WorldWideScience

Sample records for dupic fuel composition

  1. Comparison of DUPIC fuel composition heterogeneity control methods

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity of the spent PWR fuel. In order to reduce the variation of isotopic composition of the DUPIC fuel, the inter-assembly mixing operation was taken three times. Then, three options have been considered: reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity of DUPIC fuel can be tightly controlled with the minimum amount of fresh uranium feed. For the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. 13 refs., 6 figs., 16 tabs. (Author)

  2. Composition heterogeneity analysis for DUPIC fuel(I) - Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    The fuel composition heterogeneity effect on reactor performance parameters was assessed by refueling simulations for three DUPIC fuel options of fuel composition heterogeneity control: the fissile content adjustment, the reactivity control by slightly enriched and depleted uranium, and the reactivity control by natural uranium. For each DUPIC fuel option, the simulations were performed using 30 heterogeneous fuel types which were determined by the agglomerative hierarchical clustering method. The heterogeneity effect was considered during the refueling simulation by randomly selecting fuel types for the refueling operation. The refueling simulations of the heterogeneous core have shown that the key performance parameters such as the maximum channel power (MCP), maximum bundle power (MBP), and channel power peaking factor (CPPF) are close to those of the core that has single fuel type. For the three DUPIC fuel options, the uncertainties of MCP, MBP, and CPPF due to the fuel composition heterogeneity are less than 0.6, 1.5 and 0.8%, respectively, including the uncertainty of the group-average fuel property. This study has shown that the three DUPIC fuel options reduces the composition heterogeneity effectively and the zone power control system has a sufficient margin to adjust the perturbations cased by the fuel composition heterogeneity. 15 refs., 28 figs.,10 tabs. (Author)

  3. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  4. DUPIC fuel compatibility assessment

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition

  5. Comparison of DUPIC fuel composition heterogeneity control methods

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ko, Won Il

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. (author). 13 refs., 16 tabs., 6 figs

  6. Assessment of DUPIC fuel compatibility with CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H B; Roh, G H; Jeong, C J; Rhee, B W; Choi, J W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    The compatibility of DUPIC fuel with the existing CANDU reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will require a quantitative analysis later. (author).

  7. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  8. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  9. Preliminary assessment on compatibility of DUPIC fuel with CANDU-6

    International Nuclear Information System (INIS)

    Choi, Hang-Bok; Roh, G.H.; Jeong, C.J.; Rhee, B.W.; Choi, J.W.; Boss, C.R.

    1997-01-01

    The compatibility of DUPIC fuel with the existing CANDU-6 reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will be qualitatively analyzed later. (author)

  10. Fabrication of simulated DUPIC fuel

    Science.gov (United States)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  11. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect.

  12. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect

  13. Proceedings of DUPIC fuel workshop 97

    International Nuclear Information System (INIS)

    1997-07-01

    The researchers discuss the technical aspects of DUPIC fuel fabrication in the workshop as follows; 1) The DUPIC fuel development program in KAERI 2) AECL's progress in developing the DUPIC fuel fabrication process 3) Mechanical decladding 4) Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept 5) Assessment of DUPIC fuel compatibility with CANDU-6 6) The development of combination software for spent PWR fuel to fabricate the homogeneous DUPIC fuel 7) Thermodynamic properties of the DUPIC fuel and its performance 8) Captural properties of cesium and ruthenium 9) A secondary fuel removal process : Plasma processing 10) Technology development for DUPIC process safeguards

  14. Proceedings of DUPIC fuel workshop 97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The researchers discuss the technical aspects of DUPIC fuel fabrication in the workshop as follows; (1) The DUPIC fuel development program in KAERI (2) AECL`s progress in developing the DUPIC fuel fabrication process (3) Mechanical decladding (4) Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept (5) Assessment of DUPIC fuel compatibility with CANDU-6 (6) The development of combination software for spent PWR fuel to fabricate the homogeneous DUPIC fuel (7) Thermodynamic properties of the DUPIC fuel and its performance (8) Captural properties of cesium and ruthenium (9) A secondary fuel removal process : Plasma processing (10) Technology development for DUPIC process safeguards.

  15. Compatibility analysis of DUPIC fuel (Part II) - Reactor physics design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok; Rhee, Bo Wook; Roh, Gyu Hong; Kim, Do Hun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The compatibility analysis of the DUPIC fuel in a CANDU reactor has been assessed. This study includes the fuel composition adjustment, comparison of lattice properties, performance analysis of reactivity devices, determination of regional over-power (ROP) trip setpoint, and uncertainty estimation of core performance parameters. For the DUPIC fuel composition adjustment, three options have been proposed, which can produce uniform neutronic characteristics of the DUPIC fuel. The lattice analysis has shown that the characteristics of the DUPIC fuel is compatible with those of natural uranium fuel. The reactivity devices of the CANDU-6 reactor maintain their functional requirements even for the DUPIC fuel system. The ROP analysis has shown that the trip setpoint is not sacrificed for the DUPIC fuel system owing to the power shape that enhances more thermal margin. The uncertainty analysis of the core performance parameter has shown that the uncertainty associated with the fuel composition variation is reduced appreciably, which is primarily due to the fuel composition adjustment and secondly the on-power refueling feature and spatial control function of the CANDU reactor. The reactor physics calculation has also shown that it is feasible to use spent PWR fuel directly in CANDU reactors without deteriorating the CANDU-6 core physics design requirements. 29 refs., 67 figs., 60 tabs. (Author)

  16. The DUPIC fuel development program in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M S; Park, H S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    This study describes the DUPIC fuel development program in KAERI as follows; Burning spent PWR fuel again in CANDU by DUPIC, Compatibility with existing CANDU system, Feasibility of DUPIC fuel fabrication, Waste reduction, Safeguard ability, Economics of DUPIC fuel cycle, The DUPIC fuel development program, and International prospective. 5 refs., 10 figs.

  17. DUPIC fuel cycle economics assessment (1)

    International Nuclear Information System (INIS)

    Choi, H. B.; Roh, G. H.; Kim, D. H.

    1999-04-01

    This is a state-of-art report that describes the current status of the DUPIC fuel cycle economics analysis conducted by the DUPIC fuel compatibility assessment group of the DUPIC fuel development project. For the DUPIC fuel cycle economics analysis, the DUPIC fuel compatibility assessment group has organized the 1st technical meeting composed of 8 domestic specialists from government, academy, industry, etc. and a foreign specialist of hot-cell design from TRI on July 16, 1998. This report contains the presentation material of the 1st technical meeting, published date used for the economics analysis and opinions of participants, which could be utilized for further DUPIC fuel cycle and back-end fuel cycle economics analyses. (author). 11 refs., 7 charts

  18. Irradiation and performance evaluation of DUPIC fuel

    International Nuclear Information System (INIS)

    Bae, Ki Kwang; Yang, M. S.; Song, K. C.

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis

  19. Irradiation and performance evaluation of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M S; Song, K C [and others

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis.

  20. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  1. Irradiation test and performance evaluation of DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S.

    2002-05-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  2. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    The DUPIC fuel cycle was conceived as an alternative to the conventional fuel cycle backed options, with a view to multiple benefits expectable from burning spent PWR fuel again in CANDU reactors. It is based on the basic idea that the bulk of spent PWR fuel can be directly refabricated into a reusable fuel for CANDU of which high efficiency in neutron utilization would exhaustively burn the fissile remnants in the spent PWR fuel to a level below that of natural uranium. Such ''burn again'' strategy of the DUPIC fuel cycle implies that the spent PWR fuel will become CANDU fuel of higher burnup with relevant benefits such as spent PWR fuel disposition, saving of natural uranium fuel, etc. A salient feature of the DUPIC fuel cycle is neither the fissile content nor the bulk radioactivity is separated from the DUPIC mass flow which must be contained and shielded all along the cycle. This feature can be considered as a factor of proliferation resistance by deterrence against access to sensitive materials. It means also the requirement for remote systems technologies for DUPIC fuel operation. The conflicting aspects between better safeguardability and harder engineering problems of the radioactive fuel operation may be the important reason why the decades' old concept, since INFCE, of ''hot'' fuel cycle has not been pursued with much progress. In this context, the DUPIC fuel cycle could be a live example for development of proliferation resistant fuel cycle. As the DUPIC fuel cycle looks for synergism of fuel linkage from PWR to CANDU (or in broader sense LWR to HWR), Korea occupies a best position for DUPIC exercise with her unique strategy of reactor mix of both reactor types. But the DUPIC benefits can be extended to global bonus, expectable from successful development of the technology. (author)

  3. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  4. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  5. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-01

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  6. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  7. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  8. DUPIC fuel fabrication using spent PWR fuels at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Yang, Myung Seung; Ko, Won Il and others

    2000-12-01

    This document contains DUPIC fuel cycle R and D activities to be carried out for 5 years beyond the scope described in the report KAERI/AR-510/98, which was attached to Joint Determination for Post-Irradiation Examination of irradiated nuclear fuel, by MOST and US Embassy in Korea, signed on April 8, 1999. This document is purposely prepared as early as possible to have ample time to review that the over-all DUPIC activities are within the scope and contents in compliance to Article 8(C) of ROK-U.S. cooperation agreement, and also maintain the current normal DUPIC project without interruption. Manufacturing Program of DUPIC Fuel in DFDF and Post Irradiation Examination of DUPIC Fuel are described in Chapter I and Chapter II, respectively. In Chapter III, safeguarding procedures in DFDF and on-going R and D on DUPIC safeguards such as development of nuclear material accounting system and development of containment/surveillance system are described in details.

  9. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  10. Safety analysis of DUPIC fuel development facility

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Baek, S. Y.; Ahn, J. Y.

    2001-01-01

    Various experimental facilities are necessary in order to perform experimental verification for development of DUPIC fuel fabrication technology. In special, since highly radioactive material such as spent PWR fuel is used for this experiment, DUPIC fuel fabrication has to be performed in hot cell by remote handling. Therefore, it should be provided with proper engineering requirement and safety. M6 hot cell of IMEF which is to used for DUPIC fuel fabrication experiment was constructed as an α-γ hot cell for material examination of small amount of high-burnup fuel. The characteristics and amount of spent fuel for DUPIC fuel fabrication experiment will be different from the original design criteria. Therefore, the increased amount of spent fuel and different characteristics of experiment result in not only change of shielding and enviornmental evaluation results but new requirement of nuclear criticality evaluation. Therefore, this study includes evaluation of shielding, environmental effect and nuclear criticality in case that IMEF M6 hot cell is used for DUPIC fuel fabrication

  11. The 3rd irradiation test plan of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Park, J. H. and others

    2001-05-01

    The objective of the 3rd irradiation test of DUPIC fuel at the HANARO is to estimate the in-core behaviour of a DUPIC pellet that is irradiated up to more than average burnup of CANDU fuel. The irradiation of DUPIC fuel is planned to start at May 21, 2001, and will be continued at least for 8 months. The burnup of DUPIC fuel through this irradiation test is thought to be more than 7,000 MWd/tHE. The DUPIC irradiation rig instrumented with three SPN detectors will be used to accumulate the experience for the instrumented irradiation and to estimate the burnup of irradiated DUPIC fuel more accurately. Under normal operating condition, the maximum linear power of DUPIC fuel was estimated as 55.06 kW/m, and the centerline temperature of a pellet was calculated as 2510 deg C. In order to assess the integrity of DUPIC fuel under the accident condition postulated at the HANARO, safety analyses on the locked rotor and reactivity insertion accidents were carried out. The maximum centerline temperature of DUPIC fuel was estimated 2590 deg C and 2094 deg C for each accident, respectively. From the results of the safety analysis, the integrity of DUPIC fuel during the HANARO irradiation test will be secured. The irradiated DUPIC fuel will be transported to the IMEF. The post-irradiation examinations are planned to be performed at the PIEF and IMEF.

  12. Remote helium leak test of the DUPIC fuel rod

    International Nuclear Information System (INIS)

    Kim, W. K; Kim, S. S.; Lim, S. P.; Lee, J. W.; Yang, M. S.

    1998-01-01

    DUPIC(Direct Use of spent PWR fuel In CANDU reactor) is one of dry reprocessing fuel cycles to reuse irradiated PWR fuel in CANDU power plant. DUPIC fuel is so radioactive that DUPIC fuel is remotely fabricated at hot cell such as IMEF hot cell in which radiation is shielded and remote operation is possible. In this study, Helium leakage has been tested for the simulated DUPIC fuel rod manufactured by Nd:YAG laser end-cap welding at simulated hot cell. The remote inspection technique has been developed to evaluate the soundness of DUPIC fuel fabricated through new processes. Vacuum chamber has been developed to be remotely operated by manipulators at hot cell. As the result of remote test, Helium leakage of DUPIC fuel rod is around background level, CANDU specification has been satisfied. In the result of the study, remote test has been successfully performed at the simulated hot cell, and the soundness of DUPIC fuel rod welded by Nd:YAG laser has been confirmed

  13. Post irradiation test report of irradiated DUPIC simulated fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  14. Thermodynamic properties of the DUPIC fuel and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Heon; Kim, Hee Moon [Kyung Hee Univ., Seoul (Korea, Republic of)

    1997-07-01

    This study describes thermodynamic properties of DUPIC fuel and performance. In initial state, DUPIC fuel which contains fissile materials is different from general nuclear fuel. So this study analyzed oxygen potential, thermal conductivity and specific heat of the DUPIC fuel.

  15. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    International Nuclear Information System (INIS)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song

    2008-01-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  16. Compatibility analysis of DUPIC fuel (part 3) - radiation physics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-04-01

    As a part of the compatibility analysis of DUPIC fuel in CANDU reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, thermal shield, radiation damage, transportation cask and storage. At first, the primary shield system was assessed for the DUPIC fuel core, which has shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of natural uranium core because the power levels on the core periphery are similar for both cores. Secondly, the radiation effects on the critical components and the themal shields were assessed when the DUPIC fuel is loaded in CANDU reactors. Compared with the displacement per atom (DPA) of the critical component for natural uranium core, that for the DUPIC fuel core was increased by -30% for the innermost groove and the weld points and by -10% for the corner of the calandria subshells and annular plates in the calandria, respectivdely. Finally, the feasibility study of the DUPIC fuel handling was performed, which has shown that all handling and inspection of the DUPIC fuel bundles be done remotely and behind a shielding wall. For the transportation of the DUPIC fuel, the preliminary study has shown that there shold be no technical problem th design a transportation cask for the fresh and spent DUPIC fuel bundles. For the storage of the fresh and spent DUPIC fuels, there is no the criticality safety problem unless the fuel bundle geometry is destroyed.

  17. Compatibility analysis of DUPIC fuel (part 3) - radiation physics analysis

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-04-01

    As a part of the compatibility analysis of DUPIC fuel in CANDU reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, thermal shield, radiation damage, transportation cask and storage. At first, the primary shield system was assessed for the DUPIC fuel core, which has shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of natural uranium core because the power levels on the core periphery are similar for both cores. Secondly, the radiation effects on the critical components and the themal shields were assessed when the DUPIC fuel is loaded in CANDU reactors. Compared with the displacement per atom (DPA) of the critical component for natural uranium core, that for the DUPIC fuel core was increased by -30% for the innermost groove and the weld points and by -10% for the corner of the calandria subshells and annular plates in the calandria, respectivdely. Finally, the feasibility study of the DUPIC fuel handling was performed, which has shown that all handling and inspection of the DUPIC fuel bundles be done remotely and behind a shielding wall. For the transportation of the DUPIC fuel, the preliminary study has shown that there shold be no technical problem th design a transportation cask for the fresh and spent DUPIC fuel bundles. For the storage of the fresh and spent DUPIC fuels, there is no the criticality safety problem unless the fuel bundle geometry is destroyed

  18. The dupic fuel cycle synergism between LWR and HWR

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Lee, H.H.; Kim, K.P.; Sullivan, J.D.; Boczar, P.G.; Gadsby, R.D.

    1999-01-01

    The DUPIC fuel cycle can be developed as an alternative to the conventional spent fuel management options of direct disposal or plutonium recycle. Spent LWR fuel can be burned again in a HWR by direct refabrication into CANDU-compatible DUPIC fuel bundles. Such a linkage between LWR and HWR can result in a multitude of synergistic effects, ranging from savings of natural uranium to reductions in the amount of spent fuel to be buried in the earth, for a given amount of nuclear electricity generated. A special feature of the DUPIC fuel cycle is its compliance with the 'Spent Fuel Standard' criteria for diversion resistance, throughout the entire fuel cycle. The DUPIC cycle thus has a very high degree of proliferation resistance. The cost penalty due to this technical factor needs to be considered in balance with the overall benefits of the DUPIC fuel cycle. The DUPIC alternative may be able to make a significant contribution to reducing spent nuclear fuel burial in the geosphere, in a manner similar to the contribution of the nuclear energy alternative in reducing atmospheric pollution from fossil fuel combustion. (author)

  19. Development of the fabrication technology of the simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Yang, M. S.; Bae, K. K. and others

    2000-06-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties of the DUPIC fuel is different from the commercial UO 2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, processes on powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using simulated spent fuel are discribed. To fabricate simulated DUPIC fuel, the powder from 3 times OREOX and 5 times attrition milling simulated spent fuel is compacted with 1.3 ton/cm 2 . Pellets are sintered in 100% H 2 atmosphere over 10 h at 1800 deg C. Sintered densities of pellets are 10.2-10.5 g/cm 3

  20. Irradiation test plan of the simulated DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M. S.; Kim, B. K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    Simulated DUPIC fuel had been irradiated from Aug. 4, 1999 to Oct. 4 1999, in order to produce the data of its in-core behavior, to verify the design of DUPIC non-instrumented capsule developed, and to ensure the irradiation requirements of DUPIC fuel at HANARO. The welding process was certified for manufacturing the mini-element, and simulated DUPIC fuel rods were manufactured with simulated DUPIC pellets through examination and test. The non-instrumented capsule for a irradiation test of DUPIC fuel has been designed and manufactured referring to the design specification of the HANARO fuel. This is to be the design basis of the instrumented capsule under consideration. The verification experiment, whether the capsule loaded in the OR4 hole meet the HANARO requirements under the normal operation condition, as well as the structural analysis was carried out. The items for this experiment were the pressure drop test, vibration test, integrity test, et. al. It was noted that each experimental result meet the HANARO operational requirements. For the safety analysis of the DUPIC non-instrumented capsule loaded in the HANARO core, the nuclear/mechanical compatibility, thermodynamic compatibility, integrity analysis of the irradiation samples according to the reactor condition as well as the safety analysis of the HANARO were performed. Besides, the core reactivity effects were discussed during the irradiation test of the DUPIC capsule. The average power of each fuel rod in the DUPIC capsule was calculated, and maximal linear power reflecting the axial peaking power factor from the MCNP results was evaluated. From these calculation results, the HANARO core safety was evaluated. At the end of this report, similar overseas cases were introduced. 9 refs., 16 figs., 10 tabs. (Author)

  1. Burnable poison option for DUPIC fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Cupta, H. P.

    1996-08-01

    The mechanisms of positive coolant void reactivity of CANDU natural uranium and DUPIC fuel have been studied. The design study of DUPIC fuel was performed using the burnable poison material in the center pin to reduce the coolant void reactivity. The amount of burnable poison was determined such that the prompt inverse period of DUPIC fuel upon full coolant voiding is the same as that of natural uranium fuel at equilibrium burnup. A parametric study on various burnable poisons has shown that natural dysprosium has more merit over other materials because it uniformly controls the void reactivity throughout the burnup with reasonable amount of poison. Additional studies on the option of using scattering or absorber material in the center pin position and the option using variable fuel density were performed. In any case of option using variable fuel density were performed. In any case of options to reduce the void reactivity, it was found that either the discharge burnup and/or the relative linear pin power are sacrificed. A preliminary study was performed for the evaluation of reference DUPIC fuel performance especially represented by Stress Corrosion Cracking(SCC) parameters which is mainly influenced by the refueling operations. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increment of the reference DUPIC fuel are below the SCC thresholds of CANDU natural uranium fuel. For a 4-bundle shift refueling scheme, the envelopes of element ramped power and power increment upon refueling are 8% and 44% higher than those of a 2-bundle shift refueling scheme on the average, respectively, but still have margins to the failure thresholds of natural uranium fuel. 23 tabs., 25 figs., 20 refs. (Author)

  2. Transmutation of DUPIC spent fuel in the hyper system

    International Nuclear Information System (INIS)

    Kim, Y.H.; Song, T.Y.

    2005-01-01

    In this paper, the transmutation of TRUs of the DUPIC (Direct Use of Spent PWR Fuel in CANDU) spent fuel has been studied with the HYPER system, which is an LBE-cooled ADS. The DUPIC concept is a synergistic combination of PWRs and CANDUs, in which PWR spent fuels are directly re-utilized in CANDU reactors after a very simple re-fabrication process. In the DUPIC-HYPER fuel cycle, TRUs are recovered by using a pyro-technology and they are incinerated in a metallic fuel form of U-TRU-Zr. The objective of this study is to investigate the TRU transmutation potential of the HYPER core for the DUPIC-HYPER fuel cycle. All the previously-developed HYPER core design concepts were retained except that fuel is composed of TRU from the DUPIC spent fuel. In order to reduce the burnup reactivity swing, a B 4 C burnable absorber is used. The HYPER core characteristics have been analyzed with the REBUS-3/DIF3D code system. (authors)

  3. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  4. Radioactive waste management of experimental DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Hong, K. P.

    2001-01-01

    The concept of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) is a dry processing technology to manufacture CANDU compatible DUPIC fuel from spent PWR fuel material. Real spent PWR fuel was used in IMEF M6 hot cell to carry out DUPIC experiment. Afterwards, about 200 kg-U of spent PWR fuel is supposed to be used till 2006. This study has been conducted in some hot cells of PIEF and M6 cell of IMEF. There are various forms of nuclear material such as rod cut, powder, green pellet, sintered pellet, fabrication debris, fuel rod, fuel bundle, sample, and process waste produced from various manufacturing experiment of DUPIC fuel. After completing test, the above nuclear wastes and test equipment etc. will be classified as radioactive waste, transferred to storage facility and managed rigorously according to domestic and international laws until the final management policy is determined. It is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This paper includes basic plan for DUPIC radwaste, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures

  5. Compatibility analysis of DUPIC fuel(4) - thermal hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Chae, Kyung Myung; Choi, Hang Bok

    2000-07-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle in the CANDU reactor has been studied. The critical channel power, the critical power ratio, the channel exit quality and the channel flow are calculated for the DUPIC and the standard fuels by using the NUCIRC code. The physical models and associated parametric values for the NUCIRC analysis of the fuels are also presented. Based upon the slave channel analysis, the critical channel power and the critical power ratios have been found to be very similar for the two fuel types. The same dryout model is used in this study for the standard and the DUPIC fuel bundles. To assess the dryout characteristics of the DUPIC fuel bundle, the ASSERT-PV code has been used for the subchannel analysis. Based upon the results of the subchannel analysis, it is found that the dryout location and the power for the two fuel types are indeed very similar. This study shows that thermal performance of the DUPIC fuel is not significantly different from that of the standard fuel.

  6. Thermal expansion study of simulated DUPIC fuel using neutron diffraction

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Bae, J. H.; Kim, H. S.; Song, K. C.; Yang, M. S.; Choi, Y. N.; Han, Y. S.; Oh, H. S.

    2001-07-01

    The lattice parameters of simulated DUPIC fuel and UO2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO2 and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO2. For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO2 and simulated DUPIC fuel are 10.471 ''10-6 and 10.751 ''10-6 K-1, respectively

  7. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Choi, J.W.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    From the early nineties, a research programme, called DUPIC (Direct Use of Spent PWR Fuel in CANDU) has been undertaken in an international exercise involving Korea, Canada, the U.S. and later the IAEA. The basic idea of this fuel cycle alternative is that the spent fuel from LWR contains enough fissile remnant to be burnt again in CANDUs thanks to its excellent neutron economy. A systematic R and D plan has now gained a full momentum to verify experimentally the DUPIC fuel cycle concept. 4 refs

  8. A study on manufacturing and quality control technology of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, H. S.; Lee, Y. W. [and others

    1997-09-01

    A series of experiments are performed to verify the manufacturability of DUPIC fuel and its performance by use of HANARO test reactor. Major works performed during this research period are : analysis of manufacturing process of DUPIC fuel, fabrication technology development such as development of disassembly and decladding method of spent PWR fuel, study on the OREOX process using simulated high burnup fuel, weldability of end cap weld, and development of fabrication equipment including the conceptual and detailed design of DUPIC equipment mainly for the powder preparation, pelletization and fuel element fabrication. A study on the material properties of DUPIC fuel and performance analysis method using irradiation of test fuel was also performed. (author). 91 refs., 274 tabs., 254 figs.

  9. A study on manufacturing and quality control technology of DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, H. S.; Lee, Y. W.

    1997-09-01

    A series of experiments are performed to verify the manufacturability of DUPIC fuel and its performance by use of HANARO test reactor. Major works performed during this research period are : analysis of manufacturing process of DUPIC fuel, fabrication technology development such as development of disassembly and decladding method of spent PWR fuel, study on the OREOX process using simulated high burnup fuel, weldability of end cap weld, and development of fabrication equipment including the conceptual and detailed design of DUPIC equipment mainly for the powder preparation, pelletization and fuel element fabrication. A study on the material properties of DUPIC fuel and performance analysis method using irradiation of test fuel was also performed. (author). 91 refs., 274 tabs., 254 figs

  10. Generation of consistent nuclear properties of DUPIC fuel by DRAGON with ENDF/B-VI nuclear data library

    International Nuclear Information System (INIS)

    Shen, W.; Rozon, D.

    1998-01-01

    DRAGON code with 89-groups ENDF/B-VI cross section library was used in this paper to generate consistent nuclear properties of DUPIC fuel. The reference feed material used for the DUPIC fuel cycle is a 17x17 French standard 900 MWe PWR spent fuel assembly with 3.2 w/o initial enrichment and 32500 MWD/7 discharge burnup. The PWR fuel assembly was modeled by JPMT/SYBILT transport method in DRAGON to generate nuclide fields of spent PWR fuel. The resultant nuclide fields constitute the initial fuel composition files for reference DUPIC fuel which can be accessed by DRAGON for CANDU 2D cluster geometry depletion calculation and 3D supercell calculation. Because of uneven spatial power distribution in PWR assemblies and full core, unexpected transition cycle, and various fuel management strategy, the spent PWR fuel composition is expected to be different from one assembly to the next. This heterogeneity was characterized also by modeling various spent PWR fuel assembly types in the paper. (author)

  11. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  12. Analysis of radwaste material management options for experimental DUPIC fuel fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Yang, M. S.; Kim, K. H.; Shin, J. M.; Lee, H. S.; Ko, W. I.; Lee, J. W.; Yim, S. P.; Hong, D. H.; Lee, J. Y.; Baik, S. Y.; Song, W. S.; Yoo, B. O.; Lee, E. P.; Kang, I. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This report is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This report was written for helping researchers working in related facilities to DUPIC project understanding management of DUPIC radioactive waste as well as fellows in DUPIC project. Also, it will be used as basic material to prove transparency and safeguardability of DUPIC fuel cycle. In order to meet these purposes, this report includes basic experiment plan for manufacturing DUPIC nuclear fuel, outlines for DUPIC manufacturing facility and equipment, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures. 15 refs., 31 figs., 11 tabs. (Author)

  13. Develpment of quality assurance manual for fabrication of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT.

  14. Develpment of quality assurance manual for fabrication of DUPIC fuel

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT

  15. Fabrication of Non-instrumented capsule for DUPIC simulated fuel irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Kang, Y.H.; Park, S.J.; Shin, Y.T. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In order to develope DUPIC nuclear fuel, the irradiation test for simulated DUPIC fuel was planed using a non-instrumented capsule in HANARO. Because DUPIC fuel is highly radioactive material the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO was designed to remotely assemble and disassemble in hot cell. And then, according to the design requirements the non-instrumented DUPIC capsule was successfully manufactured. Also, the manufacturing technologies of the non-instrumented capsule for irradiating the nuclear fuel in HANARO were established, and the basic technology for the development of the instrumented capsule technology was accumulated. This report describes the manufacturing of the non-instrumented capsule for simulated DUPIC fuel. And, this report will be based to develope the instrumented capsule, which will be utilized to irradiate the nuclear fuel in HANARO. 26 refs., 4 figs. (Author)

  16. Progress of the DUPIC fuel compatibility analysis (II) - thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Choi, Hang Bok

    2005-03-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle with a 713 MWe Canada deuterium uranium (CANDU-6) reactor was studied by using both the single channel and sub-channel analysis methods. The single channel analysis provides the fuel channel flow rate, pressure drop, critical channel power, and the channel exit quality, which are assessed against the thermal-hydraulic design requirements of the CANDU-6 reactor. The single channel analysis by the NUCIRC code showed that the thermal-hydraulic performance of the DUPIC fuel is not different from that of the standard CANDU fuel. Regarding the local flow characteristics, the sub-channel analysis also showed that the uncertainty of the critical channel power calculation for the DUPIC fuel channel is very small. As a result, both the single and sub-channel analyses showed that the key thermal-hydraulic parameters of the DUPIC fuel channel do not deteriorate compared to the standard CANDU fuel channel.

  17. A study on the manufacturing and processing technologies of DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Kang, K.H.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-06-01

    In this study, DUPIC fuel fabrication technologies are developed, characteristics of fuel materials are studied, and characterization experiments for DUPIC powder and pellets are performed at PIEF. SIMFUEL powder and pellets are made of UO 2 mixed with the simulated fission products of spent fuel. Both characteristics of SIMFUEL powder and micro-structure of pellets are analyzed. End cap of DUPIC fuel rod is sealed with laser welding technique. Optimum welding condition is analyzed with results of Micro-hardness, mechanical and metallographic tests. Micro-focus x-ray inspection technique is studied to fine fine defects. DUPIC processes are improved by making OREOX process be multi-functional and by adopting rol compacting process. At PIEF, characterization experiments for DUPIC powder and pellet are performed. The equipment for experiments have been installed at PIEF no. 9405 hot cell, and its process parameters are established. (author). 7 refs., 7 tabs., 37 figs

  18. DUPIC fuel performance from reactor physics viewpoint

    International Nuclear Information System (INIS)

    Choi, H.; Rhee, B.W.; Park, H.

    1995-01-01

    A preliminary study was performed for the evaluation of Stress Corrosion Cracking (SCC) parameters of nominal DUPIC fuel in CANDU reactor. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increase of the 43-element DUPIC fuel in the equilibrium core are below the SCC thresholds of CANDU natural uranium fuel. For 4-bundle shift refueling scheme, the envelope of element ramped power and power increase upon refueling are 8% and 44% higher than those of 2-bundle shift refueling scheme on the average, respectively, and both schemes are not expected to cause SCC failures. (author)

  19. An assessment of thermal behavior of the DUPIC fuel bundle by subchannel analysis

    International Nuclear Information System (INIS)

    Park, Jee Won.

    1997-12-01

    Thermal behavior of the standard DUPIC fuel has been assessed. The DUPIC fuel bundle has been modeled for a subchannel analysis using the ASSERT-IV code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions of the DUPIC fuel bundle, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. Based upon the subchannel modeling used in this study, the location of minimum CHFR in the DUPIC fuel bundle has been found to be very similar to that of the standard fuel. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction was found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. Since the transverse interchange model between subchannels is important for the behavior of these variables, it is needed to put more effort in validating the transverse interchange model. For the purpose of investigating influence of thermal-hydraulic parameter variations of the DUPIC fuel bundle, four different values of the channel flow rates were used in the subchannel analysis. The effect of the channel flow reduction on thermal-hydraulic parameters have been presented. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundles in CANDU reactors. (author). 12 refs., 3 tabs., 17 figs

  20. Development of equipment for fabricating DUPIC fuel powder

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H.

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs

  1. Development of equipment for fabricating DUPIC fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs.

  2. The Design Features of the Double-Banked AMBIDEXTER Utilizing DUPIC Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Tae Kyu [KHNP Central Research Institute, Daejeon (Korea, Republic of); Lee, Young Joon; Hong, Sung Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, Myung Hwan [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Kwon, Tae An [KHNP, Daejeon (Korea, Republic of); Oh, Se Kee [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Since the on-site spent fuel storage capabilities at reactors in Korea are expected to be saturated in a few years, the government has been pressed to find a solution for the spent nuclear fuel. So far one of workable means for reducing the load would be utilizing DUPIC fuel cycle technology. The technology was developed through Korea-Canada-U.S. collaboration to utilize the LWR spent fuel for the CANDU reactor. However, by various sociopolitical reasons, the DUPIC technology has not been yet commercialized. As the other alternatives to use the DUPIC technology, Gen-IV reactors would be pertinent. In the following session, the design features of a molten salt reactor system that can burn DUPIC fuel are explained. The followings are derived as conclusions after considering all the factors; The AMDEC, compared to ORIGEN2 simulations, can calculate the nuclides concentration changes within 1% deviation in various core zones and reactor system components by using different library sets which are weighted with each neutron spectrum; Fuel-flow effects coupled with nuclear reactions is well reflected in the AMDEC.

  3. Development of manufacturing equipment and QC equipment for DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-05-01

    In this study, DUPIC powder and pellet fabrication equipment, welding system, QC equipment, and fission gas treatment are developed to fabricate DUPIC fuel at IMEF M6 hot cell. The systems are improved to be suitable for remote operation and maintenance with the manipulator at hot cell. Powder and pellet fabrication equipment have been recently developed. The systems are under performance test to check remote operation and maintenance. Welding chamber and jigs are designed and developed to remotely weld DUPIC fuel rod with manipulators at hot cell. Remote quality control equipment are being tested for analysis and inspection of DUPIC fuel characteristics at hot cell. And trapping characteristics is analyzed for cesium and ruthenium released under oxidation/reduction and sintering processes. The design criteria and process flow diagram of fission gas treatment system are prepared incorporating the experimental results. The fission gas treatment system has been successfully manufactured. (Author). 33 refs., 14 tabs., 91 figs

  4. Technology development of nuclear material safeguards for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs.

  5. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - IV: DUPIC Fuel Cycle Cost

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hangbok; Yang, Myung Seung

    2001-01-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.21 to 6.34 mills/kW.h for DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.07 to 0.27 mills/kW.h. Considering the uncertainty (0.40 to 0.44 mills/kW.h) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by ∼20% and reduce the spent fuel arising by ∼65% compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle is comparable with the once-through fuel cycle from the viewpoint of FCC. In the future, it should be important to consider factors such as the environmental benefit owing to natural uranium savings, the capability of reusing spent pressurized water reactor fuel, and the safeguardability of the fuel cycle when deciding on an advanced nuclear fuel cycle option

  6. Development of the high temperature sintering furnace for DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, B. G.; Park, J. J.; Yang, M. S.; Kim, K. H.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.

    1998-11-01

    This report describes the development of the high temperature sintering furnace for manufacturing DUPIC (Direct Use of spent PWR fuel in CANDU reactors) fuel pellets. The furnace has to be remotely operated and maintained in a high radioactive hot cell using master-slave manipulators. The high temperature sintering furnace for manufacturing DUPIC fuel pellets, which is satisfied with the requirements of remote operation and maintenance in a hot cell, was successfully developed and installed in the M6 hot cell at IMEF (Irradiated Material Examination Facility). The functional and thermal performance test was also successfully completed. The technology accumulated during developing this sintering furnace became the basis of other DUPIC equipment development, and will be very helpful in the development of equipment for use in hot cell in the future. (author). 20 figs

  7. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P.

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs

  8. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs.

  9. Regional overpower protection system analysis for a DUPIC fuel CANDU core

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok; Park, Jee Won

    2003-06-01

    The regional overpower protection (ROP) system was assessed a CANDU 6 reactor with the DUPIC fuel, including the validation of the WIMS/RFSP/ROVER-F code system used for the estimation of ROP trip setpoint. The validation calculation has shown that it is valid to use the WIMS/RFSP/ROVER-F code system for ROP system analysis of the CANDU 6 core. For the DUPIC core, the ROP trip setpoint was estimated to be 125.7%, which is almost the same as that of the standard natural uranium core. This study has shown that the DUPIC fuel does not hurt the current ROP trip setpoint designed for the natural uranium CANDU 6 reactor

  10. Development of remote equipment for a DUPIC fuel fabrication at KAERI

    International Nuclear Information System (INIS)

    Lee, Jungwon; Kim, Kiho; Park, Geunil; Yang, Myungseung; Song, Keechan

    2007-01-01

    The DUPIC (Direct Use of spent PWR fuel In CANDU reactors) technology is to directly refabricate CANDU fuel from spent PWR fuel without any separation of the fissile materials and fission products. Thus, the DUPIC fuel material always remains in a highly radioactive state, which requires a remote fuel fabrication in a hot-cell. About 25 pieces of remote equipment including auxiliary systems such as a hot-cell shield plug were developed and installed in a hot cell. In order to supply a high electric current to a sintering furnace in-cell from an outside cell, a shield plug was developed. It consists of three components - a steel shield plug with an embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. Experiments to evaluate the performance of the sintering furnace with the developed shield plug were carried out. It was concluded that, from the experimental results, the newly developed hot-cell shield plug satisfied all the requirements for a remote operation on a sintering furnace. DUPIC fuel pellets and elements were successfully fabricated with the developed remote equipment. (authors)

  11. The option study of air shipment of DUPIC fuel elements to Canada

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Koo, J. H.

    2003-01-01

    KAERI developed a DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF. To verify the performance of DUPIC nuclear fuel, irradiation test at operating conditions of commercially operating power plant is essential. Since the HANARO research reactor of KAERI does not have Fuel Test Loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO until about 2008. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6 kg). This transportation package is classified as the 7-th class according to 'recommendation on the transport of dangerous goods' made by the United Nations. Air shipment was investigated as a promising option because it is generally understood that air shipment is more appropriate than ship shipment for transportation of small quantity of nuclear materials from the perspectives of cost and transportation period. In case of air shipment, the IATA regulations have been more intensified since the July of 2001. To make matters worse, it becomes more difficult to get the ratification of corresponding authorities due to 9.11 terror. It was found that at present there is no proper air transportation cask for DUPIC fuel. So, air transportation is considered to be impossible. An alternative of using the exemption limit of fissile material was reviewed. Its results showed that in case of going via USA territory, approvals from US DOT should be needed. The approvals include shipping and cask approvals on technical cask testing. Furthermore, since passes through territories of Japan and Russia have to be done in case of using a regular air cargo from Korea to Canada, approvals from Russia and

  12. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Park, J. J.; Lee, H. H.; Kim, K. H.

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc

  13. A collaboration on extended INPRO case study of the DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Yang, M. S.; Ko, W. I. (and others)

    2007-05-15

    Since 1992, KAERI, AECL, United States Department of States(USDOS) and IAEA have performed the DUPIC fuel cycle development activities as an international cooperative research program, which has now been chosen as a target nuclear system for an INPRO case study. This study will focus on a further improvement and modification of the basic principles, user requirements and acceptance limits, which are defined in the IAEA-TECDOC-1434 for an evaluation of its proliferation-resistance through a proliferation-resistance assessment of the whole fuel cycle of DUPIC based on the INPRO methodology. In order to further develop an evaluation method for a proliferation-resistance based on the INPRO methodology, the basic principles, user requirements and acceptance limits of a proliferation-resistance was reviewed and quantified. Then the evaluation model (material flow, facility scale, reference fuel, etc.) of the DUPIC fuel cycle was developed and a proliferation-resistance assessment of the DUPIC fuel cycle including the PWR fuel cycle was performed by using the revised INPRO methodology in the area of a proliferation resistance. Also, the recommendations for a further improvement of INPRO methodology were suggested through examining the INPRO methodology for a proliferation resistance assessment. Through the proliferation resistance assessment of the whole fuel cycle of DUPIC including the PWR fuel cycle, the proliferation-resistance methodology was updated and re-established. And based on its experience, The research results can be used not only to evaluate and determine the future domestic proliferation-resistant fuel cycles which were derived from the GEN{sub I}V or INPRO programs but also to improve a system design to enhance its proliferation resistance. The present results will be utilized for the development of an INPRO User's Manual which is being developed as an important issue by IAEA. The credibility of the research results were ensured by the IAEA

  14. A collaboration on extended INPRO case study of the DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Park, J. H.; Yang, M. S.; Ko, W. I.

    2007-05-01

    Since 1992, KAERI, AECL, United States Department of States(USDOS) and IAEA have performed the DUPIC fuel cycle development activities as an international cooperative research program, which has now been chosen as a target nuclear system for an INPRO case study. This study will focus on a further improvement and modification of the basic principles, user requirements and acceptance limits, which are defined in the IAEA-TECDOC-1434 for an evaluation of its proliferation-resistance through a proliferation-resistance assessment of the whole fuel cycle of DUPIC based on the INPRO methodology. In order to further develop an evaluation method for a proliferation-resistance based on the INPRO methodology, the basic principles, user requirements and acceptance limits of a proliferation-resistance was reviewed and quantified. Then the evaluation model (material flow, facility scale, reference fuel, etc.) of the DUPIC fuel cycle was developed and a proliferation-resistance assessment of the DUPIC fuel cycle including the PWR fuel cycle was performed by using the revised INPRO methodology in the area of a proliferation resistance. Also, the recommendations for a further improvement of INPRO methodology were suggested through examining the INPRO methodology for a proliferation resistance assessment. Through the proliferation resistance assessment of the whole fuel cycle of DUPIC including the PWR fuel cycle, the proliferation-resistance methodology was updated and re-established. And based on its experience, The research results can be used not only to evaluate and determine the future domestic proliferation-resistant fuel cycles which were derived from the GEN I V or INPRO programs but also to improve a system design to enhance its proliferation resistance. The present results will be utilized for the development of an INPRO User's Manual which is being developed as an important issue by IAEA. The credibility of the research results were ensured by the IAEA Consultant

  15. A study on the creep characteristics of simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.; Na, S.

    2001-09-01

    Compression creep test was performed using simulated DUPIC fuel in the temperature range from 1773 to 1973 K under the stress range of 21 - 60 MPa. Creep rate and the activation energy were obtained. The activation energy for creep was 649.35 - 675.94 kJ/mol at the low stress region, where creep mechanism was controlled by diffusion. On the other hand, the activation energy at high stress region was 750.68 - 792.18 kJ/mol, where creep mechanism was controlled by dislocation motion. The activation energy for dislocation creep was higher than that for diffusion creep. The activation energy of reference simulated DUPIC fuel was higher than that of UO2

  16. Estimation of radiation exposure for hot cell workers during DUPIC fuel fabrication process in IMEF M6 cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yong Bum; Baek, Sang Yeol; Park, Dae Kyu

    1997-06-01

    DUPIC(Direct Use of spent PWR fuel In CANDU) fuel cycle to utilize the PWR spent fuel in fabricating CANDU fuel, which is expected to reduce not only the total amount of high level radwastes but the energy sources is underway. IMEF M6 cell to be used as DUPIC fuel fabrication facility is refurbished and retrofitted. Radiation exposure for the hot cell worker by dispersion of the radioactive materials during the DUPIC process were estimated on the basis of the hot cell design information. According to the estimation results, DUPIC fuel fabrication process could be run without any severe impacts to the hot cell workers when the ventilation system to maintain the sufficient pressure difference between hotcell and working area and radiation monitoring system is supports the hot cell operation properly. (author). 4 tabs., 6 figs.

  17. Cost evaluation of a commercial-scale DUPIC fuel fabrication facility (Part I) -Summary

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A conceptual design of a commercial scale DUPIC fuel fabrication facility was initiated to provide some insights into the costs associated with construction, operation, and decommissioning. The primary conclusion of this report is that it is feasible to design, license, construct, test, and operate a facility that will process 400 MTHE/yr of spent PWR fuel and reconfigure the fuel into CANDU fuel bundles at a reasonable unit cost of the fuel material. Although DUPIC fuel fabrication by vibropacking method is clearly cheaper than that of the pellet method, the feasibility of vibropac technology for DUPIC fuel fabrication and use of vibroac fuel in CANDU reactors may has to be studied in depth in order to use as an alternative to the conventional pellet fuel method. Especially, there are some questions on meeting the CANDU requirements in thermal and mechanical terms as well as density of fuel. Wherever possible, this report used representative costs of currently available technologies as the bases for cost estimation. It should also be noted that the conceptual design and cost information contained in this report was extracted from the public domain and general open literature. Later studies have to focus on other important areas of concern such as safety, security, safeguards, process optimization etc. 7 figs., 6 tabs. (Author)

  18. Environmental sensitivity studies for Gen-IV roadmap DUPIC scenario

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-03-01

    The environmental effect of the DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) fuel cycle, which is considered as one of the partial recycle scenario in Gen-IV roadmap, has been analyzed by using the dynamic analysis method. Through the parametric calculations for the DUPIC fuel cycle deployment time and the fraction of the DUPIC reactors, the environmental effects of the fuel cycle for important parameters such as the amount of spent fuel and the combined amounts of plutonium and minor actinides were estimated and compared to those of the once-through LWR fuel cycle. The results of the sensitivity calculations showed that an early deployment of the DUPIC fuel cycle with a high DUPIC reactor fraction can reduce the accumulation of spent fuel by up to 40%. More important is the associated reduction in the combined amount of plutonium and minor actinides, which may reduce the key repository parameter (long term decay heat). Therefore it is expected that favorable environmental effects will be the outcome of the implementation of the DUPIC fuel cycle

  19. Assessment of reactivity devices for CANDU-6 with DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-01-01

    Reactivity device characteristics for a CANDU-6 reactor loaded with DUPIC fuel have been assessed. A transport code WIMS-AECL and a three-dimensional diffusion code RFSP were used for the lattice parameter generation and the core calculation, respectively. Three major reactivity devices have been assessed for their inherent functions. For the zone controller system, damping capability for spatial oscillation was investigated. The restart capability of the adjuster system was investigated. The shim operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster rod system. The mechanical control absorber was assessed for the capability to compensate the temperature reactivity feedback following a power reduction. This study has shown that the current reactivity device systems retain their functions when used in a DUPIC fuel CANDU reactor

  20. Development of DUPIC safeguards technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H D; Ko, W I; Song, D Y [and others

    2000-03-01

    During the first phase of R and D program conducted from 1997 to 1999, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. For the nuclear material measurement system, the performance test was finished and received IAEA approval, and now is being used in DUPIC Fuel Fabrication Facility(DFDF) for nuclear material accounting and control. Other systems being developed in this study were already installed in DFDF and being under performance test. Those systems developed in this study will make a contribution not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author)

  1. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  2. Technology development for DUPIC process safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J S; Kim, H D; Lee, Y G; Kang, H Y; Cha, H R; Byeon, K H; Park, Y S; Choi, H N [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    As the strategy for DUPIC(Direct Use of spent PWR fuel In CANDU reactor) process safeguards, the neutron detection method was introduced to account for nuclear materials in the whole DUPIC process by selectively measuring spontaneous fission neutron signals from {sup 244}Cm. DSNC was designed and manufactured to measure the account of curium in the fuel bundle and associated process samples in the DUPIC fuel cycle. The MCNP code had response profile along the length of the CANDU type fuel bundle. It was found experimentally that the output signal variation due to the overall azimuthal asymmetry was less than 0.2%. The longitudinal detection efficiency distribution at every position including both ends was kept less than 2% from the average value. Spent fuel standards almost similar to DUPIC process material were fabricated from a single spent PWR fuel rod and the performance verification of the DSNC is in progress under very high radiation environment. The results of this test will be eventually benchmarked with other sources such as code simulation, chemical analysis and gamma analysis. COREMAS-DUPIC has been developed for the accountability management of nuclear materials treated by DUPIC facility. This system is able to track the controlled nuclear materials maintaining the material inventory in near-real time and to generate the required material accountability records and reports. Concerning the containment and surveillance technology, a focused R and D effort is given to the development of unattended continuous monitoring system. Currently, the component technologies of radiation monitoring and surveillance have been established, and continued R and D efforts are given to the integration of the components into automatic safeguards diagnostics. (author).

  3. A study on the radioactive waste management for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Park, H. S.; Park, J. J.; Kim, J. H.; Cho, Y. H.; Shin, J. M.; Kim, Y. K.; Kim, J. S.; Kim, J. G.; Park, S. D.; Suh, M. Y.; Sohn, S. C.; Song, B. C.; Lee, C. H.; Jeon, Y. S.; Jo, K. S.; Jee, K. Y.; Jee, C. S.; Han, S. H.

    1997-09-01

    Part 1: The characteristics if the radioactive wastes coming from the DUPIC fuel manufacturing process were analyzed and evaluated. The gross {alpha}-activity and {alpha}-, {gamma}-spectrum of irradiated zircaloy specimens form KORI unit 1 were analyzed. In order to develop the trapping media of radioactive ruthenium oxides, trapping behavior of volatilized ruthenium oxides on various metal oxides or carbonates was analyzed. Fly ash was selected as a trapping materials for gaseous cesium. And reaction characteristics of CsNO{sub 3} and CsI with fly ash have been investigated. Also, trapping material were performed to test fly ash filter for removal of gaseous cesium under the air and hydrogen atmosphere. The applicability of fly ash to the vitrification of the spent filter was analyzed in the aspects of predictability, leachability. Good quality of Borosilicate glass was formed using Cesium spent filter. Offgas treatment system of DUPIC fuel manufacturing facility was designed and constructed in order to trap of gaseous radioactive waste from 100 batch of OREOXA furnace (the capacity : 500 g/batch). Part II: To develop chemical analysis techniques necessary for understanding chemical properties of the highly radioactive materials related to the development of DUPIC fuel cycle technology, the following basic studies were performed : dissolution of SIMFUEL (simulated fuel), determination of uranium by potentiometry and UV/Vis absorption spectrophotometry, separation of PWR spent fuel, group separation of fission products from uranium, individual separation for analysis of actinides, determination of free acid in a artificial dissolved solution of PWR spent fuel, group separation of fission products form uranium, individual separation of Sm from a mixed rare earth elements and measurement of its isotopes by TI-mass spectrometry, and characteristics of detectors in inductively coupled plasma atomic emission spectrometer (ICP-AES) suitable for analysis of trace fission

  4. A study on the radioactive waste management for DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Park, H. S.; Park, J. J.; Kim, J. H.; Cho, Y. H.; Shin, J. M.; Kim, Y. K.; Kim, J. S.; Kim, J. G.; Park, S. D.; Suh, M. Y.; Sohn, S. C.; Song, B. C.; Lee, C. H.; Jeon, Y. S.; Jo, K. S.; Jee, K. Y.; Jee, C. S.; Han, S. H.

    1997-09-01

    Part 1: The characteristics if the radioactive wastes coming from the DUPIC fuel manufacturing process were analyzed and evaluated. The gross α-activity and α-, γ-spectrum of irradiated zircaloy specimens form KORI unit 1 were analyzed. In order to develop the trapping media of radioactive ruthenium oxides, trapping behavior of volatilized ruthenium oxides on various metal oxides or carbonates was analyzed. Fly ash was selected as a trapping materials for gaseous cesium. And reaction characteristics of CsNO 3 and CsI with fly ash have been investigated. Also, trapping material were performed to test fly ash filter for removal of gaseous cesium under the air and hydrogen atmosphere. The applicability of fly ash to the vitrification of the spent filter was analyzed in the aspects of predictability, leachability. Good quality of Borosilicate glass was formed using Cesium spent filter. Offgas treatment system of DUPIC fuel manufacturing facility was designed and constructed in order to trap of gaseous radioactive waste from 100 batch of OREOXA furnace (the capacity : 500 g/batch). Part II: To develop chemical analysis techniques necessary for understanding chemical properties of the highly radioactive materials related to the development of DUPIC fuel cycle technology, the following basic studies were performed : dissolution of SIMFUEL (simulated fuel), determination of uranium by potentiometry and UV/Vis absorption spectrophotometry, separation of PWR spent fuel, group separation of fission products from uranium, individual separation for analysis of actinides, determination of free acid in a artificial dissolved solution of PWR spent fuel, group separation of fission products form uranium, individual separation of Sm from a mixed rare earth elements and measurement of its isotopes by TI-mass spectrometry, and characteristics of detectors in inductively coupled plasma atomic emission spectrometer (ICP-AES) suitable for analysis of trace fission products. (author

  5. Assessment of CANDU-6 reactivity devices for DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-11-01

    Reactivity device characteristics for a CANDU 6 reactor loaded with DUPIC fuel have been assessed. The lattice parameters were generated by WIMS-AECL code and the core calculations were performed by RFSP code with a 3-dimensional full core model. The reactivity devices studied are the zone controller, adjusters, mechanical control absorber and shutoff rods. For the zone controller system, damping capability for spatial oscillation was investigated. For the adjusters, the restart capability was investigated. For the adjusters, the restart capability was investigated. The shin operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster system. The mechanical control absorber was assessed for the function of compensating temperature reactivity feedback following a power reduction. And shutoff rods were also assessed to investigate the following a power reduction. And shutoff rods were also assessed to investigate the static reactivity worth. This study has shown that the current reactivity device system of CANDU-6 core with the DUPIC fuel. (author). 9 refs., 17 tabs., 7 figs

  6. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  7. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  8. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  9. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost

    International Nuclear Information System (INIS)

    Choi, Hangbok; Ko, Won Il; Yang, Myung Seung

    2001-01-01

    A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC (∼49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC

  10. Proliferation Resistance: Acquisition/Diversion Pathway Analysis for the DUPIC Fuel Cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Lee, Ho Hee; Kwon, Eun Ha; Jeong, Chang Joon; Kim, Ho Dong

    2009-07-01

    Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), a methodology for evaluating proliferation resistance (INPRO PR methodology) has been developed. However, it remains to develop the methodology to evaluate User Requirements (UR) 4 regarding multiplicity and robustness of barriers against proliferation - innovative nuclear energy systems should incorporate multiple proliferation resistance features and measures. Since this requires an acquisition/diversion pathway analysis, this report describes a systematic approach developed for the identification and analysis of pathways for the acquisition of weapons-usable nuclear material using the DUPIC fuel cycle system. At the first step, the objectives of the proliferation were identified, including the quality and quantity of the material, the time required to acquire the material for the proliferation, thr capability of the potential proliferant country, etc. At the second step, the possible strategies, which the potential proliferant country could adopt, were identified: undeclared removal of nuclear material from the fuel cycle facilities; and further treatment of the diverted nuclear materials needed to acquire weapons-usable materials. At the final step, a systematic approach to select the plausible pathways for the acquisition/diversion of nuclear material during the whole fuel cycle has been developed. The coarse material diversion pathways for the DUPIC fuel cycle and the approach developed was reviewed and discussed at the experts meeting at the IAEA for its appropriateness and comprehensiveness

  11. Development of the manufacture and process for DUPIC fuel elements; development of the quality evaluation techniques for end cap welds of DUPIC fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Tae; Choi, Myong Seon; Yang, Hyun Tae; Kim, Dong Gyun; Park, Jin Seok; Kim, Jin Ho [Yeungnam University, Kyongsan (Korea)

    2002-04-01

    The objective of this research is to set up the quality evaluation techniques for end cap welds of DUPIC fuel element. High temperature corrosion test and the SCC test for Zircaloy-4 were performed, and also the possibility of the ultrasonic test technique was verified for the quality evaluation and control of the laser welds in the DUPIC fuel rod end cap. From the evaluation of corrosion properties with measuring the weight gain and observing oxide film of the specimen that had been in the circumstance of steam(400 .deg. C, 1,500 psi) by max. 70 days later, the weight gain of the welded specimens was larger than original tube and the weight increasing rate increased with the exposed days. For the Development of techniques for ultrasonic test, semi-auto ultrasonic test system has been made based on immersion pulse-echo technique using spherically concentrated ultrasonic beam. Subsequently, developed ultrasonic test technique is quite sensible to shape of welds in the inside and outside of tube as well as crack, undercut and expulsion, and also this ultrasonic test, together with metallurgical fracture test, has good reliance as enough to be used for control method of welding process. 43 refs., 47 figs., 8 tabs. (Author)

  12. Development of DUPIC safeguards technology

    International Nuclear Information System (INIS)

    Kim, H. D.; Kang, H. Y.; Ko, W. I.

    2002-05-01

    DUPIC safeguards R and D in the second phase has focused on the development of nuclear material measurement system and its operation and verification, the development of nuclear material control and accounting system, and the development of remote and unmanned containment/surveillance system. Of them, the nuclear material measurement system was authenticated from IAEA and officially used for IAEA and domestic safeguards activities in DFDF. It was also verified that the system could be used for quality control of DUPIC process. It is recognised that the diagnostic software using neural network and remote and unmanned containment/surveillance system developed here could be key technologies to go into remote and near-real time monitoring system. The result of this project will eventually contribute to similar nuclear fuel cycles like MOX and pyroprocessing facility as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material

  13. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  14. Evaluation of the Centerline Temperature for the Irradiated DUPIC Pellet

    International Nuclear Information System (INIS)

    Park, Chang Je; Lee, Cheol Yong; Kang, Kweon Ho; Song, Kee Chan

    2007-01-01

    The DUPIC (Direct Use of spent PWR fuels In a CANDU reactor) fuel has a proliferation-resistant property and provides an efficient utilization of a spent fuel through a direct fabrication with the OREOX process in which most of the fission products remain and some volatile elements such as Xe, Kr, Cs, and I are reduced significantly. It is expected that the performance of the DUPIC fuel exhibits different behavior when compared with the fresh uranium oxide fuel. To evaluate the performance of the DUPIC fuel, total five irradiation tests have been performed in the HANARO reactor since May 2000. Recently, the fifth irradiation test of the DUPIC fuel was successfully completed for a total of three cycles from March 2006 to July 2006. The important characteristics of the first irradiation test are a high power test and a validation of a remote assembly of an irradiation rig. The second irradiation test was instrumented with a SPND (self-powered neutron detector) first for a typical CANDU burnup test. The third test was an extensive irradiation test of the second test and the total burnup was estimated as 6,700 MWd/tU. The forth test was a remote instrumented test of the pellet centerline temperature and the inlet and outlet coolant temperatures. The first remote instrumentation test was achieved with our own technology. The fifth test was a remote-instrumented test of the pellet centerline temperature by extending the technology of the forth irradiation test. In this paper, a DUPIC fuel performance code (KAOS, KAERI Advanced Oxide fuel performance code System) was used to compare the main simulation results of the irradiation tests in the HANARO

  15. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  16. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  17. A method to calculate the effect of heterogeneous composition on bundle power

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-01

    In the DUPIC fuel cycle, the spent pressurized water reactor (PWR) fuel is used in a Canada deuterium uranium (CANDU) reactor. Depending on the initial condition and burnup history of PWR fuel, the DUPIC fuel composition varies accordingly. In order to see the effect of the fuel composition, a simple and fast method was developed and applied to the DUPIC fuel. This report discusses the method developed to predict the effect of heterogeneous fuel composition on the bundle power. (author). 3 refs., 5 tabs.

  18. Development of DUPIC safeguards neutron counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gil; Cha, Hong Ryul; Kim, Ho Dong; Hong, Jong Sook; Kang, Hee Young

    1999-08-01

    KAERI, in cooperation with LANL, developed DSNC (DUPIC Safeguards Neutron Counter) for safeguards implementing on DUPIC process which is under development by KAERI for direct use of spent PWR fuel in CANDU reactors. DSNC is a well-type neutron coincidence counter with substantial shielding to protect system from high gamma radiation of spent fuel. General development procedures in terms of design, manufacturing, fabrication, cold and hot test, performance test for DSNC authentication by KAERI-IAEA-LANL are described in this report. It is expected that the techniques related DSNC development and associated neutron detection and evaluation method could be applied for safeguards improvement. (Author). 20 refs., 16 tabs. 98 figs.

  19. Nuclear material accountability system in DUPIC facility (I)

    International Nuclear Information System (INIS)

    Ko, W. I.; Kim, H. D.; Byeon, K. H.; Song, D. Y.; Lee, B. D.; Hong, J. S.; Yang, M. S.

    1999-01-01

    KAERI(Korea Atomic Energy Research Institute) has developed a nuclear material accountability system for DUPIC(Direct Use of Spent PWR Fuel in CANDU) fuel cycle process. The software development for the material accountability started with a general model software, so-called CoreMAS(Core Material Accountability System), at the beginning of 1998. The development efforts have been focused on the DUPIC safeguards system, and in addition, improved to meet Korean safeguards requirements under domestic laws and regulations. The software being developed as a local area network-based accountability system with multi-user environment is able to track and control nuclear material flow within a facility and inter-facility. In addition, it could be operated in a near-real time manner and also able to generate records and reports as necessary for facility operator and domestic and international inspector. This paper addresses DMAS(DUPIC Material Accountability System) being developed by KAERI and simulation in a small-scale DUPIC process for the verification of the software performance and for seeking further works

  20. A study on the direct use of spent PWR fuel in CANDU -A study on the radioactive waste management for DUPIC fuel cycle-

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Jun, Kwan Sik; Nah, Jung Won; Park, Jang Jin; Kim, Jong Hoh; Cho, Yung Hyun; Baek, Seung Woo; Shin, Jin Myung; Yang, Seung Yung

    1994-07-01

    The immobilization materials for radioactive wastes resulting from the DUPIC fuel manufacturing process were selected and their characteristics were evaluated. To predict the trapping behavior of the Ruthenium, a semi-volatile nuclide, its volatility was measured and thermogravimetric analysis were performed with simulated fuel. New Ruthenium trapping material was developed which is deposited on ceramic honey-comb monolith of cordierite. The base glass was manufactured with fly ash added to the borosilicate glass. The composition of the scrap waste was calculated based on the PWR spent fuel which has initial 235 U content of 3.5%, burnup of 35,000 MWD/MTU and cooling time of 10 years. Simulated waste glass was manufactured, and its chemical durability was evaluated by soxhlet leach test. Radioactivity of non-oxidized cladding material were measured. The preliminary design criteria were prepared for off-gas treatment system in IMEF. 31 figs, 42 tabs, 51 refs. (Author)

  1. A study on the direct use of spent PWR fuel in CANDU -A study on the radioactive waste management for DUPIC fuel cycle-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Jun, Kwan Sik; Nah, Jung Won; Park, Jang Jin; Kim, Jong Hoh; Cho, Yung Hyun; Baek, Seung Woo; Shin, Jin Myung; Yang, Seung Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The immobilization materials for radioactive wastes resulting from the DUPIC fuel manufacturing process were selected and their characteristics were evaluated. To predict the trapping behavior of the Ruthenium, a semi-volatile nuclide, its volatility was measured and thermogravimetric analysis were performed with simulated fuel. New Ruthenium trapping material was developed which is deposited on ceramic honey-comb monolith of cordierite. The base glass was manufactured with fly ash added to the borosilicate glass. The composition of the scrap waste was calculated based on the PWR spent fuel which has initial {sup 235}U content of 3.5%, burnup of 35,000 MWD/MTU and cooling time of 10 years. Simulated waste glass was manufactured, and its chemical durability was evaluated by soxhlet leach test. Radioactivity of non-oxidized cladding material were measured. The preliminary design criteria were prepared for off-gas treatment system in IMEF. 31 figs, 42 tabs, 51 refs. (Author).

  2. Study of burnable poison in the dupic cycle

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clarysson A.M. da; Almeida, Michel C.B. de; Faria, Rochkhudson B. de; Moreira, Arthur P.C.; Pereira, Claubia, E-mail: clarysson@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Recent studies confirm the potential of using reprocessed PWR (Pressurized Water Reactor) fuels in the CANDU (Canada Deuterium Uranium) reactor fuel cycle. An important proposal is the 'Direct Use of spent PWR fuel In CANDU' (DUPIC) cycle, where spent fuels from a PWR are packaged into a CANDU fuel bundle with only mechanical reprocessing (cut into pieces) but no chemical reprocessing. The fissile contents of the spent fuel from Pressurized Water Reactor (PWR) are about 1.5 wt%, which is higher than that of the fuel of CANDU. When this reactor is reload with reprocessed fuel, the reactivity of system will increase and this behavior may affect the safety parameters of reactor. To reduce the initial reactivity, Burnable Poison (BP) can be inserted in the fuel bundle of CANDU. In this way, the present paper evaluates the insertion of the different types of BP considering the DUPIC cycle. The following BPs were evaluated: Boron, Cadmium, Dysprosium, Erbium, Europium, Gadolinium, Hafnium and Samarium. The goal is to verify the neutronic behavior of the fuel bundle at steady state and during the reactor burnup. The SCALE 6.0 (Standardized Computer Analyses for Licensing Evaluation) code was employed to model a standard CANDU-6 fuel element. (author)

  3. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  4. Dry Process Fuel Performance Evaluation

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  5. Dry process fuel performance technology development

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K.

    2006-06-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  6. Dry process fuel performance technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K. (and others)

    2006-06-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  7. Modeling report of DYMOND code (DUPIC version)

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Yacout, Abdellatif M.

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc

  8. Modeling report of DYMOND code (DUPIC version)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan [KAERI, Taejon (Korea, Republic of); Yacout, Abdellatif M [Argonne National Laboratory, Ilinois (United States)

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc.

  9. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  10. A study on the direct use of spent PWR fuel in CANDU reactors -Development of DUPIC fuel on manufacturing and quality control technology-

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, Hyun Soo; Lee, Yung Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Oxidation/reduction process was established after analysis of the effect of process parameter on the sintering behavior using SIMFUEL. Process equipment was studied more detail and some of process equipment items were designed and procured. The chemical analysing method of fission products and fissile content in DUPIC fuel was studied and the behavior and the characteristics of fission products in fuel was also done. Requirement for irradiation in HANARO was analysed to prepare performance evaluation. 100 figs, 48 tabs, 170 refs. (Author).

  11. A study on the direct use of spent PWR fuel in CANDU reactors -Development of DUPIC fuel on manufacturing and quality control technology-

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, Hyun Soo; Lee, Yung Woo

    1995-07-01

    Oxidation/reduction process was established after analysis of the effect of process parameter on the sintering behavior using SIMFUEL. Process equipment was studied more detail and some of process equipment items were designed and procured. The chemical analysing method of fission products and fissile content in DUPIC fuel was studied and the behavior and the characteristics of fission products in fuel was also done. Requirement for irradiation in HANARO was analysed to prepare performance evaluation. 100 figs, 48 tabs, 170 refs. (Author)

  12. Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Persiani, P K [Argonne National Lab., IL (United States)

    1997-07-01

    The purpose of the study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiative and safeguards systems. Alternative recycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products. The concepts are alternatives to either the direct long-term storage deposition of or the purex reprocessing of the spent fuels. The alternate fuel cycle concepts reviewed include: the dry-recycle processes such as the direct use of reconfigured PWR spent fuel assemblies into CANDU reactors(DUPIC); low-decontamination, single-cycle co-extraction of fast reactor fuels in a wet-purex type of reprocessing; and on a limited scale the thorium-uranium fuel cycle. The nonproliferation advantages usually associated with the above non-separation processes are: the highly radioactive spent fuel presents a barrier to the physical diversion of the nuclear material; avoid the need to dissolve and chemically separate the plutonium from the uranium and fission products; and that the spent fuel isotopic quality of the plutonium vector is further degraded. Although the radiation levels and the need for reprocessing may be perceived as barriers to the terrorist or the subnational level of safeguards, the international level of nonproliferation concerns is addressed primarily by material accountancy and verification activities. On the international level of nonproliferation concerns, the non-separation fuel cycle concepts involved have to be evaluated on the bases of the impact the processes may have on nuclear materials accountancy. (author).

  13. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  14. Acquisition/Diversion Pathway Analysis of the DUPIC Fuel Cycle for the Assessment of Proliferation Resistance

    International Nuclear Information System (INIS)

    Chang, Hong Lae; Ko, Won Il

    2008-01-01

    Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) of the IAEA, a methodology for evaluating proliferation resistance (INPRO PR methodology) has been developed in order to provide guidance in using the INPRO methodology. However, it remains to develop the methodology to evaluate User Requirements (UR) 4 regarding multiplicity and robustness of barriers against proliferation (innovative nuclear energy systems should incorporate multiple proliferation resistance features and measures). To develop the assessment procedure and metrics for User Requirement 4 (UR4), the coarse acquisition/ diversion pathway analysis of the DUPIC Fuel Cycle has been performed. The most plausible pathways for the acquisition of weapons-usable nuclear material were identified and analyzed using a systematic approach herein, and future work to complete the assessment approach for the UR4 of the INPRO methodology regarding the multiplicity and robustness of barriers against proliferation are also proposed

  15. Report of Post Irradiation Examination for Dry Process Fuel

    International Nuclear Information System (INIS)

    Par, Jang Jin; Jung, I. H.; Kang, K. H.; Moon, J. S.; Lee, C. R.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Yoo, B. O.; Jung, Y. H.; Choo, Y. S.

    2006-08-01

    The spent PWR fuel typically contains 0.9 wt.% of fissile uranium and 0.6 wt.% of fissile plutonium, which exceeds the natural uranium fissile content of 0.711 wt.%. The neutron economy of a CANDU reactor is sufficient to utilize the DUPIC fuel, even though the neutron-absorbing fission products contained in the spent PWR fuel were remained in the DUPIC fuel. The DUPIC fuel cycle offers advantages to the countries operating both the PWR and CANDU reactors, such as saving the natural uranium, reducing the spent fuel in both PWR and CANDU, and acquiring the extra energy by reuse of the PWR spent fuel. This report contains the results of post-irradiation examination of the DUPIC fuel irradiated four times at HANARO from May 2000 to August 2006 present except the first irradiation test of simulated DUPIC fuel at HANARO on August 1999

  16. Endurance test for DUPIC capsule

    International Nuclear Information System (INIS)

    Chung, Heung June; Bae, K. K.; Lee, C. Y.; Park, J. M.; Ryu, J. S.

    1999-07-01

    This report presents the pressure drop, vibration and endurance test results for mini-plate fuel rig which were designed fabricately by KAERI. From the pressure drop test results, it is noted that the flow rate across the capsule corresponding to the pressure drop of 200 kPa is measured to be about 9.632 kg/sec. Vibration frequency for the capsule ranges from 14 to 18.5 Hz. RMS (Root Mean Square) displacement for the fuel rig is less than 14 μm, and the maximum displacement is less than 54 μm. Based on the endurance test results, the appreciable fretting wear for the DUPIC capsule was not detected. Oxidation on the support tube is observed, also tiny trace of wear between contact points observed. (author). 4 refs., 10 tabs., 45 figs

  17. Endurance test of DUPIC irradiation test rig-003

    Energy Technology Data Exchange (ETDEWEB)

    Moon, J.S; Yang, M.S.; Lee, C.Y.; Ryu, J.S.; Jeon, H.G

    2001-04-01

    This report presents the pressure drop, vibration and endurance test results for DUPIC Irradiation Test Rig-003 which was design and fabricated by KAERI. From the pressure drop and vibration test results, it is verified that DUPIC Irradiation Test Rig-003 satisfied the limit conditions of HANARO. And, remarkable wear is not observed in DUPIC Irradiation Test Rig-003 during 40 endurance test days.

  18. Study on the characteristics and sinterability of DUPIC powder by using simulated fuel

    International Nuclear Information System (INIS)

    Lee, Jae-Won; Lee, Jung-Won; Kim, Jong-Ho; Yim, Sung-Paal; Lee, Young-Woo; Yang, Myung-Seung

    2002-01-01

    The sinterability of the OREOX (oxidation and reduction of oxide fuels) powder was investigated in terms of the number of the OREOX cycles and milling time using simulated spent fuel of an equivalent burnup of 35,000 MWD/MTU. Wet milled powder was prepared and sintered to compare the morphology and sinterability with the dry milled powder. Powders having a medium particle size of less than 1μm were obtained by dry milling of OREOX powders regardless of the number of cycles. The specific surface area of the simulated DUPIC powder was governed by the number of OREOX cycles rather than by milling time. The sound pellets with a sintered density of higher than 95% TD and average grain size of larger than 8μm were obtained with the dry milled powder after 1 cycle of OREOX treatment. The powders prepared by dry milling for a short time and wet milling for a long time after 3 cycles of OREOX treatment also produced pellets with a sintered density of higher than 95% TD and average grain size of larger than 8μm. (author)

  19. Development of the fabrication technology of the simulated fuel-I, 15,000MWd/tU

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, D. J.; Kim, H. S.; Lee, J. W.; Yang, M. S

    2001-04-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties, fission gas release, grain growth and et al. of the DUPIC fuel is different from the commercial UO2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, the sintering characterization of wet milled powder for 24 hours to fabricate 15,000MWd/tU equivalent burnup simulated fuel.

  20. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M.

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described

  1. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described.

  2. Economic assessment of new technology of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kim, H. S.; Song, K. D.; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lee, J. S.; Choi, H. B.

    1998-06-01

    The purpose of this study is to analyze the impact of the change in the manufacturing cost of DUPIC fuel on the power generation cost. In doing so, the installed capacity of nuclear power plants until the year 2040 were forecasted by using the trend analysis technique. This study used the NUFCAP computer code, developed by KAERI, which allows to conduct quantitative evaluation of the volumes of nuclear fuel and spent fuel as well as unit and system costs of nuclear fuel cycle. As a result of this study, it was found that there was little economic difference between the two possible options for the Korean electric system, direct disposal and DUPIC fuel cycle. The rate of discount and the manufacturing cost of DUPIC fuel were resulted in the most significant factors affecting the economics of the two options. Finally, it was expected that the result of this study provided the arguing point for the international debate on the economics of DUPIC fuel cycle technology. (author). 6 refs., 7 tabs., 8 figs

  3. Development of DUPIC safeguards technology; development of web based nuclear material accounting program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. T.; Choi, S. H.; Choi, S. J. [Kongju National University, Kongju (Korea)

    2002-04-01

    The purpose of this project is to develop the web-based digital image processing system with the client/server architecture based on TCP/IP to be able to search and manage image data at the remote place. This system provides a nuclear facility with the ability to track the movement of nuclear material and to control and account nuclear material at anywhere and anytime. Also, this system will be helpful to increase the efficiency of safeguards affairs. The developed web-based digital image processing system for tracking the movement of nuclear material and MC and A can be applied to DUPIC facility. The result of this project will eventually contribute to similar nuclear facilities as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material. 15 refs., 33 figs., 4 tabs. (Author)

  4. Refurbishment of isolation room and development of glove box for the DUPIC project in IMEF

    International Nuclear Information System (INIS)

    Baek, S. Y.; Park, J. J.; Lee, H. H.; Hong, K. P.; Yang, M. S.; Min, D. K.

    2001-01-01

    To perform R and D of DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors), the high-radioactive shielding facility is necessary. IMEF(Irradiated Material Examination Facility) in KAERI has the high-radioactive shielding facility and some R and D such that the spent PWR fuel can be burned again in a PHWR by direct re-fabrication into CANDU-compatible DUPIC fuel bundles, is being carried out using the manipulator attached to the hotcell-M6. Although many testing equipment are located and are being operated in hotcell, it is not possible to work personally inside the hotcell due to the high radioactive contaminant. When they are out of order, the cleaned one can be maintained and repaired using the renovated isolation room located over the hotcell-M6 and the new devised glove box located at service area. Some lead-sheets and the lead glasses were fixed on the wall of the isolation room to improve the shielding capability and the roof door of hotcell-M6 can be open remotely. To maintain and repair the equipment of hotcell, a working desk was constructed in the isolation room. The glove box was also made to withdraw the disordered equipment of hotcell through the rear door

  5. A comparison study on radioactive waste management effectiveness in various nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    This study examines whether the DUPIC (Direct Use of Spent PWR Fuel In CANDU) fuel cycle make radioactive waste management more effective, by comparing it with other fuel cycles such as the PWR (Pressurized Water Reactor) once-through cycle, the HWR (Pressurized Heavy Water Reactor) once-through cycle and the thermal recycling option to use an existing PWR with MOX (Mixed Oxide) fuel. This study first focuses on the radioactive waste volume generated in all fuel cycle steps, which could be one of the measures of effectiveness of the waste management. Then the total radioactive waste disposition cost is estimated based on two units measuring; m3/GWe-yr and US$/GWe-yr. We find from the radioactive waste volume estimation that the DUPIC fuel cycle could have lower volumes for milling tailings, low level waste and spent fuel than those of other fuel cycle options. From the results of the disposition cost analysis, we find that the DUPIC waste disposition cost is the lowest among fuel cycle options. If the total waste disposition cost is used as a proxy for quantifying the easiness or difficulty in managing wastes, then the DUPIC option actually make waste management easier

  6. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  7. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  8. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  9. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  10. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  11. Assessment of neutron transport codes for application to CANDU fuel lattices analysis

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    1999-08-01

    In order to assess the applicability of WIMS-AECL and HELIOS code to the CANDU fuel lattice analysis, the physics calculations has been carried out for the standard CANDU fuel and DUPIC fuel lattices, and the results were compared with those of Monte Carlo code MCNP-4B. In this study, in order to consider the full isotopic composition and the temperature effect, new MCNP libraries have been generated from ENDF/B-VI release 3 and validated for typical benchmark problems. The TRX-1,2,BAPL-1,2,3 pin -cell lattices and KENO criticality safety benchmark calculations have been performed for the new MCNP libraries, and the results have shown that the new MCNP library has sufficient accuracy to be used for physics calculation. Then, the lattice codes have been benchmarked by the MCNP code for the major physics parameters such as the burnup reactivity, void reactivity, relative pin power and Doppler coefficient, etc. for the standard CANDU fuel and DUPIC fuel lattices. For the standard CANDU fuel lattice, it was found that the results of WIMS-AECL calculations are consistent with those of MCNP. For the DUPIC fuel lattice, however, the results of WIMS-AECL calculations with ENDF/B-V library have shown that the discrepancy from the results of MCNP calculations increases when the fuel burnup is relatively high. The burnup reactivities of WIMS-ACEL calculations with ENDF/B-VI library have shown excellent agreements with those of MCNP calculation for both the standard CANDU and DUPIC fuel lattices. However, the Doppler coefficient have relatively large discrepancies compared with MCNP calculations, and the difference increases as the fuel burns. On the other hand, the results of HELIOS calculation are consistent with those of MCNP even though the discrepancy is slightly larger compared with the case of the standard CANDU fuel lattice. this study has shown that the WIMS-AECL products reliable results for the natural uranium fuel. However, it is recommended that the WIMS

  12. Sustainomics of the AMBIDEXTER-NEC Fuel Cycle and Management

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Kee; Lee, Young Joon; Ham, Tae Kyu; Seo, Myung Hwan; Hong, Sung Taek; Kwon, Tae An [Ajou University, Suwon (Korea, Republic of)

    2009-05-15

    Energy issues these days become planetary concerns, recognized as the major driver for the resiliency of the earth in the sustainomics framework of the society, economy and environment axes. In the circumstances, in order for the nuclear to take advantage of its GHG-free nature, criticisms associated with the fuel cycle should be defied. As long as the uranium fuel cycle persists, problems bearing on the HLW management and the proliferation prevention could be neither completely decoupled nor independently resolved. Geopolitics around the Korean peninsula makes them be more complicated. Reference of the AMBIDEXTER fuel cycle relies on the DUPIC technology. Combined with fluoride volatility process, desired quantity of uranium contents in the PWR spent fuel powder could be removed. Then, the reactor system runs with the fluorides salt of this uranium-reduced DUPIC fuel material. Surplus uranium from the AMBIDEXTER-DUPIC1 processes should satisfy the LLW classification criteria. So far, the sustainomics goal of the AMBIDEXTER fuel cycle focuses on generating energy from the HLW, meanwhile, converting into LLW without jeopardizing proliferation transparency.

  13. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  14. The results of decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Lee, E. P. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, the experiments in PIEF have been completed. Since all DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must be performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. This report describes the basic plan for dismantlement/decontamination of the characterization equipment (power and sintered fuel). And methods of measurement/packing/transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order. 7 refs., 42 figs., 10 tabs. (Author)

  15. Implementation of a dry process fuel cycle model into the DYMOND code

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jeong, Chang Joon; Choi, Hang Bok

    2004-01-01

    For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada Deuterium Uranium (CANDU) reactor, direct use of spent Pressurized Water Reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-through and DUPIC fuel cycles

  16. A study on decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Lee, H. S.; Lee, E. P.

    2000-09-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, The experiments in PIEF have been completed. It is supposed to dismantle and decontaminate the installed equipment by the end of year 2000. Since all of DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must br performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. Firstly, This report describes the basic plan for dismantlement/decontamination of the characterization equipment(power and sintered fuel). And methods of measurement/packing/ transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order

  17. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    International Nuclear Information System (INIS)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-01-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC

  18. Dynamic modeling and analysis of alternative fuel cycle scenarios in Korea

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2007-01-01

    The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ∼65000 tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors

  19. Status of fuel irradiation tests in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, Choong Sung; Lee, Kye Hong; Jun, Byung Jin; Lee, Ji Bok

    1999-01-01

    Since 1996 after finishing the long-term operational test, HANARO (High-Flux Advanced Neutron Application Reactor) has been extensively used for material irradiation tests, beam application research, radioisotope production and neutron activation analysis. This paper presents the fuel irradiation test activities which are now conducted or have been finished in HANARO. KAERI developed LEU fuel using an atomization method for the research reactors. Using this LEU, we have set up and conducted three irradiation programs: (1) medium power irradiation test using a short-length mini-assembly made of 3.15 gU/cc U 3 Si, (2) high power irradiation tests using full-length test assemblies made of 3.15 gU/cc U 3 Si, and (3) irradiation test using a short-length mini-plate made of 4.8 gU/cc U 3 Si 2 . DUPIC (Direct Use of spent PWR fuels in CANDU Reactors) simulation fuel pellets, of which compositions are very similar to DUPIC pellets to keep the similarity in the thermo-mechanical property, were developed. Three mini-elements including 5 pellets each were installed in a capsule. This capsule has been irradiated for 2 months and unloaded from the HANARO core at the end of September 1999. Another very important test is the HANARO fuel qualification program at high power, which is required to resolve the licensing issue. This test is imposed on the HANARO operation license due to insufficient test data under high power environment. To resolve this licensing issue, we have been carrying out the required irradiation tests and PIE (Post-irradiation Examination) tests. Through this program, it is believed that the resolution of the licensing issue is achieved. In addition to these programs, several fuel test plans are under way. Through these vigorous activities of fuel irradiation test programs, HANARO is sure to significantly contribute to the national nuclear R and D programs. (author)

  20. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels

    International Nuclear Information System (INIS)

    Wolf, S. F.

    1999-01-01

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns

  1. Economic Analysis of Different Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Ko, W.; Gao, F.

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyro processing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC) have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU) for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyro techniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  2. The installation and performance test of the surveillance system for DUPIC facility

    International Nuclear Information System (INIS)

    Kim, Dong Young; Kim, Ho Dong; Cha, Hong Ryul

    2000-07-01

    We have developed the real time surveillance system, named by DSSS, for DUPIC test facility. The system acquires data from He-3 neutron monitors(DSNM) and CCD cameras to automatically diagnose the transportation status of nuclear material. This technical report shortly illustrates important features of hardware and software of the system

  3. The installation and performance test of the surveillance system for DUPIC facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Young; Kim, Ho Dong; Cha, Hong Ryul

    2000-07-01

    We have developed the real time surveillance system, named by DSSS, for DUPIC test facility. The system acquires data from He-3 neutron monitors(DSNM) and CCD cameras to automatically diagnose the transportation status of nuclear material. This technical report shortly illustrates important features of hardware and software of the system.

  4. CANDU advanced fuel R and D programs for 1997 - 2006 in Korea

    International Nuclear Information System (INIS)

    Suk, H.C.; Yang, M.S.; Sim, K-S.; Yoo, K.J.

    1997-01-01

    KAERI has a comprehensive product development program of CANFLEX and DUPIC fuels to introduce them into CANDU reactors in Korea and a clear vision of how the product will evolve over the next 10 years. CANDU reactors are not the majority of nuclear power plants in Korea, but they produce significant electricity to contribute Korea's economic growth as well as to satisfy the need for energy. The key targets of the development program are safety enhancement, reduction of spent fuel volume, and economic improvements, using the inherent characteristics and advantages of CANDU technology The CANFLEX and DUPIC R and D programs are conducted currently under the second stage of Korea's Nuclear Energy R and D Project as a national mid- and long-term program over the next 10 years from 1997 to 2006. The specific activities of the programs have taken account of the domestic and international environment concerning on non-proliferation in the Peninsula of Korea. As the first of the development products in the short-term, the CANFLEX-NU fuel will be completely developed jointly by KAERI/AECL and will be useful for the older CANDU-6 Wolsong unit 1. As the second product, the CANFLEX-0.9 % equivalent SEU fuel is expected to be completely developed within the next decade. It will be used in CANDU-6 reactors in Korea immediately after the development, if the existing RU in the world is price competitive with natural uranium. The DUPIC R and D program, as a long term program, is expected to demonstrate the possibility of use of used PWR fuel in CANDU reactors in Korea during the next 10 years. The pilot scale fabrication facility would be completed around 2010. (author)

  5. CANDU advanced fuel R and D programs for 1997 - 2006 in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H.C.; Yang, M.S.; Sim, K-S.; Yoo, K.J. [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1997-07-01

    KAERI has a comprehensive product development program of CANFLEX and DUPIC fuels to introduce them into CANDU reactors in Korea and a clear vision of how the product will evolve over the next 10 years. CANDU reactors are not the majority of nuclear power plants in Korea, but they produce significant electricity to contribute Korea's economic growth as well as to satisfy the need for energy. The key targets of the development program are safety enhancement, reduction of spent fuel volume, and economic improvements, using the inherent characteristics and advantages of CANDU technology The CANFLEX and DUPIC R and D programs are conducted currently under the second stage of Korea's Nuclear Energy R and D Project as a national mid- and long-term program over the next 10 years from 1997 to 2006. The specific activities of the programs have taken account of the domestic and international environment concerning on non-proliferation in the Peninsula of Korea. As the first of the development products in the short-term, the CANFLEX-NU fuel will be completely developed jointly by KAERI/AECL and will be useful for the older CANDU-6 Wolsong unit 1. As the second product, the CANFLEX-0.9 % equivalent SEU fuel is expected to be completely developed within the next decade. It will be used in CANDU-6 reactors in Korea immediately after the development, if the existing RU in the world is price competitive with natural uranium. The DUPIC R and D program, as a long term program, is expected to demonstrate the possibility of use of used PWR fuel in CANDU reactors in Korea during the next 10 years. The pilot scale fabrication facility would be completed around 2010. (author)

  6. AECL's progress in developing the DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Cox, D.S.

    1995-01-01

    Spent Pressurized Water Reactor (PWR) fuel can be used directly in CANDU reactors without the need for wet chemical reprocessing or reenrichment. Considerable experimental progress has been made in verifying the practicality of this fuel cycle, including hot-cell experiments using spent PWR fuels and out-cell trials using surrogate fuels. This paper describes the current status of these experiments. (author)

  7. Advanced CANDU reactors fuel analysis through optimal fuel management at approach to refuelling equilibrium

    International Nuclear Information System (INIS)

    Tingle, C.P.; Bonin, H.W.

    1999-01-01

    The analysis of alternate CANDU fuels along with natural uranium-based fuel was carried out from the view point of optimal in-core fuel management at approach to refuelling equilibrium. The alternate fuels considered in the present work include thorium containing oxide mixtures (MOX), plutonium-based MOX, and Pressurised Water Reactor (PWR) spent fuel recycled in CANDU reactors (Direct Use of spent PWR fuel in CANDU (DUPIC)); these are compared with the usual natural UO 2 fuel. The focus of the study is on the 'Approach to Refuelling Equilibrium' period which immediately follows the initial commissioning of the reactor. The in-core fuel management problem for this period is treated as an optimization problem in which the objective function is the refuelling frequency to be minimized by adjusting the following decision variables: the channel to be refuelled next, the time of the refuelling and the number of fresh fuel bundles to be inserted in the channel. Several constraints are also included in the optimisation problem which is solved using Perturbation Theory. Both the present 37-rod CANDU fuel bundle and the proposed CANFLEX bundle designs are part of this study. The results include the time to reach refuelling equilibrium from initial start-up of the reactor, the average discharge burnup, the average refuelling frequency and the average channel and bundle powers relative to natural UO 2 . The model was initially tested and the average discharge burnup for natural UO 2 came within 2% of the industry accepted 199 MWh/kgHE. For this type of fuel, the optimization exercise predicted the savings of 43 bundles per full power year. In addition to producing average discharge burnups and other parameters for the advanced fuels investigated, the optimisation model also evidenced some problem areas like high power densities for fuels such as the DUPIC. Perturbation Theory has proven itself to be an accurate and valuable optimization tool in predicting the time between

  8. Fuel Cell Electric Vehicle Composite Data Products | Hydrogen and Fuel

    Science.gov (United States)

    Cells | NREL Vehicle Composite Data Products Fuel Cell Electric Vehicle Composite Data Products The following composite data products (CDPs) focus on current fuel cell electric vehicle evaluations Cell Operation Hour Groups CDP FCEV 39, 2/19/16 Comparison of Fuel Cell Stack Operation Hours and Miles

  9. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  10. A state of the art report on the decontamination technology for dry ice blasting

    International Nuclear Information System (INIS)

    Shin, J. M.; Kim, K. H.; Park, J. J.; Lee, H. H.; Yang, M. S.; Nam, S. H.; Kim, M. J.

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination

  11. A state of the art report on the decontamination technology for dry ice blasting

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J M; Kim, K H; Park, J J; Lee, H H; Yang, M S; Nam, S H; Kim, M J

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination.

  12. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  13. The design of the DUPIC spent fuel bundle counter

    International Nuclear Information System (INIS)

    Menlove, H.O.; Rinard, P.M.; Kroncke, K.E.; Lee, Y.G.

    1997-05-01

    A neutron coincidence detector had been designed to measure the amount of curium in the fuel bundles and associated process samples used in the direct use of plutonium in Canadian deuterium-uranium (CANDU) fuel cycle. All of the sample categories are highly radioactive from the fission products contained in the pressurized water reactor (PWR) spent fuel feed stock. Substantial shielding is required to protect the He-3 detectors from the intense gamma rays. The Monte Carlo neutron and photon calculational code has been used to design the counter with a uniform response profile along the length of the CANDU-type fuel bundle. Other samples, including cut PWR rods, process powder, waste, and finished rods, can be measured in the system. This report describes the performance characteristics of the counter and support electronics. 3 refs., 23 figs., 6 tabs

  14. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  15. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  16. Composite Solid Fuel: Research of Formation Parameters

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman

    2016-01-01

    Full Text Available Involving of local low-grade fuels resources in fuel and energy balance is actual question of research in the present. In this paper the possibility of processing low-grade fuel in the solid fuel composite was considered. The aim of the work is to define the optimal parameters for formation of the solid composite fuel. A result of researches determined that dextrin content in the binder allows to obtain solid composite fuel having the highest strength. The drying temperature for the various fuels was determined: for pellets production was 20-80 °C, for briquettes – 20-40 °C.

  17. Technical Support of Performance Improvement for Resistance Welding Using Zr-4 Endcap and Endplate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung

    2008-10-15

    The proper welding process for Zircaloy-4 endplate of PHWR and DUPIC fuel bundle assembly is considered important in respect to the soundness of weldment and the improvement of the performance of nuclear fuel bundle during the operation in reactor. The Zircaloy-4 endplate of PHWR and DUPIC fuel bundles are welded by the projection joint type, connecting the endcaps of fuel elements. Therefore, the purpose of this projection joint is to improve the welding quality of torque strength and welding deformation and to apply the commercial productions for the endplate welding of PHWR and DUPIC nuclear fuel bundle assembly.

  18. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  19. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  20. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    Savchenko, A.; Vatulin, A.; Uferov, O.; Kulakov, G.; Sorokin, V.

    2013-01-01

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  1. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    There are many reasons for countries embarking on a CANDU R program to start with the natural uranium fuel cycle. Simplicity of fuel design, ease of fabrication, and ready availability of natural uranium all help to localize the technology and to reduce reliance on foreign technology. Nonetheless, at some point, the incentives for using natural uranium fuel may be outweighed by the advantages of alternate fuel cycles. The excellent neutron economy, on-line refuelling, and simple fuel-bundle design provide an unsurpassed degree of fuel-cycle flexibility in CANDU reactors. The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a two- to three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than dose conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U. S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or

  2. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  3. Dry Refabrication Technology Development of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Park, G. I.; Park, C. J.

    2010-04-01

    Key technical data on advanced nuclear fuel cycle technology development for the spent fuel recycling have been produced in this study. In the frame work of DUPIC, dry process oxide products fabrication, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remote modulated welding equipment has been designed and fabricated. In the area of advanced pre-treatment process development, a rotary-type oxidizer and spherical particle fabrication process were developed by using SIMFUEL and off-gas treatment technology and zircalloy tube treatment technology were studied. In the area of the property characteristics of dry process products, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data

  4. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  5. EXPERIMENTAL SENSOR OF THE BENZOETHANOL COMPOSITION FOR ENGINE FUEL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Bgantsev

    2017-12-01

    Full Text Available An important aspect of the economy of internal combustion engine on benzoethanol is the accuracy of regulation of the fuel-air mixture composition. This task is complicated by fluctuations in the composition of benzoethanol, depending on the refueling of the vehicle at various filling stations. In this connection, there is a need to control the composition of benzoethanol in the fuel system of the engine and adjust the fuel supply system. With this purpose, fuel systems are equipped with special sensors that generate a signal, depending on the alcohol content of the mixed fuel. In the article one of the design solutions of the experimental sensor of the benzoethanol composition and the results of its testing with fuels of various composition are given.

  6. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  7. DUPIC fuel irradiation test and performance evaluation; the performance analysis of pellet-cladding contact fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K. I.; Kim, H. M.; Yang, K. B.; Choi, S. J. [Suwon University, Whasung (Korea)

    2002-04-01

    Thermal and mechanical models were reviewed, and selected for the analysis of nuclear fuel performance in reactor. 2 dimensional FEM software was developed. Thermal models-gap conductances, thermal conductivity of pellets, fission gas release, temperature distribution-were set and packaged into a software. Both thermal and mechanical models were interrelated to each other, and the final results, fuel performance during irradiation is obtained by iteration calculation. Also, the contact phenomena between pellet and cladding was analysed by mechanical computer software which was developed during this work. dimensional FEM program was developed which estimate the mechanical behavior and the thermal behaviors of nuclear fuel during irradiation. Since there is a importance during the mechanical deformation analysis in describing pellet-cladding contact phenomena, simplified 2 dimensional calculation method is used after the contact. The estimation of thermal fuel behavior during irradiation was compared with the results of other. 8 refs., 17 figs. (Author)

  8. Improved Retrieval Technique of pin-wise composition for spent fuel recycling

    Energy Technology Data Exchange (ETDEWEB)

    Park, YunSeo; Kim, Myung Hyun [Kyung Hee University , Yongin (Korea, Republic of)

    2016-10-15

    New reutilization method which does not require fabrication processing was suggested and showed feasibility by Dr. Aung Tharn Daing. This new reutilization method is predict spent nuclear fuel pin composition, reconstruct new fuel assembly by spent nuclear pin, and directly reutilize in same PWR core. There are some limitation to predict spent nuclear fuel pin composition on his methodology such as spatial effect was not considered enough. This research suggests improving Dr. Aung Tharn Daing's retrieval technique of pin-wise composition. This new method classify fuel pin groups by its location effect in fuel assembly. Most of fuel pin composition along to burnup in fuel assembly is not highly dependent on location. However, compositions of few fuel pins where near water hole and corner of fuel assembly are quite different in same burnup. Required number of nuclide table is slightly increased from 3 to 6 for one fuel assembly with this new method. Despite of this little change, prediction of the pin-wise composition became more accurate. This new method guarantees two advantages than previous retrieving technique. First, accurate pin-wise isotope prediction is possible by considering location effect in a fuel assembly. Second, it requires much less nuclide tables than using full single assembly database. Retrieving technique of pin-wise composition can be applied on spent fuel management field useful. This technique can be used on direct use of spent fuel such as Dr. Aung Tharn Daing showed or applied on pin-wise waste management instead of conventional assembly-wise waste management.

  9. Composition and methods for improved fuel production

    Science.gov (United States)

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  10. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  11. Hot Surface Ignition of A Composite Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available The present study examines the characteristics of conductive heating (up to ignition temperature of a composite fuel droplet based on coal, liquid petroleum products, and water. In this paper, we have established the difference between heat transfer from a heat source to a fuel droplet in case of conductive (hot surface and convective (hot gas heat supply. The Leidenfrost effect influences on heat transfer characteristics significantly due to the gas gap between a composite fuel droplet and a hot surface.

  12. Use of a perfume composition as a fuel for internal combustion engines

    NARCIS (Netherlands)

    2013-01-01

    The present invention relates to fuel compositions containing perfume fractions, that is to say compositions of fragrance materials, and to the use of such perfume fractions containing fuel compositions to provide a fuel for internal combustion engines and burners. According to the present fuel

  13. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  14. Determination of equilibrium fuel composition for fast reactor in closed fuel cycle

    Directory of Open Access Journals (Sweden)

    Ternovykha Mikhail

    2017-01-01

    Full Text Available Technique of evaluation of multiplying and reactivity characteristics of fast reactor operating in the mode of multiple refueling is presented. We describe the calculation model of the vertical section of the reactor. Calculation validations of the possibility of correct application of methods and models are given. Results on the isotopic composition, mass feed, and changes in the reactivity of the reactor in closed fuel cycle are obtained. Recommendations for choosing perspective fuel compositions for further research are proposed.

  15. Spent fuel management in the Republic of Korea: Current status and plans

    International Nuclear Information System (INIS)

    Sang Doug Park

    1998-01-01

    Korea has selected nuclear energy as the major source for the electric power generation due to the insufficiency of energy resources in Korea. in compliance with the policy, Korea Electric Power Corporation (KEPCO) has expanded the nuclear power programme and faced the significant arisings of spent fuel. The interim At Reactor(AR) storage pools have very limited capacities and temporary expansion of this capacity has been taken such as re-racking and dry storage construction. There was a plan, to construct a centralized spent fuel storage facility, which was postponed officially by the government. Under the current situation, it is hard to establish the long-term spent fuel management strategy. 'Wait and See' is no more applicable to Korea. because of storage shortage. Within R and D, dry storage construction and DUPIC fuel cycle are being considered. In this paper, the spent fuel management programme of Korea is briefly reviewed. (author)

  16. A secondary fuel removal process: plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Min, J Y; Kim, Y S [Hanyang Univ., Seoul (Korea, Republic of); Bae, K K; Yang, M S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    Plasma etching process of UO{sub 2} by using fluorine containing gas plasma is studied as a secondary fuel removal process for DUPIC (Direct Use of PWR spent fuel Into Candu) process which is taken into consideration for potential future fuel cycle in Korea. CF{sub 4}/O{sub 2} gas mixture is chosen for reactant gas and the etching rates of UO{sub 2} by the gas plasma are investigated as functions of CF{sub 4}/O{sub 2} ratio, plasma power, substrate temperature, and plasma gas pressure. It is found that the optimum CF{sub 4}/O{sub 2} ratio is around 4:1 at all temperatures up to 400 deg C and the etching rate increases with increasing r.f. power and substrate temperature. Under 150W r.f. power the etching rate reaches 1100 monolayers/min at 400 deg C, which is equivalent to about 0.5mm/min. (author).

  17. Chemical analyses and calculation of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Tetsuo; Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-08-01

    Chemical analysis activities of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)

  18. A study on the environmental friendliness of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Lee, B. H.; Lee, S. Y.; Lim, C. Y.; Choi, Y. S.; Lee, Y. E.; Hong, D. S.; Cheong, J. H; Park, J. B.; Kim, K. K.; Cheong, H. Y; Song, M. C; Lee, H. J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1998-01-01

    The purpose of this study is to develop methodologies for quantifying environmental and socio-political factors involved with nuclear fuel cycle and finally to evaluate nuclear fuel cycle options with special emphasis given to the factors. Moreover, methodologies for developing practical radiological health risk assessment code system will be developed by which the assessment could be achieved for the recycling and reuse of scrap materials containing residual radioactive contamination. Selected scenarios are direct disposal, DUPIC(Direct use of PWR spent fuel in CANDU), and MOX recycle, land use, radiological effect, and non-radiological effect were chosen for environmental criteria and public acceptance and non-proliferation of nuclear material for socio-political ones. As a result of this study, potential scenarios to be chosen in Korea were selected and methodologies were developed to quantify the environmental and socio-political criteria. 24 refs., 27 tabs., 29 figs. (author)

  19. Assessment of cold composite fuels for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Coulon-Picard, E.; Agard, M.; Boulore, A.; Castelier, E.; Chabert, C.; Conti, A.; Frayssines, P.E.; Lechelle, J.; Maillard, S.; Matheron, P.; Pelletier, M.; Phelip, M.; Piluso, P.; Vaudano, A

    2009-06-15

    This study is devoted to evaluation of a new innovative micro structured fuel for future pressurized water reactor. This fuel would have potential to increase the safety margins, lowering fuel temperatures by adding a small fraction of a high conductivity second phase material in the oxide fuel phase. The behavior of this fuel in a standard rod has been modeled with finite element codes and was assessed for different aspects of the cycle as neutronic studies, thermal behavior, reprocessing and economics. Feasibility of fuels has been investigated with the fabrication and characterizations of the microstructure of composite fuels with powder metallurgy and HIP processes. First, a CERCER (Ceramic = UO{sub 2}- Ceramic matrix made of silicon carbide, SiC) fuel type has been investigated, the advantages of a ceramic being generally its transparency to neutrons and its high melting temperature. A first design of kernel type fuel was first chosen with a gap between the UO{sub 2} particles and the second phase material in order to avoid mechanical interaction between the two components. Due to lowering thermal conductivity of SiC under irradiation, this CERCER fuel did not allow a temperature gain compared to current fuel. No ceramic material seems to exhibit all required properties. Even beryllium oxide (BeO), which conductivity does not decrease with irradiation according to the literature, induces difficulties with ({alpha}, n) reactions and toxicity. The study then focused on Cermet fuels (Ceramic-Metal). The metal matrix must be transparent to neutrons and have a good thermal conductivity. Several materials have been considered such as zirconium alloys, austenitic and ferritic stainless steals and chromium based alloys. The heterogeneous composite fuels were modeled using the 3D/CASTM finite element code. From an economical and neutron point of view, it was important to keep a low fraction of metal phase, i.e. less than 10 % of Zr for example. However, the fuel

  20. Spent reactor fuel benchmark composition data for code validation

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1991-09-01

    To establish criticality safety margins utilizing burnup credit in the storage and transport of spent reactor fuels requires a knowledge of the uncertainty in the calculated fuel composition used in making the reactivity assessment. To provide data for validating such calculated burnup fuel compositions, radiochemical assays are being obtained as part of the United States Department of Energy From-Reactor Cask Development Program. Destructive assay data are being obtained from representative reactor fuels having experienced irradiation exposures up to about 55 GWD/MTM. Assay results and associated operating histories on the initial three samples analyzed in this effort are presented. The three samples were taken from different axial regions of the same fuel rod and represent radiation exposures of about 27, 37, and 44 GWD/MTM. The data are presented in a benchmark type format to facilitate identification/referencing and computer code input

  1. Emission of pollutants from the combustion of composite fuels by metallurgical processes

    Directory of Open Access Journals (Sweden)

    J. Łabaj

    2015-10-01

    Full Text Available This paper presents the results of the study on emission characteristics of pollutants resulting from combustion process of composite alternative fuels for use in the processes of pyrometallurgy of copper as an alternative fuel to currently used coke breeze. These fuels are mainly based on waste carrier of “C” element, and the composition of the fuel is modelled in order to obtain the appropriate energy and emission parameters as well as strength parameters. These studies confirmed the possibility of using composite fuels as an alternative reducing agent as well as an energy carrier in the processes of pyrometallurgy of copper.

  2. Correlations among FBR core characteristics for various fuel compositions

    International Nuclear Information System (INIS)

    Maruyama, Shuhei; Ohki, Shigeo; Okubo, Tsutomu; Kawashima, Katsuyuki; Mizuno, Tomoyasu

    2012-01-01

    In the design of a fast breeder reactor (FBR) core for the light water reactor (LWR) to FBR transition stage, it is indispensable to grasp the effect of a wide range of fuel composition variations on the core characteristics. This study finds good correlations between burnup reactivity and safety parameters, such as the sodium void reactivity and Doppler coefficient, for various fuel compositions and determines the mechanisms behind these correlations with the aid of sensitivity analyses. It is clarified that the Doppler coefficient is actually correlated with the other core characteristics by considering the constraint imposed by the requirement of sustaining criticality on the fuel composition variations. These correlations make it easy to specify the various properties ranges for core reactivity control and core safety, which are important for core design in determining the core specifications and performance. They provide significant information for FBR core design for the transition stage. Moreover, as an application of the above-mentioned correlations, a simplified burnup reactivity index is developed for rapid and rational estimation of the core characteristic variations. With the use of this index and these correlations, the core characteristic variations can be estimated for various fuel compositions without repeating the core calculations. (author)

  3. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  4. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  5. Effects of variations in fuel pellet composition and size on mixed-oxide fuel pin performance

    International Nuclear Information System (INIS)

    Makenas, B.J.; Jensen, B.W.; Baker, R.B.

    1980-10-01

    Experiments have been conducted which assess the effects on fuel pin performance of specific minor variations from nominal in both fuel pellet size and pellet composition. Such pellets are generally referred to in the literature as rogue pellets. The effect of these rogue pellets on fuel pin and reactor performance is shown to be minimal

  6. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz

    2016-10-17

    Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.

  7. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  8. Homogeneous forming technology of composite materials and its application to dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Hong, Soon Hyun; Ryu, Ho Jin; Sohn, Woong Hee; Kim, Chang Kyu

    1997-01-01

    Powder metallurgy processing technique of metal matrix composites is reviewed and its application to process homogeneous dispersion nuclear fuel is considered. The homogeneous mixing of reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement with matrix powders is very important step to process metal matrix composites. The reinforcement can be ceramic particles, whiskers or chopped fibers having high strength and high modulus. The blended powders are consolidated into billets and followed by various deformation processing, such as extrusion, forging, rolling or spinning into final usable shapes. Dispersion nuclear fuel is a class of metal matrix composite consisted of dispersed U-compound fuel particles and metallic matrix. Dispersion nuclear fuel is fabricated by powder metallurgy process such as hot pressing followed by hot extrusion, which is similar to that of SiC/Al metal matrix composite. The fabrication of homogeneous dispersion nuclear fuel is very difficult mainly due to the inhomogeneous mixing characteristics of the powders from quite different densities between uranium alloy powders and aluminum powders. In order to develop homogeneous dispersion nuclear fuel, it is important to investigate the effect of powder characteristics and mixing techniques on homogeneity of dispersion nuclear fuel. An new quantitative analysis technique of homogeneity is needed to be developed for more accurate analysis of homogeneity in dispersion nuclear fuel. (author). 28 refs., 7 figs., 1tab

  9. Model development for quantitative evaluation of nuclear fuel cycle alternatives and its application

    International Nuclear Information System (INIS)

    Ko, Won Il

    2000-02-01

    an entire fuel cycle, in which proliferation can arise by various possible paths or by diversion of special nuclear material from different facilities such as the enrichment facility, MOX(Mixed Oxied) or DUPIC(Direct Use of Spent PWR Fuel in CANDU reactor) fuel fabrication facilities, and transportation containers. Finally, by combining the series circuit with the parallel one, the proliferation resistance index of an entire fuel cycle can be constructed as a combination of resistances in series and parallel, which represent a specific path/facility and different path/facility, respectively. As a sample study, this model was applied to the Korean nuclear fuel cycle alternatives such as the DUPIC, the direct disposal and the reprocessing fuel cycles. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. it has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle(from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity. For the cost risk for the nuclear fuel cycle, a probabilistic approach, Monte Carlo simulation technique, was suggested. For probabilistic distribution of input data needed for the simulation, a three-point estimate approach was used to incorporate subjective expert opinions into the probabilistic distribution function of the nuclear fuel cycle component costs. From the fuel cycle cost analysis, it was found that the Monte Carlo simulation, using of the Latin

  10. Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap

    Directory of Open Access Journals (Sweden)

    Firmansyah

    2017-10-01

    Full Text Available Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG, show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%, while it is contradictive for lower diesel percentage (<70%.

  11. Catalytic Surface Promotion of Composite Cathodes in Protonic Ceramic Fuel Cells

    DEFF Research Database (Denmark)

    Solis, Cecilia; Navarrete, Laura; Bozza, Francesco

    2015-01-01

    Composite cathodes based on an electronic conductor and a protonic conductor show advantages for protonic ceramic fuel cells. In this work, the performance of a La5.5WO11.25-δ/ La0.8Sr0.2MnO3+δ (LWO/LSM) composite cathode in a fuel cell based on an LWO protonic conducting electrolyte is shown...

  12. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  13. Hybrid Composites for LH2 Fuel Tank Structure

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  14. Burn-up credit criticality safety benchmark phase VII - UO2 fuel: study of spent fuel compositions for long-term disposal

    International Nuclear Information System (INIS)

    2012-01-01

    After spent nuclear fuel (SNF) is discharged from a nuclear reactor, fuel composition and reactivity continue to vary as a function of time due to the decay of unstable nuclides. Accurate predictions of the concentrations of long-lived radionuclides in SNF, which represent a significant potential hazard to human beings and to the environment over a very long period, are particularly necessary for radiological dose assessments. This report assesses the ability of existing computer codes and associated nuclear data to predict isotopic compositions and their corresponding neutron multiplication factor (k eff ) values for pressurised-water-reactor (PWR) UO 2 fuel at 50 GWd/MTU burn-up in a generic spent fuel cask configuration. Fuel decay compositions and k eff values have been calculated for 30 post-irradiation time steps out to one million years

  15. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  16. Databook of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1993-03-01

    In the framework of the activity of the nuclide production evaluation WG in the sigma committee, we summarized the measurement data of the isotopic composition of LWR spent fuels necessary to evaluate the accuracy of the burnup calculation codes. The collected data were arranged to be classified into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples, in order to supply the information necessary to the benchmark calculation. This report describes the data collected from the 13 LWRs including the 9 LWRs (5 PWR and 4 BWR) in Europe and the USA, the 4 LWRs (2 PWR and 2 BWR) in Japan. Finally, the study on the burnup characteristics of the U, Pu isotopes is described. (author)

  17. Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships

    International Nuclear Information System (INIS)

    Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

    2001-01-01

    Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration

  18. Validation of spent nuclear fuel nuclide composition data using percentage differences and detailed analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Cheol [Chung-Ang Univ., Seoul (Korea, Republic of). School of Energy Systems Engineering

    2017-06-15

    Nuclide composition data of spent nuclear fuels are important in many nuclear engineering applications. In reactor physics, nuclear reactor design requires the nuclide composition and the corresponding cross sections. In analyzing the radiological health effects of a severe accident on the public and the environment, the nuclide composition in the reactor inventory is among the important input data. Nuclide composition data need to be provided to analyze the possible environmental effects of a spent nuclear fuel repository. They will also be the basis for identifying the origin of unidentified spent nuclear fuels or radioactive materials.

  19. Data book of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1994-03-01

    In the framework of the activity of the working group on Evaluation of Nuclide Generation and Depletion in the Japanese Nuclear Data Committee, we summarized the assay data of the isotopic composition of LWR spent fuels in order to verify the accuracy of the burnup calculation codes. The report contains the data collected from the 13 light water reactors (LWRs) including the 9 LWRs (5 PWRs and 4 BWRs) in Europe and USA, the 4 LWRs (2 PWRs and 2 BWRs) in Japan. The collected data were sorted into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples. (author)

  20. Thorium utilisation in a small long-life HTR. Part III: Composite-rod fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Verrue, Jacques, E-mail: jacques.verrue@polytechnique.org [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); École Polytechnique (Member of ParisTech), 91128 Palaiseau Cedex (France); Ding, Ming, E-mail: dingm2005@gmail.com [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen, E-mail: j.l.kloosterman@tudelft.nl [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-02-15

    Highlights: • Composite-rod fuel blocks are proposed for a small block-type HTR. • An axial separation of fuel compacts is the most important feature. • Three patterns are presented to analyse the effects of the spatial distribution. • The spatial distribution has a large influence on the neutron spectrum. • Composite-rod fuel blocks reach a reactivity swing less than 4%. - Abstract: The U-Battery is a small long-life high temperature gas-cooled reactor (HTR) with power of 20 MWth. In order to increase its lifetime and diminish its reactivity swing, the concept of composite-rod fuel blocks with uranium and thorium was investigated. Composite-rod fuel blocks feature a specific axial separation between UO{sub 2} and ThO{sub 2} compacts in fuel rods. The design parameters, investigated by SCALE 6, include the number and spatial distribution of fuel compacts within the rods, the enrichment of uranium, the radii of fuel kernels and fuel compacts, and the packing fractions of uranium and thorium TRISO particles. The analysis shows that a lower moderation ratio and a larger inventory of heavy metals results in a lower reactivity swing. The optimal atomic carbon-to-heavy metal ratio depends on the mass fraction of U-235 and is commonly in the 160–200 range. The spatial distribution of the fuel compacts within the fuel rods has a large influence on the energy spectrum in each fuel compact and thus on the beginning-of-life reactivity and the reactivity swing. At end-of-life, the differences caused by the spatial distribution of the fuel compacts are smaller due to the fissions of U-233 in the ThO{sub 2} fuel compacts. This phenomenon enables to design fuel blocks with a very low reactivity swing, down to less than 4% in a 10-year lifetime. Among three types of thorium fuelled U-Battery blocks, the composite-rod fuel block achieves the highest end-of-life reactivity and the lowest reactivity swing.

  1. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Saleh [Mattaria, Helwan University, Cairo (Egypt). Department of Mechanical Power Engineering

    2008-10-15

    This paper investigates the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. The tests and data collection were performed under various conditions of load at constant engine speed. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. Fuel No. 3 (70% propane, 30% butane) with mass fraction 40% substitution of the diesel fuel was the best LPG composition in the dual fuel operation except that at part loads. Also, tests were made for fuel No. 3-diesel blend in the dual fuel operation at part loads to improve the engine performances and exhaust emissions by using the Exhaust Gas Recirculation (EGR) method. 26 refs., 15 figs., 5 tabs.

  2. Fuel composition effects on HYPER core characteristics

    International Nuclear Information System (INIS)

    Han, Chi Young; Kim, Yong Nam; Kim, Jong Kyung

    2001-01-01

    At KAERI(Korea Atomic Energy Research Institute), a subcritical transmutation reactor is under development, named HYPER(Hybrid Power Extraction Reactor). For the HYPER system, a pyrochemical process is being considered for fuel reprocessing. Separated from the separation process, the fuel contains not only TRU but also the considerable percentages of impurity such as uranium nuclides and lanthanides. The amount of these impurities depends on strongly the refining efficiency of the reprocessing and may change the core characteristics. This paper has analyzed fuel composition effects on th HYPER core characteristics. Assuming various recovery factors of uranium and lanthanides, some dynamic parameters have been evaluated which are the neutron spectrum, the neutron reaction balance, the reactivity coefficients, the effective delayed neutron fraction, and the effective neutron lifetime

  3. Corrosion of graphite composites in phosphoric acid fuel cells

    Science.gov (United States)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  4. Carbon composites with metal nanoparticles for Alcohol fuel cells

    Science.gov (United States)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  5. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Chol, W. K.; Kim, G. N.; Moon, J. K.

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants

  7. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K.W.; Won, H.J.; Jung, C.H.; Chol, W.K.; Kim, G.N.; Moon, J.K

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants.

  8. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties.

    Science.gov (United States)

    Mueller, Charles J; Cannella, William J; Bays, J Timothy; Bruno, Thomas J; DeFabio, Kathy; Dettman, Heather D; Gieleciak, Rafal M; Huber, Marcia L; Kweon, Chol-Bum; McConnell, Steven S; Pitz, William J; Ratcliff, Matthew A

    2016-02-18

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements.

  9. SFCOMPO: A new database of isotopic compositions of spent nuclear fuel

    International Nuclear Information System (INIS)

    Michel-Sendis, Franco; Gauld, Ian

    2014-01-01

    The numerous applications of nuclear fuel depletion simulations impact all areas related to nuclear safety. They are at the basis of, inter alia, spent fuel criticality safety analyses, reactor physics calculations, burn-up credit methodologies, decay heat thermal analyses, radiation shielding, reprocessing, waste management, deep geological repository safety studies and safeguards. Experimentally determined nuclide compositions of well-characterised spent nuclear fuel (SNF) samples are used to validate the accuracy of depletion code predictions for a given burn-up. At the same time, the measured nuclide composition of the sample is used to determine the burn-up of the fuel. It is therefore essential to have a reliable and well-qualified database of measured nuclide concentrations and relevant reactor operational data that can be used as experimental benchmark data for depletion codes and associated nuclear data. The Spent Fuel Isotopic Composition Database (SFCOMPO) has been hosted by the NEA since 2001. In 2012, a collaborative effort led by the NEA Data Bank and Oak Ridge National Laboratory (ORNL) in the United States, under the guidance of the NEA Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF) of the Working Party on Nuclear Criticality Safety (WPNCS), has resulted in the creation of an enhanced relational database structure and a significant expansion of the SFCOMPO database, which now contains experimental assay data for a wider selection of international reactor designs. The new database was released online in 2014. This new SFCOMPO database aims to provide access to open experimental SNF assay data to ensure their preservation and to facilitate their qualification as evaluated assay data suitable for the validation of methodologies used to predict the composition of irradiated nuclear fuel. Having a centralised, internationally reviewed database that makes these data openly available for a large selection of international reactor designs is of

  10. Influence of fuel composition on the spent fuel verification by Self‑Interrogation Neutron Resonance Densitometry

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas; Labeau, Pierre‑Etienne; Pauly, Nicolas

    2015-01-01

    The Self‑Interrogation Neutron Resonance Densitometry (SINRD) is a passive Non‑Destructive Assay (NDA) that is developed for the safeguards verification of spent nuclear fuel. The main goal of SINRD is the direct quantification of 239Pu by estimating the SINRD signature, which is the ratio between the neutron flux in the fast energy region and in the region close to the 0.3 eV resonance of 239 Pu. The resonance region was chosen because the reduction of the neutron flux within 0.2-0.4 eV is due mainly to neutron absorption from 239 Pu, and therefore the SINRD signature can be correlated to the 239Pu mass in the fuel assembly. This work provides an estimate of the influence of 239 Pu and other nuclides on the SINRD signature. This assessment is performed by Monte Carlo simulations by introducing several nuclides in the fuel material composition and by calculating the SINRD signature for each case. The reference spent fuel library developed by SCK CEN was used for the detailed fuel compositions of PWR 17x17 fuel assemblies with different initial enrichments, burnup, and cooling times. The results from the simulations show that the SINRD signature is mainly correlated to the 239 Pu mass, with significant influence by 235 U. Moreover, the SINRD technique is largely insensitive to the cooling time of the assembly, while it is affected by the burnup and initial enrichment of the fuel. Apart from 239 Pu and 235 U, many other nuclides give minor contributions to the SINRD signature, especially at burnup higher than 20 GWd/tHM.

  11. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  12. Experimental study of dual fuel engine performance using variable LPG composition and engine parameters

    International Nuclear Information System (INIS)

    Elnajjar, Emad; Selim, Mohamed Y.E.; Hamdan, Mohammad O.

    2013-01-01

    Highlights: • The effect of using variable LPG is studied. • Five fuels with propane to butane % volume ratio are: 100-70-55-25-0. • 100% Propane composition shows the highest noise levels with similar performance. • At 45° BTDC injection timing 55% Propane LPG the only fuel experience knocking. • LPG fuels gave similar engine performance, with differences in levels of noise. - Abstract: The present work investigates experimentally the effect of LPG fuel with different composition and engine parameters on the performance of a dual compression engine. Five different blends of LPG fuels are used with Propane to Butane volume ratio of 100:0, 70:30, 55:45, 25:75, and 0:100. A single cylinder, naturally aspirated, four strokes, indirectly injected, water cooled modified Ricardo E6 engine, is used in this study. The study is carried out by measuring the cylinder pressure, engine load, engine speed, crank angle, and the fuel’s flow rate. The engine performance under variable LPG fuel composition, engine load, pilot fuel injection timing, compression ratio, pilot fuel mass and engine speed, are estimated by comparing the following engine parameters: the cylinder maximum pressure, the indicated mean effective pressure, the maximum rate of pressure rise, and the thermal efficiency. The experimental data indicates that the engine parameters are playing a major role on the engine’s performance. Different LPG fuel composition did not show a major effect on the engine efficiency but directly impacted the levels of generated combustion noise

  13. Thermal modeling of the ceramic composite fuel for light water reactors

    International Nuclear Information System (INIS)

    Revankar, S.T.; Latta, R.; Solomon, A.A.

    2005-01-01

    Full text of publication follows: Composite fuel designs capable of providing improved thermal performance are of great interest in advanced reactor designs where high efficiency and long fuel cycles are desired. Thermal modeling of the composite fuel consisting of continuous second phase in a ceramic (uranium oxide) matrix has been carried out with detailed examination of the microstructure of the composite and the interface. Assuming that constituent phases are arranged as slabs, upper and lower bounds for the thermal conductivity of the composite are derived analytically. Bounding calculations on the thermal conductivity of the composite were performed for SiC dispersed in the UO 2 matrix. It is found that with 10% SiC, the thermal conductivity increases from 5.8 to 9.8 W/m.deg. K at 500 K, or an increase of 69% was observed in UO 2 matrix. The finite element analysis computer program ANSYS was used to create composite fuel geometries with set boundary conditions to produce accurate thermal conductivity predictions. A model developed also accounts for SiC-matrix interface resistance and the addition of coatings or interaction barriers. The first set of calculations using the code was to model simple series and parallel fuel slab geometries, and then advance to inter-connected parallel pathways. The analytical calculations were compared with the ANSYS results. The geometry of the model was set up as a 1 cm long by 400 micron wide rectangle. This rectangle was then divided into one hundred sections with the first ninety percent of a single section being UO 2 and the remaining ten percent consisting of SiC. The model was then meshed using triangular type elements. The boundary conditions were set with the sides of the rectangle being adiabatic and having an assigned temperature at the end of the rectangle. A heat flux was then applied to one end of the model producing a temperature gradient. The effective thermal conductivity was then calculated using the geometry

  14. Composite fuel behaviour under and after irradiation

    International Nuclear Information System (INIS)

    Dehaudt, P.; Mocellin, A.; Eminet, G.; Caillot, L.; Delette, G.; Bauer, M.; Viallard, I.

    1997-01-01

    Two kinds of composite fuels have been irradiated in the SILOE reactor. They are made of UO 2 particles dispersed in a molybdenum metallic (CERMET) or a MgAl 2 O 4 ceramic (CERCER) matrix. The irradiation conditions have allowed to reach a 50000 MWd/t U burn-up in these composite fuels after a hundred equivalent full power days long irradiation. The irradiation is controlled by a continuous measure of the pellet centre line temperature. It allows to have information about the TANOX rods thermal behaviour and the fuels thermal conductivities in comparing the centre line temperature versus linear power curves among themselves. Our results show that the CERMET centre line temperature is much lower than the CERCER and UO 2 ones: 520 deg. C against 980 deg. C at a 300W/cm linear power. After pin puncturing tests the rods are dismantled to recover each fuel pellet. In the CERCER case, the cladding peeling off has revealed that the fuel came into contact with the cladding and that some of the pellets were linked together. Optical microscopy observations show a changing of the MgAl 2 O 4 matrix state around the UO 2 particles at the pellets periphery. This transformation may have caused a swelling and would be at the origin of the pellet-cladding and the pellet-pellet interactions. No specific damage is seen after irradiation. The CERMET pellets are not cracked and remain as they were before irradiation. The CERCER crack network is slightly different from that observed in UO 2 . Kr retention was evaluated by annealing tests under vacuum at 1580 deg. C or 1700 deg. C for 30 minutes. The CERMET fission gas release is lower than the CERCER one. Inter- and intragranular fission gas bubbles are observed in the UO 2 particles after heat treatments. The CERCER pellet periphery has also cracked and the matrix has transformed again around UO 2 particles to present a granular and porous aspect. (author). 4 refs, 6 figs, 2 tabs

  15. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.

    Science.gov (United States)

    Podur, Justin J; Martell, David L

    2009-07-01

    Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.

  16. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Li Shuai; Li Zhicheng; Bergman, Bill

    2010-01-01

    The composite of doped lanthanum gallate (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 , LSGM) and doped ceria (Ce 0.8 Sm 0.2 O 1.9 , CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO 2 phase and a minority impurity phase, Sm 3 Ga 5 O 12 . The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 o C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  17. The Influence Of Mass Fraction Of Dressed Coal On Ignition Conditions Of Composite Liquid Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Shlegel Nikita E.

    2015-01-01

    Full Text Available The laws of condition modification of inert heat and ignition in an oxidant flow of composite liquid fuel droplet were studied by the developed experimental setup. Investigations were for composite liquid fuel composition based on the waste of bituminous and nonbaking coal processing, appropriate carbon dust, water, used motor oil. The characteristics of boundary layer inertia heat of composite liquid fuel droplet, thermal decomposition of coal organic part, the yield of volatiles and evaporation of liquid combustion component, ignition of the gas mixture and coke residue were defined.

  18. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  19. Demonstration test of the spent fuel rod cutting process with tube cutter mechanism

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Jung, Jae Hoo; Hong, Dong Hee; Yoon, Ji Sup; Lee, Eun Pyo

    2001-03-01

    In this paper, the verification by computer graphics technology for the spent fuel rod cutting devise which belongs to the spent fuel disassembly processes, the performance tests of the real device, and the demonstration tests with tube cutter mechanism are described. The graphical design system is used throughout the design stages from conceptual design to motion analysis like collision detection. By using this system, the device and the process are optimized. The performance test of the real device and the demonstration test using the tube cutter mechanism in the hot cell are carried out. From these results, the spent fuel rod cutting device is improved based on the considerations of circularity of the rod cross-section, debris generation, and fire risk etc. Also, this device is improved to be operated automatically via remote control system considering later use in closed environment like Hot-cell (radioactive area) and the modulization in the structure of this device makes maintenance easy. The result of the performance test and the demonstration in this report is expected to contribute to the optimization of the pre-treatment processes for the reuse of the spent fuel like DUPIC process and the final disposal

  20. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    Science.gov (United States)

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  1. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  2. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuai, E-mail: shuail@kth.s [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden); Li Zhicheng [School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan (China); Bergman, Bill [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden)

    2010-03-04

    The composite of doped lanthanum gallate (La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85}, LSGM) and doped ceria (Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}, CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO{sub 2} phase and a minority impurity phase, Sm{sub 3}Ga{sub 5}O{sub 12}. The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 {sup o}C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  3. Parametric studies on the fuel salt composition in thermal molten salt breeder reactors

    International Nuclear Information System (INIS)

    Nagy, K.; Kloosterman, J.L.; Lathouwers, D.; Van der Hagen, T.H.J.J.

    2008-01-01

    In this paper the salt composition and the fuel cycle of a graphite moderated molten salt self-breeder reactor operating on the thorium cycle is investigated. A breeder molten salt reactor is always coupled to a fuel processing plant which removes the fission products and actinides from the core. The efficiency of the removal process(es) has a large influence on the breeding capacity of the reactor. The aim is to investigate the effect on the breeding ratio of several parameters such as the composition of the molten salt, moderation ratio, power density and chemical processing. Several fuel processing strategies are studied. (authors)

  4. Fuel containment and damage tolerance for large composite primary aircraft structures. Phase 1: Testing

    Science.gov (United States)

    Sandifer, J. P.

    1983-01-01

    Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.

  5. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    Science.gov (United States)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-05-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  6. Nafion®/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.; Curos, Anna Roca; Motuzas, Julius; Motuzas, J.; Julbe, Anne; Stamatialis, Dimitrios; Wessling, Matthias

    2009-01-01

    Solution cast composite direct methanol fuel cell membranes (DEZ) based on DE2020 Nafion® dispersion and in-house prepared H-ZSM-5 zeolites with different Si/Al ratios were prepared and thoroughly characterized for direct methanol fuel cell (DMFC) applications. All composite membranes have indeed

  7. The Role of Hydrogen Bonds Of The Azeotropic Hydrous Ethanol Fuel Composition To The Exhaust Emissions

    Science.gov (United States)

    Made Suarta, I.; Nyoman Gede Baliarta, I.; Sopan Rahtika, I. P. G.; Wijaya Sunu, Putu

    2018-01-01

    In this study observed the role of hydrogen bonding to the composition of exhaust emissions which is produced hydrous ethanol fuel (95.5% v). Testing is done by using single cylinder four stroke motor engine. The composition of exhaust gas emissions is tested using exhaust gas analyzer on lean and stoichiometry mixer. The exhaust emissions produced by anhydrous ethanol were also tested. The composition of emissions produced by that two fuels is compared. The results showed CO emissions levels produced by hydrous ethanol are slightly higher than anhydrous ethanol in stoichiometric mixtures. But the composition of CO hydrous ethanol emissions is lower in the lean mix. If lean the mixer the different in the composition of emissions is increasing. On hydrous ethanol emission CO2 content little bit lower on the stoichiometric mixer and higher on the lean mixture. Exhaust emissions of ethanol fuel also produce O2. O2 hydrous ethanol emissions is higher than anhydrous ethanol fuel.

  8. Solid oxide fuel cell having a glass composite seal

    Science.gov (United States)

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  9. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  10. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  11. Quantitative Analysis of Kr-85 Fission Gas Release from Dry Process for the Treatment of Spent PWR Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Cho, Kwang Hun; Lee, Dou Youn; Lee, Jung Won; Park, Jang Jin; Song, Kee Chan

    2007-01-01

    As spent UO 2 fuel oxidizes to U 3 O 8 by air oxidation, a corresponding volume expansion separate grains, releasing the grain-boundary inventory of fission gases. Fission products in spent UO 2 fuel can be distributed in three major regions : the inventory in fuel-sheath gap, the inventory on grain boundaries and the inventory in UO 2 matrix. Release characteristic of fission gases depends on its distribution amount in three regions as well as spent fuel burn-up. Oxidation experiments of spent fuel at 500 .deg. C gives the information of fission gases inventory in spent fuel, and further annealing experiments at higher temperature produces matrix inventory of fission gases on segregated grain. In previous study, fractional release characteristics of Kr- 85 during OREOX (Oxidation and REduction of Oxide fuel) treatment as principal key process for recycling spent PWR fuel via DUPIC cycle have already evaluated as a function of fuel burn-up with 27.3, 35 and 65 MWd/tU. In this paper, new release experiment results of Kr-85 using spent fuel with burn- up of 58 GWd/tU are included to evaluate the fission gas release behavior. As a point of summary in fission gases release behavior, the quantitative analysis of Kr- 85 release characteristics from various spent fuels with different burn-up during voloxidation and OREOX process were reviewed

  12. Evaluation of core compositions for use in breed and burn reactors and limited-separations fuel cycles

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2013-01-01

    Highlights: ► Calculated minimum burnup and irradiation damage for B and B reactor compositions. ► Computed doubling time of fuel cycles using B and B reactors and no chemical separations. ► Determined sensitivity of doubling time to using melt refining vs. direct reuse. ► Examined tradeoff between power density and neutronics for different coolants. - Abstract: Previously developed methods for analyzing breed-and-burn (B and B) reactors are applied to a wide range of core compositions. The compositions studied include different fuel types, steel and silicon carbide structure, and sodium, lead/lead bismuth eutectic (LBE), and gas coolants. These compositions are evaluated for use in “minimum burnup” B and B reactors in which it is assumed that blocks comprising the core can be shuffled in all three dimensions to flatten out non-uniformities in burnup. The two figures of merit evaluated are the minimum irradiation damage requirement and reactor fleet doubling time. To minimize irradiation damage, gas coolants perform best, followed by lead/LBE then sodium. High uranium-content metal fuel outperforms compound fuels, and different types of steel are similar and perform slightly better than silicon carbide. Once-through irradiation damage requirements can be surprisingly modest in minimum burnup B and B reactors, with a wide range of compositions viable at irradiation damage levels 50% higher than existing materials data. Doubling times were calculated for a reactor fleet consisting of B and B reactors operating in a limited-separations fuel cycle; i.e., a fuel cycle with no chemical separation of actinides. The effects of different cooling times and removal of fission products using a melt refining process are evaluated. To minimize doubling time, sodium cooled compositions perform best because they are able to achieve core power densities several times larger than compositions using other coolants. A hypothetical sodium-cooled core composition with high

  13. EFFECT OF COMPOSITION OF FUEL CONTAINING BUTANOL ON WORKING PROCESS PARAMETERS OF DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    D. G. Hershan

    2017-01-01

    Full Text Available Computational researches the effect of composition of fuel containing butanol on working process parameters of 4ЧН 11/12,5 diesel engine on the external speed characteristic have been conducted. Nominal power is 140 kW at engine speed 2300 min–1. The engine is equipped with gas turbine pressure charging with intercooling of charging air, accumulator-type fuel-handling system. Calculations of the working process have been made in accordance with the developed computer program and models. Investigations have been carried out in two stages: without any changes in regulation of fuel-handling system and with cyclic fuel delivery that ensure such value of excess air factor at various operational modes which corresponds to the operation with diesel fuel. All the obtained results have been analyzed in the paper. The paper shows changes in mean indicated pressure, specific indicated fuel consumption, indicated efficiency, specific nitrogen oxides emissions for various modes in question while using 5, 10, 15, 20, 25 and 30 % mixture of diesel fuel with butanol. Dependences of parameters pertaining to diesel operation have been determined according to external speed characteristic for various mixtures and the obtained data make it possible to justify parameters of the fuel-handling system. It has been recommended to use a diesel fuel-butanol mixture containing 15 % of butanol without any changes in regulating and design engine parameters. It has been revealed that in order to improve parameters of the engine operational process mixture composition must be changed while changing the operational mode. An injector nozzle with a compound needle for the fuel-handling system has been developed and it allows to change fuel composition according to engine operational mode.

  14. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  15. Analysis of the optimal fuel composition for the Indonesian experimental power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.), Ibaraki (Japan); Sembiring, Tagor Malem [National Nuclear Energy Agency of Indonesia, Banten (Indonesia). Center for Nuclear Reactor Technology and Safety; Arbie, Bakri; Subki, Iyos [PT MOTAB Technology, Jakarta Barat (Indonesia)

    2017-03-15

    The optimal fuel composition of the 10 MWth Experimental Power Reactor (RDE), to be built by the Indonesian National Nuclear Energy Agency (BATAN), is a very important design parameter since it will directly affect the fuel cost, new and spent fuel storage capacity, and other back-end environmental burden. The RDE is a very small sized pebble-bed high temperature gas-cooled reactor (HTGR) with low enriched uranium (LEU) UO{sub 2} TRISO fuel under multipass or once-through-then-out fueling scheme. A scoping study on fuel composition parameters, namely heavy metal (HM) loading per pebble and uranium enrichment is conducted. All burnup, criticality calculations and core equilibrium search are carried out by using BATAN-MPASS, a general in-core fuel management code for pebble bed HTGRs, featured with many automatic equilibrium searching options as well as thermal-hydraulic calculation capability. The RDE User Requirement Document issued by BATAN is used to derive the main core design parameters and constraints. The scoping study is conducted over uranium enrichment in the range of 10 to 20 w/o and HM loading in the range of 4 g to 10 g/pebble. Fissile loading per unit energy generated (kg/GWd) is taken as the objective function for the present scoping study. The analysis results show that the optimal HM loading is around 8 g/pebble. Under the constraint of 80 GWd/t fuel discharge burnup imposed by the technical specification, the uranium enrichment for the optimal HM loading is approximately 13 w/o.

  16. Analysis of the optimal fuel composition for the Indonesian experimental power reactor

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Sembiring, Tagor Malem

    2017-01-01

    The optimal fuel composition of the 10 MWth Experimental Power Reactor (RDE), to be built by the Indonesian National Nuclear Energy Agency (BATAN), is a very important design parameter since it will directly affect the fuel cost, new and spent fuel storage capacity, and other back-end environmental burden. The RDE is a very small sized pebble-bed high temperature gas-cooled reactor (HTGR) with low enriched uranium (LEU) UO_2 TRISO fuel under multipass or once-through-then-out fueling scheme. A scoping study on fuel composition parameters, namely heavy metal (HM) loading per pebble and uranium enrichment is conducted. All burnup, criticality calculations and core equilibrium search are carried out by using BATAN-MPASS, a general in-core fuel management code for pebble bed HTGRs, featured with many automatic equilibrium searching options as well as thermal-hydraulic calculation capability. The RDE User Requirement Document issued by BATAN is used to derive the main core design parameters and constraints. The scoping study is conducted over uranium enrichment in the range of 10 to 20 w/o and HM loading in the range of 4 g to 10 g/pebble. Fissile loading per unit energy generated (kg/GWd) is taken as the objective function for the present scoping study. The analysis results show that the optimal HM loading is around 8 g/pebble. Under the constraint of 80 GWd/t fuel discharge burnup imposed by the technical specification, the uranium enrichment for the optimal HM loading is approximately 13 w/o.

  17. Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets

    KAUST Repository

    Guiberti, T. F.

    2016-10-11

    This paper reports an analysis of the influence of fuels on the stabilization of turbulent piloted jet flames with inhomogeneous inlets. The burner is identical to that used earlier by the Sydney Group and employs two concentric tubes within the pilot stream. The inner tube, carrying fuel, can be recessed, leading to a varying degree of inhomogeneity in mixing with the outer air stream. Three fuels are tested: dimethyl ether (DME), liquefied petroleum gas (LPG), and compressed natural gas (CNG). It is found that improvement in flame stability at the optimal compositional inhomogeneity is highest for CNG and lowest for DME. Three possible reasons for this different enhancement in stability are investigated: mixing patterns, pilot effects, and fuel chemistry. Numerical simulations realized in the injection tube highlight similarities and differences in the mixing patterns for all three fuels and demonstrate that mixing cannot explain the different stability gains. Changing the heat release rates from the pilot affects the three fuels in similar ways and this also implies that the pilot stream is unlikely to be responsible for the observed differences. Fuel reactivity is identified as a key factor in enhancing stability at some optimal compositional inhomogeneity. This is confirmed by inference from joint images of PLIF-OH and PLIF-CHO, collected at a repetition rate of 10kHz in turbulent flames of DME, and from one-dimensional calculations of laminar flames using detailed chemistry for DME, CNG, and LPG.

  18. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  19. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Science.gov (United States)

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Sherazi, Tauqir A.; Ajmal Khan, M.; Abbas, Ghazanfar; Shakir, Imran; Mohsin, Munazza; Alvi, Farah; Javed, Muhammad Sufyan; Yasir Rafique, M.; Zhu, Bin

    2015-11-01

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O-2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  20. Porous Composite for Bipolar Plate in Low Emission Hydrogen Fuel Cells

    Directory of Open Access Journals (Sweden)

    Renata Katarzyna Włodarczyk

    2018-01-01

    Full Text Available The paper presents the results of graphite-stainless steel composites for the bipolar plates in low-temperature fuel cells. The sinters were performed by powder metallurgy technology. The influenceof technological parameters, especially molding pressure were examined. Following the requirements formulated by the DOE concerning the parameters of the materials, it indicated by the value of the parameters. The density, flowabilit, particle size of graphite and stainless steel powders have been evaluated. Composites have been tested by microstructure and phase analysis, properties of strength, functional properties: wettability, porosity, roughness. The special attention was paid to the analysis of corrosion resistance obtained sinters and influenceof technological parameters on the corrosion. Corrosion tests were carried out under conditions simulating the environment of the fuel cell under anode and cathode conditions. The effectof pH solution during working of the cell on corrosion resistance of composites have been evaluated. Contact resistance depends on roughness of sinters. Low ICR determined high contact area GDL-BP and high electrical conductivity on the contact surface. The ICR in anode conditions after corrosion tests are not change significantly; composite materials can be used for materials for B in terms of H 2 .

  1. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  2. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    International Nuclear Information System (INIS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-01-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  3. Synthesis of Poly(3,4-Ethylenedioxy thiophene)-Poly(Styrene-4-Sulfonate) Composites for Support Fuel Cell Catalyst Layer

    International Nuclear Information System (INIS)

    Eko Sulistiyono; Murni Handayani

    2009-01-01

    Synthesis of poly(3,4-ethylenedioxy thiophene)-poly(styrene-4-sulfonate) composites for support fuel cell catalyst layer are synthesis composites which become fuel cell catalyst support so that catalyst has optimal performance. Main function of composites is support platinum particle for application in fuel cell. This article explains the result of composites production process from ( 3,4 Ethylenedioxy thiophene) and Sodium poly( styrene - 4-sulfonate) using two methods Jingning Shan method (method 1) and Zhigang Qi and Peter G.Pickup method (method 2). Analysis of the synthesis results used Scanning Electron Microscopic –Electron Dispersive X – Ray Spectrophotometer (SEM-EDS ). The analysis result show that both methods produce polymer agglomerate into a sponge-like morphology. Composite from method 1 has morphology, pores and proton transport better than composite produced by method 2. (author)

  4. Method of fabricating zirconium metal for use in composite type fuel cans

    International Nuclear Information System (INIS)

    Imahashi, Hiromichi; Inagaki, Masatoshi; Akabori, Kimihiko; Tada, Naofumi; Yasuda, Tetsuro.

    1985-01-01

    Purpose: To mass produce zirconium metal for fuel cans with less radiation hardening. Method: Zirconium sponges as raw material are inserted in a hearth mold and a procedure of melting the zirconium sponges portionwise by using a melting furnace having electron beams as a heat source while moving the hearth is repeated at least for once. Then, the rod-like ingot after melting is melted again in a vacuum or inert gas atmosphere into an ingot of a low oxygen density capable of fabrication. A composite fuel can billet is formed by using the thus obtained zirconium ingot and a zircalloy, and a predetermined composite type fuel can is manufactured by way of hot extrusion and pipe drawing fabrication. The raw material usable herein is zirconium sponge with an oxygen density of 400 ppm or higher and the content of impurity other than oxygen is between 1000 - 5000 ppm in total, or the molten material thereof. (Kamimura, M.)

  5. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  6. Processing of carbon composite paper as electrode for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, R.B.; Maheshwari, Priyanka H.; Dhami, T.L. [Carbon Technology Unit, National Physical Laboratory, New Delhi 110012 (India); Sharma, R.K.; Sharma, C.P. [Soft Polymeric Group, Division of Engineering Materials, National Physical Laboratory, New Delhi 110012 (India)

    2006-10-27

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material. (author)

  7. Effects of actinide compositional variability in the U.S. spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1993-01-01

    The partitioning and transmutation concept (P-T) has as a mission the reduction by many orders of magnitude of certain undesirable nuclides in the waste streams. Given that only a very small fiction of spent fuel can be rejected by a P-T enterprise, a P-T system must therefore be capable of accommodating a wide range of spent fuel characteristics. Variability of nuclide composition (i.e. the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure TRU nuclides recovered from discharged LWR fuel in critical or near-critical cores. To date, all transmutation system core analyses assume nonvariable nuclide concentrations for startup and recycle cores. Using the Department of Energy (DOES) Characteristic Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactor). In addition to quantifying the variability of nuclide composition in current and projected LWR fuel discharge, the variability of the infinite multiplication factor (K ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems. It is shown that actinide compositional variations are potentially significant and warrant further investigation. (authors)

  8. Technology Development of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Ko, W. I. (and others)

    2007-04-15

    The objective of this project is to perform R and D on the essential technologies in nuclear material measurement and surveillance and verification system, and to improve the state of being transparent on the nuclear material management of DUPIC Fuel Development Facility (DFDF) through the evaluation of safeguard ability on non-proliferation fuel cycle and nuclear proliferation resistance. Nuclear material position scan system for the reduction of measurement error was developed for the spatial distribution search of spent fuel in DUPIC facility. Web-based realtime remote monitoring system was designed and constructed for satisfying the IAEA's performance criteria of continuous monitoring, and also developed a software for the function of remote control and message. And diversion paths in a proliferation resistant pyroprocess for SFR were analyzed and its protecting system against the diversion paths were suggested for enhancing proliferation resistance of advanced nuclear fuel cycle. These results could be used for planning the further R and D items in the area of safeguards. Those R and D results mentioned above would be helpful for increasing Korean nuclear transparency in the future.

  9. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  10. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without reenrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  11. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  12. α-MnO2 Nanowires/Graphene Composites with High Electrocatalytic Activity for Mg-Air Fuel Cell

    International Nuclear Information System (INIS)

    Jiang, Min; He, Hao; Huang, Chen; Liu, Bo; Yi, Wen-Jun; Chao, Zi-Sheng

    2016-01-01

    Highlights: • α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. • The performance of α-MnO 2 NWs/graphene is close to the Pt/C. • The ORR mechanism involves a one-step, quasi-4-electron pathway. • A large area (5 cm*5 cm) cathode was prepared and tested in a full cell. - Abstract: This paper reports the preparation of α-MnO 2 NWs/graphene composites as the cathode catalyst for magnesium-air fuel cell and its excellent electrochemistry performance. The composites are synthesized by self-assembly of α-MnO 2 nan α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. α-MnO 2 NWs/graphene was synthesized and studied in Mg-air fuel cell. owires (NWs) on the surface of graphene via a simple hydrothermal method. The α-MnO 2 NWs/graphene composites showed a higher electrochemical activity than the commercial MnO 2 . The oxygen reduction peak of the α-MnO 2 NWs/graphene composites catalyst is tested in a 0.1 M KOH solution at −0.252 V, which is more positive than the commercial MnO 2 (−0.287 V). The ORR limit current density for 28% α-MnO2 NWs/graphene composite is approximately 2.74 mA/cm 2 , which is similar to that of the 20% Pt/C(2.79 mA/cm 2 ) in the same conditions. Based on the Koutecky–Levich plot, the ORR mechanism of the composite involves a one-step, quasi-4-electron pathway. In addition, magnesium-air fuel cell with α-MnO 2 NWs/graphene as catalyst possesses higher current density (140 mA/cm 2 ) and power density (96 mW/cm 2 ) compared to the commercial MnO 2 . This study proves that the cost-effective α-MnO 2 NWs/graphene with higher power generation ability make it possible for the substitute of the noble metals catalyst in the Mg-air fuel cell.

  13. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  14. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  15. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells.

    Science.gov (United States)

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-02-29

    The regenerative H₂/Br₂-HBr fuel cell, utilizing an oxidant solution of Br₂ in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H₂-Br₂ fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H₂/Br₂-HBr systems.

  16. Important parameters in ORIGEN2 calculations of spent fuel compositions

    International Nuclear Information System (INIS)

    Welch, T.D.; Notz, K.J.; Andermann, R.J. Jr.

    1990-01-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for implementing federal policy for the management and permanent disposal of spent nuclear fuel from civilian nuclear power reactors and of high-level radioactive waste. The Characteristics Data Base (CDB) provides an extensive collection of data on the four waste steams that may require long-term isolation: LWR spent fuel, high-level waste, non-LWR spent fuel, and miscellaneous wastes (such as greater-than-class-C). The eight-volume report and the five supplemental menu-driven PC data bases encompass radiological characteristics, chemical compositions, physical descriptions, inventories, and projections. An overview of these data bases, which are available through the Oak Ridge National Laboratory, is provided by Notz. This paper reports that the radiological characteristics in the CDB are calculated using ORIGEN2

  17. Method of determining the composition of fuels for FBR type reactors

    International Nuclear Information System (INIS)

    Tsutsumi, Kiyoshi.

    1981-01-01

    Purpose: To improve the core safety of FBR type reactors by determining the composition of fuels composed of oxide mixture of plutonium and uranium, using a relation between specific plutonium seed and plutonium enrichment degree. Method: Relation is determined between the ratio of a specific plutonium seed for constituting plutonium oxide, for example 239 U ratio and a plutonium enrichment degree required for setting the assembly power to a constant level. The ratio of 239 U is plutonium having a given isotopic ratio is also determined. The accuracy of the 239 U ratio can be improved by the correction using the density coefficient. Then, the plutonium enrichment degree is determined using the relation determined as above based on the thus determined 239 U ratio. The composition of the fuel using oxide mixture of plutonium and uranium is determined by utilizing the thus obtained plutonium enrichment degree. (Moriyama, K.)

  18. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1992-01-01

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  19. Composition of diesl fuels from German refinery. Products of summer 2003; Zusammensetzung von Dieselkraftstoffen aus deutschen Raffinerien. Sommerware 2003

    Energy Technology Data Exchange (ETDEWEB)

    Froehling, J.C. [ARAL Forschung GmbH, Bochum (Germany)

    2004-08-01

    DGMK research project 583-1 investigates the composition of sulfur-free Diesel fuels as a supplement to DGMK report 583 published in 2002, which reports the composition of Diesel fuels with a sulfur content of max. 350 mg/kg. Thereby the effect of desulfurisation on the composition of Diesel fuels was determined. In summer 2003 fuels from German refineries were sampled and examined. In contrast to the first survey, the number of tests was reduced significantly. Only those parameters were considered that were likely to have changed due to the modified refining processes. Since sulfur-free products have to this extent been investigated for the first time, the results will give a significant contribution to questions regarding application techniques and ecology. (orig.)

  20. Improvements to SFCOMPO - a database on isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, Kenya; Nouri, Ali; Mochizuki, Hiroki; Nomura, Yasushi

    2003-01-01

    Isotopic composition is one of the most relevant data to be used in the calculation of burnup of irradiated nuclear fuel. Since autumn 2002, the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) has operated a database of isotopic composition - SFCOMPO, initially developed in Japan Atomic Energy Research Institute. This paper describes the latest version of SFCOMPO and the future development plan in OECD/NEA. (author)

  1. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, James [Univ. of Florida, Gainesville, FL (United States); Subhash, Ghatu [Univ. of Florida, Gainesville, FL (United States)

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  2. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells

    Science.gov (United States)

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N.; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-01-01

    The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems. PMID:28773268

  3. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jun Woo Park

    2016-02-01

    Full Text Available The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU, for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.

  4. Fuel composition effect on the electrostatically-driven atomization of bio-butanol containing engine fuel blends

    International Nuclear Information System (INIS)

    Agathou, Maria S.; Kyritsis, Dimitrios C.

    2012-01-01

    Highlights: ► Sprays of alcohol-containing blends are amenable to electrostatic manipulation. ► Monodispersion is non-achievable for conditions pertaining to automotive applications. ► Electrical conductivity and surface tension do not determine fully the spray behavior. ► Non-dimensional analysis was performed to classify flow regimes for each blend. ► We numbers revealed the possibility of droplet secondary break-up. - Abstract: Electrostatically assisted sprays of three fuel blends of bio-butanol, ethanol and heptane were studied experimentally. Mixture composition was selected such that electrical conductivity and surface tension were kept constant for all three mixtures. In this manner, the effect of fuel composition was investigated in a context that broadens the classical focus on the effective decrease of surface tension through the action of electrostatic fields. High-speed visualization was used in order to capture e-spray morphology. In addition, probability density functions of the e-spray droplet size and velocity were measured using Phase-Doppler Anemometry for a variety of flow rates and applied voltages. The dependence of droplet average diameter on both flow rate and applied electric field was highlighted. Polydisperse sprays were observed which was rationalized through the calculation of droplet Weber numbers that pointed to the possibility of a secondary droplet break-up.

  5. Spent fuel isotopic composition data base system on WWW. SFCOMPO on W3

    International Nuclear Information System (INIS)

    Suyama, Kenya

    1997-11-01

    Spent Fuel Composition Data Base System 'SFCOMPO' has been developed on IBM compatible PC. This data base system is not widely used, since users must purchase the data base software by themselves. 'SFCOMPO on W3' is a system to overcome this problem. User can search and visualize the data in the data base by accessing WWW server through the Internet from local machine. Only a browsing software to access WWW should be prepared. It enables us to easily search data of spent fuel composition if we can access the Internet. This system can be operated on WWW server machine which supports use of Common Gateway Interface (CGI). This report describes the background of the development of SFCOMPO on W3 and is it's user's manual. (author)

  6. A comparison of the C{sub 2}-C{sub 9} hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, B M; Marnane, I S [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2002-07-01

    Hourly roadside hydrocarbon concentrations were measured over a six-week period at a heavily trafficked junction in Dublin city centre. Samples of ten typical leaded and unleaded petrol fuels used in Irish vehicles were also collected and their hydrocarbon compositions determined. The measured ambient hydrocarbon concentrations are presented, as are the properties of each of the analysed fuels. Comparison of the ambient hydrocarbon concentrations and the fuel hydrocarbon composition reveals a strong correlation for most hydrocarbons, except those compounds that were wholly combustion derived (i.e. not present in the fuel). Different characteristics were noted for aromatics, alkanes and alkenes. The comparison of roadside ambient air and fuel hydrocarbon content agrees well with other studies that have compared fuel content and exhaust composition. The relative impacts of exhaust and evaporative emissions on roadside hydrocarbon concentrations are apparent. (Author)

  7. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    Schienbein, Marcel; Zeh, Peter; Hurtado, Antonio; Rosskamp, Matthias; Mailand, Irene; Bolz, Michael

    2012-09-01

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  8. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  9. Method for forming nuclear fuel containers of a composite construction and the product thereof

    International Nuclear Information System (INIS)

    Cheng, B.-C.; Rosenbaum, H.S.; Armijo, J.S.

    1981-01-01

    An improved method of producing a composite nuclear fuel container is described which comprises a casing or fuel sheath of zirconium or its alloy with a lining cladding of deposited copper superimposed over the inside surface of the zirconium or alloy and a layer of oxide of the zirconium or alloy formed on the inside surface of the casing or sheath. (U.K.)

  10. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    Science.gov (United States)

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  11. Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    temperatures in the range of 500–1150 °C in a laboratory-scale tube reactor and by performing mass balance calculations based on the weight measurements and chemical analyses of the wood fuels and the residual ash samples. Four wood fuels with different ash contents and inorganic compositions were investigated...... of the alkali metals K and Na was, however, strongly dependent on both the temperature and the fuel composition under the investigated conditions. The release of the heavy metals Zn and Pb started around 500 °C and increased sharply to more than 85% at 850 °C in the case of spruce, beech, and bark...

  12. Fuel containment, lightning protection and damage tolerance in large composite primary aircraft structures

    Science.gov (United States)

    Griffin, Charles F.; James, Arthur M.

    1985-01-01

    The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.

  13. Spent fuel isotopic composition data base system on WWW. SFCOMPO on W3

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Spent Fuel Composition Data Base System `SFCOMPO` has been developed on IBM compatible PC. This data base system is not widely used, since users must purchase the data base software by themselves. `SFCOMPO on W3` is a system to overcome this problem. User can search and visualize the data in the data base by accessing WWW server through the Internet from local machine. Only a browsing software to access WWW should be prepared. It enables us to easily search data of spent fuel composition if we can access the Internet. This system can be operated on WWW server machine which supports use of Common Gateway Interface (CGI). This report describes the background of the development of SFCOMPO on W3 and is it`s user`s manual. (author)

  14. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  15. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  16. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  17. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  18. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    Science.gov (United States)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  19. Spent fuel composition database system on WWW. SFCOMPO on WWW Ver.2

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Nomura, Yasushi; Okuno, Hiroshi

    2001-08-01

    'SFCOMPO on WWW Ver.2' is an advanced version of 'SFCOMPO on WWW (Spent Fuel Composition Database System on WWW' released in 1997. This new version has a function of database management by an introduced relational database software 'PostgreSQL' and has various searching methods. All of the data required for the calculation of isotopic composition is available from the web site of this system. This report describes the outline of this system and the searching method using Internet. In addition, the isotopic composition data and the reactor data of the 14 LWRs (7 PWR and 7 BWR) registered in this system are described. (author)

  20. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-01-01

    Highlights: • Composite membranes are prepared with different montmorillonites and nafion solution. • Proton conductivities of the composite membranes are between 36.0 mS/cm and 38.5 mS/cm. • Ethanol permeability is between 0.69 × 10"−"6 cm"2/s and 2.67 × 10"−"6 cm"2/s. • Water uptake is approximately 24.30 mass%. - Abstract: The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10"−"6 cm"2/s and 2.67 × 10"−"6 cm"2/s.

  1. A proposal for an international program to develop dry recycle of spent nuclear fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    1999-01-01

    The dry oxidation-reduction process (called OREOX for Oxidation Reduction of Oxide Fuel) being developed by Korea and Canada, in cooperation with IAEA and the US State Department, is limited to recycle of spent LWR fuel into CANDU reactors (DUPIC). When first conceived and demonstrated via irradiation of test elements by Atomics International in 1965, (the process was called AIROX at that time) a wider range of applications was intended, including recycle of spent LWR fuel into LWRs. Studies sponsored by DOE's Idaho Office in 1992 confirmed the applicability of this technology to regions containing LWR's only, and described the potential advantages of such recycle from an environmental, waste management and economic point of view, as compared to the direct disposal option. Recent analyses conducted by the author indicates that such dry recycle may be one of the few acceptable paths remaining for resolution of the US spent fuel storage dilemma that remains consistent with US non-proliferation policy. It is proposed that a new US program be established to develop AIROX dry recycle for use in the US, and this become part of an international cooperative program, including the current Canadian - Korean program, and possibly including participation of other countries wishing to pursue alternatives to the once through cycle, and wet reprocessing. With shared funding of major project elements, such international cooperation would accelerate the demonstration and commercial deployment of dry recycle technology, as compared to separate and independent programs in each country. (author)

  2. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    Science.gov (United States)

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Tensile behavior of humid aged advanced composites for helicopter external fuel tank development

    Directory of Open Access Journals (Sweden)

    Condruz Mihaela

    2018-01-01

    Full Text Available Influence of humid aging on tensile properties of two polymeric composites was studied. The purpose of the study was to evaluate the suitability of the materials for a naval helicopter external fuel tank. Due to the application, the humid environment was kerosene and saline solution to evaluate the sea water effect on the composite tensile strength. The composite samples were immersed in kerosene for 168 hours, respective 1752 hours and in saline solution for 168 hours. Tensile tests were performed after the immersion. The composite sample tensile tests showed that kerosene and saline solution had no influence on the elastic modulus of the materials, but it was observed a slight improvement of the tensile strength of the two polymeric composites.

  4. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  5. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  6. Some implications of batch average burnup calculations on predicted spent fuel compositions

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1984-01-01

    The accuracy of using batch-averaged burnups to determine spent fuel characteristics (such as isotopic composition, activity, etc.) was examined for a typical pressurized-water reactor (PWR) fuel discharge batch by comparing characteristics computed by (a) performing a single depletion calculation using the average burnup of the spent fuel and (b) performing separate depletion calculations based on the relative amounts of spent fuel in each of twelve burnup ranges and summing the results. The computations were done using ORIGEN 2. Procedure (b) showed a significant shift toward a greater quantity of the heavier transuranics, which derive from multiple neutron captures, and a corresponding decrease in the amounts of lower transuranics. Those characteristics which derive primarily from fission products, such as total radioactivity and total thermal power, are essentially identical for the two procedures. Those characteristics that derive primarily from the heavier transuranics, such as spontaneous fission neutrons, are underestimated by procedure (a)

  7. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1998-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes because of the complexity of their calculation model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equation adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuraniums for different MOX fuel loading fractions and irradiating conditions

  8. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  9. Synthesis and sintering of UN-UO{sub 2} fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J., E-mail: BrianJaques@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A. [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Tyburska-Püschel, Beata [Department of Engineering Physics, University of Wisconsin–Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Meyer, Mitch [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Xu, Peng; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA 15235 (United States); Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu [Department of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2015-11-15

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO{sub 2}, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO{sub 2} to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO{sub 2} in a planetary ball mill. UN and UN – UO{sub 2} composite pellets were sintered in Ar – (0–1 at%) N{sub 2} to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO{sub 2} composite pellets were also sintered in Ar – 100 ppm N{sub 2} to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.

  10. Indirect Determination of Chemical Composition and Fuel Characteristics of Solid Waste

    DEFF Research Database (Denmark)

    Riber, Christian; Christensen, Thomas Højlund

    Determination of chemical composition of solid waste can be performed directly or indirectly by analysis of combustion products. The indirect methodology instrumented by a full scale incinerator is the only method that can conclude on elements in trace concentrations. These elements are of great...... interest in evaluating waste management options by for example LCA modeling. A methodology description of indirect determination of chemical composition and fuel properties of waste is provided and validated by examples. Indirect analysis of different waste types shows that the chemical composition...... is significantly dependent on waste type. And the analysis concludes that the transfer of substances in the incinerator is a function of waste chemical content, incinerator technology and waste physical properties. The importance of correct representation of rare items in the waste with high concentrations...

  11. Fuel characteristics pertinent to the design of aircraft fuel systems

    Science.gov (United States)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  12. The evaluation of isotopic composition for TRIGA 14 MW spent fuel

    International Nuclear Information System (INIS)

    Covaci, St.; Toma, C.; Preda, M.

    2008-01-01

    In the summer of 1999 year, a first shipment of TRIGA HEU spent fuel to INEEL U.S.A. has taken place. he TRIGA HEU fuel was burned in the TRIGA steady state 14 MW reactor between 1980 and 1996 years. At the moment of prepared documentation for the shipment (July 1999), the evaluation of isotopic composition was calculated with ORIGEN-2 code with an irradiation history adequately prepared. Subsequently (May - June 2000), the evaluation was repeated with SAS2H module of SCALE 4.4a system. In the paper the results and the comparisons of the codes are presented, and the accuracy and convenient application of SCALE 4.4a system are emphasized. (authors)

  13. Spent fuel composition database system on WWW. SFCOMPO on WWW Ver.2

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroki [Japan Research Institute, Ltd., Tokyo (Japan); Suyama, Kenya; Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    'SFCOMPO on WWW Ver.2' is an advanced version of 'SFCOMPO on WWW' ('Spent Fuel Composition Database System on WWW') released in 1997. This new version has a function of database management by an introduced relational database software 'PostgreSQL' and has various searching methods. All of the data required for the calculation of isotopic composition is available from the web site of this system. This report describes the outline of this system and the searching method using Internet. In addition, the isotopic composition data and the reactor data of the 14 LWRs (7 PWR and 7 BWR) registered in this system are described. (author)

  14. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  15. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  16. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Science.gov (United States)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  17. Post-irradiation examinations of THERMHET composite fuels for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J. E-mail: jnoirot@cea.fr; Desgranges, L.; Chauvin, N.; Georgenthum, V

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl{sub 2}O{sub 4} spinel inert matrix and around 40% weight of UO{sub 2} to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  18. Post-irradiation examinations of THERMHET composite fuels for transmutation

    International Nuclear Information System (INIS)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-01-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2 O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour

  19. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1997-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes, because of the complexity of their calculational model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equilibrium adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuranium for different MOX fuel loading fractions and irradiating conditions. (author)

  20. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiu-Wen, E-mail: wuxw2008@163.com [School of Science, China University of Geosciences, Beijing 100083 (China); National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang [School of Science, China University of Geosciences, Beijing 100083 (China)

    2016-12-01

    Highlights: • Composite membranes are prepared with different montmorillonites and nafion solution. • Proton conductivities of the composite membranes are between 36.0 mS/cm and 38.5 mS/cm. • Ethanol permeability is between 0.69 × 10{sup −6} cm{sup 2}/s and 2.67 × 10{sup −6} cm{sup 2}/s. • Water uptake is approximately 24.30 mass%. - Abstract: The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10{sup −6} cm{sup 2}/s and 2.67 × 10{sup −6} cm{sup 2}/s.

  1. Fuel Cycle Concept with Advanced METMET and Composite Fuel in LWRs

    International Nuclear Information System (INIS)

    Savchenko, A.; Skupov, M.; Vatulin, A.; Glushenkov, A.; Kulakov, G.; Lipkina, K.

    2014-01-01

    The basic factor that limits the serviceability of fuel elements developing in the framework of RERTR Program (transition from HEU to LEU fuel of research reactors) is interaction between U10Mo fuel and aluminium matrix . Interaction results in extra swelling of fuels, disappearance of a heat conducting matrix, a temperature rise in the fuel centre, penetration porosity, etc. Several methods exist to prevent fuel-matrix interaction. In terms of simplifying fuel element fabrication technology and reducing interaction, doping of fuel is the most optimal version

  2. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  3. Determination of optimal wet ethanol composition as a fuel in spark ignition engine

    International Nuclear Information System (INIS)

    Fagundez, J.L.S.; Sari, R.L.; Mayer, F.D.; Martins, M.E.S.; Salau, N.P.G.

    2017-01-01

    Highlights: • Batch distillation to produce HEF and fuel blends of wet ethanol. • Conversion efficiency of a SI engine operating with HEF and wet ethanol. • NEF as a new metric to calculate the energy efficiency of HEF and wet ethanol. • Optimal wet ethanol composition as a fuel in SI engine based on NEF. - Abstract: Studies are unanimous that the greatest fraction of the energy necessary to produce hydrous ethanol fuel (HEF), i.e. above 95%v/v of ethanol in water, is spent on water removal (distillation). Previous works have assessed the energy efficiency of HEF; but few, if any, have done the same for wet ethanol fuel (sub-azeotropic hydrous ethanol). Hence, a new metric called net energy factor (NEF) is proposed to calculate the energy efficiency of wet ethanol and HEF. NEF calculates the ratio of Lower Heating Value (LHV) derived from ethanol fuel, total energy out, to energy used to obtain ethanol fuel as distillate, total energy in. Distillation tests were performed batchwise to obtain as distillate HEF and four different fuel blends of wet ethanol with a range from 60%v/v to 90%v/v of ethanol and the amount of energy spent to distillate each ethanol fuel calculated. The efficiency parameters of a SI engine operating with the produced ethanol fuels was tested to calculate their respective conversion efficiency. The results of net energy factors show a clear advantage of wet ethanol fuels over HEF; the optimal efficiency was wet ethanol fuel with 70%v/v of ethanol.

  4. Influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Minkler, W [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-04-01

    On the basis of a number of graphs and data on theoretical combustion temperatures and the difference between the heating value of the fuel and the waste gas in respect of 1 m/sup 3/ of waste gas, the author demonstrates the influence of fuel composition on the non-oxidizing heating of steel in a waste gas atmosphere derived from five different fuels. A rotary-hearth furnace is described for the non-oxidizing heating of pressings from plain carbon and alloy steel.

  5. Microstructural characterization of composite cobaltite and lanthanum-based ceria for use as fuel cell cathodes

    International Nuclear Information System (INIS)

    Rodrigues, E.R.T.; Nascimento, R.M.; Miranda, A.C. de; Lima, A.M. de; Macedo, D.A.

    2016-01-01

    Fuel cells are devices that convert chemical energy into electricity via redox reactions. In this work, the lanthanum cobaltite doped with strontium and iron (La_0_,_6Sr_0_,_4Co_0_,_2Fe_0_,_8O_3 - LSCF) a traditional cathodes material of the fuel cell was mixed with an electrolyte material (composite) to the base ceria doped with gadolinia and a eutectic mixture of lithium carbonates and sodium (CGO-NLC). The powders of LSCF and CGO-NLC were obtained by the citrate method and mixed to obtain a composite cathode. Samples obtained by uniaxial pressure between 5 and 10 MPa were sintered at 1100°C and investigated by X-ray diffraction, scanning electron microscopy and micro hardness test. A symmetric cell cathode / electrolyte / cathode, obtained by co-pressing and co-sintering was investigated by electron microscopy. The results indicated that the composite is chemically stable up to the sintering temperature used. The hardness ranged between 51 and 227 HV. (author)

  6. Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures

    NARCIS (Netherlands)

    Gersen, Sander; van Essen, Martijn; van Dijk, Gerco; Levinsky, Howard

    2014-01-01

    The physicochemical origins of how changes in fuel composition affect autoignition of the end gas, leading to engine knock, are analyzed for a natural gas engine. Experiments in a lean-burn, high-speed medium-BMEP gas engine are performed using a reference natural gas with systematically varied

  7. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon [KAERI, Daejeon (Korea, Republic of)

    2016-09-15

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr{sub 2}O{sub 3}, and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged.

  8. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    International Nuclear Information System (INIS)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon

    2016-01-01

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr 2 O 3 , and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged

  9. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  10. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  11. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  12. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Directory of Open Access Journals (Sweden)

    Т. Н. Митусова

    2017-12-01

    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  13. Estimation of PWR spent fuel composition using SCALE and SWAT code systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kenya, Suyama; Hiroshi, Okuno [Japan Atomic Energy Research Institute, Tokyo (Japan)

    2001-05-01

    The isotopic composition calculations were performed for 26 spent fuel samples from Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using SCALE4.4 SAS2H with 27, 44 and 238 group cross-section libraries and SWAT with 107 group cross-section library. For convenience, the ratio of the measured to calculated value was used as a parameter. The four kinds of the calculation results were compared with the measured data. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed the following results. Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from Obrigheim reactor. Larger than unity ratios were found for Am-241 for both the 16 and 55 samples. Larger than unity ratios were found for Sm-149 for the 55 samples. In the case of 26 sample SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor of a system containing PWR spent fuel, taking burnup credit into account.

  14. Effect of fission yield libraries on the irradiated fuel composition in Monte Carlo depletion calculations

    International Nuclear Information System (INIS)

    Mitenkova, E.; Novikov, N.

    2014-01-01

    Improving the prediction of radiation parameters and reliability of fuel behaviour under different irradiation modes is particularly relevant for new fuel compositions, including recycled nuclear fuel. For fast reactors there is a strong dependence of nuclide accumulations on the nuclear data libraries. The effect of fission yield libraries on irradiated fuel is studied in MONTEBURNS-MCNP5-ORIGEN2 calculations of sodium fast reactors. Fission yield libraries are generated for sodium fast reactors with MOX fuel, using ENDF/B-VII.0, JEFF3.1, original library FY-Koldobsky, and GEFY 3.3 as sources. The transport libraries are generated from ENDF/B-VII.0 and JEFF-3.1. Analysis of irradiated MOX fuel using different fission yield libraries demonstrates the considerable spread in concentrations of fission products. The discrepancies in concentrations of inert gases being ∼25%, up to 5 times for stable and long-life nuclides, and up to 10 orders of magnitude for short-lived nuclides. (authors)

  15. A Preliminary Study on the Reuse of the Recovered Uranium from the Spent CANDU Fuel Using Pyroprocessing

    International Nuclear Information System (INIS)

    Park, C. J.; Na, S. H.; Yang, J. H.; Kang, K. H.; Lee, J. W.

    2009-01-01

    During the pyroprocessing, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process, which is composed of about 94 weight percent of the spent fuel. In the previous study, a feasibility study has been done to reuse the recovered uranium for the CANDU reactor fuel following the traditional DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) fuel fabrication process. However, the weight percent of U-235 in the recovered uranium is about 1 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economic profit and saving of uranium resources but also an alleviation of the burden on the management and the disposal of the spent fuel. The research on recycling of recovered uranium was carried out 10 years ago and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is the sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. However, the spent CANDU fuel is another issue in the storage and disposal problem. At present, most countries are considering that the spent CANDU fuel is disposed directly due to the low enrichment (∼0.5 wt%) of the discharge fissile content and lots of fission products. If mixing the spent CANDU fuel and the spent PWR fuel, the estimated uranium fissile enrichment will be about 0.6 wt% ∼ 1.0 wt% depending on the mixing ratio, which is sufficiently reusable in a CANDU reactor. Therefore, this paper deals with a feasibility study on the recovered uranium of the mixed spent fuel from the pyroprocessing. With the various mixing ratios between the PWR spent fuel and the CANDU spent fuel, a reactor characteristics including the safety parameters of the CANDU reactor was evaluated

  16. Technical Development of Gamma Scanning for Irradiated Fuel Rod after Upgrade of System in Hot-cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, Hee Moon; Baik, Seung Je; Yoo, Byung Ok; Choo, Yong Sun

    2007-06-15

    Non-destructive test system was installed at hot-cell(M1) in IMEF(Irradiated Materials Examination Facility) more than 10 years ago for the diametric measurement and gamma scanning of fuel rod. But this system must be needed to be remodeled for the effective operations. In 2006, the system was upgraded for 3 months. The collimator bench can be movable with horizontal direction(x-direction) by motorized system for sectional gamma scanning and 3-dimensional tomography of fuel rod. So, gamma scanning for fuel rod can be detectable by x, y and rotation directions. It may be possible to obtain the radioactivities with radial and axial directions of pellet. This system is good for the series experiments with several positions. Operation of fuel bench and gamma detection program were linked each other by new program tools. It can control detection and bench moving automatically when gamma inspection of fuel rod is carried out with axial or radial positions. Some of electronic parts were added in PLC panel, and operating panel was re-designed for the remote control. To operate the fuel bench by computer, AD converter and some I/O cards were installed in computer. All of software were developed in Windows-XP system instead of DOS system. Control programs were made by visual-C language. After upgrade of system, DUPIC fuel which was irradiated in HANARO research reactor was detected by gamma scanning. The results were good and operation of gamma scanning showed reduced inspection time and easy control of data on series of detection with axial positions. With consideration of ECT(Eddy Current Test) installation, the computer program and hardware were set up as well. But ECT is not installed yet, so we have to check abnormal situation of program and hardware system. It is planned to install ECT in 2007.

  17. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  18. Radionuclide compositions of spent fuel and high level waste from commercial nuclear reactors

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1984-10-01

    This report provides information on radionuclide compositions of spent fuel and high level waste produced during reprocessing. The reactor types considered are Magnox, AGR, PWR and CFR. The activities of the radionuclides are calculated using the FISPIN code. The results are presented in a form suitable for radioactive waste management calculations. (author)

  19. Effect of Fuel Composition on Particulate Matter Emissions from a Gasoline Direct Injection Engine

    Science.gov (United States)

    Smallwood, Bryden Alexander

    The effects of fuel composition on reducing PM emissions were investigated using a Ford Focus wall-guided gasoline direct injection engine (GDI). Initial results with a 65% isooctane and 35% toluene blend showed significant reductions in PM emissions. Further experiments determined that this decrease was due to a lack of light-end components in that fuel blend. Tests with pentane content lower than 15% were found to have PN concentrations 96% lower than tests with 20% pentane content. This indicates that there is a shift in mode of soot production. Pentane significantly increases the vapour pressure of the fuel blend, potentially resulting in surface boiling, less homogeneous mixtures, or decreased fuel rebound from the piston. PM mass measurements and PN Index values both showed strong correlations with the PN concentration emissions. In the gaseous exhaust, THC, pentane, and 1,3 butadiene showed strong correlations with the PM emissions.

  20. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  1. Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    KAUST Repository

    Hong, Seunghyuck

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the dependence of the recirculation zone (RZ) size and structure on the fuel composition using high-speed particle image velocimetry (PIV) and chemiluminescence measurements for C3H8/H2/air lean premixed flames stabilized in a backward-facing step combustor. Results show an intricate coupling between the flame anchoring and the RZ structure and length. For a fixed fuel composition, at relatively low equivalence ratios, the time-averaged RZ is comprised of two counter rotating eddies: a primary eddy (PE) between the shear layer and the bottom wall; and a secondary eddy (SE) between the vertical step wall and the PE. The flame stabilizes downstream of the saddle point of the dividing streamline between the two eddies. As equivalence ratio is raised, the flame moves upstream, pushing the saddle point with it and reducing the size of the SE. Higher temperature of the products reduces the velocity gradient in the shear layer and thus the reattachment length. As equivalence ratio approaches a critical value, the saddle point reaches the step and the SE collapses while the flame starts to exhibit periodic flapping motions, suggesting a correlation between the RZ structure and flame anchoring. The overall trend in the flow field is the same as we add hydrogen to the fuel at a fixed equivalence ratio, demonstrating the impact of fuel composition on the flow field. We show that the reattachment lengths (LR), which are shown to encapsulate the mean RZ structure, measured over a range of fuel composition and equivalence ratio collapse if plotted against the strained consumption speed (Sc). Results indicate that for the flame to remain anchored, the RZ structure should satisfy lR,isothermal/L R,reacting · S c/U ∞ ∼ 0.1. If this criterion cannot be met, the flame blows off, flashes back or becomes thermoacoustically unstable, suggesting a Damköhler-like criterion for

  2. Mathematical micro-model of a solid oxide fuel cell composite cathode

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2004-01-01

    In a solid oxide fuel cell (SOFC), the cathode processes account for a majority of the overall electrochemical losses. A composite cathode comprising a mixture of ion-conducting electrolyte and electron-conducting electro-catalyst can help minimize cathode losses provided microstructural parameters such as particle-size, composition, and porosity are optimized. The cost of composite cathode research can be greatly reduced by incorporating mathematical models into the development cycle. Incorporated with reliable experimental data, it is possible to conduct a parametric study using a model and the predicted results can be used as guides for component design. Many electrode models treat the cathode process simplistically by considering only the charge-transfer reaction for low overpotentials or the gas-diffusion at high overpotentials. Further, in these models an average property of the cathode internal microstructure is assumed. This paper will outline the development of a 1-dimensional SOFC composite cathode micro-model and the experimental procedures for obtaining accurate parameter estimates. The micro-model considers the details of the cathode microstructure such as porosity, composition and particle-size of the ionic and electronic phases, and their interrelationship to the charge-transfer reaction and mass transport processes. The micro-model will be validated against experimental data to determine its usefulness for performance prediction. (author)

  3. Investigation on fabrication of SiC/SiC composite as a candidate material for fuel sub-assembly

    International Nuclear Information System (INIS)

    Lee, Jae-Kwang; Naganuma, Masayuki; Park, Joon-Soo; Kohyama, Akira

    2005-01-01

    The possibility of SiC/SiC (Silicon carbide fiber reinforced Silicon carbide) composites application for fuel sub-assembly of Fast Breeder Reactor was investigated. To select a raw material of SiC/SiC composites, a few kinds of SiC nano powder was estimated by SEM observation and XRD analysis. Furthermore, SiC monolithic was sintered from them and estimated by flexural test. SiC nano-powder which showed good sinterability, it was used for fabrication of SiC/SiC composites by Hot Pressing method. From the sintering condition of 1800, 1820degC temperature and 15, 20 MPa pressure, SiC/SiC composite was fabricated and then estimated by tensile test. SiC/SiC composite, which made by 1820degC and 20 MPa condition, showed the highest mechanical strength by the monotonic tensile test. SiC/SiC composite, which made by 1800degC and 15 MPa condition, showed a stable fracture behavior at the monotonic and cyclic tensile test. And then, the hoop stress of ideal model of SiC/SiC composites was discussed. It was confirmed that applicability of SiC/SiC composites by Hot Pressing method for fuel sub-assembly structural material. To make it real attractive one, to maintain the reliability and safety as a high temperature structural material, the design and process study on SiC/Sic composites material will be continued. (author)

  4. Isoprenoid based alternative diesel fuel

    Science.gov (United States)

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  5. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  6. A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

    Directory of Open Access Journals (Sweden)

    F. Álvarez-Velarde

    2012-01-01

    Full Text Available A fast numerical method for the calculation in a zero-dimensional approach of the equilibrium isotopic composition of an iteratively used transmutation system in an advanced fuel cycle, based on the Banach fixed point theorem, is described in this paper. The method divides the fuel cycle in successive stages: fuel fabrication, storage, irradiation inside the transmutation system, cooling, reprocessing, and incorporation of the external material into the new fresh fuel. The change of the fuel isotopic composition, represented by an isotope vector, is described in a matrix formulation. The resulting matrix equations are solved using direct methods with arbitrary precision arithmetic. The method has been successfully applied to a double-strata fuel cycle with light water reactors and accelerator-driven subcritical systems. After comparison to the results of the EVOLCODE 2.0 burn-up code, the observed differences are about a few percents in the mass estimations of the main actinides.

  7. Modelling the bending/bowing of composite beams such as nuclear fuel

    International Nuclear Information System (INIS)

    Tayal, M.

    1989-01-01

    Arrays of tubes are used in many engineered structures, such as in nuclear fuel bundles and in steam generators. The tubes can bend (bow) due to in-service temperatures and loads. Assessments of bowing of nuclear fuel elements can help demonstrate the integrity of fuel and of surrounding components, as a function of operating conditions such as channel power. The BOW code calculates the bending of composite beams such as fuel elements, due to gradients of temperature and due to hydraulic forces. The deflections and rotations are calculated in both lateral directions, for given conditions of temperatures. Wet and dry operation of the sheath can be simulated. BOW accounts for the following physical phenomena: circumferential and axial variations in the temperatures of the sheath and of the pellet; cracking of pellets; grip and slip between the pellets and the sheath; hydraulic drag; restraint from endplates, from neighbouring elements, and from the pressure-tube; gravity; concentric or eccentric welds between endcaps and endplate; neutron flux gradients; and variations of material properties with temperature. The code is based on fundamental principles of mechanics. The governing equations are solved numerically using the finite element method. Several comparisons with closed-form equations shoe that the solutions of BOW are accurate. BOW's predictions for initial in-reactor bow are also consistent with two post-irradiation measurements

  8. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    Science.gov (United States)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  9. A Study on the Improvement of the INPRO Proliferation Resistance Assessment Methodology

    International Nuclear Information System (INIS)

    Ko, Won Il; Chang, Hong Lae

    2010-07-01

    Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), a methodology for evaluating proliferation resistance (INPRO PR methodology) has been developed. However, User Requirement (UR) 4 regarding multiplicity and robustness of barriers against proliferation ('innovative nuclear energy systems should incorporate multiple proliferation resistance features and measures') remains to be developed. Because the development of a methodology for evaluating User Requirement 4 requires an acquisition/diversion pathway analysis, a systematic approach was developed for the identification and analysis of pathways for the acquisition of weapons-useable nuclear material. This approach was applied to the DUPIC fuel cycle which identified several proliferation target materials and plausible acquisition/diversion pathways. Based on these results, proliferation strategies that a proliferant State could adopt for undeclared removal of nuclear material from the DUPIC fuel cycle have been developed based on the objectives of the proliferation of the State, the quality and quantity of the target material, the time required to acquire the material for the proliferation, and the technical and financial capabilities of the potential proliferant State. The diversion pathway for fresh DUPIC fuel was analyzed using the INPRO User Requirements 1, 2 and 3, and based on these results an assessment procedure and metrics for evaluating the multiplicity and robustness of proliferation barriers has been developed. In conclusion, the multiplicity and robustness of proliferation barriers is not a function of the number of barriers, or of their individual characteristics but is an integrated function of the whole. The robustness of proliferation barriers is measured by determining whether the safeguards goals can be met. The harmonization of INPRO PR methodology with the GIF PR and PP methodology was also considered. It was suggested that, as also confirmed by IAEA

  10. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  11. Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications

    International Nuclear Information System (INIS)

    Padmavathi, Rajangam; Karthikumar, Rajendhiran; Sangeetha, Dharmalingam

    2012-01-01

    Highlights: ► Multilayered membranes were fabricated with SPSu. ► Aminated polysulfone and silica were used as the layers in order to prevent the crossover of methanol. ► The methanol permeability and selectivity ratio proved a strong influence on DMFC application. ► The suitability of the multilayered membranes was studied in the lab made set-ups of PEMFC and DMFC. - Abstract: Polymer electrolyte membranes used in proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) suffer from low dimensional stability. Hence multilayered membranes using sulfonated polysulfone (SPSu) and silica (SiO 2 ) were fabricated to alter such properties. The introduction of an SiO 2 layer between two layers of SPSu to form the multilayered composite membrane enhanced its dimensional stability, but slightly lowered its proton conductivity when compared to the conventional SPSu/SiO 2 composite membrane. Additionally, higher water absorption, lower methanol permeability and higher flame retardancy were also observed in this newly fabricated multilayered membrane. The performance evaluation of the 2 wt% SiO 2 loaded multilayered membrane in DMFC showed a maximum power density of 86.25 mW cm −2 , which was higher than that obtained for Nafion 117 membrane (52.8 mW cm −2 ) in the same single cell test assembly. Hence, due to the enhanced dimensional stability, reduced methanol permeability and higher maximum power density, the SPSu/SiO 2 /SPSu multilayered membrane can be a viable and a promising candidate for use as an electrolyte membrane in DMFC applications, when compared to Nafion.

  12. Advanced Collimators for Verification of the Pu Isotopic Composition in Fresh Fuel by High Resolution Gamma Spectrometry

    International Nuclear Information System (INIS)

    Lebrun, Alain; Berlizov, Andriy

    2013-06-01

    IAEA verification of the nuclear material contained in fresh nuclear fuel assemblies is usually based on neutron coincidence counting (NCC). In the case of uranium fuel, active NCC provides the total content of uranium-235 per unit of length which, combined with active length verification, fully supports the verification. In the case of plutonium fuel, passive NCC provides the plutonium-240 equivalent content which needs to be associated with a measurement of the isotopic composition and active length measurement to complete the verification. Plutonium isotopic composition is verified by high resolution gamma spectrometry (HRGS) applied on fresh fuel assemblies assuming all fuel rods are fabricated from the same plutonium batch. For particular verifications when such an assumption cannot be reasonably made, there is a need to optimize the HRGS measurement so that contributions of internal rods to the recorded spectrum are maximized, thus providing equally strong verification of the internal fuel rods. This paper reports on simulation work carried out to design special collimators aimed at reducing the relative contribution of external fuel rods while enhancing the signal recorded from internal rods. Both cases of square lattices (e.g. 17x17 pressurized water reactor (PWR) fuel) and hexagonal compact lattices (e.g. BN800 fast neutron reactor (FNR) fuel) have been addressed. In the case of PWR lattices, the relatively large optical path to internal pins compensates for low plutonium concentrations and the large size of the fuel assemblies. A special collimator based on multiple, asymmetrical, vertical slots allows recording a spectrum from internal rods only when needed. In the FNR case, the triangular lattice is much more compact and the optical path to internal rods is very narrow. However, higher plutonium concentration and use of high energy ranges allow the verification of internal rods to be significantly strengthened. Encouraging results from the simulation

  13. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  14. Structural Study of Reduced Graphene Oxide/ Polypyrrole Composite as Methanol Sensor in Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Mumtazah Atiqah Hassan; Siti Kartom Kamarudin; Siti Kartom Kamarudin

    2016-01-01

    Density functional theory (DFT) computations were performed on the optimized geometric and electronic properties of reduced graphene oxide/polypyrole (rGO/ PPy) composite in comparison with pure graphene and graphene oxide structures. Incorporation of both reduced GO (rGO) and PPy will form a good composite which have advantages from both materials such as good mechanical strength and excellent electrical conductivity. These composite would be very suitable in fabrication of methanol sensor in direct methanol fuel cell (DMFC). The HOMO-LUMO energy (eV) was also calculated. These computations provide a theoretical explanation for the good performance of rGO/ PPy composite as electrode materials in methanol sensor. (author)

  15. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  16. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

    International Nuclear Information System (INIS)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I.

    2015-01-01

    A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

  17. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  18. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  19. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis.

    Science.gov (United States)

    Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an

  20. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C.

    2017-03-01

    Degradation and poisoning of solid oxide fuel cell (SOFC) stacks are continuously shortening the lifespan of SOFC systems. Poisoning mechanisms, such as carbon deposition, form a coating layer, hence rapidly decreasing the efficiency of the fuel cells. Gas composition of inlet gases is known to have great impact on the rate of coke formation. Therefore, monitoring of these variables can be of great benefit for overall management of SOFCs. Although measuring the gas composition of the gas stream is feasible, it is too costly for commercial applications. This paper proposes three distinct approaches for the design of gas composition estimators of an SOFC system in anode off-gas recycle configuration which are (i.) accurate, and (ii.) easy to implement on a programmable logic controller. Firstly, a classical approach is briefly revisited and problems related to implementation complexity are discussed. Secondly, the model is simplified and adapted for easy implementation. Further, an alternative data-driven approach for gas composition estimation is developed. Finally, a hybrid estimator employing experimental data and 1st-principles is proposed. Despite the structural simplicity of the estimators, the experimental validation shows a high precision for all of the approaches. Experimental validation is performed on a 10 kW SOFC system.

  1. Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing.

    Science.gov (United States)

    Bi, Xiang-Yang; Li, Zhong-Gen; Wang, Shu-Xiao; Zhang, Lei; Xu, Rui; Liu, Jin-Ling; Yang, Hong-Mei; Guo, Ming-Zhi

    2017-11-21

    Lead (Pb) pollution emission from China is becoming a potential worldwide threat. Pb isotopic composition analysis is a useful tool to accurately trace the Pb sources of aerosols in atmosphere. In this study, a comprehensive data set of Pb isotopes for coals, Pb/Zn ores, and fuels from China was presented. The ratios of 206 Pb/ 207 Pb and 208 Pb/ 206 Pb in the coals were in the range of 1.114-1.383 and 1.791-2.317, similar to those from Europe, Oceania, and South Asia, but different from those from America (p fuels from in coals. Urban aerosols demonstrated similar Pb isotopic compositions to coals, Pb/Zn ores, and fuels in China. After removing the leaded gasoline, the Pb in aerosols is more radiogenic, supporting the heavy contribution of coal combustion to the atmospheric Pb pollution.

  2. Feasibility of Carbon Fiber/PEEK Composites for Cryogenic Fuel Tank Applications

    Science.gov (United States)

    Doyle, K.; Doyle, A.; O Bradaigh, C. M.; Jaredson, D.

    2012-07-01

    This paper investigates the feasibility of CF/PEEK composites for manufacture of cryogenic fuel tanks for Next Generation Space Launchers. The material considered is CF/PEEK tape from Suprem SA and the proposed manufacturing process for the fuel tank is Automated Tape Placement. Material characterization was carried out on test laminates manufactured in an autoclave and also by Automated Tape Placement with in-situ consolidation. The results of the two processes were compared to establish if there is any knock down in properties for the automated tape placement process. A permeability test rig was setup with a helium leak detector and the effect of thermal cycling on the permeability properties of CF/PEEK was measured. A 1/10th scale demonstrator was designed and manufactured consisting of a cylinder manufactured by automated tape placement and an upper dome manufactured by autoclave processing. The assembly was achieved by Amorphous Interlayer Bonding with PEI.

  3. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    Science.gov (United States)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  4. Impact of burnable absorber Gd on nuclide composition for VVER-440 fuel (Gd-2)

    International Nuclear Information System (INIS)

    Zajac, R.; Chrapciak, V.

    2010-01-01

    The latest version of Russian fuel VVER-440 includes burnable absorber in 6 pins. In this article is impact of burnable absorber on nuclide composition and criticality analyzed. In part 1 was analyzed whole burnup interval 0-50 MWd/kgU. In present part 2 are detailed analysis only for first cycle (burnup 0-10 MWd/kgU). (Authors)

  5. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  6. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms

    Science.gov (United States)

    White, J. T.; Travis, A. W.; Dunwoody, J. T.; Nelson, A. T.

    2017-11-01

    High uranium density composite fuels composed of UN and U3Si2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U3Si2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U3Si2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, and thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. The impact of irradiation on thermal conductivity was also simulated for this class of composite materials.

  7. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  8. Highly Zeolite-Loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Po-Ya Hsu

    2018-01-01

    Full Text Available Having a secure and stable energy supply is a top priority for the global community. Fuel-cell technology is recognized as a promising electrical energy generation system for the twenty-first century. Polyvinyl alcohol/zeolitic imidazolate framework-8 (PVA/ZIF-8 composite membranes were successfully prepared in this work from direct ZIF-8 suspension solution (0–45.4 wt % and PVA mixing to prevent filler aggregation for direct methanol alkaline fuel cells (DMAFCs. The ZIF-8 fillers were chosen for the appropriate cavity size as a screening aid to allow water and suppress methanol transport. Increased ionic conductivities and suppressed methanol permeabilities were achieved for the PVA/40.5% ZIF-8 composites, compared to other samples. A high power density of 173.2 mW cm−2 was achieved using a KOH-doped PVA/40.5% ZIF-8 membrane in a DMAFC at 60 °C with 1–2 mg cm−2 catalyst loads. As the filler content was raised beyond 45.4 wt %, adverse effects resulted and the DMAFC performance (144.9 mW cm−2 was not improved further. Therefore, the optimal ZIF-8 content was approximately 40.5 wt % in the polymeric matrix. The specific power output was higher (58 mW mg−1 than most membranes reported in the literature (3–18 mW mg−1.

  9. Dimensional, microstructural and compositional stability of metal fuels

    International Nuclear Information System (INIS)

    Solomon, A.A.; Dayananda, M.A.

    1993-01-01

    The projects undertaken were to address two areas of concern for metal-fueled fast reactors: metallurgical compatibility of fuel and its fission products with the stainless steel cladding, and effects of porosity development in the fuel on fuel/cladding interactions and on sodium penetration in fuel. The following studies are reported on extensively in appendices: hot isostatic pressing of U-10Zr by coupled boundary diffusion/power law creep cavitation, liquid Na intrusion into porous U-10Zr fuel alloy by differential capillarity, interdiffusion between U-Zr fuel and selected Fe-Ni-Cr alloys, interdiffusion between U-Zr fuel vs selected cladding steels, and interdiffusion of Ce in Fe-base alloys with Ni or Cr

  10. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    Science.gov (United States)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  11. FY13 Summary Report on the Augmentation of the Spent Fuel Composition Dataset for Nuclear Forensics: SFCOMPO/NF

    Energy Technology Data Exchange (ETDEWEB)

    Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.; Livingston, James V.

    2014-03-31

    This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset will be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.

  12. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    Science.gov (United States)

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  13. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  14. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Dept. of Mechanical Engineering

    2004-02-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters. (author)

  15. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2004-01-01

    Combustion noise, knock and ignition limits data are measured and presented for a dual fuel engine running on dual fuels of Diesel and three gaseous fuels separately. The gaseous fuels used are liquefied petroleum gas, pure methane and compressed natural gas mixture. The maximum pressure rise rate during combustion is presented as a measure of combustion noise, and the knocking and ignition limits are presented as torque output at the onset of knocking and ignition failure. Experimental investigation on the dual fuel engine revealed the noise generated from combustion, knocking and ignition limits for all gases at different design and operating conditions. A Ricardo E6 Diesel version engine is converted to run on dual fuel of Diesel and the tested gaseous fuel and is used throughout the work. The engine is fully computerized, and the cylinder pressure data, crank angle data and engine operating variables are stored in a PC for off line analysis. The effects of engine speeds, loads, pilot injection angle, pilot fuel quantity and compression ratio on combustion noise, knocking torque, thermal efficiency and maximum pressure are examined for the dual engine running on the three gaseous fuels separately. The combustion noise, knocking and ignition limits are found to relate to the type of gaseous fuels and to the engine design and operating parameters

  16. Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition

    Energy Technology Data Exchange (ETDEWEB)

    Gopinath, A.; Puhan, Sukumar; Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, Anna University, Chennai 600 025, Tamil Nadu (India)

    2009-07-15

    Biodiesel is an alternative fuel consisting of alkyl esters of fatty acids from vegetable oils or animal fats. The properties of biodiesel depend on the type of vegetable oil used for the transesterification process. The objective of the present work is to theoretically predict the iodine value and the saponification value of different biodiesels from their fatty acid methyl ester composition. The fatty acid ester compositions and the above values of different biodiesels were taken from the available published data. A multiple linear regression model was developed to predict the iodine value and saponification value of different biodiesels. The predicted results showed that the prediction errors were less than 3.4% compared to the available published data. The predicted values were also verified by substituting in the available published model which was developed to predict the higher heating values of biodiesel fuels from their iodine value and the saponification value. The resulting heating values of biodiesels were then compared with the published heating values and reported. (author)

  17. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  18. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  19. Nuclear fuel manufacturing. Current activities and prospects at INR Pitesti

    International Nuclear Information System (INIS)

    Horhoianu, Grigore

    2001-01-01

    Development of the CANDU nuclear fuel is currently conducted world wide onto two principal directions: - increasing the service span of the current type of fuel and improving the efficiency of burnup in reactor; - reducing the costs of fuel manufacturing by improving the design and manufacturing technologies in condition of increasing fuel performance. In parallel, a research program, RAAN, is undergoing, concerning the development of advanced CANDU type fuels (SEU, RU, DUPIC, Th), aiming at reducing the overall costs per fuel cycle. In the INR TRIGA reactor a large number of experimental fuel elements manufactured in INR were irradiated under different conditions specific to the CANDU reactor operation. Post irradiation investigations both destructive and non-destructive were carried out in the hot cells at INR Pitesti. The experimental results were used in order to optimize and evaluate the fuel project, to check the fuel manufacturing technologies as well as to certify the computational codes. The local thermo-mechanical analyses by final element methods, modelling the SCC phenomenon, probabilistic evaluation of performance parameters of the fuel, constitute new directions in the modelling and developing computational code. The developed codes were submitted to a thorough validation process to comply with the quality assurance. The excellent results obtained in INR were confirmed by participation in the FUMEX International Exercises of computer code intercomparison, organized by IAEA Vienna. Progress was also recorded in establishing the behaviour of fuel elements failed during reactor operation and the effect their maintenance in the reactor core could have upon the power reactor operation. A system-expert variant was worked out able for a short term analysis of the decisions referring to removing the failing element at Cernavoda NPP. As advanced CANDU fuel is concerned, until now preliminary variants for a fuel bundle with 43 elements containing slightly

  20. Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    KAUST Repository

    Hong, Seunghyuck; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2015-01-01

    ) and chemiluminescence measurements for C3H8/H2/air lean premixed flames stabilized in a backward-facing step combustor. Results show an intricate coupling between the flame anchoring and the RZ structure and length. For a fixed fuel composition, at relatively low

  1. Performance of direct methanol fuel cell with a palladium–silica nanofibre/Nafion composite membrane

    International Nuclear Information System (INIS)

    Thiam, H.S.; Daud, W.R.W.; Kamarudin, S.K.; Mohamad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H.

    2013-01-01

    Highlights: • This study introduces Pd–SiO 2 Carbon Nano Fibre as an additive to Nafion membrane. • It investigates the effects of membrane annealing temperature and casting solvent. • Results show that Pd–SiO 2 fibre/Nafion performs lower methanol permeability. • This could effectively reduces methanol crossover in direct methanol fuel cell. - Abstract: Palladium–silica nanofibres (Pd–SiO 2 fibre) were adopted as an additive to Nafion recast membranes in order to reduce methanol crossover and improve the cell performance. The performance of a membrane electrode assembly (MEA) with fabricated composite membrane was evaluated through a passive air-breathing single cell direct methanol fuel cell (DMFC). The limiting crossover current density was measured to determine the methanol permeation in the DMFC. The effects of membrane annealing temperature and casting solvent of composite membrane on the cell performance were investigated and are discussed here. Compared to recast Nafion with the same thickness (150 μm), the Pd–SiO 2 fibre/Nafion composite membrane exhibited higher performance and lower methanol permeability. A maximum power density of 10.4 mW cm −2 was obtained with a 2 M methanol feed, outperforming the much thicker commercial Nafion 117 with a power density of 7.95 mW cm −2 under the same operating conditions. The experimental results showed that the Pd–SiO 2 fibre as inorganic fillers for Nafion could effectively reduce methanol crossover and improve the membrane performance in DMFC applications

  2. Fuel Cycle of Reactor SVBR-100

    Energy Technology Data Exchange (ETDEWEB)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G. [FSUE State Scientific Center Institute for Physics and Power Engineering, 1, Bondarenko sq., Obninsk, Kaluga rg., 249033 (Russian Federation)

    2009-06-15

    the cheap resources of natural uranium will be expired till the middle of the century that will cause increase in the uranium cost, the period of FRs operating in the open NFC have to be shortened to the maximal possible extent. Changeover to the closed NFC will be cheaper if the plutonium extracted from the own SNF of uranium loads is used to form the first MOX fuel loads. When uranium oxide fuel is used for operation, comparatively high breeding ratio (BR) ({approx}0,84) of reactor SVBR 100 provides by the end of lifetime the large content of plutonium in the SNF, which can be used in next fuel lifetimes in case of organizing the closed NFC. Moreover, in the own SNF of starting loads made of oxide uranium fuel there are much of unburned uranium 235, which is also expedient to use for formation of the load for the next lifetime. That approach to organization of fuel cycles with complete reprocessing of the own SNF will considerably reduce integral consumption of natural uranium and thus provide competitiveness of NPPs based on RIs of the SVBR 100 type with NPPs based on RIs with TRs. The report demonstrates that in the closed NFC instead of waste pile uranium the TR SNF (of both WWER and RBMK) can be used (utilized) without partitioning uranium, plutonium, minor actinides and fission products (FP) similarly to the DUPIC technology for reactors Candu. (authors)

  3. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  4. A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Parthiban Velayutham

    2017-02-01

    Full Text Available An alternative Nafion composite membrane was prepared by incorporating various loadings of CeO2 nanoparticles into the Nafion matrix and evaluated its potential application in direct methanol fuel cells (DMFCs. The effects of CeO2 in the Nafion matrix were systematically studied in terms of surface morphology, thermal and mechanical stability, proton conductivity and methanol permeability. The composite membrane with optimum filler content (1 wt. % CeO2 exhibits a proton conductivity of 176 mS·cm−1 at 70 °C, which is about 30% higher than that of the unmodified membrane. Moreover, all the composite membranes possess a much lower methanol crossover compared to pristine Nafion membrane. In a single cell DMFC test, MEA fabricated with the optimized composite membrane delivered a peak power density of 120 mW·cm−2 at 70 °C, which is about two times higher in comparison with the pristine Nafion membrane under identical operating conditions.

  5. Development of a reference spent fuel library of 17x17 PWR fuel assemblies

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas

    2013-01-01

    One of the most common ways to investigate new Non-Destructive Assays (NDA) for the spent fuel assemblies are Monte Carlo simulations. In order to build realistic models the user must define in an accurate way the material compositions and the source terms in the system. This information can be obtained using burnup codes such as ORIGEN-ARP and ALEPH2.2, developed at SCK-CEN. These software applications allow the user to select the irradiation history of the fuel assembly and to calculate the corresponding isotopic composition and neutron/gamma emissions as a function of time. In the framework of the development of an innovative NDA for spent fuel verifications, SCK•CEN built an extensive fuel library for 17x17 PWR assemblies, using both ORIGEN-ARP and ALEPH2.2. The parameters considered in the calculations were initial enrichment, discharge burnup, and cooling time. The combination of these variables allows to obtain more than 1500 test cases. Considering the broad range of the parameters, the fuel library can be used for other purposes apart from spent fuel verifications, for instance for the direct disposal in geological repositories. In addition to the isotopic composition of the spent fuel, the neutron and photon emissions were also calculated and compared between the two codes. The comparison of the isotopic composition showed a good agreement between the codes for most of the relevant isotopes in the spent fuel. However, specific isotopes as well as neutron and gamma spectra still need to be investigated in detail.

  6. SiC Composite for Fuel Structure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yueh, Ken [Electric Power Research Inst. (EPRI), Charlotte, NC (United States)

    2017-12-22

    Extensive evaluation was performed to determine the suitability of using SiC composite as a boiling water reactor (BWR) fuel channel material. A thin walled SiC composite box, 10 cm in dimension by approximately 1.5 mm wall thickness was fabricated using chemical vapor deposition (CVD) for testing. Mechanical test results and performance evaluations indicate the material could meet BWR channel mechanical design requirement. However, large mass loss of up to 21% was measured in in-pile corrosion test under BWR-like conditions in under 3 months of irradiation. A fresh sister sample irradiated in a follow-up cycle under PWR conditions showed no measureable weight loss and thus supports the hypothesis that the oxidizing condition of the BWR-like coolant chemistry was responsible for the high corrosion rate. A thermodynamic evaluation showed SiC is not stable and the material may oxidize to form SiO2 and CO2. Silica has demonstrated stability in high temperature steam environment and form a protective oxide layer under severe accident conditions. However, it does not form a protective layer in water under normal BWR operational conditions due to its high solubility. Corrosion product stabilization by modifying the SiC CVD surface is an approach evaluated in this study to mitigate the high corrosion rate. Titanium and zirconium have been selected as stabilizing elements since both TiSiO4 and ZrSiO4 are insoluble in water. Corrosion test results in oxygenated water autoclave indicate TiSiO4 does not form a protective layer. However, zirconium doped test samples appear to form a stable continuous layer of ZrSiO4 during the corrosion process. Additional process development is needed to produce a good ZrSiC coating to verify functionality of the mitigation concept.

  7. Characteristics of fuel CRUD from Ringhals Unit 4. A comparison of CRUD samples from ultrasonic fuel cleaning and fuel scrape

    International Nuclear Information System (INIS)

    Chen, Jiaxin; Eskhult, Jonas; Marks, Chuck; Dingee, John; Bengtsson, Bernt; Wells, Daniel

    2014-01-01

    The characteristics and behaviour of PWR fuel CRUD are closely related to plant radiation field build-up and the risks of CRUD-Induced Power Shifts (CIPS, previously AOA) and CRUD-Induced Localized Corrosion (CILC). At Ringhals NPP fuel scrape technology has frequently been used to collect fuel CRUD samples as a part of plant water chemistry monitoring programs. In 2012, high efficiency ultrasonic fuel cleaning (HE-UFC) technology was first used at Ringhals Unit 4 to reduce the risk of CIPS, which was expected to increase due to steam generator replacement and a subsequent power uprate. In the HE-UFC system a “first-of-a-kind” CRUD sampling system was installed for collecting fuel CRUD. It is of interest to compare the fuel CRUD samples collected by the two different CRUD sampling methods and to understand if HE-UFC crud sampling could be used to replace or supplement the fuel scrape method. This paper presents some preliminary results on isotopic compositions, elemental compositions, and phase compositions of fuel CRUD samples collected from similar fuel rods and assemblies by both methods during the 2012 refueling outage, one cycle after steam generator replacement at Ringhals Unit 4. The results show that the characteristics of fuel CRUD sampled by HE-UFC and fuel scrape, although not always identical, were similar or correlated to some extent in terms of weight ratios of Ni to Fe and Cr to Fe as well as specific activities of Co-58, Co-60 and Cr-51. However, due to the limited experience with the HE-UFC sampling method, more consideration is required if the statistical significance of the obtained data and indications are to be verified. (author)

  8. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-01-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  9. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Permana, Sidik; Suzuki, Mitsutoshi; Su' ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  10. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples...

  11. Toxicity of power vehicles exhaust gases using bio fuels of different composition

    International Nuclear Information System (INIS)

    Kalnins, I.; Berjoza, D.

    2003-01-01

    The aim of the work is to state the influence of different bio fuels on the surrounding environment using them in diesel motors. The work summarises information on the composition of toxic components in vehicle exhaust gases, their influence on the surrounding environment. Characteristic features of different biofuels are summarised as well as their application possibilities in diesel motors. Measuring devices and measuring methods of toxic components of exhaust gases have been classified. Different measuring regimes of diesel motor exhaust gases have been described. Research in automobile Renault, equipped with diesel motor, exhaust gas smokiness using different biofuels has been carried out (author)

  12. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  13. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  14. Effect of fuel composition on poly aromatic hydrocarbons in particulate matter from DI diesel engine; Particulate chu no PAH ni oyobosu nenryo sosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Tatani, T; Yoshida, H; Takizawa, H; Miyoshi, K; Ikebe, H [COSMO Research Institute, Tokyo (Japan)

    1997-10-01

    The effect of fuel composition on poly aromatic hydrocarbons (PAH) in particulate matter from DI diesel engine was investigated by using deeply desulfurized fuel and model fuel which properties are not interrelated. It was found that the deeply desulfurized fuel have effect on reducing PAH emissions. Furthermore, it was suggested that poly aromatics in the fuel affect PAH emissions and the influence of tri-aromatics in the fuel was promoted by the coexistence of mono-aromatics or naphthene. PAH formation scheme from each fuel component was proposed by chemical thermodynamic data. 4 refs., 8 figs., 3 tabs.

  15. The Effect of the UO2/ZrO2 Composition on Fuel/Coolant Interaction

    International Nuclear Information System (INIS)

    Song, Jin Ho; Kim, Jong Hwan

    2005-01-01

    A series of experiments on fuel/coolant interaction (FCI) was performed in the TROI facility, where the composition of the mixture was varied. The compositions of the UO 2 and ZrO 2 mixture in weight percent were 50:50, 70:30, 80:20, and pure ZrO 2 . The responses of the system including the temperature of the pool of water in the test vessel, pressure and temperature of the containment vessel, and dynamic pressures and force were measured. In addition, high-speed movies were taken through the windows. The tests using corium with a 70:30 composition and pure zirconia resulted in a spontaneous energetic steam explosion, while the tests with other compositions did not lead to an energetic FCI. The debris size distribution and pressure and temperature responses clearly indicated the cases with an energetic explosion and the cases without an explosion. The high-speed movie taken during the FCI through the visible window clearly disclosed the outstanding phases of the FCI, which were the melt entry phase, the triggering phase, and the continued melt jet and expansion of the mixing zone phase

  16. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  17. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  18. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    International Nuclear Information System (INIS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Wan Ali, Wan Khairuddin

    2012-01-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  19. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  20. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  1. A study of the stabilities, microstructures and fuel characteristics of tri-fuel (diesel-biodiesel-ethanol) using various fuel preparation methods

    Science.gov (United States)

    Lee, K. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    In this study, the work was carried out to investigate the effects of ethanol proportions on the stabilities and physicochemical characteristics of tri-fuel (Diesel-Biodiesel-Ethanol). For the first time, tri-fuel emulsions and blended were compared side by side. The experiment was done with composition having 5%, 10%, 15%, 20% and 25 % of ethanol with fixed 10% of biodiesel from palm oil origin on a volume basis into diesel. The results indicated that the phase stabilities of the emulsified fuels were higher compared to the blended fuels. In addition, tri-fuel composition with higher proportion of ethanol were found unstable with high tendency to form layer separation. It was found that tri-fuel emulsion with 5% ethanol content (D85B10E5) was of the best in stability with little separation. Furthermore, tri-fuel with lowest ethanol proportion indicated convincing physicochemical characteristics compared to others. Physicochemical characteristics of tri-fuel blending yield almost similar results to tri-fuel emulsion but degrading as more proportion ethanol content added. Emulsion category had cloudy look but on temporarily basis. Under the microscope, tri-fuel emulsion and blending droplet were similar for its active moving about micro-bubble but distinct in term of detection of collision, average disperse micro-bubble size, the spread and organization of the microstructure.

  2. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  3. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Palomares, R.I.; Dayman, K.J.; Landsberger, S.; Biegalski, S.R.; Soderquist, C.Z.; Casella, A.J.; Brady Raap, M.C.; Schwantes, J.M.

    2015-01-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO 2 fuel dissolved in nitric acid and UO 2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. - Highlights: • The noble metal phase was chemically extracted from spent nuclear fuel and analyzed non-destructively. • Noble metal phase nuclides and long-lived iodine were identified and quantified using neutron activation analysis. • Activation to shorter-lived radionuclides allowed rapid analysis of long-lived fission products in spent fuel using gamma spectrometry

  4. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries

    Science.gov (United States)

    Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas

    2016-02-01

    Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.

  5. Incorporation of Collision Probability Method in STREAM to Consider Non-uniform Material Composition in Fuel Subregions

    International Nuclear Information System (INIS)

    Choi, Sooyoung; Choe, Jiwon; Lee, Deokjung

    2016-01-01

    STREAM uses a pin-based slowing-down method (PSM) which solves pointwise energy slowing-down problems with sub-divided fuel pellet, and shows a great performance in calculating effective cross-section (XS). Various issues in the conventional resonance treatment methods (i.e., approximations on resonance scattering source, resonance interference effect, and intrapellet self-shielding effect) were successfully resolved by PSM. PSM assumes that a fuel rod has a uniform material composition and temperature even though PSM calculates spatially dependent effective XSs of fuel subregions. When the depletion calculation or thermal/hydraulic (T/H) coupling are performed with sub-divided material meshes, each subregion has its own material condition depending on position. It was reported that the treatment of distributed temperature is important to calculate an accurate fuel temperature coefficient (FTC). In order to avoid the approximation in PSM, the collision probability method (CPM) has been incorporated as a calculation option. The resonance treatment method, PSM, used in the transport code STREAM has been enhanced to accurately consider a non-uniform material condition. The method incorporates CPM in computing collision probability of isolated fuel pin. From numerical tests with pin-cell problems, STREAM with the method showed very accurate multiplication factor and FTC results less than 83 pcm and 1.43 % differences from the references, respectively. The original PSM showed larger differences than the proposed method but still has a high accuracy

  6. Incorporation of Collision Probability Method in STREAM to Consider Non-uniform Material Composition in Fuel Subregions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooyoung; Choe, Jiwon; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    STREAM uses a pin-based slowing-down method (PSM) which solves pointwise energy slowing-down problems with sub-divided fuel pellet, and shows a great performance in calculating effective cross-section (XS). Various issues in the conventional resonance treatment methods (i.e., approximations on resonance scattering source, resonance interference effect, and intrapellet self-shielding effect) were successfully resolved by PSM. PSM assumes that a fuel rod has a uniform material composition and temperature even though PSM calculates spatially dependent effective XSs of fuel subregions. When the depletion calculation or thermal/hydraulic (T/H) coupling are performed with sub-divided material meshes, each subregion has its own material condition depending on position. It was reported that the treatment of distributed temperature is important to calculate an accurate fuel temperature coefficient (FTC). In order to avoid the approximation in PSM, the collision probability method (CPM) has been incorporated as a calculation option. The resonance treatment method, PSM, used in the transport code STREAM has been enhanced to accurately consider a non-uniform material condition. The method incorporates CPM in computing collision probability of isolated fuel pin. From numerical tests with pin-cell problems, STREAM with the method showed very accurate multiplication factor and FTC results less than 83 pcm and 1.43 % differences from the references, respectively. The original PSM showed larger differences than the proposed method but still has a high accuracy.

  7. Measuring method for effective neutron multiplication factor upon containing irradiated fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Mitsuhashi, Ishi; Sasaki, Tomoharu.

    1993-01-01

    A portion of irradiated fuel assemblies at a place where a reactivity effect is high, that is, at a place where neutron importance is high is replaced with standard fuel assemblies having a known composition to measure neutron fluxes at each of the places. An effective composition at the periphery of the standard fuel assemblies is determined by utilizing a calibration curve determined separately based on the composition and neutron flux values of the standard assemblies. By using the calibration curve determined separately based on this composition and the known composition of the standard fuel assemblies, an effective neutron multiplication factor for the fuel containing portion containing the irradiated fuel assemblies is recognized. Then, subcriticality is ensured and critical safety upon containing the fuel assemblies can be secured quantitatively. (N.H.)

  8. Characterizing Gaseous Fuels for Their Knock Resistance based on the Chemical and Physical Properties of the Fuel

    NARCIS (Netherlands)

    Levinsky, Howard; Gersen, Sander; van Essen, Martijn; van Dijk, Gerco

    2016-01-01

    A method is described to characterize the effects of changes in the composition of gaseous fuels on engine knock by computing the autoignition process during the compression and burn periods of the engine cycle. To account for the effects of fuel composition on the in-cylinder pressure and

  9. Investigation into fuel pin reshuffling options in PWR in-core fuel management for enhancement of efficient use of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn, E-mail: atdaing@khu.ac.kr; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2014-07-01

    Highlights: • This paper discusses an alternative option, fuel pin reshuffling for maximization of cycle energy production. • The prediction results of isotopic compositions of each burnt pin are verified. • The operating performance is analyzed at equilibrium core with fuel pin reshuffling. • The possibility of reuse of spent fuel pins for reduction of fresh fuel assemblies is investigated. - Abstract: An alternative way to enhance efficient use of nuclear fuel is investigated through fuel pin reshuffling options within PWR fuel assembly (FA). In modeling FA with reshuffled pins, as prerequisite, the single pin calculation method is proposed to estimate the isotopic compositions of each pin of burnt FA in the core-wide environment. Subsequently, such estimation has been verified by comparing with the neutronic performance of the reference design. Two scenarios are concerned, i.e., first scenario was targeted on the improvement of the uniform flux spatial distribution and on the enhancement of neutron economy by simply reshuffling the existing fuel pins in once-burnt fuel assemblies, and second one was focused on reduction of fresh fuel loading and discharged fuel assemblies with more economic incentives by reusing some available spent fuel pins still carrying enough reactivity that are mechanically sound ascertained. In scenario-1, the operating time was merely somewhat increased for few minutes when treating eight FAs by keeping enough safety margins. The scenario-2 was proved to reduce four fresh FAs loading without largely losing any targeted parameters from the safety aspect despite loss of 14 effective full power days for operation at reference plant full rated power.

  10. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  11. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development.

    Science.gov (United States)

    Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J

    2016-12-15

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of

  12. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development*

    Science.gov (United States)

    Lovestead, Tara M.; Burger, Jessica L.; Schneider, Nico; Bruno, Thomas J.

    2018-01-01

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content “best case” JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content “worst case” JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight – mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, Tk and Th, provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of

  13. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  14. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  15. Mathematical modeling of current density distribution in composite cathode of solid oxide fuel cells. Paper no. IGEC-1-099

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2005-01-01

    Cathodes processes in a solid oxide fuel cell (SOFC) are thought to dominate the overall electrochemical losses. One strategy for minimizing the cathode electrochemical losses in a state-of-the-art SOFC that utilize lanthanum-strontium-manganate (LSM) electrocatalyst and yttria-stabilized-zirconia (YSZ) electrolyte is to utilize composite cathodes comprising a mixture of LSM and YSZ. Composite cathodes improve performance by extending the active reaction zone from electrolyte-electrode interface to throughout the electrode. In this study, a two-dimensional composite cathode model was developed to assess cathode performance in terms of current density distributions. The model results indicate that geometric and microstructural parameters strongly influence current density distribution. In addition electrode composition affects magnitude and distribution of current. An optimum composition for equal-sized LSM/YSZ is 40 vol% LSM and 60 vol% YSZ at 900 o C. (author)

  16. Ag-polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu. [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Ming; Shao, Zhigang; Yi, Baolian [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Xu, Hongfeng; Hou, Zhongjun; Ming, Pingwen [Sunrise Power Co., Ltd., Dalian 116025 (China)

    2008-08-01

    Forming a coating on metals by surface treatment is a good way to get high performance bipolar plate of proton exchange membrane fuel cell (PEMFC). In our research, Ag-polytetrafluoroethylene (PTFE) composite film was electrodeposited with silver-gilt solution of nicotinic acid by a bi-pulse electroplating power supply on 316 L stainless steel bipolar plate of PEMFC. Surface topography, contact angle, interfacial conductivity and corrosion resistance of the bipolar plate samples were investigated. Results showed that the defects on the Ag-PTFE composite coating are greatly reduced compared with those on the pure Ag coating fabricated under the same condition; and the contact angle of the Ag-PTFE composite coating with water is 114 , which is much bigger than that of the pure Ag coating (73 ). In addition, the interfacial contact resistance of the composite coating stays as low as the pure Ag coating; and the bipolar plate sample with composite coating shows a close corrosion resistance to the pure Ag coating sample in potentiodynamic and potentiostatic tests. Coated 316 L stainless steel plate with Ag-PTFE composite coating exhibits well hydrophobic characteristic, less defects, high interfacial conductivity and good corrosion resistance, which shows a great potential of the application in PEMFC. (author)

  17. Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability

    Science.gov (United States)

    Sinor, J. E.

    1994-05-01

    This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

  18. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo

    2017-02-05

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  19. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo; Wang, Yu; Chung, Suk-Ho; Sarathy, Mani

    2017-01-01

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  20. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  1. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  2. Alternate-Fueled Combustion-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  3. Investigating the mechanical and barrier properties to oxygen and fuel of high density polyethylene–graphene nanoplatelet composites

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, K., E-mail: honakers@egr.msu.edu; Vautard, F.; Drzal, L.T.

    2017-02-15

    Highlights: • Melt mixing used to investigate high density polyethylene and graphene nanoplatelet composite. • Addition of graphene nanoplatelets resulted in a stiffer polymer matrix. • Presence of graphene nanoplatelets causes a decrease in oxygen and fuel permeation. - Abstract: Graphene nanoplatelets (GnP) of different sizes were investigated for their ability to modify high density polyethylene (HDPE) for potential fuel system applications, focusing on compounding via melt mixing in a twin-screw extruder. Mechanical properties, crystallinity of the polymer, and permeation to oxygen and fuel were assessed as a function of GnP concentration. The surface of GnP acted as a nucleation site for the generation of HDPE crystallites, increasing the crystallinity. The flexural properties were improved, clearly influenced by platelet size and quality of dispersion. A sharp, 46% decrease of the impact resistance was observed, even at low GnP concentration (0.2 wt.%). With a 15 wt.% GnP-M-15 (platelets with a 15 μm diameter), a 73% reduction in oxygen permeation was observed and a 74% reduction in fuel vapor transmission. This correlation was similar throughout the GnP concentration range. The smaller diameter platelets had a lesser effect on the properties.

  4. Diesel fuel component contributions to engine emissions and performance: Clean fuel study

    Energy Technology Data Exchange (ETDEWEB)

    Erwin, J.; Ryan, T.W. III; Moulten, D.S. [Southwest Research Inst., San Antonio, TX (United States)

    1994-08-01

    The emissions characteristics of diesel engines are dominated by current engine design parameters as long as the fuels conform to the current industry-accepted specifications. The current and future emissions standard, are low enough that the fuel properties and compositions are starting to play a more significant role in meeting the emerging standards. The potential role of the fuel composition has been recognized by state and federal government agencies, and for the first time, fuel specifications have become part of the emissions control legislation. In this work, five different fuel feed and blend stocks were hydrotreated to two levels of sulfur and aromatic content. These materials were then each distilled to seven or eight fractions of congruent boiling points. After this, the raw materials and all of the fractions were characterized by a complement of tests from American Society for Testing and Materials and by hydrocarbon-type analyses. The sample matrix was subjected to a series of combustion bomb and engine tests to determine the ignition, combustion, and emissions characteristics of each of the 80 test materials.

  5. Determination of the origin of unknown irradiated nuclear fuel.

    Science.gov (United States)

    Nicolaou, G

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions.

  6. Determination of the origin of unknown irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Nicolaou, G.

    2006-01-01

    An isotopic fingerprinting method is presented to determine the origin of unknown nuclear material with forensic importance. Spent nuclear fuel of known origin has been considered as the 'unknown' nuclear material in order to demonstrate the method and verify its prediction capabilities. The method compares, using factor analysis, the measured U, Pu isotopic compositions of the 'unknown' material with U, Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. Then, the 'unknown' fuel has the same origin as the commercial fuel with which it exhibits the highest similarity in U, Pu compositions

  7. The agnion Heatpipe-Reformer - operating experiences and evaluation of fuel conversion and syngas composition

    Energy Technology Data Exchange (ETDEWEB)

    Gallmetzer, Georg; Ackermann, Pascal [Highterm Research GmbH, Hettenshausen (Germany); Schweiger, Andreas; Kienberger, Thomas [Highterm Research GmbH, Graz (Austria); Groebl, Thomas; Walter, Heimo [Technische Universitaet Wien, Institut fuer Energietechnik und Thermodynamik, Wien (Austria); Zankl, Markus; Kroener, Martin [Agnion Technologies GmbH, Hettenshausen (Germany)

    2012-09-15

    Fluidized bed gasification of solid fuels is considered as one of the core technologies for future sustainable energy supply. Whereas autothermal oxygen-driven gasification is applied in large-scale substitute natural gas (SNG) and Fischer-Tropsch (FT) plants or small-scale combined heat and power (CHP) plants, the allothermal steam-reforming process of the agnion Heatpipe-Reformer is designed for cost- and fuel-efficient syngas generation at small scales for distributed applications. The Heatpipe-Reformer's pressurized syngas generation provides a number of benefits for SNG, biomass to liquid (BTL) and CHP applications. A modified gas engine concept uses the pressurized and hydrogen-rich syngas for increased performance and tar tolerance at decreased capital expenses. Agnion has installed and operated a 500-kW thermal input pilot plant in Pfaffenhofen, Germany, over the last 2 years, showing stable operation over a variety of operating points. The syngas composition has been measured at values expected by thermodynamic models. An influence of the steam-to-fuel ratio and reformer temperature was observed. Tar and sulphur contents have been monitored and correlated to operation parameters, showing influences on stoichiometry and carbon conversion. The mass and energy streams of the plant were balanced. One of the main observations in the monitoring programme is the fact that syngas output, efficiency and syngas quality correlate to high values if the carbon conversion is high. Carbon conversion rates and cold gas efficiencies are comparably high in respect to today's processes, promising economic and fuel-efficient operation of the Heatpipe-Reformer applications. (orig.)

  8. Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening.

    Science.gov (United States)

    Antolini, Ermete

    2017-02-13

    Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.

  9. Effect of broadened-specification fuels on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  10. Experimental study on the impact of operating conditions and fuel composition on PCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Leermakers, C.A.J.

    2010-03-15

    far away from currently available fuels, a set of fuels has been selected that both reflects short term changes in diesel fuel composition and that is expected to be compatible with currently available CI diesel engines. These fuels include current European and US diesel fuels, a biodiesel blend and n-heptane. For the longer term scenario, aimed at increasing the PCCI load range, research into a broader class of fuels is recommended.

  11. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  12. High 240Pu FTR/EMC experiments and analysis: Carbide fuel and UO2 blanket subassembly worths

    International Nuclear Information System (INIS)

    Ombrellaro, P.A.

    1977-06-01

    Carbide-plutonium fuel and UO 2 blanket subassembly worth measurements performed at ANL in the EMC/LWR were analyzed. Composition exchange worth calculations were performed for: (a) the replacement of high- 240 Pu fuel composition for low- 240 Pu fuel composition and carbide-plutonium fuel composition, successively, in the center subassembly of the core; (b) the replacement of low- 240 Pu fuel composition for carbide--plutonium fuel composition in one outer driver subassembly; and (c) the replacement of the radial reflector composition with UO 2 blanket composition in one subassembly of the radial reflector. The composition exchange worth calculations were performed in two-dimensional x,y geometry, using diffusion theory and perturbation theory. Each method produces about the same calculated-to-experimental bias factors

  13. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  14. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  15. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Popek, R.J.; Bowers, D.L.; Essling, A.M.; Callis, E.L.; Persiani, P.J.

    1985-01-01

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238 Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  16. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  17. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  18. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  19. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  20. Property-process relationships in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Nuclear fuels are fabricated using many different techniques as they come in a large variety of shapes and compositions. The design and composition of nuclear fuels are predominantly dictated by the engineering requirements necessary for their function in reactors of various designs. Other engineering properties requirements originate from safety and security concerns, and the easy of handling, storing, transporting and disposing of the radioactive materials. In this chapter, the more common of these fuels will be briefly reviewed and the methods used to fabricate them will be presented. The fuels considered in this paper are oxide fuels used in LWRs and FRs, metal fuels in FRs and particulate fuels used in HTGRs. Fabrication of alternative fuel forms and use of standard fuels in alternative reactors will be discussed briefly. The primary motivation to advance fuel fabrication is to improve performance, reduce cost, reduce waste or enhance safety and security of the fuels. To achieve optimal performance, developing models to advance fuel fabrication has to be done in concert with developing fuel performance models. The specific properties and microstructures necessary for improved fuel performance must be identified using fuel performance models, while fuel fabrication models that can determine processing variables to give the desired microstructure and materials properties must be developed. (author)

  1. Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels

    International Nuclear Information System (INIS)

    Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn; Adams, Thad

    2007-01-01

    Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature to achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)

  2. Increasing efficiency of TPP fuel suply system due to LNG usage as a reserve fuel

    Science.gov (United States)

    Zhigulina, E. V.; Khromchenkov, V. G.; Mischner, J.; Yavorovsky, Y. V.

    2017-11-01

    The paper is devoted to the analysis of fuel economy efficiency increase possibility at thermal power plants (TPP) due to the transition from the use of black oil as a reserve fuel to liquefied natural gas (LNG) produced at the very station. The work represents the technical solution that allows to generate, to store and to use LNG as the reserve fuel TPP. The annual amounts of black oil and natural gas that are needed to ensure the reliable operation of several power plants in Russia were assessed. Some original schemes of the liquefied natural gas production and storing as alternative reserve fuel generated by means of application of expansion turbines are proposed. The simulation results of the expansion process for two compositions of natural gas with different contents of high-boiling fractions are presented. The dependences of the condensation outlet and power generation from the flow initial parameters and from the natural gas composition are obtained and analysed. It was shown that the choice of a particular circuit design depends primarily on the specific natural gas composition. The calculations have proved the effectiveness and the technical ability to use liquefied natural gas as a backup fuel at reconstructed and newly designed gas power station.

  3. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  4. Analysis of UO{sub 2}-BeO fuel under transient using fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-11-01

    Recent research has appointed the need to replace the classic fuel concept, used in light water reactors. Uranium dioxide has a weak point due to the low thermal conductivity, that produce high temperatures on the fuel. The ceramic composite fuel formed of uranium dioxide (UO{sub 2}), with the addition of beryllium oxide (BeO), presents high thermal conductivity compared with UO{sub 2}. The oxidation of zirconium generates hydrogen gas that can create a detonation condition. One of the preferred options are the ferritic alloys formed of iron-chromium and aluminum (FeCrAl), that should avoid the hydrogen release due to oxidation. In general, the FeCrAl alloys containing 10 - 20Cr, 3 - 5Al, and 0 - 0.12Y in weight percent. The FeCrAl alloys should exhibit a slow oxidation kinetics due to chemical composition. Resistance to oxidation in the presence of steam is improved as a function of the content of chromium and aluminum. In this way, the thermal and mechanical properties of the UO{sub 2}-BeO-10%vol, composite fuel were coupled with FeCrAl alloys and added to the fuel codes. In this work, we examine the fuel rod behavior of UO{sub 2}-10%vol-BeO/FeCrAl, including a simulated transient of reactivity. The fuels behavior shown reduced temperature with UO{sub 2}-BeO/Zr, UO{sub 2}-BeO/FeCrAl also were compared with UO{sub 2}/Zr system. The case reactivity initiated accident analyzed, reproducing the fuel rod called VA-1 using UO{sub 2}/Zr alloys and compared with UO{sub 2}-BeO/FeCrAl. (author)

  5. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  6. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    Science.gov (United States)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  7. Effects of alpha-decay on spent fuel corrosion behaviour

    International Nuclear Information System (INIS)

    Wiss, T.; Rondinella, V.V.; Cobos, J.; Wegen, D.H.; Amme, M.; Ronchi, C.

    2004-01-01

    An overview of results in the area of spent fuel characterization as nuclear waste is presented. These studies are focused on primary aspects of spent fuel corrosion, by considering different fuel compositions and burn ups, as well as a wide set of environmental conditions. The key parameter is the storage time of the fuel e.g. in view of spent fuel retrieval or in view of its final disposal. To extrapolate data obtainable from a laboratory-acceptable timescale to those expected after storage periods of interest have elapsed (amounting in the extreme case to geological ages) is a tough challenge. Emphasis is put on key aspects of fuel corrosion related to fuel properties at a given age and environmental conditions expected in the repository: e.g. the fuel activity (radiolysis effects), the effects of helium build-up and of groundwater composition. A wide range of techniques, from traditional leaching experiments to advanced electrochemistry, and of materials, including spent fuel with different compositions/burnups and analogues like the so-called alpha-doped UO 2 , are employed for these studies. The results confirm the safety of European underground repository concepts. (authors)

  8. Cs2.5H0.5PWO40/SiO2 as addition self-humidifying composite membrane for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Wang, L.; Yi, B.L.; Zhang, H.M.; Xing, D.M.

    2007-01-01

    In this paper, we first reported a novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC). Cs 2.5 H 0.5 PWO 40 /SiO 2 catalyst particles were dispersed uniformly into the Nafion (registered) resin, and then Cs 2.5 H 0.5 PWO 40 -SiO 2 /Nafion composite membrane was prepared using solution-cast method. Compared with the H 3 PWO 40 (PTA) , the Cs 2.5 H 0.5 PWO 40 /SiO 2 was steady due to the substitute of H + with Cs + and the interaction between the Cs 2.5 H 0.5 PWO 40 and SiO 2 . And compared with the performance of the fuel cell with commercial Nafion (registered) NRE-212 membrane, the cell performance with the self-humidifying composite membrane was obviously improved under both humidified and dry conditions at 60 and 80 o C. The best performance under dry condition was obtained at 60 o C. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Cs 2.5 H 0.5 PWO 40 /SiO 2 particles

  9. Physicochemical analysis of interaction of oxide fuel with pyrocarbon coatings of fuel particles

    International Nuclear Information System (INIS)

    Lyutikov, R.A.; Khromov, Yu.F.; Chernikov, A.S.

    1990-01-01

    Equilibrium pressure of (CO+Kr,Xe) gases inside fuel particle with oxide kern depending on design features of fuel particle, on temperature. on (O/U) initial composition and fuel burnup is calculated using the suggested model. Analysis of possibility for gas pressure reduction by means of uranium carbide alloying of kern and degree increase of solid fission product retention (Cs for example) during alumosilicate alloying of uranium oxide is conducted

  10. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    International Nuclear Information System (INIS)

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm

  11. An evaluation of UO2-CNT composites made by SPS as an accident tolerant nuclear fuel pellet and the feasibility of SPS as an economical fabrication process for the nuclear fuel cycle

    Science.gov (United States)

    Cartas, Andrew R.

    The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.

  12. Nuclear analysis of the Chornobyl fuel containing masses with heterogeneous fuel distribution

    International Nuclear Information System (INIS)

    Turski, R. B.

    1998-01-01

    Although significant data has been obtained on the condition and composition of the fuel containing masses (FCM) located in the concrete chambers under the Chernobyl Unit 4 reactor cavity, there is still uncertainty regarding the possible recriticality of this material. The high radiation levels make access extremely difficult, and most of the samples are from the FCM surface regions. There is little information on the interior regions of the FCM, and one cannot assume with confidence that the surface measurements are representative of the interior regions. Therefore, reasonable assumptions on the key parameters such as fuel concentration, the concentrations of impurities and neutron poisons (especially boron), the void fraction of the FCM due to its known porosity, and the degrees of fuel heterogeneity, are necessary to evaluate the possibility of recriticality. The void fraction is important since it introduces the possibility of water moderator being distributed throughout the FCM. Calculations indicate that the addition of 10 to 30 volume percent (v/o) water to the FCM has a significant impact on the calculated reactivity of the FCM. Therefore, water addition must be considered carefully. The other possible moderators are graphite and silicone dioxide. As discussed later in this paper, silicone dioxide moderation does not represent a criticality threat. For graphite, both heterogeneous fuel arrangements and very large volume fractions of graphite are necessary for a graphite moderated system to go critical. Based on the observations and measurements of the FCM compositions, these conditions do not appear creditable for the Chernobyl FCM. Therefore, the focus of the analysis reported in this paper will be on reasonable heterogeneous fuel arrangements and water moderation. The analysis will evaluate a range of fuel and diluent compositions

  13. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  14. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  15. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  16. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    Science.gov (United States)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  17. Modeling and Predicting the Electrical Conductivity of Composite Cathode for Solid Oxide Fuel Cell by Using Support Vector Regression

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.

  18. Fuel Composition and Performance Analysis of Endothermically Heated Fuels for Pulse Detonation Engines

    Science.gov (United States)

    2009-03-01

    exchanger was constructed on an inner 2 in Inconel 625 schedule 10 pipe and an outer 2 ½ in Inconel 600 schedule 40 pipe 0.91 m (36 in) in length. The...switched to positions two and three for the remainder of the experiments. 46 The detonation tubes are fabricated from inconel and include heat...and four. Fuel Heating System 47 The fuel heating system centers around two pairs of inconel heat exchangers. The first pair was developed in

  19. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels

    International Nuclear Information System (INIS)

    Zabihian, Farshid; Fung, Alan S.

    2013-01-01

    Highlights: • Variation of the stream properties in the syngas-fueled hybrid SOFC–GT cycle. • Detailed analysis of the operation of the methane-fueled SOFC–GT cycle. • Investigate effects of inlet fuel type and composition on performance of cycle. • Comparison of system operation when operated with and without anode recirculation. - Abstract: In this paper, the hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) model was applied to investigate the effects of the inlet fuel type and composition on the performance of the cycle. This type of analysis is vital for the real world utilization of manufactured fuels in the hybrid SOFC–GT system due to the fact that these fuel compositions depends on the type of material that is processed, the fuel production process, and process control parameters. In the first part of this paper, it is shown that the results of a limited number of studies on the utilization of non-conventional fuels have been published in the open literature. However, further studies are required in this area to investigate all aspects of the issue for different configurations and assumptions. Then, the results of the simulation of the syngas-fueled hybrid SOFC–GT cycle are employed to explain the variation of the stream properties throughout the cycle. This analysis can be very helpful in understanding cycle internal working and can provide some interesting insights to the system operation. Then, the detailed information of the operation of the methane-fueled SOFC–GT cycle is presented. For both syngas- and methane-fueled cycles, the operating conditions of the equipment are presented and compared. Moreover, the comparison of the characteristics of the system when it is operated with two different schemes to provide the required steam for the cycle, with anode recirculation and with an external source of water, provides some interesting insights to the system operation. For instance, it was shown that although the physical

  20. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  1. Normality test for determining the correction factor of isotopic composition in PWR spent fuel

    International Nuclear Information System (INIS)

    Lee, Y. H.; Shin, H. S.; Noh, S. K.; Seo, K. S.

    2001-01-01

    Normality test has been carried out for the ratios of the measured-to-calculated isotopic compositions in PWR spent fuel, using Shapiro-Wilk W, Lilliefors D, Cramer-von Mises and Anderson-Darling. All 38 istopices have been evaluated by means of the 1.5xIQR rule and then outliers have been discarded. As result, it seems that only 20 nuclides are satisfied with the normality at significance level 5 %. 18 Nuclides(samples) including U-235 have higher significance probability(p-value) than 25 % in W-test and p-values obtained by other three tests exceed the upper limit. Besides, in 6 nuclides including Pu-239, it seems that the p-values are between 5 % and 25 % in W test. From these results, in order to predict the isotopic compositions in the conservative point of view, it is decided that the correction factors for the nuclides are determined at the 95/95 probability and confidence level by using tolerance limit-methods with the assumption that only 18 nuclides are satisfied with thr normality

  2. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    Science.gov (United States)

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (pengine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights

  3. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  4. Novel materials for fuel cells operating on liquid fuels

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2017-05-01

    Full Text Available Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

  5. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  6. Solvent extraction studies of RERTR silicide fuels

    International Nuclear Information System (INIS)

    Gouge, Anthony P.

    1983-01-01

    Uranium silicide fuels, which are candidate RERTR fuel compositions, may require special considerations in solvent extraction reprocessing. Since Savannah River Plant may be reprocessing RERTR fuels as early as 1985, studies have been conducted at Savannah River Laboratory to demonstrate the solvent extraction behavior of this fuel. Results of solvent extraction studies with both unirradiated and irradiated fuel are presented along with the preliminary RERTR solvent extraction reprocessing flow sheet for Savannah River Plant. (author)

  7. SEU43 fuel bundles in CANDU 600

    International Nuclear Information System (INIS)

    Catana, Alexandru; Prodea, Iosif; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2008-01-01

    Cernavoda Unit 1 and Unit 2 are pressure tube 650 MWe nuclear stations moderated and cooled with heavy water, of Canada design, located in Romania. Fuelling is on-power and the plant is currently fuelled with natural uranium dioxide. Fuel is encapsulated in a 37 fuel rod assembly having a specific standard geometry (STD37). In order to reduce fuel cycle costs programs were initiated in Canada, South Korea and at SCN Pitesti, Romania for design and build of a new, improved geometry fuel bundle and some fuel compositions. Among fuel compositions, which are considered, is the slightly enriched uranium (SEU) fuel (0.96 w% U-235) with an associated burn-up increase from ∼7900 MWd/tU up to ∼15000 MWd/tU. Neutron analysis showed that the Canadian-Korean fuel bundle geometry with 43 rods called SEU (SEU43) can be used in already operated reactors. A new fuel bundle resulted. Extended, comprehensive analysis must be conducted in order to assess the TH behavior of SEU43 besides the neutron, mechanical (drag force, etc) analyses. In this paper, using the sub-channel approach, main thermal-hydraulic parameters were analyzed: pressure drop; fuel, sheath and coolant temperatures; coolant density; critical heat flux. Some significant differences versus standard fuel are outlined in the paper and some conclusions are drawn. While, by using this new fuel, there are many benefits to be attained like: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power generation against other sources of generation, etc., the safety margins must be, at least, conserved. The introduction of a new fuel bundle type, different in geometry and fuel composition, requires a detailed preparation, a testing program and a series of neutron and thermal-hydraulic analysis. The results reported by this paper is part of this effort. The feasibility to increase the enrichment from 0.71% U-235 (NU) to 0.96% U-235, with an estimated burn-up increase up to 14000 MWd

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  9. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  10. What is LPG-fuel?

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The LPG-f (Liquefied Petroleum Gas) fuels are better known by the public users for their domestic applications (cooking, sanitary water heating and building heating). This paper describes the chemical composition and properties of LPG fuels together with their environmental advantages (low S content and NOx and CO emissions, no particulates) with respect to other fossil fuels. Advantages for vehicle engines (cleaner combustion, no dilution of the engine lubricant) and passengers (reduction of noise pollution) are summarized. The worldwide production/consumption of LPG is given. (J.S.)

  11. Characterization and supply of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  12. High performance nuclear fuel element

    International Nuclear Information System (INIS)

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  13. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  14. Solid oxide fuel cell performance comparison fueled by methane, MeOH, EtOH and gasoline surrogate C_8H_1_8

    International Nuclear Information System (INIS)

    Liso, Vincenzo; Cinti, Giovanni; Nielsen, Mads P.; Desideri, Umberto

    2016-01-01

    Carbon deposition is a major cause of degradation in solid oxide fuel cell systems. The ability to predict carbon formation in reforming processes is thus absolutely necessary for stable operation of solid oxide fuel cell systems. In the open literature it is found that the steam input is always considered in large excess compared to what required by the reforming process with the purpose of reducing carbon formation and avoiding rapid degradation of the cell performance. This makes it difficult to consistently compare system performance with different fuels. In this work, the molar compositions at equilibrium are calculated for a minimum steam to carbon ratio for each fuel type. We carry out a thermodynamic analysis of fuel/steam system using Gibbs Free Energy minimization method. A mathematical relationship between Lagrange's multipliers and carbon activity in the gas phase was deduced. Minimum steam required for the reforming process for each fuel was related to the heat required for the reforming process and fuel cell open circuit voltage. Furthermore, in an experimental test, steam reforming product compositions were used to evaluate and compare SOFC performance with different hydrocarbons. Comparing the model to the experimental activity, it is revealed that at temperatures exceeding 800 °C the gas composition is dominated by hydrogen and carbon monoxide for any of the fuels considered leading to similar cell polarization curves performance for different fuels. The main effect on the performance is related to OCV values which are dependent on different steam content for each fuel. It was concluded that the magnitude of the heat requested for the fuel reforming process is the major difference in system performance when comparing different fuels. However, reforming kinetic effects can become predominant rather than thermodynamics, especially at lower temperatures.

  15. Study and optimization of the composite nuclear fuel with burnable poison UO2/Gd2O3

    International Nuclear Information System (INIS)

    Balestrieri, D.

    1995-09-01

    The studied composite ceramics is a nuclear fuel constituted of a uranium dioxide matrix UO 2 in which big grains (or 'macro-masses') of gadolinium oxide (Gd 2 O 3 ) of 300 ± 100 μm of diameter (mass fraction of 12%) are dispersed. Used as burnable poison (neutron absorbent whose action disappears progressively during the irradiation), gadolinium oxide is the object of a particular attention because some of its properties as the crystal structure, the aptitude to sintering and the thermomechanical behavior have been studied. The aim of this work is to perfect and optimize the process of manufacture of the composite in order to answer to accurate specifications for the density, the shape and the mass fraction of macro-masses. In this framework, it has been necessary to strengthen the Gd 2 O 3 macro-masses by a thermal treatment in order to avoid their deformation during the uniaxial pressing. The influence of this pre-consolidation on the ended microstructure, the aptitude to sintering and the thermal conductivity of the composite have been studied. (O.M.)

  16. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses

    Energy Technology Data Exchange (ETDEWEB)

    M.C.H. Lim; G.A. Ayoko; L. Morawska; Z.D. Ristovski; E.R. Jayaratne [Queensland University of Technology, Brisbane, Qld. (Australia). International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences

    2007-08-15

    The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels - low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO{sub 2} and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles. 39 refs., 1 fig., 4 tabs.

  17. Experimental design for HTGR fuel rods

    International Nuclear Information System (INIS)

    Bayne, C.K.

    1975-01-01

    Fuel rods for the high temperature gas cooled reactor are composed of pyrolytic carbon coated fuel particles bounded by a carbonaceous matrix. Because of differential shrinkage between coated particles and the carbonaceous matrix, breakage of the pyrolytic coating has been observed with certain combinations of coated particles and matrix compositions. The pyrolytic coating is intended to be the primary containment for fission products. Therefore, an experiment is desired to determine the breakage characteristics of different strength coated particles combined with different matrix compositions during irradiation

  18. Navy Fuel Composition and Screening Tool (FCAST) v2.8

    Science.gov (United States)

    2016-05-10

    percentage , (2) Fuel A, (3) Mixed Fuel, (4) Fuel B, (5) Blended properties. 7. FCAST ANOVA screen, showing 1) List of data files; 2) Selected samples for...16. FCAST Hydrocarbon Distribution screen, showing 1) List of data files; 2) Carbon number distributions in area percentages for different classes...Total ion chromatograph UVE-PLS Uninformed variable elimination partial least squares XML Extensible markup language 1 1.0 Introduction The

  19. Characterizing fuels in treated areas.

    Science.gov (United States)

    Roger D. Ottmar; Clinton S. Wright

    2002-01-01

    Small-log utilization or thinning operations followed by a fuel treatment such as prescribed fire can be used to change the composition and structure of fuelbeds, thereby mitigating deleterious fire effects and reducing the potential for catastrophic wildfires in some forested landscapes. We are developing a national system, Fuel Characteristic Classification (FCC),...

  20. Integrated fuel-cycle models for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.; Maudlin, P.J.

    1981-01-01

    Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented. The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. (author)

  1. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem; Mohamed, Samah; Dawood, Alaaeldin; Sarathy, Mani

    2016-01-01

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition

  2. Laser Decontamination of Surfaces Contaminated with Cs+ Ion

    International Nuclear Information System (INIS)

    Baigalmaaa, B.; Won, H. J.; Moon, J. K.; Jung, C. H.; Lee, K. W.; Hyun, J. H.

    2008-01-01

    Laser decontamination technology has been proven to be an efficient method for a surface modification of metals and concretes contaminated with radioactive isotopes. Furthermore, the generation of a secondary waste is negligible. The radioactivity of hot cells in the DFDF (Dupic Fuel Development Facility) is presumed to be very high and the predominant radionuclide is Cs-137. A series of laser decontamination studies by a fabricated Q-switched Nd:YAG laser system were performed on stainless steel specimens artificially contaminated with Cs+ ion. Decontamination characteristics of the stainless steel were analyzed by SEM and EPMA

  3. Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers

    Energy Technology Data Exchange (ETDEWEB)

    Loukusa, Henri, E-mail: henri.loukusa@vtt.fi; Ikonen, Timo; Valtavirta, Ville; Tulkki, Ville

    2016-12-01

    The elemental and chemical composition of nuclear fuel pellets are key factors influencing the material properties of the pellets. The oxidation state of the fuel is one of the most important chemical properties influencing the material properties of the fuel, and it can only be determined with the knowledge of the chemical composition. A measure of the oxidation state is the oxygen chemical potential of the fuel. It can be buffered by redox pairs, such as the well-known Mo/MoO{sub 2} pair. In this work, the elemental composition of the fuel is obtained from a burnup calculation and the temperature and pressure calculated with a fuel performance code. An estimate of the oxygen potential of fuel is calculated with Gibbs energy minimization. The results are compared against experimental data from the literature. The significance of the UMoO{sub 6} compound and its buffering effect on the oxygen potential is emphasized. - Highlights: • A Gibbs energy minimization routine has been developed for nuclear fuel modeling. • The initial stoichiometry affects the development of the oxygen potential of fuel. • UMoO{sub 6} is found to buffer the oxygen potential of nuclear fuel.

  4. Spent-fuel composition: a comparison of predicted and measured data

    International Nuclear Information System (INIS)

    Thomas, C.C. Jr.; Cobb, D.D.; Ostenak, C.A.

    1981-03-01

    The uncertainty in predictions of the nuclear materials content of spent light-water reactor fuel was investigated to obtain guidelines for nondestructive spent-fuel verification and assay. Values predicted by the reactor operator were compared with measured values from fuel reprocessors for six reactors (three PWR and three BWR). The study indicates that total uranium, total plutonium, fissile uranium, fissile plutonium, and total fissile content can be predicted with biases ranging from 1 to 6% and variabilities (1-sigma) ranging from 2 to 7%. The higher values generally are associated with BWRs. Based on the results of this study, nondestructive assay measurements that are accurate and precise to 5 to 10% (1sigma) or better should be useful for quantitative analyses of typical spent fuel

  5. Composition calculations by the KARATE code system for the spent-fuel samples from the Novovoronezh reactor

    International Nuclear Information System (INIS)

    Hordosy, G.

    2006-01-01

    KARATE is a code system developed in KFKI AERI. It is routinely used for core calculation. Its depletion module are now tested against the radiochemical measurements of spent fuel samples from the Novovoronezh Unit IV, performed in RIAR, Dimitrovgrad. Due to the insufficient knowledge of operational history of the unit, the irradiation history of the samples was taken from formerly published Russian calculations. The calculation of isotopic composition was performed by the MULTICEL module of program system. The agreement between the calculated and measured values of the concentration of the most important actinides and fission products is investigated (Authors)

  6. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  7. Nanostructured palladium-La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3}/Y{sub 2}O{sub 3}-ZrO{sub 2} composite anodes for direct methane and ethanol solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, San Ping; Ye, Yinmei; He, Tianmin; Ho, See Boon [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2008-10-15

    A palladium-impregnated La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3-{delta}}/yttria-stabilized zirconia (LSCM/YSZ) composite anode is investigated for the direct utilization of methane and ethanol fuels in solid oxide fuel cells (SOFCs). Impregnation of Pd nanoparticles significantly enhances the electrocatalytic activity of LSCM/YSZ composite anodes for the methane and ethanol electrooxidation reaction. At 800 C, the maximum power density is increased by two and eight times with methane and ethanol fuels, respectively, for a cell with the Pd-impregnated LSCM/YSZ composite anode, as compared with that using a pure LSCM/YSZ anode. No carbon deposition is observed during the reaction of methane and ethanol fuels on the Pd-impregnated LSCM/YSZ composite anode. The results show the promises of nanostructured Pd-impregnated LSCM/YSZ composites as effective anodes for direct methane and ethanol SOFCs. (author)

  8. Explosive composition containing water

    Energy Technology Data Exchange (ETDEWEB)

    Cattermole, G.R.; Lyerly, W.M.; Cummings, A.M.

    1971-11-26

    This addition to Fr. 1,583,223, issued 31 May 1968, describes an explosive composition containing a water in oil emulsion. The composition contains an oxidizing mineral salt, a nitrate base salt as sensitizer, water, an organic fuel, a lipophilic emulsifier, and incorporates gas bubbles. The composition has a performance which is improved over and above the original patent.

  9. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  10. Effect analysis of air introduced by pressurization on fuel rod performances

    International Nuclear Information System (INIS)

    Ren Qisen; Liu Tong; Sheng Guofu

    2012-01-01

    In the process of pressurization and seal welding, it is common practice to vacuumize before gas filling for the sake of preventing introducing air and other impurities, which would affect the gas composition inside of the fuel rod. However, vacuumization during pressurization is likely not being required sometimes in order to simplify the fabrication procedure. In the present work, based on the AFA3G fuel rod design with 2 MPa of filling gas, analyses on fuel rod performances were carried out under the condition of pressurization with and without vacuumization, respectively. Furthermore, the effect on hydrogen content in fuel rod was preliminarily discussed. Results indicate that the impacts of air composition introduced by pressurization on fuel rod thermal-mechanical performances, such as internal pressure and fuel center temperature, were extremely slight. The gap conductance varies to some extent as a result of the change of gas composition due to air introduced in fuel rod. The impact of humidity on water content in fuel rod is negligible at a low temperature of around 25℃. However, at higher temperature, it is essential to pay attention on the control of fabrication process, and prevent much moisture entering into the fuel rod and increasing the probability of hydriding failure. (authors)

  11. Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle

    Directory of Open Access Journals (Sweden)

    Abikusna Setia

    2017-01-01

    Full Text Available Bioethanol is currently used as an alternative fuel for gasoline substitute (fossil fuel because it can reduce the dependence on fossil fuel and also emissions produced by fossil fuel which are CO2, HO, NOx. Bioethanol is usually used as a fuel mixed with gasoline with certain comparison. In Indonesia, the usage is still rare. Bioethanol that is commonly used is bioethanol anhydrous 99.5%. In the previous studies, bioethanol was distilled from low to high grade to produce ethanol anhydrous. But the result is only able to reach 95% or ethanol hydrous. This study is objected to design a simple mechanism in the mixing of bioethanol hydrous with the gasoline using a fuel mixer mechanism. By this mechanism, the fuel consumption and the resulting emissions from combustion engine can be analyzed. The fuel blend composition is prepared as E5, E10, and E15/E20, the result of fuel consumption and emission will be compared with pure gasoline. The using of bioethanol hydrous as a fuel mixture was tended to produce more stable bioethanol fuel consumption. However, the utilization of the mixture was found able to reduce the exhaust emissions (CO, HC, and NOx.

  12. Catalytic processes for cleaner fuels

    International Nuclear Information System (INIS)

    Catani, R.; Marchionna, M.; Rossini, S.

    1999-01-01

    More stringent limitations on vehicle emissions require different measurement: fuel reformulation is one of the most important and is calling for a noticeable impact on refinery assets. Composition rangers of the future fuels have been defined on a time scale. In this scenario the evolution of catalytic t