplasty followed by calcium phosphate cement augmentation to prevent recurrent kyphosis. Summary of Background Data.

  9. To sail the skies of Mars - Scientific ballooning on the red planet

    Science.gov (United States)

    Gaidos, Eric J.; Burke, James D.

    1988-01-01

    Balloons represent a novel approach to exploring the surface of Mars. One promising aerostat system incorporates a solar-powered balloon as a means of generating diurnally varying lift and so can 'hop' across the surface, obtaining detailed information at a large number of sites. Two important areas of research and testing are underway on solar balloon technology and balloon payload design. The solar balloon concept has been demonstrated on earth, but more work is needed on a 'flyable' version for Mars. Particular attention must be paid to radiation heat transfer and aerodynamic effects. A special 'snake' payload concept has been demonstrated that allows for balloon system traverses of the surface and provides a usable instrument platform. A balloon system of this type could obtain unique surface imaging and physical and chemical data. The flight of the balloon also provides in situ atmospheric boundary-layer and circulation measurements.

  10. Matrix metalloproteinase inhibition reduces adventitial thickening and collagen accumulation following balloon dilation

    NARCIS (Netherlands)

    Sierevogel, MJ; Velema, E; van der Meer, FJ; Nijhuis, MO; de Kleijn, DPV; Borst, C; Pasterkamp, G

    2002-01-01

    Objective: Constrictive arterial remodeling following balloon angioplasty has been related to adventitial collagen accumulation and subsequent thickening and can be prevented by matrix ructalloprotemase (MMP) inhibition. Following balloon dilation, we examined the effect of MMP inhibition on colla-e

  11. Balloon vetebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures

    NARCIS (Netherlands)

    Verlaan, JJ; van Helden, WH; Oner, FC; Verbout, AJ; Dhert, WJA

    2002-01-01

    Study Design. A human cadaveric model was used to evaluate balloon vertebroplasty in traumatic vertebral fractures. Objectives. To assess the feasibility and safety of balloon vertebroplasty followed by calcium phosphate cement augmentation to prevent recurrent kyphosis. Summary of Background Data.

  12. 78 FR 17429 - Certain Balloon Dissection Devices and Products Containing Same; Commission Determination Not To...

    Science.gov (United States)

    2013-03-21

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Balloon Dissection Devices and Products Containing Same; Commission Determination Not To..., the importation, or sale in the United States after importation of certain balloon dissection devices...

  13. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along

  14. Paclitaxel-coated balloons - Survey of preclinical data.

    Science.gov (United States)

    Schnorr, B; Kelsch, B; Cremers, B; Clever, Y P; Speck, U; Scheller, B

    2010-10-01

    Restenosis following interventions in the coronary or peripheral arteries develops over weeks to months. In coronary arteries the restenosis rate has been markedly reduced since the advent of drug-eluting stents. Non-stent-based methods for local drug delivery enable restenosis inhibition without the need for stent implantation, does not permanently change the structure of the vessel, are repeatable, and seems to be applicable where drug-eluting stents provide insufficient protection. Preclinical data indicate that short exposure of the vessel wall to a lipophilic inhibitor of cell proliferation is sufficient for preventing restenosis. Initial evidence to this effect emerged from an investigation of paclitaxel embedded in a matrix that enhances the solubility and release of the agent from the balloon coating as well as its transfer to the vessel wall. Further corroborating data from preclinical and clinical studies demonstrating a reduction in late lumen loss and lower restenosis rates led to the market introduction of a variety of paclitaxel-coated angioplasty balloons. The effectiveness of restenosis inhibition is not determined by the active agent alone. Other factors that are crucial for the effectiveness and safety of drug-coated angioplasty balloons are the formulation containing the agent and the coating technique. In this review we first outline the development of paclitaxel-coated balloons to then provide an overview of the preclinical results obtained with different paclitaxel-coated balloons and finally compare these with the outcome in patients. The article concludes with a short outlook on initial results with a zotarolimus-coated angioplasty balloon.

  15. Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments.

    Science.gov (United States)

    Ro, Andrew J; Davé, Vipul

    2013-03-01

    Critical design attributes of angioplasty balloons include the following: tear resistance, high burst pressures, controlled compliance, and high fatigue. Balloons must have tear resistance and high burst pressures because a calcified stenosis can be hard and nominal pressures of up to 16 atm can be used to expand the balloon. The inflated balloon diameter must be a function of the inflation pressure, thus compliance is predictable and controlled. Reliable compliance is necessary to prevent damage to vessel walls, which may be caused by over-inflation. Balloons are often inflated multiple times in a clinical setting and they must be highly resistant to fatigue. These design attributes are dependent on the mechanical properties and polymer morphology of the balloon. The effects of residual stresses on shrinkage, crystallite orientation, balloon compliance, and mechanical properties were studied for angioplasty nylon 12 balloons. Residual stresses of these balloons were relieved by oven heat treatment and liquid CO2 exposure. Residual stresses were measured by quantifying shrinkage at 80 °C of excised balloon samples using a dynamic mechanical analyzer. Shrinkage was lower after oven heat treatment and liquid CO2 exposure compared to the as-received balloons, in the axial and radial directions. As-received, oven heat treated, and liquid CO2-exposed balloon samples exhibited similar thermal properties (T(g), T(m), X(t)). Crystallite orientation was not observed in the balloon cylindrical body using X-ray scattering and polarized light microscopy, which may be due to balloon fabrication conditions. Significant differences were not observed between the stress-strain curves, balloon compliance, and average burst pressures of the as-received, oven heat treated, and liquid CO2-exposed balloons.

  16. Simultaneous electric-field measurements on nearby balloons.

    Science.gov (United States)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  17. Balloon-expandable Metallic Stents for Airway Diseases.

    Science.gov (United States)

    Ohki, Takashi; Sugimoto, Seiichiro; Kurosaki, Takeshi; Otani, Shinji; Miyoshi, Kentaroh; Yamane, Masaomi; Miyoshi, Shinichiro; Oto, Takahiro

    2016-10-01

    Stent placement is an essential treatment for airway diseases. Although self-expandable metallic stents and silicone stents are commonly applied for the treatment of airway diseases, these stents are unsuitable for the treatment of small airway diseases encountered in pediatric patients and lung transplant recipients with airway complications. Currently, only vascular balloon-expandable metallic stents are available for the treatment of small airway diseases; however, little research has been conducted on the use of these stents in this field. We have launched a prospective feasibility study to clarify the safety and efficacy of balloon-expandable metallic stents for the treatment of airway diseases.

  18. Pulmonary Talco-silicosis in a Balloon Making Industry Worker

    Directory of Open Access Journals (Sweden)

    Manoj Waghmare

    2016-10-01

    Full Text Available We report a case of a thirty eight year old lady, working in balloon making industry. She was referred to us in view of incidental chest X-ray changes found during preoperative pulmonary evaluation. She was asymptomatic from respiratory point of view. Chest Xray was suggestive of bilateral reticulonodular opacities. HRCT thorax revealed interstitial lung disease. Spirometry was suggestive of restrictive abnormality. Subsequently the powder which patient used to instill in balloon before inflating was brought for analysis which revealed 32.73% silica. Hence diagnosis of talco-silicosis was made, in the absence of any other cause for lung involvement.

  19. Balloon-Borne System Would Aim Instrument Toward Sun

    Science.gov (United States)

    Polites, M. E.

    1992-01-01

    Proposed system including digital control computer, control sensors, and control actuators aims telescope or other balloon-borne instrument toward Sun. Pointing system and instrument flown on gondola, suspended from balloon. System includes reaction wheel, which applies azimuthal control torques to gondola, and torque motor to apply low-frequency azimuthal torques between gondola and cable. Three single-axis rate gyroscopes measure yaw, pitch, and roll. Inclinometer measures roll angle. Two-axis Sun sensor measures deviation, in yaw and pitch, of attitude of instrument from line to apparent center of Sun. System provides initial coarse pointing, then maintains fine pointing.

  20. Identification of the shape of the yarn balloon using MATHEMATICA

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J; Yu, W-d [College of Textiles, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620 (China); Chen, R-h [School of Textiles, Tianjin Polytechnic University, 63 Chenglinzhuang Road, Tianjin 300160 (China)], E-mail: wdyu@dhu.edu.cn

    2008-02-15

    The balloon of yarn in parallel spinning process is studied in this work. In parallel spinning process, a filament yarn was unwound from a package at high rotating speed and twisted on a staple core yarn to form the wrapped yarn. The forces acting on the unwinding yarn made the yarn move as a 3-D curve, which has a great influence on the quality of the final yarn. A nonlinear mathematical model is employed, and a computer software, MATHEMATICA, is applied to identification of the balloon shape and the distribution of the yarn tension.

  1. Emerging Stent and Balloon Technologies in the Femoropopliteal Arteries

    Directory of Open Access Journals (Sweden)

    Georgios Pastromas

    2014-01-01

    Full Text Available Endovascular procedures for the management of the superficial femoral (SFA and popliteal artery disease are increasingly common. Over the past decade, several stent technologies have been established which may offer new options for improved clinical outcomes. This paper reviews the current evidence for SFA and popliteal artery angioplasty and stenting, with a focus on randomized trials and registries of nitinol self-expanding stents, drug-eluting stents, dug-coated balloons, and covered stent-grafts. We also highlight the limitations of the currently available data and the future routes in peripheral arterial disease (PAD stent and balloon technology.

  2. How climate seasonality modifies drought duration and deficit

    NARCIS (Netherlands)

    Loon, van A.F.; Tijdeman, E.; Wanders, N.; Lanen, van H.A.J.; Teuling, A.J.; Uijlenhoet, R.

    2014-01-01

    Drought propagation through the terrestrial hydrological cycle is associated with a change in drought characteristics (duration and deficit), moving from precipitation via soil moisture to discharge. Here we investigate climate controls on drought propagation with a modeling experiment in 1271

  3. Voice attractiveness: Influence of stimulus duration and type

    National Research Council Canada - National Science Library

    Ferdenzi, C; Patel, S; Mehu-Blantar, I; Khidasheli, M; Sander, D; Delplanque, S

    2013-01-01

    .... Moreover, the type of voice stimulus varies from a single vowel to complex sentences. The aim of this experiment was to investigate the extent to which stimulus duration (nonmanipulated vs. normalized) and type (vowel vs. word...

  4. Stimulus Familiarity Modifies Perceived Duration in Prerecognition Visual Processing

    Science.gov (United States)

    Avant, Lloyd L.; Lyman, Paul J.

    1975-01-01

    Three experiments further explored the Avant, Lyman, and Antes finding that, during prerecognition processing, differences in subjects' familiarity with letters, words, and nonwords generate differences in the apparent duration of tachistoscopic flashes. (Editor)

  5. Synthesizing controllers from duration calculus

    DEFF Research Database (Denmark)

    Fränzle, Martin

    1996-01-01

    Duration Calculus is a logic for reasoning about requirements for real-time systems at a high level of abstraction from operational detail, which qualifies it as an interesting starting point for embedded controller design. Such a design activity is generally thought to aim at a control device...... the physical behaviours of which satisfy the requirements formula, i.e. the refinement relation between requirements and implementations is taken to be trajectory inclusion. Due to the abstractness of the vocabulary of Duration Calculus, trajectory inclusion between control requirements and controller designs...... for embedded controller design and exploit this fact for developing an automatic procedure for controller synthesis from specifications formalized in Duration Calculus. As far as we know, this is the first positive result concerning feasibility of automatic synthesis from dense-time Duration Calculus....

  6. LOG DURATION EMERGENCY OXYGEN BACKPACK.

    Science.gov (United States)

    A small backpack , for use by Naval aviators, containing a long duration emergency oxygen system and a separate humidifier for the aircraft’s oxygen supply, has been devised and a feasibility model built. (Author)

  7. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intra-aortic balloon and control system 870.3535... balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that... during certain life-threatening emergencies, and a control system for regulating the inflation and...

  8. Wave power absorption by a submerged balloon fixed to the sea bed

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Greaves, Deborah

    2016-01-01

    The possibility of absorbing wave energy using a submerged balloon fixed to the sea bed is investigated. The balloon is in the form of a fabric encased within an array of meridional tendons which terminate at a point at the top of the balloon and at some radius at the bottom. The expansion...

  9. Large bowel impaction by the BioEnterics Intragastric Balloon (BIB) necessitating surgical intervention.

    Science.gov (United States)

    Kim, W Y; Kirkpatrick, U J; Moody, A P; Wake, P N

    2000-05-01

    A case of large bowel impaction caused by migration of a BioEnterics Intragastric Balloon (BIB) is presented. The literature is reviewed regarding both the use and the complications inherent in such balloon devices. This is the first reported case of an intragastric balloon impacted in the colon 9 months after insertion.

  10. Hybrid Global Communication Architecture with Balloons and Satellites

    Science.gov (United States)

    Pignolet, G.; Celeste, A.; Erb, B.

    2002-01-01

    Global space communication systems have been developed now for more than three decades, based mainly on geostationary satellites or almost equivalent systems such as the Molnya orbit concepts. The last decade of the twentieth century has seen the emergence of satellite constellations in low or medium Earth orbit, in order to improve accessibility in terms of visibility at higher latitudes and limited size or power requirement for ground equipment. However such systems are complex to operate, there are still many situations where connection may remain difficult to achieve, and commercial benefits are still to be proven. A new concept, using a network combination of geostationary relay satellites and high altitude stratospheric platforms may well overcome the inconveniences of both geostationary systems and satellite constellations to improve greatly global communication in the future. The emergence of enabling technologies developed in Japan and in several other countries will soon make it possible to fly helium balloons in the upper layers of the atmosphere, at altitudes of 20 km or more. At such an altitude, well above the meteorological disturbances and the jet-streams, the stratosphere enjoys a regular wind at moderate speeds ranging between 10 m/s and 30 m/s, depending on latitude and also on season. It is possible for balloons powered by electric engines to fly non- stop upstream of the wind in order to remain stationary above a particular location. Large balloons, with sizes up to 300 m in length, would be able to carry sub-satellite communication payloads, as well as observation apparatus and scientific equipment. The range of visibility for easy both-way communication between the balloon and operators or customers on the ground could be as large as 200 km in radius. Most current studies consider a combination of solar cells and storage batteries to power the balloons, but microwave beam wireless power transportation from the ground could be a very

  11. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, D. E-mail: david@particle.kth.se; Boezio, M.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S.A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Castellano, M.; Ciacio, F.; Circella, M.; Marzo, C.D.C. De; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Bidoli, V.; Casolino, M.; Pascale, M.P.D.M.P. De; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Bravar, U.; Stochaj, S.J

    2001-05-01

    A RICH counter using a gas radiator of C{sub 4}F{sub 10} and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read out using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For {beta}{approx_equal}1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a {beta}{approx_equal}1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever used in a balloon-borne experiment capable of identifying charge one particles at energies above 5 GeV. The RICH provided an identification of cosmic ray antiprotons up to the highest energies ever studied (about 50 GeV of total energy). The spectrometer was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA.

  12. Preparation and characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Khairul Anwar A. [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland); School of Materials Engineering, Universiti Malaysia Perlis, Perlis (Malaysia); Farrell, Joseph B. [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland)

    2013-12-16

    With increased demands on catheter balloon functionality, there is an emphasis to blend new materials which can improve mechanical performance. Polymer nanocomposites were prepared by melt blending polyamide 11 (PA 11) with organically modified montmorillonite nanoclay. The effects of incorporating the nanoclay on the short-term mechanical properties of PA 11 were assessed using a design of experiments (DoEs) approach. X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis techniques (DMA) were used to characterise the morphology of the nanocomposites. Design of experiments studies revealed that the optimum nanocomposites properties can be achieved by carefully controlling the melt compounding parameters. XRD and TEM data proved that exfoliated clay morphologies existed within the matrix at low clay loading (2%). Whereas the interaction between the polymer matrix and nanoclay was quantified in the DMA spectra, showed a significant increase in storage modulus (up to 80%). The reinforcing effect of nanoclay within the PA 11 was further investigated using mechanical testing, where significant increases in the ultimate tensile strength and strain at break of reinforced tri-layer balloon tubing were observed. - Highlights: • TEM reveals the coexistence of exfoliated and intercalated nanostructures. • Isothermal crystallisation studies found that the nano-clays reduced the crystallisation time. • Significant increase in the storage modulus was due to the reinforcing effect of the nano-clay platelets. • It was observed that the activation energy values decreased due to the presence of nanoclay.

  13. High Energy Replicated Optics to Explore the Sun Balloon-Borne Telescope: Astrophysical Pointing

    Science.gov (United States)

    Gaskin, Jessica; Wilson-Hodge, Colleen; Ramsey, Brian; Apple, Jeff; Kurt, Dietz; Tennant, Allyn; Swartz, Douglas; Christe, Steven D.; Shih, Albert

    2014-01-01

    On September 21, 2013, the High Energy Replicated Optics to Explore the Sun, or HEROES, balloon-borne x-ray telescope launched from the Columbia Scientific Balloon Facility's site in Ft. Summer, NM. The flight lasted for approximately 27 hours and the observational targets included the Sun and astrophysical sources GRS 1915+105 and the Crab Nebula. Over the past year, the HEROES team upgraded the existing High Energy Replicated Optics (HERO) balloon-borne telescope to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES Project is a multi-NASA Center effort with team members at both Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), and is led by Co-PIs (one at each Center). The HEROES payload consists of the hard X-ray telescope HERO, developed at MSFC, combined with several new systems. To allow the HEROES telescope to make observations of the Sun, a new solar aspect system was added to supplement the existing star camera for fine pointing during both the day and night. A mechanical shutter was added to the star camera to protect it during solar observations and two alignment monitoring systems were added for improved pointing and post-flight data reconstruction. This mission was funded by the NASA HOPE (Hands-On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  14. Metallic stent placement in hemodialysis graft patients after insufficient balloon dilation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Huei-Lung; Pan, Huay-Ben; Lin, Yih-Huie; Chen, Chiung-Yu; Lai, Pin-Hong; Yang, Chien-Fang [Kaohsiung Veterans General Hospital, Kaohsiung (China); Chung, Hsiao-Min; Wu, Tung-Ho; Chou, Kang-Ju [National Yangming University, Taipei (China)

    2006-06-15

    We wanted to report our experience of metallic stent placement after insufficient balloon dilation in graft hemodialysis patients. Twenty-three patients (13 loop grafts in the forearm and 10 straight grafts in the upper arm) underwent metallic stent placement due to insufficient flow after urokinase thrombolysis and balloon dilation. The indications for metallic stent deployment included 1) recoil and/or kinked venous stenosis in 21 patents (venous anastomosis: 17 patients, peripheral outflow vein: four patients); and 2) major vascular rupture in two patients. Metallic stents 8-10mm in diameter and 40-80 mm in length were used. Of them, eight stents were deployed across the elbow crease. Access patency was determined by clinical follow-up and the overall rates were calculated by Kaplan-Meier survival analysis. No procedure-related complications (stent fracture or central migration) were encountered except for a delayed Wallstent shortening/migration at the venous anastomosis, which resulted in early access failure. The overall primary and secondary patency rates ({+-}standard error) of all the vascular accesses in our 23 patients at 3, 6, 12 and 24 months were 69%{+-}9 and 88%{+-}6,41% {+-}10 and 88%{+-}6, 30%{+-}10 and 77%{+-}10, and 12%{+-}8 and 61%{+-}13, respectively. For the forearm and upper-arm grafts, the primary and secondary patency rates were 51%{+-}16 and 86%{+-}13 vs 45%{+-}15 and 73%{+-}13 at 6 months, and 25%{+-}15 and 71%{+-}17 vs 23%{+-}17 and 73%{+-}13 at 12 months ({rho} = .436 and .224), respectively. Metallic stent placement is a safe and effective means for treating peripheral venous lesions in dialysis graft patients after insufficient balloon dilation. No statistically difference in the patency rates between the forearm and upper-arm patient groups was seen.

  15. Effect of fuel pin ballooning on the sub-channel thermal hydraulics during small break loca for Indian PHWRS

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, D.; Behera, G.H.; Bandopadhyay, S.K.; Gupta, S.K. [Bhabha Atomic Research Centre, Div. Reactor Safety, Bombay (India)

    2001-07-01

    Effect of fuel pin ballooning on the subchannel thermal-hydraulics during a small break (0.25%) located at the Reactor Inlet Feeder (RIF) has been studied for Indian PHWRs. The break leads to a low flow situation in the affected reactor channel along with delayed reactor trip. Higher power to flow ratio in the inner subchannels in comparison to outer subchannel of a 19 pin fuel bundle causes early 2-phase condition causing the flow to by pass from the inner ones to outer ones. This causes the fuel pins to experience different temperatures. Fuel pin ballooning causes reduction in the subchannel areas and further flow redistribution takes place. The transient subchannel thermal-hydraulic conditions along the reactor channel are very much different due to the power distribution and pressure drop. (authors)

  16. An automatic parachute release for high altitude scientific balloons

    Science.gov (United States)

    Field, Chris

    NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.

  17. Complications of flow-directed balloon-tipped catheters.

    Science.gov (United States)

    Smart, F W; Husserl, F E

    1990-01-01

    Acute or short-term complications following the use of flow-directed balloon-tipped catheters are well recognized. Long-term sequelae are rarely reported. We report herein an early complication of pulmonary arterial rupture with infarction followed by the delayed development of a pulmonary arterial aneurysm.

  18. Balloon dacryocystoplasty study in the management of adult epiphora.

    LENUS (Irish Health Repository)

    Fenton, S

    2012-02-03

    PURPOSE: To determine the efficacy of dacryocystoplasty with balloon dilation in the treatment of acquired obstruction of the nasolacrimal system in adults. METHODS: Balloon dacryocystoplasty was performed in 52 eyes of 42 patients under general anaesthetic. A Teflon-coated guidewire was introduced through the canaliculus and manipulated through the nasolacrimal system and out of the nasal aperture. A 4 mm wide 3 cm coronary angioplasty balloon catheter was threaded over the guidewire in a retrograde fashion and dilated at the site of obstruction. RESULTS: There was complete obstruction in 30% of cases and partial obstruction in 70%. The most common site of obstruction was the nasolacrimal duct. The procedure was technically successful in 94% of cases. The overall re-obstruction rate was 29% within 1 year of the procedure. There was an anatomical failure rate of 17% for partial obstruction and 69% for complete obstruction within 1 year. CONCLUSIONS: Balloon dacryocystoplasty has a high recurrence rate. There may be a limited role for this procedure in partial obstructions. Further refinements of the procedure are necessary before it can be offered as a comparable alternative to a standard surgical dacryocystorhinostomy.

  19. Balloon Angioplasty for Intracranial Atherosclerotic Disease: A Multicenter Study

    Science.gov (United States)

    Karanam, Lakshmi Sudha Prasanna; Sharma, Mukesh; Alurkar, Anand; Baddam, Sridhar Reddy; Pamidimukkala, Vijaya; Polavarapu, Raghavasarma

    2017-01-01

    Aim To evaluate the role and efficacy of the balloon angioplasty in intracranial atherosclerotic disease (ICAD) in patients who presented with acute stroke due to vessel occlusion and in patients with symptomatic disease despite optimum medical management. Methods From 2013 to 2016, a total of 39 patients (24 males and 15 females with a mean age of 64.5 years) underwent balloon angioplasty over a period of 2 years and 8 months in three different institutions in India. Maverick balloon catheter (Boston scientific) is used in all the patients. MRI brain with MR angiogram was done in all the patients prior to intervention. Twenty-three patients who had underlying severe ICAD presented with acute stroke due to vessel occlusion. Sixteen patients presented with symptomatic ICAD with recurrent ischemic attack due to the progressing underlying disease despite optimum medical management. Technical success, peri-procedural events, and clinical outcomes were documented for all the patients. Results Technical success (residual stenosis 90% of the patients. MR angiogram on follow-up of nine months was done in 26 patients, and none of them had restenosis. Conclusion Balloon angioplasty is a safe option and can be effectively used in patients of ICAD with acceptable risks and promising outcomes. PMID:28702117

  20. Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc

    2014-01-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792

  1. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  2. 28. Critical pulmonary valve stenosis: Medical management beyond balloon dilation

    Directory of Open Access Journals (Sweden)

    Muhammad Arif Khan

    2015-10-01

    Conclusion: Phentolamine and/or Captopril have a therapeutic role in neonates with critical PVS who remain oxygen dependent after balloon dilation. Both medicationslead to vasodilatation of pulmonary and systemic vascularity. They facilitate inflowto the right ventricle. Right to left shunt across a PFO or/ ASD minimizesand saturation improves leading to a significantreduction in length of hospitalization.

  3. Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis

    Science.gov (United States)

    Ferguson, Doug

    2016-01-01

    The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.

  4. Investigating obscure gastrointestinal bleeding : capsule endoscopy or double balloon enteroscopy?

    NARCIS (Netherlands)

    Westerhof, J.; Weersma, R. K.; Koornstra, J. J.

    2009-01-01

    The possibility to visualise the small bowel has dramatically improved with the introduction of capsule endoscopy (CE) and double balloon enteroscopy (DBE). CE and DBE have become standard practice in investigating suspected diseases of the small bowel. An important reason to perform small bowel inv

  5. Investigating obscure gastrointestinal bleeding : capsule endoscopy or double balloon enteroscopy?

    NARCIS (Netherlands)

    Westerhof, J.; Weersma, R. K.; Koornstra, J. J.

    2009-01-01

    The possibility to visualise the small bowel has dramatically improved with the introduction of capsule endoscopy (CE) and double balloon enteroscopy (DBE). CE and DBE have become standard practice in investigating suspected diseases of the small bowel. An important reason to perform small bowel

  6. 75 FR 77673 - National Environmental Policy Act: Scientific Balloon Program

    Science.gov (United States)

    2010-12-13

    ... SPACE ADMINISTRATION National Environmental Policy Act: Scientific Balloon Program AGENCY: National... the National Environmental Policy Act (NEPA) of 1969, as amended (42 U.S.C. 4321, et seq.); the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40...

  7. Latex micro-balloon pumping in centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Madou, Marc

    2014-03-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.

  8. Intrauterine balloon tamponade for the control of postpartum haemorrhage.

    Science.gov (United States)

    Lohano, Rajni; Haq, Gulfishan; Kazi, Sarah; Sheikh, Saima

    2016-01-01

    To evaluate the effectiveness of balloon temponade in the management of postpartum haemorrhage. The study was conducted at the Dow University of Health Sciences and Civil Hospital Karachi from January to July 18, 2012, and comprised women aged 18-35 years, parity 1-6 and gestational age 31-41 weeks, who developed or were admitted with primary postpartum haemorrhage due to uterine atony in whom medical treatment had failed. SPSS 10 was used to analyse the data. The mean age, parity, gestational age of 139 women was 26.4±4.2 years, 3.4±1.3, 37.81±1.67 respectively. Mean estimated blood loss was 1155.8±350.6 ml, mean systolic blood pressure 90.96±18.1 mmHg, diastolic blood pressure 55±7.5 mmHg and mean pulse was 108.3±10.89 bpm. Balloon tamponade was effective in 126(90.4%) cases. Condom catheter balloon tamponade was an effective means of controlling postpartum haemorrhage. There should be a low threshold for use of balloon tamponade as it is effective, easy to use, easily available, has low complication rate, and an inexpensive modality to manage non-traumatic postpartum haemorrhage, especially in resource-limited settings, and still maintain reproductive ability.

  9. Using Hydrogen Balloons to Display Metal Ion Spectra

    Science.gov (United States)

    Maynard, James H.

    2008-01-01

    We have optimized a procedure for igniting hydrogen-filled balloons containing metal salts to obtain the brightest possible flash while minimizing the quantity of airborne combustion products. We report air quality measurements in a lecture hall immediately after the demonstration. While we recommend that this demonstration be done outdoors or in…

  10. Balloon atrial septostomy under echocardiographic guide: case series

    Directory of Open Access Journals (Sweden)

    SM Meraji

    2012-12-01

    Full Text Available Background: Balloon atrial septostomy is an emergent procedure in pediatric cardiology. Nowadays, most patients in need of the procedure have acceptable outcomes after surgical repair. Thus, it is important to perform this procedure as safe as possible. By performing early arterial switch operation and prostaglandin infusion, the rate of balloon atrial septostomy has markedly decreased. However, not all centers performing early arterial switch repairs have abandoned atrial septostomy, even in patients who respond favorably to prostaglandin infusion.Case presentation: In total, eight 1- to 15-day old term neonates admitted in Shahid Rajaee Heart Center in Tehran, Iran from October 2009 to February 2011, with congenital heart diseases were scheduled for balloon atrial septostomy. In six cases the procedure was done exclusively under echocardiographic guidance and in two cases with the help of fluoroscopy. Success was defined as the creation of an atrial septal defect with a diameter equal to or more than 5 mm and ample mobility of its margins.Results: Male sex was predominant (87% and the mean age of the neonates was six days. The diagnosis in all cases was simple transposition of great arteries. The procedure was successful in all patients with any cardiovascular complication.Conclusion: Balloon atrial septostomy is an emergent procedure that can be done safely and effectively under echocardiographic guidance. According to the feasibility of this technique it could be performed fast, safe and effective at bedside, avoiding patient transportation to hemodynamic laboratory or referral center.

  11. The Micro-Instrumentation Package: A Solution to Lightweight Ballooning

    Science.gov (United States)

    Juneau, Jill

    This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit

  12. Angioplasty with drug coated balloons for the treatment of infrainguinal peripheral artery disease.

    Science.gov (United States)

    Werner, Martin

    2016-09-01

    Restenosis or re-occlusion after femoropopliteal angioplasty or stent implantation is the main limitation of endovascular treatment strategies for peripheral artery disease. Within the last years, balloon catheters with anti-proliferative drug coating on the balloon surface have shown to be associated with higher patency rates compared to plain balloon angioplasty. Thus, drug-coated balloons were gradually adopted in many interventional centres for the treatment of femoropopliteal obstructions. The current review summarises the existing evidence for drug-coated balloons in the infrainguinal vessels and their indication in special lesion cohorts.

  13. 球扩式主动脉瓣腔内置换术治疗五例主动脉瓣狭窄经验%Balloon-dilated endovascular replacement of aortic valve for severe aortic stenosis: preliminary experience in five cases

    Institute of Scientific and Technical Information of China (English)

    陆清声; 洪毅; 吴宏; 王志农; 李卫萍; 张勇学; 李南; 马宇; 秦永文

    2013-01-01

    Objective To discuss the feasibility of balloon-dilated endovascular replacement of aortic valve for the treatment of severe aortic stenosis. Methods Five patients with severe aortic stenosis were selected for this study. Preoperative evaluation of these patients' clinical conditions indicated that these five patients were unable to tolerate a traditional open cardiovascular surgery. Via femoral artery access balloon-dilated endovascular replacement of aortic valve was carried out in all the five patients. The results were analyzed. Results The procedure was accomplished via femoral artery access in all the five patients. In one patient the operation was successfully finished with the auxiliary help of trans - cardiac apex puncturing. Technical success was achieved in all the five patients. After the operation the functioning of the aortic valve was greatly improved. Neither complications nor death occurred in all patients. Conclusion Balloon-dilated endovascular replacement of aortic valve can be safely used for the treatment of severe aortic stenosis in Chinese patients, although more strict preoperative preparation, precise evaluation and careful management during operation are demanded.%目的 探讨球扩式主动脉瓣腔内置换术治疗严重主动脉瓣狭窄患者的可行性.方法 选取5例术前评估无法耐受传统开放手术的严重主动脉钙化狭窄患者,行经股动脉球扩式主动脉瓣腔内置换术.结果 5例均经股动脉完成,其中1例经心尖穿刺辅助完成,5例手术全部成功,术后患者主动脉瓣功能显著改善,无并发症,无死亡.结论 球扩式主动脉瓣腔内置换术可用于严重主动脉瓣狭窄患者,但在术前准备、评估、术中操作等方面提出了更高的要求.

  14. Presentation duration and false recall for semantic and phonological associates.

    Science.gov (United States)

    Ballardini, Nicole; Yamashita, Jill A; Wallace, William P

    2008-03-01

    Two experiments examined false recall for lists of semantically and phonologically associated words as a function of presentation duration. Veridical recall increased with long exposure durations for all lists. For semantically associated lists, false recall increased from 20-250 ms, then decreased. There was a high level of false recall with 20 ms durations for phonologically associated lists (47 and 44% for Experiments 1 and 2, respectively), which declined as duration increased. In Experiment 2, for lists presented at 20 and 50 ms rates, false recall given zero correct recall was observed frequently, suggesting that conscious recollection of studied words was not necessary for phonological false memory. Differences between phonologically and semantically associated lists were consistent with a feature integration model based on automatic initial processing of phonetic features of words.

  15. Cutting balloon angioplasty vs. conventional balloon angioplasty in patients receiving intracoronary brachytherapy for the treatment of in-stent restenosis.

    Science.gov (United States)

    Fasseas, Panayotis; Orford, James L; Lennon, Ryan; O'Neill, Jessica; Denktas, Ali E; Panetta, Carmelo J; Berger, Peter B; Holmes, David R

    2004-10-01

    The objective of this study was to evaluate the safety and efficacy of cutting balloon angioplasty (CBA) for the treatment of in-stent restenosis prior to intracoronary brachytherapy (ICB). Cutting balloon angioplasty may reduce the incidence of uncontrolled dissection requiring adjunctive stenting and may limit "melon seeding" and geographic miss in patients with in-stent restenosis who are subsequently treated with ICB. We performed a retrospective case-control analysis of 134 consecutive patients with in-stent restenosis who were treated with ICB preceded by either CBA or conventional balloon angioplasty. We identified 44 patients who underwent CBA and ICB, and 90 control patients who underwent conventional percutaneous transluminal coronary angioplasty (PTCA) and ICB for the treatment of in-stent restenosis. Adjunctive coronary stenting was performed in 13 patients (29.5%) in the CBA/ICB group and 41 patients (45.6%; P 0.05). Despite sound theoretical reasons why CBA may be better than conventional balloon angioplasty for treatment of in-stent restenosis with ICB, and despite a reduction in the need for adjunctive coronary stenting, we were unable to identify differences in clinical outcome.

  16. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease

    NARCIS (Netherlands)

    P.W.J.C. Serruys (Patrick); P.P.T. de Jaegere (Peter); F. Kiemeneij (Ferdinand); C.M. Miguel (Carlos); W.R. Rutsch (Wolfgang); G.R. Heyndrickx (Guy); H.U. Emanuelsson (Hakan); J. Marco (Jean); V.M.G. Legrand (Victor); P.H. Materne (Phillipe); J.A. Belardi (Jorge); U. Sigwart (Ulrich); A. Colombo (Antonio); J-J. Goy (Jean-Jacques); P.A. van den Heuvel (Paul); J. Delcan; M-A.M. Morel (Marie-Angèle)

    1994-01-01

    textabstractBalloon-expandable coronary-artery stents were developed to prevent coronary restenosis after coronary angioplasty. These devices hold coronary vessels open at sites that have been dilated. However, it is unknown whether stenting improves long-term angiographic and clinical outcomes as c

  17. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease.

    NARCIS (Netherlands)

    P.W.J.C. Serruys (Patrick); P.P.T. de Jaegere (Peter); F. Kiemeneij (Ferdinand); C.M. Miguel (Carlos); W.R. Rutsch (Wolfgang); G.R. Heyndrickx (Guy); H.U. Emanuelsson (Hakan); J. Marco (Jean); V.M.G. Legrand (Victor); P.H. Materne (Phillipe); J.A. Belardi (Jorge); U. Sigwart (Ulrich); A. Colombo (Antonio); J-J. Goy (Jean-Jacques); P. van den Heuvel; J. Delcan; M-A.M. Morel (Marie-Angèle)

    1994-01-01

    textabstractBACKGROUND. Balloon-expandable coronary-artery stents were developed to prevent coronary restenosis after coronary angioplasty. These devices hold coronary vessels open at sites that have been dilated. However, it is unknown whether stenting improves long-term angiographic and clinical o

  18. Impact of intra-aortic balloon counterpulsation with different balloon volumes on cardiac performance in humans.

    Science.gov (United States)

    Cohen, Marc; Fasseas, Panayotis; Singh, Varinder P; McBride, Ruth; Orford, James L; Kussmaul, William G

    2002-10-01

    Intra-aortic balloon (IAB) counterpulsation can augment the cardiac output. However, the effect of different IAB volumes on cardiac performance has not been adequately evaluated in humans. Eighty-two patients (52 males [63%]; mean age, 65 +/- 12 years; mean body surface area [BSA], 1.8 +/- 0.2 m(2)) had IAB counterpulsation for cardiogenic shock, refractory angina, and preoperatively for high-risk cardiac surgery. Cardiac hemodynamics were prospectively studied during IAB with inflation volumes of 32 vs. 40 cc. Hemodynamic data collected included aortic pressure, pulmonary artery pressure, systemic and mixed venous oxygen saturations, and cardiac output (by Fick). Transthoracic echocardiography (TTE) was used to obtain both velocity time integrals (VTIs) and the area of the left ventricular outflow tract (LVOT). Left ventricular stroke volume was then calculated as LVOT area x VTI. Cardiac output (CO) determined by the Fick method and VTI did not differ significantly (P = NS) between the two inflation volumes (y = 0.002 + 0.97x). In a subgroup of 33 patients with BSA

  19. Precise Pointing and Stabilization Performance for the Balloon-borne Imaging Testbed (BIT): 2015 Test Flight

    CERN Document Server

    Romualdez, L J; Damaren, C J; Galloway, M N; Hartley, J W; Li, L; Massey, R J; Netterfield, C B

    2016-01-01

    Balloon-borne astronomy offers an attractive option for experiments that require precise pointing and attitude stabilization, due to a large reduction in the atmospheric interference observed by ground-based systems as well as the low-cost and short development time-scale compared to space-borne systems. The Balloon-borne Imaging Testbed (BIT) is an instrument designed to meet the technological requirements of high precision astronomical missions and is a precursor to the development of a facility class instrument with capabilities similar to the Hubble Space Telescope. The attitude determination and control systems (ADCS) for BIT, the design, implementation, and analysis of which are the focus of this paper, compensate for compound pendulation effects and other sub-orbital disturbances in the stratosphere to within 1-2$^{\\prime\\prime}$ (rms), while back-end optics provide further image stabilization down to 0.05$^{\\prime\\prime}$ (not discussed here). During the inaugural test flight from Timmins, Canada in S...

  20. Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System

    Science.gov (United States)

    Borden, Michael; Lewis, Derek; Ochoa, Hared; Jones-Wilson, Laura; Susca, Sara; Porter, Michael; Massey, Richard; Clark, Paul; Netterfield, Barth

    2017-03-01

    The Subarcsecond Telescope And BaLloon Experiment, STABLE, is the fine stage of a guidance system for a high-altitude ballooning platform designed to demonstrate subarcsecond pointing stability over one minute using relatively dim guide stars in the visible spectrum. The STABLE system uses an attitude rate sensor and the motion of the guide star on a detector to control a Fast Steering Mirror to stabilize the image. The characteristics of the thermal-optical-mechanical elements in the system directly affect the quality of the point-spread function of the guide star on the detector, so a series of thermal, structural, and optical models were built to simulate system performance and ultimately inform the final pointing stability predictions. This paper describes the modeling techniques employed in each of these subsystems. The results from those models are discussed in detail, highlighting the development of the worst-case cold and hot cases, the optical metrics generated from the finite element model, and the expected STABLE residual wavefront error and decenter. Finally, the paper concludes with the predicted sensitivities in the STABLE system, which show that thermal deadbanding, structural pre-loading, and self-deflection under different loading conditions, and the speed of individual optical elements were particularly important to the resulting STABLE optical performance.