WorldWideScience

Sample records for durable muscle interface

  1. An artificial tendon with durable muscle interface.

    Science.gov (United States)

    Melvin, Alan; Litsky, Alan; Mayerson, Joel; Witte, David; Melvin, David; Juncosa-Melvin, Natalia

    2010-02-01

    A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler device to satisfy these demands. The objective of this study was to test OrthoCoupler's performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n = 4 each. For in vivo evaluation, the semitendinosus tendon was removed bilaterally in eight goats. Left sides were reattached with an OrthoCoupler, and right sides were reattached using the Krackow stitch with #5 braided polyester sutures. Specimens were harvested 60 days postsurgery and assigned for biomechanics and histology. Fatigue strength of the devices in vitro was several times the contractile force of the semitendinosus muscle. The in vivo devices were built equivalent to two of the in vitro devices, providing an additional safety factor. In strength testing at necropsy, suture controls pulled out at 120.5 +/- 68.3 N, whereas each OrthoCoupler was still holding after the muscle tore, remotely, at 298 +/- 111.3 N (mean +/- SD) (p < 0.0003). Muscle tear strength was reached with the fiber-muscle composite produced in healing still soundly intact. This technology may be of value for orthopaedic challenges in oncology, revision arthroplasty, tendon transfer, and sports-injury reconstruction. (c) 2009 Orthopaedic Research Society.

  2. Artificial muscle for reanimation of the paralyzed face: durability and biocompatibility in a gerbil model.

    Science.gov (United States)

    Ledgerwood, Levi G; Tinling, Steven; Senders, Craig; Wong-Foy, Annjoe; Prahlad, Harsha; Tollefson, Travis T

    2012-11-01

    Current management of permanent facial paralysis centers on nerve grafting and muscle transfer; however, limitations of those procedures call for other options. To determine the durability and biocompatibility of implanted artificial muscle in a gerbil model and the degree of inflammation and fibrosis at the host tissue-artificial muscle interface. Electroactive polymer artificial muscle (EPAM) devices engineered in medical-grade silicone were implanted subcutaneously in 13 gerbils. The implanted units were stimulated with 1 kV at 1 Hz, 24 h/d via a function generator. Electrical signal input/output was recorded up to 40 days after implantation. The animals were euthanized between 23 and 65 days after implantation, and the host tissue-implant interface was evaluated histologically. The animals tolerated implantation of the EPAM devices well, with no perioperative deaths. The muscle devices created motion for a mean of 30.3 days (range, 19-40 days), with a mean of 2.6 × 106 cycles (range, 1.6 × 106 to 3.5 × 106 cycles). Histologic examination of the explanted devices revealed the development of a minimal fibrous capsule surrounding the implants, with no evidence of bacterial infection or inflammatory infiltrate. No evidence of device compromise, corrosion, or silicone breakdown was noted. Artificial muscle implanted in this short-term animal model was safe and functional in this preliminary study. We believe that EPAM devices will be a safe and viable option for restoration of facial motions in patients with irreversible facial paralysis.

  3. Brain–muscle interface

    Indian Academy of Sciences (India)

    2011-05-16

    May 16, 2011 ... Clipboard: Brain–muscle interface: The next-generation BMI. Radhika Rajan Neeraj Jain ... Keywords. Assistive devices; brain–machine interface; motor cortex; paralysis; spinal cord injury ... Journal of Biosciences | News ...

  4. An Artificial Tendon with Durable Muscle Interface

    OpenAIRE

    Melvin, Alan; Litsky, Alan; Mayerson, Joel; Witte, David; Melvin, David; Juncosa-Melvin, Natalia

    2010-01-01

    A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler™ device to satisfy these demands. The objective of this study was to test OrthoCoupler’s performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n=4 each. For in vivo evaluation, the semit...

  5. Durability of polymer/metal interfaces under cyclic loading

    Science.gov (United States)

    Du, Tianbao

    Fatigue crack growth along metal/epoxy interface was examined in an aqueous environment and under mixed-mode conditions. A stress corrosion cracking mechanism was identified in this process. The fatigue crack growth rate in an aqueous environment was increased by several orders of magnitude and the fatigue threshold decreased by a factor of 10. The loss of adhesion in the aqueous environment was induced by the hydration of the surface oxide which resulted in a hydroxide with poor adhesion to the substrate metal. Self-assembled monolayer of long chain alkyl phosphonic acid and amino phosphonic acid were synthesized to enhance the adhesion and improve the durability of Al/epoxy interfacial bonding system. The same approach was taken to promote adhesion between copper and epoxy, where a two-component coupling system of 11-mercapto-1-undercanol and 3-aminopropyltriethoxysilane provided the most significant improvement in the copper/epoxy adhesion. The mixed-mode was applied by a piezoelectric actuator. Subcritical crack growth was observed along the epoxy/aluminum interface and the growth rate was found to depend on the magnitude of the applied electric field. Kinetics of the crack growth was correlated with the piezoelectric driving force. The resulting crack growth behavior was compared with the results from the conventional mechanical testing technique. Large differences were found between these two methods. Using this newly developed technique, effects of loading mode and frequency were studied. The fatigue resistance was found to increase with the mode II component and was expressed as a function of the KII/K I ratio. A strong frequency effect was observed for the subcritical crack growth along the Al/Epoxy interface, their fatigue resistance increased with the testing frequency.

  6. Brain-muscle-computer interface: mobile-phone prototype development and testing.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-07-01

    We report prototype development and testing of a new mobile-phone-based brain-muscle-computer interface for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single surface electromyography (sEMG) signal. EMG activity on the surface of a single face muscle site (auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone and digitized via an internal A/D converter. The digital signal is split, and then simultaneously filtered with two band-pass filters to extract total power within two separate frequency bands. The user-modulated power in each frequency band serves as two separate control channels for machine control. After signal processing, the Android phone sends commands to external devices via a Bluetooth interface. Users are trained to use the device via visually based operant conditioning, with simple cursor-to-target activities on the phone screen. The mobile-phone prototype interface is formally evaluated on a single advanced Spinal Muscle Atrophy subject, who has successfully used the interface in his home in evaluation trials and for remote control of a television. Development of this new device will not only guide future interface design for community use, but will also serve as an information technology bridge for in situ data collection to quantify human sEMG manipulation abilities for a relevant population.

  7. Multidimensional control using a mobile-phone based brain-muscle-computer interface.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-01-01

    Many well-known brain-computer interfaces measure signals at the brain, and then rely on the brain's ability to learn via operant conditioning in order to control objects in the environment. In our lab, we have been developing brain-muscle-computer interfaces, which measure signals at a single muscle and then rely on the brain's ability to learn neuromuscular skills via operant conditioning. Here, we report a new mobile-phone based brain-muscle-computer interface prototype for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single sEMG signal. Electromyographic activity on the surface of a single face muscle (Auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone. User-modulated power in two separate frequency band serves as two separate and simultaneous control channels for machine control. After signal processing, the Android phone sends commands to external devices via Bluetooth. Users are trained to use the device via biofeedback, with simple cursor-to-target activities on the phone screen.

  8. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.

    Science.gov (United States)

    Barszap, Alexander G; Skavhaug, Ida-Maria; Joshi, Sanjay S

    2016-10-01

    Electromyography-based human-computer interface development is an active field of research. However, knowledge on the effects of muscle fatigue for specific devices is limited. We have developed a novel myoelectric human-computer interface in which subjects continuously navigate a cursor to targets by manipulating a single surface electromyography (sEMG) signal. Two-dimensional control is achieved through simultaneous adjustments of power in two frequency bands through a series of dynamic low-level muscle contractions. Here, we investigate the potential effects of muscle fatigue during the use of our interface. In the first session, eight subjects completed 300 cursor-to-target trials without breaks; four using a wrist muscle and four using a head muscle. The wrist subjects returned for a second session in which a static fatiguing exercise took place at regular intervals in-between cursor-to-target trials. In the first session we observed no declines in performance as a function of use, even after the long period of use. In the second session, we observed clear changes in cursor trajectories, paired with a target-specific decrease in hit rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Durability of filament-wound composite flywheel rotors

    Science.gov (United States)

    Koyanagi, Jun

    2012-02-01

    This paper predicts the durability of two types of flywheels, one assumes to fail in the radial direction and the other assumes to fail in the circumferential direction. The flywheel failing in the radial direction is a conventional filament-wound composite flywheel and the one failing in the circumferential direction is a tailor-made type. The durability of the former is predicted by Micromechanics of Failure (MMF) (Ha et al. in J. Compos. Mater. 42:1873-1875, 2008), employing time-dependent matrix strength, and that of the latter is predicted by Simultaneous Fiber Failure (SFF) (Koyanagi et al. in J. Compos. Mater. 43:1901-1914, 2009), employing identical time-dependent matrix strength. The predicted durability of the latter is much greater than that of the former, depending on the interface strength. This study suggests that a relatively weak interface is necessary for high-durability composite flywheel fabrication.

  10. Methods for demonstration of enzyme activity in muscle fibres at the muscle/bone interface in demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1981-01-01

    A method for demonstration of activity for ATPase and various oxidative enzymes (succinic dehydrogenase, alpha-glycerophosphate dehydrogenase, and lactic dehydrogenase) in muscle/bone sections of fixed and demineralized tissue has been developed. It was found that it is possible to preserve...... considerable amounts of the above mentioned enzymes in the muscle fibres at the muscle/bone interfaces. The best results were obtained after 20 min fixation, and 2-3 weeks of storage in MgNa2EDTA containing media. As the same technique previously has been used to describe patterns of resorption and deposition...

  11. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface

    Directory of Open Access Journals (Sweden)

    Huang Stephanie

    2012-08-01

    Full Text Available Abstract Background Powered lower limb prostheses could be more functional if they had access to feedforward control signals from the user’s nervous system. Myoelectric signals are one potential control source. The purpose of this study was to determine if muscle activation signals could be recorded from residual lower limb muscles within the prosthetic socket-limb interface during walking. Methods We recorded surface electromyography from three lower leg muscles (tibilias anterior, gastrocnemius medial head, gastrocnemius lateral head and four upper leg muscles (vastus lateralis, rectus femoris, biceps femoris, and gluteus medius of 12 unilateral transtibial amputee subjects and 12 non-amputee subjects during treadmill walking at 0.7, 1.0, 1.3, and 1.6 m/s. Muscle signals were recorded from the amputated leg of amputee subjects and the right leg of control subjects. For amputee subjects, lower leg muscle signals were recorded from within the limb-socket interface and from muscles above the knee. We quantified differences in the muscle activation profile between amputee and control groups during treadmill walking using cross-correlation analyses. We also assessed the step-to-step inter-subject variability of these profiles by calculating variance-to-signal ratios. Results We found that amputee subjects demonstrated reliable muscle recruitment signals from residual lower leg muscles recorded within the prosthetic socket during walking, which were locked to particular phases of the gait cycle. However, muscle activation profile variability was higher for amputee subjects than for control subjects. Conclusion Robotic lower limb prostheses could use myoelectric signals recorded from surface electrodes within the socket-limb interface to derive feedforward commands from the amputee’s nervous system.

  12. Alterations in the muscle-to-capillary interface in patients with different degrees of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Abdel-Halim Samy M

    2010-07-01

    Full Text Available Abstract Background It is hypothesized that decreased capillarization of limb skeletal muscle is implicated in the decreased exercise tolerance in COPD patients. We have recently demonstrated decreased number of capillaries per muscle fibre (CAF but no changes in CAF in relation to fibre area (CAFA, which is based on the diffusion distance between the capillary and muscle fibre. The aim of the current study is to investigate the muscle-to-capillary interface which is an important factor involved in oxygen supply to the muscle that has previously been suggested to be a more sensitive marker for changes in the capillary bed compared to CAF and CAFA. Methods 23 COPD patients and 12 age-matched healthy subjects participated in the study. Muscle-to-capillary interface was assessed in muscle biopsies from the tibialis anterior muscle using the following parameters: 1 The capillary-to-fibre ratio (C:Fi which is defined as the sum of the fractional contributions of all capillary contacts around the fibre 2 The ratio between C:Fi and the fibre perimeter (CFPE-index 3 The ratio between length of capillary and fibre perimeter (LC/PF which is also referred to as the index of tortuosity. Exercise capacity was determined using the 6-min walking test. Results A positive correlation was found between CFPE-index and ascending disease severity with CFPE-index for type I fibres being significantly lower in patients with moderate and severe COPD. Furthermore, a positive correlation was observed between exercise capacity and CFPE-index for both type I and type IIa fibres. Conclusion It can be concluded that the muscle-to-capillary interface is disturbed in the tibialis anterior muscle in patients with COPD and that interface is strongly correlated to increased disease severity and to decreased exercise capacity in this patient group.

  13. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  14. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target?

    Science.gov (United States)

    SPENCER, Paulette; Jonggu PARK, Qiang YE; MISRA, Anil; BOHATY, Brenda S.; SINGH, Viraj; PARTHASARATHY, Ranga; SENE, Fábio; de Paiva GONÇALVES, Sérgio Eduardo; LAURENCE, Jennifer

    2013-01-01

    Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:24855586

  15. Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles.

    Science.gov (United States)

    Lee, Donghwa; Lee, Hyungjin; Jeong, Youngjun; Ahn, Yumi; Nam, Geonik; Lee, Youngu

    2016-11-01

    Highly sensitive, transparent, and durable pressure sensors are fabricated using sea-urchin-shaped metal nanoparticles and insulating polyurethane elastomer. The pressure sensors exhibit outstanding sensitivity (2.46 kPa -1 ), superior optical transmittance (84.8% at 550 nm), fast response/relaxation time (30 ms), and excellent operational durability. In addition, the pressure sensors successfully detect minute movements of human muscles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Creep Behavior and Durability of Cracked CMC

    Science.gov (United States)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  17. Artificial Muscle Kits for the Classroom

    Science.gov (United States)

    2004-01-01

    Commonly referred to as "artificial muscles," electroactive polymer (EAP) materials are lightweight strips of highly flexible plastic that bend or stretch when subjected to electric voltage. EAP materials may prove to be a substitution for conventional actuation components such as motors and gears. Since the materials behave similarly to biological muscles, this emerging technology has the potential to develop improved prosthetics and biologically-inspired robots, and may even one day replace damaged human muscles. The practical application of artificial muscles provides a challenge, however, since the material requires improved effectiveness and durability before it can fulfill its potential.

  18. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    Science.gov (United States)

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  19. Application of Kingview and PLC in friction durability test system

    Science.gov (United States)

    Gao, Yinhan; Cui, Jing; Yang, Kaiyu; Ke, Hui; Song, Bing

    2013-01-01

    Using PLC and Kingview software, a friction durability test system is designed. The overall program, hardware configuration, software structure and monitoring interface are described in detail. PLC ensures the stability of data acquisition, and the KingView software makes the HMI easy to manipulate. The practical application shows that the proposed system is cheap, economical and highly reliable.

  20. Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Siyuan, L.; Satyanarayana, N.; Kustandi, T.S.; Sinha, Sujeet K.

    2011-01-01

    At micro/nano-scale, friction force dominates at the interface between bodies moving in relative motion and severely affects their smooth operation. This effect limits the performance of microsystem devices such as micro-electro-mechanical systems (MEMS). In addition, friction force also leads to material removal or wear and thereby reduces the durability i.e. the useful operating life of the devices. In this work, we fabricated bio-inspired polymeric patterns for tribological applications. Inspired by the surface features on lotus leaves namely, the protuberances and wax, SU-8 polymeric films spin-coated on silicon wafers were topographically and chemically modified. For topographical modification, micro-scale patterns were fabricated using nanoimprint lithography and for chemical modification, the micro-patterns were coated with perfluoropolyether nanolubricant. Tribological investigation of the bio-inspired patterns revealed that the friction coefficients reduced significantly and the wear durability increased by several orders. In order to enhance the wear durability much further, the micro-patterns were exposed to argon/oxygen plasma and were subsequently coated with the perfluoropolyether nanolubricant. Bio-inspired patterns with enhanced wear durability, such as the ones investigated in the current work, have potential tribological applications in MEMS/Bio-MEMS actuator-based devices. Highlights: →Bio-inspired polymeric patterns for tribological applications in microsystems. →Novel surface modification for the patterns to enhance tribological properties. →Patterns show low friction properties and extremely high wear durability.

  1. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    Science.gov (United States)

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  2. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    Science.gov (United States)

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  3. Experimental Study on Durability Improvement of Fly Ash Concrete with Durability Improving Admixture

    OpenAIRE

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete,...

  4. Bio-inspired Hybrid Carbon Nanotube Muscles

    Science.gov (United States)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  5. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  6. Investigation of freeze/thaw durability in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Soo-Jin; Park, Gu-Gon; Sohn, Young-Jun; Yim, Sung-Dae; Yang, Tae-Hyun; Kim, Chang-Soo [Fuel Cell Research Center, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Park, Jin-Soo [Department of Environmental Engineering, College of Engineering, Sanmyung University, 300 Anseo-dong, Dongnam-gu, Cheonam, Chungnam Province 330-720 (Korea, Republic of); Hong, Bo Ki [Fuel Cell Vehicle Team 1, Ecotechnology Center, Hyundai-Kia Motors Company, 104, Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea, Republic of)

    2010-12-15

    This study aims to investigate the effect of different gas diffusion layers (GDLs) on freeze/thaw condition durability in polymer electrolyte fuel cells (PEFCs). Three kinds of GDLs-cloth, felt and paper type - with similar basic properties except thickness and bending stiffness were used. The changes in the properties and cell performance were investigated from the -30 to 70 C range of freeze/thaw cycles. The I-V performance degradation was observed to be negligible for the felt GDL whereas the cloth and paper GDLs showed a marked I-V performance loss. No distinctive correlation between the changes in electrochemical properties, such as active metal surface area, hydrogen crossover rates and decreased I-V performance, was observed except an increase in ohmic resistance revealed by ac-impedance spectroscopy. The physical destruction of electrodes was also shown by scanning electron microscope (SEM) analysis. The present study found that sufficient mechanical supporting force between the interfaces of materials enhances PEFC durability in sub-zero temperature conditions. (author)

  7. Durability of Silicate Glasses: An Historical Approach

    International Nuclear Information System (INIS)

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E. Jr.

    2007-01-01

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context

  8. Durability of Silicate Glasses: An Historical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Etcheverry, Marie-Pierre; /Marne la Vallee U.; Haddi, Amine; /Marne la Valle U.; Trocellier,; /Saclay; Curti, Enzo; /PSI, Villigen; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  9. The influence of adherent surface preparation on bond durability

    International Nuclear Information System (INIS)

    Rider, A.N.; Arnott, D.R.; Olsson-Jacques, C.L.

    1999-01-01

    Full text: One of the major factors limiting the use of adhesive bonding is the problem associated with the production of adhesive joints that can maintain their initial strength over long periods of time in hostile environments. It is well known that the adherent surface preparation method is critical to the formation of a durable adhesive bond. Work presented in this paper focuses on the critical aspects of the surface preparation of aluminium employed for the manufacture of aluminium-epoxy joints. The surface preparation procedure examined is currently employed by the RAAF for repairs requiring metal to adhesive bonding. The influence of each step in the surface preparation on the ultimate bond durability performance of the adhesive joint is examined by a combination of methods. Double cantilever wedge style adhesive joints are loaded in mode 1 opening and then exposed to a humid environment. X-ray photoelectron spectroscopy (XPS) and contact angle measurements of the aluminium adherent before bonding provides information about the adherent surface chemistry. XPS is also employed to analyse the surfaces of the bonded specimens post failure to establish the locus of fracture. This approach provides important information regarding the properties influencing bond durability as well as the bond failure mechanisms. A two step bond degradation model was developed to qualitatively describe the observed bond durability performance and fracture data. The first step involves controlled moisture ingress by stress induced microporosity of the adhesive in the interfacial region. The second step determines the locus of fracture through the relative dominance of one of three competitive processes, viz: oxide degradation, polymer desorption, or polymer degradation. A key element of the model is the control exercised over the interfacial microporosity by the combined interaction of stress and the relative densities of strong and weak linkages at the metal to adhesive interface

  10. A Tool for Balance Control Training Using Muscle Synergies and Multimodal Interfaces

    Directory of Open Access Journals (Sweden)

    D. Galeano

    2014-01-01

    Full Text Available Balance control plays a key role in neuromotor rehabilitation after stroke or spinal cord injuries. Computerized dynamic posturography (CDP is a classic technological tool to assess the status of balance control and to identify potential disorders. Despite the more accurate diagnosis generated by these tools, the current strategies to promote rehabilitation are still limited and do not take full advantage of the technologies available. This paper presents a novel balance training platform which combines a CDP device made from low-cost interfaces, such as the Nintendo Wii Balance Board and the Microsoft Kinect. In addition, it integrates a custom electrical stimulator that uses the concept of muscle synergies to promote natural interaction. The aim of the platform is to support the exploration of innovative multimodal therapies. Results include the technical validation of the platform using mediolateral and anteroposterior sways as basic balance training therapies.

  11. ON THE DURABILITY OF RESIN-DENTIN BONDS: IDENTIFYING THE WEAKEST LINKS

    Science.gov (United States)

    Zhang, Zihou; Beitzel, Dylan; Mutluay, Mustafa; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability. PMID:26169318

  12. Experimental study on durability improvement of fly ash concrete with durability improving admixture.

    Science.gov (United States)

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.

  13. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  14. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  15. Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer.

    Science.gov (United States)

    Sin, Dong Hun; Jo, Sae Byeok; Lee, Seung Goo; Ko, Hyomin; Kim, Min; Lee, Hansol; Cho, Kilwon

    2017-05-31

    A mechanically and thermally stable and electron-selective ZnO/CH 3 NH 3 PbI 3 interface is created via hybridization of a polar insulating polymer, poly(ethylene glycol) (PEG), into ZnO nanoparticles (NPs). PEG successfully passivates the oxygen defects on ZnO and prevents direct contact between CH 3 NH 3 PbI 3 and defects on ZnO. A uniform CH 3 NH 3 PbI 3 film is formed on a soft ZnO:PEG layer after dispersion of the residual stress from the volume expansion during CH 3 NH 3 PbI 3 conversion. PEG also increases the work of adhesion of the CH 3 NH 3 PbI 3 film on the ZnO:PEG layer and holds the CH 3 NH 3 PbI 3 film with hydrogen bonding. Furthermore, PEG tailors the interfacial electronic structure of ZnO, reducing the electron affinity of ZnO. As a result, a selective electron-collection cathode is formed with a reduced electron affinity and a deep-lying valence band of ZnO, which significantly enhances the carrier lifetime (473 μs) and photovoltaic performance (15.5%). The mechanically and electrically durable ZnO:PEG/CH 3 NH 3 PbI 3 interface maintains the sustainable performance of the solar cells over 1 year. A soft and durable cathodic interface via PEG hybridization in a ZnO layer is an effective strategy toward flexible electronics and commercialization of the perovskite solar cells.

  16. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  17. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  18. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  19. The steel–concrete interface

    DEFF Research Database (Denmark)

    Angst, Ueli M.; Geiker, Mette Rica; Michel, Alexander

    2017-01-01

    Although the steel–concrete interface (SCI) is widely recognized to influence the durability of reinforced concrete, a systematic overview and detailed documentation of the various aspects of the SCI are lacking. In this paper, we compiled a comprehensive list of possible local characteristics....... It was found that the SCI exhibits significant spatial inhomogeneity along and around as well as perpendicular to the reinforcing steel. The SCI can differ strongly between different engineering structures and also between different members within a structure; particular differences are expected between...

  20. Methods for histochemical demonstration of vascular structures at the muscle-bone interface from cryostate sections of demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S

    1981-01-01

    In tissue decalcified with MgNa2EDTA at a neutral pH activity for ATPase can used be for demonstration of the vascular structures at the muscle-bone interface. The GOMORI method for alkaline phosphatase is only of value, when fresh unfixed tissue is to be examined. The azo-dye method for alkaline...... phosphatase failed to give satisfactory results, and so did the alpha-amylase PAS method. 5'-nucleotidase activity is present in both capillaries and in cells lining the surfaces of bones, while larger blood vessels are poorly stained....

  1. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    Science.gov (United States)

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.

  2. Experimental Study on Bond Behavior of FRP-Concrete Interface in Hygrothermal Environment

    Directory of Open Access Journals (Sweden)

    X. H. Zheng

    2016-01-01

    Full Text Available As the technique of fiber-reinforced polymer (FRP composite material strengthened reinforced concrete structures is widely used in the field of civil engineering, durability of the strengthened structures has attracted more attention in recent years. Hygrothermal environment has an adverse effect on the bond behavior of the interface between FRP and concrete. This paper focuses on the bond durability of carbon fiber laminate- (CFL- concrete interface in hygrothermal condition which simulates the climate characteristic in South China. Twenty 100 mm × 100 mm × 720 mm specimens were divided into 6 groups based on different temperature and humidity. After pretreatment in hygrothermal environment, the specimens were tested using double shear method. Strain gauges bonded along the CFL surface and linear variation displacement transducers (LVDTs were used to measure longitudinal strains and slip of the interface. Failure mode, ultimate capacity, load-deflection relationship, and relative slip were analyzed. The bond behavior of FRP-concrete interface under hygrothermal environment was studied. Results show that the ultimate bearing capacity of the interface reduced after exposure to hygrothermal environments. The decreasing ranges were up to 27.9% after exposure at high temperature and humidity (60°C, 95% RH. The maximum strains (εmax of the specimens pretreated decreased obviously which indicated decay of the bond behavior after exposure to the hygrothermal environment.

  3. Durability Evaluation of Superconducting Magnets

    International Nuclear Information System (INIS)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-01-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application

  4. Durability Evaluation of Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  5. Interfacial durability and electrical properties of CNT or ITO/PVDF nanocomposites for self-sensor and micro actuator applications

    International Nuclear Information System (INIS)

    Park, Joung-Man; Gu, Ga-Young; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, K. Lawrence

    2013-01-01

    Interfacial durability and electrical properties of CNT (carbon nanotube) or ITO (indium tin oxide) coated PVDF (poly(vinylidene fluoride)) nanocomposites were investigated for self-sensor and micro-actuator applications. The electrical resistivity of nanocomposites and the durability of interfacial adhesion were measured using a four points method during cyclic fatigue loading. Although the CNT/PVDF nanocomposites exhibited lower electrical resistivity due to the inherently low resistivity of CNT, both composite types showed good self-sensing performance. The durability of the adhesion at the interface was also good for both CNT and ITO/PVDF nanocomposites. Static contact angle, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were determined as checks to verify the durability of the interfacial adhesion. The actuation performance of CNT or ITO coated PVDF specimens was determined through measurements of the induced displacement using a laser displacement sensor, while both the frequency and voltage were changed. The displacement of these actuated nanocomposites increased with increasing voltage and decreased with increasing frequency. CNT/PVDF nanocomposites exhibited better performance as self-sensors and micro-actuators than did ITO/PVDF nanocomposites.

  6. Integrated durability process in product development

    International Nuclear Information System (INIS)

    Pompetzki, M.; Saadetian, H.

    2002-01-01

    This presentation describes the integrated durability process in product development. Each of the major components of the integrated process are described along with a number of examples of how integrated durability assessment has been used in the ground vehicle industry. The durability process starts with the acquisition of loading information, either physically through loads measurement or virtually through multibody dynamics. The loading information is then processed and characterized for further analysis. Durability assessment was historically test based and completed through field or laboratory evaluation. Today, it is common that both the test and CAE environments are used together in durability assessment. Test based durability assessment is used for final design sign-off but is also critically important for correlating CAE models, in order to investigate design alternatives. There is also a major initiative today to integrate the individual components into a process, by linking applications and providing a framework to communicate information as well as manage all the data involved in the entire process. Although a single process is presented, the details of the process can vary significantly for different products and applications. Recent applications that highlight different parts of the durability process are given. As well as an example of how integration of software tools between different disciplines (MBD, FE and fatigue) not only simplifies the process, but also significantly improves it. (author)

  7. Tiling as a Durable Abstraction for Parallelism and Data Locality

    Energy Technology Data Exchange (ETDEWEB)

    Unat, Didem [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Cy P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Weiqun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shalf, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-11-18

    Tiling is a useful loop transformation for expressing parallelism and data locality. Automated tiling transformations that preserve data-locality are increasingly important due to hardware trends towards massive parallelism and the increasing costs of data movement relative to the cost of computing. We propose TiDA as a durable tiling abstraction that centralizes parameterized tiling information within array data types with minimal changes to the source code. The data layout information can be used by the compiler and runtime to automatically manage parallelism, optimize data locality, and schedule tasks intelligently. In this study, we present the design features and early interface of TiDA along with some preliminary results.

  8. The Muscle Sensor for on-site neuroscience lectures to pave the way for a better understanding of brain-machine-interface research.

    Science.gov (United States)

    Koizumi, Amane; Nagata, Osamu; Togawa, Morio; Sazi, Toshiyuki

    2014-01-01

    Neuroscience is an expanding field of science to investigate enigmas of brain and human body function. However, the majority of the public have never had the chance to learn the basics of neuroscience and new knowledge from advanced neuroscience research through hands-on experience. Here, we report that we produced the Muscle Sensor, a simplified electromyography, to promote educational understanding in neuroscience. The Muscle Sensor can detect myoelectric potentials which are filtered and processed as 3-V pulse signals to shine a light bulb and emit beep sounds. With this educational tool, we delivered "On-Site Neuroscience Lectures" in Japanese junior-high schools to facilitate hands-on experience of neuroscientific electrophysiology and to connect their text-book knowledge to advanced neuroscience researches. On-site neuroscience lectures with the Muscle Sensor pave the way for a better understanding of the basics of neuroscience and the latest topics such as how brain-machine-interface technology could help patients with disabilities such as spinal cord injuries. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Hygrothermal Behavior, Building Pathology and Durability

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  10. Monetary Policy with Sectoral Linkages and Durable Goods

    DEFF Research Database (Denmark)

    Petrella, Ivan; Rossi, Raffaele; Santoro, Emiliano

    We study the normative implications of a New Keynesian model featuring intersectoral trade of intermediate goods between two sectors that produce durables and non-durables. The interplay between durability and sectoral production linkages fundamentally alters the intersectoral stabilization trade....... Aggregating durable and non-durable inflation depending on the relative degrees of sectoral price stickiness may induce a severe bias. Input materials attenuate the response of sectoral inflations to movements in the real marginal costs, so that the effective slopes of the sectoral supply schedules...

  11. A novel electrical model of nerve and muscle using Pspice

    CERN Document Server

    Peasgood, W; Lam, C K; Armstrong, A G; Wood, W

    2003-01-01

    In this work, a model is developed to simulate the biological processes involved in nerve fibre transmission and subsequent muscle contraction. The model has been based on approximating biological structure and function to electrical circuits and as such was implemented on an electronics simulation software package called Pspice. Models of nerve, the nerve-muscle interface and muscle fibre have been implemented. The time dependent ionic properties of the nerve and muscle membranes have been simulated using the Hodgkin-Huxley equations and for the muscle fibre, the implementation of the Huxley sliding filament theory for muscular contraction. The results show that nerve may be considered as a fractal transmission line and that the amplitude of the nerve membrane depolarization is dependent on the dimensions of the fibre. Additionally, simulation of the nerve-muscle interface allows the fractal nerve model to be connected to the muscle fibre model and it is shown that a two sarcomere molecular simulation can pr...

  12. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  13. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  14. Robust Brain-Computer Interfaces

    NARCIS (Netherlands)

    Reuderink, B.

    2011-01-01

    A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Current BCIs aimed at patients require that the user invests weeks, or even months, to learn the skill to intentionally modify their brain

  15. Towards a durability test for washing-machines.

    Science.gov (United States)

    Stamminger, Rainer; Tecchio, Paolo; Ardente, Fulvio; Mathieux, Fabrice; Niestrath, Phoebe

    2018-04-01

    Durability plays a key role in enhancing resource conservation and contributing to waste minimization. The washing-machine product group represents a relevant case study for the development of a durability test and as a potential trigger to systematically address durability in the design of products. We developed a procedure to test the durability performance of washing-machines as a main objective of this research. The research method consisted of an analysis of available durability standards and procedures to test products and components, followed by an analysis of relevant references related to frequent failures. Finally, we defined the criteria and the conditions for a repeatable, relatively fast and relevant endurance test. The durability test considered the whole product tested under conditions of stress. A series of spinning cycles with fixed imbalanced loads was run on two washing-machines to observe failures and performance changes during the test. Even though no hard failures occurred, results clearly showed that not all washing-machines can sustain such a test without abrasion or performance deterioration. However, the attempt to reproduce the stress induced on a washing-machine by carrying out a high number of pure spinning cycles with fixed loads did not allow equal testing conditions: the actions of the control procedure regarding imbalanced loads differ from machine to machine. The outcomes of this research can be used as grounds to develop standardised durability tests and to, hence, contribute to the development of future product policy measures.

  16. Analysis of polymer/oxide interfaces under ambient conditions - An experimental perspective

    Science.gov (United States)

    González-Orive, A.; Giner, I.; de los Arcos, T.; Keller, A.; Grundmeier, G.

    2018-06-01

    In many different hybrid materials and materials composites polymers adhere to bulk oxides or oxide covered metal. The formed polymer/oxide interfaces are of crucial importance for the functionality and durability of such complex materials. Especially, under humid and corrosive conditions such interfaces tend to degrade due to permeability of polymers for water, the high adsorption energy of water on oxide surfaces and even corrosion processes of the metal. Different experimental studies considered such interfaces ranging from spectroscopy to electrochemical analysis. However, it is still a challenge to understand the complex interaction especially under non-ideal ambient conditions. The perspective article presents an overview on the existing experimental approaches and considers most recent experimental developments with regard to their potential applications in the area of polymer/oxide interfaces in the future.

  17. Muscle Sensor Model Using Small Scale Optical Device for Pattern Recognitions

    Directory of Open Access Journals (Sweden)

    Kreangsak Tamee

    2013-01-01

    Full Text Available A new sensor system for measuring contraction and relaxation of muscles by using a PANDA ring resonator is proposed. The small scale optical device is designed and configured to perform the coupling effects between the changes in optical device phase shift and human facial muscle movement, which can be used to form the relationship between optical phase shift and muscle movement. By using the Optiwave and MATLAB programs, the results obtained have shown that the measurement of the contraction and relaxation of muscles can be obtained after the muscle movements, in which the unique pattern of individual muscle movement from facial expression can be established. The obtained simulation results, that is, interference signal patterns, can be used to form the various pattern recognitions, which are useful for the human machine interface and the human computer interface application and discussed in detail.

  18. Stretchable carbon nanotube/ion-gel supercapacitors with high durability realized through interfacial microroughness.

    Science.gov (United States)

    Lee, Jiho; Kim, Wonbin; Kim, Woong

    2014-08-27

    A critical problem with stretchable supercapacitors developed to date has been evaporation of a volatile component of their electrolyte, causing failure. In this work, we demonstrated successful use of an ionic-liquid-based nonvolatile gel (ion-gel) electrolyte in carbon nanotube (CNT)-based stretchable supercapacitors. The CNT/ion-gel supercapacitors showed high capacitance retention (96.6%) over 3000 stretch cycles at 20% strain. The high durability against stretch cycles was achieved by introducing microroughness at the interfaces between different materials. The microroughness was produced by the simple process of imprinting the surface microstructure of office paper onto a poly(dimethylsiloxane) substrate; the surface texture is reproduced in successive current collector and CNT layers. Adhesion between the different layers was strengthened by this roughness and prevented delamination over repeated stretch cycles. The addition of a CNT layer decreased the sensitivity of electrical characteristics to stretching. Moreover, the ion-gel increases the operating voltage window (3 V) and hence the energy density. We believe our demonstration will greatly contribute to the development of flexible and/or stretchable energy-storage devices with high durability.

  19. Engineering Musculoskeletal Tissue Interfaces

    Directory of Open Access Journals (Sweden)

    Ece Bayrak

    2018-04-01

    Full Text Available Tissue engineering aims to bring together biomaterials, cells, and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that mimic the complex structural and functional features of tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet, and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

  20. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  1. Rapid plasma treatment of polyimide for improved adhesive and durable copper film deposition

    International Nuclear Information System (INIS)

    Usami, Kenji; Ishijima, Tatsuo; Toyoda, Hirotaka

    2012-01-01

    To improve adhesion at the interface between Cupper (Cu) and polyimide (PI) layers, a PI film surface was treated with a microwave-excited plasma. The Ar/N 2 plasma treatment improved the Cu adhesion force to 10 N/cm even for PI substrates with absorbed water. A dramatic improvement of the adhesion durability was achieved by depositing a thin carbon film (C) on the PI substrate as an interlayer between PI and Cu using a microwave plasma followed by treatment with the Ar/N 2 plasma prior to the Cu deposition. After a 20-h accelerated aging test, the reduction of the adhesion force for the resulting Cu/C/PI sample was only 10%, whereas that for the Cu/PI sample was 55%. To gain insight into the film properties, the interface between the Cu and PI film was investigated by X-ray photoelectron spectroscopy.

  2. Characterization of C/SiC Ceramic Matrix Composites (CMCs) with Novel Interface Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne F.; Kiser, J. Douglas; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate aerospace materials due to their high specific strength, low density and high temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites consist of high-strength carbon fibers and a high modulus, oxidation resistant matrix. For RLV propulsion applications, environmental durability will be critical. Two types of carbon fibers were processed with both standard (pyrolytic carbon) and novel (multilayer and pseudoporous) types of interface coatings as part of a study investigating various combinations of constituents. The benefit of protecting the composites with a surface sealant was also investigated. The strengths, durability in oxidizing environments, and microstructures of these developmental composite materials are presented. The novel interface coatings and the surface sealant show promise for protecting the carbon fibers from the oxidizing environment.

  3. Sustainability and durability analysis of reinforced concrete structures

    Science.gov (United States)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  4. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  5. Smart and green interfaces: From single bubbles/drops to industrial environmental and biomedical applications

    NARCIS (Netherlands)

    Dutschk, Victoria; Karapantsios, T.; Liggieri, L.; McMillan, N.; Miller, R.; Starov, V.M.

    2014-01-01

    Interfaces can be called Smart and Green (S&G) when tailored such that the required technologies can be implemented with high efficiency, adaptability and selectivity. At the same time they also have to be eco-friendly, i.e. products must be biodegradable, reusable or simply more durable. Bubble and

  6. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  7. Reliability and durability in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-10-01

    The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)

  8. Durability as integral characteristic of concrete

    Science.gov (United States)

    Suleymanova, L. A.; Pogorelova, I. A.; Suleymanov, K. A.; Kirilenko, S. V.; Marushko, M. V.

    2018-03-01

    The carried-out research provides insight into the internal bonds energy in material as the basis of its durability, deformability, integrity and resistance to different factors (combined effects of external loadings and (or) environment), into the limits of technical possibilities, durability and physical reality of the process of concrete deterioration, which allows designing reliable and cost-effective ferroconcrete constructions for different purposes.

  9. Increase of cyclic durability of pressure vessels

    International Nuclear Information System (INIS)

    Vorona, V.A.; Zvezdin, Yu.I.

    1980-01-01

    The durability of multilayer pressure vessels under cyclic loading is compared with single-layer vessels. The relative conditional durability is calculated taking into account the assumption on the consequent destruction of layers and viewing a vessel wall as an indefinite plate. It is established that the durability is mainly determined by the number of layers and to a lesser degree depends on the relative size of the defect for the given layer thickness. The advantage of the multilayer vessels is the possibility of selecting layer materials so that to exclude the effect of agressive corrosion media on the strength [ru

  10. Durability of capital goods: taxes and market structure

    Energy Technology Data Exchange (ETDEWEB)

    Raviv, A [Carnegie-Mellon Univ., Pittsburgh; Zemel, E

    1977-04-01

    This paper examines the durability of capital goods produced under different market structures when tax considerations are included. Since investment tax credit and depreciation allowances are realized by the owner of the durable good, the durability of products produced by an industry which sells its output differs from that of an industry which rents. For each of these two commercial forms, both monopolistic and competitive market structure are considered. Potential gains from different forms of regulation are discussed.

  11. Broadband Prosthetic Interfaces: Combining Nerve Transfers and Implantable Multichannel EMG Technology to Decode Spinal Motor Neuron Activity

    Directory of Open Access Journals (Sweden)

    Konstantin D. Bergmeister

    2017-07-01

    Full Text Available Modern robotic hands/upper limbs may replace multiple degrees of freedom of extremity function. However, their intuitive use requires a high number of control signals, which current man-machine interfaces do not provide. Here, we discuss a broadband control interface that combines targeted muscle reinnervation, implantable multichannel electromyographic sensors, and advanced decoding to address the increasing capabilities of modern robotic limbs. With targeted muscle reinnervation, nerves that have lost their targets due to an amputation are surgically transferred to residual stump muscles to increase the number of intuitive prosthetic control signals. This surgery re-establishes a nerve-muscle connection that is used for sensing nerve activity with myoelectric interfaces. Moreover, the nerve transfer determines neurophysiological effects, such as muscular hyper-reinnervation and cortical reafferentation that can be exploited by the myoelectric interface. Modern implantable multichannel EMG sensors provide signals from which it is possible to disentangle the behavior of single motor neurons. Recent studies have shown that the neural drive to muscles can be decoded from these signals and thereby the user's intention can be reliably estimated. By combining these concepts in chronic implants and embedded electronics, we believe that it is in principle possible to establish a broadband man-machine interface, with specific applications in prosthesis control. This perspective illustrates this concept, based on combining advanced surgical techniques with recording hardware and processing algorithms. Here we describe the scientific evidence for this concept, current state of investigations, challenges, and alternative approaches to improve current prosthetic interfaces.

  12. Electrochemically deposited conducting polymers for reliable biomedical interfacing materials: Formulation, mechanical characterization, and failure analysis

    Science.gov (United States)

    Qu, Jing

    Conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. These polymers provide an improved interface compared to metal and semiconducting electrodes because of their ionic conductivity, relatively lower stiffness, and ability to incorporate biological molecules. Even though the signal transfer and biocompatibility of conjugated polymers are superior compared as the biointerfacing materials, the durability has been the weakest part for the long-term applications. Even though some efforts have been made to improve the durability of conjugated polymers, little quantitative information of the improved cohesion, adhesion and durability has been reported. In this thesis, the methods of improving the durability of conjugated polymer films, especially PEDOT, were investigated, including alternating the processing methods and components in synthesis. The 7-month in vivo testing showed that the durability of PEDOT films still needed to be improved. As a coating for biosignal transfer, the cohesion, adhesion and electrochemical stability of PEDOT are vital to determine the long-term performance. Not much information hd been developed around the cohesion and adhesion. A thin film cracking method was developed to measure the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effectiveness of crosslinker and adhesion promoter was demonstrated by this method. It was shown that 5 mole% addition of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). With the modification of EDOT-acid to the surface of stainless steel

  13. Pyramiding for Resistance Durability: Theory and Practice.

    Science.gov (United States)

    Mundt, Chris

    2018-04-12

    Durable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impact durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual. Interestingly, published examples of the successful use of pyramids in the traditional sense are rare. In contrast, most published descriptions of durable pyramids in practice are for cereal rusts, and tend to indicate an association between durability and cultivars combining major R-genes with incompletely expressed, adult plant resistance genes. Pyramids have been investigated experimentally for a diversity of pathogens, and many reduce disease levels below that of the single best gene. Resistance gene combinations have been identified through phenotypic reactions, molecular markers, and challenge against effector genes. As resistance genes do not express equally in all genetic backgrounds, however, a combination of genetic information and phenotypic analyses provide the ideal scenario for testing of putative pyramids. Not all resistance genes contribute equally to pyramids, and approaches have been suggested to identify the best genes and combinations of genes for inclusion. Combining multiple resistance genes into a single plant genotype quickly is a challenge that is being addressed through alternative breeding approaches, as well as through genomics tools such as resistance gene cassettes and gene editing. Experimental and modeling tests of pyramid durability are in their infancy, but have promise to help direct future studies of pyramids. Several areas for further work on resistance gene pyramids are suggested.

  14. Surface chemistry and durability of borosilicate glass

    International Nuclear Information System (INIS)

    Carroll, S.A.; Bourcier, W.L.; Phillips, B.L.

    1994-01-01

    Important glass-water interactions are poorly understood for borosilicate glass radioactive waste forms. Preliminary results show that glass durability is dependent on reactions occurring at the glass-solution interface. CSG glass (18.2 wt. % Na 2 O, 5.97 wt. % CaO, 11.68 wt. % Al 2 O 3 , 8.43 wt. % B 2 O 3 , and 55.73 wt. % SiO 2 ) dissolution and net surface H + and OH - adsorption are minimal at near neutral pH. In the acid and alkaline pH regions, CSG glass dissolution rates are proportional to [H + ] adsorbed 2 and [OH - ] adsorbed 0.8 , respectively. In contrast, silica gel dissolution and net H + and OH - adsorption are minimal and independent of pH in acid to neutral solutions. In the alkaline pH region, silica gel dissolution is proportional to [OH - ] adsorbed 0.9 adsorbed . Although Na adsorption is significant for CSG glass and silica gel in the alkaline pH regions, it is not clear if it enhances dissolution, or is an artifact of depolymerization of the framework bonds

  15. The influence of humidity on strengths and durability of light guides fibers

    International Nuclear Information System (INIS)

    Karimov, S.N.; Kuksenko, V.S.; Sultonov, U.; Abdumanonov, A.; Shamsidinov, M.I.

    1993-01-01

    Humidity influence on durability and light water durability fibres is studied are studied in this article. Humidity energy under influence of process destruction decreases activity, durability and durability decreases is shown

  16. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  17. Durable Glass For Thousands Of Years

    International Nuclear Information System (INIS)

    Jantzen, C.

    2009-01-01

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al 3+ rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  18. DURABLE GLASS FOR THOUSANDS OF YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  19. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  20. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    Science.gov (United States)

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational

  1. Multi-factor Effects on the Durability of Recycle Aggregate Concrete

    Science.gov (United States)

    Ma, Huan; Cui, Yu-Li; Zhu, Wen-Yu; Xie, Xian-Jie

    2016-05-01

    Recycled Aggregate Concrete (RAC) was prepared with different recycled aggregate replacement ratio, 0, 30%, 70% and 100% respectively. The performances of RAC were examined by the freeze-thaw cycle, carbonization and sulfate attack to assess the durability. Results show that test sequence has different effects on the durability of RAC; the durability is poorer when carbonation experiment was carried out firstly, and then other experiment was carried out again; the durability is better when recycled aggregate replacement ratio is 70%.

  2. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study.

    Science.gov (United States)

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-10-25

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the "Florida Secundaria" high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable).

  3. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Graciela Guerrero

    2016-10-01

    Full Text Available This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the “Florida Secundaria” high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable.

  4. DURABILITY OF FLEXIBLE PAVEMENTS: A CASE STUDY OF ...

    African Journals Online (AJOL)

    user

    years, ranking, predominant factors affecting pavement durability and the estimate of durability. In this regard .... subgrade soil into the base course and provide the drainage of ..... [3] Oguara T. M. “A management model for road infrastructure ...

  5. Durability of air lime mortar

    DEFF Research Database (Denmark)

    Nielsen, Anders

    2016-01-01

    This contribution deals with the physical and chemical reasons why pure air lime mortars used in masonry of burned bricks exposed to outdoor climate have shown to be durable from the Middle Ages to our days. This sounds strange in modern times where pure air lime mortars are regarded as weak...... materials, which are omitted from standards for new masonry buildings, where use of hydraulic binders is prescribed. The reasons for the durability seam to be two: 1. The old mortars have high lime contents. 2. The carbonation process creates a pore structure with a fine pored outer layer and coarser pores...

  6. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  7. Testing the durability of concrete with neutron radiography

    International Nuclear Information System (INIS)

    Beer, F.C. de; Le Roux, J.J.; Kearsley, E.P.

    2005-01-01

    The ability of concrete to withstand the penetration of liquid and oxygen can be described as the durability of concrete. The durability of concrete, can in turn, be quantified by certain characteristics of the concrete such as the porosity, sorptivity and permeability. The quantification of neutron radiography images of concrete structures and, therefore, the determination of concrete characteristics validate conventional measurements. This study compares the neutron radiography capability to obtain quantitative data for porosity and sorptivity in concrete to laboratory or conventional measurements. The effects that water to cement ratio and curing time have on the durability of concrete are investigated

  8. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  9. A structural bond strength model for glass durability

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Metzger, T.B.

    1996-01-01

    A glass durability model, structural bond strength (SBS) model was developed to correlate glass durability with its composition. This model assumes that the strengths of the bonds between cations and oxygens and the structural roles of the individual elements in the glass arc the predominant factors controlling the composition dependence of the chemical durability of glasses. The structural roles of oxides in glass are classified as network formers, network breakers, and intermediates. The structural roles of the oxides depend upon glass composition and the redox state of oxides. Al 2 O 3 , ZrO 2 , Fe 2 O 3 , and B 2 O 3 are assigned as network formers only when there are sufficient alkalis to bind with these oxides. CaO can also improve durability by sharing non-bridging oxygen with alkalis, relieving SiO 2 from alkalis. The percolation phenomenon in glass is also taken into account. The SBS model is applied to correlate the 7-day product consistency test durability of 42 low-level waste glasses with their composition with an R 2 of 0.87, which is better than 0.81 obtained with an eight-coefficient empirical first-order mixture model on the same data set

  10. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes

    Science.gov (United States)

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-01-01

    Current commercial polymer membranes have shown high performance and durability in water treatment, converting poor quality waters to higher quality suitable for drinking, agriculture and recycling. However, to extend the treatment into more challenging water sources containing abrasive particles, micro and ultrafiltration membranes with enhanced physical durability are highly desirable. This review summarises the current limits of the existing polymeric membranes to treat harsh water sources, followed by the development of nanocomposite poly(vinylidene fluoride) (PVDF) membranes for improved physical durability. Various types of nanofillers including nanoparticles, carbon nanotubes (CNT) and nanoclays were evaluated for their effect on flux, fouling resistance, mechanical strength and abrasion resistance on PVDF membranes. The mechanisms of abrasive wear and how the more durable materials provide resistance was also explored. PMID:24957121

  11. Improving the Friction Durability of Magnetic Head-Disk Interfaces by Thin Lubricant Films

    Directory of Open Access Journals (Sweden)

    Shojiro Miyake

    2016-01-01

    Full Text Available Nanowear and viscoelasticity were evaluated to study the nanotribological properties of lubricant films of Z-tetraol, D-4OH, and A20H, including their retention and replenishment properties. For A20H and thick Z-tetraol-coated disks, the disk surface partially protrudes, and the phase lag (tan⁡δ increases with friction. This result is consistent with replenishment of the lubricant upon tip sliding. For the D-4OH-coated disk, the tan⁡δ value decreases with tip sliding, similar to the case for the unlubricated disk. The durability of the lubricant-coated magnetic disks was then evaluated by load increase and decrease friction tests. The friction force of the unlubricated disk rapidly increases after approximately 30 reciprocating cycles, regardless of the load. The lubrication state can be estimated by mapping the dependence of friction coefficient on the reciprocating cycle number and load. The friction coefficient can be classified into one of four areas. The lowest friction area constitutes fluid lubrication. The second area constitutes the transition to mixed lubrication. The third area constitutes boundary lubrication. The highest friction of the fourth area results from surface fracture. The boundary lubricating area of the A20H lubricant was wide, because of its good retention and replenishment properties.

  12. Adjustment of muscle function to flight in bats; Komori no kinkino no hiko eno tekio

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, M. [Institute of the Space and Astronautical Science,Tokyo (Japan); Choi, I.H.

    1999-12-05

    This paper outlines the muscle of bats that generates a motive force for flight. The weight of the muscle is less compared with that of birds. The energy required for flight is twice as much as that for running. Conversely, in view of metabolic cost (transporting cost) for moving a unit mass for a unit distance, the transporting cost of bats for flying is one fifth. The acquisition of this flight ability through evolution can be inferred from the fossils of reptiles. Bats, having a stream-lined body shape and a small body mass, are capable of efficient flight. A fast durable flight is possible by having the pectoral muscle constituted of speed muscles of oxidation/glycolysis muscle fiber, a well-developed oxygen transporting system, the arrangement around the capillary of mitochondria and fat grains that are cell organs for producing energy, and a high-density contact between the capillary and the muscle fiber. The muscle functions at low body temperature and imparts adaptability to hibernation with the body temperature lowered. The flight is controlled by the cycle and synchronized with this biological clock, optical cycle and change in temperature. (NEDO)

  13. Effect of glass composition on waste form durability: A critical review

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Mazer, J.J.; Ebert, W.L.

    1994-11-01

    This report reviews literature concerning the relationship between the composition and durability of silicate glasses, particularly glasses proposed for immobilization of radioactive waste. Standard procedures used to perform durability tests are reviewed. It is shown that tests in which a low-surface area sample is brought into contact with a very large volume of solution provide the most accurate measure of the intrinsic durability of a glass composition, whereas high-surface area/low-solution volume tests are a better measure of the response of a glass to changes in solution chemistry induced by a buildup of glass corrosion products. The structural chemistry of silicate and borosilicate glasses is reviewed to identify those components with the strongest cation-anion bonds. A number of examples are discussed in which two or more cations engage in mutual bonding interactions that result in minima or maxima in the rheologic and thermodynamic properties of the glasses at or near particular optimal compositions. It is shown that in simple glass-forming systems such interactions generally enhance the durability of glasses. Moreover, it is shown that experimental results obtained for simple systems can be used to account for durability rankings of much more complex waste glass compositions. Models that purport to predict the rate of corrosion of glasses in short-term durability tests are evaluated using a database of short-term durability test results for a large set of glass compositions. The predictions of these models correlate with the measured durabilities of the glasses when considered in large groupings, but no model evaluated in this review provides accurate estimates of durability for individual glass compositions. Use of these models in long-term durability models is discussed. 230 refs

  14. A generalized definition for waste form durability

    International Nuclear Information System (INIS)

    Fanning, T. H.; Bauer, T. H.; Morris, E. E.; Wigeland, R. A.

    2002-01-01

    When evaluating waste form performance, the term ''durability'' often appears in casual discourse, but in the technical literature, the focus is often on waste form ''degradation'' in terms of mass lost per unit area per unit time. Waste form degradation plays a key role in developing models of the long-term performance in a repository environment, but other factors also influence waste form performance. These include waste form geometry; density, porosity, and cracking; the presence of cladding; in-package chemistry feedback; etc. The paper proposes a formal definition of waste form ''durability'' which accounts for these effects. Examples from simple systems as well as from complex models used in the Total System Performance Assessment of Yucca Mountain are provided. The application of ''durability'' in the selection of bounding models is also discussed

  15. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  16. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  17. Effect of Unprofessional Supervision on Durability of Buildings.

    Science.gov (United States)

    Yahaghi, Javad

    2018-02-01

    The durability of buildings which depends on the nature of the supervisory system used in their construction is an important feature of the construction industry. This article tries to draw the readers' attention to the effect of untrained and unprofessional building supervisors and their unethical performance on the durability of buildings.

  18. Durability analysis of gneiss using wear resistance

    Directory of Open Access Journals (Sweden)

    José Luiz Ernandes Dias Filho

    2014-01-01

    Full Text Available This paper presents a study conducted in gneiss in Santo Antonio de Pádua, RJ, BR, including durability analysis of the rock using slake durability test. Rocks in the region of Pádua are mostly used for ornamental purposes. A lab equipment was developed to evaluate the influence of rotation in the test, allowing for the speed variation of 7 RPM to 238 RPM. This study could be implemented in a wide variety of rock materials, targeting them according to their lifetime in the project. With variation of the wear levels, increasing weight loss was observed until the inertia moment in which the sample holds to the machine wall. The results indicate an increase in linear mass loss. These procedures allow a more precise analysis of durability than can be applied in different different regions of the world.

  19. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Science.gov (United States)

    Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach

    2017-01-01

    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...

  20. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...

  1. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...

  2. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids

    Science.gov (United States)

    Saharan, Lokesh; Tadesse, Yonas

    2016-04-01

    This paper presents a biomimetic, lightweight, 3D printed and customizable robotic hand with locking mechanism consisting of Twisted and Coiled Polymer (TCP) muscles based on nylon precursor fibers as artificial muscles. Previously, we have presented a small-sized biomimetic hand using nylon based artificial muscles and fishing line muscles as actuators. The current study focuses on an adult-sized prosthetic hand with improved design and a position/force locking system. Energy efficiency is always a matter of concern to make compact, lightweight, durable and cost effective devices. In natural human hand, if we keep holding objects for long time, we get tired because of continuous use of energy for keeping the fingers in certain positions. Similarly, in prosthetic hands we also need to provide energy continuously to artificial muscles to hold the object for a certain period of time, which is certainly not energy efficient. In this work we, describe the design of the robotic hand and locking mechanism along with the experimental results on the performance of the locking mechanism.

  3. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  4. Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Study

    DEFF Research Database (Denmark)

    Hu, Qiang; Colmenares Rausseo, Luis César; Martinez, Umberto

    2015-01-01

    a combined computational and experimental study. It was found that Sb-dopant atoms prefer to segregate toward the ATO/Pt interface. The deposited Pt catalysts, interestingly, not only promote Sb segregation, but also suppress the occurrence of Sb3+ species, a charge carrier neutralizer at the interface...... to support future applications of ATO/Pt-based materials as possible cathodes for PEMFC applications with enhanced durability under practical applications....

  5. Evaluation of the Mechanical Durability of the Egyptian Machine Readable Booklet Passport

    Directory of Open Access Journals (Sweden)

    Ahmed Mahmoud Yosri

    2013-12-01

    Full Text Available In 2008 the first Egyptian booklet Machine Readable Passport/ MRP has been issued and its security and informative standard quality levels were proved in a research published in 2011. Here the durability profiles of the Egyptian MRP have been evaluated. Seven mechanical durability tests were applied on the Egyptian MRP. Such tests are specified in the International Civil Aviation Organization / ICAO standard requirements documents. These seven very severe durability tests resulted in that the Egyptian MRP has achieved better & higher results than the values detected in ICAO-Doc N0232: Durability of Machine Readable Passports - Version: 3.2. Hence, this research had proved the complete conformance between the Egyptian MRP mechanical durability profiles to the international requirements. The Egyptian booklet MRP doesn’t need any obligatory modification concerning its mechanical durability profiles.

  6. International Conference on Durability of Critical Infrastructure

    CERN Document Server

    Cherepetskaya, Elena; Pospichal, Vaclav

    2017-01-01

    This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.

  7. ACCELERATED METHODS FOR ESTIMATING THE DURABILITY OF PLAIN BEARINGS

    Directory of Open Access Journals (Sweden)

    Myron Czerniec

    2014-09-01

    Full Text Available The paper presents methods for determining the durability of slide bearings. The developed methods enhance the calculation process by even 100000 times, compared to the accurate solution obtained with the generalized cumulative model of wear. The paper determines the accuracy of results for estimating the durability of bearings depending on the size of blocks of constant conditions of contact interaction between the shaft with small out-of-roundedness and the bush with a circular contour. The paper gives an approximate dependence for determining accurate durability using either a more accurate or an additional method.

  8. Temperature induced effects on the durability of MR fluids

    International Nuclear Information System (INIS)

    Wiehe, A; Maas, J; Kieburg, C

    2013-01-01

    Although commercial MR fluids exist for quite some time now and the feasibility as well as the advantages of the MR technology have been demonstrated for several applications by a variety of MR actuator prototypes, a sustainable market break-through of brake and clutch applications utilizing the shear mode is still missing. Essential impediments are the marginal knowledge about the durability of the MR technology. To overcome this situation, a long-term measurement system was developed for the durability analysis of MR fluid formulations within a technical relevant scale with respect to the volume of MR fluid and the transmitted torque. The focus of the presented series of measurements is given to the analysis of temperature induced effects on the durability. In this context four different failure indicators can be distinguished, namely an apparent negative viscosity, deviations in torque data obtained from different measurements as well as a pressure increase and a drop in the on-state torque. The measurement data of the present durability experiments indicate a significant dependency of the attainable energy intake density on the temperature. The aim of such durability tests is to establish a reliable data base for the industry to estimate the life-time of MR devices.

  9. Bases for extrapolating materials durability in fuel storage pools

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at ∼ 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage

  10. Intrahousehold Bargaining and the Demand for Consumer Durables in Brazil

    OpenAIRE

    Polato e Fava, Ana Claudia; Arends-Kuenning, Mary P.

    2013-01-01

    In Brazil, wives do most of the household work. About sixty percent of them also work outside the household, working a total of about 10 hours more per week than men. Because of this unequal distribution of household work, husbands and wives might have different priorities regarding the purchase of durable goods. Although both husbands and wives enjoy entertainment durable goods, wives might have a relative preference for household-production durable goods such as washing machines over entert...

  11. The household decision making process in replacement of durable goods

    OpenAIRE

    Marell Molander, Agneta

    1998-01-01

    As durables are essential in many households, the level of ownership is high and, due to the high degree of penetration, a vast proportion of the current sales are replacement purchases. Even though a lot of research attention has been paid to decision making and decision processes many models are oriented towards non-durable goods and although a majority of purchases of many durable goods are replacements, few studies seem to make a distinction between a replacement purchase decision and a d...

  12. Effect Of Climatic Conditions On Durability

    Directory of Open Access Journals (Sweden)

    Ibrahem M. Al Kiki

    2013-04-01

    Full Text Available Durability is one of the most important subjects in the soil stabilization. Since there is no specifications concerned the durability of lime stabilized soils, several factors were selected to show their effects on the durability, namely: wetting, drying, freezing, thawing and slaking.The effect of each one of the above factors as well as the combined effect of two or more factors, were studied on the volume change and soil strength and weight loss of soil samples stabilized with optimum lime content except the slaking test at which soil samples stabilized with different lime content.Tests results showed that the higher the lime content the lower the slaking effect, also its found the soil strength decreased when the period of immersion or freezing increased. The strength of the lime stabilized soils decreased when subjected to the cycles of wetting and drying or to the cycles freezing and thawing. However, the  combined effect of wetting, drying, freezing and thawing has a pronounced effect on reduction of the lime stabilized clayey soil. The worst condition recorded when lime stabilized soil undergo to freezing then drying then wetting which should be avoided in the field

  13. Thermodynamic model of natural, medieval and nuclear waste glass durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table

  14. Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids

    International Nuclear Information System (INIS)

    Huang Wenqi; Xing Yanjun; Yu Yunyi; Shang Songmin; Dai Jinjin

    2011-01-01

    Nine polycarboxylic acids were used to improve washing durability of hydrophobic cellulose fabric finished by sol-gel method. By simultaneous forming ester-bridge between cellulose and silica layer by ester bond, polycarboxylic acids could anchor silica coating onto cellulose fabric to strengthen the adhesion of organic-inorganic hybrid coating. The wettability of treated fabrics was characterized by water contact angle, spray test and hydrostatic pressure test. The results showed that all investigated polycarboxylic acids could improve the durability. The polycarboxylic acid with proper distance between terminal carboxylic acid groups and number of carboxylic acid groups showed the highest durability. 1,2,3,4-butanetetracarboxylic acid (BTCA) led to the best durability of hydrophobic cellulose fabric with water contact angle of 137.6 o (recovery percentage of 94.2%) after 30 washing times. The effect of BTCA on durability was characterized by scanning electron microscopy. This study demonstrated that the surface treatment using polycarboxylic acids and mixed organosilanes is a promising alternative for achieving durable hydrophobic fabrics.

  15. Durable development of tourism in Pitesti and Arges county

    Directory of Open Access Journals (Sweden)

    Bianca DABU

    2010-05-01

    Full Text Available Durable development is one of the main concerns of the contemporary period.The complex relationship between tourism, development and natural environment is anexample of the changes that have taken place in this filed of tourism considered animportant polluter of the natural environment. Tourism is the key element of durabledevelopment having an important impact on the economy, being considered a source ofeconomic growth. Romania has to find its way through the differences given by the needof development, the regulations imposed by the EU and the concerns related to the nextgenerations’ future. Tourism is an important component of the tertiary sector, aconsequence and interface branch of the national economy, and an industry withoutsmoke that has an important contribution to the creation of the world gross product. Anobjective of the National Development Plan adopted in December 2005, component ofthe National Economy Development Strategy is the capitalization of the tourist andcultural potential and the growth of these fields’ contribution to the regions’development, emphasizing the development of the infrastructure, diversifying andpromoting the internal touristy offer, the increase of competitiveness

  16. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  17. Latent Factors Limiting the Performance of sEMG-Interfaces

    Directory of Open Access Journals (Sweden)

    Sergey Lobov

    2018-04-01

    Full Text Available Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying “problematic” gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces.

  18. Soft but Powerful Artificial Muscles Based on 3D Graphene-CNT-Ni Heteronanostructures.

    Science.gov (United States)

    Kim, Jaehwan; Bae, Seok-Hu; Kotal, Moumita; Stalbaum, Tyler; Kim, Kwang J; Oh, Il-Kwon

    2017-08-01

    Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m -1 . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Decoration and durability

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Munch, Anders V.

    2015-01-01

    Throughout the scales of design there has been an exploding interest in the ornament that seems to be fuelled by different kinds of digital technology and media from CAD to digital printing in both 2D and 3D. In architecture and industrial design, it is discussed as a “return of ornament” because...... from fashion and tableware to archi- tecture and link ornamentation to the aesthetics of durability....

  20. A zwitterionic macro-crosslinker for durable non-fouling coatings.

    Science.gov (United States)

    Wang, Wei; Lu, Yang; Xie, Jinbing; Zhu, Hui; Cao, Zhiqiang

    2016-03-28

    A novel zwitterionic macro-crosslinker was developed and applied to fabricate durable non-fouling coatings on a polyurethane substrate. The zwitterionic macro-crosslinker coating exhibited superior durability over the traditional brush polymer coating and was able to retain its non-fouling property even after weeks of shearing in flowing liquid.

  1. Connective tissue injury in calf muscle tears and return to play: MRI correlation.

    Science.gov (United States)

    Prakash, Ashutosh; Entwisle, Tom; Schneider, Michal; Brukner, Peter; Connell, David

    2017-10-26

    The aim of our study was to assess a group of patients with calf muscle tears and evaluate the integrity of the connective tissue boundaries and interfaces. Further, we propose a novel MRI grading system based on integrity of the connective tissue and assess any correlation between the grading score and time to return to play. We have also reviewed the anatomy of the calf muscles. We retrospectively evaluated 100 consecutive patients with clinical suspicion and MRI confirmation of calf muscle injury. We evaluated each calf muscle tear with MRI for the particular muscle injured, location of injury within the muscle and integrity of the connective tissue structure at the interface. The muscle tears were graded 0-3 depending on the degree of muscle and connective tissue injury. The time to return to play for each patient and each injury was found from the injury records and respective sports doctors. In 100 patients, 114 injuries were detected. Connective tissue involvement was observed in 63 out of 100 patients and failure (grade 3 injury) in 18. Mean time to return to play with grade 0 injuries was 8 days, grade 1 tears was 17 days, grade 2 tears was 25 days and grade 3 tears was 48 days (pmuscle tears. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants

    Science.gov (United States)

    Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi

    2018-02-01

    Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.

  3. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Nielsen, Laila

    1997-01-01

    (capillary water uptake) is used, involving an in-situ method and a laboratory method. Three different concrete qualities as well as steel fibres (ZP) and polypropylene fibres (PP) are used. Results of the durability tests on cracked FRC-beams are compared to results for uncracked FRC-beams and beams without......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by exposing beams to il-point bending until a predefined crack width is reached, using a newly developed test setup. As environmental load, exposure to water...

  4. Chemical durability of glasses containing radioactive fission product waste

    International Nuclear Information System (INIS)

    Mendel, J.E.; Ross, W.A.

    1974-04-01

    Measurements made to determine the chemical durability of glasses for disposal of radioactive waste are discussed. The term glass covers materials varying from true glass with only minute quantities of crystallites, such as insoluble RuO 2 , to quasi glass-ceramics which are mostly crystalline. Chemical durability requirements and Soxhlet extractor leach tests are discussed

  5. 75 FR 51245 - Agency Information Collection Activities; Proposed Collection; Comment Request; Durable Nursery...

    Science.gov (United States)

    2010-08-19

    ... CONSUMER PRODUCT SAFETY COMMISSION [Docket No. CPSC-2010-0088] Agency Information Collection Activities; Proposed Collection; Comment Request; Durable Nursery Products Exposure Survey AGENCY: Consumer... efforts on durable infant and toddler products. The draft Durable Nursery Products Exposure Survey...

  6. Durability of fibre reinforced concrete structures exposed to combined mechanical and environmental load

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1999-01-01

    The main conclusions from a research project on durability of cracked fibre reinforced concrete structures exposed to chlorides, water or freeze-thaw are presented. The effect of fibres and cracks on the durability of concrete is studied.......The main conclusions from a research project on durability of cracked fibre reinforced concrete structures exposed to chlorides, water or freeze-thaw are presented. The effect of fibres and cracks on the durability of concrete is studied....

  7. The Effectiveness of Materials Different with Regard to Increasing the Durability

    Directory of Open Access Journals (Sweden)

    Erofeev Vladimir

    2016-01-01

    Full Text Available The article considers contemporary materials and structures for construction of buildings. The article conducts an economic study of the problem of durability. It addresses the issue of increasing longevity, affecting the term of service to building structures and the efficiency of their operation. Revealed the main factors affecting the durability. It identifies measures its realisation. The method of calculation of economic efficiency of improving the durability of building constructions.

  8. The Dynamic Pricing of Next Generation Consumer Durables

    OpenAIRE

    Barry L. Bayus

    1992-01-01

    Learning curve effects, aspects of consumer demand models (e.g., reservation price distributions, intertemporal utility maximizing behavior), and competitive activity are reasons which have been offered to explain why prices of new durables decline over time. This paper presents an alternative rationale based on the buying behavior for products with overlapping replacement cycles (i.e., next generation products). A model for consumer sales of a new durable is developed by incorporating the re...

  9. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  10. Improving the durability of the optical fiber sensor based on strain transfer analysis

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-05-01

    To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.

  11. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan

    2016-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...

  12. Investigation of the effects of intense pulsed particle beams on the durability of metal-to-plastic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Renk, Timothy J.; Provencio, Paula Polyak; Petersen, Donald W. (University of Alabama, Birmingham, AL); Petersen, Thomas D. (University of California, San Diego, CA); Buchheit, Thomas Edward; McNulty, Donald E. (DePuy Orthopaedic, Inc., Warsaw, IN); Engelko, Vladimir (D. V. Efremov Scientific Research Institute of the Electrophysical Apparatus, St. Petersburg, Russia)

    2005-02-01

    We have investigated the potential for intense particle beam surface modification to improve the mechanical properties of materials commonly used in the human body for contact surfaces in, for example, hip and knee implants. The materials studied include Ultra-High Molecular Weight Polyethylene (UHMWPE), Ti-6Al-4Al (titanium alloy), and Co-Cr-Mo alloy. Samples in flat form were exposed to both ion and electron beams (UHMWPE), and to ion beam treatment (metals). Post-analysis indicated a degradation in bulk properties of the UHMWPE, except in the case of the lightest ion fluence tested. A surface-alloyed Hf/Ti layer on the Ti-6Al-4V is found to improve surface wear durability, and have favorable biocompatibility. A promising nanolaminate ceramic coating is applied to the Co-Cr-Mo to improve surface hardness.

  13. Probabilistic Durability Analysis in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    A. Kudzys

    2000-01-01

    Full Text Available Expedience of probabilistic durability concepts and approaches in advanced engineering design of building materials, structural members and systems is considered. Target margin values of structural safety and serviceability indices are analyzed and their draft values are presented. Analytical methods of the cumulative coefficient of correlation and the limit transient action effect for calculation of reliability indices are given. Analysis can be used for probabilistic durability assessment of carrying and enclosure metal, reinforced concrete, wood, plastic, masonry both homogeneous and sandwich or composite structures and some kinds of equipments. Analysis models can be applied in other engineering fields.

  14. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  15. Design of durability and lifetime assessment method under thermomechanical stress for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Gyoo; Choi, Young Kue; Jeon, Seol; Lee, Hee Soo [Pusan National University, Busan (Korea, Republic of); Jeon, Min Seok [Korea Testing Laboratory, Seoul (Korea, Republic of)

    2014-01-15

    A durability testing method under thermo-mechanical stress for thermal barrier coatings (TBC) specimens was designed by a combination of an electric furnace and a tensile testing machine, which was done on TBCs on NIMONIC 263 substrates by an atmospheric plasma spraying (APS) deposition method. The testing conditions were chosen according to a preliminary experiment that identified the elastic deformation region of the top coating and the substrate during mechanical loading. Surface cracking and a decrease in the thickness of the top coating, which are typical degradation behaviors under conventional thermal shock testing, were observed after the designed thermal fatigue test, and delamination at the top coating-bond coating interface occurred by the mechanical load. Lifetime assessment was conducted by statistical software using life cycle data which were obtained after the thermal fatigue test.

  16. Durability of Bricks Coated with Red mud Based Geopolymer Paste

    Science.gov (United States)

    Singh, Smita; Basavanagowda, S. N.; Aswath, M. U.; Ranganath, R. V.

    2016-09-01

    The present study is undertaken to assess the durability of concrete blocks coated with red mud - fly ash based geopolymer paste. Concrete blocks of size 200 x 200 x 100mm were coated with geopolymer paste synthesized by varying the percentages of red mud and fly ash. Uncoated concrete blocks were also tested for the durability for comparison. In thermal resistance test, the blocks were subjected to 600°C for an hour whereas in acid resistance test, they were kept in 5% sulphuric acid solution for 4 weeks. The specimens were thereafter studied for surface degradation, strength loss and weight loss. Pastes with red mud percentage greater than 50% developed lot of shrinkage cracks. The blocks coated with 30% and 50% red mud paste showed better durability than the other blocks. The use of blocks coated with red mud - fly ash geopolymer paste improves the aesthetics, eliminates the use of plaster and improves the durability of the structure.

  17. Determinants of Long-Term Durable Glycemic Control in New-Onset Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Kyoung Jin Kim

    2017-08-01

    Full Text Available BackgroundLong-term durable glycemic control is a difficult goal in the management of type 2 diabetes mellitus (T2DM. We evaluated the factors associated with durable glycemic control in a real clinical setting.MethodsWe retrospectively reviewed the medical records of 194 new-onset, drug-naïve patients with T2DM who were diagnosed between January 2011 and March 2013, and were followed up for >2 years. Glycemic durability was defined as the maintenance of optimal glycemic control (glycosylated hemoglobin [HbA1c] <7.0% for 2 years without substitution or adding other glucose-lowering agents. Clinical factors and glycemic markers associated with glycemic durability were compared between two groups: a durability group and a non-durability group.ResultsPatients in the durability group had a higher baseline body mass index (26.1 kg/m2 vs. 24.9 kg/m2 and lower HbA1c (8.6% vs. 9.7% than the non-durability group. The initial choice of glucose-lowering agents was similar in both groups, except for insulin and sulfonylureas, which were more frequently prescribed in the non-durability group. In multiple logistic regression analyses, higher levels of education, physical activity, and homeostasis model assessment of β-cell function (HOMA-β were associated with glycemic durability. Notably, lower HbA1c (<7.0% at baseline and first follow-up were significantly associated with glycemic durability (adjusted odds ratio [OR], 7.48; 95% confidence interval [CI], 2.51 to 22.3 (adjusted OR, 9.27; 95% CI, 1.62 to 53.1, respectively, after adjusting for confounding variables including the types of glucose-lowering agents.ConclusionEarly achievement of HbA1c level within the glycemic target was a determinant of long-term glycemic durability in new-onset T2DM, as were higher levels of education, physical activity, and HOMA-β.

  18. Influence Of Density On The Durabilities Of Three Ghanaian Timbers ...

    African Journals Online (AJOL)

    Review of factors influencing wood durability shows although density varies depending on trunk position, its role appears controversial for many timber species. Thus, for the first time, the influence of density on the durability of three Ghanaian timbers (Nauclea diderrichii (de Wild.) Merr., Nesogordonia papaverifera (A. Chev ...

  19. Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1999-01-01

    Caveolae are abundant in skeletal muscle and their coat contains a specific isoform of caveolin, caveolin-3. It has been suggested that during muscle development, caveolin-3 is associated with the T-tubules, but that in adult muscle it is found on the plasma membrane only. We have studied...... the distribution of caveolin-3 in single skeletal muscle fibers from adult rat soleus by confocal immunofluorescence and by immunogold electron microscopy. We found that caveolin-3 occurs at the highest density on the plasma membrane but is also present in the core of the fibers, at the I-band/A-band interface...

  20. Performance Evaluation and Durability Studies of Adhesive Bonds

    Science.gov (United States)

    Ranade, Shantanu Rajendra

    In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights

  1. Durability of heavyweight concrete containing barite

    International Nuclear Information System (INIS)

    Binici, Hanifi

    2010-01-01

    The supplementary waste barite aggregates deposit in Osmaniye, southern Turkey, has been estimated at around 500 000 000 tons based on 2007 records. The aim of the present study is to investigate the durability of concrete incorporating waste barite as coarse and river sand (RS), granule blast furnace slag (GBFS), granule basaltic pumice (GBP) and ≤ 4 mm granule barite (B) as fine aggregates. The properties of the fresh concrete determined included the air content, slump, slump loss and setting time. They also included the compressive strength, flexural and splitting tensile strengths and Young's modulus of elasticity, resistance to abrasion and sulphate resistance of hardened concrete. Besides these, control mortars were prepared with crushed limestone aggregates. The influence of waste barite as coarse aggregates and RS, GBFS, GBP and B as fine aggregates on the durability of the concretes was evaluated. The mass attenuation coefficients were calculated at photon energies of 1 keV to 100 GeV using XCOM and the obtained results were compared with the measurements at 0.66 and 1.25 MeV. The results showed the possibility of using these waste barite aggregates in the production of heavy concretes. In several cases, some of these properties have been improved. Durability of the concrete made with these waste aggregates was improved. Thus, these materials should be preferably used as aggregates in heavyweight concrete production. (orig.)

  2. Durable superhydrophobic paper enabled by surface sizing of starch-based composite films

    Science.gov (United States)

    Chen, Gang; Zhu, Penghui; Kuang, Yudi; Liu, Yu; Lin, Donghan; Peng, Congxing; Wen, Zhicheng; Fang, Zhiqiang

    2017-07-01

    Superhydrophobic paper with remarkable durability is of considerable interest for its practical applications. In this study, a scalable, inexpensive, and universal surface sizing technique was implemented to prepare superhydrophobic paper with enhanced durability. A thin layer of starch-based composite, acting as a bio-binder, was first coated onto the paper surface by a sophisticated manufacturing technique called surface sizing, immediately followed by a spray coating of hexamethyl disilazane treated silica nanoparticles (HMDS-SiNPs) dispersed in ethanol on the surface of the wet starch-coated sheet, and the dual layers dried at the same time. Consequently, durable superhydrophobic paper with bi-layer structure was obtained after air drying. The as-prepared superhydrophobic paper not only exhibited a self-cleaning behavior, but also presented an enhanced durability against scratching, bending/deformation, as well as moisture. The universal surface sizing of starch-based composites may pave the way for the up-scaled and cost-effective production of durable superhydrophobic paper.

  3. Durability of low-pH injection grout. A literature survey

    International Nuclear Information System (INIS)

    Holt, E.

    2008-01-01

    This publication provides an overview of the durability of injection grouts. It is intended for use during planning and construction at the ONKALO underground research facility. The review has been done with respect to the application conditions, materials and service life requirements expressed by Posiva Oy. The publication describes all types of cement-based material durability, with an emphasis on the key issues of shrinkage cracking, leaching and sulphate attack. The second part of the report provides information on how durability expectations have changed with the history of injection grout development. The report gives information specific to low-pH injection grouts containing high amounts of silica fume performance and how their durability is expected to differ from traditional normal cement-based mixtures. The final part of the report provides suggestions for future research needs for ensuring the service life of injection grouts. The key finding from this study is that the low-pH grout material is not expected to have worse durability performance compared to the standard injection grout. Combining high amounts of silica fume with the cement to produce low-pH grout should result in a material having lower permeability and thus greater resistance to leaching and chemical attack. Further laboratory testing is needed to quantitatively verify these findings and to provide inputs for future service life modeling. (orig.)

  4. Effects of Irradiation on Albite's Chemical Durability.

    Science.gov (United States)

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  5. Durability evaluation of reversible solid oxide cells

    Science.gov (United States)

    Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.

    2013-11-01

    An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

  6. Freeze-thaw durability of air-entrained concrete.

    Science.gov (United States)

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  7. Optimal Monetary Policy with Durable Consumption Goods and Factor Demand Linkages

    DEFF Research Database (Denmark)

    Petrella, Ivan; Santoro, Emiliano

    of production in both sectors, according to an input-output matrix calibrated on the US economy. As shown in a number of recent contributions, this roundabout technology allows us to reconcile standard two-sector New Keynesian models with the empirical evidence showing co-movement between durable and non......-durable spending in response to a monetary policy shock. A main result of our monetary policy analysis is that strategic complementarities generated by factor demand linkages amplify social welfare loss. As the degree of interconnection between sectors increases, the cost of misperceiving the correct production......This paper deals with the implications of factor demand linkages for monetary policy design. We develop a dynamic general equilibrium model with two sectors that produce durable and non-durable goods, respectively. Part of the output produced in each sector is used as an intermediate input...

  8. Evolutionary model of an anonymous consumer durable market

    Science.gov (United States)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal

  9. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  10. siGnum: graphical user interface for EMG signal analysis.

    Science.gov (United States)

    Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh

    2015-01-01

    Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.

  11. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  12. Measuring Happiness: From Fluctuating Happiness to Authentic–Durable Happiness

    Science.gov (United States)

    Dambrun, Michaël; Ricard, Matthieu; Després, Gérard; Drelon, Emilie; Gibelin, Eva; Gibelin, Marion; Loubeyre, Mélanie; Py, Delphine; Delpy, Aurore; Garibbo, Céline; Bray, Elise; Lac, Gérard; Michaux, Odile

    2012-01-01

    On the basis of the theoretical distinction between self-centeredness and selflessness (Dambrun and Ricard, 2011), the main goal of this research was to develop two new scales assessing distinct dimensions of happiness. By trying to maximize pleasures and to avoid displeasures, we propose that a self-centered functioning induces a fluctuating happiness in which phases of pleasure and displeasure alternate repeatedly (i.e., Fluctuating Happiness). In contrast, a selfless psychological functioning postulates the existence of a state of durable plenitude that is less dependent upon circumstances but rather is related to a person’s inner resources and abilities to deal with whatever comes his way in life (i.e., Authentic–Durable Happiness). Using various samples (n = 735), we developed a 10-item Scale measuring Subjective Fluctuating Happiness (SFHS) and a 13-item scale assessing Subjective Authentic–Durable Happiness (SA–DHS). Results indicated high internal consistencies, satisfactory test–retest validities, and adequate convergent and discriminant validities with various constructs including a biological marker of stress (salivary cortisol). Consistent with our theoretical framework, while self-enhancement values were related only to fluctuating happiness, self-transcendence values were related only to authentic–durable happiness. Support for the distinction between contentment and inner-peace, two related markers of authentic happiness, also was found. PMID:22347202

  13. Recent advances in the mechanical durability of superhydrophobic materials.

    Science.gov (United States)

    Milionis, Athanasios; Loth, Eric; Bayer, Ilker S

    2016-03-01

    Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ancient analogues concerning stability and durability of cementitious wasteform

    International Nuclear Information System (INIS)

    Jiang, W.; Roy, D.M.

    1994-01-01

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called open-quotes pozzolanclose quotes which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors' concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms

  15. State of the art of durability-performance evaluation of hardened cement based on phase compositions

    International Nuclear Information System (INIS)

    Kurashige, Isao; Imoto, Harutake; Yamamoto, Takeshi; Hironaga, Michihiko

    2006-01-01

    Upgrading durability-performance evaluation technique for concrete is urgently demanded in connection to its application to radio-active waste repository which needs ultra long-term durability. Common concrete structures also require an advanced method for minimizing the life-cycle cost. The purpose of this research is to investigate current problems and future tasks on durability-performance evaluation of hardened cement from the view point of phase composition. Although the phase composition of hardened cement has not fully been reflected to durability-performance evaluation, it influences concrete durability as well as its pore structure. This report reviews state of the art of the factors affecting phase composition, analytical and experimental evaluation techniques for phase composition, and durability-performance evaluation methods of hardened cement based on phase composition. (author)

  16. Mixed hydrocarbon/fluoropolymer membrane/ionomer MEAs for durability studies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [Los Alamos National Laboratory; Kim, Yu Seung [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wilson, Mahlon S [Los Alamos National Laboratory; Welch, Cynthia [Los Alamos National Laboratory; Fenton, James [FLORIDA SOLAR ENERGY CENTER

    2010-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane/ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiment (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time is reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components.

  17. Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles

    Science.gov (United States)

    Cheng, Yanqiu; Shang, Xiaoyu; Zhang, Youjia

    2017-07-01

    The freeze-thaw durability of recycled aggregate concrete has significance for the concrete buildings in the cold region. In this paper, the rapid freezing and thawing cycles experience on recycle aggregate concrete was conducted to study on the effects of recycle aggregate amount, water-binder ratio and fly ash on freeze-thaw durability of recycle aggregate concrete. The results indicates that recycle aggregate amount makes the significant influence on the freeze-thaw durability. With the increase of recycled aggregates amount, the freeze-thaw resistance for recycled aggregate concrete decreases. Recycled aggregate concrete with lower water cement ratio demonstrates better performance of freeze-thaw durability. It is advised that the amount of fly ash is less than 30% for admixture of recycled aggregates in the cold region.

  18. Quick test for durability factor estimation.

    Science.gov (United States)

    2010-03-01

    The Missouri Department of Transportation (MoDOT) is considering the use of the AASHTO T 161 Durability Factor (DF) as an endresult : performance specification criterion for evaluation of paving concrete. However, the test method duration can exceed ...

  19. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Neufeld, Kai; Liu, Yi-Lin

    2010-01-01

    Anode-supported solid oxide fuel cells (SOFCs) based on Ni–yttria-stabilized zirconia (YSZ) anodes, YSZ electrolytes, and lanthanum strontium manganite (LSM)–YSZ cathodes were studied with respect to durability in humid air (~4%) typically over 1500 h. Operating temperature and current density were...... varied between 750 and 850°C and 0.25–0.75 A/cm2, respectively. The introduction of humidity affected the cell voltage under polarization of the cell, and this effect was (at least partly) reversible upon switching off the humidity. Generally, the studied cells were operated in humid air under...... technologically relevant conditions over more than 1500 h. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750°C in humid air, conditions that cause significant cell voltage degradation in dry air on cells...

  20. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Chen, Ming; Neufeld, Kai

    2009-01-01

    Anode supported SOFCs based on Ni-YSZ anodes, YSZ electrolytes, and LSM-YSZ cathodes were studied with respect to durability in humid air (~4%) over typically 1500 hours. Operating temperature and current density were varied between 750 and 850 oC and 0.25-0.75 A/cm2, respectively. It was found...... that the introduction of humidity affected the cell voltage under polarization of the cell and that this effect was (at least partly) reversible upon switching off the humidity, probably related to a segregation of impurities towards the three phase boundary in the presence of humidity. Generally, the studied cells...... were successfully operated in humid air under technologically relevant conditions. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750 oC in humid air - conditions that are known to cause...

  1. Performance based durability design of a bored tunnel with concrete lining

    NARCIS (Netherlands)

    Vries, H. de; Siemes, A.J.M.

    2002-01-01

    Design for durability is gradually changing from a deem-to-satisfy approach to a performance based approach. The conventional building codes give in principle only construction rules. If these rules are fulfilled, it is assumed that the structure will have an adequate durability. But specifications

  2. Decoration and Durability

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Munch, Anders V.

    2015-01-01

    Throughout the scales of design there has been an exploding interest in the ornament that seems to be fuelled by different kinds of digital technology and media from CAD to digital printing in both 2D and 3D. In architecture and industrial design it is discussed as a Return of ornament, because...... appropriate or not. This leads us to suggest an array of parameters that points out different situations and meanings of ornamentation: Product categories, Durability of materials, Styles, Aesthetic experience, Emotional attachment and Historical references. We discuss these parameters in cases from fashion...

  3. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  4. [Experimental study on potential for cardiac assist by latissimus dorsi myograft--an importance of muscle ischemia].

    Science.gov (United States)

    Morita, K; Koyanagi, K; Sakamoto, Y; Wakabayashi, K; Tanaka, K; Horikoshi, S; Matsui, M; Arai, T

    1991-03-01

    We have studied contractile property and fatigue rates of skeletal muscle ventricle (SMV) constructed using the latissimus dorsi muscles of 11 dogs. The role of early interruption of collateral blood supply in the prevention of muscle ischemia and SMV fatigue was evaluated. Systolic function of SMV was measured in a hydraulic test system; afterload was set at 70 mmHg and preload 15 or 25 mmHg. Control SMV (GI: N = 7), which was fashioned immediately after interruption of collateral blood supply, generated an initial SMV pressure of 222 +/- 50 mmHg and stroke volume of 15 +/- 7 ml/beat with muscle stimulation at a burst-frequency of 50 Hz, but could sustain flow for only 3.5 +/- 0.8 minutes. SMV subjected to a vascular delay (Group II: N = 4) demonstrated improvement of fatigue rates; duration of flow 32.4 +/- 14.0 and sufficient contractile property (initial SMV pressure 182 +/- 17 mmHg, stroke volume 1- +/- 2 ml/beat). Thermography surface temperature mapping revealed remarkable improvement of blood distribution in GII muscles. Flow rates of thoracodorsal artery were significantly greater in GII muscles compared to those in GI muscles (15.0 +/- 3.7 ml/min/LD 100 g, 10.1 +/- 3.1 ml/min/LD 100 g, p less than 0.05, respectively). Despite significant improvement of functional durability in GII muscles, the ratio of oxygen consumption to lactate output was not different between 2 groups. These results suggest that early interruption of collateral blood supply can minimize muscle ischemia, resulting in diminishing fatigue of latissimus dorsi muscles without changes in skeletal muscle metabolism.

  5. Freeze-Thaw Durability of Air-Entrained Concrete

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  6. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments.

    Science.gov (United States)

    Calado, Carlos; Camões, Aires; Monteiro, Eliana; Helene, Paulo; Barkokébas, Béda

    2015-03-27

    Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  7. Durability of building joint sealants

    Science.gov (United States)

    Christopher C. White; Kar Tean Tan; Donald L. Hunston; R. Sam Williams

    2009-01-01

    Predicting the service life of building joint sealants exposed to service environments in less than real time has been a need of the sealant community for many decades. Despite extensive research efforts to design laboratory accelerated tests to duplicate the failure modes occurring in field exposures, little success has been achieved using conventional durability...

  8. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  9. What happens when iron becomes wet? Observation of reactions at interfaces between liquid and metal surfaces

    CERN Document Server

    Kimura, M

    2003-01-01

    Synchrotron-radiation has been applied to investigation of interfaces between liquid and metal surfaces, with a special attention to corrosion. Three topics are shown: (1) nano structures of rusts formed on steel after atmospheric corrosion. Evolution of 'Fe(O, OH) sub 6 network' is the key to understand how the durable rusts prevent from formation of more rusts. (2) In situ observation of reactions at the interface has been carried out for localized corrosion of stainless steel. It is shown that change in states of Cr sup 3 sup + and Br sup - ions near the interface is deeply related with a breakout of the passivation film. (3) A structural phase transformation on a Cu sub 3 Au(001) surface was investigated. Ordering remains even at a temperature higher than the bulk-critical temperature, showing surface-induced ordering. These approaches gives us crucial information for a new steel-product. (author)

  10. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied

  11. Polylactic Acid-Based Polymer Blends for Durable Applications

    Science.gov (United States)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  12. Pharmacological enhancement of leg and muscle microvascular blood flow does not augment anabolic responses in skeletal muscle of young men under fed conditions.

    Science.gov (United States)

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Wilkinson, Daniel J; Limb, Marie; Selby, Anna L; Rennie, Michael J; Smith, Kenneth; Williams, John P

    2014-01-15

    Skeletal muscle anabolism associated with postprandial plasma aminoacidemia and insulinemia is contingent upon amino acids (AA) and insulin crossing the microcirculation-myocyte interface. In this study, we hypothesized that increasing muscle microvascular blood volume (flow) would enhance fed-state anabolic responses in muscle protein turnover. We studied 10 young men (23.2 ± 2.1 yr) under postabsorptive and fed [iv Glamin (∼10 g AA), glucose ∼7.5 mmol/l] conditions. Methacholine was infused into the femoral artery of one leg to determine, via bilateral comparison, the effects of feeding alone vs. feeding plus pharmacological vasodilation. We measured leg blood flow (LBF; femoral artery) by Doppler ultrasound, muscle microvascular blood volume (MBV) by contrast-enhanced ultrasound (CEUS), muscle protein synthesis (MPS) and breakdown (MPB; a-v balance modeling), and net protein balance (NPB) using [1,2-(13)C2]leucine and [(2)H5]phenylalanine tracers via gas chromatography-mass spectrometry (GC-MS). Indexes of anabolic signaling/endothelial activation (e.g., Akt/mTORC1/NOS) were assessed using immunoblotting techniques. Under fed conditions, LBF (+12 ± 5%, P anabolism.

  13. Study on cord/rubber interface at elevated temperatures by H-pull test method

    Science.gov (United States)

    Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S.

    2005-08-01

    Cords are used as reinforcing materials in rubber compounds. To increase cord/rubber interfacial adhesion, they are coated by an adhesive (usually based on resorcinol-formaldehyde-latex). These composites are used in many sectors such as tire and belt industries. Cord/rubber adhesion strength is an important aspect to determine the durability of system. Due to temperature increase during running tires, the adhesion energy becomes different from initial one. To study cord/rubber interface at elevated temperatures, H-adhesion test method was used. H-pull test is a simple method for adhesion evaluation at ambient temperature, so it is usually used for material quality control. In this research, cord/rubber systems were vulcanized at different temperatures and H-adhesion of samples were evaluated at elevated temperatures. Also cord/rubber interface was studied by ATR analyze to determine interfacial interactions kind.

  14. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification

    International Nuclear Information System (INIS)

    Meng, Xiangbo

    2015-01-01

    Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies. (viewpoint)

  15. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  16. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  17. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  18. Review of durability of cementitious engineered barriers in repository environments

    International Nuclear Information System (INIS)

    Parrott, L.J.; Lawrence, C.D.

    1992-01-01

    This report is concerned with the durability of cementitious engineered barriers in a repository for low and intermediate level nuclear waste. Following the introduction the second section of the review identifies the environmental conditions associated with a deep, hard rock repository for ILW and LLW that are relevant to the durability of cementitious barriers. Section three examines the microstructure and macrostructure of cementitious materials and considers the physical and chemical processes of radionuclide immobilization. Potential repository applications and compositions of cementitious materials are reviewed in Section four. The main analysis of durability is dealt with in Section five. The different types of cementitious barrier are considered separately and their most probable modes of degradation are analysed. Concluding remarks that highlight critical technical matters are given in Section six. (author)

  19. Durability of sealants exposed to outdoor weathering and hot compression cycles

    Science.gov (United States)

    Gregory T. Schueneman; Steven Lacher; Christopher G. Hunt; Christopher C. White; Donald L. Hunston

    2011-01-01

    Sealants play an important role in weatherproofing structures by filling gaps and preventing air and water intrusion. When incorrectly selected or improperly applied, they may fail quickly, compromising durability of the structure. To ensure reliability and prevent the need for costly repairs to structures, it is necessary to measure durability and predict life...

  20. 40 CFR 610.33 - Durability tests.

    Science.gov (United States)

    2010-07-01

    ....33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY... problems, deterioration in spark plug life, increase in carburetor or combustion chamber deposits, or..., then a durability run may be made as described in subpart E, in which fuel economy and exhaust...

  1. Brain-Computer Interfaces in Medicine

    Science.gov (United States)

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  2. Durability of critical infrastructures

    OpenAIRE

    Raluca Pascu; Ramiro Sofronie

    2011-01-01

    The paper deals with those infrastructures by which world society, under the pressure ofdemographic explosion, self-survives. The main threatening comes not from terrorist attacks, but fromthe great natural catastrophes and global climate change. It’s not for the first time in history when suchmeasures of self-protection are built up. First objective of this paper is to present the background fordurability analysis. Then, with the aid of these mathematical tools the absolute durability of thr...

  3. Self-curing concrete types; water retention and durability

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-09-01

    This study was carried out to compare among concretes without or with silica fume (SF along with chemical type of shrinkage reducing admixture, polyethylene-glycol (Ch, and leca as self-curing agents for water retention even at elevated temperature (50 °C and their durability. The cement content of 400 kg/m3, silica fume of 15% by weight of cement, polyethylene-glycol of 2% by weight of cement, pre-saturated lightweight aggregate (leca 15% by volume of sand and water with Ch/binder ratio of 0.4 were selected in this study. Some of the physical and mechanical properties were determined periodically up to 28 days in case of exposure to air curing in temperature of (25 °C and (50 °C while up to 6 months of exposure to 5% of carbon dioxide and wet/dry cycles in 8% of sodium chloride for durability study. The concrete mass loss and the volumetric water absorption were measured, to evaluate the water retention of the investigated concretes. Silica fume concrete either without or with Ch gave the best results under all curing regimes; significant water retention and good durability properties.

  4. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments

    Directory of Open Access Journals (Sweden)

    Carlos Calado

    2015-03-01

    Full Text Available Self-compacting concrete (SCC demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC. This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  5. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability.

    Science.gov (United States)

    Li, Yifeng; Zhang, Wenqiang; Zheng, Yun; Chen, Jing; Yu, Bo; Chen, Yan; Liu, Meilin

    2017-10-16

    Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal-air batteries.

  6. Exploring interface morphology of a deeply buried layer in periodic multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, Maharashtra (India); Khooha, Ajay; Singh, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India)

    2016-06-27

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection condition is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.

  7. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  8. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    Science.gov (United States)

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  9. Influence of ceria on the thermally durability of Pt/Rh automotive catalyst

    International Nuclear Information System (INIS)

    Muraki, H.; Zhang, G.

    1998-01-01

    Full text: The use of cerium oxide as an oxygen storage component in automotive three-way catalysts has been well established. More recently the requirement of the three-way catalysts against the increase of the severity in emission standards has focused attention on the development of more active, durable catalysts. The thermally durability of Pt/Rh catalyst can be achieved by the utilization of thermally stable ceria as well as optimization of washcoat composition and structure in order to control the extent of interaction between PGM and ceria. In the present paper, we describe the influence of newly developed washcoat components and PGM interaction with ceria on catalytic performance. First, to clear that the interaction between PGM and ceria contributes to catalytic performance, several kinds of catalysts which have the varied interactions between PGM and ceria were prepared using engineered washcoat techniques and evaluated in the model gas reactor. It was obvious that the difference in performance among them after aging derived from a diversity of interactions between Pt, Rh, and ceria. Second, for the purpose of determining the thermally durability of the developed Pt/Rh catalyst, the catalysts including the current catalyst were aged under three different temperatures and evaluated on engine dynamometer. Result of engine dynamometer evaluation revealed that significant improvement in the thermal durability can be achieved by optimizing the PGM-ceria interaction. In conclusion, we recognize that a thermal durability of a three-way catalyst can be improved by the stabilization of proper PGM-ceria interaction after aging as well as the utilization of thermally durable ceria material

  10. Durability 2007. Injection grout investigations. Background description

    International Nuclear Information System (INIS)

    Orantie, K.; Kuosa, H.

    2008-12-01

    The aim of this project was to evaluate the durability risks of injection grouts. The investigations were done with respect to the application conditions, materials and service life requirements at the ONKALO underground research facility. The study encompassed injection grout mixtures made of ultrafine cement with and without silica fume. Some of the mixtures hade a low pH and thus a high silica fume content. The project includes a background description on durability literature, laboratory testing programme, detailed analysis of results and recommendations for selecting of ideal grout mixtures. The background description was made for the experimental study of low-pH and reference rock injection grouts as regards pore- and microstructure, strength, shrinkage/swelling and thus versatile durability properties. A summary of test methods is presented as well as examples, i.e. literature information or former test results, of expected range of results from the tests. Also background information about how the test results correlate to other material properties and mix designs is presented. Besides the report provides basic information on the pore structure of cement based materials. Also the correlation between the pore structure of cement based materials and permeability is shortly discussed. The test methods included in the background description are compressive strength, measurement of bulk drying, autogenous and chemical shrinkage and swelling, hydraulic conductivity / permeability, capillary water uptake test, mercury intrusion porosimetry (MIP) and thin section analysis. Three main mixtures with water-binder ratio of 0.8, 1.0 and 1.4 and silica fume content of 0, 15 and 40% were studied in the laboratory. Besides two extra mixtures were studied to provide additional information about the effect of varying water-dry-material ratio and silica fume content on durability. The evaluation of water tightness based on water permeability coefficient and micro cracking was

  11. The prospective buyer of consumer durables

    NARCIS (Netherlands)

    Jonge, Leendert de; Oppedijk van Veen, Walle Melis

    1982-01-01

    In this book, an empirical investigation is reported wich aims at the specification of models of individual households’ purchase behaviour for particular consumer durable goods, such as private passenger cars and television sets. In particular, the focus is on models wich can be used for predicting

  12. Durability of Dukovany shallow land repository engineered barriers. Appendix 7: Czech Republic

    International Nuclear Information System (INIS)

    Vokal, A.; Nachmilner, L.; Wasserbauer, R.; Dohnalek, J.

    2001-01-01

    The main aim of this project was to explore the durability of engineering barriers used at Dukovany shallow land repository as a support of safety assessments. This appendix summarises the principal results focused on durability of asphaltopropyleneconcrete (APC) hydroisolation and steel reinforced concrete construction

  13. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection

    Directory of Open Access Journals (Sweden)

    Marie-Laure Pilet-Nayel

    2017-10-01

    Full Text Available Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  14. Highly durable and low permeable concrete for LLW facilities

    International Nuclear Information System (INIS)

    Yanagibashi, Kunio; Saito, Toshio; Odagawa, Masaro.

    1997-01-01

    Concrete used for LLW facilities is required to be highly durable. The authors evaluated concrete containing glycol ether derivatives and silica fume as admixtures. Compressive strength, diffusion coefficient of water, depth of accelerated carbonation, drying shrinkage, depth of chlorides penetration and resistance to freezing and thawing were investigated using concrete specimens. Compressive strength, depth of accelerated carbonation, diffusion coefficient of 137 Cs were investigated using mortar specimens before and after irradiation of gamma rays. Results showed that using glycol ether derivatives and silica fume was effective in improving the durability. (author)

  15. Texture-enhanced Al-Cu electrodes on ultrathin Ti buffer layers for high-power durable 2.6 GHz SAW filters

    Science.gov (United States)

    Fu, Sulei; Wang, Weibiao; Xiao, Li; Lu, Zengtian; Li, Qi; Song, Cheng; Zeng, Fei; Pan, Feng

    2018-04-01

    Achieving high resistance to acoustomigration and electromigration in the electrodes used in high-power and high-frequency surface acoustic wave (SAW) filters is important to mobile communications development. In this study, the effects of the Ti buffer layers on the textures and acoustomigration and electromigration resistances of the Al-Cu electrodes were studied comprehensively. The results demonstrate that both power durability and electromigration lifetime are positively correlated with the Al-Cu electrode texture quality. Ultrathin (˜2 nm) Ti can lead to the strongest Al-Cu (111) textured electrodes, with a full width at half maximum of the rocking curve of 2.09°. This represents a remarkable enhancement of the power durability of high-frequency 2.6 GHz SAW filters from 29 dBm to 35 dBm. It also produces lifetime almost 7 times longer than those of electrodes without Ti buffer layers in electromigration tests. X-ray diffraction and transmission electron microscopy analyses revealed that these improved acoustomigration and electromigration resistances can be attributed primarily to the reductions in overall and large-angle grain boundaries in the highly Al-Cu (111) textured electrodes. Furthermore, the growth mechanism of highly Al-Cu texture films is discussed in terms of surface-interface energy balance.

  16. Free intra-osseous muscle transfer for treatment of chronic osteomyelitis.

    Science.gov (United States)

    Lê Thua, Trung-Hau; Boeckx, Willy D; Zirak, Christophe; De Mey, Albert

    2015-06-10

    Chronic osteomyelitis is still a big reconstructive challenge. Even with standard care, therapeutic failures and recurrences are common. Multiple techniques of tissue transfer have increased the success rate. This study recommends free muscle transfers into the intramedullary bone cavities for treatment of chronic osteomyelitis. The review included 29 patients that were treated for chronic osteomyelitis. Osteomyelitis was located at the femur in four patients, the tibia in 22 patients, and the foot in three patients. Dead bone and scar tissue were replaced with durable free muscle flap with special attention to fill the dead space. The average age of these patients was 48.5 years old (range = 23-70 years old). The average duration of osteomyelitis was 8.2 years (range = 1-45 years). Gracilis was applied in 20 cases (69%), latissimus dorsi was used in five cases (17.2%), and rectus abdominis was performed in four cases (13.8%). There was one flap failure, one partial superficial flap necrosis, two arterial thrombosis, and one venous thrombosis. All the remaining 28 muscle flaps survived. From 1-10 years follow-up, there was one recurrence of the osteomyelitis in the distal end of the intra-medullary cavity of a femur after reconstructing using the gracilis flap. The present study demonstrated that free intramedullary muscle transfers are effective in providing a high rate of success in the treatment of chronic osteomyelitis. The secondary filling of the intramedullary cavity after extensive removal of all infected bony sequesters has proven to give a long-term arrest of chronic osteomyelitis.

  17. Heart valve bioprosthesis durability: a challenge to the new generation of porcine valves.

    Science.gov (United States)

    Valente, M; Minarini, M; Maizza, A F; Bortolotti, U; Thiene, G

    1992-01-01

    Long-term experience with first generation porcine valve xenografts enabled identification of the major limitations to their durability: (1) prosthetic-ventricular mismatch due to the high profile of the stent in patients with mitral stenosis and a small left ventricle; (2) high-pressure fixation with loss of natural collagen crimping in the fibrosa, and wash-out of proteoglycans in the spongiosa; (3) xenograft tissue autolysis, due to the long interval between animal slaughter and aortic valve removal fixation; (4) muscle shelf in the right coronary cusp, which created a gradient and could undergo accelerated calcification and/or spontaneous perforation with time; (5) a flexible polypropylene stent, which could creep or even fracture with consequent inward bending of the stent; (6) progressive time-related dystrophic calcification; (7) host fibrous tissue ingrowth. An awareness of these limitations stimulated technical modifications, which frequently brought about distinct improvements: (1) the reduction of the stent profile eliminated the problem of mismatch, but resulted in a higher tendency towards cusp prolapse and earlier commissural tearing; (2) natural collagen waviness, proteoglycans and cusp extensibility were preserved by employing low or even zero pressure during the fixation process; (3) earlier valve fixation enabled preservation of cell integrity; (4) a new orifice for small valves was designed by replacing the right muscular cusp, thus achieving less gradient and avoiding muscle-shelf-related complications; (5) polypropylene was replaced by Delrin as stent material; (6) calcium-retarding agents like T6 and toluidine blue were applied during commercial processing and storage in order to mitigate tissue mineralization.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Durable fear memories require PSD-95

    Science.gov (United States)

    Fitzgerald, Paul J.; Pinard, Courtney R.; Camp, Marguerite C.; Feyder, Michael; Sah, Anupam; Bergstrom, Hadley; Graybeal, Carolyn; Liu, Yan; Schlüter, Oliver; Grant, Seth G.N.; Singewald, Nicolas; Xu, Weifeng; Holmes, Andrew

    2014-01-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. While overly persistent fear memories underlie anxiety disorders such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Post-synaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Employing a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95GK), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95GK mice to retrieve remote cued fear memories was associated with hypoactivation of the infralimbic cortex (IL) (not anterior cingulate (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated PSD-95 virus-mediated knockdown in the IL, not ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  19. Influence of Some Nuclear Waste on The Durability and Mechanical Properties of Borosilicate glass

    International Nuclear Information System (INIS)

    El-Alaily, N.A.

    2003-01-01

    Various glass systems have been shown to be suitable for producing waste glass forms that are thermally and mechanically stable and exhibit good chemical durability. In this study borosilicate glass containing sodium oxide and aluminum oxide was prepared as a host for high level nuclear waste. The glass durability when the samples were immersed either in distilled water or ground water at 70 degree was studied. The density, porosity and mechanical properties were also investigated. The effects of exposing the samples immersed in groundwater to gamma rays in the glass durability and all other mentioned properties were also studied. The results showed that immersing the glass in ground water causing a decrease in the glass durability. The exposure of the glass immersed in ground water to the gamma rays increases the durability of the glass. The mechanical properties of the prepared glass were good. Although these properties decrease for the corroded glass but they were still good

  20. Chemical durability of silicoborate glasses

    International Nuclear Information System (INIS)

    Nieto, M.I.; Rodriguez, M.A.; Rubio, J.; Fernandez, A.; Oteo, J.L.

    1987-01-01

    A general view of the durability in silicoborate glasses is presented with more emphasis on the etching factors (chemical composition, lattice structure, pH...) the techniques used for this study and the experimental results. Likewise, the research presently developed in this area at the Instituto de Ceramica y Vidrio, CSIC, is related to the applications. Future research in this field is also mentioned. (author) 15 figs

  1. Preliminary results of durability testing with borosilicate glass compositions

    International Nuclear Information System (INIS)

    Adel-Hadadi, M.; Adiga, R.; Barkatt, Aa.

    1987-01-01

    This is a report on the first year of research conducted at the Vitreous State Laboratory of the Catholic University of America in support of the West Valley Demonstration Project. One objective is the vitrification of liquid waste generated by previous nuclear fuel reprocessing. This work has been directed principally at the problem of glass composition optimization. This has necessitated the development of a coordinated program of glass production, durability measurements, and processability assessment. A small-scale continuous melter has been constructed for melting uranium and thorium containing glasses and for studying glass processing characteristics. Glass viscosities have been measured over a range of temperatures. A large number of glasses have also been produced in small crucible melts. Glass durability has been assessed using four types of leach tests: MCC-3, MCC-1, IAEA/ISO, and pulsed-flow tests. Extensive data from these tests are reported. The data have led to the design of very durable glasses (comparable to the Savannah River Laboratory Defense Waste Reference Glass) which have the requisite waste loading and processing characteristics. 14 refs., 4 figs., 77 tabs

  2. Effect of manufactured sand on the durability characteristics of concrete

    Directory of Open Access Journals (Sweden)

    S. S. SARAVANAN

    2016-12-01

    Full Text Available Concrete is the most sought after material due to increase in construction activities and infrastructural developments. Availability of natural sand is decreasing thereby increase in the cost of construction. In the present work undertaken, an attempt has been made to give an alternative to natural sand. Optimization of replacement of natural sand with manufactured sand in concrete, durability studies such as water absorption, rapid chloride permeability test, sorptivity, acid resistance, alkaline resistance, impact resistance and abrasion resistance of M40 and M50 grades of concrete have been studied with manufactured sand as fine aggregate and compared the results with the conventional sand concrete. The results shows that there is an increase in the durability properties up to 70 % level of replacements of sand with manufactured sand as fine aggregate and for 100 % use of manufactured sand also gives the better durability than the conventional sand concrete.

  3. Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces via Electrodeposition.

    Science.gov (United States)

    Jain, R; Pitchumani, R

    2018-03-13

    Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been limited by their poor mechanical durability and longevity. We present a low-cost, facile process to develop superhydrophobic copper-based coatings via an electrodeposition route, that addresses this limitation. Through electrodeposition, a stable, multiscale, cauliflower shaped fractal morphology was obtained and upon modification by stearic acid, the prepared coatings show extreme water repellency with contact angle of 162 ± 2° and roll-off angle of about 3°. Systematic studies are presented on coatings fabricated under different processing conditions to demonstrate good durability, mechanical and underwater stability, corrosion resistance, and self-cleaning effect. The study also presents an approach for rejuvenation of slippery superhydrophobic nature (roll-off angle <10°) on the surfaces after long-term water immersion. The presented process can be scaled to larger, durable coatings with controllable wettability for diverse applications.

  4. Advantage from Funding Durable Centers Leasing

    Directory of Open Access Journals (Sweden)

    Alina Zając

    2009-09-01

    Full Text Available In present market conditions huge number of businessmen has problems from gain over from banks capital on purchase of durable centers not only, but also on develop - ment and operating activity Individual can use with different forms funding investment, it which is between different leasing.

  5. Application of the cementitious grouts on stability and durability of semi flexible bituminous mixtures

    Science.gov (United States)

    Karami, Muhammad

    2017-11-01

    This paper describes the results of laboratory test for a high durability semi flexible bituminous mixtures (SFBM). The SFBM consists of an open asphalt structure where a high strength mortar is penetrated into the air voids of the bituminous mixtures. The SFBM combines the cement concrete's strength and the asphalt material flexibility. The objective of this study is to involve in the determination of stability and durability of SFBM by located the position of the specimen on an exposed area for 7, 90, 180 and 240 days. The performance of the SFBM was assessed using Marshall and wheel tracking apparatus. Total 18 specimens were prepared and examined for both of test. The Marshall specimens were cylindrical with dimension of 10.16 cm in diameter and 6.35 cm in high. For wheel tracking test, the specimens consisted of slabs with dimension of 30 cm in length, 30 cm in width and 5 cm in height. The results indicated that the first durability index and second durability index increased significantly. For Marshall test, the first and second durability index increased about 0.9% per day and 52.3%, respectively. However, for wheel tracking test, the first and second durability index increased about 1.9% per day and 119%, respectively.

  6. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    Science.gov (United States)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  7. Light Stimulation Properties to Influence Brain Activity: A Brain-CoMputer Interface application

    NARCIS (Netherlands)

    Bieger, J.; Garcia Molina, G.

    2010-01-01

    Brain-Computer Interfaces (BCIs) enable people to control appliances without involving the normal output pathways of peripheral nervesand muscles. A particularly promising type of BCI is based on the Steady-State Visual Evoked Potential (SSVEP). Users can selectcommands by focusing their attention

  8. Price freezes, durables and residential electricity demand - Evidence from the Greater Buenos Aires

    Energy Technology Data Exchange (ETDEWEB)

    Casarin, Ariel; Delfino, Maria Eugenia

    2010-09-15

    This paper examines the determinants of residential electricity demand in the Greater Buenos Aires between 1997 and 2006. During the second half of this period, residential tariffs remained nominally fixed, while an income boom boosted up the sales of durables. This study differs from previous works in that it explicitly considers the impact of the stock of air-conditioners on residential demand. The paper reports short- and long-run elasticities and examines the contribution of prices and durables to recent demand growth. Simulations illustrate the impact of prices and durables on future demand.

  9. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon

    Science.gov (United States)

    Harraz, Farid A.; Ismail, Adel A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2016-12-01

    A capacitive detection of liquid ethanol using reactive, thermally oxidized films constructed from electrochemically synthesized porous silicon (PSi) is demonstrated. The sensor elements are fabricated as meso-PSi (pore sizes hydrophobic PSi surface exhibited almost a half sensitivity of the thermal oxide sensor. The response to water is achieved only at the oxidized surface and found to be ∼one quarter of the ethanol sensitivity, dependent on parameters such as vapor pressure and surface tension. The capacitance response retains ∼92% of its initial value after continuous nine cyclic runs and the sensors presumably keep long-term stability after three weeks storage, demonstrating excellent durability and storage stability. The observed behavior in current system is likely explained by the interface interaction due to dipole moment effect. The results suggest that the current sensor structure and design can be easily made to produce notably higher sensitivities for reversible detection of various analytes.

  10. Design of concrete structures for durability. Example: Chloride penetration in the lining of a bored tunnel

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1998-01-01

    The present design method for durability of concrete is based on a set of rules that give no objective in-sight in the service life to expect from the concrete structure. An objective comparison between different durability measures is therefor not possible. Especially if the lack of durability can

  11. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...... structure is retained even after a harsh durability test, which is performed by repeating cyclic voltammetry in the range of 0.05–1.4 V for 1800 cycles. A full cell is fabricated for direct formic acid fuel cell using the Pt1/ATO as an anode catalyst, and an order of magnitude higher cell power is obtained...

  12. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  13. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    Science.gov (United States)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  14. Durability of wood-plastic composite lumber

    Science.gov (United States)

    Rebecca E. Ibach

    2010-01-01

    Wood-plastic composite (WPC) lumber has been marketed as a low-maintenance, high-durability product. Retail sales in the United States were slightly less than $1 billion in 2008. Applications include docking, railing, windows, doors, fencing, siding, moldings, landscape timbers, car interior parts, and furniture. The majority of these products are used outdoors and...

  15. Durability testing of the high-capacity GA-4/GA-9 trailer

    International Nuclear Information System (INIS)

    Zimmer, A.; Lyon, T.

    1995-01-01

    GA designed trailers to transport the GA-4 and GA-9 LWT from-reactor spent nuclear fuel shipping casks. GA designed and fabricated the GA-9 trailer to ANSI N14.30 requirements and is now performing a durability test at the AlliedSignal Automotive Proving Grounds. The trailer, simulated cask and tractor. The test program objective is to evaluate and improve, as necessary, the trailer's durability, reliability and performance

  16. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  17. Investigation of the Durability of a Diaphragm for a Total Artificial Heart.

    Science.gov (United States)

    Gräf, Felix; Rossbroich, Ralf; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-10-01

    One of the most critical components regarding the durability of the ReinHeart total artificial heart (TAH) is its biocompatible diaphragm, which separates the drive unit from the ventricles. Hence, a durability tester was designed to investigate its required 5-year lifetime. The aim of this study was to prove the validity of accelerated testing of the polyurethane diaphragm. The durability tester allows simultaneous testing of 12 diaphragms and mimics physiological conditions. To accelerate the time of testing, it operates with an increased speed at a frequency of 8 Hz. To prove the correctness of this acceleration, a servo-hydraulic testing machine was used to study the effect of different frequencies and their corresponding loads. Thereby the viscoelastic behavior of the polyurethane was investigated. Additionally, high-speed video measurements were performed. The force against frequency and the high-speed video measurements showed constant behavior. In the range of 1-10 Hz, the maximum resulting forces varied by 3%, and the diaphragm movement was identical. Frequencies below 10 Hz allow a valid statement of the diaphragm's mechanical durability. Viscoelasticity of the polyurethane in the considered frequency-range is negligible. The accelerated durability test is applicable to polyurethane diaphragms, and the results are applicable to TAH use. The reliability of the diaphragm for a lifetime of 5 years was found to be 80% with a confidence of 62%. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    Science.gov (United States)

    Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence

    2010-01-01

    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761

  19. Durability and service life design of concrete structures. Experiences and the way to prove in The Netherlands

    NARCIS (Netherlands)

    Siemes, A.J.M.; Vrouwenvelder, A.C.W.M.

    2002-01-01

    After the introduction of reinforced concrete it was believed that the material was extremely durable. Soon it was found however, that reinforced concrete could have serious durability problems and that special care should be taken to avoid them. Durability became an issue.

  20. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  1. Durability evaluation method on rebar corrosion of reinforced concrete

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori

    2013-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration of rebar corrosion caused by neutralization and penetration of salinity by referring to the recent papers. (author)

  2. THE RELEVANCE OF ELECTRONIC COMMERCE FOR DURABLE DEVELOPMENT. CHALLENGES FOR ROMANIA

    OpenAIRE

    Assist. Ph.D Student Maruntelu Irina

    2009-01-01

    This article aims to approach the topic of the electronic commerce considering the context of the durable development, without exclusively limiting to the economic dimension of sustainable development. This paper aims to offer a vision on the e-commerce based on an optimistic approach of the reconciliation between economic growth and durable development, but moderate by the current realities (digital divide between countries/regions, economic crisis etc). Furthermore, by identifying some of t...

  3. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  4. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  5. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury.

    Science.gov (United States)

    Smit, C A J; Haverkamp, G L G; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J

    2012-08-01

    Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in the other gluteal (g) muscles only. To study and compare the effects of electrically induced activation of g+h muscles versus g muscles only on sitting pressure distribution in individuals with a spinal cord injury (SCI). Ischial tuberosities interface pressure (ITs pressure) and pressure gradient. In all participants, both protocols of g and g+h ES-induced activation caused a significant decrease in IT pressure. IT pressure after g+h muscles activation was reduced significantly by 34.5% compared with rest pressure, whereas a significant reduction of 10.2% after activation of g muscles only was found. Pressure gradient reduced significantly only after stimulation of g+h muscles (49.3%). g+h muscles activation showed a decrease in pressure relief (Δ IT) over time compared with g muscles only. Both protocols of surface ES-induced of g and g+h activation gave pressure relief from the ITs. Activation of both g+h muscles in SCI resulted in better IT pressure reduction in sitting individuals with a SCI than activation of g muscles only. ES might be a promising method in preventing pressure ulcers (PUs) on the ITs in people with SCI. Further research needs to show which pressure reduction is sufficient in preventing PUs.

  6. Leveraging Cloud Computing to Improve Storage Durability, Availability, and Cost for MER Maestro

    Science.gov (United States)

    Chang, George W.; Powell, Mark W.; Callas, John L.; Torres, Recaredo J.; Shams, Khawaja S.

    2012-01-01

    The Maestro for MER (Mars Exploration Rover) software is the premiere operation and activity planning software for the Mars rovers, and it is required to deliver all of the processed image products to scientists on demand. These data span multiple storage arrays sized at 2 TB, and a backup scheme ensures data is not lost. In a catastrophe, these data would currently recover at 20 GB/hour, taking several days for a restoration. A seamless solution provides access to highly durable, highly available, scalable, and cost-effective storage capabilities. This approach also employs a novel technique that enables storage of the majority of data on the cloud and some data locally. This feature is used to store the most recent data locally in order to guarantee utmost reliability in case of an outage or disconnect from the Internet. This also obviates any changes to the software that generates the most recent data set as it still has the same interface to the file system as it did before updates

  7. Développement durable de l'agriculture urbaine

    International Development Research Centre (IDRC) Digital Library (Canada)

    La gestion concertée et durable des filières maraîchères urbaines, Paule Moustier, Michel ..... avec des eaux usées, le plus souvent non traitées : dans quelle mesure cette agriculture peut-elle ...... Le contrôle des performances zootechniques

  8. The effect of compositional parameters on the TCLP and PCT durability of environmental glasses

    International Nuclear Information System (INIS)

    Resce, J.L.; Overcamp, T.J.

    1995-01-01

    The relationship between glass composition and the chemical durability of environmental waste glass is very important for both the development of glass formulations and the prediction of glass durability for process control. The development of such a model is extremely difficult for several reasons. Firstly, chemical durability is dependent upon the type of leach test employed; the leach tests themselves being only crude approximations of actual environmental conditions or long term behavior. Secondly, devitrification or crystallinity can also play a major role in durability, but is much more difficult to quantify. Lastly, the development of any one model for all glass types is impractical because of the wide variety of wastestreams, the heterogeneity of the wastestreams, and the large variety of components within each wastestream. Several ongoing efforts have been directed toward this goal, but as yet, no model has been proven acceptable

  9. Durable and Robust Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Knibbe, Ruth; Hauch, Anne

    project had as one of its’ overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended......The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year...... for use within the CHP (Combined Heat and Power) market segment with stationary power plants in the range 1 – 250 kWe in mind. Lowered operation temperature is considered a good way to improve the stack durability since corrosion of the interconnect plates in a stack is lifetime limiting at T > 750 °C...

  10. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  11. THE EFFECT OF HEAT TREATMENT ON THE DURABILITY OF BAMBOO Gigantochloa scortechinii

    Directory of Open Access Journals (Sweden)

    Norashikin Kamarudin

    2012-07-01

    Full Text Available Bamboo signifies as one of the fastest growing plants and it can be used for various products. In tropical countries such as Indonesia and Malaysia, bamboo is abundantly available at reasonable prices, therefore it is used for numerous purposes. However, as lignocellulosic material, bamboo is susceptible to fungal and insect attacks. Heat treatment is an option to improve bamboo's durability. The objective of this study was to improve the durability of bamboo using hot oil palm treatment. A Malaysian grown bamboo species, Buluh Semantan (Gigantochloa scortechinii, as a study material was soaked in hot oil palm for various temperatures and soaking time, before being inoculated with the basidiomycete Coriolus versicolor in an agar block test. The results demonstrated that the longer the heating time, the more improved the durability of bamboo. Altering the temperature in the palm oil treatment produced varying results. Bamboo blocks that heated in hot oil palm at 100°C for 60 minutes shows considerably less weight eduction that indicates less fungal attack. Overall, the higher the temperature, the better the durability of bamboo. Please indicates what the meaning of heat treatment in this experiment, it is not clear.

  12. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    International Nuclear Information System (INIS)

    Eppler, F.H.; Yim, M.S.

    1998-01-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al 2 O 3 to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition

  13. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shin-Hong; Wu, Xuan-Han

    2012-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference. PMID:22368481

  14. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts

    KAUST Repository

    Yang, Xiulin; Li, Henan; Lu, Ang-Yu; Min, Shixiong; Idriss, Zacharie; Hedhili, Mohamed N.; Huang, Kuo-Wei; Idriss, Hicham; Li, Lain-Jong

    2016-01-01

    Most oxygen evolution reaction (OER) electrocatalysts are not stable in corrosive acids. Even the expensive RuO2 or IrO2, the most acid-resistant oxides, can be dissolved at an oxidative potential. Herein, we realize that the failures of OER catalysts are mostly caused by the weak interface between catalysts and the substrates. Hence, the study of the interface structure between catalysts and substrates is critical. In this work, we observe that the cheap OER catalysts Co3O4 can be more durable than the state-of-the-art RuO2 if the interface quality is good enough. The Co3O4 nanosheets deposited on carbon paper (Co3O4/CP) is prepared by electroplating of Co-species and followed by a two-step calcination process. The 1st step occurs in vacuum in order to maintain the surface integrity of the carbon paper and converts Co-species to Co(II)O. The 2nd step is a calcination in ambient conditions which enables the complete transformation of Co(II)O to Co3O4 without degrading the mechanical strength of the Co3O4-CP interface. Equally important, an in situ formation of a layer of amorphous carbon on top of Co3O4 further enhances the OER catalyst stability. Therefore, these key advances make the Co3O4 catalyst highly active toward the OER in 0.5 M H2SO4 with a small overpotential (370 mV), to reach 10 mA/cm2. The observed long lifetime for 86.8 h at a constant current density of 100 mA/cm2, is among the best of the reported in literature so far, even longer than the state-of-art RuO2 on CP. Overall, our study provides a new insight and methodology for the construction of a high-performance and high stability OER electrocatalysts in corrosive acidic environments.

  15. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts

    KAUST Repository

    Yang, Xiulin

    2016-04-21

    Most oxygen evolution reaction (OER) electrocatalysts are not stable in corrosive acids. Even the expensive RuO2 or IrO2, the most acid-resistant oxides, can be dissolved at an oxidative potential. Herein, we realize that the failures of OER catalysts are mostly caused by the weak interface between catalysts and the substrates. Hence, the study of the interface structure between catalysts and substrates is critical. In this work, we observe that the cheap OER catalysts Co3O4 can be more durable than the state-of-the-art RuO2 if the interface quality is good enough. The Co3O4 nanosheets deposited on carbon paper (Co3O4/CP) is prepared by electroplating of Co-species and followed by a two-step calcination process. The 1st step occurs in vacuum in order to maintain the surface integrity of the carbon paper and converts Co-species to Co(II)O. The 2nd step is a calcination in ambient conditions which enables the complete transformation of Co(II)O to Co3O4 without degrading the mechanical strength of the Co3O4-CP interface. Equally important, an in situ formation of a layer of amorphous carbon on top of Co3O4 further enhances the OER catalyst stability. Therefore, these key advances make the Co3O4 catalyst highly active toward the OER in 0.5 M H2SO4 with a small overpotential (370 mV), to reach 10 mA/cm2. The observed long lifetime for 86.8 h at a constant current density of 100 mA/cm2, is among the best of the reported in literature so far, even longer than the state-of-art RuO2 on CP. Overall, our study provides a new insight and methodology for the construction of a high-performance and high stability OER electrocatalysts in corrosive acidic environments.

  16. Assessing the representativeness of durability tests for wood pellets by DEM Simulation - Comparing conditions in a durability test with transfer chutes

    Science.gov (United States)

    Mahajan, Aditya; Dafnomilis, Ioannis; Hancock, Victoria; Lodewijks, Gabriel; Schott, Dingena

    2017-06-01

    Dust generation when handling wood pellets is related to the durability of the product, in other words the wear rate of particles subject to forces. During transport, storage and handling wood pellets undergo different forces when interacting with different pieces of equipment. This paper assesses the representativeness of the tumbling can test in relation to transfer chutes, by comparing forces acting on wood pellets in durability tests and in transfer chutes using DEM. The study also incorporates effects such as shape and size variations. The results showed that the tumbling can test underestimates compressive and tangential forces. Since the tested material is subject to milder conditions than in reality, it can be concluded that this test is not representative for the conditions in the supply chain of wood pellets.

  17. Modeling of Interface and Internal Disorder Applied to XRD Analysis of Ag-Based Nano-Multilayers.

    Science.gov (United States)

    Ariosa, Daniel; Cancellieri, Claudia; Araullo-Peters, Vicente; Chiodi, Mirco; Klyatskina, Elizaveta; Janczak-Rusch, Jolanta; Jeurgens, Lars P H

    2018-06-07

    Multilayered structures are a promising route to tailor electronic, magnetic, optical, and/or mechanical properties and durability of functional materials. Sputter deposition at room temperature, being an out-of-equilibrium process, introduces structural defects and confers to these nanosystems an intrinsic thermodynamical instability. As-deposited materials exhibit a large amount of internal atomic displacements within each constituent block as well as severe interface roughness between different layers. To access and characterize the internal multilayer disorder and its thermal evolution, X-ray diffraction investigation and analysis are performed systematically at differently grown Ag-Ge/aluminum nitride (AlN) multilayers (co-deposited, sequentially deposited with and without radio frequency (RF) bias) samples and after high-temperature annealing treatment. We report here on model calculations based on a kinematic formalism describing the displacement disorder both within the multilayer blocks and at the interfaces to reproduce the experimental X-ray diffraction intensities. Mixing and displacements at the interface are found to be considerably reduced after thermal treatment for co- and sequentially deposited Ag-Ge/AlN samples. The application of a RF bias during the deposition causes the highest interface mixing and introduces random intercalates in the AlN layers. X-ray analysis is contrasted to transmission electron microscopy pictures to validate the approach.

  18. Research notes : durability of composite repairs on bridges.

    Science.gov (United States)

    2009-08-01

    The research showed that conditions that allow moisture to get under the carbon fiber reinforced polymer composites (CFRP) combined with freeze-thaw were detrimental to durability. In addition, the results showed that the American Concrete Institute ...

  19. Glycogen with short average chain length enhances bacterial durability

    Science.gov (United States)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  20. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  1. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  2. Old materials and techniques to improve the durability of earth buildings

    OpenAIRE

    Camões, Aires; Eires, R.; Jalali, Said

    2012-01-01

    Quite a big part of the world’s heritage is still made by earth constructions. The durability of the existent heritage, as well as the new earth buildings is particularly conditioned by erosion caused by water action, especially in countries with high rainfall index. With this research one intends to value the ancient knowledge in order to allow higher durability. Analysing the old building techniques to protect the earth material from the water action it is possible to understand how ear...

  3. Reliability algorithms applied to reinforced concrete structures durability assessment

    Directory of Open Access Journals (Sweden)

    C. G. Nogueira

    Full Text Available This paper addresses the analysis of probabilistic corrosion time initiation in reinforced concrete structures exposed to ions chloride penetration. Structural durability is an important criterion which must be evaluated in every type of structure, especially when these structures are constructed in aggressive atmospheres. Considering reinforced concrete members, chloride diffusion process is widely used to evaluate the durability. Therefore, at modelling this phenomenon, corrosion of reinforcements can be better estimated and prevented. These processes begin when a threshold level of chlorides concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in the literature, deterministic approaches fail to predict accurately the corrosion time initiation due to the inherently randomness observed in this process. In this regard, the durability can be more realistically represented using probabilistic approaches. A probabilistic analysis of ions chloride penetration is presented in this paper. The ions chloride penetration is simulated using the Fick's second law of diffusion. This law represents the chloride diffusion process, considering time dependent effects. The probability of failure is calculated using Monte Carlo simulation and the First Order Reliability Method (FORM with a direct coupling approach. Some examples are considered in order to study these phenomena and a simplified method is proposed to determine optimal values for concrete cover.

  4. Influence of surface topography on the surface durability of steam oxidised sintered iron

    Directory of Open Access Journals (Sweden)

    José Daniel Biasoli de Mello

    2005-06-01

    Full Text Available Durability of surfaces has been reported as the main factor affecting tribological behavior of steam oxidised sintered iron. The presence of surface pores and their negative influence on load bearing capacity, suggest that surface topography might play an important role on the durability of the oxide layer. In this paper, the influence of compaction pressure and powder grade on surface topography, and as a consequence, its effect on the tribological behavior of steam oxidised sintered iron has been analysed. Specimens prepared from atomised iron powders with different sizes were compacted using 4 different pressures, sintered, and then subjected to steam treatment. Tribological characterisation was carried out in a reciprocating sliding wear test. Although the processing parameters affected the surface topography to a considerable extent, the main influence may be attributed to powder grade. A strong influence of surface topography on the durability distance, evaluated in terms of the evolution of contact resistance with total sliding distance, has been highlighted. Surfaces which were smoother and had high load-carrying capacity were always associated with a higher durability distance.

  5. OPTIONS D'INTENSIFICATION DURABLE DES CULTURES ...

    African Journals Online (AJOL)

    (Received 14 August, 2001 ; accepted 10 May, 2002) RÉSUMÉ Pour intensifier de manière durable les cultures vivrières dans les zones de terres de barre dégradées au sud du Togo, plusieurs options ont été évaluées avec les paysans. Grâce à des entretiens collectifs de type participatif, sept différents groupes ...

  6. Advanced Durability Analysis. Volume 2. Analytical Predictions, Test Results and Analytical Correlations

    Science.gov (United States)

    1989-02-27

    Deteministic Crack Growth ApprMach ( CApm -DCG-) Ndaft)/dt m 101Ca )I SUVICE TINE Wh Two-stit btei’uinistic-stochastic Crack Groth Approach (WHO-CG) Figure...physical description of the state of damage for a durability- critical component and a logical basis for estimating structural maintenance/repair require...The stress level for each stress region is important for crack growth predictions. Therefore, the stress analysis for durability- critical components

  7. The durability of waveguide fibers at cyclic change of loading, temperature and humidity

    International Nuclear Information System (INIS)

    Karimov, S.N.; Sultonov, U.; Shamsidinov, M.I.

    1992-01-01

    Present article is devoted to durability of waveguide fibers at cyclic change of loading, temperature and humidity. The mounting scheme and loading of sample is presented. The dependence of glass fiber durability on number of thermal cycles at various humidity rates was considered. The dependence of number of cycles on maximal loading at cyclic temperature change was studied.

  8. A swimming robot actuated by living muscle tissue

    Directory of Open Access Journals (Sweden)

    Herr Hugh

    2004-10-01

    Full Text Available Abstract Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional adaptation of the biological component. Based upon functional performance, muscle is potentially an excellent mechanical actuator, but the larger challenge of developing muscle-actuated, biomechatronic devices poses many scientific and engineering challenges. As a demonstratory proof of concept, we designed, built, and characterized a swimming robot actuated by two explanted frog semitendinosus muscles and controlled by an embedded microcontroller. Using open loop stimulation protocols, the robot performed basic swimming maneuvers such as starting, stopping, turning (turning radius ~400 mm and straight-line swimming (max speed >1/3 body lengths/second. A broad spectrum antibiotic/antimycotic ringer solution surrounded the muscle actuators for long term maintenance, ex vivo. The robot swam for a total of 4 hours over a 42 hour lifespan (10% duty cycle before its velocity degraded below 75% of its maximum. The development of functional biomechatronic prototypes with integrated musculoskeletal tissues is the first critical step toward the long term objective of controllable, adaptive and robust biomechatronic robots and prostheses.

  9. Evolutionarily conserved morphogenetic movements at the vertebrate head–trunk interface coordinate the transport and assembly of hypopharyngeal structures

    Science.gov (United States)

    Lours-Calet, Corinne; Alvares, Lucia E.; El-Hanfy, Amira S.; Gandesha, Saniel; Walters, Esther H.; Sobreira, Débora Rodrigues; Wotton, Karl R.; Jorge, Erika C.; Lawson, Jennifer A.; Kelsey Lewis, A.; Tada, Masazumi; Sharpe, Colin; Kardon, Gabrielle; Dietrich, Susanne

    2014-01-01

    The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface. PMID:24662046

  10. Am/Cm target glass durability dependence on pH (U). Revision 1

    International Nuclear Information System (INIS)

    Daniel, W.E.; Best, D.R.

    1996-03-01

    At the Westinghouse Savannah River Company near Aiken, South Carolina, a process is being developed to safely vitrify all of the highly radioactive americium/curium (Am/Cm) material and a portion of the other fissile actinide materials stored on site. One goal of this campaign is to provide Oak Ridge National Laboratory with the excess Am/Cm so it can be recycled as opposed to simply disposing of it as waste. The vitrification will allow safe transportation of the Am/Cm to Oak Ridge as well as safe storage once it arrives. The Am/Cm Target glass being used in this project has been specifically designed to be extremely durable in aqueous environments while it can be selectively attacked by nitric acid to recover the valuable Am and Cm isotopes. Similar glass compositions could be used for storage and retrieval of other actinides on the WSRC site. Previous reports have presented the time, temperature, and compositional dependence of the Am/Cm glass durability. This paper will show results from a pH study on the Am/Cm Target glass durability. The data indicate that the Am/Cm Target Glass durability decreases as pH decreases from a neutral reading. These findings support the extraction of the valuable isotopes from the glass using nitric acid

  11. First-order model for durability of Hanford waste glasses as a function of composition

    International Nuclear Information System (INIS)

    Hrma, P.; Piepel, G.F.; Schweiger, M.J.; Smith, D.E.

    1992-04-01

    Two standard chemical durability tests, the static leach test MCC-1 and product consistency test PCT, were conducted on simulated borosilicate glasses that encompass the expected range of compositions to be produced in the Hanford Waste Vitrification Plant (HWVP). A first-order empirical model was fitted to the data from each test method. The results indicate that glass durability is increased by addition of Al 2 O 3 , moderately increased by addition of ZrO 2 and SiO 2 , and decreased by addition of Li 2 O, Na 2 O, B 2 O 3 , and MgO. Addition of Fe 2 O 3 and CaO produce an indifferent or reducing effect on durability according to the test method. This behavior and a statistically significant lack of fit are attributed to the effects of multiple chemical reactions occurring during glass-water interaction. Liquid-liquid immiscibility is suspected to be responsible for extremely low durability of some glasses

  12. Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    H. Assaedi

    2017-03-01

    Full Text Available The main concern of using natural fibres as reinforcement in geopolymer composites is the durability of the fibres. Geopolymers are alkaline in nature because of the alkaline solution that is required for activating the geopolymer reaction. The alkalinity of the matrix, however, is the key reason of the degradation of natural fibres. The purpose of this study is to determine the effect of nanoclay (NC loading on the mechanical properties and durability of flax fabric (FF reinforced geopolymer composites. The durability of composites after 4 and 32 weeks at ambient temperature is presented. The microstructure of geopolymer matrices was investigated using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The results showed that the incorporation of NC has a positive impact on the physical properties, mechanical performance, and durability of FF reinforced geopolymer composites. The presence of NC has a positive impact through accelerating the geopolymerization, reducing the alkalinity of the system and increasing the geopolymer gel.

  13. Experimental research on the durability cutting tools for cutting-off steel profiles

    Directory of Open Access Journals (Sweden)

    Cristea Alexandru

    2017-01-01

    Full Text Available The production lines used for manufacturing U-shaped profiles are very complex and they must have high productivity. One of the most important stages of the fabrication process is the cutting-off. This paper presents the experimental research and analysis of the durability of the cutting tools used for cutting-off U-shaped metal steel profiles. The results of this work can be used to predict the durability of the cutting tools.

  14. Durability Properties of Self Compacting Concrete containing Fly ash, Lime powder and Metakaolin

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad Khan

    2016-01-01

    Full Text Available This paper investigates the durability properties of Self-compacting concrete (SCC, with different amounts of fly ash (FA, lime powder (LP and metakaolin (MK. A total of 6 mixes were prepared that have a constant water-binder ratio (w/b of 0.41 and superplasticizer dosage of 1% by weight of cement. In addition to compressive strength, the durability properties of SCC mixes were determined by means of Initial surface absorption test (ISAT and Capillary suction test. The test results indicated that the durability properties of the mixes appeared to be very dependent on the type and amount of the mineral admixture used; the mixes containing MK were found to have considerably higher permeability resistance. Good co-relation between strength and absorption were achieved.

  15. Durable chemical sensors based on field-effect transistors

    NARCIS (Netherlands)

    Reinhoudt, David

    1995-01-01

    The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a

  16. Weathering durability of commercial polymeric coatings tested by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Chen, H.; Peng, Q.; Huang, Y.Y.; Zhang, R.; Li, Y.; Zhang, J.; Wu, Y.C.; Richardson, J.R.; Sandreczki, T.C.; Jean, Y.C.

    2003-01-01

    A series of commercial coatings were prepared according to the industrial specifications and were exposed to Florida natural weathering and controlled UVA irradiation. The Doppler broadening energy spectra (DBES) of positron annihilation were measured as a function of incident positron energy at different periods of weathering. A significant decrease in the S parameter was observed and it was used as an indicator to test coating durability in micro-scale. Application to weathering durability of commercial polymeric coatings under natural weathering and controlled UVA irradiation is investigated by using the S parameter from the DBES

  17. Durability of composites in a marine environment

    CERN Document Server

    Rajapakse, Yapa

    2014-01-01

    Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: •       Modelling water diffusion •       Damage induced by water •       Accelerated testing •       Including durability in design •       In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to t...

  18. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer.

    Science.gov (United States)

    Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong

    2018-03-28

    Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.

  19. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  20. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Directory of Open Access Journals (Sweden)

    Xuan-Han Wu

    2012-01-01

    Full Text Available Surface electromyography (sEMG is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference.

  1. Durability of cement and geopolimer composites

    Science.gov (United States)

    Błaszczyński, T.; Król, M.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.

  2. Durable and Sustainable Road Constructions for Developing Countries

    NARCIS (Netherlands)

    Molenaar, A.A.A.

    2013-01-01

    This paper discusses the possibilities to build durable and sustainable pavement structures in developing countries. Attention will be paid to geometric design aspects which have a significant effect on pavement life. Following this attention will be paid to the importance of controlling wheel loads

  3. Utilization of Durability Criterion to Develop Automotive Components

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2010-01-01

    Today the automotive companies must reduce the time to development of new products with improvement in performance, durability and low cost reductions where possible. To achieve this goal the carmakers need to improve the design criterion of car systems like body, chassis and suspension component...

  4. Framework for a procedure for design for durability

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1996-01-01

    The design for durability of structures and building components is in general based on implicit requirements with respect to the quality and dimensions of the composing building materials and components. These requirements are based on long term experience. This approach has disadvantages. It is

  5. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  6. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin

    Directory of Open Access Journals (Sweden)

    Carolina CARVALHO

    Full Text Available ABSTRACT Objective Green tea extract has been advocated as a matrix metalloproteinase (MMP inhibitor; however, its effect on bond durability to caries-affected dentin has never been reported. Thus, the aim of this in vitro study was to evaluate the effect of two MMP inhibitors (2% chlorhexidine and 2% green tea extract, applied after acid etching, on bond durability of an etch-and-rinse adhesive system to caries-affected dentin. Material and Methods Occlusal enamel was removed from third molars to expose the dentin surface, and the molars were submitted to a caries induction protocol for 15 days. After removal of infected dentin, specimens were conditioned with 37% phosphoric acid (15 seconds and randomly divided into three groups, according to the type of dentin pretreatment (n=10: NT: no treatment; GT: 2% green tea extract; CLX: 2% chlorhexidine. The etch-and-rinse adhesive system (Adper™ Single Bond 2, 3M ESPE, St. Paul, MN, USA was applied according to the manufacturer's instructions, and composite resin restorations were built on the dentin. After 24 hours, at 37°C, the resin-tooth blocks were sectioned perpendicularly to the adhesive interface in the form of sticks (0.8 mm2 of adhesive area and randomly subdivided into two groups according to when they were to be submitted to microtensile bond strength (μTBS testing: immediately or 6 months after storage in distilled water. Data were reported in MPa and submitted to two-way ANOVA for completely randomized blocks, followed by Tukey’s test (α=0.05. Results After 24 hours, there was no significant difference in the μTBS of the groups. After 6 months, the GT group had significantly higher μTBS values. Conclusion It was concluded that the application of 2% green tea extract was able to increase bond durability of the etch-and-rinse system to dentin. Neither the application of chlorhexidine nor non-treatment (NT - control had any effect on bond strength after water storage.

  7. Durability studies on the high calcium flyash based GPC

    African Journals Online (AJOL)

    Keywords: Geopolymer concrete, high calcium flyash, durability, corrosion resistance, polarisation test. ... Reddy, et al (2011) reported that excellent resistance to chloride .... being the metal on the higher electro potential range, to the negative ...

  8. Integrated circuits and electrode interfaces for noninvasive physiological monitoring.

    Science.gov (United States)

    Ha, Sohmyung; Kim, Chul; Chi, Yu M; Akinin, Abraham; Maier, Christoph; Ueno, Akinori; Cauwenberghs, Gert

    2014-05-01

    This paper presents an overview of the fundamentals and state of the-art in noninvasive physiological monitoring instrumentation with a focus on electrode and optrode interfaces to the body, and micropower-integrated circuit design for unobtrusive wearable applications. Since the electrode/optrode-body interface is a performance limiting factor in noninvasive monitoring systems, practical interface configurations are offered for biopotential acquisition, electrode-tissue impedance measurement, and optical biosignal sensing. A systematic approach to instrumentation amplifier (IA) design using CMOS transistors operating in weak inversion is shown to offer high energy and noise efficiency. Practical methodologies to obviate 1/f noise, counteract electrode offset drift, improve common-mode rejection ratio, and obtain subhertz high-pass cutoff are illustrated with a survey of the state-of-the-art IAs. Furthermore, fundamental principles and state-of-the-art technologies for electrode-tissue impedance measurement, photoplethysmography, functional near-infrared spectroscopy, and signal coding and quantization are reviewed, with additional guidelines for overall power management including wireless transmission. Examples are presented of practical dry-contact and noncontact cardiac, respiratory, muscle and brain monitoring systems, and their clinical applications.

  9. Evaluation of high-density, multi-contact nerve cuffs for activation of grasp muscles in monkeys

    Science.gov (United States)

    Brill, N. A.; Naufel, S. N.; Polasek, K.; Ethier, C.; Cheesborough, J.; Agnew, S.; Miller, L. E.; Tyler, D. J.

    2018-06-01

    Objective. The objective of this work was to evaluate whether nerve cuffs can selectively activate hand muscles for functional electrical stimulation (FES). FES typically involves identifying and implanting electrodes in many individual muscles, but nerve cuffs only require implantation at a single site around the nerve. This method is surgically more attractive. Nerve cuffs may also more effectively stimulate intrinsic hand muscles, which are difficult to implant and stimulate without spillover to adjacent muscles. Approach. To evaluate its ability to selectively activate muscles, we implanted and tested the flat interface nerve electrode (FINE), which is designed to selectively stimulate peripheral nerves that innervate multiple muscles (Tyler and Durand 2002 IEEE Trans. Neural Syst. Rehabil. Eng. 10 294-303). We implanted FINEs on the nerves and bipolar intramuscular wires for recording compound muscle action potentials (CMAPs) from up to 20 muscles in each arm of six monkeys. We then collected recruitment curves while the animals were anesthetized. Main result. A single FINE implanted on an upper extremity nerve in the monkey can selectively activate muscles or small groups of muscles to produce multiple, independent hand functions. Significance. FINE cuffs can serve as a viable supplement to intramuscular electrodes in FES systems, where they can better activate intrinsic and extrinsic muscles with lower currents and less extensive surgery.

  10. A virtual reality interface for pre-planning of surgical operations based on a customized model of the patient

    Science.gov (United States)

    Witkowski, Marcin; Lenar, Janusz; Sitnik, Robert; Verdonschot, Nico

    2012-03-01

    We present a human-computer interface that enables the operator to plan a surgical procedure on the musculoskeletal (MS) model of the patient's lower limbs, send the modified model to the bio-mechanical analysis module, and export the scenario parameters to the surgical navigation system. The interface provides the operator with tools for: importing customized MS model of the patient, cutting bones and manipulating/removal of bony fragments, repositioning muscle insertion points, muscle removal and placing implants. After planning the operator exports the modified MS model for bio-mechanical analysis of the functional outcome. If the simulation result is satisfactory the exported scenario data may be directly used during the actual surgery. The advantages of the developed interface are the possibility of installing it in various hardware configurations and coherent operation regardless of the devices used. The hardware configurations proposed to be used with the interface are: (a) a standard computer keyboard and mouse, and a 2-D display, (b) a touch screen as a single device for both input and output, or (c) a 3-D display and a haptic device for natural manipulation of 3-D objects. The interface may be utilized in two main fields. Experienced surgeons may use it to simulate their intervention plans and prepare input data for a surgical navigation system while student or novice surgeons can use it for simulating results of their hypothetical procedure. The interface has been developed in the TLEMsafe project (www.tlemsafe.eu) funded by the European Commission FP7 program.

  11. Development of a Compact Wireless Laplacian Electrode Module for Electromyograms and Its Human Interface Applications

    Directory of Open Access Journals (Sweden)

    Akira Ichikawa

    2013-02-01

    Full Text Available In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs. One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a the masseter, (b trapezius, (c anterior tibialis and (d flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module.

  12. THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE

    Directory of Open Access Journals (Sweden)

    M. Mohd

    2016-09-01

    Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  13. Development of a CB Resistant Durable, Flexible Hydration System

    National Research Council Canada - National Science Library

    Hall, Peyton W; Zeller, Frank T; Bulluck, John W; Dingus, Michael L

    2002-01-01

    A durable, flexible hydration system resistant to contamination by contact with VX, GD, and HD chemical agents, as well as damage by the decontaminants sodium hypochlorite and DS-2 is being developed for aviator use...

  14. Enhancing durability of wood-based composites with nanotechnology

    Science.gov (United States)

    Carol Clausen

    2012-01-01

    Wood protection systems are needed for engineered composite products that are susceptible to moisture and biodeterioration. Protection systems using nano-materials are being developed to enhance the durability of wood-based composites through improved resistance to biodeterioration, reduced environmental impact from chemical leaching, and improved resistance to...

  15. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    Science.gov (United States)

    Carmona-Quiroga, Paula M; Jacobs, Robert M J; Martínez-Ramírez, Sagrario; Viles, Heather A

    2017-01-01

    Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax) on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  16. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    Directory of Open Access Journals (Sweden)

    Paula M Carmona-Quiroga

    Full Text Available Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  17. Will It Every Fly? Modeling the Takeoff of Really New Consumer Durables

    OpenAIRE

    Peter N. Golder; Gerard J. Tellis

    1997-01-01

    A consistent pattern observed for really new household consumer durables is a takeoff or dramatic increase in sales early in their history. The takeoff tends to appear as an elbow-shaped discontinuity in the sales curve showing an average sales increase of over 400%. In contrast, most marketing textbooks as well as diffusion models generally depict the growth of new consumer durables as a smooth sales curve. Our discussions with managers indicate that they have little idea about the takeoff a...

  18. Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers

    International Nuclear Information System (INIS)

    Koontz, S.L.; Jacobs, S.; Le, J.

    1993-03-01

    MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen

  19. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin [Northwestern Univ., Evanston, IL (United States)

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  20. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering.

    Science.gov (United States)

    Lebental, B; Chainais, P; Chenevier, P; Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  1. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres

    Directory of Open Access Journals (Sweden)

    Clark Steve

    2011-05-01

    Full Text Available Abstract Background It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution, and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. Results After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW and multi-walled (CNTTANG2, CNTSPIN showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an

  2. Amenagements sportifs et developpement durable : Des enjeux ...

    African Journals Online (AJOL)

    ... contredite » éprouvée par (Jeu, 1977), comme l'apanage d'une double hybridation culturelle des pays en développement. Derrière l'apparence de la dislocation des héritages, doit émerger une définition nouvelle sur les rapports que les sports devraient entretenir avec l'environnement pour un développement durable.

  3. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  4. Novel Arrangements for High Performance and Durable Dielectric Elastomer Actuation

    Directory of Open Access Journals (Sweden)

    Runan Zhang

    2016-07-01

    Full Text Available This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain the in-plane pre-strain in the rod longitudinal direction. The aim is to study both the force output and the durability of the RP-DEA. Initial design of the RP-DEA had poor durability, however, it generated significantly larger force compared with the conventional DEA due to the effects of pre-strain and rod constraints. The durability study identifies the in-electro-active-region (in-AR lead contact and the non-uniform deformation of the structure as causes of pre-mature failure of the RP-DEA. An optimized AR configuration is proposed to avoid actuating undesired areas in the structure. The results show that with the optimized AR, the RP-DEA can be effectively stabilized and survive operation at least four times longer than with a conventional electrode arrangement. Finally, a Finite Element simulation was also performed to demonstrate that such AR design and optimization can be guided by analyzing the DEA structure in the state of pre-activation.

  5. Use of recycled fine aggregate in concretes with durable requirements.

    Science.gov (United States)

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Sports, genre et developpement durable : l'heritage d'une ...

    African Journals Online (AJOL)

    Sports, genre et developpement durable : l'heritage d'une distribution ... to new populations in situation of confrontation with the difference that Goffman (1975) ... and women (gender), maintain the sports field and behind the appearance of a ...

  7. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  8. Durable transparent carbon nanotube films for flexible device components

    International Nuclear Information System (INIS)

    Sierros, K.A.; Hecht, D.S.; Banerjee, D.A.; Morris, N.J.; Hu, L.; Irvin, G.C.; Lee, R.S.; Cairns, D.R.

    2010-01-01

    This paper describes a durable carbon nanotube (CNT) film for flexible devices and its mechanical properties. Films as thin as 10 nm thick have properties approaching those of existing electrodes based on indium tin oxide (ITO) but with significantly improved mechanical properties. In uniaxial tension, strains as high as 25% are required for permanent damage and at lower strains resistance changes are slight and consistent with elastic deformation of the individual CNTs. A simple model confirms that changes in electrical resistance are described by a Poisson's ratio of 0.22. These films are also durable to cyclic loading, and even at peak strains of 10% no significant damage occurs after 250 cycles. The scratch resistance is also high as measured by nanoscratch, and for a 50 μm tip a load of 140 mN is required to cause initial failure. This is more than 5 times higher than is required to cause cracking in ITO. The robustness of the transparent conductive coating leads to significant improvement in device performance. In touch screen devices fabricated using CNT no failure occurs after a million actuations while for devices based on ITO electrodes 400,000 cycles are needed to cause failure. These durable electrodes hold the key to developing robust, large-area, lightweight, optoelectronic devices such as lighting, displays, electronic-paper, and printable solar cells. Such devices could hold the key to producing inexpensive green energy, providing reliable solid-state lighting, and significantly reducing our dependence on paper.

  9. The Overjustification Effect in Retarded Children: Durability and Generalizability.

    Science.gov (United States)

    Ogilvie, Lee; Prior, Margot

    1982-01-01

    Generalizability and durability of the overjustification effect (on decline in intrinsic motivation due to the lack of rewards in behavior modification programs) were examined in 35 normal preschool children and 17 mental age-matched retarded children. (Author/SW)

  10. Delivering key signals to the machine: seeking the electric signal that muscles emanate

    International Nuclear Information System (INIS)

    Hashim, A Y Bani; Maslan, M N; Izamshah, R; Mohamad, I S

    2014-01-01

    Due to the limitation of electric power generation in the human body, present human-machine interfaces have not been successful because of the nature of standard electronics circuit designs, which do not consider the specifications of signals that resulted from the skin. In general, the outcomes and applications of human-machine interfaces are limited to custom-designed subsystems, such as neuroprosthesis. We seek to model the bio dynamical of sub skin into equivalent mathematical definitions, descriptions, and theorems. Within the human skin, there are networks of nerves that permit the skin to function as a multi dimension transducer. We investigate the nature of structural skin. Apart from multiple networks of nerves, there are other segments within the skin such as minute muscles. We identify the segments that are active when there is an electromyography activity. When the nervous system is firing signals, the muscle is being stimulated. We evaluate the phenomena of biodynamic of the muscles that is concerned with the electromyography activity of the nervous system. In effect, we design a relationship between the human somatosensory and synthetic systems sensory as the union of a complete set of the new domain of the functional system. This classifies electromyogram waveforms linked to intent thought of an operator. The system will become the basis for delivering key signals to machine such that the machine is under operator's intent, hence slavery

  11. Determination of Stone-Mastic Asphalt Concrete Durability

    Science.gov (United States)

    Yastremsky, D. A.; Abaidullina, T. N.; Chepur, P. V.

    2018-05-01

    The paper is focused on determination of durability of the stone-mastic asphalt (SMA) concrete, containing various stabilizing additives: "Armidon" (authors’ development) and "Viatop". At the first stage of experiments, the APA method was used to determine the rutting in the SMA containing these additives. Strength test for only top layers of asphalt concrete surface is insufficient for the calculation of the pavement fatigue resistance limits. Due to this fact, a comprehensive approach was employed which incorporates the interaction of the surface and subgrade natural soil. To analyze the road surface stress-strain state and to determine the durability margin, a numerical model was used (describes the processes of fatigue life). The model was developed basing on the finite element method (FEM) in the ANSYS program. Conducted studies and numerical calculations allowed obtaining the minimum and maximum stress values in the structure affected zones and in the zones of plastic deformations occurrence in artificial and natural bases. It allows predicting deformation processes during repeated wheel loads caused by moving vehicles. In course of studies, the results of static stresses in the pavement were also obtained.

  12. Durability of coconut shell powder (CSP) concrete

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.

    2017-11-01

    The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.

  13. Study on the durability of concrete using granulated blast furnace slag as fine aggregate

    Science.gov (United States)

    Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan

    2018-03-01

    In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.

  14. Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction.

    Science.gov (United States)

    Sun, Kang Gyu; Chung, Jin Suk; Hur, Seung Hyun

    2015-12-01

    Pt/C catalyst used for polymer electrolyte membrane fuel cells (PEMFCs) displays excellent initial performance, but it does not last long because of the lack of durability. In this study, a Pt/reduced graphene oxide (RGO) catalyst was synthesized by the polyol method using ethylene glycol (EG) as the reducing agent, and then low-temperature hydrogen bubbling (LTHB) treatment was introduced to enhance the durability of the Pt/RGO catalyst. The cyclic voltammetry (CV), oxygen reduction reaction (ORR) analysis, and transmittance electron microscopy (TEM) results suggested that the loss of the oxygen functional groups, because of the hydrogen spillover and self-catalyzed dehydration reaction during LTHB, reduced the carbon corrosion and Pt agglomeration and thus enhanced the durability of the electrocatalyst.

  15. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    Science.gov (United States)

    Bassuoni, Mohamed Tamer F.

    factor from multiple performance criteria was created for the ammonium sulfate exposure. Environmental charts were developed to determine the level of aggression associated with sodium sulfate attack from temperature, RH and degree of wetting-drying expected in service. This novel modeling approach showed promising success in handling complex durability topics such as the sulfate attack of concrete, which involves non-linearity, ambiguity and interface with operator approximation. The current thesis provides needed fundamental knowledge on the durability of a wide scope of SCC mixtures to various sulfate attack exposure scenarios. It elucidates complex deterioration mechanisms and failure modes of cement-based materials under multi-mechanistic aging processes. It also proposes carefully engineered integrated sulfate attack tests that replicate various sulfate attack exposure regimes, which could be refined and standardized in the future. In addition, the current work introduced original knowledge-based smart models capable of handling uncertainty and providing reliable predictions for the behaviour of concrete under external sulfate attack. The models do not require conducting exhaustive laboratory experiments and/or making assumptions, thus facilitating the selection of optimum concrete mixtures for a specified exposure. Overall, this research should effectively contribute to the development of performance-based standards and specifications for, and improvement of durability-based design and life-cycle analysis of concrete structures subjected to external sulfate attack. Keywords. Sulfate attack, self-consolidating concrete, integrated testing, composite cements, air-entrainment, hybrid fibres, full immersion, cations, pH, wetting-drying, partial immersion, freezing-thawing, cyclic cold-hot conditions, flexural loading, thaumasite, salt crystallization, fuzzy, neuro-fuzzy, systems.

  16. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces.

    Science.gov (United States)

    Stanislawczuk, Rodrigo; Pereira, Fabiane; Muñoz, Miguel Angel; Luque, Issis; Farago, Paulo Vitor; Reis, Alessandra; Loguercio, Alessandro D

    2014-01-01

    This study evaluated the effect of addition of diacetate CHX in different concentrations into two simplified etch-and-rinse (ER) adhesive systems (XP Bond [XP] and Ambar {AM}) on the ultimate tensile strength (UTS), degree of conversion (DC), 60-day cumulative water sorption (WS), solubility (SO) and CHX release (CR) as well as the immediate (IM) and 1-year (1Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Ten experimental adhesive systems were formulated according to the addition of CHX diacetate (0 [control], 0.01, 0.05, 0.1 and 0.2%) in the two ER. For UTS and DC, specimens were constructed and tested after 24h. For WS, SO and CR, after specimens build-up, they were stored in water and the properties measured after 60 days. The occlusal enamel of fifty molars was removed and the adhesives were applied in dentine surface after 37% phosphoric acid etching. After composite resin build-ups, specimens were longitudinally sectioned to obtain resin-dentine bonded sticks (0.8mm(2)). Specimens were tested in tension at 0.5mm/min in the IM or 1Y. For NL, 2 bonded sticks from each tooth were prepared and analyzed under SEM. The data were submitted to appropriate statistical analysis (α=0.05). The addition of CHX did not influence UTS, DC, WS and SO (padhesives with higher concentration of CHX (padhesives or it was less pronounced than the control (XP) regardless of the CHX concentration. The addition of CHX diacetate in concentrations until 0.2% in the simplified ER adhesive systems may be an alternative to increase the long-term stability of resin-dentine interfaces, without jeopardizing the adhesives' mechanical properties evaluated. Copyright © 2013. Published by Elsevier Ltd.

  17. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  18. Durability Issues and Status of PBI-Based Fuel Cells

    DEFF Research Database (Denmark)

    Jakobsen, Mark Tonny Dalsgaard; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2016-01-01

    This chapter briefly reviews durability and stability issues with key materials and components for HT-PEMFCs, including the polymer membrane, the doping acid, the electrocatalyst, the catalyst support and bipolar plates. Degradation mechanisms and their dependence on fuel cell operating condition...

  19. Durability properties of high volume fly ash self compacting concretes

    Energy Technology Data Exchange (ETDEWEB)

    P. Dinakar; K.G. Babu; Manu Santhanam [Indian Institute of Technology, Chennai (India). Building Technology Division

    2008-11-15

    This paper presents an experimental study on the durability properties of self compacting concretes (SCCs) with high volume replacements of fly ash. Eight fly ash self compacting concretes of various strength grades were designed at desired fly ash percentages of 0, 10, 30, 50, 70 and 85%, in comparison with five different mixtures of normal vibrated concretes (NCs) at equivalent strength grades. The durability properties were studied through the measurement of permeable voids, water absorption, acid attack and chloride permeation. The results indicated that the SCCs showed higher permeable voids and water absorption than the vibrated normal concretes of the same strength grades. However, in acid attack and chloride diffusion studies the high volume fly ash SCCs had significantly lower weight losses and chloride ion diffusion.

  20. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  1. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  2. Brain-computer interfaces in neurological rehabilitation.

    Science.gov (United States)

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  3. Durability of Flexible Ureteroscopes: A Prospective Evaluation of Longevity, the Factors that Affect it, and Damage Mechanisms.

    Science.gov (United States)

    Legemate, Jaap D; Kamphuis, Guido M; Freund, Jan Erik; Baard, Joyce; Zanetti, Stefano P; Catellani, Michele; Oussoren, Harry W; de la Rosette, Jean J

    2018-03-10

    Flexible ureteroscopy is an established treatment modality for evaluating and treating abnormalities in the upper urinary tract. Reusable ureteroscope (USC) durability is a significant concern. To evaluate the durability of the latest generation of digital and fiber optic reusable flexible USCs and the factors affecting it. Six new flexible USCs from Olympus and Karl Storz were included. The primary endpoint for each USC was its first repair. Data on patient and treatment characteristics, accessory device use, ureteroscopy time, image quality, USC handling, disinfection cycles, type of damage, and deflection loss were collected prospectively. Ureteroscopy. USC durability was measured as the total number of uses and ureteroscopy time before repair. USC handling and image quality were scored. After every procedure, maximal ventral and dorsal USC deflection were documented on digital images. A total of 198 procedures were performed. The median number of procedures was 27 (IQR 16-48; 14h) for the six USCs overall, 27 (IQR 20-56; 14h) for the digital USCs, and 24 (range 10-37; 14h) for the fiber optic USCs. Image quality remained high throughout the study for all six USCs. USC handling and the range of deflection remained good under incremental use. Damage to the distal part of the shaft and shaft coating was the most frequent reason for repair, and was related to intraoperative manual forcing. A limitation of this study is its single-center design. The durability of the latest reusable flexible USCs in the current study was limited to 27 uses (14h). Damage to the flexible shaft was the most important limitation to the durability of the USCs evaluated. Prevention of intraoperative manual forcing of flexible USCs maximizes their overall durability. Current flexible ureteroscopes proved to be durable. Shaft vulnerability was the most important limiting factor affecting durability. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights

  4. Durability of adhesive glass-metal connections for structural applications

    NARCIS (Netherlands)

    Van Lancker, B.; Dispersyn, J.; De Corte, W.; Belis, J.

    2016-01-01

    The use of adhesive bonds for structural glass-metal connections in the building envelope has increased in recent years. Despite the multiple advantages compared to more traditional bolted connections, long-term behaviour and durability of the adhesives have to be investigated accurately. Because,

  5. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

  6. Durable Tactile Glove for Human or Robot Hand

    Science.gov (United States)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  7. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  8. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    Science.gov (United States)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  9. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    Science.gov (United States)

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S 3 Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  10. Fostering a durable relationship between a waste management facility and its host community

    International Nuclear Information System (INIS)

    2007-01-01

    Any long-term radioactive waste management project is likely to last decades to centuries. It requires a physical site and will impact in a variety of ways on the surrounding community over that whole period. The societal durability of an agreed solution is essential to success. This report identifies a number of design elements (including functional, cultural and physical features) that favour a durable relationship between the facility and its host community by improving prospects for quality of life across generations

  11. Durability studies on the high calcium flyash based GPC ...

    African Journals Online (AJOL)

    Three different grades namely GM20, GM30 and GM40 are designed and common durability related properties like water absorption, acid resitance and corrosion resistance by constant voltage polarization test are determined using relevant concrete specimens and compared with similar grades of conventional concrete.

  12. Modeling of geo-material durability and contaminant fate in recycling or disposal of industrial and radioactive waste

    International Nuclear Information System (INIS)

    De Windt, L.

    2011-01-01

    This report deals with the HYTEC model, coupling chemical and hydrodynamic processes, and its application to the recycling of inorganic wastes and the disposal of hazardous and radioactive wastes. A common feature is the assessment of geo-material durability while submitted to chemical disturbances by their industrial or natural environment and, reciprocally, the quantification of contaminant fate in soils and aquifers. Research papers in a first section numerically oriented, HYTEC is validated by means of an intercomparison exercise based on oxidative UO 2 dissolution and the subsequent migration of U species in subsurface environments. A numerical approach of leaching tests is also discussed. Several researches based on HYTEC follows. The evolution of the cement/clay interface is simulated in the framework of the multi-barrier system of radioactive waste disposal and the Tournemire engineering analog; discriminating between the physical and chemical key processes. The physico-chemical processes of cement biodegradation by fungi are investigated with a focus on acidic hydrolysis and complexation by biogenic carboxylic acids. Modeling of source-terms and ageing with respect to contaminant migration is discussed in the case of the chemical alteration of spent fuel pellets under disposal conditions by considering radiolytic dissolution, inhibiting effect and radioactive decay, and by analyzing the effect of fractures on the containment properties of subsurface disposal facilities of stabilized/solidified waste. Leaching lab experiments applied to steel slag and the chemical evolution of leachate from MSWI sub-bases of two pilot roads over 10 years are eventually modelled to better estimate the environmental impact of such recycling scenarios. On-going research In the straight lines of the modeling of radioactive waste disposal, a first perspective is to investigate the transient states driven by thermal gradient and water re-saturation of the near-field barriers and

  13. Toward a new spacecraft optimal design lifetime? Impact of marginal cost of durability and reduced launch price

    Science.gov (United States)

    Snelgrove, Kailah B.; Saleh, Joseph Homer

    2016-10-01

    The average design lifetime of satellites continues to increase, in part due to the expectation that the satellite cost per operational day decreases monotonically with increased design lifetime. In this work, we challenge this expectation by revisiting the durability choice problem for spacecraft in the face of reduced launch price and under various cost of durability models. We first provide a brief overview of the economic thought on durability and highlight its limitations as they pertain to our problem (e.g., the assumption of zero marginal cost of durability). We then investigate the merging influence of spacecraft cost of durability and launch price, and we identify conditions that give rise cost-optimal design lifetimes that are shorter than the longest lifetime technically achievable. For example, we find that high costs of durability favor short design lifetimes, and that under these conditions the optimal choice is relatively robust to reduction in launch prices. By contrast, lower costs of durability favor longer design lifetimes, and the optimal choice is highly sensitive to reduction in launch price. In both cases, reduction in launch prices translates into reduction of the optimal design lifetime. Our results identify a number of situations for which satellite operators would be better served by spacecraft with shorter design lifetimes. Beyond cost issues and repeat purchases, other implications of long design lifetime include the increased risk of technological slowdown given the lower frequency of purchases and technology refresh, and the increased risk for satellite operators that the spacecraft will be technologically obsolete before the end of its life (with the corollary of loss of value and competitive advantage). We conclude with the recommendation that, should pressure to extend spacecraft design lifetime continue, satellite manufacturers should explore opportunities to lease their spacecraft to operators, or to take a stake in the ownership

  14. Comparative durability of timber bridges in the USA

    Science.gov (United States)

    James P. Wacker; Brian K. Brashaw

    2017-01-01

    As engineers begin to utilize life-cycle-cost design approaches for timber bridges, there is a necessity for more reliable data about their durability and expected service life. This paper summarizes a comprehensive effort to assess the current condition of more than one hundred timber highway bridge superstructures throughout the United States. This national study was...

  15. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    Science.gov (United States)

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  16. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  17. Estimation of metallic structure durability for a known law of stress variation

    Science.gov (United States)

    Mironov, V. I.; Lukashuk, O. A.; Ogorelkov, D. A.

    2017-12-01

    Overload of machines working in transient operational modes leads to such stresses in their bearing metallic structures that considerably exceed the endurance limit. The estimation of fatigue damages based on linear summation offers a more accurate prediction in terms of machine durability. The paper presents an alternative approach to the estimation of the factors of the cyclic degradation of a material. Free damped vibrations of the bridge girder of an overhead crane, which follow a known logarithmical decrement, are studied. It is shown that taking into account cyclic degradation substantially decreases the durability estimated for a product.

  18. Are Press Depictions of Affordable Care Act Beneficiaries Favorable to Policy Durability?

    Science.gov (United States)

    Chattopadhyay, Jacqueline

    2015-01-01

    If successfully implemented and enduring, the Affordable Care Act (ACA) stands to expand health insurance access in absolute terms, reduce inter-group disparities in that access, and reduce exposure to the financial vulnerabilities illness entails. Its durability--meaning both avoidance of outright retrenchment and fidelity to its policy aims--is thus of scholarly interest. Past literature suggests that social constructions of a policy's beneficiaries may impact durability. This paper first describes media portrayals of ACA beneficiaries with an eye toward answering three descriptive questions: (1) Do portrayals depict beneficiaries as economically heterogeneous? (2) Do portrayals focus attention on groups that have acquired new political relevance due to the ACA, such as young adults? (3) What themes that have served as messages about beneficiary "deservingness" in past social policy are most frequent in ACA beneficiary portrayals? The paper then assesses how the portrayal patterns that these questions uncover may work both for and against the ACA's durability, finding reasons for confidence as well as caution. Using manual and automated methods, this paper analyzes newspaper text from August 2013 through January 2014 to trace portrayals of two ACA "target populations" before and during the new law's first open-enrollment period: those newly eligible for Medicaid, and those eligible for subsidies to assist in the purchase of private health insurance under the ACA. This paper also studies newspaper text portrayals of two groups informally crafted by the ACA in this timeframe: those gaining health insurance and those losing it. The text data uncover the following answers to the three descriptive questions for the timeframe studied: (1) Portrayals may underplay beneficiaries' economic heterogeneity. (2) Portrayals pay little attention to young adults. (3) Portrayals emphasize themes of workforce participation, economic self-sufficiency, and insider status. Health

  19. Evaluation of models of waste glass durability

    International Nuclear Information System (INIS)

    Ellison, A.

    1995-01-01

    The main variable under the control of the waste glass producer is the composition of the glass; thus a need exists to establish functional relationships between the composition of a waste glass and measures of processability, product consistency, and durability. Many years of research show that the structure and properties of a glass depend on its composition, so it seems reasonable to assume that there also is relationship between the composition of a waste glass and its resistance to attack by an aqueous solution. Several models have been developed to describe this dependence, and an evaluation their predictive capabilities is the subject of this paper. The objective is to determine whether any of these models describe the ''correct'' functional relationship between composition and corrosion rate. A more thorough treatment of the relationships between glass composition and durability has been presented elsewhere, and the reader is encouraged to consult it for a more detailed discussion. The models examined in this study are the free energy of hydration model, developed at the Savannah River Laboratory, the structural bond strength model, developed at the Vitreous State Laboratory at the Catholic University of America, and the Composition Variation Study, developed at Pacific Northwest Laboratory

  20. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  1. A Framework of Retailer-Manufacturer Cooperation and Coopetition: Consumer Durable Goods Retailers’ Case Studies

    Directory of Open Access Journals (Sweden)

    Marzanna Katarzyna Witek-Hajduk

    2017-03-01

    Full Text Available Objective: The purpose of this paper is to develop a framework of cooperation and coopetition between retailers and key manufacturers from a perspective of retailers offering consumer durables. Research Design & Methods: In order to answer the research questions semi-structured, in-depth and face-to-face interviews with managers of six SMEs or large retailers operating in Poland and offering consumer durables were carried out. Findings: The empirical studies confirm both cooperation and coopetition between retailers and manufacturers – suppliers of consumer durables depending on, among others, the category of consumer goods and the balance of power between retailers and manufacturers. The scope of cooperation is not too wide, and concerns only some of the value chain processes indicated in the literature. Implications & Recommendations: Conducted studies are exploratory and need to be deepen with the use of quantitative research that will help determine the impact of the balance of power between manufacturers and retailers and the strength of retailer-manufacturer relations on the range / areas and financial and non-financial performance of this cooperation. Contribution & Value Added: The originality of this work lies in studying some aspects of retailers’ relations with their key suppliers operating in consumer durables market.

  2. Research on Grooved Concrete Pavement Based on the Durability of Its Anti-Skid Performance

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2018-05-01

    Full Text Available The objectives of the present study are to investigate the anti-skid performance of concrete pavement and to attempt to enhance its durability by two different methods: using a longitudinally-transversely grooved (LT form, and using a self-developed composite curing agent containing paraffin and Na2SiO3 as the main ingredients. The friction coefficient (μ was measured by self-developed equipment to evaluate the anti-skid performance of samples with three different groove forms (LT, longitudinally grooved (L, and transversely grooved (T. Abrasion tests were then carried out to evaluate the durability of the anti-skid performance. The results indicated that anti-skid performance of LT samples was approximately 46.2% greater than that of T samples, but its durability was not as significant as that of T samples. However, the resistance to abrasion could be improved by using the aforementioned curing agent. Comparisons were carried out between samples sprayed the curing agent and control samples without any curing agent under standard conditions. It was found that the application of the curing agent increased the anti-skid durability of concrete by 35.4%~47.8%, proving it to be a useful and promising technique.

  3. Distribution Patterns of Polyphosphate Metabolism Pathway and Its Relationships With Bacterial Durability and Virulence

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2018-04-01

    Full Text Available Inorganic polyphosphate (polyP is a linear polymer of orthophosphate residues. It is reported to be present in all life forms. Experimental studies showed that polyP plays important roles in bacterial durability and virulence. Here we investigated the relationships of polyP with bacterial durability and virulence theoretically. Bacterial lifestyle, environmental persistence, virulence factors (VFs, and species evolution are all included in the analysis. The presence of seven genes involved in polyP metabolism (ppk1, ppk2, pap, surE, gppA, ppnK, and ppgK and 2595 core VFs were verified in 944 bacterial reference proteomes for distribution patterns via HMMER. Proteome size and VFs were compared in terms of gain and loss of polyP pathway. Literature mining and phylogenetic analysis were recruited to support the study. Our analyzes revealed that the presence of polyP metabolism is positively correlated with bacterial proteome size and the number of virulence genes. A potential relationship of polyP in bacterial lifestyle and environmental durability is suggested. Evolutionary analysis shows that polyP genes are randomly lost along the phylogenetic tree. In sum, based on our theoretical analysis, we confirmed that bacteria with polyP metabolism are associated with high environmental durability and more VFs.

  4. Studies of The Durability of Belt Conveyor Idlers with Working Loads Taken into Account

    Science.gov (United States)

    Król, Robert

    2017-12-01

    The results of laboratory and operational studies conducted in the Machinery Systems Division of Wroclaw University of Technology in recent years have became the basis for selecting proper belt conveyor roller designs optimized for specific strength and operational criteria. The usefulness of the results for assessing the energy intensity of idlers, estimating their durability and determining modernization policies has been confirmed. Methods of estimating the durability of carrying idlers on the basis of the identified output stream distributions are presented. Results of studies carried out using an analytical method and a laboratory method are reported. It has been shown that the operational durability of a roller is determined by its design, the roller set parameters (the spacing and the angle of bevel) and the operating conditions having a bearing on the irregularity of the transported output stream.

  5. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

    Science.gov (United States)

    Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok

    2015-08-25

    The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.

  6. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    International Nuclear Information System (INIS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C.H.M.; Hyatt, Neil C.

    2013-01-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H 2 /N 2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required

  7. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom); Meyer, Willem C.H.M. [Necsa, South African Nuclear Energy Corporation, PO Box 582, Pretoria, Gauteng (South Africa); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-05-15

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H{sub 2}/N{sub 2} atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  8. Durability aspects of high-performance concretes for a waste repository. Appendix 3: Canada

    International Nuclear Information System (INIS)

    Philipose, K.E.

    2001-01-01

    The IRUS facility for the disposal of low level radioactive waste at the Chalk River Nuclear Laboratories in Ontario, Canada relies on the durability of concrete for the required 500 years of service life. A research programme based on laboratory testing to design a durable concrete and assess its long-term behaviour was initiated in 1988. This appendix discusses the methodology to assess the long-term behaviour of concrete, and some initial observations. Longevity predictions for concrete formulations based on diffusion testing are also presented

  9. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy.

    Science.gov (United States)

    Kim, Jong-Hee; Kwak, Hyo-Bum; Thompson, LaDora V; Lawler, John M

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

  10. Technology of combined chemical-mechanical fabrication of durable coatings

    Science.gov (United States)

    Smolentsev, V. P.; Ivanov, V. V.; Portnykh, A. I.

    2018-03-01

    The article presents the scientific fundamentals of methodology for calculating the modes and structuring the technological processes of combined chemical-mechanical fabrication of durable coatings. It is shown that they are based on classical patterns, describing the processes of simultaneous chemical and mechanical impact. The paper demonstrates the possibility of structuring a technological process, taking into account the systematic approach to impact management and strengthening the reciprocal positive influence of each impact upon the combined process. The combined processes have been planned for fabricating the model types of chemical-mechanical coatings of durable products in machine construction. The planning methodology is underpinned by a scientific hypothesis of a single source of impact management through energy potential of process components themselves, or by means of external energy supply through mechanical impact. The control of it is fairly thoroughly studied in the case of pulsed external strikes of hard pellets, similar to processes of vibroimpact hardening, thoroughly studied and mastered in many scientific schools of Russia.

  11. Biological durability of wood in relation to end-use - Part 1. Towards a European standard for laboratory testing of the biological durability of wood

    NARCIS (Netherlands)

    Acker, Van J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Bayon, Le I.; Kleist, G.; Peek, R.D.

    2003-01-01

    The determination of biological durability of wood is an issue requiring sufficient reliability regarding end-use related prediction of performance. Five test institutes joined efforts to check standard test methods and to improve methodology and data interpretation for assessment of natural

  12. THE PROBLEM OF ESTIMATING THE DURABILITY OF THE REINFORCED CONCRETE BRIDGES

    Directory of Open Access Journals (Sweden)

    O. I. Lantukh-Liashchenko

    2007-10-01

    Full Text Available This paper presents an assessment and prediction of service life for reinforced concrete bridges. The deterministic and probabilistic approach prediction models of durability are proposed.

  13. Radiometric emanation method for the assessment of the durability of building materials towards aggressive media

    International Nuclear Information System (INIS)

    Balek, V.; Beckman, I.N.

    1991-01-01

    A new express method has been suggested for testing durability of building materials in contact with aggressive liquids and gases. The method is based on the measurement of radon released from samples studied, continuously during the interaction of the sample with the aggressive medium. The samples are previously labeled by the source of radon atoms, i.e. thorium Th-228 and radium Ra-224 are incorporated in the samples to be tested. Due to high sensitivity of the method the first stages of the interaction between the cement stone (concrete) sample and aggressive liquid or gas can be followed. The express information about the relative durability of the building materials was obtained. This method was also advantageously used for the investigation of corrosion early stage of marble (calcium carbonate) by sulphur dioxide (in the concentrations of 500-3,000 ppm). The most advantageous application of the method is for rapid assessment of the relative durability of building materials, e.g. the information about the relative durability of the samples studied was obtained within several minutes, resp. hours, whereas by means of traditional chemical methods it needs several weeks or months

  14. 40 CFR 86.1822-01 - Durability data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Durability data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  15. The durability and mechanical strenght properties of bamboo in ...

    African Journals Online (AJOL)

    The durability and mechanical strenght properties of bamboo in reinforced concrete. GA Alade, FA Olutoge, AA Alade. Abstract. No Abstract. Journal of Applied Science, Engineering and Technology Vol. 4(2) 2004: 35-40. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. AGRICULTURE DURABLE De nouvelles pratiques sont source de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    17 nov. 2010 ... Depuis 1970, les travaux de recherche soutenus par le CRDI ont permis à des agriculteurs et à des collectivités de pays en développement d'adopter des pratiques agricoles durables. Le résultant? Une productivité accrue, un recul de la pauvreté, une plus grande sécurité alimentaire et un environnement ...

  17. Durability of saw-cut joints in plain cement concrete pavements.

    Science.gov (United States)

    2011-01-01

    The objective of this project was to evaluate factors influencing the durability of the joints in portland cement concrete : pavement in the state of Indiana. Specifically this work evaluated the absorption of water, the absorption of deicing solutio...

  18. Fused Microknot Optical Resonators in Folded Photonic Tapers for in-Liquid Durable Sensing

    Directory of Open Access Journals (Sweden)

    Alexandra Logvinova

    2018-04-01

    Full Text Available Optical microknot fibers (OMFs serve as localized devices, where photonic resonances (PRs enable self-interfering elements sensitive to their environment. However, typical fragility and drifting of the knot severely limit the performance and durability of microknots as sensors in aqueous settings. Herein we present the fabrication, electrical fusing, preparation, and persistent detection of volatile liquids in multiple wetting–dewetting cycles of volatile compounds and quantify the persistent phase shifts with a simple model relating to the ambient liquid, enabling durable in-liquid sensing employing OMF PRs.

  19. The identification and treatment of poor durability Karoo dolerite base course aggregate – evidence from case studies

    CSIR Research Space (South Africa)

    Leyland, RC

    2016-03-01

    Full Text Available that the poor performance of the case study materials was likely due to the poor durability of the materials, manifesting as a reduction in resistance to abrasion and attrition. The identification of the observed poor durability could not have been performed...

  20. Bond durability of universal adhesive to bovine enamel using self-etch mode.

    Science.gov (United States)

    Suzuki, Soshi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Sai, Keiichi; Takimoto, Masayuki; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The purpose of this study was to examine the enamel bond durability of universal adhesives in the self-etch mode under 2-year water storage and thermal cycling conditions. Three commercially available universal adhesives and a gold standard two-step self-etch adhesive were used. Ten specimens of bovine enamel were prepared per test group, and shear bond strength (SBS) was measured to determine the bonding durability after thermal cycling (TC) or long-term water storage (WS). The bonded specimens were divided into three groups: (1) specimens subjected to TC, where the bonded specimens were stored in 37 °C distilled water for 24 h before being subjected to 3000, 10,000, 20,000 or 30,000 TC; (2) specimens stored in 37 °C distilled water for 3 months, 6 months, 1 year or 2 year; and (3) specimens stored in 37 °C distilled water for 24 h, serving as a baseline. The two-step self-etch adhesive showed significantly higher SBS than the universal adhesives tested, regardless of the type of degradation method. All universal adhesives showed no significant enamel SBS reductions in TC and WS, when compared to baseline and the other degradation conditions. Compared to the bond strengths obtained with the two-step self-etch adhesive, significantly lower bond strengths were obtained with universal adhesives. However, the enamel bond durability of universal adhesives was relatively stable under both degradation conditions tested. The present data indicate that the enamel bond durability of universal adhesives in the self-etch mode might be sufficient for clinical use.

  1. Durability Evolution of RC Bridge under Coupling Action of Chloride Corrosion and Carbonization Based on DLA Model

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2015-01-01

    Full Text Available Chloride attack and carbonization are the main factors which affect the durability of concrete structures, and the respective theoretical models are systematically established. However, the quantitative analysis and models about the coupling effect of chloride attack and carbonization are less, so the precision and level of durability analysis of reinforced concrete are restricted. Diffusion-limited aggregation (DLA model can finely simulate the process of gas diffusion and condensation with randomness and fractal characteristics, which is suitable for revealing the durability evolution process of the chloride attack, carbonization, and the coupling action in concrete. Based on the principle of DLA, considering the factors such as diffusion depth, concrete properties, and exposure conditions which influence the characteristics of chloride diffusion and carbonization, as well as the coupling effect, an integrated DLA model is established. The concentration of carbon dioxide and chloride at any time and any location can be obtained and dynamically displayed based on the DLA model. The performance predict method for concrete and steel bars considering fatigue effect is presented based on DLA, according to the demand for bridge durability analysis. Numerical examples show that the method can dynamically and intensively simulate the durability evolution process of reinforced concrete bridge.

  2. Durability and safety of concrete structures in the nuclear context. The case of the containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Torrenti, J.M. [Universite Paris Est, LCPC (France); Nahas, G. [IRSN/DSR (France)

    2011-07-01

    The durability of structures, because of its economic and environmental implications, is one of the actual hot topics in civil engineering. In the field of nuclear energy, we are facing very challenging problems like: how could we prolong the service life of actual nuclear containments and how can we assure the durability of a radioactive storage on the very long term (several centuries)? These already difficult questions in a classical civil engineering view are even more complicated in the field of nuclear energy where the structures are massive and the safety of the installations has to be considered. For the containment of nuclear power plants, these stakes will be lit with some examples of research concerning the mechanical behaviour of concrete and concrete structures (at early age, in service on long scales of time and in the event of an accident), the durability of the concrete structures (leaching, swelling due to delayed ettringite formation - DEF -) and the couplings between mechanics and durability. Finally, the importance of probabilistic aspects and the inherent difficulties will be shown. (authors)

  3. Durability and safety of concrete structures in the nuclear context. The case of the containment vessel

    International Nuclear Information System (INIS)

    Torrenti, J.M.; Nahas, G.

    2011-01-01

    The durability of structures, because of its economic and environmental implications, is one of the actual hot topics in civil engineering. In the field of nuclear energy, we are facing very challenging problems like: how could we prolong the service life of actual nuclear containments and how can we assure the durability of a radioactive storage on the very long term (several centuries)? These already difficult questions in a classical civil engineering view are even more complicated in the field of nuclear energy where the structures are massive and the safety of the installations has to be considered. For the containment of nuclear power plants, these stakes will be lit with some examples of research concerning the mechanical behaviour of concrete and concrete structures (at early age, in service on long scales of time and in the event of an accident), the durability of the concrete structures (leaching, swelling due to delayed ettringite formation - DEF -) and the couplings between mechanics and durability. Finally, the importance of probabilistic aspects and the inherent difficulties will be shown. (authors)

  4. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses.

    Directory of Open Access Journals (Sweden)

    Michele Tameris

    Full Text Available Vaccination against tuberculosis (TB should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb. The current TB vaccine, Bacille Calmette-Guerin (BCG, protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone.We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011.Of 252 potential participants, 183 (72.6% consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA-CCR7+ central memory or CD45RA-CCR7- effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3-5 years after vaccination.MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not

  5. SEM investigation of incandescent lamp mantle structure on durability

    International Nuclear Information System (INIS)

    Gerneke, D.; Lang, C.

    2002-01-01

    Full text: The incandescent mantle as used on pressure and non-pressure liquid fuel lamps has been in use for over 100 years. What remains unexplained is the way in which the resistance to mechanical shock and the decline in tensile strength with usage is experienced. It has been suggested that to improve durability it is necessary to continuously burn a new mantle for the first two to three hours. The known factors in mantle durability and mechanical strength are chemical composition and fabric weave. This study was undertaken to investigate the effects of burning time and temperature on thorium oxide mantles. The operating temperature of mantles on a range of kerosene pressure lamps was measured and found to be between 800 and 1100 deg C. Heat treatments of thorium based Coleman mantles were carried out in a laboratory furnace within these ranges of temperatures for periods ranging from 2 minutes to 2 hours. The mantles were then viewed in a LEO S440 analytical SEM. Results at 800 deg C show a distinct change in surface morphology with increasing exposure time. At the shorter times (2-5 minutes) the surface was relatively smooth. With increased time periods (15 - 120 minutes) the surface was observed to have a large lumpy structure. At 1100 deg C the difference in surface morphology was not apparent between the shortest and longest times. The surface appears much smoother and no lumpy structure was observed. This suggests that when a mantle is operated at the higher temperature of 1100 deg C the structure of the Thorium oxide is quickly transformed into the known stronger amorphous form. This is taken as the observed smooth structure seen in the SEM images of the 1100 deg C samples. Thus the mantle is expected to be more resistant to mechanical shock and have increased durability. Practical field test results confirm these observations. The mantle on a lamp that is operating efficiently, burns brightly, will far outlast a mantle on an inefficient lamp which bums

  6. Mankiw's Puzzle on Consumer Durables: A Misspecification

    OpenAIRE

    Tam Bang Vu

    2005-01-01

    Mankiw (1982) shows that consumer durables expenditures should follow a linear ARMA(1,1) process, but the data analyzed supports an AR(1) process instead; thus, a puzzle. In this paper, we employ a more general utility function than Mankiw's quadratic one. Further, the disturbance and depreciation rate are respecified, respectively, as multiplicative and stochastic. The analytical consequence is a nonlinear ARMA(infinity,1) process, which implies that the linear ARMA(1,1) is a misspecificatio...

  7. ICP experiments more durable pavements

    International Nuclear Information System (INIS)

    Carta Petrolera

    1994-01-01

    A new asphalts technology that will make more durable the pavement in the highways and roads of the cities of Colombia investigates the Colombian Institute of the Petroleum ICP. The project that will have important incidence in the solution of one of the main problems in the roads of cities like Bogota, is only one of the 35 investigation programs and application of new technologies that with relationship to the sector of the hydrocarbons and its influence branches the ICP advances. The investigation looks for to elevate the current average of useful life of the pavements, with that it would be reached a standard that has the developed countries in this field

  8. 40 CFR 86.094-13 - Light-duty exhaust durability programs.

    Science.gov (United States)

    2010-07-01

    ... conformity for the affected engine families void ab initio. (e) Alternative Service Accumulation Durability... shall propose sample sizes, recruitment procedures, testing procedures, optional provisions for the...) of this section, the manufacturer shall provide reliability data that shows to the Administrator's...

  9. Asphalt durability and self-healing modelling with discrete particles approach

    NARCIS (Netherlands)

    Magnanimo, V.; ter Huerne, H.L.; Luding, S.; Scarpas, A.; Kringos, N.; Al-Qadi, I.; Loizos, A.

    2012-01-01

    Asphalt is an important road paving material, where besides an acceptable price, durability, surface conditions (like roughening and evenness), age-, weather- and traffic-induced failures and degradation are relevant aspects. In the professional road engineering branch empirical models are used to

  10. Durable superhydrophobic carbon soot coatings for sensor applications

    Science.gov (United States)

    Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.

    2016-01-01

    A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.

  11. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani, E-mail: mfsyazwani86@postech.ac.kr [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); School of Applied Physics, Faculty of Science and Technology, The National University of Malaysia, 43650 Bandar Baru Bangi, Selangor (Malaysia); Hrma, Pavel [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Schweiger, Michael J.; Riley, Brian J. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States)

    2015-10-15

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl–KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (T{sub L}): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE{sub 2}O{sub 3}) while possessing an acceptable chemical durability. - Highlights: • We investigated crystallization in borosilicate glasses containing rare earth oxides. • New crystallinity and durability data are shown for glasses proposed in the literature. • Both liquidus temperature and chemical durability increased as the waste loading increased.

  12. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  13. Effects of crystallization on thermal properties and chemical durability of the glasses containing simulated high level radioactive wastes

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Terai, Ryohei; Hara, Shigeo

    1978-01-01

    In order to improve the thermodynamic stability of the glasses containing high level radioactive wastes, the conversion to glass-ceramics by the heat-treatment was carried out with two kinds of glasses, and the change of thermal properties and chemical durability by crystallization was investigated. One of the glasses has a composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 system, and another one has a composition which could grow the nephelite crystals from Na 2 O in wastes and Al 2 O 3 and SiO 2 added as glass-forming materials. Transition and yield points shifted to higher temperatures by the conversion and the glass-ceramics were found to be more stable than the original glasses. The glass-ceramics of the composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 showed poor durability, whereas the chemical durability of the glass-ceramics containing nephelite crystals was considerably improved. In the latter case, improvement of the durability is attributable to that some parts of glass are converted to nephelite crystals and the crystals are more durable than glass under most conditions. (auth.)

  14. Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti sheets under pre-strain conditions for elastocaloric cooling

    DEFF Research Database (Denmark)

    Tusek, Jaka; Zerovnik, Andrej; Cebron, Matjaz

    2018-01-01

    that on polished samples, durable operation of 105 cycles can be reached with a strain amplitude of 0.50% at the loading plateau, which corresponds to adiabatic temperature changes of approximately 5 K. At the unloading plateau (after initial pre-strain of 10%), durable operation was reached at a strain amplitude...... for the design and operation of efficient and durable elastocaloric devices in the future....

  15. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    Science.gov (United States)

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-03-30

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  16. The influence of fly ash as substitute of cement in the durability of concrete

    OpenAIRE

    Molina Bas, Omar I.; Moragues Terrades, Amparo; Gálvez Ruíz, Jaime; Guerrero Bustos, Ana

    2008-01-01

    Limitation of transport capacity through the concrete is one of the key points in the improvement of the material’s durability. The use of fly ash as an admixture to concrete is widely extended; a general consensus has been established due to the pore size reduction produced by the ashes. Nevertheless, the importance of the micro-structural and composition changes in mechanical and durable properties is not well defined. In the present study the use of fly ash has been considered as substitut...

  17. Exoskeletal meal assistance system (EMAS II) for progressive muscle dystrophy patient.

    Science.gov (United States)

    Hasegawa, Yasuhisa; Oura, Saori

    2011-01-01

    This paper introduces a 4-DOFs exoskeletal meal assistance system (EMAS II) for progressive muscle dystrophy patient. It is generally better for the patient to use his/her hands by himself in daily life because active works maintain level of residual functions, health and initiative of him/her. The EMAS II that has a new joystick-type user interface device and three-DOFs on a shoulder part is enhanced for an easier operation and more comfortable support on eating, as the succeeding model of the previous system that has two-DOFs on a shoulder. In order to control the 4-DOFs system by the simple user interface device, the EMAS II simulates upper limb motion patterns of a healthy person. The motion patterns are modeled by extracting correlations between the height of a user's wrist joint and that of the user's elbow joint at the table. Moreover, the EMAS II automatically brings user's hand up to his/her mouth or back to a table when he/she pushes a preset switch on the interface device. Therefore a user has only to control a position of his/her wrist to pick or scoop foods and then flip the switch to start automatic mode, while a height of the elbow joint is automatically controlled by the EMAS II itself. The results of experiments, where a healthy subject regarded as a muscle dystrophy patient eats a meal with EMAS II, show that the subject finished her meal in a natural way in 18 minutes 40 seconds which was within a recommended time of 30 minutes. © 2011 IEEE

  18. Relational Benefit on Satisfaction and Durability in Strategic Corporate Social Responsibility

    Directory of Open Access Journals (Sweden)

    Minseok Kim

    2018-04-01

    Full Text Available These days, companies are moving from Corporate Social Responsibility (CSR activities for short-term profit generation to the ones for achieving economic and social long-term goals. This phenomenon results from the idea that CSR is not a mere cost but can be used as a source of opportunity, innovation and competitive advantage. Deemed as a great business strategy, strategic CSR activities are being emphasized by various stakeholders in the global market. The purpose of this study is to present specific implications and to empirically research the relations among relational benefits, commitment, and authenticity. It identifies the main factors of relationship management in expanding the stakeholder pool and forming relationships for strategic CSR activities. To this end, we conducted a questionnaire survey of 113 CSR practitioners in Korea and analyzed how social, psychological, and economic benefits affect the satisfaction and durability of strategic CSR activities through relational commitment and authenticity. Consequently, social, psychological, and economic benefits have an impact on relationships and, by extension, have a positive effect on relational satisfaction and durability. However, economic benefits affect relational authenticity, but social and psychological benefits do not. As a result, relational benefits cannot affect satisfaction through relationships. Therefore, relational benefits and commitment are more important variables for the satisfaction and durability of strategic CSR activities.

  19. CORRELATIONS BETWEEN MUSCLE MASS, MUSCLE STRENGTH, PHYSICAL PERFORMANCE, AND MUSCLE FATIGUE RESISTANCE IN COMMUNITY-DWELLING ELDERLY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Elizabeth

    2016-03-01

    Full Text Available Objective: To determine the correlations between muscle mass, muscle strength, physical performance, and muscle fatigue resistance in community-dwelling elderly people in order to elucidate factors which contribute to elderly’s performance of daily activities. Methods: A cross-sectional study was conducted on community-dwelling elderly in Bandung from September to December 2014. One hundred and thirty elderly, 60 years old or above, were evaluated using bioelectrical impedance analysis to measure muscle mass; grip strength to measure muscle strength and muscle fatigue resistance; habitual gait speed to measure physical performance; and Global Physical Activity Questionnaire (GPAQ to assess physical activity. Results: There were significant positive correlations between muscle mass (r=0,27, p=0,0019, muscle strength (r=0,26, p=0,0024, and physical performance (r=0,32, p=0,0002 with muscle fatigue resistance. Physical performance has the highest correlation based on multiple regression test (p=0,0025. In association with muscle mass, the physical activity showed a significant positive correlation (r=0,42, p=0,0000. Sarcopenia was identified in 19 (14.61% of 130 subjects. Conclusions: It is suggested that muscle mass, muscle strength, and physical performance influence muscle fatigue resistance.

  20. The durability of public goods changes the dynamics and nature of social dilemmas.

    Directory of Open Access Journals (Sweden)

    Sam P Brown

    Full Text Available An implicit assumption underpins basic models of the evolution of cooperation, mutualism and altruism: The benefits (or pay-offs of cooperation and defection are defined by the current frequency or distribution of cooperators. In social dilemmas involving durable public goods (group resources that can persist in the environment-ubiquitous from microbes to humans this assumption is violated. Here, we examine the consequences of relaxing this assumption, allowing pay-offs to depend on both current and past numbers of cooperators. We explicitly trace the dynamic of a public good created by cooperators, and define pay-offs in terms of the current public good. By raising the importance of cooperative history in determining the current fate of cooperators, durable public goods cause novel dynamics (e.g., transient increases in cooperation in Prisoner's Dilemmas, oscillations in Snowdrift Games, or shifts in invasion thresholds in Stag-hunt Games, while changes in durability can transform one game into another, by moving invasion thresholds for cooperation or conditions for coexistence with defectors. This enlarged view challenges our understanding of social cheats. For instance, groups of cooperators can do worse than groups of defectors, if they inherit fewer public goods, while a rise in defectors no longer entails a loss of social benefits, at least not in the present moment (as highlighted by concerns over environmental lags. Wherever durable public goods have yet to reach a steady state (for instance due to external perturbations, the history of cooperation will define the ongoing dynamics of cooperators.

  1. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  2. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  3. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  4. Demaria C., 2004, Développement durable et finance, Paris : Maxima Laurent du Mesnil Editeur, 255 p.

    Directory of Open Access Journals (Sweden)

    Marianne Rubinstein

    2005-05-01

    Full Text Available L’objectif de l’ouvrage de Cyril Demaria est de mettre à jour le lien existant entre développement durable et logique financière, de traiter du paradoxe apparent selon lequel la transition des sociétés vers le développement durable doit plus aux forces de marché qu’à toute autre dynamique : « le fait que les principaux leviers au service du développement durable soient les fonds d’investissement et les marchés financiers rompt donc avec une vision ‘révolutionnaire’ associée au développement d...

  5. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  6. 76 FR 35950 - Agency Information Collection Activity (Living Will and Durable Power of Attorney for Health Care...

    Science.gov (United States)

    2011-06-20

    ... (Living Will and Durable Power of Attorney for Health Care) Under OMB Review AGENCY: Department of... INFORMATION Title: Living Will and Durable Power of Attorney for Health Care, VA Form 10-0137. OMB Control... about his or her medical treat and to record specific instructions about their treatment preferences in...

  7. Durability and plasticity of a material under different trajectories cycle loading in dependence on the loading prehistory

    International Nuclear Information System (INIS)

    Mozharovskij, N.S.; Bobyr', N.I.

    1979-01-01

    Results of investigations into the durability and plasticity of a material under combined proportional cyclic loading over different trajectories depending upon the values of intensity of preliminary plastic deformation obtained by different loading methods are presented. The effect of loading prehistory type on material plastic properties and its durability are shown

  8. Durability and plasticity of a material under different trajectories cycle loading in dependence on the loading prehistory

    Energy Technology Data Exchange (ETDEWEB)

    Mozharovskii, N S; Bobyr, N I [Kievskij Politekhnicheskij Inst. (Ukrainian SSR)

    1979-12-01

    Results of investigations into the durability and plasticity of a material under combined proportional cyclic loading over different trajectories depending upon the values of intensity of preliminary plastic deformation obtained by different loading methods are presented. The effect of loading prehistory type on material plastic properties and its durability are shown.

  9. Durability assessment of recycled concrete aggregates for use in new concrete.

    Science.gov (United States)

    2012-06-01

    The primary goal of this research project was to investigate the long-term durability of concrete incorporating : recycled concrete aggregate (RCA) through accelerated laboratory testing. Overall it was found that modifications to : standard aggregat...

  10. Evaluation of curing compound application time on concrete surface durability : [brief].

    Science.gov (United States)

    2015-05-01

    Roadways that are both durable and aesthetically pleasing are primary goals of Wisconsin : Department of Transportation (WisDOT) paving projects. Recently, Portland Cement Concrete : (PCC) pavement projects constructed by WisDOT have experienced incr...

  11. Systematic Review and Comparative Meta-Analysis of Outcomes Following Pedicled Muscle versus Fasciocutaneous Flap Coverage for Complex Periprosthetic Wounds in Patients with Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    James M. Economides

    2017-03-01

    Full Text Available BackgroundIn cases of total knee arthroplasty (TKA threatened by potential hardware exposure, flap-based reconstruction is indicated to provide durable coverage. Historically, muscle flaps were favored as they provide vascular tissue to an infected wound bed. However, data comparing the performance of muscle versus fasciocutaneous flaps are limited and reflect a lack of consensus regarding the optimal management of these wounds. The aim of this study was to compare the outcomes of muscle versus fasciocutaneous flaps following the salvage of compromised TKA.MethodsA systematic search and meta-analysis were performed to identify patients with TKA who underwent either pedicled muscle or fasciocutaneous flap coverage of periprosthetic knee defects. Studies evaluating implant/limb salvage rates, ambulatory function, complications, and donor-site morbidity were included in the comparative analysis.ResultsA total of 18 articles, corresponding to 172 flaps (119 muscle flaps and 53 fasciocutaneous flaps were reviewed. Rates of implant salvage (88.8% vs. 90.1%, P=0.05 and limb salvage (89.8% vs. 100%, P=0.14 were comparable in each cohort. While overall complication rates were similar (47.3% vs. 44%, P=0.78, the rates of persistent infection (16.4% vs. 0%, P=0.14 and recurrent infection (9.1% vs. 4%, P=0.94 tended to be higher in the muscle flap cohort. Notably, functional outcomes and ambulation rates were sparingly reported.ConclusionsRates of limb and prosthetic salvage were comparable following muscle or fasciocutaneous flap coverage of compromised TKA. The functional morbidity associated with muscle flap harvest, however, may support the use of fasciocutaneous flaps for coverage of these defects, particularly in young patients and/or high-performance athletes.

  12. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  13. Moving towards a virtual durability of vehicles; Auf dem Weg zur virtuellen Festigkeit im Fahrzeugbau

    Energy Technology Data Exchange (ETDEWEB)

    Heuler, P.; Birk, O.; Beste, A. [Audi AG, Ingolstadt (Germany). Abt. I/EG-32

    2001-04-01

    The dualism of experimental and virtual durability assessment is addressed. The possibilities and limitations of the virtual concepts are discussed with regard to the different steps of the durability assessment. It is outlined from a user's point of view where the use of these concepts is presently seen. It is important to rate the potentials of each step ranging from the definition of load requirements to the life time calculation. (orig.)

  14. Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures

    Science.gov (United States)

    Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.

    2003-01-01

    This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.

  15. 'Fine-tuning' blood flow to the exercising muscle with advancing age: an update.

    Science.gov (United States)

    Wray, D Walter; Richardson, Russell S

    2015-06-01

    What is the topic of this review? This review focuses on age-related changes in the regulatory pathways that exist at the unique interface between the vascular smooth muscle and the endothelium of the skeletal muscle vasculature, and how these changes contribute to impairments in exercising skeletal muscle blood flow in the elderly. What advances does it highlight? Several recent in vivo human studies from our group and others are highlighted that have examined age-related changes in nitric oxide, endothelin-1, alpha adrenergic, and renin-angiotensin-aldosterone (RAAS) signaling. During dynamic exercise, oxygen demand from the exercising muscle is dramatically elevated, requiring a marked increase in skeletal muscle blood flow that is accomplished through a combination of systemic sympathoexcitation and local metabolic vasodilatation. With advancing age, the balance between these factors appears to be disrupted in favour of vasoconstriction, leading to an impairment in exercising skeletal muscle blood flow in the elderly. This 'hot topic' review aims to provide an update to our current knowledge of age-related changes in the neural and local mechanisms that contribute to this 'fine-tuning' of blood flow during exercise. The focus is on results from recent human studies that have adopted a reductionist approach to explore how age-related changes in both vasodilators (nitric oxide) and vasoconstrictors (endothelin-1, α-adrenergic agonists and angiotensin II) interact and how these changes impact blood flow to the exercising skeletal muscle with advancing age. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  16. Durability of Low Platinum Fuel Cells Operating at High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Polevaya, Olga [Nuvera Fuel Cells Inc.; Blanchet, Scott [Nuvera Fuel Cells Inc.; Ahluwalia, Rajesh [Argonne National Lab; Borup, Rod [Los-Alamos National Lab; Mukundan, Rangachary [Los-Alamos National Lab

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  17. Energy and durable development: the place of the renewable energies; Energie et developpement durable: la place des energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The 29 may 2000, took place at the UNESCO, a colloquium on the place of the renewable energies facing the economic development. This document presents the opening presentation of A. Antolini and L. Jospin and the colloquium papers and debates in the following four domains: the energy challenges of the durable development, the renewable energies sources facing the european directive, the thermal renewable energies (solar, geothermics and biomass) and the greenhouse effect, the world market of the renewable energies. (A.L.B.)

  18. Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method

    International Nuclear Information System (INIS)

    Du, Chuan; Wang, Jiadao; Chen, Zhifu; Chen, Darong

    2014-01-01

    Graphical abstract: - Highlights: • A method for fabricating durable superhydrophobic filter paper was developed. • Oil–water separation efficiency exceeds 99% using the as-prepared filter paper. • The as-prepared filter paper has good recyclability and durability. • The method is easy, low cost and can be industrialized. - Abstract: A method for manufacturing durable superhydrophobic and superoleophilic filter paper for oil–water separation was developed via colloidal deposition. A porous film composed of PTFE nanoparticles was formed on filter paper, which was superhydrophobic with a water contact angle of 155.5° and superoleophilic with an oil contact angle of 0°. The obtained filter paper could separate a series of oil–water mixtures effectively with high separation efficiencies over 99%. Besides, the as-prepared filter paper kept stable superhydrophobicity and high separation efficiency even after 30 cycle times and could also work well under harsh environmental conditions like strong acidic or alkaline solutions, high temperature and ultraviolet irradiation. Compared with other approaches for fabricating oil–water materials, this approach is able to fabricate full-scale durable and practical oil–water materials easily and economically. The as-prepared filter paper is a promising candidate for oil–water separation

  19. One-step Synthesis of Pt Nanoparticles Highly Loaded on Graphene Aerogel as Durable Oxygen Reduction Electrocatalyst

    International Nuclear Information System (INIS)

    Huang, Qinghong; Tao, Feifei; Zou, Liangliang; Yuan, Ting; Zou, Zhiqing; Zhang, Haifeng; Zhang, Xiaogang; Yang, Hui

    2015-01-01

    Synthesis of highly active and durable Pt based catalysts with a high metal loading for fuel cells’ applications still remains a big challenge. The three-dimensional (3D) graphene aerogel (GA) not only possess the intrinsic property of graphene, but also have abundant pore architecture for anchoring metal nanoparticles, thus would be suitable as metal catalysts’ support. This work reports a simple and mild one-step co-reduction synthesis of Pt nanoparticles highly loaded on 3D GA and the use as durable oxygen reduction catalyst. Both X-ray diffraction and TEM measurements confirm that Pt nanoparticles (ca. 60 wt.% Pt loading) with an average diameter of ca. 3.2 nm are uniformly decorated on the homogeneously interconnected pores of 3D GA even after a heat treatment at 300 °C. Such a Pt/GA catalyst exhibits significantly enhanced electrocatalytic activity and improved durability for the oxygen reduction reaction. The enhancement in both catalytic activity and durability may result from the unique 3-D architecture structure of GA, the uniform dispersion of Pt nanoparticles, and the interaction between the Pt nanoparticles and GA. The GA-supported Pt can serve as a highly active catalyst for fuel cell applications

  20. Evaluation of muscle hyperactivity of the grimacing muscles by unilateral tight eyelid closure and stapedius muscle tone.

    Science.gov (United States)

    Shiba, Masato; Matsuo, Kiyoshi; Ban, Ryokuya; Nagai, Fumio

    2012-10-01

    Muscle hyperactivity of grimacing muscles, including the orbicularis oculi and corrugator supercilii muscles that cause crow's feet and a glabellar frown line with ageing, cannot be accurately evaluated by surface observation. In 71 subjects, this study investigated the extent to which grimacing muscles are innervated by the bilateral motor cortices, whether the corticofacial projection to the grimacing muscles affects the facially innervated stapedius muscle tone by measuring static compliance of the tympanic membrane, and whether unilateral tight eyelid closure with contraction of the grimacing muscles changes static compliance. Unilateral tight eyelid closure and its subsequent change in the contralateral vertical medial eyebrow position revealed that motor neurons of the orbicularis oculi and corrugator supercilii muscles were innervated by the bilateral motor cortices with weak-to-strong contralateral dominance. The orbicularis oculi, corrugator supercilii, and stapedius muscles innervated by the bilateral motor cortices had increased muscle hyperactivity, which lowered the vertical medial eyebrow position and decreased the static compliance of the tympanic membrane more than those innervated by the unilateral motor cortex. Unilateral enhanced tight eyelid closure with contraction of the grimacing muscles in certain subjects ipsilaterally decreased the static compliance with increased contraction of the stapedius muscle, which probably occurs to immobilise the tympanic membrane and protect the inner ear from loud sound. Evaluation of unilateral tight eyelid closure and the subsequent change in the contralateral vertical medial eyebrow position as well as a measurement of the static compliance for the stapedius muscle tone has revealed muscle hyperactivity of grimacing muscles.

  1. Lightweight, Durable Army Antennas Using Carbon Nanotube Technology

    Science.gov (United States)

    2013-01-01

    may be adjusted by collecting the sheet on a revolving substrate conveyor belt (e.g., Teflon belt ), as shown in figure 15 (12). SEM images of the... designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use...CNT) materials to produce lightweight, flexible, and durable alternatives to existing and future Army antenna designs is explored through fabrication

  2. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete.

    Science.gov (United States)

    Liu, Hanbing; Wang, Xianqiang; Jiao, Yubo; Sha, Tao

    2016-03-07

    Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.

  3. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2016-03-01

    Full Text Available Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.

  4. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  5. Muscle force depends on the amount of transversal muscle loading.

    Science.gov (United States)

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2017-11-01

    Full Text Available The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004 review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/- and durability (+/- phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++, vector-borne pathogens (+-, obligate-intracellular bacteria (--, and free-living bacteria (-+. After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher

  7. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. A review of the anatomy of the hip abductor muscles, gluteus medius, gluteus minimus, and tensor fascia lata.

    Science.gov (United States)

    Flack, Natasha Amy May Sparks; Nicholson, Helen D; Woodley, Stephanie Jane

    2012-09-01

    The hip abductor muscles have the capability to contribute to numerous actions, including pelvic stabilization during gait, and abduction and rotation at the hip joint. To fully understand the role of these muscles, as well as their involvement in hip joint dysfunction, knowledge of their anatomical structure is essential. The clinical literature suggests anatomical diversity within these muscles, and that gluteus medius (GMed) and gluteus minimus (GMin), in particular, may be comprised of compartments. This systematic review of the English literature focuses on the gross anatomy of GMed, GMin, and tensor fascia lata (TFL) muscles. Although studies of this muscle group have generated useful descriptions, comparison of results is hindered by methodological limitations. Furthermore, there is no single comprehensive anatomical investigation of all three muscles. Several aspects of the morphology of attachment sites are unknown or unclear. There is little data on fascicle orientation, the interface between fascicles and tendons, and the specific patterning of the superior gluteal nerve. Consequently, the existence of anatomical compartmentalization within the hip abductor muscles is difficult to assess. Further research of the architecture and innervation of the hip abductor muscle group is required; a better understanding of the precise anatomy of these muscles should improve our understanding of their specific functions and their contribution to the pathogenesis of disorders affecting the hip joint. Copyright © 2011 Wiley Periodicals, Inc.

  9. Operational durability of a giant ER valve for Braille display

    Science.gov (United States)

    Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu

    2017-05-01

    The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.

  10. UV Ink-Jet printability and durability of stone and foil

    Directory of Open Access Journals (Sweden)

    Tadeja Muck

    2014-07-01

    Full Text Available he use of ultraviolet (UV printing technology has impacted printing industry in last years due to its applicability on many different »absorptive« as well as »non-absorptive« printing materials. The printability of building materials and recycled foils is relatively unknown. For primary building materials like stones, functionality can be explored with the use of UV printing technology; increased visual, informative effect or even “creative printing” of buildings. Also several aspects of recycled foils reusability as a printing material could be find (printed packaging material or also like secondary building materials. In the present study, printability of the stone and recycled foil and durability of UV prints was explored by means of macroscopically and microscopically characterization. Results indicate that higher print quality can be achieved on polished stone and on coated foil, which surfaces have higher smoothness. Durability of UV prints at freezing is higher at unpolished stone and coated foil that is at materials with the higher surface energy.

  11. Long-term acceptability, durability and bio-efficacy of ZeroVector® durable lining for vector control in Papua New Guinea.

    Science.gov (United States)

    Kuadima, Joseph J; Timinao, Lincoln; Naidi, Laura; Tandrapah, Anthony; Hetzel, Manuel W; Czeher, Cyrille; Pulford, Justin

    2017-02-28

    This study examined the acceptability, durability and bio-efficacy of pyrethroid-impregnated durable lining (DL) over a three-year period post-installation in residential homes across Papua New Guinea (PNG). ZeroVector ® ITPS had previously been installed in 40 homes across four study sites representing a cross section of malaria transmission risk and housing style. Structured questionnaires, DL visual inspections and group interviews (GIs) were completed with household heads at 12- and 36-months post-installation. Three DL samples were collected from all households in which it remained 36-months post-installation to evaluate the bio-efficacy of DL on Anopheles mosquitoes. Bio-efficacy testing followed WHO guidelines for the evaluation of indoor residual spraying. The DL was still intact in 86 and 39% of study homes at the two time periods, respectively. In homes in which the DL was still intact, 92% of household heads considered the appearance at 12-months post installation to be the same as, or better than, that at installation compared to 59% at 36-months post-installation. GIs at both time points confirmed continuing high acceptance of DL, based in large part of the perceived attractiveness and functionality of the material. However, participants frequently asserted that they, or their family members, had ceased or reduced their use of mosquito nets as a result of the DL installation. A total of 16 houses were sampled for bio-efficacy testing across the 4 study sites at 36-months post-installation. Overall, combining all sites and samples, both knock-down at 30 min and mortality at 24 h were 100%. The ZeroVector ® DL installation remained highly acceptable at 36-months post-installation, the material and fixtures proved durable and the efficacy against malaria vectors did not decrease. However, the DL material had been removed from over 50% of the original study homes 3 years post-installation, largely due to deteriorating housing infrastructure

  12. Progressive Damage Modeling of Durable Bonded Joint Technology

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  13. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  14. FORECASTING OF DURABILITY OF ASPHALT PAVEMENT ON THE BASIS OF LEVELS OF THEIR VIBRATION LOADING

    Directory of Open Access Journals (Sweden)

    V. A. Osinovskaya

    2015-01-01

    Full Text Available The problem of low durability of flexible pavement is one of the most important problems of road economy. For example, the actual service life of asphalt pavement in Russia about 3 … 5 years. The bad condition of highways is an obstacle for the development of the national economy and leads to a significant annual economic losses.At present, this problem has no exact solution. Even at the seeming good road conditions of Europe and America the problem of low durability is no less important in these countries. And this problem becomes more and more actual every year.Our scientific researches allowed to make a hypothesis that the projected of pavements are not have the necessary durability yet not of a stage of designing because in strength calculations did not take into account the vibration of road constructions.Very actual the vibration loading becomes today as is now significantly changed the nature of loading of pavements. As a result the deflections of a pavements are reduced, but the increased vibration of pavements accelerated processes of destruction and significantly reduced durability.The theory of vibration destruction developed by the author allows to adjust the vibration, to form the vibration resistance pavements, and also to forecast a residual life of pavements that will more effectively develop repair actions.

  15. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  16. Advanced Face Gear Surface Durability Evaluations

    Science.gov (United States)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  17. Durability Testing of Idlers for Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Andrzej Pytlik

    2013-01-01

    On the basis of the durability tests carried out on both of these idlers it can be concluded that the applied research methodology describes the test conditions of idlers, in a manner as close as possible to their actual operational conditions, which were subject to a variety of factors for a total time of 116 hours, they included: dust, water, loads and variable rotational speed. This methodology allowed us to determine, even at the stage of laboratory tests, the suitability of a particular idler to certain operational conditions.

  18. Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability

    Directory of Open Access Journals (Sweden)

    Santos, S. F.

    2015-03-01

    Full Text Available The present review shows the state-of-art on the approachs about improving the processing, physical- mechanical performance and durability of non-conventional fiber-cement composites. The objective of this review is to show some of these strategies to mitigate the degradation of the vegetable fibers used as reinforcement in cost-effective and non-conventional fiber-cement and, consequently, to improve their mechanical and durability properties for applications in the housing construction. Beyond the introduction about vegetable fibers, the content of this review is divided in the following sections: (i surface modification of the fibers; (ii improving fiber-to-cement interface; (iii natural pozzolans; (iv accelerated carbonation; (v applications of nanoscience; and (vi principles of functionally graded materials and extrusion process were briefly discussed with focus on future research needs.La presente revisión explora la actualidad en el campo de los compuestos de fibrocemento no convencionales en relación a mejoras en el proceso productivo, el rendimiento físico-mecánico y la durabilidad. El objetivo de esta revisión es exponer algunas estrategias para mitigar la degradación de las fibras vegetales utilizadas como refuerzo en fibrocementos no convencionales y rentables, obteniendo en consecuencia una mejoría en el rendimiento de sus propiedades mecánicas y durabilidad para su aplicación en el área de la construcción de viviendas. Además de la introducción en relación a las fibras vegetales, el contenido de esta revisión se divide en las siguientes secciones: (i modificación de la superficie de las fibras; (ii mejoramiento de la interfaz fibra-cemento; (iii puzolanas naturales; (iv carbonatación acelerada; (v aplicaciones de la nanociencia; y (vi principios de los materiales funcionalmente graduados y el proceso de extrusión fueron discutidos brevemente con un enfoque a investigaciones futuras.

  19. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  20. Durability analysis of a reinforced concrete member using probabilistic SBRA method

    Czech Academy of Sciences Publication Activity Database

    Pustka, D.; Marek, Pavel

    2007-01-01

    Roč. 2007, č. 7 (2007), s. 91-94 ISSN 1505-8425 R&D Projects: GA ČR(CZ) GA103/07/0557 Institutional research plan: CEZ:AV0Z20710524 Keywords : Reliability * Durability * SBRA method Subject RIV: JM - Building Engineering

  1. To the question of reliability and durability ballastless deck of bridge

    Directory of Open Access Journals (Sweden)

    V.V. Prystynskaya

    2012-12-01

    Full Text Available The principal causes of operational defects in bridge ballastless deck plates are considered in the article. The drawbacks of these plates construction that prevent from achieving a higher level of bridge framework reliability and durability have been analysed.

  2. Life cycle and economic efficiency analysis phase II : durable pavement markings.

    Science.gov (United States)

    2011-04-01

    This report details the Phase II analysis of the life cycle and economic efficiency of inlaid tape : and thermoplastic. Waterborne paint was included as a non-durable for comparison purposes : only. In order to find the most economical product for sp...

  3. Modeling of asphalt durability and self-healing with discrete particles method

    NARCIS (Netherlands)

    Magnanimo, Vanessa; ter Huerne, Henderikus L.; Luding, Stefan; Beuving, E.; Dewez, P.; Malkoc, G.; Southern, M.

    2012-01-01

    Asphalt is an important road paving material. Besides an acceptable price, durability, surface conditions (like roughening and evenness), age-, weather- and traffic-induced failures and degradation are relevant aspects. In the professional road-engineering branch empirical models are used to

  4. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  5. Review: Durability and degradation issues of PEM fuel cell components

    NARCIS (Netherlands)

    Bruijn, de F.A.; Dam, V.A.T.; Janssen, G.J.M.

    2008-01-01

    Besides cost reduction, durability is the most important issue to be solved before commercialisation of PEM Fuel Cells can be successful. For a fuel cell operating under constant load conditions, at a relative humidity close to 100% and at a temperature of maximum 75 °C, using optimal stack and flow

  6. Development of a global, predictive and performance approach of reinforced concrete structure durability based on durability indicators. Overview and future prospects. Microstructure characterization of concretes, study of their hydric and transport properties, assessment of free deformations and prediction of buildings lifetime

    International Nuclear Information System (INIS)

    Baroghel-Bouny, Veronique

    2008-12-01

    This document synthesizes the objectives, the adopted approach, as well as the main scientific results and the products (test methods, for example), obtained during the researches carried out or supervised by the author within various frameworks, primarily over the period 1995-2005, at LCPC as Head of the Section 'Microstructure and Durability of Concretes'. This document presents in particular a performance-based, global and predictive approach of the durability of (reinforced) concrete structures, based on the concept of durability indicators, and combining lab tests and numerical simulations. This type of approach was developed for the protection against rebar corrosion of reinforced concrete and against the degradations generated by alkali-silica reaction, within the framework of the Working Group of the French Association of Civil Engineering (AFGC) 'Concrete design for a given service life of structures - Durability indicators'. The objectives of this new approach and the selected durability indicators - simple but particularly relevant parameters with respect to the implied physicochemical mechanisms in a given environment - as well as the bases of this selection, are first of all presented. Significant examples, resulting in particular from the Research Project 'Transfers in concretes and durability of structures', from the Research Project 'Durability of reinforced concrete and of its components: management and performance-based approach', as well as from studies carried out within the framework of the Topic 'Durability' of the French National Project BHP 2000, are then presented. These examples address the understanding of the mechanisms (moisture transport, carbonation, chloride penetration, freezing, non-restrained deformations,.) or the development of tools for the characterization of concrete microstructure and of parameters related to the durability with respect to reinforcement corrosion. Among the examples given, are reported the quantification of

  7. Ceramics: Durability and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  8. Lightweight, durable lead-acid batteries

    Science.gov (United States)

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  9. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  10. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Naffaa, Lena [American University of Beirut, Department of Diagnostic Radiology, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon); Moukaddam, Hicham [Saint Rita Medical Center, Lima, OH (United States); Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Lemieux, Aaron [University of California, San Diego School of Medicine, La Jolla, CA (United States); Smitaman, Edward [University of California, San Diego, Teleradiology and Education Center, San Diego, CA (United States)

    2017-03-15

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  11. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    International Nuclear Information System (INIS)

    Naffaa, Lena; Moukaddam, Hicham; Samim, Mohammad; Lemieux, Aaron; Smitaman, Edward

    2017-01-01

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  12. The morphology of durability issues in PEM fuel cells

    International Nuclear Information System (INIS)

    Kundu, S.; Fowler, M.; Simon, L.; Grot, S.

    2004-01-01

    'Full text:' The work presented here examines durability issues in PEM fuel cell materials by examining material morphology and linking morphological features to performance. Scanning electron microscope (SEM) techniques have been able to identify a variety of features on the catalyst layer, each with their own implication to the overall performance and durability of the membrane electrode assembly (MEA). These features include cracking, delamination of the catalyst layer, catalyst clustering, electrolyte clustering, and thickness variations. Links between several of these features and catalyst dispersion conditions was also examined, showing that how the material was manufactured influences the type of morphological features present. The SEM has also been used with accelerated aging techniques to closely examine aging of the gas diffusion layer (GDL). It can be shown that over time the GDL will loose its hydrophobic character and hence become more susceptible to flooding in a fuel cell. The impact of morphological changes were determined using fuel cell models and experimental work. The ultimate aim of this work is to provide material developers with the tools and knowledge necessary to design better materials and therefore bring fuel cells closer to commercialization. (author)

  13. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis

    International Nuclear Information System (INIS)

    Yan, Dongxiang; Lu, Languang; Li, Zhe; Feng, Xuning; Ouyang, Minggao; Jiang, Fachao

    2016-01-01

    Highlights: • Utilize a realistic current profile for an HEV to study the degradation mechanism of batteries. • Compare the durability of four different types of high-power battery. • Degradation mechanisms of four different types of high-power battery are analyzed by IC curves. • The prognostic model is used to quantitatively clarify the aging mechanism of batteries. - Abstract: There are many types of high-power batteries used in HEVs, and their durabilities and degradation mechanisms are different. In this paper, four types of commercial high-power batteries, including two types of LTO/NCM lithium-ion battery from two different manufacturers, a C/LMO battery and a supercapacitor (SC), are studied. A durability test with a realistic current profile for an HEV is used so that the durability results more closely reflect real operating conditions than a general cycle life test. Incremental capacity (IC) curves are used to qualitatively analyze the degradation mechanism. To compensate for defects in the IC method, a prognosis model, using a genetic algorithm to reconstruct constant current charge voltage curves, is adopted to quantitatively identify the battery aging mechanism.

  15. Composition models for the viscosity and chemical durability of West Valley related nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Saad, E.E.; Freeborn, W.P.; Macedo, P.B.; Pegg, I.L.; Sassoon, R.E.; Barkatt, A.; Finger, S.M.

    1988-01-01

    There are two important criteria that must be satisfied by a nuclear waste glass durability and processability. The chemical composition of the glass must be such that it does not dissolve or erode appreciably faster than the decay of the radioactive materials embedded in it. The second criterion, processability, means that the glass must melt with ease, must be easily pourable, and must not crystallize appreciably. This paper summarizes the development of simple models for predicting the durability and viscosity of nuclear waste glasses from their composition

  16. The effects of moisture and temperature variations on the long term durability of polymer concrete

    DEFF Research Database (Denmark)

    Barbosa, Ricardo; Hansen, Kurt Kielsgaard; Grelk, Bent

    2013-01-01

    The use of polymer concrete to precast products in construction presents normally many advantages compared to traditional concrete. Higher strength, lower permeability, shorter curing periods, better chemical resistances and a better durability is normally predicated, however this is a research...... and after exposure to different thermal conditions is very important. In this paper, an experimental study concerning the influence of temperature and moisture in cyclic conditions on the durability of polymer concrete based on an unsaturated polyester resin is described and the results are presented...

  17. Influence of the leaching mode on the durability of a glass for fission product containment

    International Nuclear Information System (INIS)

    Nogues, J.L.; Terki, A.

    1984-06-01

    The chemical durability of a glass containing wastes from light water reactor (LWR) has been studied with three different lixiviation modes: ''static'' leach test, ''soxhlet'' test and ''continuous flow'' test. After a description of these tests, the leaching mode influence on the glass durability is reported as obtained from weight loss measurements, analyses of the leaching solutions and surface analyses of the samples. Finally, the corrosion mechanisms of this type of glass are approached and a phenomenological explanation of attack from an aqueous solution is proposed [fr

  18. Durability of fired clay bricks containing granite powder

    OpenAIRE

    Xavier, G. C.; Saboya, F.; Maia, P. C.; Alexandre, J.

    2012-01-01

    Over the past few decades, hundreds of papers have been published on the benefits of including rock powder as a raw material in fired clay brick manufacture. Very little has been written, however, about the durability and long-term behaviour of the final product. As a rule, the ceramic bricks used in construction in developing countries are fired at low temperatures, which detracts from their mechanical performance. This is particularly visible in harsh environmental conditions, where weather...

  19. Durability of light steel framing in residential applications

    OpenAIRE

    Lawson, RM; Popo-Ola, S.O.; Way, A.; Heatley, T; Pedreschi, Remo

    2010-01-01

    This paper presents a summary and analysis of research findings on the durability of galvanised cold-formed steel sections used in housing in order to deduce their design life. These cold-formed sections are produced from pre-galvanised strip steel. It reviews reports and publications from research projects carried out by Corus and the Steel Construction Institute on zinc-coated, cold-formed steel products. New data have also been gathered from measurements on houses and similar buildings tha...

  20. Durable-Goods Monopolists, Network Effects and Penetration Pricing

    OpenAIRE

    Cyrus C.Y. Chu; Hung-Ken Chien

    2005-01-01

    We study the pricing problem of a durable-goods monopolist. With network effects, consumption externalities among heterogeneous groups of consumers generate a discontinuous demand function. Consequently, the lessor has to offer a low price in order to reach the mass market, whereas the seller has the option to build a customer base by setting a lower initial price and raise the price later in the mass market, which explains the practice of introductory pricing. Contrary to the existing litera...

  1. Durability of certain configurations for providing skid resistance on concrete pavements.

    Science.gov (United States)

    1974-01-01

    The main objective of this study was to establish the factors that influence the durability of the surface configurations that are used or can be used to provide high and long lasting skid resistance for portland cement concrete pavements. In the dev...

  2. 42 CFR 410.38 - Durable medical equipment: Scope and conditions.

    Science.gov (United States)

    2010-10-01

    ... or purchase of durable medical equipment, including iron lungs, oxygen tents, hospital beds, and wheelchairs, if the equipment is used in the patient's home or in an institution that is used as a home. (b... vehicle whose steering is operated by an electronic device or a joystick to control direction and turning...

  3. Influence of curing conditions on durability of alkali-resistant glass ...

    Indian Academy of Sciences (India)

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in ...

  4. Effect of artificial aging on the bond durability of fissure sealants.

    Science.gov (United States)

    Yun, Xiaofei; Li, Wei; Ling, Chen; Fok, Alex

    2013-06-01

    To evaluate the effect of artificial aging on the bond durability of fissure sealants in vitro. Twenty bovine incisors received 4 different sealant treatments and were divided into four groups: 1. Ultraseal XT plus (UX); 2. Enamel Loc (EL); 3. 35% phosphoric acid plus Enamel Loc (PEL); 4. Adper Prompt L-Pop plus Clinpro (PPC). Beam-shaped specimens were prepared and randomly divided into three subgroups. One subgroup underwent the microtensile bond strength (µTBS) test after 24-h storage in 37°C water. The other two subgroups were also subjected to the microtensile bond strength test after 5000 and 10,000 thermal cycles, respectively. Another twelve intact human third molars were sealed using 1 of 3 methods and were divided into 3 groups of 4 each: 1. Ultraseal XT plus; 2. Adper Prompt L-Pop plus Clinpro; and 3. Enamel Loc. Two specimens from each group were immersed in a 50% silver nitrate solution for 24 h, followed by exposure to fluorescent light for 8 h, before being scanned in a micro-CT (microcomputer tomography) machine. The other two were handled in the same way after undergoing 10,000 thermal cycles. The CT images obtained were evaluated. All samples from the EL group were broken during preparation, so no µTBS results were available. After 5000 thermal cycles, the bond strengths of the three other groups (UX, PEL, PPC) decreased significantly (p artificial aging. Micro-CT, a nondestructive analytical tool, may be used to evaluate the sealant/enamel interface effectively.

  5. Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Colin [W. L. Gore & Associates Inc., Newark, DE (United States)

    2017-05-23

    Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goal is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the

  6. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  7. Durability and Strength of Sustainable Self-Consolidating Concrete Containing Fly Ash

    Science.gov (United States)

    Mohamed, O.; Hawat, W. Al

    2018-03-01

    In this paper, the durability and strength of self-consolidating concrete (SCC) is assessed through development and testing of six binary mixes at fixed water-to-binder (w/b) ratio of 0.36. In each of the six SCC mixes, a different percentage of cement is replaced with fly ash. The development of compressive strength for each of the mixes is assessed by testing samples after 3, 7, and 28 days of curing. Durability of each of the six SCC mixes is assessed by measuring the charge passed in Rapid Chloride Permeability (RCP) test. Charge passed was measured in samples cured for 1, 3, 7, 14, 28, and 40 days of curing. All mixes out-performed the control mix in terms of resistance to chloride penetration. Binary mix in which 20% of cement is replaced with fly ash exhibited 28-day strength slightly surpassing the control mix.

  8. Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2012-11-01

    Full Text Available Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale friction and durability of damaged skin were measured and compared with those of virgin (intact/undamaged skin. The effect of skin cream on friction and durability of damaged and virgin skin samples is discussed. The effects of velocity, normal load, relative humidity and number of cycles were studied. The nanoscale studies were performed by using atomic force microscope (AFM, and macroscale studies were performed by using a pin-on-disk (POD reciprocating tribometer. It was found that damaged skin has different mechanical properties, surface roughness, contact angle, friction and durability compared to that of virgin skin. But similar changes occur after skin cream treatment. Rat and pig skin show similar trends in friction and durability.

  9. Using Trial Vocal Fold Injection to Select Vocal Fold Scar Patients Who May Benefit From More Durable Augmentation.

    Science.gov (United States)

    Carroll, Thomas L; Dezube, Aaron; Bauman, Laura A; Mallur, Pavan S

    2018-02-01

    Clinical indications for vocal fold injection augmentation (VFI) are expanding. Prior studies demonstrate the benefit of trial VFI for select causes of glottic insufficiency. No studies have examined trial VFI for glottic insufficiency resulting from true vocal fold (TVF) scar. Retrospective chart review of patients who underwent trial VFI for a dominant pathology of TVF scar causing dysphonia. Patients who subsequently underwent durable augmentation were identified. The primary study outcome was the difference in Voice Handicap Index-10 (VHI-10) score from pretrial VFI to post-durable augmentation. Twenty-eight patients underwent trial VFI for TVF scar, 22 of whom reported a positive response. Fifteen of 22 subjects who underwent durable augmentation had viable data for analysis. Mean VHI-10 improved from 26.9 to 18.6 ( P 5). A trial VFI is a potentially useful, low-risk procedure that appears to help the patient and clinician identify when global augmentation might improve the voice when vocal fold scar is present. Patients who reported successful trial VFI often demonstrated significant improvement in their VHI-10 after subsequent durable augmentation.

  10. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Science.gov (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  11. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.

    Science.gov (United States)

    Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen

    2017-02-15

    This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.

  12. A high-spin and durable polyradical: poly(4-diphenylaminium-1,2-phenylenevinylene).

    Science.gov (United States)

    Murata, Hidenori; Takahashi, Masahiro; Namba, Kazuaki; Takahashi, Naoki; Nishide, Hiroyuki

    2004-02-06

    A purely organic, high-spin, and durable polyradical molecule was synthesized: It is based on the non-Kekulé- and non-disjoint design of a pi-conjugated poly(1,2-phenylenevinylene) backbone pendantly 4-substituted with multiple robust arylaminium radicals. 4-N,N-Bis(4-methoxy- and -tert-butylphenyl)amino-2-bromostyrene 5 were synthesized and polymerized with a palladium-phosphine catalyst to afford the head-to-tail-linked polyradical precursors (1). Oxidation of 1 with the nitrosonium ion solubilized with a crown ether gave the aminium polyradicals (1(+)()) which were durable (half-life > 1 month) at room temperature in air. A high-spin ground state with an average S = (4.5)/2 for 1a(+) was proved even at room temperature by magnetic susceptibility, magnetization, ESR, and NMR measurements.

  13. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  14. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  15. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  16. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    Science.gov (United States)

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  17. The durability of fired brick incorporating textile factory waste ash and basaltic pumice

    Energy Technology Data Exchange (ETDEWEB)

    Binici, Hanifi [Kahramanmaras Sutcu Imam Univ., Kahramanmaras (Turkey). Dept. of Civil Engineering; Yardim, Yavuz [Epoka Univ., Tirana (Albania). Dept. of Civil Engineering

    2012-07-15

    This study investigates the durability of fired brick produced with additives of textile factories' waste ash and basaltic pumice. The effects of incorporating waste ash and basaltic pumice on durability and mechanical properties of the clay bricks were studied. Samples were produced with different ratios of the textile factories' waste ash and basaltic pumice added and at different fire temperatures of 700, 900, and 1 050 C for 8 h. The bricks with additives were produced by adding equal amounts of textile factories' waste ash and basaltic pumice, separately and together, with rates of 5, 10 and 20 wt.%. The produced samples were kept one year in sodium sulphate and sodium nitrate and tested under freezing - unfreezing and drying - wetting conditions. Then compression strength and mass loss of the samples with and without additives were investigated. The test results were compared with standards and results obtained from control specimens. The results showed that incorporations up to 10 wt.% of textile factories' waste ash and basaltic pumice is beneficial to the fired brick. Both textile factories' waste ash and basaltic pumice were suitable additives and could be used for more durable clay brick production at 900 C fire temperature. (orig.)

  18. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  19. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ...) Discussion of the manufacturer's in-use verification procedures including testing performed, vehicle... performed should also be documented in the manufacturer's submission. The in-use verification program shall...), the Alternate Service Accumulation Durability Program described in § 86.094-13(e) or the Standard Self...

  20. Neural network analysis of nuclear waste glass composition vs durability

    International Nuclear Information System (INIS)

    Seibel, C.K.

    1994-01-01

    The relationship between the chemical composition of oxide glasses and their physical properties is poorly understood, but it is becoming more important as vitrification (transformation into glass) of high-level nuclear waste becomes the favored method for long-term storage. The vitrified waste will be stored deep in geologic repositories where it must remain intact for at least 10,000 years. A strong resistance to groundwater exposure; i.c. a slow rate of glass dissolution, is of great importance. This project deals specifically with glass samples developed and tested for the nuclear fuel reprocessing facility near West Valley, New York. This facility needs to dispose of approximately 2.2 million liters of high-level radioactive liquid waste currently stored in stainless steel tanks. A self-organizing, artificial neural network was used to analyze the trends in the glass dissolution data for the effects of composition and the resulting durability of borosilicate glasses in an aqueous environment. This durability data can be used to systematically optimize the properties of the complex nuclear glasses and slow the dissolution rate of radionuclides into the environment

  1. Fabrication of silver nanoparticle sponge leather with durable antibacterial property.

    Science.gov (United States)

    Liu, Gongyan; Haiqi, Gao; Li, Kaijun; Xiang, Jun; Lan, Tianxiang; Zhang, Zongcai

    2018-03-15

    Leather product with durable antibacterial property is of great interest both from industry and consumer's point of view. To fabricate such functional leather, gallic acid modified silver nanoparticles (GA@AgNPs) were first in situ synthesized with a core-shell structure and an average size of 15.3nm. Due to its hydrophilic gallic acid surface, the GA@AgNPs possessed excellent stability and dispersibility in wide pH range from 3 to 12 and also showed effective antibacterial activity with a minimum inhibitory concentration (MIC) of around 10μgmL -1 . Then, such GA@AgNPs were used as retanning agent to be successfully filled into leather matrix during the leather manufacturing process. Moreover, taking the advantage of its high surface density of carboxyl groups, these GA@AgNPs could be further chemically cross-linked onto collagen fibers by chrome tanning agent. After retanning, the resultant leather was given a "AgNPs sponge" feature with high payload of silver nanoparticles against laundry, exhibiting high and durable antibacterial activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Durable concrete for a waste repository - Measurement of ionic ingress

    International Nuclear Information System (INIS)

    Feldman, R.F.; Beaudoin, J.J.; Philipose, K.E.

    1990-01-01

    A waste repository for the below ground disposal of low level radioactive waste is planned at Chalk River Nuclear Laboratories. It relies greatly on the durability of concrete for the required 500 year service life. A research program to design durable concrete and predict its service life is in progress. The degradation of the concrete depends to a large extent on the rate of ingress of corrosive agents. Penetration of chloride and sulfate ions are particularly relevant. Twenty mix formulations were developed to create various types and qualities of concrete, and to study their behavior in different site environmental conditions. A total of 1,000 concrete specimens are being exposed at 20C and 45C to 25 different combinations of the corrosive agents including CO 2 . Procedures to measure the ionic profiles and to determine the factors controlling diffusion of the ions in the various concretes have been developed. Results of selected concrete systems exposed to chloride and sulfate solutions for 1 year are presented and discussed in terms of pore structure and permeability parameters of the concrete

  3. Inadequate Triglyceride Management Worsens the Durability of Dipeptidyl Peptidase-4 Inhibitor in Subjects with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Masashi Shimoda

    2017-01-01

    Full Text Available Dipeptidyl peptidase-4 (DPP-4 inhibitors are often used all over the world and exert various beneficial effects including glucose-lowering effect in many subjects with type 2 diabetes. It is poorly understood, however, which factors are closely related with the durability of glucose-lowering effect by DPP-4 inhibitor. In this study, we examined retrospectively which factors could mainly influence the durability of DPP-4 inhibitor. We enrolled 212 participants with type 2 diabetes to whom DPP-4 inhibitor was administered for over 1 year without an addition or increase of other hypoglycemic agents. Age and baseline HbA1c level were significantly higher in the effective group than those in the ineffective group. The effective group had a tendency of smaller amounts of weight change, average total cholesterol, and average triglyceride compared with the ineffective group. Multiple logistic regression analysis showed that average triglyceride and baseline HbA1c were independent predictors associated with the durability of DPP-4 inhibitor. Moreover, an average triglyceride level contributed to the durability of DPP-4 inhibitor in the obese group (BMI ≥ 25 kg/m2 but not in the nonobese group (BMI < 25 kg/m2. These results suggest the importance of strict triglyceride management to maintain the durability of glucose-lowering effect by DPP-4 inhibitor, especially in obese subjects with type 2 diabetes.

  4. Concomitant Use of Immunomodulators Affects the Durability of Infliximab Therapy in Children With Crohn's Disease.

    Science.gov (United States)

    Grossi, Victoria; Lerer, Trudy; Griffiths, Anne; LeLeiko, Neal; Cabrera, Jose; Otley, Anthony; Rick, James; Mack, David; Bousvaros, Athos; Rosh, Joel; Grossman, Andrew; Saeed, Shehzaad; Kay, Marsha; Boyle, Brendan; Oliva-Hemker, Maria; Keljo, David; Pfefferkorn, Marian; Faubion, William; Kappelman, Michael D; Sudel, Boris; Markowitz, James; Hyams, Jeffrey S

    2015-10-01

    It is important to determine the effects of immunomodulators on the ability of children to remain on infliximab therapy for Crohn's disease (durability of therapy), given the potential benefits and risks of concomitant therapy-especially with thiopurines in male patients. We investigated how immunomodulatory treatment affects the durability of infliximab therapy. We collected data from the Pediatric Inflammatory Bowel Disease Collaborative Research Group Registry, from January 2002 through August 2014, on 502 children with Crohn's disease who participated in a prospective multicenter study. Data were collected from patients who received at least a 3-dose induction regimen of infliximab, and their concomitant use of immunomodulators: no thiopurine or methotrexate treatment, treatment for 6 months or less during infliximab therapy, or treatment for more than 6 months during infliximab therapy. The probabilities (± standard error) that children remained on infliximab therapy for 1 year, 3 years, and 5 years after the treatment began were 0.84 ± 0.02, 0.69 ± 0.03, and 0.60 ± 0.03, respectively. Age, sex, and disease extent or location did not affect the durability of infliximab therapy. Greater length of concomitant use of immunomodulators was associated with increased time of infliximab therapy. The probability that patients with more than 6 months of immunomodulator use remained on infliximab therapy for 5 years was 0.70 ± 0.04, compared with 0.48 ± 0.08 for patients who did not receive immunomodulators and 0.55 ± 0.06 for patients who received immunomodulators for 6 months or less (P immunomodulators for 6 months or more after starting infliximab, the overall durability of infliximab therapy was greater among patients receiving methotrexate than thiopurine (P immunomodulator for more than 6 months after starting infliximab therapy increases the chances that patients will remain on infliximab. In boys, methotrexate appears to increase the durability of

  5. Enhancing the Chemical and Mechanical Durability of Polymer Electrolyte Membranes for Fuel Cell Applications

    Science.gov (United States)

    Baker, Andrew M.

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was

  6. The role of extracellular matrix in lateral transmission of force in skeletal muscle

    Science.gov (United States)

    Gao, Yingxin

    This dissertation describes the role of extracellular matrix (ECM) in the lateral transmission of force. It consists of an experimental studies of the ECM and mathematical modeling of lateral transmission of force. The effect of aging on the structural and mechanical properties of the epimysium of muscle of the rats were examined. No statistically significant differences were found in the ultrastructure, or the thickness of the epimysium. However, from the tensile stress-strain tests, it was found that the epimysium of muscles from old rats was much stiffer than that of the young rats. Based on these observations. It was concluded that the differences in the mechanical properties of the epimysium of the muscles from the old compared with young rats were not associated with the arrangement and size of collagen fibers in the epimysium. Consequently, other methods will be required to identify the structural bases of the mechanical differences. The stress-strain relationships for the epimysiums of the skeletal muscles from both the young and old rats were found to be nonlinear. A mathematical model was developed that showed that the nonlinear behavior results from the waviness and the reorientation of the collagen fibers in the epimysium. The ECM plays an important role in lateral transmission of force in skeletal muscle by providing shear stress between the muscle fibers or fascicles. A mathematical model was developed to investigate the mechanisms of lateral transmission. It was a modification of the shear lag theory for chopped fiber composite materials used in engineering applications. The modified shear lag theory includes an activation strain to account for muscle contraction and a myofibrils-endomysium interfaces that accounts for the molecular lateral linkages. The model was used to simulate the classic experiments of Street. It was demonstrated that lateral transmission of force in the skeletal muscle is affected by the mechanical and structural properties of

  7. Geochemical and petrographic studies and the relationships to durability and leach resistance of vitrified products from the in situ vitrification process

    International Nuclear Information System (INIS)

    Timmons, D.M.; Thompson, L.E.

    1996-01-01

    Soil and sludge contaminated with hazardous and radioactive materials from sites in the United States and Australia were vitrified using in situ vitrification. Some of the resulting products were subjected to detailed geochemical, leach and durability testing using a variety of analytical techniques. The leach resistance and durability performance was compared to that of vitrified high level waste with borosilicate composition. Particular attention was given to crystallization behavior, the effects of crystallization on residual melt chemistry and how crystallization influences the behavior of contaminant ions. The results of this work show that the vitrified material studied has superior chemical durability and leach resistance relative to typical borosilicate waste glasses. Crystallization behavior was variable depending upon melt chemistry and cooling history. Crystallization was not observed to adversely affect chemical durability or leach resistance

  8. Des effets durables : Asie | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    6 juin 2014 ... Le Projet hippocampe devient un important protagoniste de la conservation de la faune marine. En savoir plus. L'Initiative pour les micronutriments : des solutions durables à la faim inapparente · L'information améliore les conditions de vie dans les Philippines · De l'eau potable dans les foyers grâce à un ...

  9. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  11. Durability and damage tolerance of Large Composite Primary Aircraft Structure (LCPAS)

    Science.gov (United States)

    Mccarty, John E.; Roeseler, William G.

    1984-01-01

    Analysis and testing addressing the key technology areas of durability and damage tolerance were completed for wing surface panels. The wing of a fuel-efficient, 200-passenger commercial transport airplane for 1990 delivery was sized using graphite-epoxy materials. Coupons of various layups used in the wing sizing were tested in tension, compression, and spectrum fatigue with typical fastener penetrations. The compression strength after barely visible impact damage was determined from coupon and structural element tests. One current material system and one toughened system were evaluated by coupon testing. The results of the coupon and element tests were used to design three distinctly different compression panels meeting the strength, stiffness, and damage-tolerance requirements of the upper wing panels. These three concepts were tested with various amounts of damage ranging from barely visible impact to through-penetration. The results of this program provide the key technology data required to assess the durability and damage-tolerance capability or advanced composites for use in commercial aircraft wing panel structure.

  12. Highly Durable Direct Methanol Fuel Cell with Double-Layered Catalyst Cathode

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-01-01

    Full Text Available Polymer electrolyte membrane (PEM is one of the key components in direct methanol fuel cells. However, the PEM usually gets attacked by reactive oxygen species during the operation period, resulting in the loss of membrane integrity and formation of defects. Herein, a double-layered catalyst cathode electrode consisting of Pt/CeO2-C as inner catalyst and Pt/C as outer catalyst is fabricated to extend the lifetime and minimize the performance loss of DMFC. Although the maximum power density of membrane electrode assembly (MEA with catalyst cathode is slightly lower than that of the traditional one, its durability is significantly improved. No obvious degradation is evident in the MEA with double-layered catalyst cathode within durability testing. These results indicated that Pt/CeO2-C as inner cathode catalyst layer greatly improved the stability of MEA. The significant reason for the improved stability of MEA is the ability of CeO2 to act as free-radical scavengers.

  13. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  14. The effect of a finite time horizon in the durable good monopoly problem with atomic consumers

    OpenAIRE

    Berbeglia, Gerardo; Sloan, Peter; Vetta, Adrian

    2014-01-01

    A durable good is a long-lasting good that can be consumed repeatedly over time, and a duropolist is a monopolist in the market of a durable good. In 1972, Ronald Coase conjectured that a duropolist who lacks commitment power cannot sell the good above the competitive price if the time between periods approaches zero. Coase's counterintuitive conjecture was later proven by Gul et al. (1986) under an infinite time horizon model with non-atomic consumers. Remarkably, the situation changes drama...

  15. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: individual and sex differences.

    Science.gov (United States)

    Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki

    2018-05-29

    Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.

  16. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  17. The effect of curing conditions on the durability of high performance concrete

    Science.gov (United States)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  18. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  19. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  20. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2007-01-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program

  1. Muscle enzyme release does not predict muscle function impairment after triathlon.

    Science.gov (United States)

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  2. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-01-01

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 x 10 10 rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90 degree C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs

  3. 40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.

    Science.gov (United States)

    2010-07-01

    ..., statistical analyses, additional data, or other information which is relevant to the decision. The... Durability demonstration procedures for refueling emissions. This section applies to 2008 and later model...-duty rules as allowed under the provisions of § 86.1801-01(c)(1) which are subject to refueling loss...

  4. Durability of conventional concretes containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Relationship between wheelchair durability and wheelchair type and years of test.

    Science.gov (United States)

    Wang, Hongwu; Liu, Hsin-Yi; Pearlman, Jon; Cooper, Rosemarie; Jefferds, Alexandra; Connor, Sam; Cooper, Rory A

    2010-01-01

    To investigate the relationship between the durability of wheelchairs according to American National Standard for Wheechairs/Rehabilitation Engineering and Assistive Technology Society of North America (ANSI/RESNA) Wheelchair Standards and wheelchair type as well as year of test. A retrospective study design with a sample of 246 wheelchairs that were tested in accordance with the ANSI/RESNA standards from 1992 to 2008 including four types of wheelchairs: manual wheelchair (MWC), electrical powered wheelchair (EPW), scooters and pushrim-activated power-assisted wheelchair (PAPAW). Unconditional binary logic regression analysis was chosen to evaluate the relationship between test results and test year as well as wheelchair type. Rehabilitation Engineering Research Center. Wheelchair durability test result (fatigue test: pass or fail) There was no significant correlation between the year when tested and equivalent cycles. A significant relation was found between test results and wheelchair type (Wald score = 10.845, degree of freedom = 3, p = 0.013) with scooters having a significantly higher pass ratio than MWC (OR = 15.629, 95% CI = 2.026-120.579). EPW also had significantly higher pass ratio than MWC (OR = 1.953, 95% CI = 1.049-3.636). No significant difference on pass ratio was found between PAPAW and MWC. No significant improvements in wheelchair test results during the time frame from 1992 to 2008 were discovered. Wheelchair standard tests should be conducted to assure minimum quality of the wheelchairs and for improving the design of wheelchairs. Although the ANSI/RESNA wheelchair durability test procedures have remained consistent, it does not appear that the introduction of new materials, designs and the availability of test data have improved wheelchair fatigue life.

  6. The fly wheel exercise device (FWED): A countermeasure against bone loss and muscle atrophy

    Science.gov (United States)

    Hueser, Detlev; Wolff, Christian; Berg, Hans E.; Tesch, Per A.; Cork, Michael

    2008-01-01

    The flywheel exercise device (FWED) is planned for use as an in-flight exercise system, to demonstrate its efficacy as a countermeasure device to prevent muscle atrophy, bone loss and impairment of muscle function in human beings in response to long duration spaceflight. It is intended to be used on the International Space Station (ISS) and will be launched by the European cargo carrier, the automated transfer vehicle (ATV) in late 2005. The FWED is a non-gravity-dependent mechanical device based on the Yo-Yo principle, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning flywheel. Currently, the development of a FWED Flight and Ground Model is in progress and is due to be completed in May 2004. An earlier developed prototype is available that has been used for various ground studies. Our FWED design provides a maximum of built-in safety and support to the operation by one astronaut. This is achieved in particular by innovative mechanical design features and an easy, safe to use man-machine interface. The modular design is optimized for efficient set-up and maintenance operations to be performed in orbit by the crew. The mechanical subsystem of the FWED includes a μg disturbance suspension, which minimizes the mechanical disturbances of the exercising subject at the mechanical interface to the ISS. During the FWED operation the astronaut is guided through the exercises by the data management subsystem, which acquires sensor data from the FWED, calculates and displays real-time feedback to the subject, and stores all data on hard disk and personalized storage media for later scientific analysis.

  7. Durability of saw-cut joints in plain cement concrete pavements : [technical summary].

    Science.gov (United States)

    2011-01-01

    The main objective of this study was to evaluate factors influencing the durability of the joints in portland cement concrete pavement in the state of Indiana. : The scope of the research included the evaluation of the absorption of water in concrete...

  8. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  9. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  10. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  11. Could a functional artificial skeletal muscle be useful in muscle wasting?

    Science.gov (United States)

    Fuoco, Claudia; Cannata, Stefano; Gargioli, Cesare

    2016-05-01

    Regardless of the underlying cause, skeletal muscle wasting is detrimental for a person's life quality, leading to impaired strength, locomotion, and physiological activity. Here, we propose a series of studies presenting tissue engineering-based approaches to reconstruct artificial muscle in vitro and in vivo. Skeletal muscle tissue engineering is attracting more and more attention from scientists, clinicians, patients, and media, thanks to the promising results obtained in the last decade with animal models of muscle wasting. The use of novel and refined biomimetic scaffolds mimicking three-dimensional muscle environment, thus supporting cell survival and differentiation, in combination with well characterized myogenic stem/progenitor cells, revealed the noteworthy potential of these technologies for creating artificial skeletal muscle tissue. In vitro, the production of three-dimensional muscle structures offer the possibility to generate a drug-screening platform for patient-specific pharmacological treatment, opening new frontiers in the development of new compounds with specific therapeutic actions. In vivo, three-dimensional artificial muscle biomimetic constructs offer the possibility to replace, in part or entirely, wasted muscle by means of straight reconstruction and/or by enhancing endogenous regeneration. Reports of tissue engineering approaches for artificial muscle building appeared in large numbers in the specialized press lately, advocating the suitability of this technology for human application upon scaling up and a near future applicability for medical care of muscle wasting. http://links.lww.com/COCN/A9

  12. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  13. Effect of Acidic Water on Strength, Durability and Corrosion of ...

    African Journals Online (AJOL)

    In this study, specimens of 108 cubes (150 mm x 150 mm x 150 mm), 36 cylinders (300 mm x 150 mm), and 72 cylinders (102 mm x 51 mm) were cast and cured in percentages of NaCl added water to find the workability, strength, durability and corrosion resistance characteristics concrete. The effect of corrosion of steel in ...

  14. THE CONCEPT OF COMPETITIVE ADVANTAGES. LOGIC, SOURCES AND DURABILITY

    OpenAIRE

    Cegliński, Paweł

    2017-01-01

    Purpose: The main purpose of this article is to present theoretical assumptions of the concept of competitive advantages and main problems connected with the same. Most of all, the article outlines issues, which are presently discussed in the field of management sciences, including sources of competitive advantages, causal ambiguity and character of durability of competitive advantages in the contemporary turbulent business environment. In the author’s opinion, the issues have a great signifi...

  15. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Science.gov (United States)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  16. Open-source FCPEM-Performance & Durability Model Consideration of Membrane Properties on Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Knights, Shanna [Ballard Fuel Cell Systems, Bend, OR (United States); Harvey, David [Ballard Fuel Cell Systems, Bend, OR (United States)

    2017-01-20

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.

  17. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle

    NARCIS (Netherlands)

    Zuurbier, C. J.; Huijing, P. A.

    1992-01-01

    The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of

  18. Hydrophobic lime based mortars with linseed oil: Characterization and durability assessment

    Czech Academy of Sciences Publication Activity Database

    Nunes, Cristiana Lara; Slížková, Zuzana

    61-62, July-August (2014), s. 28-39 ISSN 0008-8846 R&D Projects: GA MK(CZ) DF11P01OVV008 Keywords : durability * transport properties * metakaolin * mortar Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.864, year: 2014 http://www.sciencedirect.com/science/article/pii/S0008884614000738

  19. Control of a Heavy-Lift Robotic Manipulator with Pneumatic Artificial Muscles

    Directory of Open Access Journals (Sweden)

    Ryan M. Robinson

    2014-04-01

    Full Text Available Lightweight, compliant actuators are particularly desirable in robotic systems intended for interaction with humans. Pneumatic artificial muscles (PAMs exhibit these characteristics and are capable of higher specific work than comparably-sized hydraulic actuators and electric motors. The objective of this work is to develop a control algorithm that can smoothly and accurately track the desired motions of a manipulator actuated by pneumatic artificial muscles. The manipulator is intended for lifting humans in nursing assistance or casualty extraction scenarios; hence, the control strategy must be capable of responding to large variations in payload over a large range of motion. The present work first investigates the feasibility of two output feedback controllers (proportional-integral-derivative and fuzzy logic, but due to the limitations of pure output feedback control, a model-based feedforward controller is developed and combined with output feedback to achieve improved closed-loop performance. The model upon which the controller is based incorporates the internal airflow dynamics, the physical parameters of the pneumatic muscles and the manipulator dynamics. Simulations were performed in order to validate the control algorithms, guide controller design and predict optimal gains. Using real-time interface software and hardware, the controllers were implemented and experimentally tested on the manipulator, demonstrating the improved capability.

  20. Control of leg movements driven by EMG activity of shoulder muscles

    Directory of Open Access Journals (Sweden)

    Valentina eLa Scaleia

    2014-10-01

    Full Text Available During human walking there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here we present a novel approach for associating the electromyographic (EMG activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural coordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h, while EMG activity of shoulder (deltoid muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r>0.9. This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during overground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.

  1. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  2. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  3. Durability and flexibility of chimpanzee grooming patterns during a period of dominance instability.

    Science.gov (United States)

    Koyama, Nicola F; Ronkainen, Kirsty; Aureli, Filippo

    2017-11-01

    Growing evidence from studies on primates and other taxa has shown that the maintenance of long-term affiliative patterns influences fitness. Thus, understanding how individuals regulate social interactions in response to environmental and social factors contributes to our understanding of the evolutionary basis of sociality. We investigated the durability of affiliation patterns in chimpanzees across three 3-month periods of varying social uncertainty depending on the degree of stability in the male hierarchy, with a 2-year gap between each period. Periods were unstable (no clear alpha male), recently stable (new alpha male just established) and stable (alpha male in place for 2 years). We focused on three features of social exchange shared by human and non-human primates: consistency of exchanges across periods, durability of preferred partners, and degree of reciprocity in each period. We compared male-to-male, female-to-female, male-to-female, and female-to-male grooming patterns. Overall, more grooming was exchanged in the stable period. Grooming patterns were not consistent across the three periods, but were only consistent between the recently stable and stable periods for female-to-female and male-to-female dyads. As predicted from the opportunistic nature of male relationships, male-to-male grooming was least likely to be correlated across all periods and males had relatively fewer durable (i.e., preferred partners in all periods) same-sex partners than females. Our predictions that grooming reciprocity would be less likely during the unstable period and in male-male dyads were only partially supported. We found grooming reciprocity in all periods for female-female dyads but only in the stable period for male-male and female-male dyads. Although long-term affiliative patterns are well studied in primates, this is the first study to investigate the association between social uncertainty and durability of affiliative patterns. Our findings suggest social

  4. Zirconolite glass-ceramics for plutonium immobilization: The effects of processing redox conditions on charge compensation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Gregg, Daniel J.; Kong, Linggen; Jovanovich, Miodrag; Triani, Gerry

    2017-07-15

    Zirconolite glass-ceramic samples doped with plutonium have been prepared via hot isostatic pressing. The effects of processing redox and plutonium loadings on plutonium valences, the presence of cation vacancies, zirconolite phase compositions, microstructures and durability have been investigated. Either tetravalent or trivalent plutonium ions may be incorporated on the Ca-site of CaZrTi{sub 2}O{sub 7} zirconolite with the Ca-site cation vacancies and the incorporation of Al{sup 3+} ions on the Ti-site for charge compensation. Plutonium and gadolinium (as a neutron absorber) are predominantly partitioned in zirconolite phases leading to the formation of chemically durable glass-ceramics suitable for the immobilization of impure plutonium wastes arising from the nuclear fuel cycle. - Highlights: •Plutonium validations of zirconolite glass-ceramics. •Effects of processing redox and plutonium loading. •Zirconolite phase compositions and plutonium valences. •Cation vacancies and chemical durability.

  5. Surface Modification using Plasma treatments and Adhesion Peptide for Durable Tissue-Engineered Heart Valves

    International Nuclear Information System (INIS)

    Jung, Young mee; Kim, Soo Hyun

    2010-01-01

    Artificial heart valves are used in valvular heart diseases, but these valves have disadvantages that they cannot grow, repair and remodel. In current study, the strategies to development of in vitro cultured functional tissue by tissue engineering is available to heart valve disease. In the point of using viable autolougous cells, tissue engineered heart valves have some advantage to include that they can repair, remodel, and grow. Because heart valve is placed under the strong shear stress condition by pumping of heart, the durability of tissue-engineered heart valves is now questionable. The purpose of the study is to evaluate of the durability of tissue engineered heart valve with surface modified scaffolds under hemodynamic conditions

  6. Effect of stylolites on the durability of building stones : Two case studies

    NARCIS (Netherlands)

    Larbi, J.A.

    2003-01-01

    The mechanical properties and the durability of natural building stones are influenced to a large extent by inherent inhomogeneities. One of such inhomogeneities is a stylolite, particularly when it occuts in carbonate-rich rocks. Stylolites are irregular surfaces in which small tooth-like

  7. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    Science.gov (United States)

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  8. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  9. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Durability testing with West Valley borosilicate glass composition- Phase II

    International Nuclear Information System (INIS)

    Macedo, P.B.; Finger, S.M.; Barkatt, A.A.; Pegg, I.L.; Feng, X.; Freeborn, W.P.

    1988-06-01

    This report presents the research performed by the Catholic University of America Vitreous State Laboratory (VSL) during FY 1987 in support of the West Valley Demonstration Project (WVDP) nuclear waste vitrification process. A principal objective of this work is the optimization of the glass composition be used for the vitrification of the liquid high-level waste generated at West Valley during nuclear fuel reprocessing. This report discusses (1) the experimental investigations to optimize the reference glass composition (the current leading candidates are WVCM-50 and ATM-10) for the WVDP vitrification process; (2) the systematic experimental investigation performed to determine the effects of compositional variations in WVCM-50 and WV-205 reference glasses on their viscosity and durability (including initial results of long-term leach tests of WVCM-50 under repository conditions); (3) the development of short-time and predictive leach tests; (4) the development of a process model for the West Valley vitrification process which predicts the range of glass compositions which may be encountered during normal operations and the effects of deviations in process control parameters; and (5) the development of product models for predicting the durability and viscosity of nuclear waste glasses

  11. Durability of mitral valve repair for mitral regurgitation due to degenerative mitral valve disease.

    Science.gov (United States)

    David, Tirone E

    2015-09-01

    Degenerative diseases of the mitral valve (MV) are the most common cause of mitral regurgitation in the Western world and the most suitable pathology for MV repair. Several studies have shown excellent long-term durability of MV repair for degenerative diseases. The best follow-up results are obtained with isolated prolapse of the posterior leaflet, however even with isolated prolapse of the anterior leaflet or prolapse of both leaflets the results are gratifying, particularly in young patients. The freedom from reoperation on the MV at 15 years exceeds 90% for isolated prolapse of the posterior leaflet and it is around 70-85% for prolapse of the anterior leaflet or both leaflets. The degree of degenerative change in the MV also plays a role in durability of MV repair. Most studies have used freedom from reoperation to assess durability of the repair but some studies that examined valve function late after surgery suggest that recurrent mitral regurgitation is higher than estimated by freedom from reoperation. We can conclude that MV repair for degenerative mitral regurgitation is associated with low probability of reoperation for up to two decades after surgery. However, almost one-third of the patients develop recurrent moderate or severe mitral regurgitation suggesting that surgery does not arrest the degenerative process.

  12. Mechanical and Durability Properties of Concrete Made with Used Foundry Sand as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    G. Ganesh Prabhu

    2015-01-01

    Full Text Available In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS. With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.

  13. Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests

    International Nuclear Information System (INIS)

    Molina, E; Cultrone, G; Sebastián, E; Alonso, F J

    2013-01-01

    The durability of a rock when exposed to decay agents is an important criterion when assessing its quality as a building material. Our study focuses on six varieties of natural stone (two limestones, one dolostone, one travertine and two sandstones) that are widely used in both new and historical buildings. In order to assess their quality, we measured and characterized their dynamic elastic properties using ultrasounds, we measured their compressive strength using the uniaxial compression test and we evaluated their durability by means of accelerated aging tests (freeze-thaw and salt crystallization). In order to get a full picture of the decay suffered by the different stones, we determined the composition and amount of the clay fraction of the six stones. We also observed small fragments subjected to the salt crystallization test under an environmental scanning electron microscope to study any textural change and measured the changes of colour on the surface with a spectrophotometer. Finally, we analysed the pore system of the stones before and after their deterioration using mercury injection porosimetry. We then compared the results for the different stones and found that dolostone obtained the best results, while the two limestones proved to be the least durable and had the lowest compressive strength. (paper)

  14. The Association Between Household Consumer Durable Assets and Maternal Health-Seeking Behavior in Ghana.

    Science.gov (United States)

    Ansong, Eric

    2015-01-01

    This article examined the association between household consumer durable assets and maternal health-seeking behavior. Several studies have suggested a relationship between households' socioeconomic status (SES) and health outcomes. However, SES is a multidimensional concept that encompasses variables, such as wealth, education, and income. By grouping these variables together as one construct, prior studies have not provided enough insight into possible independent associations with health outcomes. This study used data from the 2008 Ghana Demographic and Health Survey of 2,065 women aged between 15 and 49 years to examine the association between household consumer durables (a component of SES) and maternal health-seeking behavior in Ghana. Results from a set of generalized linear models indicated that household consumer durable assets were positively associated with four measures of maternal health-seeking behaviors, namely, seeking prenatal care from skilled health personnel, delivery by skilled birth attendant, place of delivery, and the number of antenatal visits. Also, households with more assets whose residents lived in urban areas were more likely to use skilled health personnel before and during delivery, and at an approved health facility, compared those who lived in rural areas. Implications for health interventions and policies that focus on the most vulnerable households are discussed.

  15. Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber

    International Nuclear Information System (INIS)

    Zhang, W; Gong, X L; Fan, Y C; Jiang, W Q

    2010-01-01

    Magnetorheological elastomer (MREs)-based devices often operate at cyclic loading and high temperature conditions, which may cause fatigue and aging problems of MRE materials. This paper investigates the durability properties of MRE materials based on a mixed matrix: cis-polybutadiene rubber (BR) and natural rubber (NR). Six MREs samples were fabricated and their mechanical properties under cyclic loading with a constant strain amplitude of 50% and different aging temperatures were measured. The absolute MR effect, storage modulus (G ' ) and loss modulus (G '' ) of MRE samples after cyclic loading and aging were evaluated by a modified dynamic mechanical analyzer (DMA). The results revealed that the MR effect, G ' and G '' of all samples depended on the number of loading cycles, but samples which contained different ratios of two rubbers showed distinct properties. G ' and G '' of all samples which contained only BR change little, but G ' and G '' of samples which contained NR was large and decreased with the increment of the cycle number. Meanwhile, all their MR effects increased after cyclic loading. The results also revealed that the MR effect, G ' and G '' of all samples were dependent on the time of aging at different aging temperatures. G ' and G '' of all samples increased with the increment of aging time, but the properties of samples which contained more NR had better durability properties because their MR effect was higher and decreased more slowly than that of samples which contained more BR. The relationship between the durability properties, and cyclic loading and aging conditions were also analyzed

  16. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury

    NARCIS (Netherlands)

    Smit, C. A. J.; Haverkamp, G. L. G.; de Groot, S.; Stolwijk-Swuste, J. M.; Janssen, T. W. J.

    Study design: Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in

  18. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  19. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  20. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    Science.gov (United States)

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.