WorldWideScience

Sample records for dupic fuel bundle

  1. An assessment of thermal behavior of the DUPIC fuel bundle by subchannel analysis

    International Nuclear Information System (INIS)

    Park, Jee Won.

    1997-12-01

    Thermal behavior of the standard DUPIC fuel has been assessed. The DUPIC fuel bundle has been modeled for a subchannel analysis using the ASSERT-IV code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions of the DUPIC fuel bundle, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. Based upon the subchannel modeling used in this study, the location of minimum CHFR in the DUPIC fuel bundle has been found to be very similar to that of the standard fuel. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction was found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. Since the transverse interchange model between subchannels is important for the behavior of these variables, it is needed to put more effort in validating the transverse interchange model. For the purpose of investigating influence of thermal-hydraulic parameter variations of the DUPIC fuel bundle, four different values of the channel flow rates were used in the subchannel analysis. The effect of the channel flow reduction on thermal-hydraulic parameters have been presented. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundles in CANDU reactors. (author). 12 refs., 3 tabs., 17 figs

  2. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-01

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  3. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  4. Compatibility analysis of DUPIC fuel(4) - thermal hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Chae, Kyung Myung; Choi, Hang Bok

    2000-07-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle in the CANDU reactor has been studied. The critical channel power, the critical power ratio, the channel exit quality and the channel flow are calculated for the DUPIC and the standard fuels by using the NUCIRC code. The physical models and associated parametric values for the NUCIRC analysis of the fuels are also presented. Based upon the slave channel analysis, the critical channel power and the critical power ratios have been found to be very similar for the two fuel types. The same dryout model is used in this study for the standard and the DUPIC fuel bundles. To assess the dryout characteristics of the DUPIC fuel bundle, the ASSERT-PV code has been used for the subchannel analysis. Based upon the results of the subchannel analysis, it is found that the dryout location and the power for the two fuel types are indeed very similar. This study shows that thermal performance of the DUPIC fuel is not significantly different from that of the standard fuel.

  5. Compatibility analysis of DUPIC fuel (part 3) - radiation physics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-04-01

    As a part of the compatibility analysis of DUPIC fuel in CANDU reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, thermal shield, radiation damage, transportation cask and storage. At first, the primary shield system was assessed for the DUPIC fuel core, which has shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of natural uranium core because the power levels on the core periphery are similar for both cores. Secondly, the radiation effects on the critical components and the themal shields were assessed when the DUPIC fuel is loaded in CANDU reactors. Compared with the displacement per atom (DPA) of the critical component for natural uranium core, that for the DUPIC fuel core was increased by -30% for the innermost groove and the weld points and by -10% for the corner of the calandria subshells and annular plates in the calandria, respectivdely. Finally, the feasibility study of the DUPIC fuel handling was performed, which has shown that all handling and inspection of the DUPIC fuel bundles be done remotely and behind a shielding wall. For the transportation of the DUPIC fuel, the preliminary study has shown that there shold be no technical problem th design a transportation cask for the fresh and spent DUPIC fuel bundles. For the storage of the fresh and spent DUPIC fuels, there is no the criticality safety problem unless the fuel bundle geometry is destroyed.

  6. Compatibility analysis of DUPIC fuel (part 3) - radiation physics analysis

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-04-01

    As a part of the compatibility analysis of DUPIC fuel in CANDU reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, thermal shield, radiation damage, transportation cask and storage. At first, the primary shield system was assessed for the DUPIC fuel core, which has shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of natural uranium core because the power levels on the core periphery are similar for both cores. Secondly, the radiation effects on the critical components and the themal shields were assessed when the DUPIC fuel is loaded in CANDU reactors. Compared with the displacement per atom (DPA) of the critical component for natural uranium core, that for the DUPIC fuel core was increased by -30% for the innermost groove and the weld points and by -10% for the corner of the calandria subshells and annular plates in the calandria, respectivdely. Finally, the feasibility study of the DUPIC fuel handling was performed, which has shown that all handling and inspection of the DUPIC fuel bundles be done remotely and behind a shielding wall. For the transportation of the DUPIC fuel, the preliminary study has shown that there shold be no technical problem th design a transportation cask for the fresh and spent DUPIC fuel bundles. For the storage of the fresh and spent DUPIC fuels, there is no the criticality safety problem unless the fuel bundle geometry is destroyed

  7. DUPIC fuel performance from reactor physics viewpoint

    International Nuclear Information System (INIS)

    Choi, H.; Rhee, B.W.; Park, H.

    1995-01-01

    A preliminary study was performed for the evaluation of Stress Corrosion Cracking (SCC) parameters of nominal DUPIC fuel in CANDU reactor. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increase of the 43-element DUPIC fuel in the equilibrium core are below the SCC thresholds of CANDU natural uranium fuel. For 4-bundle shift refueling scheme, the envelope of element ramped power and power increase upon refueling are 8% and 44% higher than those of 2-bundle shift refueling scheme on the average, respectively, and both schemes are not expected to cause SCC failures. (author)

  8. Burnable poison option for DUPIC fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Cupta, H. P.

    1996-08-01

    The mechanisms of positive coolant void reactivity of CANDU natural uranium and DUPIC fuel have been studied. The design study of DUPIC fuel was performed using the burnable poison material in the center pin to reduce the coolant void reactivity. The amount of burnable poison was determined such that the prompt inverse period of DUPIC fuel upon full coolant voiding is the same as that of natural uranium fuel at equilibrium burnup. A parametric study on various burnable poisons has shown that natural dysprosium has more merit over other materials because it uniformly controls the void reactivity throughout the burnup with reasonable amount of poison. Additional studies on the option of using scattering or absorber material in the center pin position and the option using variable fuel density were performed. In any case of option using variable fuel density were performed. In any case of options to reduce the void reactivity, it was found that either the discharge burnup and/or the relative linear pin power are sacrificed. A preliminary study was performed for the evaluation of reference DUPIC fuel performance especially represented by Stress Corrosion Cracking(SCC) parameters which is mainly influenced by the refueling operations. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increment of the reference DUPIC fuel are below the SCC thresholds of CANDU natural uranium fuel. For a 4-bundle shift refueling scheme, the envelopes of element ramped power and power increment upon refueling are 8% and 44% higher than those of a 2-bundle shift refueling scheme on the average, respectively, but still have margins to the failure thresholds of natural uranium fuel. 23 tabs., 25 figs., 20 refs. (Author)

  9. Assessment of DUPIC fuel compatibility with CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H B; Roh, G H; Jeong, C J; Rhee, B W; Choi, J W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    The compatibility of DUPIC fuel with the existing CANDU reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will require a quantitative analysis later. (author).

  10. Preliminary assessment on compatibility of DUPIC fuel with CANDU-6

    International Nuclear Information System (INIS)

    Choi, Hang-Bok; Roh, G.H.; Jeong, C.J.; Rhee, B.W.; Choi, J.W.; Boss, C.R.

    1997-01-01

    The compatibility of DUPIC fuel with the existing CANDU-6 reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will be qualitatively analyzed later. (author)

  11. The dupic fuel cycle synergism between LWR and HWR

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Lee, H.H.; Kim, K.P.; Sullivan, J.D.; Boczar, P.G.; Gadsby, R.D.

    1999-01-01

    The DUPIC fuel cycle can be developed as an alternative to the conventional spent fuel management options of direct disposal or plutonium recycle. Spent LWR fuel can be burned again in a HWR by direct refabrication into CANDU-compatible DUPIC fuel bundles. Such a linkage between LWR and HWR can result in a multitude of synergistic effects, ranging from savings of natural uranium to reductions in the amount of spent fuel to be buried in the earth, for a given amount of nuclear electricity generated. A special feature of the DUPIC fuel cycle is its compliance with the 'Spent Fuel Standard' criteria for diversion resistance, throughout the entire fuel cycle. The DUPIC cycle thus has a very high degree of proliferation resistance. The cost penalty due to this technical factor needs to be considered in balance with the overall benefits of the DUPIC fuel cycle. The DUPIC alternative may be able to make a significant contribution to reducing spent nuclear fuel burial in the geosphere, in a manner similar to the contribution of the nuclear energy alternative in reducing atmospheric pollution from fossil fuel combustion. (author)

  12. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  13. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  14. Radioactive waste management of experimental DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Hong, K. P.

    2001-01-01

    The concept of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) is a dry processing technology to manufacture CANDU compatible DUPIC fuel from spent PWR fuel material. Real spent PWR fuel was used in IMEF M6 hot cell to carry out DUPIC experiment. Afterwards, about 200 kg-U of spent PWR fuel is supposed to be used till 2006. This study has been conducted in some hot cells of PIEF and M6 cell of IMEF. There are various forms of nuclear material such as rod cut, powder, green pellet, sintered pellet, fabrication debris, fuel rod, fuel bundle, sample, and process waste produced from various manufacturing experiment of DUPIC fuel. After completing test, the above nuclear wastes and test equipment etc. will be classified as radioactive waste, transferred to storage facility and managed rigorously according to domestic and international laws until the final management policy is determined. It is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This paper includes basic plan for DUPIC radwaste, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures

  15. Progress of the DUPIC fuel compatibility analysis (II) - thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Choi, Hang Bok

    2005-03-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle with a 713 MWe Canada deuterium uranium (CANDU-6) reactor was studied by using both the single channel and sub-channel analysis methods. The single channel analysis provides the fuel channel flow rate, pressure drop, critical channel power, and the channel exit quality, which are assessed against the thermal-hydraulic design requirements of the CANDU-6 reactor. The single channel analysis by the NUCIRC code showed that the thermal-hydraulic performance of the DUPIC fuel is not different from that of the standard CANDU fuel. Regarding the local flow characteristics, the sub-channel analysis also showed that the uncertainty of the critical channel power calculation for the DUPIC fuel channel is very small. As a result, both the single and sub-channel analyses showed that the key thermal-hydraulic parameters of the DUPIC fuel channel do not deteriorate compared to the standard CANDU fuel channel.

  16. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  17. DUPIC fuel compatibility assessment

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition

  18. Composition heterogeneity analysis for DUPIC fuel(I) - Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    The fuel composition heterogeneity effect on reactor performance parameters was assessed by refueling simulations for three DUPIC fuel options of fuel composition heterogeneity control: the fissile content adjustment, the reactivity control by slightly enriched and depleted uranium, and the reactivity control by natural uranium. For each DUPIC fuel option, the simulations were performed using 30 heterogeneous fuel types which were determined by the agglomerative hierarchical clustering method. The heterogeneity effect was considered during the refueling simulation by randomly selecting fuel types for the refueling operation. The refueling simulations of the heterogeneous core have shown that the key performance parameters such as the maximum channel power (MCP), maximum bundle power (MBP), and channel power peaking factor (CPPF) are close to those of the core that has single fuel type. For the three DUPIC fuel options, the uncertainties of MCP, MBP, and CPPF due to the fuel composition heterogeneity are less than 0.6, 1.5 and 0.8%, respectively, including the uncertainty of the group-average fuel property. This study has shown that the three DUPIC fuel options reduces the composition heterogeneity effectively and the zone power control system has a sufficient margin to adjust the perturbations cased by the fuel composition heterogeneity. 15 refs., 28 figs.,10 tabs. (Author)

  19. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect.

  20. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect

  1. Proceedings of DUPIC fuel workshop 97

    International Nuclear Information System (INIS)

    1997-07-01

    The researchers discuss the technical aspects of DUPIC fuel fabrication in the workshop as follows; 1) The DUPIC fuel development program in KAERI 2) AECL's progress in developing the DUPIC fuel fabrication process 3) Mechanical decladding 4) Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept 5) Assessment of DUPIC fuel compatibility with CANDU-6 6) The development of combination software for spent PWR fuel to fabricate the homogeneous DUPIC fuel 7) Thermodynamic properties of the DUPIC fuel and its performance 8) Captural properties of cesium and ruthenium 9) A secondary fuel removal process : Plasma processing 10) Technology development for DUPIC process safeguards

  2. Proceedings of DUPIC fuel workshop 97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The researchers discuss the technical aspects of DUPIC fuel fabrication in the workshop as follows; (1) The DUPIC fuel development program in KAERI (2) AECL`s progress in developing the DUPIC fuel fabrication process (3) Mechanical decladding (4) Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept (5) Assessment of DUPIC fuel compatibility with CANDU-6 (6) The development of combination software for spent PWR fuel to fabricate the homogeneous DUPIC fuel (7) Thermodynamic properties of the DUPIC fuel and its performance (8) Captural properties of cesium and ruthenium (9) A secondary fuel removal process : Plasma processing (10) Technology development for DUPIC process safeguards.

  3. The DUPIC fuel development program in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M S; Park, H S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    This study describes the DUPIC fuel development program in KAERI as follows; Burning spent PWR fuel again in CANDU by DUPIC, Compatibility with existing CANDU system, Feasibility of DUPIC fuel fabrication, Waste reduction, Safeguard ability, Economics of DUPIC fuel cycle, The DUPIC fuel development program, and International prospective. 5 refs., 10 figs.

  4. DUPIC fuel cycle economics assessment (1)

    International Nuclear Information System (INIS)

    Choi, H. B.; Roh, G. H.; Kim, D. H.

    1999-04-01

    This is a state-of-art report that describes the current status of the DUPIC fuel cycle economics analysis conducted by the DUPIC fuel compatibility assessment group of the DUPIC fuel development project. For the DUPIC fuel cycle economics analysis, the DUPIC fuel compatibility assessment group has organized the 1st technical meeting composed of 8 domestic specialists from government, academy, industry, etc. and a foreign specialist of hot-cell design from TRI on July 16, 1998. This report contains the presentation material of the 1st technical meeting, published date used for the economics analysis and opinions of participants, which could be utilized for further DUPIC fuel cycle and back-end fuel cycle economics analyses. (author). 11 refs., 7 charts

  5. Irradiation and performance evaluation of DUPIC fuel

    International Nuclear Information System (INIS)

    Bae, Ki Kwang; Yang, M. S.; Song, K. C.

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis

  6. Irradiation and performance evaluation of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M S; Song, K C [and others

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis.

  7. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  8. Irradiation test and performance evaluation of DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S.

    2002-05-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  9. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    The DUPIC fuel cycle was conceived as an alternative to the conventional fuel cycle backed options, with a view to multiple benefits expectable from burning spent PWR fuel again in CANDU reactors. It is based on the basic idea that the bulk of spent PWR fuel can be directly refabricated into a reusable fuel for CANDU of which high efficiency in neutron utilization would exhaustively burn the fissile remnants in the spent PWR fuel to a level below that of natural uranium. Such ''burn again'' strategy of the DUPIC fuel cycle implies that the spent PWR fuel will become CANDU fuel of higher burnup with relevant benefits such as spent PWR fuel disposition, saving of natural uranium fuel, etc. A salient feature of the DUPIC fuel cycle is neither the fissile content nor the bulk radioactivity is separated from the DUPIC mass flow which must be contained and shielded all along the cycle. This feature can be considered as a factor of proliferation resistance by deterrence against access to sensitive materials. It means also the requirement for remote systems technologies for DUPIC fuel operation. The conflicting aspects between better safeguardability and harder engineering problems of the radioactive fuel operation may be the important reason why the decades' old concept, since INFCE, of ''hot'' fuel cycle has not been pursued with much progress. In this context, the DUPIC fuel cycle could be a live example for development of proliferation resistant fuel cycle. As the DUPIC fuel cycle looks for synergism of fuel linkage from PWR to CANDU (or in broader sense LWR to HWR), Korea occupies a best position for DUPIC exercise with her unique strategy of reactor mix of both reactor types. But the DUPIC benefits can be extended to global bonus, expectable from successful development of the technology. (author)

  10. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  11. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  12. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  13. DUPIC fuel fabrication using spent PWR fuels at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Yang, Myung Seung; Ko, Won Il and others

    2000-12-01

    This document contains DUPIC fuel cycle R and D activities to be carried out for 5 years beyond the scope described in the report KAERI/AR-510/98, which was attached to Joint Determination for Post-Irradiation Examination of irradiated nuclear fuel, by MOST and US Embassy in Korea, signed on April 8, 1999. This document is purposely prepared as early as possible to have ample time to review that the over-all DUPIC activities are within the scope and contents in compliance to Article 8(C) of ROK-U.S. cooperation agreement, and also maintain the current normal DUPIC project without interruption. Manufacturing Program of DUPIC Fuel in DFDF and Post Irradiation Examination of DUPIC Fuel are described in Chapter I and Chapter II, respectively. In Chapter III, safeguarding procedures in DFDF and on-going R and D on DUPIC safeguards such as development of nuclear material accounting system and development of containment/surveillance system are described in details.

  14. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  15. Safety analysis of DUPIC fuel development facility

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Baek, S. Y.; Ahn, J. Y.

    2001-01-01

    Various experimental facilities are necessary in order to perform experimental verification for development of DUPIC fuel fabrication technology. In special, since highly radioactive material such as spent PWR fuel is used for this experiment, DUPIC fuel fabrication has to be performed in hot cell by remote handling. Therefore, it should be provided with proper engineering requirement and safety. M6 hot cell of IMEF which is to used for DUPIC fuel fabrication experiment was constructed as an α-γ hot cell for material examination of small amount of high-burnup fuel. The characteristics and amount of spent fuel for DUPIC fuel fabrication experiment will be different from the original design criteria. Therefore, the increased amount of spent fuel and different characteristics of experiment result in not only change of shielding and enviornmental evaluation results but new requirement of nuclear criticality evaluation. Therefore, this study includes evaluation of shielding, environmental effect and nuclear criticality in case that IMEF M6 hot cell is used for DUPIC fuel fabrication

  16. Fabrication of simulated DUPIC fuel

    Science.gov (United States)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  17. Technology development for DUPIC process safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J S; Kim, H D; Lee, Y G; Kang, H Y; Cha, H R; Byeon, K H; Park, Y S; Choi, H N [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    As the strategy for DUPIC(Direct Use of spent PWR fuel In CANDU reactor) process safeguards, the neutron detection method was introduced to account for nuclear materials in the whole DUPIC process by selectively measuring spontaneous fission neutron signals from {sup 244}Cm. DSNC was designed and manufactured to measure the account of curium in the fuel bundle and associated process samples in the DUPIC fuel cycle. The MCNP code had response profile along the length of the CANDU type fuel bundle. It was found experimentally that the output signal variation due to the overall azimuthal asymmetry was less than 0.2%. The longitudinal detection efficiency distribution at every position including both ends was kept less than 2% from the average value. Spent fuel standards almost similar to DUPIC process material were fabricated from a single spent PWR fuel rod and the performance verification of the DSNC is in progress under very high radiation environment. The results of this test will be eventually benchmarked with other sources such as code simulation, chemical analysis and gamma analysis. COREMAS-DUPIC has been developed for the accountability management of nuclear materials treated by DUPIC facility. This system is able to track the controlled nuclear materials maintaining the material inventory in near-real time and to generate the required material accountability records and reports. Concerning the containment and surveillance technology, a focused R and D effort is given to the development of unattended continuous monitoring system. Currently, the component technologies of radiation monitoring and surveillance have been established, and continued R and D efforts are given to the integration of the components into automatic safeguards diagnostics. (author).

  18. The 3rd irradiation test plan of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Park, J. H. and others

    2001-05-01

    The objective of the 3rd irradiation test of DUPIC fuel at the HANARO is to estimate the in-core behaviour of a DUPIC pellet that is irradiated up to more than average burnup of CANDU fuel. The irradiation of DUPIC fuel is planned to start at May 21, 2001, and will be continued at least for 8 months. The burnup of DUPIC fuel through this irradiation test is thought to be more than 7,000 MWd/tHE. The DUPIC irradiation rig instrumented with three SPN detectors will be used to accumulate the experience for the instrumented irradiation and to estimate the burnup of irradiated DUPIC fuel more accurately. Under normal operating condition, the maximum linear power of DUPIC fuel was estimated as 55.06 kW/m, and the centerline temperature of a pellet was calculated as 2510 deg C. In order to assess the integrity of DUPIC fuel under the accident condition postulated at the HANARO, safety analyses on the locked rotor and reactivity insertion accidents were carried out. The maximum centerline temperature of DUPIC fuel was estimated 2590 deg C and 2094 deg C for each accident, respectively. From the results of the safety analysis, the integrity of DUPIC fuel during the HANARO irradiation test will be secured. The irradiated DUPIC fuel will be transported to the IMEF. The post-irradiation examinations are planned to be performed at the PIEF and IMEF.

  19. Remote helium leak test of the DUPIC fuel rod

    International Nuclear Information System (INIS)

    Kim, W. K; Kim, S. S.; Lim, S. P.; Lee, J. W.; Yang, M. S.

    1998-01-01

    DUPIC(Direct Use of spent PWR fuel In CANDU reactor) is one of dry reprocessing fuel cycles to reuse irradiated PWR fuel in CANDU power plant. DUPIC fuel is so radioactive that DUPIC fuel is remotely fabricated at hot cell such as IMEF hot cell in which radiation is shielded and remote operation is possible. In this study, Helium leakage has been tested for the simulated DUPIC fuel rod manufactured by Nd:YAG laser end-cap welding at simulated hot cell. The remote inspection technique has been developed to evaluate the soundness of DUPIC fuel fabricated through new processes. Vacuum chamber has been developed to be remotely operated by manipulators at hot cell. As the result of remote test, Helium leakage of DUPIC fuel rod is around background level, CANDU specification has been satisfied. In the result of the study, remote test has been successfully performed at the simulated hot cell, and the soundness of DUPIC fuel rod welded by Nd:YAG laser has been confirmed

  20. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  1. Comparison of DUPIC fuel composition heterogeneity control methods

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity of the spent PWR fuel. In order to reduce the variation of isotopic composition of the DUPIC fuel, the inter-assembly mixing operation was taken three times. Then, three options have been considered: reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity of DUPIC fuel can be tightly controlled with the minimum amount of fresh uranium feed. For the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. 13 refs., 6 figs., 16 tabs. (Author)

  2. Post irradiation test report of irradiated DUPIC simulated fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  3. Thermodynamic properties of the DUPIC fuel and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Heon; Kim, Hee Moon [Kyung Hee Univ., Seoul (Korea, Republic of)

    1997-07-01

    This study describes thermodynamic properties of DUPIC fuel and performance. In initial state, DUPIC fuel which contains fissile materials is different from general nuclear fuel. So this study analyzed oxygen potential, thermal conductivity and specific heat of the DUPIC fuel.

  4. Cost evaluation of a commercial-scale DUPIC fuel fabrication facility (Part I) -Summary

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    A conceptual design of a commercial scale DUPIC fuel fabrication facility was initiated to provide some insights into the costs associated with construction, operation, and decommissioning. The primary conclusion of this report is that it is feasible to design, license, construct, test, and operate a facility that will process 400 MTHE/yr of spent PWR fuel and reconfigure the fuel into CANDU fuel bundles at a reasonable unit cost of the fuel material. Although DUPIC fuel fabrication by vibropacking method is clearly cheaper than that of the pellet method, the feasibility of vibropac technology for DUPIC fuel fabrication and use of vibroac fuel in CANDU reactors may has to be studied in depth in order to use as an alternative to the conventional pellet fuel method. Especially, there are some questions on meeting the CANDU requirements in thermal and mechanical terms as well as density of fuel. Wherever possible, this report used representative costs of currently available technologies as the bases for cost estimation. It should also be noted that the conceptual design and cost information contained in this report was extracted from the public domain and general open literature. Later studies have to focus on other important areas of concern such as safety, security, safeguards, process optimization etc. 7 figs., 6 tabs. (Author)

  5. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    International Nuclear Information System (INIS)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song

    2008-01-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  6. Comparison of DUPIC fuel composition heterogeneity control methods

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ko, Won Il

    1999-08-01

    A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for the DUPIC fuel which is made of spent pressurized water reactor (PWR) fuels by a dry refabrication process. This study focuses on the reactivity control method which uses either slightly enriched, depleted, or natural uranium to minimize the cost rise effect on the manufacturing of DUPIC fuel, when adjusting the excess reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high reactivity spent PWR fuels, and reactivity control by natural uranium for linear reactivity spent PWR fuels. The results of this study have shown that the reactivity control by slightly enriched and depleted uranium, all the spent PWR fuels can be utilized as the DUPIC fuel and the fraction of fresh uranium feed is 3.4% on an average. For the reactivity control by natural uranium, about 88% of spent PWR fuel can be utilized as the DUPIC fuel when the linear reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible. (author). 13 refs., 16 tabs., 6 figs

  7. Development of the fabrication technology of the simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Yang, M. S.; Bae, K. K. and others

    2000-06-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties of the DUPIC fuel is different from the commercial UO 2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, processes on powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using simulated spent fuel are discribed. To fabricate simulated DUPIC fuel, the powder from 3 times OREOX and 5 times attrition milling simulated spent fuel is compacted with 1.3 ton/cm 2 . Pellets are sintered in 100% H 2 atmosphere over 10 h at 1800 deg C. Sintered densities of pellets are 10.2-10.5 g/cm 3

  8. Irradiation test plan of the simulated DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M. S.; Kim, B. K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    Simulated DUPIC fuel had been irradiated from Aug. 4, 1999 to Oct. 4 1999, in order to produce the data of its in-core behavior, to verify the design of DUPIC non-instrumented capsule developed, and to ensure the irradiation requirements of DUPIC fuel at HANARO. The welding process was certified for manufacturing the mini-element, and simulated DUPIC fuel rods were manufactured with simulated DUPIC pellets through examination and test. The non-instrumented capsule for a irradiation test of DUPIC fuel has been designed and manufactured referring to the design specification of the HANARO fuel. This is to be the design basis of the instrumented capsule under consideration. The verification experiment, whether the capsule loaded in the OR4 hole meet the HANARO requirements under the normal operation condition, as well as the structural analysis was carried out. The items for this experiment were the pressure drop test, vibration test, integrity test, et. al. It was noted that each experimental result meet the HANARO operational requirements. For the safety analysis of the DUPIC non-instrumented capsule loaded in the HANARO core, the nuclear/mechanical compatibility, thermodynamic compatibility, integrity analysis of the irradiation samples according to the reactor condition as well as the safety analysis of the HANARO were performed. Besides, the core reactivity effects were discussed during the irradiation test of the DUPIC capsule. The average power of each fuel rod in the DUPIC capsule was calculated, and maximal linear power reflecting the axial peaking power factor from the MCNP results was evaluated. From these calculation results, the HANARO core safety was evaluated. At the end of this report, similar overseas cases were introduced. 9 refs., 16 figs., 10 tabs. (Author)

  9. Transmutation of DUPIC spent fuel in the hyper system

    International Nuclear Information System (INIS)

    Kim, Y.H.; Song, T.Y.

    2005-01-01

    In this paper, the transmutation of TRUs of the DUPIC (Direct Use of Spent PWR Fuel in CANDU) spent fuel has been studied with the HYPER system, which is an LBE-cooled ADS. The DUPIC concept is a synergistic combination of PWRs and CANDUs, in which PWR spent fuels are directly re-utilized in CANDU reactors after a very simple re-fabrication process. In the DUPIC-HYPER fuel cycle, TRUs are recovered by using a pyro-technology and they are incinerated in a metallic fuel form of U-TRU-Zr. The objective of this study is to investigate the TRU transmutation potential of the HYPER core for the DUPIC-HYPER fuel cycle. All the previously-developed HYPER core design concepts were retained except that fuel is composed of TRU from the DUPIC spent fuel. In order to reduce the burnup reactivity swing, a B 4 C burnable absorber is used. The HYPER core characteristics have been analyzed with the REBUS-3/DIF3D code system. (authors)

  10. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  11. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  12. Thermal expansion of UO2 and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Ho Kang, Kweon; Jin Ryu, Ho; Chan Song, Kee; Seung Yang, Myung

    2002-01-01

    The lattice parameters of simulated DUPIC fuel and UO 2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO 2 , and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO 2 . For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO 2 and simulated DUPIC fuel are 10.471x10 -6 and 10.751x10 -6 K -1 , respectively

  13. Thermal expansion study of simulated DUPIC fuel using neutron diffraction

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Bae, J. H.; Kim, H. S.; Song, K. C.; Yang, M. S.; Choi, Y. N.; Han, Y. S.; Oh, H. S.

    2001-07-01

    The lattice parameters of simulated DUPIC fuel and UO2 were measured from room temperature to 1273 K using neutron diffraction to investigate the thermal expansion and density variation with temperature. The lattice parameter of simulated DUPIC fuel is lower than that of UO2 and the linear thermal expansion of simulated DUPIC fuel is higher than that of UO2. For the temperature range from 298 to 1273 K, the average linear thermal expansion coefficients for UO2 and simulated DUPIC fuel are 10.471 ''10-6 and 10.751 ''10-6 K-1, respectively

  14. Study of burnable poison in the dupic cycle

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clarysson A.M. da; Almeida, Michel C.B. de; Faria, Rochkhudson B. de; Moreira, Arthur P.C.; Pereira, Claubia, E-mail: clarysson@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Recent studies confirm the potential of using reprocessed PWR (Pressurized Water Reactor) fuels in the CANDU (Canada Deuterium Uranium) reactor fuel cycle. An important proposal is the 'Direct Use of spent PWR fuel In CANDU' (DUPIC) cycle, where spent fuels from a PWR are packaged into a CANDU fuel bundle with only mechanical reprocessing (cut into pieces) but no chemical reprocessing. The fissile contents of the spent fuel from Pressurized Water Reactor (PWR) are about 1.5 wt%, which is higher than that of the fuel of CANDU. When this reactor is reload with reprocessed fuel, the reactivity of system will increase and this behavior may affect the safety parameters of reactor. To reduce the initial reactivity, Burnable Poison (BP) can be inserted in the fuel bundle of CANDU. In this way, the present paper evaluates the insertion of the different types of BP considering the DUPIC cycle. The following BPs were evaluated: Boron, Cadmium, Dysprosium, Erbium, Europium, Gadolinium, Hafnium and Samarium. The goal is to verify the neutronic behavior of the fuel bundle at steady state and during the reactor burnup. The SCALE 6.0 (Standardized Computer Analyses for Licensing Evaluation) code was employed to model a standard CANDU-6 fuel element. (author)

  15. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Choi, J.W.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    From the early nineties, a research programme, called DUPIC (Direct Use of Spent PWR Fuel in CANDU) has been undertaken in an international exercise involving Korea, Canada, the U.S. and later the IAEA. The basic idea of this fuel cycle alternative is that the spent fuel from LWR contains enough fissile remnant to be burnt again in CANDUs thanks to its excellent neutron economy. A systematic R and D plan has now gained a full momentum to verify experimentally the DUPIC fuel cycle concept. 4 refs

  16. A study on manufacturing and quality control technology of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, H. S.; Lee, Y. W. [and others

    1997-09-01

    A series of experiments are performed to verify the manufacturability of DUPIC fuel and its performance by use of HANARO test reactor. Major works performed during this research period are : analysis of manufacturing process of DUPIC fuel, fabrication technology development such as development of disassembly and decladding method of spent PWR fuel, study on the OREOX process using simulated high burnup fuel, weldability of end cap weld, and development of fabrication equipment including the conceptual and detailed design of DUPIC equipment mainly for the powder preparation, pelletization and fuel element fabrication. A study on the material properties of DUPIC fuel and performance analysis method using irradiation of test fuel was also performed. (author). 91 refs., 274 tabs., 254 figs.

  17. A study on manufacturing and quality control technology of DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, H. S.; Lee, Y. W.

    1997-09-01

    A series of experiments are performed to verify the manufacturability of DUPIC fuel and its performance by use of HANARO test reactor. Major works performed during this research period are : analysis of manufacturing process of DUPIC fuel, fabrication technology development such as development of disassembly and decladding method of spent PWR fuel, study on the OREOX process using simulated high burnup fuel, weldability of end cap weld, and development of fabrication equipment including the conceptual and detailed design of DUPIC equipment mainly for the powder preparation, pelletization and fuel element fabrication. A study on the material properties of DUPIC fuel and performance analysis method using irradiation of test fuel was also performed. (author). 91 refs., 274 tabs., 254 figs

  18. The design of the DUPIC spent fuel bundle counter

    International Nuclear Information System (INIS)

    Menlove, H.O.; Rinard, P.M.; Kroncke, K.E.; Lee, Y.G.

    1997-05-01

    A neutron coincidence detector had been designed to measure the amount of curium in the fuel bundles and associated process samples used in the direct use of plutonium in Canadian deuterium-uranium (CANDU) fuel cycle. All of the sample categories are highly radioactive from the fission products contained in the pressurized water reactor (PWR) spent fuel feed stock. Substantial shielding is required to protect the He-3 detectors from the intense gamma rays. The Monte Carlo neutron and photon calculational code has been used to design the counter with a uniform response profile along the length of the CANDU-type fuel bundle. Other samples, including cut PWR rods, process powder, waste, and finished rods, can be measured in the system. This report describes the performance characteristics of the counter and support electronics. 3 refs., 23 figs., 6 tabs

  19. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  20. Analysis of radwaste material management options for experimental DUPIC fuel fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Yang, M. S.; Kim, K. H.; Shin, J. M.; Lee, H. S.; Ko, W. I.; Lee, J. W.; Yim, S. P.; Hong, D. H.; Lee, J. Y.; Baik, S. Y.; Song, W. S.; Yoo, B. O.; Lee, E. P.; Kang, I. S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This report is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This report was written for helping researchers working in related facilities to DUPIC project understanding management of DUPIC radioactive waste as well as fellows in DUPIC project. Also, it will be used as basic material to prove transparency and safeguardability of DUPIC fuel cycle. In order to meet these purposes, this report includes basic experiment plan for manufacturing DUPIC nuclear fuel, outlines for DUPIC manufacturing facility and equipment, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures. 15 refs., 31 figs., 11 tabs. (Author)

  1. Develpment of quality assurance manual for fabrication of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT.

  2. Develpment of quality assurance manual for fabrication of DUPIC fuel

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, J. W.; Kim, S. S. and others

    2001-09-01

    The Quality Assurance Manual for the fabrication of DUPIC fuel with high quality was developed. The Quality Assurance Policy established by this manual is to assure that the DUPIC fuel element supplied to customer conform to the specified requirements of customer, applicable codes and standards. The management of KAERI is committed to implementation and maintenance of the program described by this manual. This manual describes the quality assurance program for DUPIC fuel fabrication to comply with CAN3-Z299.2-85 to the extent as needed and appropriate. This manual describes the methods which DUPIC Fuel Development Team(DFDT) personnel must follow to achieve and assure high quality of our product. This manual also describes the quality management system applicable to the activities performed at DFDT

  3. Fabrication of Non-instrumented capsule for DUPIC simulated fuel irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.G.; Kang, Y.H.; Park, S.J.; Shin, Y.T. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    In order to develope DUPIC nuclear fuel, the irradiation test for simulated DUPIC fuel was planed using a non-instrumented capsule in HANARO. Because DUPIC fuel is highly radioactive material the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO was designed to remotely assemble and disassemble in hot cell. And then, according to the design requirements the non-instrumented DUPIC capsule was successfully manufactured. Also, the manufacturing technologies of the non-instrumented capsule for irradiating the nuclear fuel in HANARO were established, and the basic technology for the development of the instrumented capsule technology was accumulated. This report describes the manufacturing of the non-instrumented capsule for simulated DUPIC fuel. And, this report will be based to develope the instrumented capsule, which will be utilized to irradiate the nuclear fuel in HANARO. 26 refs., 4 figs. (Author)

  4. Compatibility analysis of DUPIC fuel (Part II) - Reactor physics design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok; Rhee, Bo Wook; Roh, Gyu Hong; Kim, Do Hun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The compatibility analysis of the DUPIC fuel in a CANDU reactor has been assessed. This study includes the fuel composition adjustment, comparison of lattice properties, performance analysis of reactivity devices, determination of regional over-power (ROP) trip setpoint, and uncertainty estimation of core performance parameters. For the DUPIC fuel composition adjustment, three options have been proposed, which can produce uniform neutronic characteristics of the DUPIC fuel. The lattice analysis has shown that the characteristics of the DUPIC fuel is compatible with those of natural uranium fuel. The reactivity devices of the CANDU-6 reactor maintain their functional requirements even for the DUPIC fuel system. The ROP analysis has shown that the trip setpoint is not sacrificed for the DUPIC fuel system owing to the power shape that enhances more thermal margin. The uncertainty analysis of the core performance parameter has shown that the uncertainty associated with the fuel composition variation is reduced appreciably, which is primarily due to the fuel composition adjustment and secondly the on-power refueling feature and spatial control function of the CANDU reactor. The reactor physics calculation has also shown that it is feasible to use spent PWR fuel directly in CANDU reactors without deteriorating the CANDU-6 core physics design requirements. 29 refs., 67 figs., 60 tabs. (Author)

  5. A study on the manufacturing and processing technologies of DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Kang, K.H.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-06-01

    In this study, DUPIC fuel fabrication technologies are developed, characteristics of fuel materials are studied, and characterization experiments for DUPIC powder and pellets are performed at PIEF. SIMFUEL powder and pellets are made of UO 2 mixed with the simulated fission products of spent fuel. Both characteristics of SIMFUEL powder and micro-structure of pellets are analyzed. End cap of DUPIC fuel rod is sealed with laser welding technique. Optimum welding condition is analyzed with results of Micro-hardness, mechanical and metallographic tests. Micro-focus x-ray inspection technique is studied to fine fine defects. DUPIC processes are improved by making OREOX process be multi-functional and by adopting rol compacting process. At PIEF, characterization experiments for DUPIC powder and pellet are performed. The equipment for experiments have been installed at PIEF no. 9405 hot cell, and its process parameters are established. (author). 7 refs., 7 tabs., 37 figs

  6. Development of equipment for fabricating DUPIC fuel powder

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H.

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs

  7. Development of equipment for fabricating DUPIC fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs.

  8. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  9. The Design Features of the Double-Banked AMBIDEXTER Utilizing DUPIC Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Tae Kyu [KHNP Central Research Institute, Daejeon (Korea, Republic of); Lee, Young Joon; Hong, Sung Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, Myung Hwan [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Kwon, Tae An [KHNP, Daejeon (Korea, Republic of); Oh, Se Kee [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Since the on-site spent fuel storage capabilities at reactors in Korea are expected to be saturated in a few years, the government has been pressed to find a solution for the spent nuclear fuel. So far one of workable means for reducing the load would be utilizing DUPIC fuel cycle technology. The technology was developed through Korea-Canada-U.S. collaboration to utilize the LWR spent fuel for the CANDU reactor. However, by various sociopolitical reasons, the DUPIC technology has not been yet commercialized. As the other alternatives to use the DUPIC technology, Gen-IV reactors would be pertinent. In the following session, the design features of a molten salt reactor system that can burn DUPIC fuel are explained. The followings are derived as conclusions after considering all the factors; The AMDEC, compared to ORIGEN2 simulations, can calculate the nuclides concentration changes within 1% deviation in various core zones and reactor system components by using different library sets which are weighted with each neutron spectrum; Fuel-flow effects coupled with nuclear reactions is well reflected in the AMDEC.

  10. Development of manufacturing equipment and QC equipment for DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-05-01

    In this study, DUPIC powder and pellet fabrication equipment, welding system, QC equipment, and fission gas treatment are developed to fabricate DUPIC fuel at IMEF M6 hot cell. The systems are improved to be suitable for remote operation and maintenance with the manipulator at hot cell. Powder and pellet fabrication equipment have been recently developed. The systems are under performance test to check remote operation and maintenance. Welding chamber and jigs are designed and developed to remotely weld DUPIC fuel rod with manipulators at hot cell. Remote quality control equipment are being tested for analysis and inspection of DUPIC fuel characteristics at hot cell. And trapping characteristics is analyzed for cesium and ruthenium released under oxidation/reduction and sintering processes. The design criteria and process flow diagram of fission gas treatment system are prepared incorporating the experimental results. The fission gas treatment system has been successfully manufactured. (Author). 33 refs., 14 tabs., 91 figs

  11. A method to calculate the effect of heterogeneous composition on bundle power

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-01

    In the DUPIC fuel cycle, the spent pressurized water reactor (PWR) fuel is used in a Canada deuterium uranium (CANDU) reactor. Depending on the initial condition and burnup history of PWR fuel, the DUPIC fuel composition varies accordingly. In order to see the effect of the fuel composition, a simple and fast method was developed and applied to the DUPIC fuel. This report discusses the method developed to predict the effect of heterogeneous fuel composition on the bundle power. (author). 3 refs., 5 tabs.

  12. Technology development of nuclear material safeguards for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs.

  13. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - IV: DUPIC Fuel Cycle Cost

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hangbok; Yang, Myung Seung

    2001-01-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.21 to 6.34 mills/kW.h for DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.07 to 0.27 mills/kW.h. Considering the uncertainty (0.40 to 0.44 mills/kW.h) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by ∼20% and reduce the spent fuel arising by ∼65% compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle is comparable with the once-through fuel cycle from the viewpoint of FCC. In the future, it should be important to consider factors such as the environmental benefit owing to natural uranium savings, the capability of reusing spent pressurized water reactor fuel, and the safeguardability of the fuel cycle when deciding on an advanced nuclear fuel cycle option

  14. Development of the high temperature sintering furnace for DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, B. G.; Park, J. J.; Yang, M. S.; Kim, K. H.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.

    1998-11-01

    This report describes the development of the high temperature sintering furnace for manufacturing DUPIC (Direct Use of spent PWR fuel in CANDU reactors) fuel pellets. The furnace has to be remotely operated and maintained in a high radioactive hot cell using master-slave manipulators. The high temperature sintering furnace for manufacturing DUPIC fuel pellets, which is satisfied with the requirements of remote operation and maintenance in a hot cell, was successfully developed and installed in the M6 hot cell at IMEF (Irradiated Material Examination Facility). The functional and thermal performance test was also successfully completed. The technology accumulated during developing this sintering furnace became the basis of other DUPIC equipment development, and will be very helpful in the development of equipment for use in hot cell in the future. (author). 20 figs

  15. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P.

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs

  16. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs.

  17. Regional overpower protection system analysis for a DUPIC fuel CANDU core

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok; Park, Jee Won

    2003-06-01

    The regional overpower protection (ROP) system was assessed a CANDU 6 reactor with the DUPIC fuel, including the validation of the WIMS/RFSP/ROVER-F code system used for the estimation of ROP trip setpoint. The validation calculation has shown that it is valid to use the WIMS/RFSP/ROVER-F code system for ROP system analysis of the CANDU 6 core. For the DUPIC core, the ROP trip setpoint was estimated to be 125.7%, which is almost the same as that of the standard natural uranium core. This study has shown that the DUPIC fuel does not hurt the current ROP trip setpoint designed for the natural uranium CANDU 6 reactor

  18. Development of remote equipment for a DUPIC fuel fabrication at KAERI

    International Nuclear Information System (INIS)

    Lee, Jungwon; Kim, Kiho; Park, Geunil; Yang, Myungseung; Song, Keechan

    2007-01-01

    The DUPIC (Direct Use of spent PWR fuel In CANDU reactors) technology is to directly refabricate CANDU fuel from spent PWR fuel without any separation of the fissile materials and fission products. Thus, the DUPIC fuel material always remains in a highly radioactive state, which requires a remote fuel fabrication in a hot-cell. About 25 pieces of remote equipment including auxiliary systems such as a hot-cell shield plug were developed and installed in a hot cell. In order to supply a high electric current to a sintering furnace in-cell from an outside cell, a shield plug was developed. It consists of three components - a steel shield plug with an embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. Experiments to evaluate the performance of the sintering furnace with the developed shield plug were carried out. It was concluded that, from the experimental results, the newly developed hot-cell shield plug satisfied all the requirements for a remote operation on a sintering furnace. DUPIC fuel pellets and elements were successfully fabricated with the developed remote equipment. (authors)

  19. The option study of air shipment of DUPIC fuel elements to Canada

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Koo, J. H.

    2003-01-01

    KAERI developed a DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF. To verify the performance of DUPIC nuclear fuel, irradiation test at operating conditions of commercially operating power plant is essential. Since the HANARO research reactor of KAERI does not have Fuel Test Loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO until about 2008. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6 kg). This transportation package is classified as the 7-th class according to 'recommendation on the transport of dangerous goods' made by the United Nations. Air shipment was investigated as a promising option because it is generally understood that air shipment is more appropriate than ship shipment for transportation of small quantity of nuclear materials from the perspectives of cost and transportation period. In case of air shipment, the IATA regulations have been more intensified since the July of 2001. To make matters worse, it becomes more difficult to get the ratification of corresponding authorities due to 9.11 terror. It was found that at present there is no proper air transportation cask for DUPIC fuel. So, air transportation is considered to be impossible. An alternative of using the exemption limit of fissile material was reviewed. Its results showed that in case of going via USA territory, approvals from US DOT should be needed. The approvals include shipping and cask approvals on technical cask testing. Furthermore, since passes through territories of Japan and Russia have to be done in case of using a regular air cargo from Korea to Canada, approvals from Russia and

  20. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Park, J. J.; Lee, H. H.; Kim, K. H.

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc

  1. A collaboration on extended INPRO case study of the DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Yang, M. S.; Ko, W. I. (and others)

    2007-05-15

    Since 1992, KAERI, AECL, United States Department of States(USDOS) and IAEA have performed the DUPIC fuel cycle development activities as an international cooperative research program, which has now been chosen as a target nuclear system for an INPRO case study. This study will focus on a further improvement and modification of the basic principles, user requirements and acceptance limits, which are defined in the IAEA-TECDOC-1434 for an evaluation of its proliferation-resistance through a proliferation-resistance assessment of the whole fuel cycle of DUPIC based on the INPRO methodology. In order to further develop an evaluation method for a proliferation-resistance based on the INPRO methodology, the basic principles, user requirements and acceptance limits of a proliferation-resistance was reviewed and quantified. Then the evaluation model (material flow, facility scale, reference fuel, etc.) of the DUPIC fuel cycle was developed and a proliferation-resistance assessment of the DUPIC fuel cycle including the PWR fuel cycle was performed by using the revised INPRO methodology in the area of a proliferation resistance. Also, the recommendations for a further improvement of INPRO methodology were suggested through examining the INPRO methodology for a proliferation resistance assessment. Through the proliferation resistance assessment of the whole fuel cycle of DUPIC including the PWR fuel cycle, the proliferation-resistance methodology was updated and re-established. And based on its experience, The research results can be used not only to evaluate and determine the future domestic proliferation-resistant fuel cycles which were derived from the GEN{sub I}V or INPRO programs but also to improve a system design to enhance its proliferation resistance. The present results will be utilized for the development of an INPRO User's Manual which is being developed as an important issue by IAEA. The credibility of the research results were ensured by the IAEA

  2. A collaboration on extended INPRO case study of the DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Park, J. H.; Yang, M. S.; Ko, W. I.

    2007-05-01

    Since 1992, KAERI, AECL, United States Department of States(USDOS) and IAEA have performed the DUPIC fuel cycle development activities as an international cooperative research program, which has now been chosen as a target nuclear system for an INPRO case study. This study will focus on a further improvement and modification of the basic principles, user requirements and acceptance limits, which are defined in the IAEA-TECDOC-1434 for an evaluation of its proliferation-resistance through a proliferation-resistance assessment of the whole fuel cycle of DUPIC based on the INPRO methodology. In order to further develop an evaluation method for a proliferation-resistance based on the INPRO methodology, the basic principles, user requirements and acceptance limits of a proliferation-resistance was reviewed and quantified. Then the evaluation model (material flow, facility scale, reference fuel, etc.) of the DUPIC fuel cycle was developed and a proliferation-resistance assessment of the DUPIC fuel cycle including the PWR fuel cycle was performed by using the revised INPRO methodology in the area of a proliferation resistance. Also, the recommendations for a further improvement of INPRO methodology were suggested through examining the INPRO methodology for a proliferation resistance assessment. Through the proliferation resistance assessment of the whole fuel cycle of DUPIC including the PWR fuel cycle, the proliferation-resistance methodology was updated and re-established. And based on its experience, The research results can be used not only to evaluate and determine the future domestic proliferation-resistant fuel cycles which were derived from the GEN I V or INPRO programs but also to improve a system design to enhance its proliferation resistance. The present results will be utilized for the development of an INPRO User's Manual which is being developed as an important issue by IAEA. The credibility of the research results were ensured by the IAEA Consultant

  3. A study on the creep characteristics of simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.; Na, S.

    2001-09-01

    Compression creep test was performed using simulated DUPIC fuel in the temperature range from 1773 to 1973 K under the stress range of 21 - 60 MPa. Creep rate and the activation energy were obtained. The activation energy for creep was 649.35 - 675.94 kJ/mol at the low stress region, where creep mechanism was controlled by diffusion. On the other hand, the activation energy at high stress region was 750.68 - 792.18 kJ/mol, where creep mechanism was controlled by dislocation motion. The activation energy for dislocation creep was higher than that for diffusion creep. The activation energy of reference simulated DUPIC fuel was higher than that of UO2

  4. Estimation of radiation exposure for hot cell workers during DUPIC fuel fabrication process in IMEF M6 cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yong Bum; Baek, Sang Yeol; Park, Dae Kyu

    1997-06-01

    DUPIC(Direct Use of spent PWR fuel In CANDU) fuel cycle to utilize the PWR spent fuel in fabricating CANDU fuel, which is expected to reduce not only the total amount of high level radwastes but the energy sources is underway. IMEF M6 cell to be used as DUPIC fuel fabrication facility is refurbished and retrofitted. Radiation exposure for the hot cell worker by dispersion of the radioactive materials during the DUPIC process were estimated on the basis of the hot cell design information. According to the estimation results, DUPIC fuel fabrication process could be run without any severe impacts to the hot cell workers when the ventilation system to maintain the sufficient pressure difference between hotcell and working area and radiation monitoring system is supports the hot cell operation properly. (author). 4 tabs., 6 figs.

  5. Environmental sensitivity studies for Gen-IV roadmap DUPIC scenario

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-03-01

    The environmental effect of the DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) fuel cycle, which is considered as one of the partial recycle scenario in Gen-IV roadmap, has been analyzed by using the dynamic analysis method. Through the parametric calculations for the DUPIC fuel cycle deployment time and the fraction of the DUPIC reactors, the environmental effects of the fuel cycle for important parameters such as the amount of spent fuel and the combined amounts of plutonium and minor actinides were estimated and compared to those of the once-through LWR fuel cycle. The results of the sensitivity calculations showed that an early deployment of the DUPIC fuel cycle with a high DUPIC reactor fraction can reduce the accumulation of spent fuel by up to 40%. More important is the associated reduction in the combined amount of plutonium and minor actinides, which may reduce the key repository parameter (long term decay heat). Therefore it is expected that favorable environmental effects will be the outcome of the implementation of the DUPIC fuel cycle

  6. Assessment of reactivity devices for CANDU-6 with DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-01-01

    Reactivity device characteristics for a CANDU-6 reactor loaded with DUPIC fuel have been assessed. A transport code WIMS-AECL and a three-dimensional diffusion code RFSP were used for the lattice parameter generation and the core calculation, respectively. Three major reactivity devices have been assessed for their inherent functions. For the zone controller system, damping capability for spatial oscillation was investigated. The restart capability of the adjuster system was investigated. The shim operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster rod system. The mechanical control absorber was assessed for the capability to compensate the temperature reactivity feedback following a power reduction. This study has shown that the current reactivity device systems retain their functions when used in a DUPIC fuel CANDU reactor

  7. Development of DUPIC safeguards technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H D; Ko, W I; Song, D Y [and others

    2000-03-01

    During the first phase of R and D program conducted from 1997 to 1999, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. For the nuclear material measurement system, the performance test was finished and received IAEA approval, and now is being used in DUPIC Fuel Fabrication Facility(DFDF) for nuclear material accounting and control. Other systems being developed in this study were already installed in DFDF and being under performance test. Those systems developed in this study will make a contribution not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author)

  8. Generation of consistent nuclear properties of DUPIC fuel by DRAGON with ENDF/B-VI nuclear data library

    International Nuclear Information System (INIS)

    Shen, W.; Rozon, D.

    1998-01-01

    DRAGON code with 89-groups ENDF/B-VI cross section library was used in this paper to generate consistent nuclear properties of DUPIC fuel. The reference feed material used for the DUPIC fuel cycle is a 17x17 French standard 900 MWe PWR spent fuel assembly with 3.2 w/o initial enrichment and 32500 MWD/7 discharge burnup. The PWR fuel assembly was modeled by JPMT/SYBILT transport method in DRAGON to generate nuclide fields of spent PWR fuel. The resultant nuclide fields constitute the initial fuel composition files for reference DUPIC fuel which can be accessed by DRAGON for CANDU 2D cluster geometry depletion calculation and 3D supercell calculation. Because of uneven spatial power distribution in PWR assemblies and full core, unexpected transition cycle, and various fuel management strategy, the spent PWR fuel composition is expected to be different from one assembly to the next. This heterogeneity was characterized also by modeling various spent PWR fuel assembly types in the paper. (author)

  9. A study on the direct use of spent PWR fuel in CANDU reactors. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Jae Sul; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This report summarizes the second year progress of phase II of DUPIC program which aims to verify experimentally the feasibility of direct use of spent PWR fuel in CANDU reactors. The project is to provide the experimental facilities and technologies that are required to perform the DUPIC experiment. As an early part of the project, engineering analysis of those facilities and construction of mock-up facility are described. Another scope of the project is to assess the DUPIC fuel cycle system and facilitate international cooperation. The progresses in this scope of work made during the fiscal year are also summarized in the report. 38 figs, 44 tabs, 8 refs. (Author).

  10. A study on the radioactive waste management for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Park, H. S.; Park, J. J.; Kim, J. H.; Cho, Y. H.; Shin, J. M.; Kim, Y. K.; Kim, J. S.; Kim, J. G.; Park, S. D.; Suh, M. Y.; Sohn, S. C.; Song, B. C.; Lee, C. H.; Jeon, Y. S.; Jo, K. S.; Jee, K. Y.; Jee, C. S.; Han, S. H.

    1997-09-01

    Part 1: The characteristics if the radioactive wastes coming from the DUPIC fuel manufacturing process were analyzed and evaluated. The gross {alpha}-activity and {alpha}-, {gamma}-spectrum of irradiated zircaloy specimens form KORI unit 1 were analyzed. In order to develop the trapping media of radioactive ruthenium oxides, trapping behavior of volatilized ruthenium oxides on various metal oxides or carbonates was analyzed. Fly ash was selected as a trapping materials for gaseous cesium. And reaction characteristics of CsNO{sub 3} and CsI with fly ash have been investigated. Also, trapping material were performed to test fly ash filter for removal of gaseous cesium under the air and hydrogen atmosphere. The applicability of fly ash to the vitrification of the spent filter was analyzed in the aspects of predictability, leachability. Good quality of Borosilicate glass was formed using Cesium spent filter. Offgas treatment system of DUPIC fuel manufacturing facility was designed and constructed in order to trap of gaseous radioactive waste from 100 batch of OREOXA furnace (the capacity : 500 g/batch). Part II: To develop chemical analysis techniques necessary for understanding chemical properties of the highly radioactive materials related to the development of DUPIC fuel cycle technology, the following basic studies were performed : dissolution of SIMFUEL (simulated fuel), determination of uranium by potentiometry and UV/Vis absorption spectrophotometry, separation of PWR spent fuel, group separation of fission products from uranium, individual separation for analysis of actinides, determination of free acid in a artificial dissolved solution of PWR spent fuel, group separation of fission products form uranium, individual separation of Sm from a mixed rare earth elements and measurement of its isotopes by TI-mass spectrometry, and characteristics of detectors in inductively coupled plasma atomic emission spectrometer (ICP-AES) suitable for analysis of trace fission

  11. A study on the radioactive waste management for DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Park, H. S.; Park, J. J.; Kim, J. H.; Cho, Y. H.; Shin, J. M.; Kim, Y. K.; Kim, J. S.; Kim, J. G.; Park, S. D.; Suh, M. Y.; Sohn, S. C.; Song, B. C.; Lee, C. H.; Jeon, Y. S.; Jo, K. S.; Jee, K. Y.; Jee, C. S.; Han, S. H.

    1997-09-01

    Part 1: The characteristics if the radioactive wastes coming from the DUPIC fuel manufacturing process were analyzed and evaluated. The gross α-activity and α-, γ-spectrum of irradiated zircaloy specimens form KORI unit 1 were analyzed. In order to develop the trapping media of radioactive ruthenium oxides, trapping behavior of volatilized ruthenium oxides on various metal oxides or carbonates was analyzed. Fly ash was selected as a trapping materials for gaseous cesium. And reaction characteristics of CsNO 3 and CsI with fly ash have been investigated. Also, trapping material were performed to test fly ash filter for removal of gaseous cesium under the air and hydrogen atmosphere. The applicability of fly ash to the vitrification of the spent filter was analyzed in the aspects of predictability, leachability. Good quality of Borosilicate glass was formed using Cesium spent filter. Offgas treatment system of DUPIC fuel manufacturing facility was designed and constructed in order to trap of gaseous radioactive waste from 100 batch of OREOXA furnace (the capacity : 500 g/batch). Part II: To develop chemical analysis techniques necessary for understanding chemical properties of the highly radioactive materials related to the development of DUPIC fuel cycle technology, the following basic studies were performed : dissolution of SIMFUEL (simulated fuel), determination of uranium by potentiometry and UV/Vis absorption spectrophotometry, separation of PWR spent fuel, group separation of fission products from uranium, individual separation for analysis of actinides, determination of free acid in a artificial dissolved solution of PWR spent fuel, group separation of fission products form uranium, individual separation of Sm from a mixed rare earth elements and measurement of its isotopes by TI-mass spectrometry, and characteristics of detectors in inductively coupled plasma atomic emission spectrometer (ICP-AES) suitable for analysis of trace fission products. (author

  12. Assessment of CANDU-6 reactivity devices for DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-11-01

    Reactivity device characteristics for a CANDU 6 reactor loaded with DUPIC fuel have been assessed. The lattice parameters were generated by WIMS-AECL code and the core calculations were performed by RFSP code with a 3-dimensional full core model. The reactivity devices studied are the zone controller, adjusters, mechanical control absorber and shutoff rods. For the zone controller system, damping capability for spatial oscillation was investigated. For the adjusters, the restart capability was investigated. For the adjusters, the restart capability was investigated. The shin operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster system. The mechanical control absorber was assessed for the function of compensating temperature reactivity feedback following a power reduction. And shutoff rods were also assessed to investigate the following a power reduction. And shutoff rods were also assessed to investigate the static reactivity worth. This study has shown that the current reactivity device system of CANDU-6 core with the DUPIC fuel. (author). 9 refs., 17 tabs., 7 figs

  13. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  14. Sensitivity analysis on various parameters for lattice analysis of DUPIC fuel with WIMS-AECL code

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok; Park, Jee Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  15. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost

    International Nuclear Information System (INIS)

    Choi, Hangbok; Ko, Won Il; Yang, Myung Seung

    2001-01-01

    A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC (∼49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC

  16. Proliferation Resistance: Acquisition/Diversion Pathway Analysis for the DUPIC Fuel Cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Lee, Ho Hee; Kwon, Eun Ha; Jeong, Chang Joon; Kim, Ho Dong

    2009-07-01

    Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), a methodology for evaluating proliferation resistance (INPRO PR methodology) has been developed. However, it remains to develop the methodology to evaluate User Requirements (UR) 4 regarding multiplicity and robustness of barriers against proliferation - innovative nuclear energy systems should incorporate multiple proliferation resistance features and measures. Since this requires an acquisition/diversion pathway analysis, this report describes a systematic approach developed for the identification and analysis of pathways for the acquisition of weapons-usable nuclear material using the DUPIC fuel cycle system. At the first step, the objectives of the proliferation were identified, including the quality and quantity of the material, the time required to acquire the material for the proliferation, thr capability of the potential proliferant country, etc. At the second step, the possible strategies, which the potential proliferant country could adopt, were identified: undeclared removal of nuclear material from the fuel cycle facilities; and further treatment of the diverted nuclear materials needed to acquire weapons-usable materials. At the final step, a systematic approach to select the plausible pathways for the acquisition/diversion of nuclear material during the whole fuel cycle has been developed. The coarse material diversion pathways for the DUPIC fuel cycle and the approach developed was reviewed and discussed at the experts meeting at the IAEA for its appropriateness and comprehensiveness

  17. Development of the manufacture and process for DUPIC fuel elements; development of the quality evaluation techniques for end cap welds of DUPIC fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Tae; Choi, Myong Seon; Yang, Hyun Tae; Kim, Dong Gyun; Park, Jin Seok; Kim, Jin Ho [Yeungnam University, Kyongsan (Korea)

    2002-04-01

    The objective of this research is to set up the quality evaluation techniques for end cap welds of DUPIC fuel element. High temperature corrosion test and the SCC test for Zircaloy-4 were performed, and also the possibility of the ultrasonic test technique was verified for the quality evaluation and control of the laser welds in the DUPIC fuel rod end cap. From the evaluation of corrosion properties with measuring the weight gain and observing oxide film of the specimen that had been in the circumstance of steam(400 .deg. C, 1,500 psi) by max. 70 days later, the weight gain of the welded specimens was larger than original tube and the weight increasing rate increased with the exposed days. For the Development of techniques for ultrasonic test, semi-auto ultrasonic test system has been made based on immersion pulse-echo technique using spherically concentrated ultrasonic beam. Subsequently, developed ultrasonic test technique is quite sensible to shape of welds in the inside and outside of tube as well as crack, undercut and expulsion, and also this ultrasonic test, together with metallurgical fracture test, has good reliance as enough to be used for control method of welding process. 43 refs., 47 figs., 8 tabs. (Author)

  18. Development of DUPIC safeguards technology

    International Nuclear Information System (INIS)

    Kim, H. D.; Kang, H. Y.; Ko, W. I.

    2002-05-01

    DUPIC safeguards R and D in the second phase has focused on the development of nuclear material measurement system and its operation and verification, the development of nuclear material control and accounting system, and the development of remote and unmanned containment/surveillance system. Of them, the nuclear material measurement system was authenticated from IAEA and officially used for IAEA and domestic safeguards activities in DFDF. It was also verified that the system could be used for quality control of DUPIC process. It is recognised that the diagnostic software using neural network and remote and unmanned containment/surveillance system developed here could be key technologies to go into remote and near-real time monitoring system. The result of this project will eventually contribute to similar nuclear fuel cycles like MOX and pyroprocessing facility as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material

  19. Evaluation of the Centerline Temperature for the Irradiated DUPIC Pellet

    International Nuclear Information System (INIS)

    Park, Chang Je; Lee, Cheol Yong; Kang, Kweon Ho; Song, Kee Chan

    2007-01-01

    The DUPIC (Direct Use of spent PWR fuels In a CANDU reactor) fuel has a proliferation-resistant property and provides an efficient utilization of a spent fuel through a direct fabrication with the OREOX process in which most of the fission products remain and some volatile elements such as Xe, Kr, Cs, and I are reduced significantly. It is expected that the performance of the DUPIC fuel exhibits different behavior when compared with the fresh uranium oxide fuel. To evaluate the performance of the DUPIC fuel, total five irradiation tests have been performed in the HANARO reactor since May 2000. Recently, the fifth irradiation test of the DUPIC fuel was successfully completed for a total of three cycles from March 2006 to July 2006. The important characteristics of the first irradiation test are a high power test and a validation of a remote assembly of an irradiation rig. The second irradiation test was instrumented with a SPND (self-powered neutron detector) first for a typical CANDU burnup test. The third test was an extensive irradiation test of the second test and the total burnup was estimated as 6,700 MWd/tU. The forth test was a remote instrumented test of the pellet centerline temperature and the inlet and outlet coolant temperatures. The first remote instrumentation test was achieved with our own technology. The fifth test was a remote-instrumented test of the pellet centerline temperature by extending the technology of the forth irradiation test. In this paper, a DUPIC fuel performance code (KAOS, KAERI Advanced Oxide fuel performance code System) was used to compare the main simulation results of the irradiation tests in the HANARO

  20. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  1. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  2. Technical Support of Performance Improvement for Resistance Welding Using Zr-4 Endcap and Endplate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung

    2008-10-15

    The proper welding process for Zircaloy-4 endplate of PHWR and DUPIC fuel bundle assembly is considered important in respect to the soundness of weldment and the improvement of the performance of nuclear fuel bundle during the operation in reactor. The Zircaloy-4 endplate of PHWR and DUPIC fuel bundles are welded by the projection joint type, connecting the endcaps of fuel elements. Therefore, the purpose of this projection joint is to improve the welding quality of torque strength and welding deformation and to apply the commercial productions for the endplate welding of PHWR and DUPIC nuclear fuel bundle assembly.

  3. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  4. Development of DUPIC safeguards neutron counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gil; Cha, Hong Ryul; Kim, Ho Dong; Hong, Jong Sook; Kang, Hee Young

    1999-08-01

    KAERI, in cooperation with LANL, developed DSNC (DUPIC Safeguards Neutron Counter) for safeguards implementing on DUPIC process which is under development by KAERI for direct use of spent PWR fuel in CANDU reactors. DSNC is a well-type neutron coincidence counter with substantial shielding to protect system from high gamma radiation of spent fuel. General development procedures in terms of design, manufacturing, fabrication, cold and hot test, performance test for DSNC authentication by KAERI-IAEA-LANL are described in this report. It is expected that the techniques related DSNC development and associated neutron detection and evaluation method could be applied for safeguards improvement. (Author). 20 refs., 16 tabs. 98 figs.

  5. Nuclear material accountability system in DUPIC facility (I)

    International Nuclear Information System (INIS)

    Ko, W. I.; Kim, H. D.; Byeon, K. H.; Song, D. Y.; Lee, B. D.; Hong, J. S.; Yang, M. S.

    1999-01-01

    KAERI(Korea Atomic Energy Research Institute) has developed a nuclear material accountability system for DUPIC(Direct Use of Spent PWR Fuel in CANDU) fuel cycle process. The software development for the material accountability started with a general model software, so-called CoreMAS(Core Material Accountability System), at the beginning of 1998. The development efforts have been focused on the DUPIC safeguards system, and in addition, improved to meet Korean safeguards requirements under domestic laws and regulations. The software being developed as a local area network-based accountability system with multi-user environment is able to track and control nuclear material flow within a facility and inter-facility. In addition, it could be operated in a near-real time manner and also able to generate records and reports as necessary for facility operator and domestic and international inspector. This paper addresses DMAS(DUPIC Material Accountability System) being developed by KAERI and simulation in a small-scale DUPIC process for the verification of the software performance and for seeking further works

  6. Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)

  7. Refurbishment of isolation room and development of glove box for the DUPIC project in IMEF

    International Nuclear Information System (INIS)

    Baek, S. Y.; Park, J. J.; Lee, H. H.; Hong, K. P.; Yang, M. S.; Min, D. K.

    2001-01-01

    To perform R and D of DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors), the high-radioactive shielding facility is necessary. IMEF(Irradiated Material Examination Facility) in KAERI has the high-radioactive shielding facility and some R and D such that the spent PWR fuel can be burned again in a PHWR by direct re-fabrication into CANDU-compatible DUPIC fuel bundles, is being carried out using the manipulator attached to the hotcell-M6. Although many testing equipment are located and are being operated in hotcell, it is not possible to work personally inside the hotcell due to the high radioactive contaminant. When they are out of order, the cleaned one can be maintained and repaired using the renovated isolation room located over the hotcell-M6 and the new devised glove box located at service area. Some lead-sheets and the lead glasses were fixed on the wall of the isolation room to improve the shielding capability and the roof door of hotcell-M6 can be open remotely. To maintain and repair the equipment of hotcell, a working desk was constructed in the isolation room. The glove box was also made to withdraw the disordered equipment of hotcell through the rear door

  8. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  9. Advanced CANDU reactors fuel analysis through optimal fuel management at approach to refuelling equilibrium

    International Nuclear Information System (INIS)

    Tingle, C.P.; Bonin, H.W.

    1999-01-01

    The analysis of alternate CANDU fuels along with natural uranium-based fuel was carried out from the view point of optimal in-core fuel management at approach to refuelling equilibrium. The alternate fuels considered in the present work include thorium containing oxide mixtures (MOX), plutonium-based MOX, and Pressurised Water Reactor (PWR) spent fuel recycled in CANDU reactors (Direct Use of spent PWR fuel in CANDU (DUPIC)); these are compared with the usual natural UO 2 fuel. The focus of the study is on the 'Approach to Refuelling Equilibrium' period which immediately follows the initial commissioning of the reactor. The in-core fuel management problem for this period is treated as an optimization problem in which the objective function is the refuelling frequency to be minimized by adjusting the following decision variables: the channel to be refuelled next, the time of the refuelling and the number of fresh fuel bundles to be inserted in the channel. Several constraints are also included in the optimisation problem which is solved using Perturbation Theory. Both the present 37-rod CANDU fuel bundle and the proposed CANFLEX bundle designs are part of this study. The results include the time to reach refuelling equilibrium from initial start-up of the reactor, the average discharge burnup, the average refuelling frequency and the average channel and bundle powers relative to natural UO 2 . The model was initially tested and the average discharge burnup for natural UO 2 came within 2% of the industry accepted 199 MWh/kgHE. For this type of fuel, the optimization exercise predicted the savings of 43 bundles per full power year. In addition to producing average discharge burnups and other parameters for the advanced fuels investigated, the optimisation model also evidenced some problem areas like high power densities for fuels such as the DUPIC. Perturbation Theory has proven itself to be an accurate and valuable optimization tool in predicting the time between

  10. CANFLEX fuel bundle impact test

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Park, J. S.; Hong, S. D.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the impact test of the CANFLEX fuel bundle. Impact test is performed to determine and verify the amount of general bundle shape distortion and defect of the pressure tube that may occur during refuelling. The test specification requires that the fuel bundles and the pressure tube retain their integrities after the impact test under the conservative conditions (10 stationary bundles with 31kg/s flow rate) considering the pressure tube creep. The refuelling simulator operating with pneumatic force and simulated shield plug were fabricated and the velocity/displacement transducer and the high speed camera were also used in this test. The characteristics of the moving bundle (velocity, displacement, impacting force) were measured and analyzed with the impact sensor and the high speed camera system. The important test procedures and measurement results were discussed as follows. 1) Test bundle measurements and the pressure tube inspections 2) Simulated shield plug, outlet flange installation and bundle loading 3) refuelling simulator, inlet flange installation and sensors, high speed camera installation 4) Perform the impact test with operating the refuelling simulator and measure the dynamic characteristics 5) Inspections of the fuel bundles and the pressure tube. (author). 8 refs., 23 tabs., 13 figs

  11. Dimensional measurement of fresh fuel bundle for CANDU reactor

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Cho, Moon Sung; Suk, Ho Chun; Koo, Dae Seo; Jun, Ji Su; Jung, Jong Yeob

    2005-01-01

    This report describes the results of the dimensional measurement of fresh fuel bundles for the CANDU reactor in order to estimate the integrity of fuel bundle in two-phase flow in the CANDU-6 fuel channel. The dimensional measurements of fuel bundles are performed by using the 'CANDU Fuel In-Bay Inspection and Dimensional Measurement System', which was developed by this project. The dimensional measurements are done from February 2004 to March 2004 in the CANDU fuel storage of KNFC for the 36 fresh fuel bundles, which are produced by KNFC and are waiting for the delivery to the Wolsong-3 plant. The detail items of dimensional measurements are included fuel rod and bearing pad profiles of the outer ring in fuel bundle, diameter of fuel bundle, bowing of fuel bundle, fuel rod length, and surface profile of end plate profile. The measurement data will be compared with those of the post-irradiated bundles cooled in Wolsong-3 NPP spent fuel pool by using the same bundles and In-Bay Measurement System. So, this analysis of data will be applied for the evaluation of fuel bundle integrity in two-phase flow of the CANDU-6 fuel channel

  12. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; Chung, H J; Chun, S Y; Yang, S K; Chung, M K [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  13. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  14. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan; Jung, Sung Hoon

    1991-07-01

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  15. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  16. Dry Process Fuel Performance Evaluation

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  17. Dry process fuel performance technology development

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K.

    2006-06-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  18. Dry process fuel performance technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K. (and others)

    2006-06-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  19. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power / Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved

  20. Modeling report of DYMOND code (DUPIC version)

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Yacout, Abdellatif M.

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc

  1. Modeling report of DYMOND code (DUPIC version)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan [KAERI, Taejon (Korea, Republic of); Yacout, Abdellatif M [Argonne National Laboratory, Ilinois (United States)

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc.

  2. Molybdenum-99-producing 37-element fuel bundle neutronically and thermal-hydraulically equivalent to a standard CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca

    2016-10-15

    Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.

  3. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  4. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.

    1992-05-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)

  5. A study on the direct use of spent PWR fuel in CANDU reactors -Development of DUPIC fuel on manufacturing and quality control technology-

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, Hyun Soo; Lee, Yung Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Oxidation/reduction process was established after analysis of the effect of process parameter on the sintering behavior using SIMFUEL. Process equipment was studied more detail and some of process equipment items were designed and procured. The chemical analysing method of fission products and fissile content in DUPIC fuel was studied and the behavior and the characteristics of fission products in fuel was also done. Requirement for irradiation in HANARO was analysed to prepare performance evaluation. 100 figs, 48 tabs, 170 refs. (Author).

  6. A study on the direct use of spent PWR fuel in CANDU reactors -Development of DUPIC fuel on manufacturing and quality control technology-

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, Hyun Soo; Lee, Yung Woo

    1995-07-01

    Oxidation/reduction process was established after analysis of the effect of process parameter on the sintering behavior using SIMFUEL. Process equipment was studied more detail and some of process equipment items were designed and procured. The chemical analysing method of fission products and fissile content in DUPIC fuel was studied and the behavior and the characteristics of fission products in fuel was also done. Requirement for irradiation in HANARO was analysed to prepare performance evaluation. 100 figs, 48 tabs, 170 refs. (Author)

  7. Development of CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan

    1991-12-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle(so-called CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactors for 1996 and 1997, and consequently will be used in the existing and future reactors in Korea. The research activities during this year include the basic design of CANFLEX fuel with slightly enriched uranium(CANFLEX-SEU), with emphasis on the extension of fuel operation limit. Based on this basic design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel. (Author)

  8. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  9. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  10. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  11. Nuclear fuel bundle disassembly and assembly tool

    International Nuclear Information System (INIS)

    Yates, J.; Long, J.W.

    1975-01-01

    A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)

  12. Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Persiani, P K [Argonne National Lab., IL (United States)

    1997-07-01

    The purpose of the study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiative and safeguards systems. Alternative recycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products. The concepts are alternatives to either the direct long-term storage deposition of or the purex reprocessing of the spent fuels. The alternate fuel cycle concepts reviewed include: the dry-recycle processes such as the direct use of reconfigured PWR spent fuel assemblies into CANDU reactors(DUPIC); low-decontamination, single-cycle co-extraction of fast reactor fuels in a wet-purex type of reprocessing; and on a limited scale the thorium-uranium fuel cycle. The nonproliferation advantages usually associated with the above non-separation processes are: the highly radioactive spent fuel presents a barrier to the physical diversion of the nuclear material; avoid the need to dissolve and chemically separate the plutonium from the uranium and fission products; and that the spent fuel isotopic quality of the plutonium vector is further degraded. Although the radiation levels and the need for reprocessing may be perceived as barriers to the terrorist or the subnational level of safeguards, the international level of nonproliferation concerns is addressed primarily by material accountancy and verification activities. On the international level of nonproliferation concerns, the non-separation fuel cycle concepts involved have to be evaluated on the bases of the impact the processes may have on nuclear materials accountancy. (author).

  13. In-pool damaged fuel bundle recovery

    International Nuclear Information System (INIS)

    Piascik, T.G.; Patenaude, R.S.

    1988-01-01

    While preparing to rerack the Oyster Creek Nuclear Generating Station, GPU Nuclear had need to move a damaged fuel bundle. This bundle had no upper tie plate and could not be moved in the normal manner. GPU Nuclear formed a small, dedicated project team to disassemble, package, and move this damaged bundle. The team was composed of key personnel from GPU Nuclear Fuels Projects, OCNGS Operations and Proto-Power/Bisco, a specialty contractor who has fuel bundle reconstitution and rod consolidation experience, remote tooling, underwater video systems and experienced technicians. Proven tooling, clear procedures and a simple approach were important, but the key element was the spirit of teamwork and leadership exhibited by the people involved. In spite of several emergent problems which a task of this nature presents, this small, close knit utility/vendor team completed the work on schedule and within the exposure and cost budgets

  14. Evaluation of bundle duct interaction by out-of-pile compression test of FBR fuel pin bundles

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2001-06-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle is a main factor to limit the fuel lifetime. Therefore, it is important for the design of fast reactor fuel assembly to understand the fuel pin deformation behavior under BDI condition. In order to understand the fuel pin deformation behavior under BDI condition, out-of-pile compression tests were conducted for FBR fuel pin bundle by use of X-ray CT equipment. In these compression tests, two kinds of fuel pin bundles were conducted. One was the fuel pin bundle with the short wire-pitch and the other was the fuel pin bundle with the short wire-pitch and large diameter claddings. The general discussions were also performed based on the results of out-of-pile compression tests obtained by use of X-ray CT equipment in the previous work. Following results were obtained. 1) The occurrence of the pin-to-duct contact depends on the wire-pitch. In the fuel pin bundle with large wire-pitch, the pin-to-duct contact occurred at the early stage of BDI. The reason of this result is due to the low bowing rigidity of the fuel pins with long wire-pitch. 2) The value of the ovalation stiffness strongly depends on the geometry of cladding (diameter, thickness) and especially on wire-pitch. This result in this work revealed that the occurrence of the pin-to-duct contact depends on the value of the ovalation stiffness. 3) The occurrence of wire dispersion and dispersive displacement of pins depends on the wire-pitch strongly. In the fuel pin bundle with the long wire-pitch, the occurrence of the above-mentioned suppression mechanism to BDI is remarkable. 4) The suppression mechanism to BDI of the fuel pin bundle with the long wire-pitch is elastic oval deformation of cladding, wire dispersion and dispersive displacement of pins. On the other hand, the elastic and plastic oval deformation of cladding is the major suppression mechanism to BDI in the fuel pin bundle with the short wire-pitch. 5) The appearance of

  15. CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)

  16. CANDU fuel bundle deformation modelling with COMSOL multiphysics

    International Nuclear Information System (INIS)

    Bell, J.S.; Lewis, B.J.

    2012-01-01

    Highlights: ► The deformation behaviour of a CANDU fuel bundle was modelled. ► The model has been developed on a commercial finite-element platform. ► Pellet/sheath interaction and end-plate restraint effects were considered. ► The model was benchmarked against the BOW code and a variable-load experiment. - Abstract: A model to describe deformation behaviour of a CANDU 37-element bundle has been developed under the COMSOL Multiphysics finite-element platform. Beam elements were applied to the fuel elements (composed of fuel sheaths and pellets) and endplates in order to calculate the bowing behaviour of the fuel elements. This model is important to help assess bundle-deformation phenomena, which may lead to more restrictive coolant flow through the sub-channels of the horizontally oriented bundle. The bundle model was compared to the BOW code for the occurrence of a dry-out patch, and benchmarked against an out-reactor experiment with a variable load on an outer fuel element.

  17. Effect of power variations across a fuel bundle and within a fuel element on fuel centerline temperature in PHWR bundles in uncrept and crept pressure tubes

    International Nuclear Information System (INIS)

    Onder, E.N.; Roubtsov, D.; Rao, Y.F.; Wilhelm, B.

    2017-01-01

    Highlights: • Pressure tube creep effect on fuel pin power and temperatures was investigated. • Noticeable effects were observed for 5.1% crept pressure tube. • Bundle eccentricity effect on power variations was insignificant for uncrept channels. • Difference of 112 °C was observed between top & bottom elements in 5.1% crept channel. • Not discernible fission gas release was expected with temperature difference of 112 °C. - Abstract: The neutron flux and fission power profiles through a fuel bundle and across a fuel element are important aspects of nuclear fuel analysis in multi-scale/multi-physics modelling of Pressurized Heavy Water Reactors (PHWRs) with advanced fuel bundles. Fuel channels in many existing PHWRs are horizontal. With ageing, pressure tubes creep and fuel bundles in these pressure tubes are eccentrically located, which results in an asymmetric coolant flow distribution between the top and bottom of the fuel bundles. The diametral change of the pressure tube due to creep is not constant along the fuel channel; it reaches a maximum in the vicinity of the maximum neutron flux location. The cross-sectional asymmetric positioning of fuel bundles in a crept pressure tube contributes to an asymmetric power distribution within a ring of fuel elements. Modern reactor physics lattice codes (such as WIMS-AECL) are capable of predicting the details of power distribution from basic principles. Thermalhydraulics subchannel codes (such as ASSERT-PV) use models to describe inhomogeneous power distribution within and across fuel elements (e.g., flux tilt model, different powers in different ring elements, or radial power profiles). In this work, physics and thermalhydraulics codes are applied to quantify the effect of eccentricity of a fuel bundle on power variations across it and within a fuel element, and ultimately on the fuel temperature distribution and fuel centerline temperature, which is one of the indicators of fuel performance under normal

  18. Preliminary Analysis of the Fuel Bundle Stiffness by ANSYS for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Cheon, Jin Sik; Hahn, Do Hee; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    In SFR (Sodium-cooled Fast Reactor) the temperature of the fuel pin is higher than that of the hexagonal duct, so the thermal expansion rate of the fuel bundle is higher than that of the duct. The neutron fluence and the fuel pin pressure are also increased according to the burnup. So the radial expansion and bowing of a fuel pin bundle would occur, and then fuel bundle would interact with a duct. This phenomenon is called bundle-to-duct interaction (BDI). Under the BDI condition, excess cladding strain and hot spots would occur. Therefore BDI as well as the core mechanics should be considered to evaluate the FBR fuel integrity. The analysis codes such as ETOILE, SHADOW, and MARSE, have been developed to evaluate the BDI behavior. The ANSYS based model is also being developed to analysis the bundle duct interaction for SFR in Korea. In this paper, the fuel pin/bundle model for analyzing the bending deflection and oval deformation was described. The preliminary analysis of the fuel bundle stiffness was performed by the developed model.

  19. CANFLEX fuel bundle strength tests (test report)

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs

  20. Discharge Burnup Evaluation of Natural Uranium Loaded CANFLEX-43 Fuel Bundle

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Kim, Yong Hee; Kim, Won Young; Park, Joo Hwan

    2009-11-01

    Using WIMS-AECL code, which is 2-dimensional lattice core used in CANDU physics calculation, the discharge burnup of the natural uranium loaded CANFLEX-43 fuel bundle was evaluated by comparing the discharge burnup of standard 37 element fuel bundle. When the discharge burnup of the standard 37 element fuel is 7,200 MWd/MTU, that of the CANFLEX 43 fuel bundle was evaluated as 7,077 MWd/MTU, by applying the same lattice conditions for both fuel bundles

  1. Equipment for detach the fuel elements of the irradiated candu fuel bundle

    International Nuclear Information System (INIS)

    Cojocaru, V.; Dinuta, G.

    2013-01-01

    Monitoring the behaviour of the fuel bundles during their combustion provides useful information for the operation of the nuclear power plant as well as for the fuel manufacturer. Before placing it inside the reactor, the fuel bundle is inspected visually, dimensionally and, during combustion in the reactor, its radioactive behaviour is monitored. The purpose of the presented equipment is to allow the visual external inspection of the damaged fuel bundle in order to identify visible defects and to detach the fuel element by breaking the welded connection between the cap and grid. These devices are operated using the handler devices already existing in the hot cells Post-Irradiation Examination Laboratory (LEPI). This equipment has been used successfully in the LEPI laboratory at SCN Pitesti to inspect the damaged fuel from Cernavoda NPP, in March 2013. (authors)

  2. Dynamic behaviour of FBR fuel pin bundles

    International Nuclear Information System (INIS)

    Martin, P.H.; Van Dorsselaere, J.P.; Ravenet, A.

    1990-01-01

    A programme of shock tests on a fast neutron reactor subassembly model (SPX1 geometry) including a complete bundle of fuel pins (dummy elements) is being carried out in the BELIER test facility at Cadarache. The purpose of these tests is: to determine the distribution of dynamic forces applied to the fuel rod clads under the impact conditions encountered in a reactor during a earthquake; to reduce as much as possible the conservatism of the methods presently used for the calculation of those forces. The test programme, now being completed, consists of the following steps: impacts on the mock-up in air with an non-compact bundle (situation of the subassembly at beginning of life (BOL) with clearances within the bundle); impacts under the same conditions but with fluid (water) in the subassembly; impacts on the mock-up in air and with a compacted bundle (simulating the conditions of an end-of-life (EOL) bundle with no clearance within the bundle). The accelerations studied in these tests cover the range encountered in design calculations for the subassembly frequencies in beam mode. (author)

  3. Development of a new bundle welding technology for CANDU fuels

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, D. Y.; Goo, D. S.

    2010-01-01

    The new technology of welding process for fuel bundle of CANDU nuclear fuels is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of leakage of the fission products is mostly apt to occur at the weldments of fuel bundles, and it is connected directly with the safety and life prediction of the nuclear reactor in operation. The fuel bundles of CANDU nuclear fuels are welded by the electrical resistance method, connecting the endplates and endcaps with fuel rods. Therefore, the purpose of this study of the 2nd year is to select the proper welding parameters and to investigate the characteristics of the full-sized samples using the projection endplates and make some prototype samples for the endplate welding of CANDU nuclear fuels. This study will be also provide the fundamental data for the new design and fabrications of CANDU nuclear fuel bundles

  4. A comprehensive in-pile test of PWR fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang Rixin; Zhang Shucheng; Chen Dianshan (Academia Sinica, Beijing (China). Inst. of Atomic Energy)

    1991-02-01

    An in-pile test of PWR fuel bundle has been conducted in HWRR at IAE of China. This paper describes the structure of the test bundle (3x3-2), fabrication process and quality control of the fuel rod, irradiation conditions and the main Post Irradiation Examination (PIE) results. The test fuel bundle was irradiated under the PWR operation and water chemistry conditions with an average linear power of 381 W/cm and reached an average burnup of 25010 MWd/tU of the fuel bundle. After the test, destructive and non-destructive examination of the fuel rods was conducted at hot laboratories. The fission gas release was 10.4-23%. The ridge height of cladding was 3 to 8 {mu}m. The hydrogen content of the cladding was 80 to 140 ppm. The fuel stack height was increased by 2.9 to 3.3 mm. The relative irradiation growth was about 0.11 to 0.17% of the fuel rod length. During the irradiation test, no fuel rod failure or other abnormal phenomena had been found by the on-line fuel failure monitoring system of the test loop and water sampling analysis. The structure of the test fuel assembly was left undamaged without twist and detectable deformation. (orig.).

  5. Manufacturing of 37-element fuel bundles for PHWR 540 - new approach

    Energy Technology Data Exchange (ETDEWEB)

    Arora, U.K.; Sastry, V.S.; Banerjee, P.K.; Rao, G.V.S.H.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. Atomic Energy, Government of India, Hyderabad (India)

    2003-07-01

    Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO{sub 2} pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)

  6. Manufacturing of 37-element fuel bundles for PHWR 540 - new approach

    International Nuclear Information System (INIS)

    Arora, U.K.; Sastry, V.S.; Banerjee, P.K.; Rao, G.V.S.H.; Jayaraj, R.N.

    2003-01-01

    Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO 2 pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)

  7. SEU43 fuel bundles in CANDU 600

    International Nuclear Information System (INIS)

    Catana, Alexandru; Prodea, Iosif; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2008-01-01

    Cernavoda Unit 1 and Unit 2 are pressure tube 650 MWe nuclear stations moderated and cooled with heavy water, of Canada design, located in Romania. Fuelling is on-power and the plant is currently fuelled with natural uranium dioxide. Fuel is encapsulated in a 37 fuel rod assembly having a specific standard geometry (STD37). In order to reduce fuel cycle costs programs were initiated in Canada, South Korea and at SCN Pitesti, Romania for design and build of a new, improved geometry fuel bundle and some fuel compositions. Among fuel compositions, which are considered, is the slightly enriched uranium (SEU) fuel (0.96 w% U-235) with an associated burn-up increase from ∼7900 MWd/tU up to ∼15000 MWd/tU. Neutron analysis showed that the Canadian-Korean fuel bundle geometry with 43 rods called SEU (SEU43) can be used in already operated reactors. A new fuel bundle resulted. Extended, comprehensive analysis must be conducted in order to assess the TH behavior of SEU43 besides the neutron, mechanical (drag force, etc) analyses. In this paper, using the sub-channel approach, main thermal-hydraulic parameters were analyzed: pressure drop; fuel, sheath and coolant temperatures; coolant density; critical heat flux. Some significant differences versus standard fuel are outlined in the paper and some conclusions are drawn. While, by using this new fuel, there are many benefits to be attained like: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power generation against other sources of generation, etc., the safety margins must be, at least, conserved. The introduction of a new fuel bundle type, different in geometry and fuel composition, requires a detailed preparation, a testing program and a series of neutron and thermal-hydraulic analysis. The results reported by this paper is part of this effort. The feasibility to increase the enrichment from 0.71% U-235 (NU) to 0.96% U-235, with an estimated burn-up increase up to 14000 MWd

  8. Optimization of a fuel bundle within a CANDU supercritical water reactor

    International Nuclear Information System (INIS)

    Schofield, M.E.

    2009-01-01

    The supercritical water reactor is one of six nuclear reactor concepts being studied under the Generation IV International Forum. Generation IV nuclear reactors will improve the metrics of economics, sustainability, safety and reliability, and physical protection and proliferation resistance over current nuclear reactor designs. The supercritical water reactor has specific benefits in the areas of economics, safety and reliability, and physical protection. This work optimizes the fuel composition and bundle geometry to maximize the fuel burnup, and minimize the surface heat flux and the form factor. In optimizing these factors, improvements can be achieved in the areas of economics, safety and reliability of the supercritical water reactor. The WIMS-AECL software was used to model a fuel bundle within a CANDU supercritical water reactor. The Gauss' steepest descent method was used to optimize the above mentioned factors. Initially the fresh fuel composition was optimized within a 43-rod CANFLEX bundle and a 61-rod bundle. In both the 43-rod and 61-rod bundle scenarios an online refuelling scheme and non-refuelling scheme were studied. The geometry of the fuel bundles was then optimized. Finally, a homogeneous mixture of thorium and uranium fuel was studied in a 60-rod bundle. Each optimization process showed definitive improvements in the factors being studied, with the most significant improvement being an increase in the fuel burnup. The 43-rod CANFLEX bundle was the most successful at being optimized. There was little difference in the final fresh fuel content when comparing an online refuelling scheme and non-refuelling scheme. Through each optimization scenario the ratio of the fresh fuel content between the annuli was a significant determining cause in the improvements in the factors being optimized. The geometry optimization showed that improvement in the design of a fuel bundle is indeed possible, although it would be more advantageous to pursue it

  9. Modeling of fuel bundle vibration and the associated fretting wear in a CANDU fuel channel

    International Nuclear Information System (INIS)

    Mohany, A.; Hassan, M.

    2011-01-01

    In this paper a numerical model is developed to predict the vibration response of a CANDU® fuel bundle and the associated fretting wear in the surrounding pressure tube. One excitation mechanism is considered in this model; turbulence-induced excitation caused by coolant flow inside the fuel channel. The numerical model can be easily adapted to include the effects of seismic events, fuel bundle impact during refuelling and start-up of the reactor, and the acoustic pressure pulsations caused by the primary heat transport (PHT) pumps. The simulation is performed for a typical CANDU fuel bundle with 37 fuel elements. The clearances between the buttons of the inner fuel elements, and between the bearing pads of the outer fuel elements and the pressure tube were measured from an actual fuel bundle. Some variability among the measured clearance values was observed. Therefore, probability density functions of the measured clearance values were established and the simulation was performed for the probabilistic distribution of the clearance values. The contact between the fuel bundle and the pressure tube is modeled using pseudo-force contact method. The proposed modelling technique can be used in future CANDU reactors to avoid fuel and pressure tube fretting damage due to the aforementioned excitation mechanisms. (author)

  10. Preliminary Analysis of the Bundle-Duct Interaction for the fuel of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Cheon, Jin Sik; Hahn, Do Hee; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    BDI (Bundle-Duct Interaction) occurs in the fuel of SFR (Sodium-cooled Fast Reactor) due to the radial expansion and bowing of a fuel pin bundle. Under the BDI condition, excess cladding strain and hot spots would occur. Therefore, BDI, which is the dominant deformation mechanisms in a fuel pin bundle, should be considered to evaluate the FBR fuel integrity. The analysis codes such as ETOILE and BMBOO, have been developed to evaluate the BDI behavior. The bundle duct interaction model is also being developed for SFR in Korea. This model is based on ANSYS. In this paper, the fuel pin configuration model for the BDI calculation was established. The preliminary analysis of the bundle-duct interaction was performed to evaluate the fuel design concept.

  11. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  12. Interactive hypermedia training manual for spent-fuel bundle counters

    International Nuclear Information System (INIS)

    Basso, R.A.

    1990-07-01

    Spent-fuel bundle counters, developed by the Canadian Safeguards Support Program for the International Atomic Energy Agency, provide a secure and independent means of counting the number of irradiated fuel bundles discharged into the fuel storage bays at CANDU nuclear power stations. Paper manuals have been traditionally used to familiarize IAEA inspectors with the operation, maintenance and extensive reporting capabilities of the bundle counters. To further assist inspectors, an interactive training manual has been developed on an Apple Macintosh computer using hypermedia software. The manual uses interactive animation and sound, in conjunction with the traditional text and graphics, to simulate the underlying operation and logic of the bundle counters. This paper presents the key features of the interactive manual and highlights the advantages of this new technology for training

  13. Acquisition/Diversion Pathway Analysis of the DUPIC Fuel Cycle for the Assessment of Proliferation Resistance

    International Nuclear Information System (INIS)

    Chang, Hong Lae; Ko, Won Il

    2008-01-01

    Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) of the IAEA, a methodology for evaluating proliferation resistance (INPRO PR methodology) has been developed in order to provide guidance in using the INPRO methodology. However, it remains to develop the methodology to evaluate User Requirements (UR) 4 regarding multiplicity and robustness of barriers against proliferation (innovative nuclear energy systems should incorporate multiple proliferation resistance features and measures). To develop the assessment procedure and metrics for User Requirement 4 (UR4), the coarse acquisition/ diversion pathway analysis of the DUPIC Fuel Cycle has been performed. The most plausible pathways for the acquisition of weapons-usable nuclear material were identified and analyzed using a systematic approach herein, and future work to complete the assessment approach for the UR4 of the INPRO methodology regarding the multiplicity and robustness of barriers against proliferation are also proposed

  14. Report of Post Irradiation Examination for Dry Process Fuel

    International Nuclear Information System (INIS)

    Par, Jang Jin; Jung, I. H.; Kang, K. H.; Moon, J. S.; Lee, C. R.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Yoo, B. O.; Jung, Y. H.; Choo, Y. S.

    2006-08-01

    The spent PWR fuel typically contains 0.9 wt.% of fissile uranium and 0.6 wt.% of fissile plutonium, which exceeds the natural uranium fissile content of 0.711 wt.%. The neutron economy of a CANDU reactor is sufficient to utilize the DUPIC fuel, even though the neutron-absorbing fission products contained in the spent PWR fuel were remained in the DUPIC fuel. The DUPIC fuel cycle offers advantages to the countries operating both the PWR and CANDU reactors, such as saving the natural uranium, reducing the spent fuel in both PWR and CANDU, and acquiring the extra energy by reuse of the PWR spent fuel. This report contains the results of post-irradiation examination of the DUPIC fuel irradiated four times at HANARO from May 2000 to August 2006 present except the first irradiation test of simulated DUPIC fuel at HANARO on August 1999

  15. Fuel rod bundles proposed for advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Prodea, Iosif; Catana, Alexandru

    2010-01-01

    The paper aims to be a general presentation for fuel bundles to be used in Advanced Pressure Tube Nuclear Reactors (APTNR). The characteristics of such a nuclear reactor resemble those of known advanced pressure tube nuclear reactors like: Advanced CANDU Reactor (ACR TM -1000, pertaining to AECL) and Indian Advanced Heavy Water Reactor (AHWR). We have also developed a fuel bundle proposal which will be referred as ASEU-43 (Advanced Slightly Enriched Uranium with 43 rods). The ASEU-43 main design along with a few neutronic and thermalhydraulic characteristics are presented in the paper versus similar ones from INR Pitesti SEU-43 and CANDU-37 standard fuel bundles. General remarks regarding the advantages of each fuel bundle and their suitability to be burned in an APTNR reactor are also revealed. (authors)

  16. Endurance test for DUPIC capsule

    International Nuclear Information System (INIS)

    Chung, Heung June; Bae, K. K.; Lee, C. Y.; Park, J. M.; Ryu, J. S.

    1999-07-01

    This report presents the pressure drop, vibration and endurance test results for mini-plate fuel rig which were designed fabricately by KAERI. From the pressure drop test results, it is noted that the flow rate across the capsule corresponding to the pressure drop of 200 kPa is measured to be about 9.632 kg/sec. Vibration frequency for the capsule ranges from 14 to 18.5 Hz. RMS (Root Mean Square) displacement for the fuel rig is less than 14 μm, and the maximum displacement is less than 54 μm. Based on the endurance test results, the appreciable fretting wear for the DUPIC capsule was not detected. Oxidation on the support tube is observed, also tiny trace of wear between contact points observed. (author). 4 refs., 10 tabs., 45 figs

  17. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported

  18. Irradiated fuel bundle counter

    International Nuclear Information System (INIS)

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  19. Endurance test of DUPIC irradiation test rig-003

    Energy Technology Data Exchange (ETDEWEB)

    Moon, J.S; Yang, M.S.; Lee, C.Y.; Ryu, J.S.; Jeon, H.G

    2001-04-01

    This report presents the pressure drop, vibration and endurance test results for DUPIC Irradiation Test Rig-003 which was design and fabricated by KAERI. From the pressure drop and vibration test results, it is verified that DUPIC Irradiation Test Rig-003 satisfied the limit conditions of HANARO. And, remarkable wear is not observed in DUPIC Irradiation Test Rig-003 during 40 endurance test days.

  20. A study on the direct use of spent PWR fuel in CANDU -A study on the radioactive waste management for DUPIC fuel cycle-

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Jun, Kwan Sik; Nah, Jung Won; Park, Jang Jin; Kim, Jong Hoh; Cho, Yung Hyun; Baek, Seung Woo; Shin, Jin Myung; Yang, Seung Yung

    1994-07-01

    The immobilization materials for radioactive wastes resulting from the DUPIC fuel manufacturing process were selected and their characteristics were evaluated. To predict the trapping behavior of the Ruthenium, a semi-volatile nuclide, its volatility was measured and thermogravimetric analysis were performed with simulated fuel. New Ruthenium trapping material was developed which is deposited on ceramic honey-comb monolith of cordierite. The base glass was manufactured with fly ash added to the borosilicate glass. The composition of the scrap waste was calculated based on the PWR spent fuel which has initial 235 U content of 3.5%, burnup of 35,000 MWD/MTU and cooling time of 10 years. Simulated waste glass was manufactured, and its chemical durability was evaluated by soxhlet leach test. Radioactivity of non-oxidized cladding material were measured. The preliminary design criteria were prepared for off-gas treatment system in IMEF. 31 figs, 42 tabs, 51 refs. (Author)

  1. BWR fuel assembly with improved spacer and fuel bundle design for enhanced thermal-hydraulic performance

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Taleyarkhan, R.P.

    1987-01-01

    In a fuel assembly having a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods, an outer tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid along the fuel rods, a hollow water cross extending centrally through and interconnected with the outer flow channel so as to divide the channel into separate compartments and the bundle of fuelrods into a plurality of mini-bundles thereof being disposed in the compartments, and spacers axially displaced along the fuel rods in each of the mini-bundles thereof. Each spacer is composed of inner and outer means which together define spacer cells at corner, side and interior locations of the spacer and have respective protrusions formed thereon which extend into cells so as to maintain the fuel rods received through the spacer cells in laterally spaced relationships. The improvement is described which comprises: (a) a generally uniform poison coating within at least a majority of the fuel rods; (b) a predetermined pattern of fuel enrichment with respect to the fuel rods of each mini-bundle thereof which together with the uniform poison coating within the fuel rods ensures that the packing powers of the fuel rods in the corner and side cells of the spacers are less than the peaking power of a leading one of the fuel rods in the interior cells of the spacers; and (c) each of the fuel rods being received through the cells of each spacer having a diametric size smaller than that of each of the fuel rods received through the side and interior cells of each spacer, the diametric sizes of each of the fuel rods received through the side and interior cells of each spacer being generally equal

  2. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  3. CANFLEX fuel bundle cross-flow endurance test (test report)

    International Nuclear Information System (INIS)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs

  4. CANFLEX fuel bundle cross-flow endurance test (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.

  5. Study on the characteristics and sinterability of DUPIC powder by using simulated fuel

    International Nuclear Information System (INIS)

    Lee, Jae-Won; Lee, Jung-Won; Kim, Jong-Ho; Yim, Sung-Paal; Lee, Young-Woo; Yang, Myung-Seung

    2002-01-01

    The sinterability of the OREOX (oxidation and reduction of oxide fuels) powder was investigated in terms of the number of the OREOX cycles and milling time using simulated spent fuel of an equivalent burnup of 35,000 MWD/MTU. Wet milled powder was prepared and sintered to compare the morphology and sinterability with the dry milled powder. Powders having a medium particle size of less than 1μm were obtained by dry milling of OREOX powders regardless of the number of cycles. The specific surface area of the simulated DUPIC powder was governed by the number of OREOX cycles rather than by milling time. The sound pellets with a sintered density of higher than 95% TD and average grain size of larger than 8μm were obtained with the dry milled powder after 1 cycle of OREOX treatment. The powders prepared by dry milling for a short time and wet milling for a long time after 3 cycles of OREOX treatment also produced pellets with a sintered density of higher than 95% TD and average grain size of larger than 8μm. (author)

  6. Finite element modelling of different CANDU fuel bundle types in various refuelling conditions

    International Nuclear Information System (INIS)

    Roman, M. R.; Ionescu, D. V.; Olteanu, G.; Florea, S.; Radut, A. C.

    2016-01-01

    The objective of this paper is to develop a finite element model for static strength analysis of the CANDU standard with 37 elements fuel bundle and the SEU43 with 43 elements fuel bundle design for various refuelling conditions. The computer code, ANSYS7.1, is used to simulate the axial compression in CANDU type fuel bundles subject to hydraulic drag loads, deflection of fuel elements, stresses and displacements in the end plates. Two possible situations for the fuelling machine side stops are considered in our analyses, as follows: the last fuel bundle is supported by the two side stops and a side stop can be blocked therefore, the last fuel bundle is supported by only one side stop. The results of the analyses performed are briefly presented and also illustrated in a graphical form. The finite element model developed in present study is verified against test results for endplate displacement and element bowing obtained from strength tests with fuel bundle string and fuelling machine side-stop simulators. Comparison of ANSYS model predictions with these experimental results led to a very good agreement. Despite the difference in hydraulic load between SEU43 and CANDU standard fuel bundles strings, the maximum stress in the SEU43 endplate is about the same with the maximum stress in the CANDU standard endplate. The comparative assessment reveals that SEU43 fuel bundle is able to withstand high flow rate without showing a significant geometric instability. (authors)

  7. Fuel bundle movement due to reverse flow

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, N N; Akalin, O [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    When a break occurs in the inlet feeder or inlet header, the rapid depressurization will cause the channel flow to reverse forcing the string of bundles to accelerate and impact with upstream shield plug. A model has been developed to predict the bundle motion due to the channel flow reversal. The model accounts for various forces acting on the bundle. A series of five reverse flow, bundle acceleration experiments have been conducted simulating a break in the inlet feeder of a CANDU fuel channel. The model has been validated against the experiments. The predicted impact velocities are in good agreement with the measured values. It is demonstrated that the model may be successfully used in predicting bundle relocation timing following a large LOCA (loss of coolant). (author). 7 refs., 3 tabs., 11 figs.

  8. A study on the direct use of spent PWR fuel in CANDU -A study on the radioactive waste management for DUPIC fuel cycle-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Jun, Kwan Sik; Nah, Jung Won; Park, Jang Jin; Kim, Jong Hoh; Cho, Yung Hyun; Baek, Seung Woo; Shin, Jin Myung; Yang, Seung Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The immobilization materials for radioactive wastes resulting from the DUPIC fuel manufacturing process were selected and their characteristics were evaluated. To predict the trapping behavior of the Ruthenium, a semi-volatile nuclide, its volatility was measured and thermogravimetric analysis were performed with simulated fuel. New Ruthenium trapping material was developed which is deposited on ceramic honey-comb monolith of cordierite. The base glass was manufactured with fly ash added to the borosilicate glass. The composition of the scrap waste was calculated based on the PWR spent fuel which has initial {sup 235}U content of 3.5%, burnup of 35,000 MWD/MTU and cooling time of 10 years. Simulated waste glass was manufactured, and its chemical durability was evaluated by soxhlet leach test. Radioactivity of non-oxidized cladding material were measured. The preliminary design criteria were prepared for off-gas treatment system in IMEF. 31 figs, 42 tabs, 51 refs. (Author).

  9. Fast breeder fuel pin bundle tests in the KNK II-reactor

    International Nuclear Information System (INIS)

    Haefner, H.E.; Bojarsky, E.

    1986-11-01

    Three variants of ring elements with test bundles will be reported in this paper: In a first step a ring element was built with a permanently integrated test bundle (19 carbide pins of the Karlsruhe reference concept) while the proven fuel element components have been largely maintained. This irradiation will be completed in autumn 1986 after 380 full power days of operation. The central topic of this paper will be the technique of reloadable ring elements with replaceable test bundles. A first experiment, TOAST, is in preparation. For this experiment, above all the components of the fuel element head and foot had to be newly developed and tested. A special version of double-walled replaceable test bundles to be used in the TETRA temperature transient experiments will be briefly mentioned. It is envisaged in these experiments to vary in a defined manner the coolant flow at remotely assembled test bundles consisting of 19 KNK pins each having undergone a high burnup and to use a measuring and control plug placed on the test bundle so that a variety of fuel pin temperature programs can be realized. Finally, some additional aspects of bundle design will be indicated. (orig./GL) [de

  10. Analysis of fuel handling system for fuel bundle safety during station blackout in 500 MWe PHWR unit of India

    International Nuclear Information System (INIS)

    Madhuresh, R.; Nagarajan, R.; Jit, I.; Sanatkumar, A.

    1996-01-01

    Situations of Station Blackout (SBO) i.e. postulated concurrent unavailability of Class Ill and Class IV power, could arise for a long period, while on-power refuelling or other fuel handling operations are in progress with the hot irradiated fuel bundles being anywhere in the system from the Reactor Building to the Spent Fuel Storage Bay. The cooling provisions for these fuel bundles are diverse and specific to the various stages of fuel handling operations and are either on Class Ill or on Class II power with particular requirements of instrument air. Therefore, during SBO, due to the limited availability of Class II power and instrument air, it becomes difficult to maintain cooling to these fuel bundles. However, some minimal cooling is essential, to ensure the safety of the bundles. As discussed in the paper, safety of these fuel bundles in the system and/or for those lying in the liner tube region of the reactor end fitting is ensured, during SBO, by resorting to passive means like 'stay-put', 'gravity- fill', 'D 2 0- steaming' etc. for cooling the bundles. The paper also describes various consequences emanating from these cooling schemes. (author). 6 refs., 2 tabs., 8 figs

  11. Fuel bundle to pressure tube fretting in Bruce and Darlington

    Energy Technology Data Exchange (ETDEWEB)

    Norsworthy, A G; Ditschun, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs.

  12. Fuel bundle to pressure tube fretting in Bruce and Darlington

    International Nuclear Information System (INIS)

    Norsworthy, A.G.; Ditschun, A.

    1995-01-01

    As the fuel channel elongates due to creep, the fuel string moves relative to the inlet until the fuel pads at the inboard end eventually separate from the spacer sleeve, and the fuel resides on the burnish mark of the pressure tube. The bundle is then supported in a fashion which contributes to increased levels of vibration. Those pads which (due to geometric variation) have contact loads with the pressure tube within a certain range, vibrate, and cause significant fretting on the burnish mark, and further along at the midplane of the bundle. Inspection of the pressure tubes in Bruce A, Bruce B, and Darlington has revealed fret damage up to 0.55 mm at the burnish mark and slightly lower than this at the inlet bundle midplane. To date, all fret marks have been dealt with successfully without the need for tube replacement, but a program of work has been initiated to understand the mechanism and reduce the fretting. Such understanding is necessary to guide future design changes to the fuel bundle, to guide future inspection programs, to guide maintenance programs, and for longer term strategic planning. This paper discusses how the understanding of fretting has evolved and outlines a current hypothesis for the mechanism of fretting. The role of bundle geometry, excitation forces, and reactor conditions are reviewed, along with options under consideration to mitigate damage. (author). 4 refs., 2 tabs., 13 figs

  13. Reactor physics assessment of modified 37-element CANDU fuel bundles

    International Nuclear Information System (INIS)

    Pristavu, R.; Rizoiu, A.

    2016-01-01

    Reducing the central element diameter in order to improve the total flow area of CANDU fuel bundle and redistribute the power density of all remaining elements was studied in Canada and Korea when considering the effect of aging pressure tube diametral creep. The aim of this paper is to study the modified bundle behavior using the transport codes WIMS and DRAGON. In calculations, a WIMS nuclear data library on 172 energy groups was used. 2-D transport calculations were performed with WIMS and DRAGON, leading to similar results in estimated cell parameters. Additionally, 3-D DRAGON calculations were carried on in order to evaluate the local flux distribution shift, as well as the incremental cross sections for supercells containing modified CANDU bundles and reactivity devices. The overall effect of using modified fuel bundles was meaningless for both cell and supercell parameters, thus ensuring this possibility of fuel improvement for thermal-hydraulic purposes only. (authors)

  14. Out-of-pile bundle temperature escalation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Hagen, S.; Peck, S.O.

    1983-08-01

    This report provides an overview of the test conduct, results, and posttest appearance of bundle test ESBU-1. The purpose of the test was to investigate fuel rod temperature escalation due to the exothermal zircaloy/steam reaction in a bundle geometry. The 3x3 bundle was surrounded by a zircaloy shroud and 6 mm of fiber ceramic insulation. The center rod escalated to a maximum of 2,250 0 C. Runoff of the melt apparently limited the escalation. Posttest visual examination of the bundle showed that cladding from every rod had melted, liquefied some fuel, flowed down the rod, and frozen in a solid mass that substantially blocked all flow channels. A large amount of powdery rubble, probably fuel that fractured during cooldown, was found on top of the blockage. Metallographic, EMP, and SEM examinations showed that the melt had dissolved both fuel and oxidized cladding, and had itself been oxidized by steam. (orig.) [de

  15. Analysis of fuel handling system for fuel bundle safety during station blackout in 500 MWe PHWR unit of India

    Energy Technology Data Exchange (ETDEWEB)

    Madhuresh, R; Nagarajan, R; Jit, I; Sanatkumar, A [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    Situations of Station Blackout (SBO) i.e. postulated concurrent unavailability of Class Ill and Class IV power, could arise for a long period, while on-power refuelling or other fuel handling operations are in progress with the hot irradiated fuel bundles being anywhere in the system from the Reactor Building to the Spent Fuel Storage Bay. The cooling provisions for these fuel bundles are diverse and specific to the various stages of fuel handling operations and are either on Class Ill or on Class II power with particular requirements of instrument air. Therefore, during SBO, due to the limited availability of Class II power and instrument air, it becomes difficult to maintain cooling to these fuel bundles. However, some minimal cooling is essential, to ensure the safety of the bundles. As discussed in the paper, safety of these fuel bundles in the system and/or for those lying in the liner tube region of the reactor end fitting is ensured, during SBO, by resorting to passive means like `stay-put`, `gravity- fill`, `D{sub 2}0- steaming` etc. for cooling the bundles. The paper also describes various consequences emanating from these cooling schemes. (author). 6 refs., 2 tabs., 8 figs.

  16. Development of the fabrication technology of the simulated fuel-I, 15,000MWd/tU

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, D. J.; Kim, H. S.; Lee, J. W.; Yang, M. S

    2001-04-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties, fission gas release, grain growth and et al. of the DUPIC fuel is different from the commercial UO2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, the sintering characterization of wet milled powder for 24 hours to fabricate 15,000MWd/tU equivalent burnup simulated fuel.

  17. The burnable poisons utilization for fissile enriched CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D; Nainer, O [Team 3 Solutions, Don Mills, ON (Canada)

    1996-12-31

    Utilization of burnable poison for the fissile enriched fueled CANDU 6 Mk1 core is investigated. The main incentives for this analysis are the reduction of void reactivity effects, the maximization of the fissile content of fresh fuel bundles, and the achievement of better power shape control, in order to preserve the power envelope of the standard 37 rod fuel bundle. The latter allows also the preservation of construction parameters of the standard core (for example: number and location of reactivity devices). It also permits the use of regular shift fueling schemes. The paper makes analyses of MOX weapons-grade plutonium and 1.2% SEU fueled CANDU 6 Mk 1 cores. (author). 6 refs., 4 tabs., 10 figs.

  18. Demonstrating the compatibility of Canflex fuel bundles with a CANDU 6 fuelling machine

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, P; Oldaker, I E [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Suk, H C; Choi, C B [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1997-12-31

    CANFLEX is a new 43-element fuel bundle, designed for high operating margins. It has many small-diameter elements in its two outer rings, and large-diameter elements in its centre rings. By this means, the linear heat ratings are lower than those of standard 37-element bundles for similar power outputs. A necessary part of the out-reactor qualification program for the CANFLEX fuel bundle design, is a demonstration of the bundle`s compatibility with the mechanical components in a CANDU 6 Fuelling Machine (FM) under typical conditions of pressure, flow and temperature. The diameter of the CANFLEX bundle is the same as that of a 37-element bundle, but the smaller-diameter elements in the outer ring result in a slightly larger end-plate diameter. Therefore, to minimize any risk of unanticipated damage to the CANDU 6 FM sidestops, a series of measurements and static laboratory tests were undertaken prior to the fuelling machine tests. The tests and measurements showed that; a) the CANFLEX bundle end plate is compatible with the FM sidestops, b) all the dimensions of the CANFLEX fuel bundle are within the specified limits. (author). 3 tabs., 3 figs.

  19. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    Lee, G.S.; Suh, K.S.; Chang, H.I.; Chung, S.H.

    1980-01-01

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  20. Characteristics of CANDU fuel bundles that caused pressure tube fretting at the bundle midplane

    Energy Technology Data Exchange (ETDEWEB)

    Dennier, D; Manzer, A M [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Koehn, E [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    Detailed measurements on new bundles, and those that caused fretting during in- and out-reactor tests, have given insight into the factors responsible for fretting at the midplane of the inlet bundle. Bottom fuel elements that were attached near radial endplate spokes and had inboard bearing pads in the rolled joint cavity produced a significant portion of the observed fret marks. These elements are influenced by several driving forces that deflect the centre bearing pads towards the pressure tube surface. The evidence suggests that slight changes in bundle design may be possible to reduce pressure tube fretting. (author). 4 refs., 3 tabs., 8 figs.

  1. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M.

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described

  2. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described.

  3. Critical heat flux tests for self-spaced square finned 7 fuel rod bundle

    International Nuclear Information System (INIS)

    Moon, Sang Ki; Chun, Se Young; Choi, Ki Young; Park, Jong Kuk; Hwang, Dae Hyun; Zee, Sung Quun; Kim, Keung Koo

    2001-09-01

    Now, KAERI is developing a new advanced reactor aimed at achieving highly enhanced safety and reliability, and improved economics. SSF (Self-Spaced Square Finned) fuel rod bundle is considered as a suitable one for the new advanced reactor. The SSF fuel rods have rectangular shapes and four fins at the corners, and are arranged in triangular geometry. While the SSF fuel rod bundle is considered to have enhanced cooling efficiency, the correlations used for commercial PWR might be able to be applied. The application results of some conventional correlations show that the SSF fuel rod bundle show an enhanced CHF performance about 10 to 40 %. When some conventional CHF correlations are applied to CHF data with a similar geometry to the SSF fuel rod bundle, conventional CHF correlations including a correlation developed in Russia are judged not to be suitable for the development of SSF fuel rod bundle and for the use in a safety analysis code. From CHF experiments for SSF 7 fuel rod bundle performed in KAERI, the following results are obtained: the CHF increases with increasing mass flux, and the CHF increasing rate decreases at high mass flux conditions. The exit quality decreases with increasing mass flux. The overall effect of the mass flux on the CHF and exit quality coincides with previous understanding. Compared to the CHF data of IPPE with the same system pressure and inlet temperature, the CHF data of KAERI show the similar values. Thus, the reliability of IPPE CHF data can be confirmed indirectly

  4. Economic assessment of new technology of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kim, H. S.; Song, K. D.; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lee, J. S.; Choi, H. B.

    1998-06-01

    The purpose of this study is to analyze the impact of the change in the manufacturing cost of DUPIC fuel on the power generation cost. In doing so, the installed capacity of nuclear power plants until the year 2040 were forecasted by using the trend analysis technique. This study used the NUFCAP computer code, developed by KAERI, which allows to conduct quantitative evaluation of the volumes of nuclear fuel and spent fuel as well as unit and system costs of nuclear fuel cycle. As a result of this study, it was found that there was little economic difference between the two possible options for the Korean electric system, direct disposal and DUPIC fuel cycle. The rate of discount and the manufacturing cost of DUPIC fuel were resulted in the most significant factors affecting the economics of the two options. Finally, it was expected that the result of this study provided the arguing point for the international debate on the economics of DUPIC fuel cycle technology. (author). 6 refs., 7 tabs., 8 figs

  5. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    There are many reasons for countries embarking on a CANDU R program to start with the natural uranium fuel cycle. Simplicity of fuel design, ease of fabrication, and ready availability of natural uranium all help to localize the technology and to reduce reliance on foreign technology. Nonetheless, at some point, the incentives for using natural uranium fuel may be outweighed by the advantages of alternate fuel cycles. The excellent neutron economy, on-line refuelling, and simple fuel-bundle design provide an unsurpassed degree of fuel-cycle flexibility in CANDU reactors. The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a two- to three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than dose conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U. S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or

  6. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1980-01-01

    The invention relates to a nuclear power reactor fuel bundle of the type wherein several rods are mounted in parallel array between two tie plates which secure the fuel rods in place and are maintained in assembled position by means of a number of tie rods secured to both of the end plates. Improved apparatus is provided for attaching the tie rods to the upper tie plate by the use of locking lugs fixed to rotatable sleeves which engage the upper tie plate. (auth)

  7. Upon local blockage formations in LMFBR fuel rod bundles with wire-wrapped spacers

    International Nuclear Information System (INIS)

    Minden, C. v.; Schultheiss, G.F.

    1982-01-01

    A theoretical and experimental study, to improve understanding of local particle depositions in a wire-wrapped LMFBR fuel bundle, has been performed. Theoretical considerations show, that a preferentially axial process of particle depositions occurs. The experiments confirm this and clarify that the blockages arise near the particle source and settle at the spatially arranged minimum gaps in the bundle. The results suggest that, considering flow reduction, cooling and DND-detection, such fuel particle blockages are less dangerous. With reference to these safety-relevant factors, wire-wrapped LMFBR fuel bundles seem to gain advantages compared to the grid design. (orig.) [de

  8. Post-irradiation examination of a failed PHWR fuel bundle of KAPS-2

    International Nuclear Information System (INIS)

    Mishra, Prerna; Unnikrishnan, K.; Viswanathan, U.K.; Shriwastaw, R.S.; Singh, J.L.; Ouseph, P.M.; Alur, V.D.; Singh, H.N.; Anantharaman, S.; Sah, D.N.

    2006-08-01

    Detailed post irradiation examination was carried out on a PHWR fuel bundle irradiated at Kakrapar Atomic Power Station unit 2 (KAPS-2). The fuel bundle had failed early in life at a low burnup of 387 MWd/T. Non destructive and destructive examination was carried out to identify the cause of fuel failure. Visual examination and leak testing indicated failure in two fuel pins of the outer ring of the bundle in the form of axial cracks near the end plug location. Ultrasonic testing of the end cap weld indicated presence of lack of fusion type defect in the two fuel pins. No defect was found in other fuel pins of the bundle. Metallographic examination of fuel sections taken from the crack location in the failed fuel pin showed extensive restructuring of fuel. The centre temperature of the fuel had exceeded 1700 degC at this location in the failed fuel pin, whereas fuel centre temperature in the un-failed fuel pin was only about 1300 degC. Severe fuel clad interaction was observed in the failed fuel pin at and near the location of failure but no such interaction was observed in the un-failed fuel pins. Several incipient cracks originating from the inside surface were found in the cladding near failure location in addition to the main through wall crack. The incipient cracks were filled with interaction products and hydride platelets were present at tip of the cracks. It was concluded from the observations that the primary cause of failure was the presence of a part-wall defect in the end cap weld of the fuel pins. These defects opened up during reactor operation leading to steam ingress into the fuel, which caused high fuel centre temperature and severe fuel-cladding interaction resulting in secondary failures. A more stringent inspection and quality control of end plug weld during fabrication using ultrasonic test has been recommended to avoid such failure. (author)

  9. Research reactor fuel bundle design review by means of hydrodynamic testing

    International Nuclear Information System (INIS)

    Pastorini, A.; Belinco, C.

    1997-01-01

    During the design steps of a fuel bundle for a nuclear reactor, some vibration tests are usually necessary to verify the prototype dynamical response characteristics and the structural integrity. To perform these tests, the known hydrodynamic loop facilities are used to evaluate the vibrational response of the bundle under the different flow conditions that may appear in the reactor. This paper describes the tests performed on a 19 plate fuel bundle prototype designed for a low power research reactor. The tests were done in order to know the dynamical characteristics of the plates and also of the whole bundle under different flow rate conditions. The paper includes a description of the test facilities and the results obtained during the dynamical characterization tests and some preliminary comments about the tests under flowing water are also presented. (author) [es

  10. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  11. The application of safeguards design principles to the spent fuel bundle counter for 600 MW

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1978-10-01

    The irradiated fuel bundle counters for CANDU 600 MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent fuel storage bay at each inspection. Their function is straightforward: to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ΣintelligentΣ instruments which have required a major development program. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A Microprocessor analyzes the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnomal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  12. Development of DUPIC safeguards technology; development of web based nuclear material accounting program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. T.; Choi, S. H.; Choi, S. J. [Kongju National University, Kongju (Korea)

    2002-04-01

    The purpose of this project is to develop the web-based digital image processing system with the client/server architecture based on TCP/IP to be able to search and manage image data at the remote place. This system provides a nuclear facility with the ability to track the movement of nuclear material and to control and account nuclear material at anywhere and anytime. Also, this system will be helpful to increase the efficiency of safeguards affairs. The developed web-based digital image processing system for tracking the movement of nuclear material and MC and A can be applied to DUPIC facility. The result of this project will eventually contribute to similar nuclear facilities as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material. 15 refs., 33 figs., 4 tabs. (Author)

  13. Calculation Of A Lattice Physics Parameter For SBWR Fuel Bundle Design

    International Nuclear Information System (INIS)

    Sardjono, Y.

    1996-01-01

    The maximum power peaking factor for Nuclear Power Plant SBWR type is 1.5. The precision for that calculation is related with the result of unit cell analysis each rod in the fuel bundles. This analysis consist of lattice eigenvalue, lattice average diffusion cross section as well as relative power peaking factor in the fuel rod for each fuel bundles. The calculation by using TGBLA computer code which is based on the transport and 168 group diffusion theory. From this calculation can be concluded that the maximum relative power peaking factor is 1.304 and lower than design limit

  14. Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2

    International Nuclear Information System (INIS)

    Karam, M.; Dimayuga, F.C.; Montin, J.

    2010-01-01

    AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O 2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt.% Th and 1.53 wt.% Pu in (Th, Pu)O 2 . The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O 2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O 2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O 2 fuel performance characteristics were superior to UO 2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)

  15. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1995-01-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding-was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2 MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  16. Post-irradiation examination of overheated fuel bundles

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1997-08-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was.not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  17. Post-test examination of the VVER-1000 fuel rod bundle CORA-W2

    International Nuclear Information System (INIS)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.; Schanz, G.; Hagen, S.; Sepold, L.

    1995-01-01

    The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B 4 C absorber rod and the stainless steel grid spacers on the 'low-temperature' bundle damage initiation and progression. The B 4 C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occured. (orig./HP)

  18. Post-test examination of the VVER-1000 fuel rod bundle CORA-W2

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.; Schanz, G.; Hagen, S.; Sepold, L.

    1995-08-01

    The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B{sub 4}C absorber rod and the stainless steel grid spacers on the `low-temperature` bundle damage initiation and progression. The B{sub 4}C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occured. (orig./HP)

  19. Mitigation of end flux peaking in CANDU fuel bundles using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, D.; Chan, P.K., E-mail: dylan.pierce@rmc.ca [Royal Military College of Canada, Kingston ON, (Canada); Shen, W. [Canadian Nuclear Safety Commission, Ottawa ON, (Canada)

    2015-07-01

    End flux peaking (EFP) is a phenomenon where a region of elevated neutron flux occurs between two adjoining fuel bundles. These peaks lead to an increase in fission rate and therefore greater heat generation. It is known that addition of neutron absorbers into fuel bundles can help mitigate EFP, yet implementation in Canada Deuterium Uranium (CANDU) type reactors using natural uranium fuel has not been pursued. Monte Carlo N-Particle code (MCNP) 6.1 was used to simulate the addition of a small amount of neutron absorbers strategically within the fuel pellets. This paper will present some preliminary results collected thus far. (author)

  20. CFD modeling of secondary flows in fuel rod bundles

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Ninokata, Hisashi

    2004-01-01

    An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)

  1. Evaluation of the linear power of HANARO test fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Sung; Seo, C. G.; Lee, B. C.; Kim, H. R

    2001-02-01

    The HANARO fuel was developed by AECL and it is configured in a bundle of rods containing uranium silicide. AECL has conducted a variety of tests using specimen in order to achieve its qualification and licensing and the highest linear power was evaluated to be 112.8kW/m. In design stage of HANARO, the best estimated maximum linear power at hot spot was found to occur in the transition core from the initial to the equilibrium and its value was 108kW/m, which exceeds 112.8kW/m if the physics uncertainty of the HANARO nuclear design model is taken into account. Consequently, the licensing body issued the conditional permit to operate HANARO and the fuel integrity at the linear power higher than 112.8kW/m was requested to be confirmed through irradiation tests by realizing its repeatability. Hereby, KAERI designed uninstrumented and instrumented test fuel bundles and conducted their burnup tests. In parallel with the tests, the nuclear design model has been revised and updated to enable us to pursue the pin-by-pin power history. This report describes the best estimated power history of the test fuel bundles using the revised model. In conclusion, HANARO fuel keeps its integrity at power condition greater than 120kW/m.

  2. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  3. Development of inspection equipment for fuel bundles of CANDU-PHWR using R981 underwater radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Cho, Moon-Sung; Jo, Chang-Keun; Jun, Ji-Su; Jung, Jong Yeob; Park, Kwang-June; Suk, Ho-Chun

    2005-03-15

    The inspection equipment of fuel bundles was developed, which could perform visual inspection and dimensional measurement on fuel bundles of CANDU-PHWR, to evaluate, analyze the defective behavior of fuel bundles and inner surface of pressure tubes of inherent two-phase flow over 24kg/s in CANDU-6. The R981 radiation tolerant camera system with pan and tilt function was ordered and manufactured, which was waterproof, shielding radiation in underwater 10m in depth. The performance test, of the system ,due to camera-object distance was carried out in air/underwater atmosphere. The results of performance test of R981 radiation tolerant camera system are good. The inspection equipment of fuel bundles using R981 radiation tolerant camera system and underwater-radiation tolerant LVDT sensor(D5/200AW) was fabricated, which could perform visual inspection and dimensional measurement on fuel bundles of CANDU-PHWR with measurement accuracy 10{mu}m. This equipment will be utilizable integrity evaluation of fuel bundles which are irradiated in pressure tube of CANDU-PHWR.

  4. Computer code TOBUNRAD for PWR fuel bundle heat-up calculations

    International Nuclear Information System (INIS)

    Shimooke, Takanori; Yoshida, Kazuo

    1979-05-01

    The computer code TOBUNRAD developed is for analysis of ''fuel-bundle'' heat-up phenomena in a loss-of-coolant accident of PWR. The fuel bundle consists of fuel pins in square lattice; its behavior is different from that of individual pins during heat-up. The code is based on the existing TOODEE2 code which analyzes heat-up phenomena of single fuel pins, so that the basic models of heat conduction and transfer and coolant flow are the same as the TOODEE2's. In addition to the TOODEE2 features, unheated rods are modeled and radiation heat loss is considered between fuel pins, a fuel pin and other heat sinks. The TOBUNRAD code is developed by a new FORTRAN technique which makes it possible to interrupt a flow of program controls wherever desired, thereby attaching several subprograms to the main code. Users' manual for TOBUNRAD is presented: The basic program-structure by interruption method, physical and computational model in each sub-code, usage of the code and sample problems. (author)

  5. Hydrodynamics around a spacer of a VVER-440 fuel rod bundle

    International Nuclear Information System (INIS)

    Mayer, G.; Hazi, G.; Kavran, P.

    2004-01-01

    Recently, an intensive research has been started in our institute, focusing on the hydrodynamics of fuel rod bundles. Numerical computations have been planed to be carried out in a three level bottom-up hierarchy, using direct numerical simulation, large eddy simulation and Reynolds averaged Navier-Stokes approach. Here, we give a description of the numerical method applied for direct numerical and large eddy simulation. We present some preliminary results obtained by the simulation of the flow around a spacer of a VVER-440 fuel rod bundle. (author)

  6. Application of safeguards design principles to the spent-fuel bundle counters for 600-MW CANDU reactors

    International Nuclear Information System (INIS)

    Stirling, A.J.; Allen, V.H.

    1979-01-01

    The irradiated fuel bundle counters for CANDU 600-MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent-fuel storage bay at each inspection. Their function is straightforward - to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ''intelligent'' instruments which have required a major development programme. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper-resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel-bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A microprocessor analyses the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnormal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  7. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  8. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results

  9. Lateral Flow Field Behavior Downstream of Mixing Vanes In a Simulated Nuclear Fuel Rod Bundle

    International Nuclear Information System (INIS)

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2004-01-01

    To assess the fuel assembly performance of PWR nuclear fuel assemblies, average subchannel flow values are used in design analyses. However, for this highly complex flow, it is known that local conditions around fuel rods vary dependent upon the location of the fuel rod in the fuel assembly and upon the support grid design that maintains the fuel rod pitch. To investigate the local flow in a simulated nuclear fuel rod bundle, a testing technique has been employed to measure the lateral flow field in a 5 x 5 rod bundle. Particle Image Velocimetry was used to measure the lateral flow field downstream of a support grid with mixing vanes for four unique subchannels in the 5 x 5 bundle. The dominant lateral flow structures for each subchannel are compared in this paper including the decay of these flow structures. (authors)

  10. A comparison study on radioactive waste management effectiveness in various nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    This study examines whether the DUPIC (Direct Use of Spent PWR Fuel In CANDU) fuel cycle make radioactive waste management more effective, by comparing it with other fuel cycles such as the PWR (Pressurized Water Reactor) once-through cycle, the HWR (Pressurized Heavy Water Reactor) once-through cycle and the thermal recycling option to use an existing PWR with MOX (Mixed Oxide) fuel. This study first focuses on the radioactive waste volume generated in all fuel cycle steps, which could be one of the measures of effectiveness of the waste management. Then the total radioactive waste disposition cost is estimated based on two units measuring; m3/GWe-yr and US$/GWe-yr. We find from the radioactive waste volume estimation that the DUPIC fuel cycle could have lower volumes for milling tailings, low level waste and spent fuel than those of other fuel cycle options. From the results of the disposition cost analysis, we find that the DUPIC waste disposition cost is the lowest among fuel cycle options. If the total waste disposition cost is used as a proxy for quantifying the easiness or difficulty in managing wastes, then the DUPIC option actually make waste management easier

  11. Study of fuel bundle geometry on inter subchannel flow in a 19 pin wire wrapped bundle

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, D.K.

    2015-01-01

    In typical sodium cooled fast reactor (SFR) fuel pin bundle, gap between the pins is maintained by helically wound wire wrap around each pin. The presence of wire induces large inter-subchannel transverse flow, eventually promoting mixing and heat transfer. The magnitude of the transverse flow is highly dependent on the various pin-bundle dimensions. Appropriate modeling of these transverse flows in subchannel codes is necessary to predict realistic temperature distribution in pin bundle. Hence, detailed parametric study of transverse flow on pin-bundle geometric parameters has been conducted. The parameters taken for the present study are pin diameter, wire diameter, helical wire pitch and edge gap. Towards this 3-D computational fluid dynamic analysis on a structured mesh of 19 pin bundle is carried out using k-epsilon turbulence model. Periodic oscillations along the primacy flow direction were found in subchannel transverse flow and peripheral pin clad temperatures with periodicity over one pitch length. Based on parametric studies, correlations for transverse flow in central subchannels are proposed. (author)

  12. Posttest examination of the VVER-1000 fuel rod bundle CORA-W2

    International Nuclear Information System (INIS)

    Sepold, L.

    1995-06-01

    The bundle meltdown experiment CORA-W2, representing the behavior of a Russian type VVER-1000 fuel element, with one B 4 C/stainless steel absorber rod was selected by the OECD/CSNI as International Standard Problem (ISP-36). The experimental results of CORA-W2 serve as data base for comparison with analytical predictions of the high-temperature material behavior by various code systems. The first part of the experimental results is described in KfK 5363 (1994), the second part is documented in this report which contains the destructive post-test examination results. The metallographical and analytical (SEM/EDX) post-test examinations were performed in Germany and Russia and are summarized in five individual contributions. The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B 4 C absorber rod and the stainless steel grid spacers on the ''low-temperature'' bundle damage initiation and progression. The B 4 C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occurred. (orig.) [de

  13. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    International Nuclear Information System (INIS)

    Rao, Y.F.; Cheng, Z.; Waddington, G.M.; Nava-Dominguez, A.

    2014-01-01

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles

  14. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.F., E-mail: raoy@aecl.ca; Cheng, Z., E-mail: chengz@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca; Nava-Dominguez, A., E-mail: navadoma@aecl.ca

    2014-08-15

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles.

  15. Assembly mechanism for nuclear fuel bundles

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.

    1977-01-01

    A method of securing a fuel bundle to permit easy remote disassembly is described. Fuel rods are held loosely between end plates, each end of the rods fitting into holes in the end plates. At the upper end of each fuel rod there is a spring pressing against the end plate. Tie rods are used to hold the end plates together securely. The lower end of each tie rod is screwed into the lower end plate; the upper end of each tie rod is attached to the upper end plate by means of a locking assembly described in the patent. In order to remove the upper tie plate during the disassembly process, it is necessary only to depress the tie plate against the pressure of the springs surrounding the fuel rods and then to rotate each locking sleeve on the tie rods from its locked to its unlocked position. It is then possible to remove the tie plate without disassembling the locking assembly. (LL)

  16. Investigations with diagnostic fuel rod bundles on Rheinsberg NPP

    International Nuclear Information System (INIS)

    Krauze, F.; Rudolf, G.; Shajfler, V.; Tsimke, K.

    1982-01-01

    In 70MW pressurized water reactor of Rheinsberg NPP diagnostic fuel rod bundles have been installed: first of DK 1 type and then of DK 2 advanced type. Three rounds of measurement were run with DK 1 bundle and one with DK 2. The diagnostic bundles are equiped with various sensors for temperature, pressure, neutron flux and mechanical stress measurements as well as with special flow rate control system which allows to reach coolant boiling within the bundle. Qualitative and quantitative description of the sensors performance during reactor operation is given. The presented experimental results are connected with: 1) working capability of the measuring devices and their calibration; 2) throttling and boiling in two regimes: a) stationary and non-stationary flow rate throbgh DK during stationary reactor operation; b) various constant levels of flow rate through DK during non-stationary reactor operation regime [ru

  17. Element bow profiles from new and irradiated CANDU fuel bundles

    International Nuclear Information System (INIS)

    Dennier, D.; Manzer, A.M.; Ryz, M.A.

    1996-01-01

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  18. The Key-Role of shielding analysis in advanced Candu Fuel bundles nuclear safety improvement for some accidental criticality scenarios

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.; Olteanu, G.

    2008-01-01

    The paper aims to present the source term and photon dose rates estimation for advanced Candu fuel bundles in some accidental criticality scenarios. As reference, the Candu standard fuel bundle has been used. The scenarios take into account for a very short-time irradiated or spent fuel bundles for some configurations closed to criticality. In order to estimate irradiated fuel characteristic parameters and radiation doses, the ORNL's SCALE 5 codes Origin-S and Monte Carlo MORSE-SGC have been used. The paper includes the irradiated fuel characteristic parameters comparison for the considered Candu fuel bundles, providing also a comparison between the corresponding radiation doses

  19. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  20. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  1. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  2. Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle

    Science.gov (United States)

    Amosova, E. V.; Guba, G. G.

    2017-11-01

    This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.

  3. Pressure drop ana velocity measurements in KMRR fuel rod bundles

    International Nuclear Information System (INIS)

    Yagn, Sun Kyu; Chung, Heung June; Chung, Chang Whan; Chun, Se Young; Song, Chul Wha; Won, Soon Yeun; Chung, Moon Ki

    1990-01-01

    The detailed hydraulic characteristic measurements in subchannels of longitudinally finned rod bundles using one-component LDV(Laser Doppler Velocimeter) were performed. Time mean axial velocity, turbulent intensity, and turbulent micro scales, such as time auto-correlation, Eulerian integral and micro scale, Kolmogorov length and time scale, and Taylor micro length scale were measured. The signals from LDV are inherently more or less discontinuous. The spectra of signals having such intermittent defects can be obtained by the fast Fourier transformation (FFT) of the auto-correlation function. The turbulent crossflow mixing rate between neighboring subchannels and dominant frequencies were evaluated from the measured data. Pressure drop data were obtained for the typical 36-element and 18-element fuel rod bundles fabricated by the design requirement of KMRR fuel and for other type of fuels assembled with 6-fin rods to investigate the fin effects on the pressure drop characteristics

  4. CAT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Betten, P.R.; Tow, D.M.

    1984-04-01

    A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction

  5. Effects of fuel relocation on reflood in a partially-blocked rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Jongrok; Kim, Kihwan; Bae, Sung Won [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-02-15

    Ballooning of the fuel rods has been an important issue, since it can influence the coolability of the rod bundle in a large-break loss-of-coolant accident (LBLOCA). Numerous past studies have investigated the effect of blockage geometry on the heat transfer in a partially blocked rod bundle. However, they did not consider the occurrence of fuel relocation and the corresponding effect on two-phase heat transfer. Some fragmented fuel particles located above the ballooned region may drop into the enlarged volume of the balloon. Accordingly, the fuel relocation brings in a local power increase in the ballooned region. The present study’s objective is to investigate the effect of the fuel relocation on the reflood under a LBLOCA condition. Toward this end, experiments were performed in a 5 × 5 partially-blocked rod bundle. Two power profiles were tested: one is a typical cosine shape and the other is the modified shape considering the effect of the fuel relocation. For a typical power shape, the peak temperature in the ballooned rods was lower than that in the intact rods. On the other hand, for the modified power shape, the peak temperature in the ballooned rods was higher than that in the intact rods. Numerical simulations were also performed using the MARS code. The tendencies of the peak clad temperatures were well predicted.

  6. Design fix for vibration-induced wear in fuel pin bundles

    International Nuclear Information System (INIS)

    Naas, D.F.; Heck, E.N.

    1976-01-01

    In summary, results at 45,000 MWd/MTM burnup from the FFTF mixed oxide fuel pin irradiation tests in EBR-II show that reduction of the initial fuel pin bundle clearance and use of 20 percent cold-worked stainless steel ducts virtually eliminate vibration and wear observed in an initial series of 61-pin tests

  7. Modelling disassembled fuel bundles using CATHENA MOD-3.5a under LOCA/LOECC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q M; Sanderson, D B; Dutton, R [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    CATHENA MOD-3.5a is a multipurpose thermalhydraulic computer code developed primarily to analyse postulated loss-of-coolant scenarios for CANDU nuclear reactors. The code contains a generalized heat transfer package that enables it to model the behaviour of a fuel channel in great detail. Throughout the development of the CATHENA code, considerable effort has been devoted to evaluating, validating and documenting its overall capability as a design and safety assessment tool. Specific attention has focused on its ability to predict fuel channel behaviour under postulated accident conditions. This paper describes an investigation of CATHENA`s ability to predict the thermal-chemical responses of a fuel channel in which the 37-element bundles were assumed to disassemble and rearrange into a closed-packed stack of elements at the bottom of the pressure tube. A representative disassembled bundle geometry was modelled during a simulated loss-of-coolant accident scenario using CATHENA MOD-3.5a/Rev 0, with superheated steam being the only coolant available. Thermal conduction in the radial and circumferential directions was calculated for individual fuel elements, the pressure tube, and the calandria tube. Radiation view factors for the intact and disassembled bundle geometries were calculated using a CATHENA utility program. Inter-element metal-to-metal contact was accounted for using the CATHENA solid-solid contact model. An offset pressure-tube configuration, representing a partially sagged pressure tube, and the effect of steam starvation on the exothermic zirconium-steam reaction, were included in the CATHENA model. The CATHENA-predicted results show a dramatic suppression of heat generation from the zirconium-steam reaction when bundle disassembly is initiated. The predicted results show a smaller temperature increase in the fuel sheaths and the pressure tube for the disassembled bundle geometry, compared to the temperature excursion for the intact bundle. (author

  8. DANCOFF-MC: A program to calculate Dancoff factors in CANDU type fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S; Valko, J

    1992-12-01

    The objective of DANCOFF-MC is the evaluation of Dancoff factors for cylindrical fuel rods arranged parallel in various and complicated bundle geometries. No interaction with fuel rods in any of the other bundles are considered due to the large distance, in mean free paths, between the buldes. Using a common basic algorithm three versions of the program have been written so far: The DANCOFF-MC-2, the DANCOFF-MC-19 and the DANCOFF-MC-27. (orig./HP).

  9. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  10. Pressure drop variation as a function of axial and radial power distribution in CANDU fuel channel with standard and CANFLEX 43 bundles

    International Nuclear Information System (INIS)

    Catana, Alexandru; Department of Energy Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    CANDU 600 nuclear reactors are usually fuelled with STANDARD (STD), 37 rods fuel bundles. Natural uranium (NU) dioxide (UO 2 ), is used as fuel composition. A new fuel bundle geometry called CANFLEX (CFX) with 43 rods is proposed and some new fuel composition are considered. Flexibility is the key word for the attempt to use some different fuel geometries and compositions for CANDU 600 nuclear reactors as well as for innovative ACR-700/1000 nuclear reactors. The fuel bundle considered in this paper is CFX-RU-0.90 that encodes the CANFLEX geometry, recycled dioxide uranium (RU) with 0.90% enrichment. The goal of this proposal is ambitious: a higher average discharge burn-up up to 14000 MWd/tU and, for the same amount of generated electric power, reduction in nuclear fuel fabrication, reduction of spent nuclear fuel radioactive waste and reduction of refueling operational work by using fewer bundles. An improved sub-channel approach for thermal-hydraulic analysis is used in this paper to compute some flow parameters, mainly the pressure drop along the CANDU 600 fuel channel when STD or CFX-RU-0.90 fuel bundles. Also an intermediate CFX-NU fuel bundle are used, for gradual comparison. For CFX-RU- 0.90 four fuel bundle shift refueling scheme is used instead of eight, that will determine different axial power distributions. At the same time radial power distribution is affected by the geometry and by the fuel composition of fuel bundle type used. Some other thermal-hydraulic flow parameters will be influenced, too. One of the most important parameter is pressure drop (PD) along the fuel channel because of its importance in drag force evaluation. We start with an axial power distribution, which is characteristic for a refueling scheme of eight or four fuel bundles on a shift. Comparative results are presented between STD37, CFX-NU CFX-RU-0.90 fuel bundles in a CANDU nuclear reactor operating conditions. Neutron flux distribution analysis shows that four bundle shift

  11. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  12. Measurement and CFD calculation of spacer loss coefficient for a tight-lattice fuel bundle

    International Nuclear Information System (INIS)

    In, Wang Kee; Shin, Chang Hwan; Kwack, Young Kyun; Lee, Chi Young

    2015-01-01

    Highlights: • Experiment and CFD analysis evaluated the pressure drop in a spacer grid. • The measurement and CFD errors for the spacer loss coefficient were estimated. • The spacer loss coefficient for the dual-cooled annular fuel bundle was determined. • The CFD prediction agrees with the measured spacer loss coefficient within 8%. - Abstract: An experiment and computational fluid dynamics (CFD) analysis were performed to evaluate the pressure drop in a spacer grid for a dual-cooled annular fuel (DCAF) bundle. The DCAF bundle for the Korean optimum power reactor (OPR1000) is a 12 × 12 tight-lattice rod array with a pitch-to-diameter ratio of 1.08 owing to a larger outer diameter of the annular fuel rod. An experiment was conducted to measure the pressure drop in spacer grid for the DCAF bundle. The test bundle is a full-size 12 × 12 rod bundle with 11 spacer grid. The test condition covers a Reynolds number range of 2 × 10 4 –2 × 10 5 by changing the temperature and flow rate of water. A CFD analysis was also performed to predict the pressure drop through a spacer grid using the full-size and partial bundle models. The pressure drop and loss coefficient of a spacer grid were predicted and compared with the experimental results. The CFD predictions of spacer pressure drop and loss coefficient agree with the measured values within 8%. The spacer loss coefficient for the DCAF bundle is estimated to be approximately 1.50 at a nominal operating condition of OPR1000, i.e., Re = 4 × 10 5

  13. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  14. Visual observations of a degraded bundle of irradiated fuel: the Phebus FPT1 test

    International Nuclear Information System (INIS)

    Barrachin, M.; Bottomley, P.D.

    1999-01-01

    The international Phebus-FP (Fission Product) project is managed by the Institut de Protection et Surete Nucleaire in collaboration with Electricite de France (EDF), the European Commission (EC), the USNRC (USA), COG (Canada), NUPEC and JAERI (Japan), KAERI (South Korea), PSI and HSK (Switzerland). It is designed to measure the source-term and to study the degradation of irradiated UO 2 fuel in conditions typical of a severe loss of coolant accident in a pressurised water reactor (PWR). In the first test (FPT0), performed in December '93, a bundle of 20 fresh fuel rods and a central Ag-In-Cd control rod underwent a short 15-day irradiation to generate fission products before testing in the Phebus reactor in Cadarache. The second test (FPT1) was performed in July '96, in the same conditions and geometry, but using irradiated fuel (-23 GWd/tU). In the FPT1 test, the bundle was heated to an estimated 3000 K over a period of 30 minutes in order to induce a substantial liquefaction of the bundle. After the test, the bundle was embedded in epoxy and cut at different levels to investigate the mechanisms of the core degradation. This paper reports the visual observations of the degraded FPT1 bundle, very preliminary interpretations about the scenario of degradation and a comparison between the behaviour of the fuel in the FPT0 and FPT1 tests. (author)

  15. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  16. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  17. Development of a FBR fuel bundle-duct interaction analysis code-BAMBOO. Analysis model and verification by Phenix high burn-up fuel subassemblies

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2005-01-01

    The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)

  18. Sustainomics of the AMBIDEXTER-NEC Fuel Cycle and Management

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Kee; Lee, Young Joon; Ham, Tae Kyu; Seo, Myung Hwan; Hong, Sung Taek; Kwon, Tae An [Ajou University, Suwon (Korea, Republic of)

    2009-05-15

    Energy issues these days become planetary concerns, recognized as the major driver for the resiliency of the earth in the sustainomics framework of the society, economy and environment axes. In the circumstances, in order for the nuclear to take advantage of its GHG-free nature, criticisms associated with the fuel cycle should be defied. As long as the uranium fuel cycle persists, problems bearing on the HLW management and the proliferation prevention could be neither completely decoupled nor independently resolved. Geopolitics around the Korean peninsula makes them be more complicated. Reference of the AMBIDEXTER fuel cycle relies on the DUPIC technology. Combined with fluoride volatility process, desired quantity of uranium contents in the PWR spent fuel powder could be removed. Then, the reactor system runs with the fluorides salt of this uranium-reduced DUPIC fuel material. Surplus uranium from the AMBIDEXTER-DUPIC1 processes should satisfy the LLW classification criteria. So far, the sustainomics goal of the AMBIDEXTER fuel cycle focuses on generating energy from the HLW, meanwhile, converting into LLW without jeopardizing proliferation transparency.

  19. HLM fuel pin bundle experiments in the CIRCE pool facility

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)

    2015-10-15

    Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and

  20. In-pile post-DNB behavior of a nine-rod PWR-type fuel bundle

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; MacDonald, P.E.

    1980-01-01

    The results of an in-pile power-cooling-mismatch (PCM) test designed to investigate the behavior of a nine-rod, PWR-type fuel bundle under intermittent and sustained periods of high temperature film boiling operation are presented. Primary emphasis is placed on the DNB and post-DNB events including rod-to-rod interactions, return to nucleate boiling (RNB), and fuel rod failure. A comparison of the DNB behavior of the individual bundle rods with single-rod data obtained from previous PCM tests is also made

  1. Optimal pin enrichment distributions in nuclear reactor fuel bundles

    International Nuclear Information System (INIS)

    Lim, E.Y.

    1976-01-01

    A methodology has been developed to determine the fuel pin enrichment distribution that yields the best approximation to a prescribed power distribution in nuclear reactor fuel bundles. The problem is formulated as an optimization problem in which the optimal pin enrichments minimize the sum of squared deviations between the actual and prescribed fuel pin powers. A constant average enrichment constraint is imposed to ensure that a suitable value of reactivity is present in the bundle. When constraints are added that limit the fuel pins to a few enrichment types, one must determine not only the optimal values of the enrichment types but also the optimal distribution of the enrichment types amongst the pins. A matrix of boolean variables is used to describe the assignment of enrichment types to the pins. This nonlinear mixed integer programming problem may be rigorously solved with either exhaustive enumeration or branch and bound methods using a modification of the algorithm from the continuous problem as a suboptimization. Unfortunately these methods are extremely cumbersome and computationally overwhelming. Solutions which require only a moderate computational effort are obtained by assuming that the fuel pin enrichments in this problem are ordered as in the solution to the continuous problem. Under this assumption search schemes using either exhaustive enumeration or branch and bound become computationally attractive. An adaptation of the Hooke--Jeeves pattern search technique is shown to be especially efficient

  2. Effect of bundle junction face and misalignment on the pressure drops across a randomly loaded and aligned 12 bundles in CANDU fuel channel

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Sim, K. S.; Chang, C. H.; Lee, Y. O. [Korea Atomic Energy Reaearch Institute, Taejon (Korea, Republic of)

    1996-06-01

    The pressure drop of twelve fuel bundle string in the CANDU-6 fuel channel is equal to the sum of the eleven junction pressure losses, the bundle string entrance and exit pressure losses, the skin friction pressure loss, and other appendage pressure losses, where the junction loss is dependent on the bundle and faces and angular alignments of the junctions. The results of the single junction pressure drop tests in a short rig show that the most probable pressure drop of the eleven junction was analytically equal to the eleven times of average pressure drop of all the possible single junction pressure drops, and also that the largest and smallest junction pressure drops across the eleven junctions probably occurred only with BA and BB type junctions, respectively, where A and B denote the bundle end sides with an end-plates on which a company monogram is stamped and unstamped, respectively. 5 refs., 7 figs., 1 tab. (author).

  3. Design verification of the CANFLEX fuel bundle - quality assurance requirements for mechanical flow testing

    International Nuclear Information System (INIS)

    Alavi, P.; Oldaker, I.E.; Chung, C.H.; Suk, H.C.

    1997-01-01

    As part of the design verification program for the new fuel bundle, a series of out-reactor tests was conducted on the CANFLEX 43-element fuel bundle design. These tests simulated current CANDU 6 reactor normal operating conditions of flow, temperature and pressure. This paper describes the Quality Assurance (QA) Program implemented for the tests that were run at the testing laboratories of Atomic Energy of Canada Limited (AECL) and Korea Atomic energy Research Institute (KAERI). (author)

  4. MCNP Simulations of End Flux Peaking in ACR-1000, 2.4 wt % {sup 235}U Fuel Bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Ian; Donnelly, Jim [Atomic Energy of Canada Limited (AECL), 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada)

    2008-07-01

    This paper examines the end flux peaking in ACR-1000 fuel bundles. Reactor physics simulations are performed with MCNP to assess the steady state end-flux peaking in an infinite lattice of ACR fuel, as well as to quantify the peaking that occurs during refuelling. 3-dimensional MCNP models are created based on the detailed geometry of the fuel bundle. Detailed position-dependent fuel compositions are obtained from MONTEBURNS which couples MCNP and ORIGIN2.2. Axial and radial power profiles are obtained for both fresh and mid-burnup fuel bundles in an infinite lattice. Subsequently an assessment of the impact of a refuelling transient on the power profiles is performed. The refuelling transient is found to increase the end flux peaking in the region adjacent to light water. (authors)

  5. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinfuku, Kimihiro; Nakamae, Takuji.

    1993-01-01

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  6. CANFLEX fuel bundle cross-flow endurance test 2 (test procedure)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    This report describes test procedure of cross-flow 2 test for CANFLEX fuel. In October 1996. a cross-flow test was successfully performed in the KAERI Hot Test Loop for four hours at a water flow rate of 31kg/s, temperature of 266 deg C and inlet pressure of 11MPa, but it is requested more extended time periods to determine a realistic operational margin for the CANFLEX bundle during abnormal refuelling operations. The test shall be conducted for twenty two hours under the reactor conditions. After an initial period of ten hours, the test shall be stopped at the intervals of four hours for bundle inspection and inspect the test bundle end-plate to end-cap welds for failure or crack propagation using liquid penetrant examination. 2 refs., 1 fig. (Author)

  7. Measurements of bundle end flux peaking effects in 37-element CANDU PHW fuel

    International Nuclear Information System (INIS)

    French, P.M.

    1977-10-01

    Thermal neutron bundle end flux peaking factors have been measured in fresh 37-element Bruce reactor natural UO 2 clusters in heavy water moderator, both with and without staggered plenums at the fuel stack ends, in representative elements throughout the clusters. The measurements were made at a square lattice pitch of 28.58 cm with heavy water coolant. The results indicate that outer element peaking factors are 1.142 +- 0.009 for bundles containing no plenums, and 1.155 +- 0.006 and 1.177 +- 0.006 at the non-plenum and plenum element ends respectively, for bundles containing staggered plenums, irrespective of the azimuthal orientation between pairs of bundles. Measurements are also reported for bundles containing plenums in every outer element, for bundles separated by a stainless steel flux suppressor, for longer graphite plenums, and for changes in plenum and bundle gap lengths. Some theoretical comparisons with the results, reported by other authors, have been summarized. (author)

  8. A comparative CFD investigation of helical wire-wrapped 7, 19 and 37 fuel pin bundles and its extendibility to 217 pin bundle

    International Nuclear Information System (INIS)

    Gajapathy, R.; Velusamy, K.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2009-01-01

    Preliminary investigations of sodium flow and temperature distributions in heat generating fuel pin bundles with helical spacer wires have been carried out. Towards this, the 3D conservation equations of mass, momentum and energy have been solved using a commercial computational fluid dynamics (CFD) code. Turbulence has been accounted through the use of high Reynolds number version of standard k-ε model, with uniform mesh density respecting wall function requirements. The geometric details of the bundle and the heat flux in are similar to that of the Indian Prototype Fast Breeder Reactor (PFBR) that is currently under construction. The mixing characteristics of the flow among the peripheral and central zones are compared for 7, 19 and 37 fuel pin bundles and the characteristics are extended to a 217 pin bundle. The friction factors of the pin bundles obtained from the present study is seen to agree well with the values derived from experimental correlations. It is found that the normalized outlet velocities in the peripheral and central zones are nearly equal to 1.1-0.9, respectively which is in good agreement with the published hydraulic experimental measurements of 1.1-0.85 for a 91 pin bundle. The axial velocity is the maximum in the peripheral zone where spacer wires are located and minimum in the zones which are diametrically opposite to the respective zone of maximum velocity. The sodium temperature is higher in the zones where the flow area and mass flow rates are less due to the presence of the spacer wires though the axial velocity is higher there. It is the minimum in the peripheral zones where the circumferential flow is larger. Based on the flow and temperature distributions obtained for 19 and 37 pin bundles, a preliminary extrapolation procedure has been established for estimating the temperatures of peripheral and central zones of 217 pin bundle.

  9. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    Science.gov (United States)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  10. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  11. Short-term storage considerations for spent plutonium-thorium fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Blomeley, L.; Dugal, C.; Masala, E.; Tran, T., E-mail: laura.blomeley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    To support the development of advanced pressurized heavy water reactor (PHWR) fuel cycles, it is necessary to study short-term storage solutions for spent reactor fuel. In this paper, some representational criticality safety and shielding assessments are presented for a particular PHWR plutonium-thorium based fuel bundle concept in a hypothetical aboveground dry storage module. The criticality assessment found that the important parameters for the storage design are neutron absorber content and fuel composition, particularly in light of the high sensitivity of code results to plutonium. The shielding assessment showed that the shielding as presented in the paper would need to be redesigned to provide greater gamma attenuation. These findings can be used to aid in designing fuel storage facilities. (author)

  12. Experimental investigation of turbulent flow through spacer grids in fuel rod bundles

    International Nuclear Information System (INIS)

    Caraghiaur, Diana; Anglart, Henryk; Frid, Wiktor

    2009-01-01

    This paper contains experimental data of pressure, velocity and turbulence intensity in a 24-rod fuel bundle with spacer grids. Detailed pressure measurements inside the spacer grid have been obtained by use of a sliding pressure-sensing rod. Laser Doppler Velocimetry technique was used to measure the local axial velocity and its fluctuating component upstream and downstream of the spacer grid in sub-channels with different blockage ratios. The measurements show a changing pattern in function of radial position in the cross-section of the fuel bundle. For sub-channels close to the box wall, the turbulence intensity suddenly increases just downstream of the spacer and then gradually decays. In inner sub-channels, however, the turbulence intensity downstream of the spacer decreases below its upstream value and then gradually increases until it reaches the maximum value at approximately two spacer heights. The present study reveals that spacer effects, such as local pressure distribution and turbulence intensity enhancement, not only depend exclusively on the local geometry details, but also on the location in the cross-section of the rod bundle.

  13. Experimental investigation of turbulent flow through spacer grids in fuel rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Caraghiaur, Diana [Royal Institute of Technology, Division of Nuclear Reactor Technology, Department of Physics, School of Engineering Sciences, AlbaNova University Center, SE-106 91 Stockholm (Sweden)], E-mail: dianac@kth.se; Anglart, Henryk [Royal Institute of Technology, Division of Nuclear Reactor Technology, Department of Physics, School of Engineering Sciences, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Frid, Wiktor [Swedish Radiation Safety Authority, Reactor Technology and Structural Integrity, SE-171 16 Stockholm (Sweden)

    2009-10-15

    This paper contains experimental data of pressure, velocity and turbulence intensity in a 24-rod fuel bundle with spacer grids. Detailed pressure measurements inside the spacer grid have been obtained by use of a sliding pressure-sensing rod. Laser Doppler Velocimetry technique was used to measure the local axial velocity and its fluctuating component upstream and downstream of the spacer grid in sub-channels with different blockage ratios. The measurements show a changing pattern in function of radial position in the cross-section of the fuel bundle. For sub-channels close to the box wall, the turbulence intensity suddenly increases just downstream of the spacer and then gradually decays. In inner sub-channels, however, the turbulence intensity downstream of the spacer decreases below its upstream value and then gradually increases until it reaches the maximum value at approximately two spacer heights. The present study reveals that spacer effects, such as local pressure distribution and turbulence intensity enhancement, not only depend exclusively on the local geometry details, but also on the location in the cross-section of the rod bundle.

  14. The results of decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Lee, E. P. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, the experiments in PIEF have been completed. Since all DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must be performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. This report describes the basic plan for dismantlement/decontamination of the characterization equipment (power and sintered fuel). And methods of measurement/packing/transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order. 7 refs., 42 figs., 10 tabs. (Author)

  15. Coupling analysis of deformation and thermal-hydraulics in a FBR fuel pin bundle using BAMBOO and ASFRE-IV Codes

    International Nuclear Information System (INIS)

    Ito, Masahiro; Imai, Yasutomo; Uwaba, Tomoyuki; Ohshima, Hiroyuki

    2004-03-01

    The bundle-duct interaction may occur in sodium cooled wire-wrapped FBR fuel subassemblies in high burn-up conditions. JNC has been developing a bundle deformation analysis code BAMBOO (Behavior Analysis code for Mechanical interaction of fuel Bundle under On-power Operation), a thermal hydraulics analysis code ASFRE-IV (Analysis of Sodium Flow in Reactor Elements - ver. IV) and their coupling method as a simulation system for the evaluation on the integrity of deformed FBR fuel pin bundles. In this study, the simulation system was applied to a coupling analysis of deformation and thermal-hydraulics in the fuel pin-bundle under a steady-state condition just after startup for the purpose of the verification of the simulation system. The iterative calculations of deformation and thermal-hydraulics employed in the coupling analysis provided numerically unstable solutions. From the result, it was found that improvement of the coupling algorithm of BAMBOO and ASFRE-IV is necessary to reduce numerical fluctuations and to obtain better convergence by introducing such computational technique as the optimized under-relaxation method. (author)

  16. Development of a FBR fuel pin bundle deformation analysis code 'BAMBOO' . Development of a dispersion model and its validation

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu; Asaga, Takeo

    2002-03-01

    Bundle Duct Interaction (BDI) is one of the life limiting factors of a FBR fuel subassembly. Under the BDI condition, the fuel pin dispersion would occur mainly by the deviation of the wire position due to the irradiation. In this study the effect of the dispersion on the bundle deformation was evaluated by using the BAMBOO code and following results were obtained. (1) A new contact analysis model was introduced in BAMBOO code. This model considers the contact condition at the axial position other than the nodal point of the beam element that composes the fuel pin. This improvement made it possible in the bundle deformation analysis to cause fuel pin dispersion due to the deviations of the wire position. (2) This model was validated with the results of the out-of-pile compression test with the wire deviation. The calculated pin-to-duct and pin-to-pin clearances with the dispersion model almost agreed with the test results. Therefore it was confirmed that the BAMBOO code reasonably predicts the bundle deformation with the dispersion. (3) In the dispersion bundle the pin-to-pin clearances widely scattered. And the minimum pin-to-duct clearance increased or decreased depending on the dispersion condition compared to the no-dispersion bundle. This result suggests the possibility that the considerable dispersion would affect the thermal integrity of the bundle. (author)

  17. Implementation of a dry process fuel cycle model into the DYMOND code

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jeong, Chang Joon; Choi, Hang Bok

    2004-01-01

    For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada Deuterium Uranium (CANDU) reactor, direct use of spent Pressurized Water Reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-through and DUPIC fuel cycles

  18. Beryllium brazing considerations in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Harmsen, J.; Pant, A.; Lewis, B.J.; Thompson, W.T.

    2010-01-01

    'Full text:' Appendages of CANDU fuel bundle elements are currently joined to zircaloy sheaths by vacuum beryllium brazing. Ongoing environmental and workplace concerns about beryllium combined with the continuous efforts by Cameco Fuel Manufacturing in its improvement process, initiated this study to find a substitute for pure beryllium. The presentation will review the necessary functionality of brazing alloy components and short list a series of alloys with the potential to duplicate the performance of pure beryllium. Modifications to current manufacturing processes based on in-plant testing will be discussed in relation to the use of these alloys. The presentation will conclude with a summary of the progress to date and further testing expected to be necessary.

  19. SCADOP: Phenomenological modeling of dryout in nuclear fuel rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arnab, E-mail: arnie@barc.gov.in; Chandraker, D.K., E-mail: dineshkc@barc.gov.in; Vijayan, P.K., E-mail: vijayanp@barc.gov.in

    2015-11-15

    Highlights: • Phenomenological model for annular flow dryout is presented. • The model evaluates initial entrained fraction using a new methodology. • The history effect in annular flow is predicted and validated. • Rod bundle dryout is predicted using subchannel methodology. • Model is validated against experimental dryout data in tubes and rod bundles. - Abstract: Analysis and prediction of dryout is of important consequence to safety of nuclear fuel clusters of boiling water type of reactors. Traditionally, experimental correlations are used for dryout predictions. Since these correlations are based on operating parameters and do not aim to model the underlying phenomena, there has been a proliferation of the correlations, each catering to some specific bundle geometry under a specific set of operating conditions. Moreover, such experiments are extremely costly. In general, changes in tested bundle geometry for improvement in thermal-hydraulic performance would require re-experimentation. Understanding and modeling the basic processes leading to dryout in flow boiling thus has great incentive. Such a model has the ability to predict dryout in any rod bundle geometry, unlike the operating parameter based correlation approach. Thus more informed experiments can be carried out. A good model can, reduce the number of experiments required during the iterations in bundle design. In this paper, a phenomenological model as indicated above is presented. The model incorporates a new methodology to estimate the Initial Entrained Fraction (IEF), i.e., entrained fraction at the onset of annular flow. The incorporation of this new methodology is important since IEF is often assumed ad-hoc and sometimes also used as a parameter to tune the model predictions to experimental data. It is highlighted that IEF may be low under certain conditions against the general perception of a high IEF due to influence of churn flow. It is shown that the same phenomenological model is

  20. Evaluation of the magnitude and effects of bundle duct interaction in fuel assemblies at developmental plant conditions

    International Nuclear Information System (INIS)

    Serell, D.C.; Kaplan, S.

    1980-09-01

    Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers

  1. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  2. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without reenrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  3. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  4. Heat transfer coefficient testing in nuclear fuel rod bundles with mixing vane grids

    International Nuclear Information System (INIS)

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2005-01-01

    An air heat transfer test facility was developed to test the heat transfer downstream of support grids in simulated PWR nuclear fuel rod bundles. The goal of this testing is to study the single-phase heat transfer coefficients downstream of grids with mixing vanes in a square-pitch rod bundle. The technique developed utilizes fully-heated grid spans and a specially designed thermocouple holder that can be moved axially down the rod bundle and aximuthally within a test rod. From this testing, the axial and aximuthally varying heat transfer coefficient can be determined. Different grid designs are tested and compared to determine the heat transfer enhancement associated with key grid features such as mixing vanes. (author)

  5. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Angelucci, Morena; Marinari, Ranieri [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Forgione, Nicola [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy)

    2016-04-15

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m{sup 2}. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals

  6. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    International Nuclear Information System (INIS)

    Di Piazza, Ivan; Angelucci, Morena; Marinari, Ranieri; Tarantino, Mariano; Forgione, Nicola

    2016-01-01

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m"2. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for

  7. A study on decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Lee, H. S.; Lee, E. P.

    2000-09-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, The experiments in PIEF have been completed. It is supposed to dismantle and decontaminate the installed equipment by the end of year 2000. Since all of DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must br performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. Firstly, This report describes the basic plan for dismantlement/decontamination of the characterization equipment(power and sintered fuel). And methods of measurement/packing/ transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order

  8. Temperature escalation in PWR fuel rod simulator bundles due to the Zircaloy/steam reaction: Test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1984-07-01

    This report describes the test conduct and results of the bundle test ESBU-2A, which was run to investigate the temperature escalation of zircaloy clad fuel rods. This investigation of temperature escalation is part of a series of out-of-pile experiments, performed within the framework of the PNS Severe Fuel Damage Program. The test bundle was of a 3 x 3 array of fuel rod simulators with a 0.4 m heated length. The fuel rod simulators were electrically heated and consisted of tungsten heaters, UO 2 annular pellets, and zircaloy cladding. A nominal steam flow of 0.7 g/s was inlet to the bundle. The bundle was surrounded by a zircaloy shroud which was insulated with ZrO 2 fiber ceramic wrap. The initial heatup rate of the bundle was 0.4 0 C/s. The temperature escalation began at the 255 mm elevation after 1200 0 C had been reached. At this elevation, the measured peak temperature was limited to 1500 0 C. It was concluded from different thermocouple results, that induced by this first escalation melt was formed in the lower part of the bundle. Consequently, the escalation in the lower part must be much higher, at least up to the melting temperature of zircaloy. Due to the failure in the steam production system, steam starvation in the upper region may explain the beginning of the escalation at the 255 mm elevation. The maximum temperature reached was 2175 0 C on the center rod at the end of the test. The unregularities in the steam supply may be the reason for less oxidation than expected. (orig./GL) [de

  9. International experience with the bundle behavior of fuel elements of sodium cooled reactors; derivation of a figure of merit for the judgement of fuel pin bundle parameters with respect to abrasion due to thermoelastic pin-pin interaction

    International Nuclear Information System (INIS)

    Toebbe, H.

    1987-10-01

    The report describes the status of experience with respect to the abrasion behavior of bundles in standard fuel elements and test elements with wire or grid spacing in the reactors Rapsodie fortissimo, Phenix, DFR, PFR, EBR-II, FFTF, JOYO and KNK II. With the help of simple considerations concerning thermoelastic pin-pin interactions a figure of merit is deduced from the different bundle parameters, which allows a comparative judgement of the parameters of different bundle concepts [de

  10. PHEBUS/test-218, Behaviour of a Fuel Rod Bundle during a Large Break LOCA Transient with a two Peaks Temperature History

    International Nuclear Information System (INIS)

    1987-01-01

    1 - Description of test facility: PHEBUS test facility operated at CEA Research Center Cadarache consists of a pressurized circuit involving pumps, heat exchangers and a blowdown tank - 25 nuclear fuel rod bundle, coupled to a separate driver core; - active length 0.8 m, cosine axial power profile; - pressurized and un-pressurized fuel rods; - controlled cooling conditions at the bundle inlet (blowdown, refill and reflood period); - de-pressurized test rig volume 0.22 m 3 . The following 'as measured' boundary conditions (B.C.) were offered to participants as options with decreasing challenge to their analytical approach: Boundary conditions B.C.0: - full thermal-hydraulic analysis of PHEBUS test rig (was not recommended). Boundary conditions B.C.1: - thermal power level of fuel bundle; - fluid inlet conditions to bundle section. Boundary conditions B.C.2: - local cladding temperatures of rods; - heat transfer coefficients. Boundary conditions B.C.3: - cladding temperatures of rods; - internal pressure of rods. 2 - Description of test: Post-test investigation into the response of a nuclear fuel bundle to a large break loss of coolant accident with respect to - local fuel temperatures, - cladding strain at the time of burst, - time to burst and under given thermal-hydraulic boundary conditions of PHEBUS-test 218

  11. Steady state transient analysis of spent nuclear fuel bundle exposed to stagnant gaseous atmosphere (Paper No. HMT-56-87)

    International Nuclear Information System (INIS)

    Pal, G.; Markandeya, S.G.; Venkatraj, V.

    1987-01-01

    This paper deals with the development of a computer code for the analysis of radiative heat exchange in rod bundles. Nuclear fuel bundles continue to generate heat even after their removal from the reactor core because of decay of fission products. During the transfer of the bundles from the core to storage bay they may pass through gaseous environment. Radiative heat exchange will be the dominant mode within the bundle under this condition. A computer code RIIEINA (Radiative Heat Exchange In Nuclear Assemblies) has been developed and used for predicting the behaviour of the spent fuel subassembly of the proposed Prototype Fast Breeder Reactor exposed to gaseous environment. The analytical model computer code and the results obtained are briefly discussed. (author). 5 refs., 5 figs

  12. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    Tanabe, A.; Yamamoto, T.; Shinfuku, K.; Nakamae, T.

    1992-01-01

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  13. Evaluation of bundle duct interaction by out of pile compressive test of FBR bundles. FFTF type bundle

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-10-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle becomes one of the main limiting factors for fuel life times. Then, it is important for the design of fast reactor fuel assembly to understand the BDI behavior in detail. In order to understand the BDI behavior, out of pile compressive tests were conducted for FFTF type bundle by use of X-ray CT equipment. In these compressive tests, two type bundles with different accuracy of initial wire position were conducted. The objective of this test is to evaluate the influence of the initial error from standard position of wire at the same axial position. The locations of the pins and the duct flats are analyzed from CT image data. Quantitative evaluation was performed at the CT image data and discussed the bundle deformation status under BDI condition. Following results are obtained. 1) The accuracy of initial wire position is strongly depends on the pin-to-duct contact behavior. In the case of bundle with large error from standard position, pin-to-duct contact is delayed. 2) The BDI mitigation of the bundle with small error from standard wire position is following: The elastic ovality is the dominant deformation in mild BDI condition, then the wire dispersion and pin dispersion are occurred in severe BDI condition. 3) The BDI mitigation of the bundle with large error from standard wire position is following: The elastic ovality and local bowing of pins with large error from standard wire position are occurred in mild BDI condition, then pin dispersion is occurred around pins with large error from standard wire position, finally wire dispersion is occurred in severe BDI condition. 4) The existence of pins with large error from standard wire position is effective to delay the pin-to-duct contact, but the existence of these pins is possible to contact of pin- to- pin. (author)

  14. Variegated operation of MAPS reactors after enmasse' coolant channel replacement: a tale-tell signature of high standard fuel bundle production quality

    International Nuclear Information System (INIS)

    Jena, J.K.; Sahu, J.K.; Arularasan, V.; Sivagurnathan, D.; Rathakrishnan, S.; Ramamurthy, K.

    2009-01-01

    After the Enmasse' Coolant Channel Replacement (EMCCR) of both the reactors of Madras Atomic Power Station (MAPS), they have put up a good performance, as far as core integrity is considered. This is a tale-tell signature of the high quality of the fuel bundles manufactured by Nuclear Fuel Complex (NFC), Hyderabad. Both the reactor cores have been loaded with various types of fuel bundles viz. Natural Uranium (NU), Depleted Uranium (DU), and Deeply Depleted Uranium (DDU) and were operated at different power level with different flux configuration at different stages of operation. Even around 1026 low burn up bundle (<2500 MWD/TeU) were transferred from MAPS-1 to MAPS-2, first time in the history of PHWRS. During all such variegated operations, the Primary Heat Transport (PHT) system 131 I activity, which is synonymous with the core integrity, was maintaining low for most of the reactor operation period. However, recently a low burn up fuel bundle failure has been observed in MAPS-1. Even though the overall failure rate is very low, the cause of such failure needs to be ascertained for taking appropriate action to maintain the high standards of quality in the manufacturing process of the fuel bundles. (author)

  15. Behavior of a bundle of fast fuel pins under irradiation

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Robert, J.; Languille, A.

    1979-01-01

    In the French design of fuel elements for fast reactors, great deformation of pins can bring about interaction with the hexagonal tube through the spacer wires. The change in such bundles is described here when the diameter of the cladding increases and the outcome of this reaction (bending and ovalization of pins) is calculated with a simplified model. It is shown that the results achieved agree well with the experimental observations [fr

  16. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    International Nuclear Information System (INIS)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-01-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC

  17. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    Science.gov (United States)

    Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  18. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Peck, S.O.; Wallenfels, K.P.

    1983-12-01

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO 2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO 2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 2 0 C/s at 1100 0 C increased to approximately 6 0 C/s. The maximum temperature reached was 2250 0 C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO 2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO 2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.) [de

  19. Study of thermal hydraulic behavior of supercritical water flowing through fuel rod bundles

    International Nuclear Information System (INIS)

    Thakre, Sachin; Lakshmanan, S.P.; Kulkarni, Vinayak; Pandey, Manmohan

    2009-01-01

    Investigations on thermal-hydraulic behavior in Supercritical Water Reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community because of its potential to obtain high thermal efficiency and compact design. Present work deals with CFD analysis to study the flow and heat transfer behavior of supercritical water in 4 metre long 7-pin fuel bundle using commercial CFD package ANSYS CFX for single phase steady state conditions. Considering the symmetric conditions, 1/12th part of the fuel rod bundle is taken as a domain of analysis. RNG K-epsilon model with scalable wall functions is used for modeling the turbulence behavior. Constant heat flux boundary condition is applied at the fuel rod surface. IAPWS equations of state are used to compute thermo-physical properties of supercritical water. Sharp variations in its thermo-physical properties (specific heat, density) are observed near the pseudo-critical temperature causing sharp change in heat transfer coefficient. The pseudo-critical point initially appears in the gaps among heated fuel rods, and then spreads radially outward reaching the adiabatic wall as the flow goes downstream. The enthalpy gain in the centre of the channel is much higher than that in the wall region. Non-uniformity in the circumferential distribution of surface temperature and heat transfer coefficient is observed which is in agreement with published literature. Heat transfer coefficient is high on the rod surface near the tight region and decreases as the distance between rod surfaces increases. (author)

  20. Heat Transfer Coefficient Variations in Nuclear Fuel Rod Bundles

    International Nuclear Information System (INIS)

    Conner, Michael E.; Holloway, Mary V.

    2007-01-01

    The single-phase heat transfer performance of a PWR nuclear fuel rod bundle is enhanced by the use of mixing vanes attached to the downstream edges of the support grid straps. This improved single-phase performance will delay the onset of nucleate boiling, thereby reducing corrosion and delaying crud-related issues. This paper presents the variation in measured single-phase heat transfer coefficients (HTC) for several grid designs. Then, this variation is compared with observations of actual in-core crud patterns. While crud deposition is a function of a number of parameters including rod heat flux, the HTC is assumed to be a primary factor in explaining why crud deposition is a local phenomenon on nuclear fuel rods. The data from this study will be used to examine this assumption by providing a comparison between HTC variations and crud deposition patterns. (authors)

  1. Fuel bundle examination techniques for the Phebus fission product test

    International Nuclear Information System (INIS)

    Blanc, J.Y.; Clement, B.; Hardt, P. von der

    1996-01-01

    The paper develops the non-destructive examinations, with a special emphasis on transmission tomography, performed in the Phebus facility, using a linear accelerator associated with a line scan camera based on PCD components. This particular technique enabled the high level of penetration to be obtained, necessary for this high density application. Spatial resolution is not far from the theoretical limit and the density resolution is often adequate. This technique permitted: 1) to define beforehand the cuts on a precise basis, avoiding a long step-by-step choice as in previous in-pile tests; 2) to determine, at an early stage, mass balance, material relocations (in association with axial gamma spectrometry), and FP distribution, as an input into re-calculations of the bundle events. However, classical cuttings, periscopic visual examinations, macrographies, micrographies and EPMA analyses remain essential to give oxidation levels (in the less degraded zones), phase aspect and composition, to distinguish between materials of identical density, and, if possible, to estimate temperatures. Oxidation resistance of sensors (thermocouples or ultrasonic thermometers) is also traced. The EPMA gives access to the molten material chemical analyses, especially in the molten fuel blockage area. The first results show that an important part of the fuel bundle melted (which was one of the objectives of this test) and that the degradation level is close to TIMI-2 with a molten plug under a cavity surrounded by an uranium-rich crust. In lower and upper areas fuel rods are less damaged. Complementaries between these examination techniques and between international teams involved will be major advantages in the Phebus FPT0 test comprehension. 3 refs, 9 figs

  2. Experimental investigation of the coolability of blocked hexagonal bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hózer, Zoltán, E-mail: zoltan.hozer@energia.mta.hu; Nagy, Imre; Kunstár, Mihály; Szabó, Péter; Vér, Nóra; Farkas, Róbert; Trosztel, István; Vimi, András

    2017-06-15

    Highlights: • Experiments were performed with electrically heated hexagonal fuel bundles. • Coolability of ballooned VVER-440 type bundle was confirmed up to high blockage rate. • Pellet relocation effect causes delay in the cool-down of the bundle. • The bypass line does not prevent the reflood of ballooned fuel rods. - Abstract: The CODEX-COOL experimental series was carried out in order to evaluate the effect of ballooning and pellet relocation in hexagonal bundles on the coolability of fuel rods after a LOCA event. The effects of blockage geometry, coolant flowrate, initial temperature and axial profile were investigated. The experimental results confirmed that a VVER bundle up to 80% blockage rate remains coolable after a LOCA event under design basis conditions. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front.

  3. Dynamic modeling and analysis of alternative fuel cycle scenarios in Korea

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2007-01-01

    The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ∼65000 tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors

  4. Assessment of neutron transport codes for application to CANDU fuel lattices analysis

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    1999-08-01

    In order to assess the applicability of WIMS-AECL and HELIOS code to the CANDU fuel lattice analysis, the physics calculations has been carried out for the standard CANDU fuel and DUPIC fuel lattices, and the results were compared with those of Monte Carlo code MCNP-4B. In this study, in order to consider the full isotopic composition and the temperature effect, new MCNP libraries have been generated from ENDF/B-VI release 3 and validated for typical benchmark problems. The TRX-1,2,BAPL-1,2,3 pin -cell lattices and KENO criticality safety benchmark calculations have been performed for the new MCNP libraries, and the results have shown that the new MCNP library has sufficient accuracy to be used for physics calculation. Then, the lattice codes have been benchmarked by the MCNP code for the major physics parameters such as the burnup reactivity, void reactivity, relative pin power and Doppler coefficient, etc. for the standard CANDU fuel and DUPIC fuel lattices. For the standard CANDU fuel lattice, it was found that the results of WIMS-AECL calculations are consistent with those of MCNP. For the DUPIC fuel lattice, however, the results of WIMS-AECL calculations with ENDF/B-V library have shown that the discrepancy from the results of MCNP calculations increases when the fuel burnup is relatively high. The burnup reactivities of WIMS-ACEL calculations with ENDF/B-VI library have shown excellent agreements with those of MCNP calculation for both the standard CANDU and DUPIC fuel lattices. However, the Doppler coefficient have relatively large discrepancies compared with MCNP calculations, and the difference increases as the fuel burns. On the other hand, the results of HELIOS calculation are consistent with those of MCNP even though the discrepancy is slightly larger compared with the case of the standard CANDU fuel lattice. this study has shown that the WIMS-AECL products reliable results for the natural uranium fuel. However, it is recommended that the WIMS

  5. Development of a Fast Breeder Reactor Fuel Bundle Deformation Analysis Code - BAMBOO: Development of a Pin Dispersion Model and Verification by the Out-of-Pile Compression Test

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2004-01-01

    To analyze the wire-wrapped fast breeder reactor fuel pin bundle deformation under bundle/duct interaction conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. This code uses the three-dimensional beam element to calculate fuel pin bowing and cladding oval distortion as the primary deformation mechanisms in a fuel pin bundle. The pin dispersion, which is disarrangement of pins in a bundle and would occur during irradiation, was modeled in this code to evaluate its effect on bundle deformation. By applying the contact analysis method commonly used in the finite element method, this model considers the contact conditions at various axial positions as well as the nodal points and can analyze the irregular arrangement of fuel pins with the deviation of the wire configuration.The dispersion model was introduced in the BAMBOO code and verified by using the results of the out-of-pile compression test of the bundle, where the dispersion was caused by the deviation of the wire position. And the effect of the dispersion on the bundle deformation was evaluated based on the analysis results of the code

  6. Laminar simulation of intersubchannel mixing in a triangular nuclear fuel bundle geometry

    International Nuclear Information System (INIS)

    Zaretsky, A.; Lightstone, M.F.; Tullis, S.

    2015-01-01

    Highlights: • Quasi-periodic flow was observed through rod-to-wall gaps. • Triangular subchannel flows were fundamentally irregular. • Cross-gap flow was influenced both by local and adjacent cross-gap intensity. • Phase-linking between gaps induced cross-plane peripheral circulation through rod–wall gaps. • Cross-gap flow structure was dependent on subchannel geometry. - Abstract: Predicting temperature distributions in fuel rod bundles is an important component of nuclear reactor safety analysis. Intersubchannel mixing acts to homogenize coolant temperatures thus reducing the likelihood of localized regions of high fuel temperature. Previous research has shown that intersubchannel mixing in nuclear fuel rod bundles is enhanced by a large-scale quasi-periodic energetic fluid motion, which transports fluid on the cross-plane between the narrow gaps connecting subchannels. This phenomenon has also been observed in laminar flows. Unsteady laminar flow simulations were performed in a simplified bundle of three rods with a pipe. Three similar geometries of varying gap width were examined, and a thermal trace was implemented on the first geometry. Thermal mixing was driven by the advection of energy between subchannels by the cross-plane flow. Flow through the rod-to-wall gaps in the wall subchannels alternated with a dominant frequency, particularly when rod-to-wall gaps were smaller than rod-to-rod gaps. Significant phase-linking between rod-to-wall gaps was also observed such that a peripheral circulation occurred through each gap simultaneously. Cross-plane flow through the rod-to-rod gaps in the triangular subchannel was irregular in each case. This was due to the fundamental irregularity of the triangular subchannel geometry. Vortices were continually broken up by cross-plane flow from other gaps due to the odd number of fluid pathways within the central subchannel. Cross-plane flow in subchannel geometries is highly interconnected between gaps. The

  7. CAPRICORN subchannel code for sodium boiling in LMFBR fuel bundles

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Smith, D.E.; O'Dell, L.D.

    1983-01-01

    The CAPRICORN computer code analyzes steady-state and transient, single-phase and boiling problems in LMFBR fuel bundles. CAPRICORN uses the same type of subchannel geometry as the COBRA family of codes and solves a similar system of conservation equations for mass, momentum, and energy. However, CAPRICORN uses a different numerical solution method which allows it to handle the full liquid-to-vapor density change for sodium boiling. Results of the initial comparison with data (the W-1 SLSF pipe rupture experiment) are very promising and provide an optimistic basis for proceeding with further development

  8. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  9. Spent fuel bundle counter sequence error manual - BRUCE NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  10. Spent fuel bundle counter sequence error manual - DARLINGTON NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  11. Large-scale numerical simulations on two-phase flow behavior in a fuel bundle of RMWR with the earth simulator

    International Nuclear Information System (INIS)

    Kazuyuki, Takase; Hiroyuki, Yoshida; Hidesada, Tamai; Hajime, Akimoto; Yasuo, Ose

    2003-01-01

    Fluid flow characteristics in a fuel bundle of a reduced-moderation light water reactor (RMWR) with a tight-lattice core were analyzed numerically using a newly developed two-phase flow analysis code under the full bundle size condition. Conventional analysis methods such as sub-channel codes need composition equations based on the experimental data. In case that there are no experimental data regarding to the thermal-hydraulics in the tight-lattice core, therefore, it is difficult to obtain high prediction accuracy on the thermal design of the RMWR. Then the direct numerical simulations with the earth simulator were chosen. The axial velocity distribution in a fuel bundle changed sharply around a grid spacer and its quantitative evaluation was obtained from the present preliminary numerical study. The high prospect was acquired on the possibility of establishment of the thermal design procedure of the RMWR by large-scale direct simulations. (authors)

  12. Relation between medium fluid temperature and centroid subchannel temperatures of a nuclear fuel bundle mock-up

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1986-01-01

    The subchannel method used in nuclear fuel bundle thermal-hydraulic analysis lies in the statement that subchannel fluid temperatures are taken at mixed mean values. However, the development of mixing correlations and code assessment procedures are, sometimes in the literature, based upon the assumption of identity between lumped and local (subchannel centroid) temperature values. The present paper is concerned with the presentation of an approach for correlating lumped to centroid subchannel temperatures, based upon previously formulated models by the author, applied, applied to a nine heated tube bundle experimental data set. (Author) [pt

  13. Relation between medium fluid temperature and centroid subchannel temperatures of a nuclear fuel bundle mock-up

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1986-01-01

    The subchannel method used in nuclear fuel bundle thermal-hydraulic analysis lies in the statement that subchannel fluid temperatures are taken at mixed mean values. However, the development of mixing correlations and code assessment procedures are, sometimes in the literature, based upon the assumption of identity between lumped and local (subchannel centroid) temperature values. The present paper is concerned with the presentation of an approach for correlating lumped to centroid subchannel temperatures, based upon previously formulated models by the author, applied to a nine heated tube bundle experimental data set. (Author) [pt

  14. Bundle duct interaction studies for fuel assemblies

    International Nuclear Information System (INIS)

    Hsia, H.T.S.; Kaplan, S.

    1981-06-01

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant

  15. 16-rod-bundle: Irradiation in the MZFR and post-irradiation examinations

    International Nuclear Information System (INIS)

    Manzel, R.

    1979-04-01

    In the course of the irradiation of a 16-rod prototype bundle, the basis has been established for the irradiation of experimental fuel assemblies containing full-length PWR fuel rods in standard positions of the MZFR. The prototype bundle was discharged after an irradiation time of 284 full power days and a burnup of 11400 MWd/tU. The overall performance of the prototype bundle was highly satisfactory. Detailed post-irradiation examinations confirmed the good conditions of bundle structures and fuel rods. (orig.) [de

  16. Flow in rod bundles

    International Nuclear Information System (INIS)

    Hazi, G.; Mayer, G.

    2005-01-01

    For power upgrading VVER-440 reactors we need to know exactly how the temperature measured by the thermocouples is related to the average outlet temperature of the fuel assemblies. Accordingly, detailed knowledge on mixing process in the rod bundles and in the fuel assembly head have great importance. Here we study the hydrodynamics of rod bundles based on the results of direct numerical and large eddy simulation of flows in subchannels. It is shown that secondary flow and flow pulsation phenomena can be observed using both methodologies. Some consequences of these observations are briefly discussed. (author)

  17. A comprehensive review on the methodologies to simulate the nuclear fuel bundle for the thermal hydraulic experiments

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Chandraker, D.K.; Pal, A.K.; Vijayan, P.K.; Saha, D.

    2011-01-01

    The designer of a nuclear reactor system has to ensure its safety during normal operation as well as accidental conditions. This requires, among other things, a proper understanding of the various thermal hydraulic phenomena occurring in the reactor core. In a nuclear reactor core the fuel elements are the heat source and highly loaded components of the reactor system. Therefore their behaviour under normal and accidental conditions must be extensively investigated. Data generation for Critical heat flux (CHF) in full scale bundle and parallel channel instability studies with at least two full size channels are required in order to evaluate the thermal margin and stability margin of the reactor. The complex nature of these phenomena calls for exhaustive experimental investigations. Fuel Rod Cluster Simulator (FRCS) is a very important component required for the experimental investigation of the thermal hydraulic behaviour of reactor fuel elements under normal and accidental conditions. This paper brings out a comprehensive review of the FRCS elaborating the challenges and important design aspects of the FRCS. Some of the main features and analysis results on the performance of the developed FRCS with respect to the actual nuclear fuel bundle will be presented in the paper. (author)

  18. Numerical prediction of critical heat flux in nuclear fuel rod bundles with advanced three-fluid multidimensional porous media based model

    International Nuclear Information System (INIS)

    Zoran Stosic; Vladimir Stevanovic

    2005-01-01

    Full text of publication follows: The modern design of nuclear fuel rod bundles for Boiling Water Reactors (BWRs) is characterised with increased number of rods in the bundle, introduced part-length fuel rods and a water channel positioned along the bundle asymmetrically in regard to the centre of the bundle cross section. Such design causes significant spatial differences of volumetric heat flux, steam void fraction distribution, mass flux rate and other thermal-hydraulic parameters important for efficient cooling of nuclear fuel rods during normal steady-state and transient conditions. The prediction of the Critical Heat Flux (CHF) under these complex thermal-hydraulic conditions is of the prime importance for the safe and economic BWR operation. An efficient numerical method for the CHF prediction is developed based on the porous medium concept and multi-fluid two-phase flow models. Fuel rod bundle is observed as a porous medium with a two-phase flow through it. Coolant flow from the bundle entrance to the exit is characterised with the subsequent change of one-phase and several two-phase flow patterns. One fluid (one-phase) model is used for the prediction of liquid heating up in the bundle entrance region. Two-fluid modelling approach is applied to the bubbly and churn-turbulent vapour and liquid flows. Three-fluid modelling approach is applied to the annular flow pattern: liquid film on the rods wall, steam flow and droplets entrained in the steam stream. Every fluid stream in applied multi-fluid models is described with the mass, momentum and energy balance equations. Closure laws for the prediction of interfacial transfer processes are stated with the special emphasis on the prediction of the steam-water interface drag force, through the interface drag coefficient, and droplets entrainment and deposition rates for three-fluid annular flow model. The model implies non-equilibrium thermal and flow conditions. A new mechanistic approach for the CHF prediction

  19. Interactions in Zircaloy/UO2 fuel rod bundles with Inconel spacers at temperatures above 1200deg C (posttest results of severe fuel damage experiments CORA-2 and CORA-3)

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Schanz, G.; Sepold, L.

    1990-09-01

    In the CORA experiments test bundles of usually 16 electrically heated fuel rod simulators and nine unheated rods are subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence is simulated, which may develop from a small-break loss-of-coolant accident of an LWR. An aim of CORA-2, as a first test of its kind, was also to gain experience in the test conduct and posttest handling of UO 2 specimens. CORA-3 was performed as a high-temperature test. The transient phases of CORA-2 and CORA-3 were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy(Zry)-steam reaction started at about 1000deg C, leading the bundles to maximum temperatures of 2000deg C and 2400deg C for tests CORA-2 and CORA-3, respectively. The test bundles resulted in severe oxidation and partial melting of the cladding, fuel dissolution by Zry/UO 2 interaction, complete Inconel spacer destruction, and relocation of melts and fragments to lower elevations in the bundle, where extended blockages have formed. In both tests the fuel rod destruction set in together with the formation of initial melts from the Inconel/Zry interaction. The lower Zry spacer acted as a catcher for relocated material. In test CORA-2 the UO 2 pellets partially disintegrated into fine particles. This powdering occurred during cooldown. There was no physical disintegration of fuel in test CORA-3. (orig./MM) [de

  20. The Comparison Analysis of Thermalhydraulic Behavior Between A Reference 37-element Bundle and A Modified 37-element Bundle

    International Nuclear Information System (INIS)

    Ryu, Eui-Seung; You, Sung-Chang

    2014-01-01

    As pressure tube diameter creep increase, the coolant flows through some of the interior subchannels of the fuel bundle are reduced and consequently reduces the Critical Heat Flux (CHF). For this reason, Canadian Utilities have performed the project that developing the new fuel design (modified 37-element bundle) to increase critical heat flux. The modified 37-element (37M) bundle has the same overall geometry as the reference 37-element (37R) bundle that is using in the Wolsong units now but the center element diameter has been reduced from 13.06mm to 11.5mm. The reduction in center element diameter of the 37M bundle design increase the flow of center areas to improve the cooling and thus to enhance CHF. The CHF experiments with 37M bundle string simulator in un-crept and crept (3.3%, 5.1% peak creep) flow channels were completed at Stern Laboratories in 2008. A substantially large increase in dryout-power was observed for the 37M bundle compared to the 37R bundle, particularly in the 5.1% crept channel. As a result of the experiments, Ontario Power Generation (OPG) and Bruce Power (BP) have increased the operational margin with this CHF correlation and has fully refueled the 37M fuel on some units or almost done on the other units. KHNP also has performed the project to refuel the 37M bundle which is the same design with OPG and BP recently. This paper summarizes the comparison assessment of Thermalhydraulic (T/H) behavior for 37M bundle and 37R bundle with their own correlations and geometry parameters. This analysis performed with the thermal hydraulic code (NUCIRC) and the site measured data at the Wolsong Unit2. Tests to evaluate the CHF performance with the 37M fuel bundle have been conducted in 2008 using the un-crept, 3.3% crept and 5.1% crept flow channels in the CHF Test facility at Stern Laboratories. In addition pressure drop tests have been performed at the same time. The changes of geometry from 37R bundle to 37M bundle reduced the center element

  1. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hsu, Ryan S; Higgins, Drew; Chen Zhongwei

    2010-01-01

    Novel tin-oxide (SnO 2 )-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO 2 -coated SWNT (SnO 2 -SWNT) bundles were synthesized by a simple chemical-solution route. SnO 2 -SWNT bundles supporting Pt (Pt/SnO 2 -SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO 2 -SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO 2 loading of Pt/SnO 2 -SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  2. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    Science.gov (United States)

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  3. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  4. Unsteady Reynolds averaged Navier-Stokes: toward accurate predictions in fuel-bundles and T-junctions

    International Nuclear Information System (INIS)

    Merzari, E.; Ninokata, H.; Baglietto, E.

    2008-01-01

    Traditional steady-state simulation and turbulence modelling are not always reliable. Even in simple flows, the results can be not accurate when particular conditions occur. Examples are buoyancy, flow oscillations, and turbulent mixing. Often, unsteady simulations are necessary, but they tend to be computationally not affordable. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach holds promise to be less computational expensive than Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS), reaching a considerable degree of accuracy. Moreover, URANS methodologies do not need complex boundary formulations for the inlet and the outlet like LES or DNS. The Test cases for this methodology will be Fuel Bundles and T-junctions. Tight-Fuel Rod-Bundles present large scale coherent structures than cannot be taken into account by a simple steady-state simulation. T-junctions where a hot fluid and a cold fluid mix present temperature fluctuations and therefore thermal fatigue. For both cases the capacity of the methodology to reproduce the flow field are assessed and it is evaluated that URANS holds promise to be the industrial standard in nuclear engineering applications that do not involve buoyancy. The codes employed are STAR-CD 3.26 and 4.06. (author)

  5. Thermal-hydraulic characteristics of reacting zone for TWR bundles based on CFD method

    International Nuclear Information System (INIS)

    Lu Chuan; Yan Mingyu; Lu Jianchao

    2013-01-01

    Thermal-hydraulic characteristics of reacting zone for TWR (travelling wave reactor) bundles were analysed by CFD method. The calculation results of 7, 19 and 37 fuel pin bundles show the similar characteristics. The hot coolant seems to congregate into the centre as flowing to the downstream area. The high temperature coolant always distributes in the inner area while the temperature shows distinct gradation in the outer area. The temperature difference is more than 100 ℃ for the bundle whose diameter is about 26 cm. The major temperature gradations mainly locate in the outermost fuel rods of two circles while other circles show much smaller temperature gradients. This conclusion is estimated to be true for more fuel pin bundles such as 217 fuel pin bundles. The fuel assembly structure of the existing TWR design should be optimized in future. (authors)

  6. Effects of entrained gas on the acoustic detection of sodium boiling in a simulated LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Leavell, W.H.; Sides, W.H.

    1975-01-01

    The relationship between acoustic intensity of nucleate boiling and void fraction was studied in a simulated LMFBR fuel bundle. Results indicate that as the void fraction increases the detected intensity of nucleate boiling decreased until it was indistinguishable from background noise. (JWR)

  7. Economic Analysis of Different Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Ko, W.; Gao, F.

    2012-01-01

    An economic analysis has been performed to compare four nuclear fuel cycle options: a once-through cycle (OT), DUPIC recycling, thermal recycling using MOX fuel in a pressurized water reactor (PWR-MOX), and sodium fast reactor recycling employing pyro processing (Pyro-SFR). This comparison was made to suggest an economic competitive fuel cycle for the Republic of Korea. The fuel cycle cost (FCC) has been calculated based on the equilibrium material flows integrated with the unit cost of the fuel cycle components. The levelized fuel cycle costs (LFCC) have been derived in terms of mills/kWh for a fair comparison among the FCCs, and the results are as follows: OT 7.35 mills/kWh, DUPIC 9.06 mills/kWh, PUREX-MOX 8.94 mills/kWh, and Pyro-SFR 7.70 mills/kWh. Due to unavoidable uncertainties, a cost range has been applied to each unit cost, and an uncertainty study has been performed accordingly. A sensitivity analysis has also been carried out to obtain the break-even uranium price (215$/kgU) for the Pyro-SFR against the OT, which demonstrates that the deployment of the Pyro-SFR may be economical in the foreseeable future. The influence of pyro techniques on the LFCC has also been studied to determine at which level the potential advantages of Pyro-SFR can be realized.

  8. Feasibility evaluation of x-ray imaging for measurement of fuel rod bowing in CFTL test bundles

    International Nuclear Information System (INIS)

    Baker, S.P.

    1980-06-01

    The Core Flow Test Loop (CFTL) is a high temperature, high pressure, out-of-reactor helium-circulating system. It is designed for detailed study of the thermomechanical performance, at prototypic steady-state and transient operating conditions, of electrically heated rods that simulate segments of core assemblies in the Gas-Cooled Fast Breeder reactor demonstration plant. Results are presented of a feasibility evaluation of x-ray imaging for making measurements of the displacement (bowing) of fuel rods in CFTL test bundles containing electrically heated rods. A mock-up of a representative CFTL test section consisting of a test bundle and associated piping was fabricated to assist in this evaluation

  9. CFD simulation of flow and heat transfer in Canadian SCWR bundles

    International Nuclear Information System (INIS)

    Podila, K.; Rao, Y.F.

    2014-01-01

    Within the Generation-IV (Gen-IV) International Forum, Atomic Energy of Canada Limited (AECL) is leading the effort in developing a conceptual design for the Canadian supercritical water-cooled reactor (SCWR). AECL proposed a new fuel bundle design with two rings of fuel elements placed between central flow tube and the pressure tube. In line with the scope of the conceptual design, the objective of the present CFD work is to aid in developing a bundle heat transfer correlation for the Canadian SCWR fuel bundle design. This paper presents results from an ongoing effort in determining the conditions favorable for possible occurrence of heat transfer deterioration (HTD) in the supercritical bundle flows. In the current investigation, a bare-rod bundle geometry was tested for the proposed fuel bundle design at 23.5, 25 and 28 MPa using STAR-CCM+ CFD code. Taking advantage of the design symmetry of the fuel bundle, only 1/32 of the computational domain was simulated. The SST k-ω turbulence model along with y + <1 was used in the simulations. For lower mass flow simulations, the increase of inlet temperature and operational pressure was found effective in reducing the occurrence of HTD. For higher mass flow simulations, normal heat transfer behaviour was observed except for the lower pressure range (23.5MPa). Ultimately, the goal of this study is to aid the development of a criterion for the onset of HTD in the proposed SCWR bundles, which is planned in the next phase of the project. (author)

  10. The installation and performance test of the surveillance system for DUPIC facility

    International Nuclear Information System (INIS)

    Kim, Dong Young; Kim, Ho Dong; Cha, Hong Ryul

    2000-07-01

    We have developed the real time surveillance system, named by DSSS, for DUPIC test facility. The system acquires data from He-3 neutron monitors(DSNM) and CCD cameras to automatically diagnose the transportation status of nuclear material. This technical report shortly illustrates important features of hardware and software of the system

  11. The installation and performance test of the surveillance system for DUPIC facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Young; Kim, Ho Dong; Cha, Hong Ryul

    2000-07-01

    We have developed the real time surveillance system, named by DSSS, for DUPIC test facility. The system acquires data from He-3 neutron monitors(DSNM) and CCD cameras to automatically diagnose the transportation status of nuclear material. This technical report shortly illustrates important features of hardware and software of the system.

  12. CFD analysis of flow and heat transfer in Canadian supercritical water reactor bundle

    International Nuclear Information System (INIS)

    Podila, K.; Rao, Y.F.

    2015-01-01

    Highlights: • Flow and heat transfer in SCWR fuel bundle design by AECL is studied using CFD. • Bare-rod bundle geometry is tested at 23.5, 25 and 28 MPa using STAR-CCM+ code. • SST k–ω low-Re model was used to study occurrence of heat transfer deterioration. - Abstract: Within the Gen-IV International Forum, AECL is leading the effort in developing a conceptual design for the Canadian SCWR. AECL proposed a new fuel bundle design with two rings of fuel elements placed between central flow tube and the pressure tube. In line with the scope of the conceptual design, the objective of the present CFD work is to aid in developing a bundle heat transfer correlation for the Canadian SCWR fuel bundle design. This paper presents results from an ongoing effort in determining the conditions favorable for occurrence of HTD in the supercritical bundle flows. In the current investigation, bare-rod bundle geometry was tested for the proposed fuel bundle design at 23.5, 25 and 28 MPa using STAR-CCM+ CFD code. Taking advantage of the design symmetry of the fuel bundle, only 1/32 of the computational domain was simulated. The low-Reynolds number modification of SST k–ω turbulence model along with y + < 1 was used in the simulations. For lower mass flow simulations, the increase of inlet temperature and operational pressure was found effective in reducing the occurrence of HTD. For higher mass flow simulations, normal heat transfer behaviour was observed except for the lower pressure range (23.5 MPa)

  13. Spacing grids for a fuel pencil bundle in a nuclear reactor assembly

    International Nuclear Information System (INIS)

    Feutrel, Claude.

    1977-01-01

    This invention relates to the lattices forming the spacing of a bundle of clad fuel pencils in a nuclear reactor assembly, particularly in a water cooled or fast reactor, the purpose of such lattices being to maintain these pencils parallel with respect to each other and according to a given lattice arrangement, whilst also providing these pencils with a flexible support according to different successive areas apportioned with their length in order to present them from vibrating under the effect of the circulation of a liquid coolant environment flowing in contact with these pencils [fr

  14. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  15. Spent fuel bundle counter sequence error manual - RAPPS (200 MW) NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  16. Spent fuel bundle counter sequence error manual - KANUPP (125 MW) NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message may contain adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  17. Subchannel analysis program for boiling water reactor fuel bundles based on five conservation equations of two-phase flow

    International Nuclear Information System (INIS)

    Bessho, Y.; Uchikawa, S.

    1985-01-01

    A subchannel analysis program, MENUETT, is developed for evaluation of thermal-hydraulic characteristics in boiling water reactor fuel bundles. This program is based on five conservation equations of two-phase flow with the drift-flux correlation. The cross flows are calculated separately for liquid and vapor phases from the lateral momentum conservation equation. The effects of turbulent mixing and void drift are accounted for in the program. The conservation equations are implicitly differentiated with the convective terms by the donor-cell method, and are solved iteratively in the axial and lateral directions. Data of the 3 X 3 rod bundle experiments are used for program verification. The lateral distributions of equilibrium quality and mass flow rate at the bundle exit calculated by the program compare satisfactorily with the experimental results

  18. CANDU advanced fuel R and D programs for 1997 - 2006 in Korea

    International Nuclear Information System (INIS)

    Suk, H.C.; Yang, M.S.; Sim, K-S.; Yoo, K.J.

    1997-01-01

    KAERI has a comprehensive product development program of CANFLEX and DUPIC fuels to introduce them into CANDU reactors in Korea and a clear vision of how the product will evolve over the next 10 years. CANDU reactors are not the majority of nuclear power plants in Korea, but they produce significant electricity to contribute Korea's economic growth as well as to satisfy the need for energy. The key targets of the development program are safety enhancement, reduction of spent fuel volume, and economic improvements, using the inherent characteristics and advantages of CANDU technology The CANFLEX and DUPIC R and D programs are conducted currently under the second stage of Korea's Nuclear Energy R and D Project as a national mid- and long-term program over the next 10 years from 1997 to 2006. The specific activities of the programs have taken account of the domestic and international environment concerning on non-proliferation in the Peninsula of Korea. As the first of the development products in the short-term, the CANFLEX-NU fuel will be completely developed jointly by KAERI/AECL and will be useful for the older CANDU-6 Wolsong unit 1. As the second product, the CANFLEX-0.9 % equivalent SEU fuel is expected to be completely developed within the next decade. It will be used in CANDU-6 reactors in Korea immediately after the development, if the existing RU in the world is price competitive with natural uranium. The DUPIC R and D program, as a long term program, is expected to demonstrate the possibility of use of used PWR fuel in CANDU reactors in Korea during the next 10 years. The pilot scale fabrication facility would be completed around 2010. (author)

  19. CANDU advanced fuel R and D programs for 1997 - 2006 in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H.C.; Yang, M.S.; Sim, K-S.; Yoo, K.J. [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1997-07-01

    KAERI has a comprehensive product development program of CANFLEX and DUPIC fuels to introduce them into CANDU reactors in Korea and a clear vision of how the product will evolve over the next 10 years. CANDU reactors are not the majority of nuclear power plants in Korea, but they produce significant electricity to contribute Korea's economic growth as well as to satisfy the need for energy. The key targets of the development program are safety enhancement, reduction of spent fuel volume, and economic improvements, using the inherent characteristics and advantages of CANDU technology The CANFLEX and DUPIC R and D programs are conducted currently under the second stage of Korea's Nuclear Energy R and D Project as a national mid- and long-term program over the next 10 years from 1997 to 2006. The specific activities of the programs have taken account of the domestic and international environment concerning on non-proliferation in the Peninsula of Korea. As the first of the development products in the short-term, the CANFLEX-NU fuel will be completely developed jointly by KAERI/AECL and will be useful for the older CANDU-6 Wolsong unit 1. As the second product, the CANFLEX-0.9 % equivalent SEU fuel is expected to be completely developed within the next decade. It will be used in CANDU-6 reactors in Korea immediately after the development, if the existing RU in the world is price competitive with natural uranium. The DUPIC R and D program, as a long term program, is expected to demonstrate the possibility of use of used PWR fuel in CANDU reactors in Korea during the next 10 years. The pilot scale fabrication facility would be completed around 2010. (author)

  20. The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Bae, Jun Ho; Park, Joo Hwan

    2010-01-01

    A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect the detailed shape of rod bundle on the numerical computation due to a lot of computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers, bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve the complex geometry such as a fuel rod bundle. In front of applying the method to the problem of 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to the simple geometry. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for the future works

  1. AECL's progress in developing the DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Cox, D.S.

    1995-01-01

    Spent Pressurized Water Reactor (PWR) fuel can be used directly in CANDU reactors without the need for wet chemical reprocessing or reenrichment. Considerable experimental progress has been made in verifying the practicality of this fuel cycle, including hot-cell experiments using spent PWR fuels and out-cell trials using surrogate fuels. This paper describes the current status of these experiments. (author)

  2. Investigation of velocity distribution in an inner subchannel of wire wrapped fuel pin bundle of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Kamide, Hideki; Ohshima, Hiroyuki; Kobayashi, Jun; Sato, Hiroyuki

    2011-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up of core fuel in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the detail of flow velocity distribution in a wire wrapped pin bundle. In this study, water experiments were carried out to investigate the detailed velocity distribution in a subchannel of nominal pin geometry as the first step. These basic data are not only useful for understanding of pin bundle thermal hydraulics but also a code validation. A wire-wrapped 3-pin bundle water model was applied to investigate the detailed velocity distribution in the subchannel which is surrounded by 3 pins with wrapping wire. The test section consists of an irregular hexagonal acrylic duct tube and three pins made of fluorinated resin pins which has nearly the same refractive index with that of water and a high light transmission rate. This enables to visualize the central subchannel through the pins. The velocity distribution in the central subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through a side wall of the duct tube. Typical flow velocity conditions in the pin bundle were 0.36m/s (Re=2,700) and 1.6m/s (Re=13,500). Influence of the wrapping wire on the velocity distributions in vertical and horizontal directions was confirmed. A clockwise swirl flow around the wire was found in subchannel. Significant differences were not recognized between the two cases of Re=2,700 and 13,500 concerning flow patterns. (author)

  3. Fuel assembly insertion system

    International Nuclear Information System (INIS)

    Barkhurst, D.J.

    1987-01-01

    This patent describes a nuclear reactor facility having fuel bundles: a system for the insertion of a fuel bundle into a position where vertically arranged fuel bundles surround and are adjacent the system comprising, in combination, separate and individual centering devices secured to and disposed on top of each fuel bundle adjacent the position. Each such centering device has a generally box-like cap configuration on the upper end of each fuel bundle and includes: a top wall; first and second side walls, each secured along and upper edge to the top wall; a rear plate attached along opposite vertical edges to the first and second side walls; a front inclined wall joined along an upper edge to the top to the wall and attached along opposite vertical edges first and second side walls; pad means secured to the lower edge of the first and second side walls, the front inclined wall and the rear plate for mounting each centering device on top of an associated fuel bundle; pin means carried by at least two of the pad means engageable with an associated aperature for locating and laterally fixing each centering device on top of its respective fuel bundle. Each front inclined wall of each of the centering devices is orientated on top of its respective fuel bundle to slope upwardly and away from the position where upon downward insertion of a fuel bundle any contact between the lower end of the fuel bundle inserted with a front inclined wall of a centering device will laterally deflect the fuel bundle. Each centering device further includes a central socket means secured to the top wall, and an elongated handling pole pivotally attached to the socket

  4. REBEKA bundle experiments

    International Nuclear Information System (INIS)

    Wiehr, K.

    1988-05-01

    This report is a summary of experimental investigations describing the fuel rod behavior in the refilling and reflooding phase of a loss-of-coolant accident of a PWR. The experiments were performed with 5x5 and 7x7 rod bundles, using indirectly electrically heated fuel rod simulators of full length with original PWR-KWU-geometry, original grid spacers and Zircaloy-4-claddings (Type Biblis B). The fuel rod simulators showed a cosine shaped axial power profile in 7 steps and continuous, respectively. The results describe the influence of the different parameters such as bundle size on the maximum coolant channel blockage, that of the cooling on the size of the circumferential strain of the cladding (azimuthal temperature distribution) a cold control rod guide thimble and the flow direction (axial temperature distribution) on the resulting coolant channel blockage. The rewetting behavior of different fuel rod simulators including ballooned and burst Zircaloy claddings is discussed as well as the influence of thermocouples on the cladding temperature history and the rewetting behavior. All results prove the coolability of a PWR in the case of a LOCA. Therefore, it can be concluded that the ECC-criteria established by licensing authorities can be fulfilled. (orig./HP) [de

  5. Flow field measurements using LDA and numerical computation for rod bundle of reactor fuel assembly

    International Nuclear Information System (INIS)

    Hu Jun; Zou Zunyu

    1995-02-01

    Local mean velocity and turbulence intensity measurements were obtained with DANTEC 55 X two-dimensional Laser Dopper Anemometry (LDA) for rod bundle of reactor fuel assembly test model which was a 4 x 4 rod bundle. The data were obtained from different experimental cross-sections both upstream and downstream of the model support plate. Measurements performed at test Reynolds numbers of 1.8 x 10 4 ∼3.6 x 10 4 . The results described the local and gross effects of the support plate on upstream and downstream flow distributions. A numerical computation was also given, the experimental results are in good agreement with the numerical one and the others in references. Finally, a few suggestions were proposed for how to use the LDA system well. (11 figs.)

  6. Verification of the FBR fuel bundle–duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Nemoto, Junichi [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ichikawa, Shoichi [Japan Atomic Energy Agency, 2-1, Shiraki, Tsuruga-shi, Fukui 919-1279 (Japan); Katsuyama, Kozo [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2014-09-15

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle–duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  7. Thermal-hydraulic design calculations for the annular fuel element with replaceable test bundles (TOAST) on the test zone position 205 of KNK II/3

    International Nuclear Information System (INIS)

    Norajitra, P.

    1984-10-01

    Annular fuel elements are foreseen in KNK II as carrier elements for irradiation inserts and test bundles. For the third core a reloadable annular element on position 205 is foreseen, in which replaceable 19-pin test bundles (TOAST) shall be irradiated. The present report deals with the thermal-hydraulic design of the annular carrier element and the test bundle, whereby the test bundle required additional optimization. The code CIA has been used for the calculations. Start of irradiation of the subassembly is planned at the beginning of the third core operation. After optimization of the pin-spacer geometry in the test bundle, design calculations for both bundles were performed, whereby thermal coupling between both was taken into account. The calculated mass-flows and temperature distributions are given for the nominal and the eccentric element configuration. The calculated bundle pressure losses have been corrected according to experimental results [de

  8. Implementation of Canflex bundle manufacture - from 'bench scale' to production

    International Nuclear Information System (INIS)

    Pant, A.

    1999-01-01

    Zircatec Precision Industries (ZPI) has been involved with the development of the 43 element Canflex bundle design since 1986. This development included several 'prototype' campaigns involving the manufacture of small quantities of test bundles using enriched fuel. Manufacturing and inspection methods for this fuel were developed at ZPI as the design progressed. The most recent campaign involved the production of 26 bundles of the final Canflex design for a demonstration irradiation in the Point Lepreau Generating Station. This presentation will explore issues pertaining to the introduction of a new product line from initial trial quantities to full production levels. The Canflex fuel experience and a brief review of development efforts will be used as an example. (author)

  9. Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Firnhaber, M. [Gesellschaft fuer Anlagen-und Reaktorsicherheit, Koeln (Germany); Yegorova, L. [Nuclear Safety Institute of Russian Research Center, Moscow (Russian Federation); Brockmeier, U. [Ruhr-Univ. of Bochum (Germany)] [and others

    1995-09-01

    International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement.

  10. MENT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Betten, P.R.; Tow, D.M.

    1984-01-01

    Since the advent of computer-assisted-tomography (CAT), the CAT techniques have been rapidly expanded to the nuclear industry. A number of investigators have applied these techniques to reconstruct the fuel bundle configuration inside a subassembly with various degrees of resolution; however, there has been little data available on the accuracy of these reconstructions, and no comparisons have been made with the internal structure of actual irradiated subassemblies. Some efforts have utilized pretest mock-ups to calibrate the CAT algorithms, but the resulting mock-up configurations do not necessarily represent an actual subassembly, so an exact comparison has been lacking. The purpose of this paper is to present the results of a comparison between a CAT reconstruction of an irradiated subassembly and the destructive examination of the same subassembly

  11. Investigation of coolant thermal mixing within 28-element CANDU fuel bundles using the ASSERT-PV thermal hydraulics code

    International Nuclear Information System (INIS)

    Lightston, M.F.; Rock, R.

    1996-01-01

    This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles under steady-state conditions. The study, which is based on simulations performed using the ASSERT-PV thermal hydraulic code, consists of two main parts. In the first part the various physical mechanisms that contribute to coolant mixing are identified and their impact is isolated via ASSERT-PV simulations. The second part is concerned with development of a preliminary model suitable for use in the fuel and fuel channel code FACTAR to predict the thermal mixing that occurs between flow annuli. (author)

  12. SEU blending project, concept to commercial operation, Part 3: production of powder for demonstration irradiation fuel bundles

    International Nuclear Information System (INIS)

    Ioffe, M.S.; Bhattacharjee, S.; Oliver, A.J.; Ozberk, E.

    2005-01-01

    The processes for production of Slightly Enriched Uranium (SEU) dioxide powder and Blended Dysprosium and Uranium (BDU) oxide powder that were developed at laboratory scale at Cameco Technology Development (CTD), were implemented and further optimized to supply to Zircatec Precision Industries (ZPI) the quantities required for manufacturing twenty six Low Void Reactivity (LVRF) CANFLEX fuel bundles. The production of this new fuel was a challenge for CTD and involved significant amount of work to prepare and review documentation, develop and approve new analytical procedures, and go through numerous internal reviews and audits by Bruce Power, CNSC and third parties independent consultants that verified the process and product quality. The audits were conducted by Quality Assurance specialists as well as by Human Factor Engineering experts with the objective to systematically address the role of human errors in the manufacturing of New Fuel and confirm whether or not a credible basis had been established for preventing human errors. The project team successfully passed through these audits. The project management structure that was established during the SEU and BDU blending process development, which included a cross-functional project team from several departments within Cameco, maintained its functionality when Cameco Technology Development was producing the powder for manufacturing Demonstration Irradiation fuel bundles. Special emphasis was placed on the consistency of operating steps and product quality certification, independent quality surveillance, materials segregation protocol, enhanced safety requirements, and accurate uranium accountability. (author)

  13. A state of the art report on the decontamination technology for dry ice blasting

    International Nuclear Information System (INIS)

    Shin, J. M.; Kim, K. H.; Park, J. J.; Lee, H. H.; Yang, M. S.; Nam, S. H.; Kim, M. J.

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination

  14. A state of the art report on the decontamination technology for dry ice blasting

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J M; Kim, K H; Park, J J; Lee, H H; Yang, M S; Nam, S H; Kim, M J

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination.

  15. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs

  16. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  17. Fuel performance, design and development

    International Nuclear Information System (INIS)

    Prasad, P.N.; Tripathi, Rahul Mani; Soni, Rakesh; Ravi, M.; Vijay Kumar, S.; Dwivedi, K.P.; Pandarinathan, P.R.; Neema, L.K.

    2006-01-01

    The normal fuel configurations for operating 220 MWe and 540 MWe PHWRs are natural uranium dioxide 19-element and 37- element fuel bundle types respectively. The fuel configuration for BWRs is 6 x 6 fuel. So far, about 330 thousand PHWR fuel bundles and 3500 number of BWR bundles have been irradiated in the 14 PHWRs and 2 BWRs. Improvements in fuel design, fabrication, quality control and operating practices are continuously carried out towards improving fuel utilization as well as reducing fuel failure rate. Efforts have been put to improve the fuel bundle utilization by increasing the fuel discharge burnup of the natural uranium bundles The overall fuel failure rate currently is less than 0.1 % . Presently the core discharge burnups in different reactors are around 7500 MWD/TeU. The paper gives the fuel performance experience over the years in the different power reactors and actions taken to improve fuel performance over the years. (author)

  18. Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles

    International Nuclear Information System (INIS)

    Yang Jue; Oka, Yoshiaki; Ishiwatari, Yuki; Liu Jie; Yoo, Jaewoon

    2007-01-01

    Heat transfer in upward flows of supercritical water in circular tubes and in tight fuel rod bundles is numerically investigated by using the commercial CFD code STAR-CD 3.24. The objective is to have more understandings about the phenomena happening in supercritical water and for designs of supercritical water cooled reactors. Some turbulence models are selected to carry out numerical simulations and the results are compared with experimental data and other correlations to find suitable models to predict heat transfer in supercritical water. The comparisons are not only in the low bulk temperature region, but also in the high bulk temperature region. The two-layer model (Hassid and Poreh) gives a better prediction to the heat transfer than other models, and the standard k-ε high Re model with the standard wall function also shows an acceptable predicting capability. Three-dimensional simulations are carried out in sub-channels of tight square lattice and triangular lattice fuel rod bundles at supercritical pressure. Results show that there is a strong non-uniformity of the circumferential distribution of the cladding surface temperature, in the square lattice bundle with a small pitch-to-diameter ratio (P/D). However, it does not occur in the triangular lattice bundle with a small P/D. It is found that this phenomenon is caused by the large non-uniformity of the flow area in the cross-section of sub-channels. Some improved designs are numerically studied and proved to be effective to avoid the large circumferential temperature gradient at the cladding surface

  19. The behaviour of Phenix fuel pin bundle under irradiation

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Blanchard, P.; Huillery, R.

    1979-07-01

    An entire Phenix sub-assembly has been mounted and sectioned after irradiation. The examination of cross-sections revealed the effects of mechanical interaction in the bundle (ovalisations and contacts between clads). According to analysis of the sodium channels, cooling of the pin bundle remained uniform. (author)

  20. Annular burnout data from rod-bundle experiments

    International Nuclear Information System (INIS)

    Yoder, G.L.; Morris, D.G.; Mullins, C.B.

    1983-01-01

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident

  1. Safety assessment for the 24 CANFLEX-NU bundle demonstration irradiation at Wolsong-1 generation

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Ho Chun; Cho, M. S.; Jun, J. S. and others

    2001-06-01

    This document is a report on the safety assessment for the 24 CANFLEX-NU(CANDU Flexible fuelling - Natural Uranium) fuel bundle demonstration irradiation at Wolsong-1 Generating Station. The CANFLEX fuel bundle as a CANDU advanced fuel has been jointly developed by KAERI/AECL. This document describes the rationale for the demonstration irradiation and comments on the Korean government licensing issues such as the status of the CANFLEX fuel irradiations at NRU research reactor in AECL, status and plan of the CANFLEX fuel irradiations at a CANDU-6 power reactor, status of the water CHF(Critical Heat Flux) test at Stern Laboratories and the CHF correlation. This documents presents an assessment the consequences of postulated accidents with all safety system available during demonstration irradiation of 24 CANFLEX-NU fuel bundles at Wolsong-1 Generating Station. The assessment is made by two kinds of approaches. One approach is based on the document of the safety assessment for the 24 CANFLEX-NU fuel bundle demonstration irradiation at Point Lepreau Generating Station. The other approach is taken from the safety analyses using the analysis methods and assumptions used in the final safety reports on the 600 MWe CANDU-PHWR Wolsung-2, 3, and 4 Nuclear Power Plants for the Korea Electric Power Cooperation. The analyses are not comprehensive reviews of the postulated accidents, but examination of the expected difference in accident consequences because of the presence of 24 CANFLEX fuel bundles in two channels. The approach is to compare the difference to the safety margin for 37-element bundle cases.

  2. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  3. Design report for an annular fuel element for accommodation of a carbide test bundle on the ring position of the KNK II/2 test zone

    International Nuclear Information System (INIS)

    Haefner, H.E.

    1982-03-01

    This report describes an annular oxide element with Mark II rods for accommodation of a 19-pin carbide test bundle on position 201 in the test zone of the second core of KNK II as well as its behavior during the period of operation. The ring element comprises within a driver wrapper in three rows of pins 102 fuel pins of 7.6 mm diameter and six structural rods for fixing the spark eroded spacers. The report deals with the ring element with its individual components fuel rod, bundle, wrappers, head and foot and describes methods, criteria and results concerning the design. The carbide test bundle to be accommodated by the annular carrier element will be treated in a separate report. The loadability of the annular element with its components is demonstrated by generally valid standards for strength criteria

  4. Fuel bundle impact velocities due to reverse flow

    International Nuclear Information System (INIS)

    Wahba, N.N.; Locke, K.E.

    1996-01-01

    If a break should occur in the inlet feeder or inlet header of a CANDU reactor, the rapid depressurization will cause the channel flow(s) to reverse. Depending on the gap between the upstream bundle and shield plug, the string of bundles will accelerate in the reverse direction and impact with the upstream shield plug. The reverse flow impact velocities have been calculated for various operating states for the Bruce NGS A reactors. The sensitivity to several analysis assumptions has been determined. (author)

  5. The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Park, Joo Hwan

    2010-09-01

    A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect numerical computations on the detailed shape of rod bundle due to challenges with computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers and bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve complex geometry such as a fuel rod bundle. Before applying a solution to the problem of the 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to simple geometry. The split channel method has been proposed with the aim of computing the fully shaped CANDU fuel channel with detailed components. The validity was tested by applying the method to the single channel problem. The average temperature have similar values for the considered two methods, while the local temperature shows a slight difference by the effect of conduction heat transfer in the solid region of a rod. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for future work

  6. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  7. Advances in the manufacture of clad tubes and components for PHWR fuel bundle

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Chandrasekha, B.; Tonpe, S.; Jayaraj, R.N.

    2010-01-01

    Fuel bundles for Pressurized Heavy Water Reactors (PHWRs) consists of Uranium di-oxide pellets encapsulated into thin wall Zircaloy clad tubes. Other components such as end caps, bearing pads and spacer pads are the integral elements of the fuel bundle. As the fuel assembly is subjected to severe operating conditions of high temperature and pressure in addition to continual irradiation exposure, all the components are manufactured conforming to stringent specifications with respect to chemical composition, mechanical & metallurgical properties and dimensional tolerances. The integrity of each component is ensured by NDE at different stages of manufacture. The manufacturing route for fuel tubes and components comprise of a combination of thermomechanical processing and each process step has marked effect on the final properties. The fuel tubes are manufactured by processing the extruded blanks in four stage cold pilgering with intermediate annealing and final stress relieving operation. The bar material is produced by hot extrusion followed by multi-pass swaging and intermediate annealing. Spacer pads and bearing pads are manufactured by blanking and coining of Zircaloy sheet which is made by a combination of hot and cold rolling operations. Due to the small size and stringent dimensional requirements of these appendages, selection of production route and optimization of process parameters are important. This paper discusses about various measures taken for improving the recoveries and mechanical and corrosion properties of the tube, sheet and bar materials being manufactured at Nuclear Fuel Complex, Hyderabad For the production of clad tubes, modifications at extrusion stage to reduce the wall thickness variation, introduction of ultrasonic testing of extruded blanks, optimization of cold working and heat treatment parameters at various stages of production etc. were done. The finished bar material is subjected to 100% Ultrasonic and eddy current testing to ensure

  8. Development of quantitative analytical procedures on two-phase flow in tight-lattice fuel bundles for reduced-moderation light-water reactors

    International Nuclear Information System (INIS)

    Ohnuki, A.; Kureta, M.; Takae, K.; Tamai, H.; Akimoto, H.; Yoshida, H.

    2004-01-01

    The research project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in 2002. The RMWR is a light water reactor for which a higher conversion ratio more than one can be expected. In order to attain this higher conversion ratio, triangular tight-lattice fuel bundles whose gap spacing between each fuel rod is around 1 mm are required. As for the thermal design of the RMWR core, conventional analytical methods are no good because the conventional composition equations can not predict the RMWR core with high accuracy. Then, development of new quantitative analytical procedures was carried out. Those analytical procedures are constructed by model experiments and advanced two-phase flow analysis codes. This paper describes the results of the model experiments and analytical results with the developed analysis codes. (authors)

  9. Measurement of fission gas release, internal pressure and cladding creep rate in the fuel pins of PHWR bundle of normal discharge burnup

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, U.K. [Post Irradiation Examination Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sah, D.N., E-mail: dnsah@barc.gov.i [Post Irradiation Examination Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Rath, B.N.; Anantharaman, S. [Post Irradiation Examination Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2009-08-01

    Fuel pins of a Pressurised Heavy Water Reactor (PHWR) fuel bundle discharged from Narora Atomic Power Station unit no. 1 after attaining a fuel burnup of 7528 MWd/tU have been subjected to two types of studies, namely (i) puncture test to estimate extent of fission gas release and internal pressure in the fuel pin and (ii) localized heating of the irradiated fuel pin to measure the creep rate of the cladding in temperature range 800 deg. C - 900 deg. C. The fission gas release in the fuel pins from the outer ring of the bundle was found to be about 8%. However, only marginal release was found in fuel pins from the middle ring and the central fuel pin. The internal gas pressure in the outer fuel pin was measured to be 0.55 +- 0.05 MPa at room temperature. In-cell isothermal heating of a small portion of the outer fuel pins was carried out at 800 deg. C, 850 deg. C and 900 deg. C for 10 min and the increase in diameter of the fuel pin was measured after heat treatment. Creep rates of the cladding obtained from the measurement of the diameter change of the cladding due to heating at 800 deg. C, 850 deg. C and 900 deg. C were found respectively to be 2.4 x 10{sup -5} s{sup -1}, 24.6 x 10{sup -5} s{sup -1} and 45.6 x 10{sup -5} s{sup -1}.

  10. Freon Rig design for performing to heat transfer experiments for nuclear reactors fuel bundles

    International Nuclear Information System (INIS)

    Flores, L.F.V.

    1981-01-01

    The main features of a Freon Rig design for performing to heat transfer experiments for PWR and BWR fuel bundles, are presented. The project is based on a Freon Rig pressurized at 30 bar with a flow rate up to 80 m 3 /h. The maximum power fed to test sections is of about 420 KW D.C. The rig was designed to use scaling techniques wich would enable a fluid of low latente heat to be used in place of water, thereby reducing the cost of testes. (Author) [pt

  11. On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles

    International Nuclear Information System (INIS)

    Yuh-Shan Yueh; Ching-Chang Chieng

    1987-01-01

    A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of trangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k--ε model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 x 10 4 , 10 5 , 2 x 10 5 , and for laminar flow of Re--2400. Friction factor and heat transfer ceofficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data

  12. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  13. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  14. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    Sengpiel, W.

    1980-12-01

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW) [de

  15. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  16. Comparative analysis of wood chips and bundles - Costs, carbon dioxide emissions, dry-matter losses and allergic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-01-15

    There are multiple systems for the collection, processing, and transport of forest residues for use as a fuel. We compare two systems in use in Sweden to analyze differences in fuel cost, CO{sub 2} emissions, dry-matter loss, and potential for allergic reactions. We compare a bundle system with the traditional Swedish chip system, and then do an in-depth comparison of a Finnish bundle system with the Swedish bundle system. Bundle systems have lower costs, while the allergic reactions do not differ significantly between the systems. The bundle machine is expensive, but results in high productivity and in an overall cost-effective system. The bundle system has higher primary energy use and CO{sub 2} emissions, but the lower dry-matter losses in the bundle system chain give CO{sub 2} emissions per delivered MWh almost as low as for the chip system. Also, lower dry-matter losses mean that more biomass per hectare can be extracted from the clear-cut area. This leads to a higher possible substitution of fossil fuels per hectare with the bundle system, and that more CO{sub 2} emissions from fossil fuel can be avoided per hectare than in the chip system. The Finnish bundle system with its more effective compressing and forwarding is more cost- and energy-effective than the Swedish bundle system, but Swedish bundle systems can be adapted to be more effective in both aspects. (author)

  17. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  18. Development of generalized boiling transition model applicable for wide variety of fuel bundle geometries. Basic strategy and numerical approaches

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Sadatomi, Michio; Okawa, Tomio

    2003-01-01

    In order to establish a key technology to realize advanced BWR fuel designs, a three-year project of the advanced subchannel analysis code development had been started since 2002. The five dominant factors involved in the boiling transitional process in the fuel bundles were focused. They are, (1) inter-subchannel exchanges, (2) influences of obstacles (3) dryout of liquid film, (4) transition of two-phase flow regimes and (5) deposition of droplets. It has been recognized that present physical models or constitutive equations in subchannel formulations need to be improved so that they include geometrical effects in the fuel bundle design more mechanistically and universally. Through reviewing literatures and existent experimental results, underlying elementary processes and geometrical factors that are indispensable for improving subchannel codes were identified. The basic strategy that combines numerical and experimental approaches was proposed aiming at establishment of mechanistic models for the five dominant factors. In this paper, the present status of methodologies for detailed two-phase flow studies has been summarized. According to spatial scales of focused elementary processes, proper numerical approaches were selected. For some promising numerical approaches, preliminary calcitonins were performed for assessing their applicability to investigation of elementary processes involved in the boiling transition. (author)

  19. Predictions of Critical Heat Flux Using the ASSERT-PV Subchannel Code for a CANFLEX Variant Bundle

    International Nuclear Information System (INIS)

    Onder, Ebru Nihan; Leung, Laurence; Kim, Hung; Rao, Yanfei

    2009-01-01

    The ASSERT-PV subchannel code developed by AECL has been applied as a design-assist tool to the advanced CANDU 1 reactor fuel bundle. Based primarily on the CANFLEX 2 fuel bundle, several geometry changes (such as element sizes and pitchcircle diameters of various element rings) were examined to optimize the dryout power and pressure-drop performances of the new fuel bundle. An experiment was performed to obtain dryout power measurements for verification of the ASSERT-PV code predictions. It was carried out using an electrically heated, Refrigerant-134a cooled, fuel bundle string simulator. The axial power profile of the simulator was uniform, while the radial power profile of the element rings was varied simulating profiles in bundles with various fuel compositions and burn-ups. Dryout power measurements are predicted closely using the ASSERT-PV code, particularly at low flows and low pressures, but are overpredicted at high flows and high pressures. The majority of data shows that dryout powers are underpredicted at low inlet-fluid temperatures but overpredicted at high inlet-fluid temperatures

  20. Development of multi-dimensional thermal-hydraulic modeling using mixing factors for wire wrapped fuel pin bundles in fast reactors. Validation through a sodium experiment of 169-pin fuel subassembly

    International Nuclear Information System (INIS)

    Nishimura, M.; Kamide, H.; Miyake, Y.

    1997-04-01

    Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the subassembly is, therefore one of the important issues for the reactor safety assessment. Mixing factors were applied to multi-dimensional thermal-hydraulic code AQUA to enhance the predictive capability of simulating maximum cladding temperature in the fuel subassemblies. In the previous studies, this analytical method had been validated through the calculations of the sodium experiments using driver subassembly test rig PLANDTL-DHX with 37-pin bundle and blanket subassembly test rig CCTL-CFR with 61-pin bundle. The error of the analyses were comparable to the error of instrumentation's. Thus the modeling was capable of predicting thermal-hydraulic field in the middle scale subassemblies. Before the application to large scale real subassemblies with more than 217 pins, accuracy of the analytical method have to be inspected through calculations of sodium tests in a large scale pin bundle. Therefore, computations were performed on sodium experiments in the relatively large 169-pin subassembly which had heater pins sparsely within the bundle. The analysis succeeded to predict the experimental temperature distributions. The errors of temperature rise from inlet to maximum values were reduced to half magnitudes by using mixing factors, compared to those of analyses without mixing factors. Thus the modeling is capable of predicting the large scale real subassemblies. (author)

  1. CANFLEX fuel bundle cross-flow endurance test 2 (Test report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    This report describes cross-flow endurance test 2 that was conducted at the CANDU-Hot Test Loop. The test was completed on March 30, 1999 using a new CANFLEX bundle, built by KAERI. It was carried out for a total of 22 hours. After an initial period of ten hours, the test was stopped at the intervals of four hours for bundle inspection and inter-element gap measurement[7]. The test bundle end-plate to end-cap welds were inspected carefully for failure or crack propagation using liquid penetrant examination especially at the heat-affected zones. 12 refs., 4 figs., 10 tabs. (Author)

  2. The post-irradiation examination of fuel in support of Bruce A Nuclear Division fueling with flow program

    International Nuclear Information System (INIS)

    Montin, J.; Sagat, S.

    1995-10-01

    Bruce A Nuclear Division (BAND) units are operating at ∼ 75% of full power, because of the potential of a power pulse in the event of an inlet header break. As a result, BAND is converting to fueling with flow, to eliminate the potential of a power pulse and to allow for full-power operation. Concerns regarding the integrity of the end-of-life (EOL) bundles interacting with the latch at the downstream end of the fuel channel were raised. BAND carried out a test program in which EOL bundles in the upstream position of 13 of Unit 2 were cascaded into the downstream latch position 1 of another channel. Six of twelve cascaded bundles and two typical EOL position 13 (benchmark) bundles were selected for post-irradiation examination (PIE). Incipient cracks were found in the benchmark bundles. Metallographic and fractographic examination, along with crack dating, and hydrogen and deuterium analyses, indicated that the incipient cracks were the result of delayed-hydride assisted cracking at the EOL. Consequently, Ontario Hydro changed the design of the outlet shield plug to support all three rings of the fuel bundle, to minimize stress and prevent end plate cracking. Also, an ultrasonic end plate inspection tool (UT) was developed and located in the fuel bay, to inspect fuel-bundle end plates for cracks. A second test was done involving a series of four bundle cascades in BAND Unit 4 channels that had new outlet shield plugs. The latch bundles were discharged after a hot shutdown. The cascaded Unite 2 and Unit 4 latch bundles were checked for cracks using the UT. The PIE found incipient cracks or less-than-ideal welds in the assembly welds of fuel elements from Unit 2 (latch-supported fuel bundles) that had been identified by the UT as having incipient cracks. No incipient cracks were found in the assemble welds of fuel elements from Unit 4 (new outlet shield-supported fuel bundles) confirming the UT results. (author). 5 refs., 8 figs

  3. The Analysis of SBWR Critical Power Bundle Using Cobrag Code

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2013-03-01

    Full Text Available The coolant mechanism of SBWR is similar with the Dodewaard Nuclear Power Plant (NPP in the Netherlands that first went critical in 1968. The similarity of both NPP is cooled by natural convection system. These coolant concept is very related with same parameters on fuel bundle design especially fuel bundle length, core pressure drop and core flow rate as well as critical power bundle. The analysis was carried out by using COBRAG computer code. COBRAG computer code is GE Company proprietary. Basically COBRAG computer code is a tool to solve compressible three-dimensional, two fluid, three field equations for two phase flow. The three fields are the vapor field, the continuous liquid field, and the liquid drop field. This code has been applied to analyses model flow and heat transfer within the reactor core. This volume describes the finitevolume equations and the numerical solution methods used to solve these equations. This analysis of same parameters has been done i.e.; inlet sub cooling 20 BTU/lbm and 40 BTU/lbm, 1000 psi pressure and R-factor is 1.038, mass flux are 0.5 Mlb/hr.ft2, 0.75 Mlb/hr.ft2, 1.00 Mlb/hr.ft2 and 1.25 Mlb/hr.ft2. Those conditions based on history operation of some type of the cell fuel bundle line at GE Nuclear Energy. According to the results, it can be concluded that SBWR critical power bundle is 10.5 % less than current BWR critical power bundle with length reduction of 12 ft to 9 ft.

  4. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    Page, R.D.

    1976-03-01

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  5. Severe fuel damage experiments performed in the QUENCH facility with 21-rod bundles of LWR-type

    International Nuclear Information System (INIS)

    Sepold, L.; Hering, W.; Schanz, G.; Scholtyssek, W.; Steinbrueck, M.; Stuckert, J.

    2006-01-01

    The objective of the QUENCH experimental program at the Karlsruhe Research Center is to investigate core degradation and the hydrogen source term that results from quenching/flooding an uncovered core, to examine the physical/chemical behavior of overheated fuel elements under different flooding conditions, and to create a data base for model development and improvement of severe fuel damage (SFD) code systems. The large-scale 21-rod bundle experiments conducted in the QUENCH out-of-pile facility are supported by an extensive separate-effects test program, by modeling activities as well as application and improvement of SFD code systems. International cooperations exist with institutions mainly within the European Union but e.g. also with the Russian Academy of Science (IBRAE, Moscow) and the CSARP program of the USNRC. So far, eleven experiments have been performed, two of them with B 4 C absorber material. Experimental parameters were: the temperature at initiation of reflood, the degree of peroxidation, the quench medium, i.e. water or steam, and its injection rate, the influence of a B 4 C absorber rod, the effect of steam-starved conditions before quench, the influence of air oxidation before quench, and boil-off behavior of a water-filled bundle with subsequent quenching. The paper gives an overview of the QUENCH program with its organizational structure, describes the test facility and the test matrix with selected experimental results. (author)

  6. Experimental study on the effect of heat flux tilt on rod bundle dryout limitation

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, S; Terunuma, K; Kamoshida, H [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-12-31

    The effect of heat flux tilt on rod bundle dryout limitation was studied experimentally using a full-scale mock-up test facility and simulated 36-rod fuel bundles in which heater pins have azimuthal nonuniform heat flux distribution (i.e., heat flux tilt). Experimental results for typical lateral power distribution in the bundle indicate that the bundle dryout power with azimuthal heat flux tilt is higher than that without azimuthal heat flux tilt in the entire experimental range. Consequently, it is concluded that the dryout experiment using the test bundle with heater pins which has circumferentially uniform heat flux distribution gives conservative results for the usual lateral power distribution in a bundle in which the relative power of outermost-circle fuel rods is higher than those of middle- and inner-circle ones. (author). 15 refs., 2 tabs., 8 figs.

  7. Experimental study on the effect of heat flux tilt on rod bundle dryout limitation

    International Nuclear Information System (INIS)

    Sugawara, S.; Terunuma, K.; Kamoshida, H.

    1995-01-01

    The effect of heat flux tilt on rod bundle dryout limitation was studied experimentally using a full-scale mock-up test facility and simulated 36-rod fuel bundles in which heater pins have azimuthal nonuniform heat flux distribution (i.e., heat flux tilt). Experimental results for typical lateral power distribution in the bundle indicate that the bundle dryout power with azimuthal heat flux tilt is higher than that without azimuthal heat flux tilt in the entire experimental range. Consequently, it is concluded that the dryout experiment using the test bundle with heater pins which has circumferentially uniform heat flux distribution gives conservative results for the usual lateral power distribution in a bundle in which the relative power of outermost-circle fuel rods is higher than those of middle- and inner-circle ones. (author). 15 refs., 2 tabs., 8 figs

  8. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1970-01-01

    Herein disclosed is a fuel assembly in which a fuel rod bundle is easily detachable by rotating a fuel rod fastener rotatably mounted to the upper surface of an upper tie-plate supporting a fuel bundle therebelow. A locking portion at the leading end of each fuel rod protrudes through the upper tie-plate and is engaged with or separated from the tie-plate by the rotation of the fastener. The removal of a desired fuel rod can therefore be remotely accomplished without the necessity of handling pawls, locking washers and nuts. (Owens, K.J.)

  10. Gamma scanning of the irradiated HANARO fuels

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Lee, K. S.; Park, D. G.; Baik, S. Y.; Song, W. S.; Kim, T. Y.; Seo, C. K.

    1997-02-01

    To conform the burnup state of the fuels, we have transported the irradiated HANARO fuels from the reactor to IMEF (Irradiated Material Examination Facility), and executed gamma scanning for the fuels. By measuring the gamma-rays from the irradiated fuels we could see the features of the relative burnup distributions in the fuel bundles. All of 17 fuel bundles were taken in and out between HANARO and IMEF from March till August in 1996, and we carried out the related regulations. Longitudinal gamma scanning and angular gamma scanning are done for each fuel bundle without dismantlement of the bundles. (author). 5 tabs., 25 figs

  11. Development of boiling transition analysis code TCAPE-INS/B based on mechanistic methods for BWR fuel bundles. Models and validations with boiling transition experimental data

    International Nuclear Information System (INIS)

    Ishida, Naoyuki; Utsuno, Hideaki; Kasahara, Fumio

    2003-01-01

    The Boiling Transition (BT) analysis code TCAPE-INS/B based on the mechanistic methods coupled with subchannel analysis has been developed for the evaluation of the integrity of Boiling Water Reactor (BWR) fuel rod bundles under abnormal operations. Objective of the development is the evaluation of the BT without using empirical BT and rewetting correlations needed for different bundle designs in the current analysis methods. TCAPE-INS/B consisted mainly of the drift-flux model, the film flow model, the cross-flow model, the thermal conductivity model and the heat transfer correlations. These models were validated systematically with the experimental data. The accuracy of the prediction for the steady-state Critical Heat Flux (CHF) and the transient temperature of the fuel rod surface after the occurrence of BT were evaluated on the validations. The calculations for the experiments with the single tube and bundles were carried out for the validations of the models incorporated in the code. The results showed that the steady-state CHF was predicted within about 6% average error. In the transient calculations, BT timing and temperature of the fuel rod surface gradient agreed well with experimental results, but rewetting was predicted lately. So, modeling of heat transfer phenomena during post-BT is under modification. (author)

  12. The post irradiation examination of fuel in support of Bruce A nuclear division fueling with flow program

    International Nuclear Information System (INIS)

    Montin, J.; Sagat, S.; Day, R.; Novak, J.; Bromfield, H.

    1995-01-01

    Bruce A Nuclear Division (BAND) units are operating at ∼ 75% of full power, because of the potential of a power pulse in the event of an inlet header break. As a result, BAND is converting to fueling with flow, to eliminate the potential of a power pulse and to allow for full-power operation. Concerns regarding the integrity of the end-of-life (EOL) bundles interacting with the latch at the downstream end of the fuel channel were raised. BAND carried out a test program in which EOL bundles in the upstream position 13 of Unit 2 were cascaded into the downstream latch position 1 of another channel. Six of twelve cascaded bundles and two typical EOL position 13 (benchmark) bundles were selected for post-irradiation examination (PIE). Incipient cracks were found in the assembly welds (endplateto-endcap welds) of all six cascaded bundles. No incipient cracks were found in the benchmark bundles. Metallographic and fractographic examination, along with crack dating, and hydrogen and deuterium analyses, indicated that the incipient cracks were the result of delayed-hydride assisted cracking at the EOL. Consequently, Ontario Hydro changed the design of the outlet shield plug to support all three rings of the fuel bundle, to minimize stress and prevent endplate cracking. Also, an ultrasonic endplate inspection tool (UT) was developed and located in the fuel bay. to inspect fuelbundle endplates for cracks. A second test was done involving a series of four bundle cascades in BAND Unit 4 channels that had new outlet shield plugs. The latch bundles were discharged after a hot shutdown. The cascaded Unit 2 and Unit 4 latch bundles were checked for cracks using the UT. The PIE found incipient cracks or less-than-ideal welds in the assembly welds of fuel elements from Unit 2 (latch-supported fuel bundles) that had been identified by the UT as having incipient cracks. No incipient cracks were found in the assembly welds of fuel elements from Unit 4 (new outlet shield

  13. Boiling water reactor fuel bundle

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1986-01-01

    A method is described of compensating, without the use of control rods or burnable poisons for power shaping, for reduced moderation of neutrons in an uppermost section of the active core of a boiling water nuclear reactor containing a plurality of elongated fuel rods vertically oriented therein, the fuel rods having nuclear fuel therein, the fuel rods being cooled by water pressurized such that boiling thereof occurs. The method consists of: replacing all of the nuclear fuel in a portion of only the upper half of first predetermined ones of the fuel rods with a solid moderator material of zirconium hydride so that the fuel and the moderator material are axially distributed in the predetermined ones of the fuel rods in an asymmetrical manner relative to a plane through the axial midpoint of each rod and perpendicular to the axis of the rod; placing the moderator material in the first predetermined ones of the fuel rods in respective sealed internal cladding tubes, which are separate from respective external cladding tubes of the first predetermined ones of the fuel rods, to prevent interaction between the moderator material and the external cladding tube of each of the first predetermined ones of the fuel rods; and wherein the number of the first predetermined ones of the fuel rods is at least thirty, and further comprising the steps of: replacing with the moderator material all of the fuel in the upper quarter of each of the at least thirty rods; and also replacing with the moderator material all of the fuel in the adjacent lower quarter of at least sixteen of the at least thirty rods

  14. DP-THOT - a calculational tool for bundle-specific decay power based on actual irradiation history

    International Nuclear Information System (INIS)

    Johnston, S.; Morrison, C.A.; Albasha, H.; Arguner, D.

    2005-01-01

    A tool has been created for calculating the decay power of an individual fuel bundle to take account of its actual irradiation history, as tracked by the fuel management code SORO. The DP-THOT tool was developed in two phases: first as a standalone executable code for decay power calculation, which could accept as input an entirely arbitrary irradiation history; then as a module integrated with SORO auxiliary codes, which directly accesses SORO history files to retrieve the operating power history of the bundle since it first entered the core. The methodology implemented in the standalone code is based on the ANSI/ANS-5.1-1994 formulation, which has been specifically adapted for calculating decay power in irradiated CANDU reactor fuel, by making use of fuel type specific parameters derived from WIMS lattice cell simulations for both 37 element and 28 element CANDU fuel bundle types. The approach also yields estimates of uncertainty in the calculated decay power quantities, based on the evaluated error in the decay heat correlations built-in for each fissile isotope, in combination with the estimated uncertainty in user-supplied inputs. The method was first implemented in the form of a spreadsheet, and following successful testing against decay powers estimated using the code ORIGEN-S, the algorithm was coded in FORTRAN to create an executable program. The resulting standalone code, DP-THOT, accepts an arbitrary irradiation history and provides the calculated decay power and estimated uncertainty over any user-specified range of cooling times, for either 37 element or 28 element fuel bundles. The overall objective was to produce an integrated tool which could be used to find the decay power associated with any identified fuel bundle or channel in the core, taking into account the actual operating history of the bundles involved. The benefit is that the tool would allow a more realistic calculation of bundle and channel decay powers for outage heat sink planning

  15. Nuclear fuel manufacturing. Current activities and prospects at INR Pitesti

    International Nuclear Information System (INIS)

    Horhoianu, Grigore

    2001-01-01

    Development of the CANDU nuclear fuel is currently conducted world wide onto two principal directions: - increasing the service span of the current type of fuel and improving the efficiency of burnup in reactor; - reducing the costs of fuel manufacturing by improving the design and manufacturing technologies in condition of increasing fuel performance. In parallel, a research program, RAAN, is undergoing, concerning the development of advanced CANDU type fuels (SEU, RU, DUPIC, Th), aiming at reducing the overall costs per fuel cycle. In the INR TRIGA reactor a large number of experimental fuel elements manufactured in INR were irradiated under different conditions specific to the CANDU reactor operation. Post irradiation investigations both destructive and non-destructive were carried out in the hot cells at INR Pitesti. The experimental results were used in order to optimize and evaluate the fuel project, to check the fuel manufacturing technologies as well as to certify the computational codes. The local thermo-mechanical analyses by final element methods, modelling the SCC phenomenon, probabilistic evaluation of performance parameters of the fuel, constitute new directions in the modelling and developing computational code. The developed codes were submitted to a thorough validation process to comply with the quality assurance. The excellent results obtained in INR were confirmed by participation in the FUMEX International Exercises of computer code intercomparison, organized by IAEA Vienna. Progress was also recorded in establishing the behaviour of fuel elements failed during reactor operation and the effect their maintenance in the reactor core could have upon the power reactor operation. A system-expert variant was worked out able for a short term analysis of the decisions referring to removing the failing element at Cernavoda NPP. As advanced CANDU fuel is concerned, until now preliminary variants for a fuel bundle with 43 elements containing slightly

  16. Study on velocity field in a wire wrapped fuel pin bundle of sodium cooled reactor. Detailed velocity distribution in a subchannel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Kobayashi, Jun; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up core in a feasibility study on commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is of importance to obtain the flow velocity distribution in a wire wrapped pin bundle. A 2.5 times enlarged 7-pin bundle water model was applied to investigate the detailed velocity distribution in an inner subchannel surrounded by 3 pins with wrapping wire. The test section consisted of a hexagonal acrylic duct tube and fluorinated resin pins which had nearly the same refractive index with that of water and a high light transmission rate. The velocity distribution in an inner subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through the front and lateral sides of the duct tube. In the vertical velocity distribution in a narrow space between the pins, the wrapping wire decreased the velocity downstream of the wire and asymmetric flow distribution was formed between the pin and wire. In the horizontal velocity distribution, swirl flow around the wrapping wire was obviously observed. The measured velocity data are useful for code validation of pin bundle thermalhydraulics. (author)

  17. Computerized representation of experimental data on burnout in tubes, annular channels and fuel bundles

    International Nuclear Information System (INIS)

    Katan, I.B.; Sal'nikova, O.V.; Vinogradov, V.N.

    1983-01-01

    Realization of TEFOR formate for presentation in data bases of bibliographic information obtained when studying heat exchange crisis in channels of the most widely spread types (tubes, annular channels, fuel bundles) has been described. The use of the unified formate, providing a possibility to completely describe the information from the initial source, results in standardization of data base formation in different sections of thermal physics and hydrodynamics of NPPs, permits to develop the general apparatus of bank control in the form of packet of applied programs and to use unified techniques, algorithms and programs during calculations with the use of data of the banks

  18. The button effect of CANFLEX bundle on the critical heat flux and critical channel power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Jisu; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G R; Bullock, D E; Inch, W [Atomic Energy of Canada Limited, Ontario (Canada)

    1998-12-31

    A CANFLEX (CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5 mm) to reduce maximum element power rating and buttons to enhance the critical heat flux (CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant R-134a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power (CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF`s for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only for high pressure conditions. It indicates that the button is a useful design for CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions. 5 refs., 11 figs. (Author)

  19. The button effect of CANFLEX bundle on the critical heat flux and critical channel power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Jisu; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E.; Inch, W. [Atomic Energy of Canada Limited, Ontario (Canada)

    1997-12-31

    A CANFLEX (CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5 mm) to reduce maximum element power rating and buttons to enhance the critical heat flux (CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant R-134a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power (CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF`s for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only for high pressure conditions. It indicates that the button is a useful design for CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions. 5 refs., 11 figs. (Author)

  20. IFPE/MT4-MT6A-LOCA, Large-break LOCA in-reactor fuel bundle materials tests at NRU

    International Nuclear Information System (INIS)

    Cunningham, Mitchel E.; Turnbull, J.A.

    2003-01-01

    generally presented in the reports on the tests. After the experiments, the test train was dismantled and cladding rupture sites were determined and fuel rod profilometry was performed in the spent fuel pool. Only limited destructive post-irradiation examination was performed on these two tests. Design and Objectives: - MT-4: The primary objectives of the MT-4 test included providing sufficient time in the alpha-Zircaloy ballooning window of 1033 to 1200 K to allow the 12 pressurized test rods to rupture before reflood cooling was introduced, obtaining data to determine heat transfer coefficients for ballooned and ruptured rods, and measuring rod internal gas pressure during rod deformation. All of the objectives for the test were accomplished. The MT-4 test bundle simulated a 6 x 6 section of a 17 x 17 PWR fuel assembly. There were 20 non-pressurized guard fuel rods to isolate the 12 central, pressurized tests rods; the four corner rods were deleted. The 12 test rods were fresh rods while the 20 guard rods had been used in a previous tests. Basic design information for the bundle and the 12 test rods is provided. - MT-6: A principal difference between MT-6A and the other tests was a redesign of the test train to reduce cladding circumferential temperature gradients and thus induce greater amounts of cladding ballooning and flow blockage. In addition, the 20 guard rods used in the previous tests were replaced with nine pressurized rods that had been used in a previous test. Thus, a total of 21 test rods were in MT-6A. Basic design information for the bundle and the test rods is provided. A malfunction of the computer controlling the test occurred during the test. As a result of this malfunction, system pressure during the transient heat-up was not at 0.28 MPa but was at 1.72 MPa. In addition, the desired temperature control was not achieved. This test was intended to provide the fuel cladding sufficient time in the a-Zircaloy temperature region (1050-1140 K) to maximize

  1. Analysis of fuel end-temperature peaking

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Jiang, Q.; Lai, L.; Shams, M. [CANDU Energy Inc., Fuel Engineering Dept., Mississauga, Ontario (Canada)

    2013-07-01

    During normal operation and refuelling of CANDU® fuel, fuel temperatures near bundle ends will increase due to a phenomenon called end flux peaking. Similar phenomenon would also be expected to occur during a postulated large break LOCA event. The end flux peaking in a CANDU fuel element is due to the fact that neutron flux is higher near a bundle end, in contact with a neighbouring bundle or close to heavy water coolant, than in the bundle mid-plane, because of less absorption of thermal neutrons by Zircaloy or heavy water than by the UO{sub 2} material. This paper describes Candu Energy experience in analysing behaviour of bundle due to end flux peaking using fuel codes FEAT, ELESTRES and ELOCA. (author)

  2. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  3. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  4. Post test investigation of the bundle test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.J.

    1986-08-01

    This KfK report describes the post test investigation of bundle experiment ESBU-1. ESBU-1 was the first of two bundle tests on the temperature escalation of Zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS - Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (control tungsten heater, UO 2 -ring pellet and Zircaloy cladding). The length was 0.4 meter. After the test the bundle was embedded in epoxy and cut by a diamant saw. The cross sections are investigated by metallographic, SEM and EMP examinations. The results of these examinations are in good agreement with the seperate effects tests investigation of the PNS SFD-Program and inpile experiments of the Power Burst Facility. The investigations show that liquid Zircaloy dissolves UO 2 by taking away the oxygen from the oxide. Depending on the overall oxygen content the (U,Zr,O)-melt forms at refreezing a) three phases (low oxygen content): metallic α-Zry(U), a uranium-rich metallic (U,Zr)alloy, and a (U,Zr)O 2 mixed oxide, or b) two phases (high oxygen content): α-Zr(O) and the (U,Zr)O 2 mixed oxide. c) In melt regions where the local oxidation was very severe, such as in steam contact, only the (U,Zr)O 2 mixed oxide is formed already at test temperature. Also ZrO 2 formed during the initial time of the test is dissolved by the melt. (orig.) [de

  5. Fabrication of CANFLEX bundle kit for irradiation test in NRU

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kwon, Hyuk Il; Ji, Chul Goo; Chang, Ho Il; Sim, Ki Seob; Suk, Ho Chun.

    1997-10-01

    CANFLEX bundle kit was prepared at KAERI for the fabrication of complete bundle at AECL. Completed bundle will be used for irradiation test in NRU. Provisions in the 'Quality Assurance Manual for HWR Fuel Projects,' 'Manufacturing Plan' and 'Quality Verification, Inspection and Test Plan' were implemented as appropriately for the preparation of CANFLEX kit. A set of CANFLEX kit consist of 43 fuel sheath of two different sizes with spacers, bearing pads and buttons attached, 2 pieces of end plates and 86 pieces of end caps with two different sizes. All the documents utilized as references for the fabrication such as drawings, specifications, operating instructions, QC instructions and supplier's certificates are specified in this report. Especially, suppliers' certificates and inspection reports for the purchased material as well as KAERI's inspection report are integrated as attachments to this report. Attached to this report are supplier's certificates and KAERI inspection reports for the procured materials and KAERI QC inspection reports for tubes, pads, spacers, buttons, end caps, end plates and fuel sheath. (author). 37 refs

  6. A stochastic-deterministic approach for evaluation of uncertainty in the predicted maximum fuel bundle enthalpy in a CANDU postulated LBLOCA event

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D.; Tholammakkil, J.; Shen, W., E-mail: Dumitru.Serghiuta@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2014-07-01

    A stochastic-deterministic approach based on representation of uncertainties by subjective probabilities is proposed for evaluation of bounding values of functional failure probability and assessment of probabilistic safety margins. The approach is designed for screening and limited independent review verification. Its application is illustrated for a postulated generic CANDU LBLOCA and evaluation of the possibility distribution function of maximum bundle enthalpy considering the reactor physics part of LBLOCA power pulse simulation only. The computer codes HELIOS and NESTLE-CANDU were used in a stochastic procedure driven by the computer code DAKOTA to simulate the LBLOCA power pulse using combinations of core neutronic characteristics randomly generated from postulated subjective probability distributions with deterministic constraints and fixed transient bundle-wise thermal hydraulic conditions. With this information, a bounding estimate of functional failure probability using the limit for the maximum fuel bundle enthalpy can be derived for use in evaluation of core damage frequency. (author)

  7. Fuel handling system of nuclear reactor plants

    International Nuclear Information System (INIS)

    Faulstich, D.L.

    1991-01-01

    This patent describes a fuel handing system for nuclear reactor plants comprising a reactor vessel having an openable top and removable cover for refueling and containing therein, submerged in coolant water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units. It comprises a fuel bundle handing platform moveable over the open top of the reactor vessel; a fuel bundle handing mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grappling hook means for attaching to and transporting fuel bundles into and out from the fuel core; and a camera with a prismatic viewing head surrounded by a radioactive resisting quartz cylinder and enclosed within the grapple head which is provided with at least three windows with at least two windows provided with an angled surface for aiming the camera prismatic viewing head in different directions and thereby viewing the fuel bundles of the fuel core from different perspectives, and having a cable connecting the camera with a viewing monitor located above the reactor vessel for observing the fuel bundles of the fuel core and for enabling aiming of the camera prismatic viewing head through the windows by an operator

  8. Bundle 13 position verification tool description and on-reactor use

    Energy Technology Data Exchange (ETDEWEB)

    Onderwater, T G [Canadian General Electric Co. Ltd., Peterborough, ON (Canada)

    1997-12-31

    To address the Power Pulse problem, Bruce B uses Gap: a comprehensive monitoring program by the station to maintain the gap between the fuel string and the upstream shield plug. The gap must be maintained within a band. The gap must not be so large as to allow excessive reactivity increases or cause high impact forces during reverse flow events. It should also not be so small as to cause crushed fuel during rapid, differential reactor/fuel string cool downs. Rapid cool downs are infrequent. The Bundle 13 Position Verification Tool (BPV tool) role is to independently measure the position of the upstream bundle of the fuel string. The measurements are made on-reactor, on-power and will allow verification of the Gap Management system`s calculated fuel string position. This paper reviews the reasons for developing the BPV tool. Design issues relevant to safe operation in the fuelling machine, fuel channel and fuel handling equipment are also reviewed. Tests ensuring no adverse effects on channel pressure losses are described and actual on-reactor, on-power results are discussed. (author). 4 figs.

  9. Bundle 13 position verification tool description and on-reactor use

    International Nuclear Information System (INIS)

    Onderwater, T.G.

    1996-01-01

    To address the Power Pulse problem, Bruce B uses Gap: a comprehensive monitoring program by the station to maintain the gap between the fuel string and the upstream shield plug. The gap must be maintained within a band. The gap must not be so large as to allow excessive reactivity increases or cause high impact forces during reverse flow events. It should also not be so small as to cause crushed fuel during rapid, differential reactor/fuel string cool downs. Rapid cool downs are infrequent. The Bundle 13 Position Verification Tool (BPV tool) role is to independently measure the position of the upstream bundle of the fuel string. The measurements are made on-reactor, on-power and will allow verification of the Gap Management system's calculated fuel string position. This paper reviews the reasons for developing the BPV tool. Design issues relevant to safe operation in the fuelling machine, fuel channel and fuel handling equipment are also reviewed. Tests ensuring no adverse effects on channel pressure losses are described and actual on-reactor, on-power results are discussed. (author). 4 figs

  10. Status of fuel irradiation tests in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, Choong Sung; Lee, Kye Hong; Jun, Byung Jin; Lee, Ji Bok

    1999-01-01

    Since 1996 after finishing the long-term operational test, HANARO (High-Flux Advanced Neutron Application Reactor) has been extensively used for material irradiation tests, beam application research, radioisotope production and neutron activation analysis. This paper presents the fuel irradiation test activities which are now conducted or have been finished in HANARO. KAERI developed LEU fuel using an atomization method for the research reactors. Using this LEU, we have set up and conducted three irradiation programs: (1) medium power irradiation test using a short-length mini-assembly made of 3.15 gU/cc U 3 Si, (2) high power irradiation tests using full-length test assemblies made of 3.15 gU/cc U 3 Si, and (3) irradiation test using a short-length mini-plate made of 4.8 gU/cc U 3 Si 2 . DUPIC (Direct Use of spent PWR fuels in CANDU Reactors) simulation fuel pellets, of which compositions are very similar to DUPIC pellets to keep the similarity in the thermo-mechanical property, were developed. Three mini-elements including 5 pellets each were installed in a capsule. This capsule has been irradiated for 2 months and unloaded from the HANARO core at the end of September 1999. Another very important test is the HANARO fuel qualification program at high power, which is required to resolve the licensing issue. This test is imposed on the HANARO operation license due to insufficient test data under high power environment. To resolve this licensing issue, we have been carrying out the required irradiation tests and PIE (Post-irradiation Examination) tests. Through this program, it is believed that the resolution of the licensing issue is achieved. In addition to these programs, several fuel test plans are under way. Through these vigorous activities of fuel irradiation test programs, HANARO is sure to significantly contribute to the national nuclear R and D programs. (author)

  11. The management status of the spent fuel in HANARO(1995-2009)

    International Nuclear Information System (INIS)

    Choi, Ho Young; Lim, Kyeng Hwan; Kim, Hyung Wook; Lee, Choong Sung; Ahn, Guk Hoon

    2009-11-01

    In HANARO, the spent fuels are stored in the spent fuel storage pool of the reactor hall. The capacity of the spent fuel storage pool was designed to store 600 bundles for 36 rods fuel, 432 bundles for 18 rods fuel, 315 rods for TRIGA reactor fuel and the fuels loaded in the reactor core. The spent fuel storage pool can store spent fuels discharged from the reactor core for 20 years normal operation. As for July 2009, the spent fuel 337 bundles are stored in the spent fuel storage pool. There are 217 bundles of 36 rods fuel and 120 bundles of 18 rods fuel. In this report, the information of the spent fuel about the loading date in the reactor core, discharged date, burnup, invisible inspection results and loading position in the spent fuel storage pool are described

  12. Development of advanced BWR fuel bundle with spectral shift rod (3) -transient analysis of ABWR core with SSR

    International Nuclear Information System (INIS)

    Ikegawa, T.; Chaki, M.; Ohga, Y.; Abe, M.

    2010-01-01

    The spectral shift rod (SSR) is a new type of water rod, utilized instead of the conventional water rod, in which a water level develops during core operation. The water level can be changed according to the fuel channel flow rate. In this study, ABWR plant performance with SSR fuel bundles under transient conditions has been evaluated using the TRACG code. The TRACG code, which can treat three-dimensional hydrodynamic calculations in a reactor pressure vessel, is well suited for evaluating the reactor transient performance with the SSR fuel bundles because it can calculate the water levels in the SSR at each channel grouping and therefore evaluate the core reactivity according to the water level changes in the SSR. 'Generator load rejection with total turbine bypass failure' and 'Recirculation flow control failure with increasing flow' were selected as cases which may increase the reactivity with the increasing water level in the SSR. It was found that the absolute value of the void reactivity coefficient in the SSR core was larger than that in the conventional water rod core because the core averaged void fraction in the SSR core, which has the vapor region above the water level in the SSR, was larger than that in the conventional water rod core. Therefore, AMCPR for the SSR core was a little larger than that for the conventional water rod core; however, the difference was smaller than 0.02 because the inlet of the SSR ascending path was designed to be small enough to prevent the rapid water level increase in the SSR. (authors)

  13. Wire-wrap bundle compression-characteristics study. Phase I

    International Nuclear Information System (INIS)

    Chertock, A.J.

    1974-06-01

    An analytical computer comparison was made of the compression characteristics of proposed wire-wrap bundles. The study included analysis of 7- and 37-rod straight-start bundles (base configuration), and softened 37-rod configurations. The softened configurations analyzed were: straight-start with distributed wireless fuel rods, and the staggered wire-wrap start angles of 0 0 -30 0 -60 0 and 0 0 -45 0 -90 0 . The compression of the bundle simulates the bundle-to-channel interference at end-of-life conditions at which high differential swelling between the channel and bundle has been predicted. The computer results do not include the so-called dispersion effects. The effects of other variables such as pitch length, creep, axial variations in swelling, and degree of swelling were not studied. These analytic studies give an indication of trends only. No credence should be given to specific quantitative load or deflection results quoted in this report

  14. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Ramachandran, Suja; Rathakrishnan, S.; Satya Murty, S.A.V.; Sai Baba, M.

    2015-01-01

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  15. Safety analysis report of the irradiation test of Type-B bundle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Sung; Lim, I. C.; Lee, B. C.; Ryu, J. S.; Kim, H. R

    2000-06-01

    The HANARO fuel, U{sub 3}Si-A1, has been developed by AECL and tested in NRU reactor. In the course of the fuel qualification tests, only one case was performed under the higher power condition than maximum linear power which was expected in the design stage. The Korea regulatory body, KINS imposed that HANARO shall be operated at the power level less than 24MW which is 80% of the design full power until HANARO shows the repetitive performance of the fuel at the power condition abov e 112.8KW/m. To resolve this imposition, KAERI designed two types of special test bundles: two non-instrumented(Type-A) and one instrumented(Type-B) test bundles. Two Type-A bundles were irradiated in HANARO: one of them has finished PIE and the other is under PIE. Type-B bundle was loaded in the core during 1.32 day at 1996, but outstanding FIV(flow induced vibration) was observed at the pool top because of long guide tube attached to the top of the bundle. The successful installation of the chimney fastener to fix the guide tube resulted in conducting the irradiation test of Type-B bundle again. The test will start at mid- July, 2000. In order to safely do the Type-B irradiation test, the safety analysis for the nuclear, mechanical and thermal-hydraulic aspects was performed. The reactivity worth and the maximum 1 near power predicted by VENTURE are 6.3mk/k and 121.6kW/m, respectively. Thermal margins for normal and transient conditions using MATRA-h, are assessed to satisfy the safety criteria.

  16. Assessment of core characteristics during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Suk, Ho Chun

    2002-01-01

    A transition from 37-element natural uranium fuel to CANFLEX-NU fuel has been modeled in a 1200-day time-dependent fuel management simulation for a CANDU 6 reactor. The simulation was divided into three parts. The pre-transition period extended from 0 to 300 FPD, in which the reactor was fuelled only with standard 37-element fuel bundles. In the transition period, refueling took place only with the CANFLEX-NU fuel bundle. The transition stage lasted from 300 to 920 FPD, at which point all of the 37-element fuel in the core had been replaced by CANFLEX-NU fuel bundle. In the post-transition phase, refueling continued with CANFLEX-NU fuel until 1200 FPD, to arrive at estimate of the equilibrium core characteristics with CANFLEX-NU fuel. Simulation results show that the CANFLEX-NU fuel bundle has a operational compatibility with the CANDU 6 reactor during the transition core, and also show that the transition core from 37-element natural uranium fuel to CANFLEX-NU can be operated without violating any license limit of the CANDU 6 reactor

  17. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    International Nuclear Information System (INIS)

    In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun

    2013-01-01

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment

  18. Pressure drop redistribution experimental analysis in axial flow along the bundles

    International Nuclear Information System (INIS)

    Bastos Franco, C. de; Carajilescov, P.

    1992-01-01

    Fuel elements of PWR type nuclear reactors are composed of rod bundles, arranged in square arrays, held by grid type spacers. The coolant flows axially along the bundle. Although such elements are laterally open, pressure drop experiments are performed in closed type test sections, originating the appearance of subchannels of different geometries. Utilizing a test section of two bundles of 4 x 4 pins and performing experiments with and without separation between the bundles, the flow redistribution factors, the friction, and the grid drag coefficients were determined for the interior subchannels. 03 refs, 06 figs, 02 tabs. (B.C.A.)

  19. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  20. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  1. Methodology for the study of the boiling crisis in a nuclear fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F. de; Juhel, D. [Commissariat a l`Energie Atomique, Grenoble (France)

    1995-09-01

    The boiling crisis is one of the phenoumena limiting the available power from a nuclear power plant. It has been widely studied for decades, and numerous data, models, correlations or tables are now available in the literature. If we now try to obtain a general view of previous work in this field, we may note that there are several ways of tackling the subject. The mechanistic models try to model the two-phase flow topology and the interaction between different sublayers, and must be validated by comparison with basic experiments, such as DEBORA, where we try to obtain some detailed informations on the two-phase flow pattern in a pure and simple geometry. This allows us to obtain better knowledge of the so-called {open_quotes}intrinsic effect{close_quotes}. These models are not yet acceptable for nuclear use. As the geometry of the rod bundles and grids has a tremendous importance for the Critical Heat Flux (CHF), it is mandatory to have more precise results for a given fuel rod bundle in a restricted range of parameters: this leads to the empirical approach, using empirical CHF predictors (tables, correlations, splines, etc...). One of the key points of such a method is the obtaining local thermohydraulic values, that is to say the evaluation of the so-called {open_quotes}mixing effect{close_quotes}. This is done by a subchannel analysis code or equivalent, which can be qualified on two kinds of experiments: overall flow measurements in a subchannel, such as HYDROMEL in single-phase flow or GRAZIELLA in two-phase flow, or detailed measurements inside a subchannel, such as AGATE. Nevertheless, the final qualification of a specific nuclear fuel, i.e. the synthesis of these mechanistic and empirical approaches, intrinsic and mixing effects, etc..., must be achieved on a global test such as OMEGA. This is the strategy used in France by CEA and its partners FRAMATOME and EdF.

  2. Full-scale model development of the WWER-440 reactor fuel rod bundle for core temperature regime study under reflooding conditions

    International Nuclear Information System (INIS)

    Bezrukov, Yu.A.; Logvinov, S.A.; Levchuk, S.V.; Nakladnov, V.D.; Onshin, V.P.; Sokolov, A.S.

    1982-01-01

    Consideration is given to the issues of a full scale WWER-440 fuel rod bundle imitation. An imitator contains a molybdenum heating rod inclosed in stainless steel shell. The shell diameter is 9 mm, the heated length is 2500 mm, the total len.o.th is 2855 mm. 125 fuel rod imitators are set in the bundle mock-up. The experiments were run on a test facility imitating the WWER-440 reactor primary loop, providing the conditions of the loop breaking. The mock-up thermal hydraulics has been studied during the refloodino. stage. The mock-up was heated up to predetermined initial temperature at a low power level with saturated steam cooling. Then the steam input was stopped, the power level rarapidly rised up to a given value and the cooling water injected. Simultaneously with water injection all the measured parameters monitoring was started. Both at the top spraying and combined cooling temperature oscillations in the upper and middle parts of the mock-up were observed. At the bottom reflooding the mock-up cooling down took more time, thereat temperature inthe upper part first slowly rised during reflooding then decreased and then dropped abruptly at thefront coming up [ru

  3. Fabrication of a CANFLEX-RU designed bundle for power ramp irradiation test in NRU

    International Nuclear Information System (INIS)

    Cho, Moon Sung

    2000-11-01

    The BDL-443 CANFLEX-RU bundle AKW was fabricated at Korea Atomic Energy Research Institute (KAERI) for power ramp irradiation testing in NRU reactor. The bundle was fabricated with IDR and ADU fuel pellets in adjacent elements and contains fuel pellets enriched to 1.65 wt% 235 U in the outer and intermediate rings and also contains pellets enriched to 2.00 wt% 235 U in the inner ring. This bundle does not have a center element to allow for insertion on a hanger bar. KAERI produced the IDR pellets with the IDR-source UO 2 powder supplied by BNFL. ADU pellets were fabricated and supplied by AECL. Bundle kits (Zircaloy-4 end plates, end plugs, and sheaths with brazed appendages) manufactured at KAERI earlier in 1996 were used for the fabrication of the bundle. The CANFLEX bundle was fabricated successfully at KAERI according to the QA provisions specified in references and as per relevant KAERI drawings and technical specification. This report covers the fabrication activities performed at KAERI. Fabrication processes performed at AECL will be documented in a separate report

  4. Description and validation of ANTEO, an optimised PC code the thermalhydraulic analysis of fuel bundles

    International Nuclear Information System (INIS)

    Cevolani, S.

    1995-01-01

    The paper deals with the description of a Personal Computer oriented subchannel code, devoted to the steady state thermal hydraulic analysis of nuclear reactor fuel bundles. The development of such a code was made possible by two facts: firstly, the increase, in the computing power of the desk machines; secondly, the fact that several years of experience into operate subchannels codes have shown how to simplify many of the physical models without a sensible loss of accuracy. For sake of validation, the developed code was compared with a traditional subchannel code, the COBRA one. The results of the comparison show a very good agreement between the two codes. (author)

  5. CANDU fuel

    International Nuclear Information System (INIS)

    MacEwan, J.R.; Notley, M.J.F.; Wood, J.C.; Gacesa, M.

    1982-09-01

    The direction of CANDU fuel development was set in 1957 with the decision to build pressure tube reactors. Short - 50 cm long - rodded bundles of natural UO 2 clad in Zircaloy were adopted to facilitate on-power fuelling to improve uranium utilization. Progressive improvements were made during 25 years of development, involving 650 man years and 180 million dollars. Today's CANDU bundle is based on the knowledge gained from extensive irradiation testing and experience in power reactors. The main thrust of future development is to demonstrate that the present bundle is suitable, with minor modifications, for thorium fuels

  6. Improved techniques for appendage attachment to PHWR fuel elements

    International Nuclear Information System (INIS)

    Raj, R.N.J.; Laxminarayana, B.; Narayanan, P.S.A.; Gupta, U.C.; Varma, B.P.; Sinha, K.K.

    1995-01-01

    Nuclear Fuel Complex, India switched-over to split-wart type PHWR fuel bundles in mid-80s. Since then over 60,000 bundles of this type have been fabricated for Indian PHWRs. After considering various technical aspects, resistance welding was chosen for appendage attachment to the fuel elements. The paper describes experiences in scaling up of the technique to industrial production of PHWR fuel bundles, design and development of special-purpose equipment for this purpose, and the QA procedures employed for regular production. It also deals with appendage welding of 37 Element fuel bundles and improvements planned in the appendage welding process. (author)

  7. Modeling and analysis of thermal damping in heat exchanger tube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Khushnood, Shahab, E-mail: seeshahab@yahoo.co [University of Engineering and Technology, Taxila (Pakistan); Khan, Zaffar Muhammad, E-mail: mafzmlk@hotmail.co [National University of Sciences and Technology, Rawalpindi (Pakistan); Malik, Muhammad Afzaal [National University of Sciences and Technology, Rawalpindi (Pakistan); Iqbal, Qamar, E-mail: qamarch@yahoo.co [University of Engineering and Technology, Taxila (Pakistan); Bashir, Sajid; Khan, Muddasar [University of Engineering and Technology, Taxila (Pakistan); Koreshi, Zafarullah, E-mail: zaffark@yahoo.co [Air University, Islamabad (Pakistan); Khan, Mahmood Anwar [National University of Sciences and Technology, Rawalpindi (Pakistan); Malik, Tahir Nadeem [University of Engineering and Technology, Taxila (Pakistan); Qureshi, Arshad Hussain [University of Engineering and Technology, Lahore (Pakistan)

    2010-07-15

    Most structures and equipment used in nuclear power plant and process plant, such as reactor internals, fuel rods, steam generator tubes bundles, and process heat exchanger tube bundles, are subjected to flow-induced vibrations (FIV). Costly plant shutdowns have been the source of motivation for continuing studies on cross-flow-induced vibration in these structures. Damping has been the target of various research attempts related to FIV in tube bundles. A recent research attempt has shown the usefulness of a phenomenon termed as 'thermal damping'. The current paper focuses on the modeling and analysis of thermal damping in tube bundles subjected to cross-flow. It is expected that the present attempt will help in establishing improved design guidelines with respect to damping in tube bundles.

  8. Verification tests for CANDU advanced fuel

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1997-07-01

    For the development of a CANDU advanced fuel, the CANFLEX-NU fuel bundles were tested under reactor operating conditions at the CANDU-Hot test loop. This report describes test results and test methods in the performance verification tests for the CANFLEX-NU bundle design. The main items described in the report are as follows. - Fuel bundle cross-flow test - Endurance fretting/vibration test - Freon CHF test - Production of technical document. (author). 25 refs., 45 tabs., 46 figs

  9. Investigations of flow and temperature field development in bare and wire-wrapped reactor fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Govindha Rasu, N.; Velusamy, K.; Sundararajan, T.; Chellapandi, P.

    2013-01-01

    Highlights: ► We study sodium flow and temperature development in fuel pin bundles. ► Pin diameter, number of pins, wire wrap and ligament gap are varied as parameters. ► Flow development is achieved within ∼30–40 hydraulic diameters. ► Thermal development is attained only for small pin diameter and less number of pins. ► Wire wrap and ligament gap strongly influence Nusselt number. - Abstract: Simultaneous development of liquid sodium flow and temperature fields in the heat generating pin bundles of reactor has been investigated. Development characteristics are seen to be strongly influenced by pin diameter, number of pins, helical wire-wrap, ligament gap between the last row of pins and hexcan wall and Reynolds number. Flow development is achieved within an axial length of ∼125 hydraulic diameters, for all the pin bundle configurations considered. But temperature development is attained only if the pin diameter is small or the number of pins is less. In the case of large pin diameter with more pins, temperature development could not be achieved even after a length of ∼1000 hydraulic diameters. The reason for this behavior is traced to be the weak communication among sub-channels in tightly packed bundles. It is seen that the pin Nusselt number decreases from center to periphery in a bundle. Also, if the ligament gap is narrow, the Nusselt number is large and more uniform. Flow development length is short if the Reynolds number is large and the converse is true for thermal development length. Helical wire-wrap shortens the thermal entry length and significantly enhances the global Nusselt number. But, its influence on hydrodynamic entry length is not significant

  10. Schemes for fuel conservation for PHWRs due for complete fuel discharge

    International Nuclear Information System (INIS)

    Bansal, Ravi; Kumar, Deepak; Tejram

    2009-01-01

    Narora Atomic Power Station (NAPS) consists of twin units of pressurized heavy water reactors (PHWR) using natural uranium as fuel and heavy water as moderator and coolant. On-power bi-directional refueling is employed at NAPS. En Masse Coolant Channel Replacement (EMCCR) necessitates the low burn-up bundles present in core to be utilized. The different schemes of In-core fuel management viz. internal, total internal and external recycling were worked out to utilize these low burn-up bundles. This led to saving of: (a) 2011 natural uranium bundles at NAPS and (b) 4 and half months in NAPS-1 and 3 and half months in case of NAPS-2 in core de-fueling time. (author)

  11. Behavior of a nine-rod PWR bundle under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Sparks, D.T.

    1979-01-01

    An experiment to characterize the behavior of a nine-rod pressurized water reactor (PWR) fuel bundle operating during power-cooling-mismatch (PCM) conditions has been conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The experiment, designated Test PCM-5, is part of a series of PCM experiments designed to evaluate light water reactor (LWR) fuel rod response under postulated accident conditions. Test PCM-5 was the first nine-rod bundle experiment in the PCM test series. The primary objectives and the results of the experiment are described

  12. Tabular method of critical heat flux description in square packing rod bundles

    International Nuclear Information System (INIS)

    Bobkov, V.P.; Smogalev, I.P.

    2003-01-01

    Elaborations of harnessing tabular method for the description and calculation of critical heat fluxes in square packing rod bundles are presented. The tabular method for fuel rod triangular assemblies derived from using basic table for critical heat fluxes in triangular fuel assemblies demonstrates good results. For the harnessing tabular method in square packing rod bundles correction functions reflecting specific geometry were found. Comparative evaluations of calculated values for the critical heat fluxes with experimental ones are presented. Good agreement of calculations with experiments is noted in all range of parameters [ru

  13. Dry Refabrication Technology Development of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Park, G. I.; Park, C. J.

    2010-04-01

    Key technical data on advanced nuclear fuel cycle technology development for the spent fuel recycling have been produced in this study. In the frame work of DUPIC, dry process oxide products fabrication, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remote modulated welding equipment has been designed and fabricated. In the area of advanced pre-treatment process development, a rotary-type oxidizer and spherical particle fabrication process were developed by using SIMFUEL and off-gas treatment technology and zircalloy tube treatment technology were studied. In the area of the property characteristics of dry process products, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data

  14. Fabrication of a CANFLEX-RU designed bundle for power ramp irradiation test in NRU

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Moon Sung

    2000-11-01

    The BDL-443 CANFLEX-RU bundle AKW was fabricated at Korea Atomic Energy Research Institute (KAERI) for power ramp irradiation testing in NRU reactor. The bundle was fabricated with IDR and ADU fuel pellets in adjacent elements and contains fuel pellets enriched to 1.65 wt% {sup 235}U in the outer and intermediate rings and also contains pellets enriched to 2.00 wt% {sup 235}U in the inner ring. This bundle does not have a center element to allow for insertion on a hanger bar. KAERI produced the IDR pellets with the IDR-source UO{sub 2} powder supplied by BNFL. ADU pellets were fabricated and supplied by AECL. Bundle kits (Zircaloy-4 end plates, end plugs, and sheaths with brazed appendages) manufactured at KAERI earlier in 1996 were used for the fabrication of the bundle. The CANFLEX bundle was fabricated successfully at KAERI according to the QA provisions specified in references and as per relevant KAERI drawings and technical specification. This report covers the fabrication activities performed at KAERI. Fabrication processes performed at AECL will be documented in a separate report.

  15. Modeling of PHWR fuel elements using FUDA code

    International Nuclear Information System (INIS)

    Tripathi, Rahul Mani; Soni, Rakesh; Prasad, P.N.; Pandarinathan, P.R.

    2008-01-01

    The computer code FUDA (Fuel Design Analysis) is used for modeling PHWR fuel bundle operation history and carry out fuel element thermo-mechanical analysis. The radial temperature profile across fuel and sheath, fission gas release, internal gas pressure, sheath stress and strains during the life of fuel bundle are estimated

  16. Development of PHWR fuel fabrication in Korea

    International Nuclear Information System (INIS)

    Suh, K.S.; Yang, M.S.; Kim, D.H.; Rim, C.S.

    1988-01-01

    Korea Advanced Energy Research Institute (KAERI) started a research project to develop the PHWR (CANDU) nuclear fuel fabrication technology in 1981. Based on the results of the intensive developmental work, several prototype fuel bundles were fabricated and tested in the Hot Test Loop at KAERI continuously in 1983 and 1984. After that, irradiation test and post-irradiation examination were carried out for two KAERI-made fuel bundles at Chalk River Nuclear Laboratories in Canada in 1984. Since the results of in-pile and out-of-pile tests with prototype fuel bundles proved to be satisfactory, 48 additional fuel bundles were loaded in Wolsung reactor (CANDU) in 1984 and 1985, and all of them were discharged without a defect after excellent performance in the power reactor. In 1985, the Korean government decided that KAERI supplies all the fuel necessary for the Wolsung reactor. For the mass production of nuclear fuel bundle, several process equipment, facilities and automation methods have been improved making use of experience accumulated during research. A quality assurance program was also established, and quality inspection technology was reviewed and improved to fit the mass production. This paper deals with the development experience so far obtained with the design and fabrication of the Korean PHWR fuel

  17. CFD thermal-hydraulic analysis of a CANDU fuel channel

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)

  18. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Catana, A.; Turcu, I.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2010-01-01

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  19. Some considerations in the CANFLEX-NU fuel design

    International Nuclear Information System (INIS)

    Sim, K.S.; Suk, H.C.; Tayal, M.; Alavi, P.; Oldaker, I.E.; Lau, J.H.

    1997-01-01

    The CANDU Flexible-natural uranium (CANFLEX-NU) fuel bundle is being developed as the next logical evolution of CANDU fuel. Several design details of the CANFLEX bundle differ from the current 37-element fuel bundle. For example, the CANFLEX bundle uses buttons that enhance critical heat flux, smaller element diameters, and thinner sheaths. These changes contribute to the many advantages offered by the CANFLEX bundle. Nonetheless, the impact of these modified parameters on fuel failure mechanisms must be examined. For example, smaller diameter may lead to increased potential for flow-induced vibration and fatigue. Similarly, thinner sheaths may potentially lead to increased likelihood of collapse of the sheath into concentrated axial gap in the element due to the coolant pressure. Likewise, thin sheath and altered pellet dimensions may also potentially influence the defect threshold for stress-corrosion cracking during power ramps. The fatigue behaviour of the element may be different from the standard 37-element bundle under the condition of the significant number of power cycles. As part of the design verification of the CANFLEX bundle, the above failure mechanisms were analysed using well-established methods with reasonable support from relevant experiments or operating experience. As the analysis results show, the CANFLEX-NU fuel bundle is expected to exhibit excellent integrity during its lifetime in the reactor. (author)

  20. DUPIC fuel irradiation test and performance evaluation; the performance analysis of pellet-cladding contact fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K. I.; Kim, H. M.; Yang, K. B.; Choi, S. J. [Suwon University, Whasung (Korea)

    2002-04-01

    Thermal and mechanical models were reviewed, and selected for the analysis of nuclear fuel performance in reactor. 2 dimensional FEM software was developed. Thermal models-gap conductances, thermal conductivity of pellets, fission gas release, temperature distribution-were set and packaged into a software. Both thermal and mechanical models were interrelated to each other, and the final results, fuel performance during irradiation is obtained by iteration calculation. Also, the contact phenomena between pellet and cladding was analysed by mechanical computer software which was developed during this work. dimensional FEM program was developed which estimate the mechanical behavior and the thermal behaviors of nuclear fuel during irradiation. Since there is a importance during the mechanical deformation analysis in describing pellet-cladding contact phenomena, simplified 2 dimensional calculation method is used after the contact. The estimation of thermal fuel behavior during irradiation was compared with the results of other. 8 refs., 17 figs. (Author)

  1. CFD simulating the transient thermal–hydraulic characteristics in a 17 × 17 bundle for a spent fuel pool under the loss of external cooling system accident

    International Nuclear Information System (INIS)

    Chen, S.R.; Lin, W.C.; Ferng, Y.M.; Chieng, C.C.; Pei, B.S.

    2014-01-01

    Highlights: • A 3-D CFD is adopted to simulate transient behaviors in an SFP under the accident. • This model realistically simulates a 17 × 17 bundle, rid of porous media approach. • The loss of external cooling system accident for an SFP is assumed in this paper. • Thermal–hydraulic characteristics in a bundle are strongly influenced by grids. • The results confirm temperature rising rate used in Maanshan NPP is conservative. - Abstract: This paper develops a three-dimensional (3-D) transient computational fluid dynamics (CFD) model to simulate the thermal–hydraulic characteristics in a fuel bundle located in a spent fuel pool (SFP) under the loss of external cooling system accident. The SFP located in the Maanshan nuclear power plant (NPP) is selected herein. Without adopting the porous media approach usually used in the previous CFD works, this model uses a real-geometry simulation of a 17 × 17 fuel bundle, which can obtain the localized distributions of the flow and heat transfer during the accident. These distribution characteristics include several peaks in the axial distributions of flow, pressure, temperature, and Nusselt number (Nu) near the support grids, the non-uniform distribution of secondary flow, and the non-uniform temperature distribution due to flow mixing between rods, etc. According to the conditions adopted in the Procedure 597.1 (MNPP Plant Procedure 597.1, 2010) for the management of the loss-of-cooling event of the spent fuel pool in the Maanshan NPP, the temperature rising rate predicted by the present model can be equivalent to 1.26 K/h, which is the same order as that of 3.5 K/h in the this procedure. This result also confirms that the temperature rising rate used in the Procedure 597.1 for the Maanshan NPP is conservative. In addition, after the loss of external cooling system, there are about 44 h for the operator to repair the malfunctioning system or provide the alternative water source for the pool inventory to

  2. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G R; Bullock, D E [Atomic Energy of Canada Limited, Ontario (Canada)

    1999-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  3. Single and two-phase flow pressure drop for CANFLEX bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)

    1998-12-31

    Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)

  4. Investigation of an overheated PWR-type fuel rod simulator bundle cooled down by steam. Pt. 1: experimental and calculational results of the QUENCH-04 test. Pt. 2: application of the SVECHA/QUENCH code to the analysis of the QUENCH-01 and QUENCH-04 bundle tests

    International Nuclear Information System (INIS)

    Sepold, L.; Hofmann, P.; Homann, C.

    2002-04-01

    The QUENCH experiments are to investigate the hydrogen source term that results from the water injection into an uncovered core of a light-water reactor (LWR). The test bundle is made of 21 fuel rod simulators with a length of approximately 2.5 m. 20 fuel rod simulators are heated over a length of 1024 mm, the one unheated fuel rod simulator is located in the center of the test bundle. Heating is carried out electrically using 6-mm-diameter tungsten heating elements installed in the center of the rods and surrounded by annular ZrO 2 pellets. The rod cladding is identical to that used in LWRs: Zircaloy-4, 10.75 mm outside diameter, 0.725 mm wall thickness. The test bundle is instrumented with thermocouples attached to the cladding and the shroud at 17 different elevations with an axial distance between the thermocouples of 100 mm. During the entire test up to the cooldown phase, superheated steam together with the argon as carrier gas enters the test bundle at the bottom end and leaves the test section at the top together with the hydrogen that is produced in the zirconium-steam reaction. The hydrogen is analyzed by three different instruments: two mass spectrometers and a ''Caldos 7 G'' hydrogen measuring device (based on the principle of heat conductivity). Part I of this report describes the results of test QUENCH-04 performed in the QUENCH test facility at the Forschungszentrum Karlsruhe on June 30, 1999. The objective of the experiment QUENCH-04 was to investigate the reaction of the non-preoxidized rod cladding on cooldown by steam rather than quenching by water. Part II of the present report deals with the results of the SVECHA/QUENCH (S/Q) code application to the FZK QUENCH bundle tests. The adaptation of the S/Q code to such kind of calculations is described. The numerical procedure of the recalculation of the temperature test data, and the preparation for the S/Q code input is presented. In particular, the results of the QUENCH-01 and QUENCH-04 test

  5. Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Catana, Alexandru [RAAN, Institute for Nuclear Research, Str. Campului Nr. 1, Pitesti, Arges (Romania); Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel [University POLITEHNICA of Bucharest (Romania)

    2008-07-01

    Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D{sub 2}O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D{sub 2}O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)

  6. Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors

    International Nuclear Information System (INIS)

    Catana, Alexandru; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2008-01-01

    Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D 2 O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D 2 O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)

  7. Fuel assembly gripping device using self-locking mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. M.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Park, K. B.; Chang, M. H

    1999-07-01

    This report presents an actuating principles and structure for two kind of the fuel assembly gripping devices (Gripper-A, B) developed for SMART. The main components of these grippers are push bundle, rotation bundle, upper guide tube and chuck assembly. The rope attached to winch system on moving cask hangs gripper's push bundle. Due to a down-and-up operation of winch system, the push bundle pushes crown teeth shaped rotation bundle and then it is pushed down and rotated counter clockwise. The push-and-pull sequential operation of push bundle makes the rotation bundle is pushed, rotated and returned, moreover it makes the chuck assembly is expanded or shrunk. The expansion and shrinkage motion of chuck assembly makes the gripper latch and release the fuel assembly. Gripper-A suits for the handling of the fuel assembly with square shaped latching hole. Otherwise Gripper-B suits for a circular shaped latching hole. (author). 5 refs., 20 figs.

  8. Fuel assembly gripping device using self-locking mechanism

    International Nuclear Information System (INIS)

    Lee, G. M.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Park, K. B.; Chang, M. H.

    1999-07-01

    This report presents an actuating principles and structure for two kind of the fuel assembly gripping devices (Gripper-A, B) developed for SMART. The main components of these grippers are push bundle, rotation bundle, upper guide tube and chuck assembly. The rope attached to winch system on moving cask hangs gripper's push bundle. Due to a down-and-up operation of winch system, the push bundle pushes crown teeth shaped rotation bundle and then it is pushed down and rotated counter clockwise. The push-and-pull sequential operation of push bundle makes the rotation bundle is pushed, rotated and returned, moreover it makes the chuck assembly is expanded or shrunk. The expansion and shrinkage motion of chuck assembly makes the gripper latch and release the fuel assembly. Gripper-A suits for the handling of the fuel assembly with square shaped latching hole. Otherwise Gripper-B suits for a circular shaped latching hole. (author). 5 refs., 20 figs

  9. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    Science.gov (United States)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  10. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Borrman, B.; Nylund, O.

    1984-01-01

    A fuel assembly with a fuel channel which surrounds a plurality of fuel rods and which is divided, by means of a stiffening device of cruciform cross-section and four wings, into four sub-channels each of which comprises a bundle of fuel rods. Each fuel channel side has a plurality of stamped, inwardly-directed projections, arranged vertically one after the other, aid projections being welded to one and the same stiffening wing. Each one of the wall portions located between the projections defines, together with two adjacently positioned projections and a portion of the stiffening wing, a communiation opening between two bundles located on on one side each of the stiffening wing. (Author)

  11. COBRA - 3C/KFKI: a digital computer program for steady and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements

    International Nuclear Information System (INIS)

    Vigassy, J.; Kovacs, L.M.

    1977-11-01

    COBRA-3C/KFKI is a digital computer program for the CDC-3300 computer in FORTRAN language. The program is a revised version of the original COBRA-3C code. The code calculates steady-state and transient flow and enthalpy transport in rod-bundle nuclear fuel elements in both boiling and nonboiling conditions. The mathematical model is formulated by dividing the bundle flow area into flow subchannels that are assumed to contain one-dimensional flow and are coupled to each other by turbulent and diversion crossflow mixing. The program neglects sonic velocity propagation but allows for a temporal and spatial acceleration of the diversion crossflow in the transverse momentum equation. A semiexplicit finite-difference scheme is used to perform a boundary-value solution where the boundary conditions are the inlet enthalpy, inlet flow rate and exit pressure. (D.P.)

  12. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  13. Mitigating fuel handling situations during station blackout in TAPP-3 and

    International Nuclear Information System (INIS)

    Chugh, V.K.; Roy, Shibaji; Gupta, H.; Inder Jit

    2002-01-01

    Full text: On power refueling is one of the important features of PHWRs. fuelling machine (FM) Head becomes part of the reactor pressure boundary during refueling operations. Hot irradiated (spent) fuel bundles are received in the FM Head from the Reactor and transferred to spent fuel storage bay (SFSB). These bundles pass through various fuel handling (FH) Equipment under submerged condition except during the dry transfer operation. Situations of station blackout (SBO) i.e. postulated simultaneous failure of Class III and Class IV electric power, could persist for a long period, during on-reactor or off-reactor FH operations, with the spent fuel bundles being any where in the system between the reactor and SFSB. The cooling provisions for the spent fuel bundles vary depending upon the stage of operation. During SBO, it becomes difficult to maintain cooling to these fuel bundles due to the limited availability of Class II power and instrument air. However, cooling is essential, to ensure the safety of the bundles. As discussed in the paper, safety of these fuel bundles in the system and/or for those lying in the liner tube region of the reactor end fitting is ensured, during SBO, by resorting to passive means like stay-put, gravity- fill, D 2 O-steaming etc. for cooling the bundles. Various scenarios have been identified for cooling provisions of the bundles in the system. The paper also describes consequences like loss of D 2 O inventory, rise in ambient temperature and pressure and tritium build-up in Reactor Building, emanating from these cooling schemes

  14. Combustor and method for distributing fuel in the combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  15. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  16. Upper-bound fission product release assessment for large break LOCA in CANFLEX bundle reactor core

    International Nuclear Information System (INIS)

    Oh, Duk Ju; Lee, Kang Moon

    1996-07-01

    Quarter-core gap inventory assessment for CANDU-6 reactor core loaded with CANFLEX fuel bundles has been performed as one of the licensing safety analyses required for 24 natural uranium CANFLEX bundle irradiation in CANDU-6 reactor. The quarter-core gap inventory for the CANFLEX bundle core is 5 - 10 times lower than that for the standard bundle core, depending on the half-life of the isotope. The lower gap inventory of the CANFLEX bundle core is attributed to the lower linear power of the CANFLEX bundle compared with the standard bundle. However, the whole core total inventories for both the CANFLEX and standard bundle cores are nearly the same. The 6 - 8 times lower upper-bound fission product releases of the CANFLEX bundle core for large break LOCA than those of the standard bundle core imply that the loading of 24 natural uranium CANFLEX bundles would improve the predicted consequences of the postulated accident described in the Wolsung 2 safety report. 2 tabs., 6 figs., 3 refs. (Author)

  17. Experimental study of new generation WWER-1000 fuel assemblies at JSC NCCP

    International Nuclear Information System (INIS)

    Enin, A.; Rozhkov, V.; Sinikov, Y.; Ustimenko, A.; Shustov, M.

    2003-01-01

    An experimental program for the study of fuel assembly thermomechanical stability has been established together with RF SSC IPPE and Russian Scientific Center Kurchatov Institute. Assembly fragments and small dummy models of fuel assembly skeletons and fuel rod bundles have been used for the tests. The test results are used for the design selection, verification of the design codes and substantiation of operating capacity of fuel assemblies with a rigid skeleton. The mechanical characteristics of units make it possible to perform fuel assembly strength and rigidity calculations, including the cases of abnormal operation. The mechanical characteristics of the skeleton and fuel rod bundle dummy models make it possible to check for the adequacy of the fuel assembly design model. The mechanical characteristics obtained during fuel rods bundle push through experiments make it possible to substantiate the fuel assembly serviceability under the conditions of fuel rods bundle and skeleton interaction

  18. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  19. Status of irradiation testing and PIE of MOX (Pu-containing) fuel

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Zhou, Y.N.; Ryz, M.A.

    1995-01-01

    This paper describes AECL's mixed oxide (MOX) fuel-irradiation and post-irradiation examination (PIE) program. Post-irradiation examination results of two major irradiation experiments involving several (U, Pu)O 2 fuel bundles are highlighted. One experiment involved bundles irradiated to burnups ranging fro 400 to 1200 MWh/kgHe in the Nuclear Power Demonstration (NPD) reactor. The other experiment consisted of several (U, Pu)O 2 bundles irradiated to burnups of up to 500 Mwh/kgHe in the National Research Universal (NRU) reactor. Results of these experiments demonstrate the excellent performance of CANDU MOX fuel. This paper also outlines the status of current MOX fuel irradiation tests, including the irradiation of various (U, Pu)O 2 bundles. The strategic importance of MOX fuel to CANDU fuel-cycle flexibility is discussed. (author)

  20. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  1. RU fuel development program for an advanced fuel cycle in Korea

    International Nuclear Information System (INIS)

    Suk, Hochum; Sim, Kiseob; Kim, Bongghi; Inch, W.W.; Page, R.

    1998-01-01

    Korea is a unique country, having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimize overall waste production, and maximize energy derived from the fuel, by ultimately burning the spent fuel from its PWR reactors in CANDU reactors. As one of the possible fuel cycles, Recovered Uranium (RU) fuel offers a very attractive alternative to the use of Natural Uranium (NU) and slightly enriched uranium (SEU) in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, therefore no enrichment tails, direct conversion to UO 2 , lower sensitivity to 234 U and 236U absorption in the CANDU reactor, and expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the conventional reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU 6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. The use of the CANDU Flexible Fueling (CANFLEX) bundle as the carrier for RU will be fully compatible with the reactor design, current safety and operational requirements, and there will be improved fuel performance compared with the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in both fuel requirements and spent fuel, arisings, and the potential lower cost for RU material. There is the potential for annual fuel cost savings in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D efforts on the use of RU fuel for advanced fuel cycles in CANDU

  2. Detailed analysis of the bundle damage scenario in the PHEBUS FPT0

    International Nuclear Information System (INIS)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Yoo, Kun Joong

    1998-03-01

    The PHEBUS FP program and the test facility have been investigated, and the late phase melt progression in the PHEBUS FPT0 has been analyzed in the present study. The objectives of this program are to investigate fission product (FP) release and this program consists of six in-pile tests, which are FPT0, FPT1, FPT4, FPT2, FPT5, and FPT3, under different thermal hydraulic and fuel rod environment conditions. The first test, FPT0, was performed in December 1993, and the second test, FPT1, was performed in July 1996. The present study has been performed to evaluate a late phase damage scenario of the fuel bundle using the FPT0 test results, which are primarily a non-destructive Post Irradiation Examination (PIE) and a destructive PIE. The fuel bundle degradation scenario is summarized as follows: the fuel rod cladding failed at approximately 7,000 seconds; the control rod materials ruptured at 11,000 seconds; the stainless-steel reaction occurs at approximately 12,100 seconds; the upper fuel bundle materials melted and relocated to the elevation between 35 and 45 cm at the period between 14,750 and 15,200 seconds; the molten pool and the debris were formed at the elevation between 26 and 36 cm at the period between 15,200 and 18,100 seconds; the molten pool and the debris dropped the elevation between 15 and 25 cm from the bfc at approximately 18,100 seconds; the molten pool was finally quenched by the injected steam. (author). 45 refs., 10 tabs., 73 figs

  3. A prediction method of the effect of radial heat flux distribution on critical heat flux in CANDU fuel bundles

    International Nuclear Information System (INIS)

    Yuan, Lan Qin; Yang, Jun; Harrison, Noel

    2014-01-01

    Fuel irradiation experiments to study fuel behaviors have been performed in the experimental loops of the National Research Universal (NRU) Reactor at Atomic Energy of Canada Limited (AECL) Chalk River Laboratories (CRL) in support of the development of new fuel technologies. Before initiating a fuel irradiation experiment, the experimental proposal must be approved to ensure that the test fuel strings put into the NRU loops meet safety margin requirements in critical heat flux (CHF). The fuel strings in irradiation experiments can have varying degrees of fuel enrichment and burnup, resulting in large variations in radial heat flux distribution (RFD). CHF experiments performed in Freon flow at CRL for full-scale bundle strings with a number of RFDs showed a strong effect of RFD on CHF. A prediction method was derived based on experimental CHF data to account for the RFD effect on CHF. It provides good CHF predictions for various RFDs as compared to the data. However, the range of the tested RFDs in the CHF experiments is not as wide as that required in the fuel irradiation experiments. The applicability of the prediction method needs to be examined for the RFDs beyond the range tested by the CHF experiments. The Canadian subchannel code ASSERT-PV was employed to simulate the CHF behavior for RFDs that would be encountered in fuel irradiation experiments. The CHF predictions using the derived method were compared with the ASSERT simulations. It was observed that the CHF predictions agree well with the ASSERT simulations in terms of CHF, confirming the applicability of the prediction method in fuel irradiation experiments. (author)

  4. Numerical investigation of supercritical water-cooled nuclear reactor in horizontal rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Zhi, E-mail: shangzhi@tsinghua.org.c [Faculty of Engineering, Kingston University, London SW15 3DW (United Kingdom); Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Lo, Simon, E-mail: simon.lo@uk.cd-adapco.co [CD-adapco, Trident House, Basil Hill Road, Didcot OX11 7HJ (United Kingdom)

    2010-04-15

    The commercial CFD code STAR-CD v4.02 is used as a numerical simulation tool for flows in the supercritical water-cooled nuclear reactor (SCWR). The basic heat transfer element in the reactor core can be considered as round rods and rod bundles. Reactors with vertical or horizontal flow in the core can be found. In vertically oriented core, symmetric characters of flow and heat transfer can be found and two-dimensional analyses are often performed. However, in horizontally oriented core the flow and heat transfer are fully three-dimensional due to the buoyancy effect. In this paper, horizontal rods and rod bundles at SCWR conditions are studied. Special STAR-CD subroutines were developed by the authors to correctly represent the dramatic change in physical properties of the supercritical water with temperature. In the rod bundle simulations, it is found that the geometry and orientation of the rod bundle have strong effects on the wall temperature distributions and heat transfers. In one orientation the square bundle has a higher wall temperature difference than other bundles. However, when the bundles are rotated by 90 deg. the highest wall temperature difference is found in the hexagon bundle. Similar analysis could be useful in design and safety studies to obtain optimum fuel rod arrangement in a SCWR.

  5. Experimental heat transfer in tube bundle

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.; Habib, M.

    1983-01-01

    Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number

  6. Spent fuel management in the Republic of Korea: Current status and plans

    International Nuclear Information System (INIS)

    Sang Doug Park

    1998-01-01

    Korea has selected nuclear energy as the major source for the electric power generation due to the insufficiency of energy resources in Korea. in compliance with the policy, Korea Electric Power Corporation (KEPCO) has expanded the nuclear power programme and faced the significant arisings of spent fuel. The interim At Reactor(AR) storage pools have very limited capacities and temporary expansion of this capacity has been taken such as re-racking and dry storage construction. There was a plan, to construct a centralized spent fuel storage facility, which was postponed officially by the government. Under the current situation, it is hard to establish the long-term spent fuel management strategy. 'Wait and See' is no more applicable to Korea. because of storage shortage. Within R and D, dry storage construction and DUPIC fuel cycle are being considered. In this paper, the spent fuel management programme of Korea is briefly reviewed. (author)

  7. A secondary fuel removal process: plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Min, J Y; Kim, Y S [Hanyang Univ., Seoul (Korea, Republic of); Bae, K K; Yang, M S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    Plasma etching process of UO{sub 2} by using fluorine containing gas plasma is studied as a secondary fuel removal process for DUPIC (Direct Use of PWR spent fuel Into Candu) process which is taken into consideration for potential future fuel cycle in Korea. CF{sub 4}/O{sub 2} gas mixture is chosen for reactant gas and the etching rates of UO{sub 2} by the gas plasma are investigated as functions of CF{sub 4}/O{sub 2} ratio, plasma power, substrate temperature, and plasma gas pressure. It is found that the optimum CF{sub 4}/O{sub 2} ratio is around 4:1 at all temperatures up to 400 deg C and the etching rate increases with increasing r.f. power and substrate temperature. Under 150W r.f. power the etching rate reaches 1100 monolayers/min at 400 deg C, which is equivalent to about 0.5mm/min. (author).

  8. Romanian concern for advanced fuels development

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2001-01-01

    The Institute for Nuclear Research (ICN), a subsidiary of Romanian Authority for Nuclear Activities, at Pitesti - Romania, has developed a preliminary design of a fuel bundle with 43 elements named SEU 43 for high burnup in CANDU Reactor. A very high experience in nuclear fuels manufacturing and control has also been accumulated. Additionally, on the nuclear site Pitesti there is the Nuclear Fuel Plant (NFP) qualified to manufacturing CANDU 6 type fuel, the main fuel supplier for NPP Cernavoda. A very good collaboration of ICN with NFP can lead to a low cost upgrading the facilities which ensure at present the CANDU standard fuel fabrication to be able of manufacturing also SEU 43 fuel for extended burnup. The financial founds are allocated by Romanian Authority for Nuclear Activities of the Ministry of Industry and Resources to sustain the departmental R and D program 'Nuclear Fuel'. This Program has the main objective to establish a technology for manufacturing a new CANDU fuel type destined for extended burnup. It is studied the possibility to use the Recovered Uranium (RU) resulted from LWR spent fuel reprocessing facility existing in stockpiles. The International Agency for Atomic Energy (IAEA) sustains also this program. By ROM/4/025/ Model Project, IAEA helps ICN to solve the problems regarding materials (RU, Zircaloy 4 tubes) purchasing, devices' upgrading and personnel training. The paper presents the main actions needing to be create the technical base for SEU 43 fuel bundle manufacturing. First step, the technological experiments and experimental fuel element manufacturing, will be accomplished in ICN installations. Second step, the industrial scale, need thorough studies for each installation from NFP to determine tools and technology modification imposed by the new CANDU fuel bundle manufacturing. All modifications must be done such as to the NFP, standard CANDU and SEU fuel bundles to be manufactured alternatively. (author)

  9. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  10. Higher order jet prolongations type gauge natural bundles over vector bundles

    Directory of Open Access Journals (Sweden)

    Jan Kurek

    2004-05-01

    Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.

  11. Assessment of ASSERT-PV for prediction of post-dryout heat transfer in CANDU bundles

    International Nuclear Information System (INIS)

    Cheng, Z.; Rao, Y.F.; Waddington, G.M.

    2014-01-01

    Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for PDO sheath temperature prediction. • CANDU 28-, 37- and 43-element bundle PDO experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of PDO model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of subchannel flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against PDO tests performed during five full-size CANDU bundle experiments conducted between 1992 and 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element bundles. A total of 10 PDO test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for existing CANDU reactors. Code predictions of maximum PDO fuel-sheath temperature were compared against measurements from the SL PDO tests to quantify the code's prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, separate-effects sensitivity studies quantified the contribution of each PDO model change or enhancement to the improvement in PDO heat transfer prediction. Overall, the assessment demonstrated significant improvement in prediction of PDO sheath temperature in horizontal fuel channels containing CANDU bundles

  12. Fuel handling alternatives to prepare for large scale fuel channel replacement

    International Nuclear Information System (INIS)

    Martire, S.; Sandu, I.

    2007-01-01

    It is desirable to reduce the duration of defuelling the reactor in preparation for retube, as the cost of replacement power is $750K/day. Three fast defuelling concepts are presented. With the Through Flow Defuelling method, the fuel string is hydraulically pushed into the downstream Fuelling Machine (FM) by flow passing through the fuel channel. The Long Stroke C Ram method replaces the FM C Ram with a longer one capable of pushing all fuel bundles into the receiving FM. Defuelling Hardware uses enhanced design of ram extensions that interconnect mechanically to extend the Ram stroke to push fuel bundles into the receiving FM. This paper will present descriptions of each defuelling concept to prepare for Large Scale Fuel Channel Replacement. Advantages and disadvantages of each concept will be discussed and a recommendation will be made for future implementation. (author)

  13. Experiments on the fluid dynamics and thermodynamics of rod bundles to verify and support the design of SNR-300 fuel elements - status and open problems

    International Nuclear Information System (INIS)

    Moeller, R.; Weinberg, D.; Trippe, G.; Tschoeke, H.

    1978-01-01

    The reliable design of reactor core elements calls for precise knowledge of the 3D-temperature fields of the different components; this primarily applies to the fuel element cladding tubes, these being the first safety barrier. This paper describes and discusses where and how the 3D-temperature fields so far determined exclusively with the help of global thermohydraulic computer codes (SUBCHANNEL-Codes) have to be determined more accurately by local investigations. The basis of these investigations is the measurement of local velocities and temperatures in 19-rod bundle models of the SNR-300 fuel element performed at the Kernforschungszentrum Karlsruhe (KfK). Some important results of the extensive experimental investigations are reported and compared with global and local recalculations. Open problems are pointed out. The influence of the uncertainties in the thermohydraulic design with respect to the strength analysis are discussed. The most significant results and conclusions are: (1) The peripheral bundle region is the critical zone, which has to be investigated with priority. Here the maximal azimuthal temperature differences of the claddings are ten times higher than those in the central bundle region. (2) The present deviations between thermal experiments and global as well as local calculations are much too high. Within the parameters investigated a careful code adaptation to the experiments is of high priority. (3) The knowledge gaps concerning liquid metal heat transfer in irregular geometries have to be closed. (4) The hot-channel analysis has to be checked with respect to the latest more detailed knowledge of thermohydraulics. (author)

  14. Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the 2-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These 2 programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  15. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  16. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  17. Evaluation of existing correlations for the prediction of pressure drop in wire-wrapped hexagonal array pin bundles

    International Nuclear Information System (INIS)

    Chen, S.K.; Todreas, N.E.; Nguyen, N.T.

    2014-01-01

    Highlights: • Wire-wrapped bundle friction factor data and correlations thoroughly collected. • Three methodologies proposed for identifying the best fit correlation. • 80 out of 141 bundles selected as database for evaluation. • The detailed Cheng and Todreas correlation identified to fit the data best. - Abstract: Existing wire-wrapped fuel bundle friction factor correlations were evaluated to identify their comparative fit to the available pressure drop experimental data. Five published correlations, those of Rehme (REH), Baxi and Dalle Donne (BDD, which used the correlations of Novendstern in the turbulent regime and Engel et al. in the laminar and transition regimes), detailed Cheng and Todreas (CTD), simplified Cheng and Todreas (CTS), and Kirillov (KIR, developed by Russian scientists) were studied. Other correlations applicable to a specific case were also evaluated but only for that case. Among all 132 available bundle data, an 80 bundle data set was judged to be appropriate for this evaluation. Three methodologies, i.e., the Prediction Error Distribution, Agreement Index and Credit Score were principally used for investigating the goodness of each correlation in fitting the data. Evaluations have been performed in two categories: 4 cases of general user interest and 3 cases of designer specific interest. The four general user interest cases analyzed bundle data sets in four flow regimes – i.e., all regimes, the transition and/or turbulent regimes, the turbulent regime, and the laminar regime. The three designer interest cases analyzed bundles in the fuel group, the blanket and control group and those with P/D > 1.06, for the transition/turbulent regimes. For all these cases, the detailed Cheng and Todreas correlation is identified as yielding the best fit. Specifically for the all flow regimes evaluation, the best fit correlation in descending order is CTD, BDD/CTS (tie), REH and KIR. For the combined transition/turbulent regime, the order is

  18. 1200 FPD refuelling simulation of RUFIC fuel in a CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Young; Jeong, Chang Joon; Min, Byung Joo; Suk, Ho Chun

    2001-07-01

    The refuelling strategy of RUFIC (Recovered Uranium Fuel in CANDU) fuel as a high-burnup fuel for a CANDU 6 reactor is studied to determine the achievable operation characteristics of the fuel and reactor. In this study, three refuelling schemes of 4-, 2-, and 3-bundle shift for 0.92 w/o RUFIC fuel in an CANDU 6 reactor were individually evaluated through 1200 FPD(Full Power Day)refuelling simulaltions where the 0.92 w/o RUFIC is equivalent to CANFLEX 0.9 w/o SEU(Slightly Enriched Uranium) in reactivity and burnup respects. The computer code system used for this study is WIMS-AECL/DRAGON/RFSP. The results simulated for the case of 4-bundle shift refueling scheme shows that the peak maximum channel power and peak maximum CPPF(Channel Power Peaking Factor)of 7228 kW and 1.175, respectively, seems too high to maintain the available operating margins, because some data of the maximum channel power exceed the operating limit(7070 kW based on the Technical Specifications of Wolsong 3 and 4 Units). Whereas, the results simulated for the case of 2-bundle shift refuelling scheme shows that sufficient operating margin could be secured where the peak maximum channel power and peak maximum CPPF were 6889 kW and 1.094, respectively. However, the channel refuelling rate (channels/day) of the 2-bundle shift refuelling scheme is twice that of the 4-bundle shift refuelling scheme, and hence the 2-bundle shift refuelling would not be an economical refuelling scheme for the RUFIC fuel bundles. Therefore, a 3-bundle shift refuelling scheme for the RUFIC fuel in CANDU 6 reactor was also studied by the 1200 FPD refuelling simulation. As a result, it is found that all the operating parameters in the 3-bundle shift case are achivable for the CANDU 6 reactor operation, and the channel refuelling rate of 2.88 channels/day seems to be attractive compared to the refuelling rate of 4.32 channels/day in the 2-bundle shift case.

  19. Flux and power distributions in BWR multi-bundle fuel arrays

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-02-01

    Multi-bundle calculations have been performed in order to shed some light on an abnormal TIP trace recently discovered in a BWR/3. Transport theory was employed to perform the calculations with ENDF/B-IV data. The results indicate that a strong variation of the TIP reading does exist along the narrow water gap of a BWR due to the steep gradient of the thermal neutron flux; the maxima occurring at the intersections of the water gaps and the minima in between. Using this characteristic behavior of the TIP reading, together with the observed normal TIP trace, the abnormal behavior of the affected TIP trace exhibiting three peaks along the channel was roughly simulated. The calculations confirmed that the observed TIP trace anomaly was caused by the severe bending of the affected instrument tube as was actually discovered. The effect of hot water intrusion into the TIP guide tube, as well as that of loading the new 8 x 8 reload bundles, was also evaluated

  20. Rotary device designed to shear a tube bundle containing spent nuclear fuels

    International Nuclear Information System (INIS)

    Guilloteau, Rene.

    1982-01-01

    The rotary device features the following: cutting systems rotating about a horizontal axis and driven by a motor; a magazine receiving the tube bundle, placed above the cutting system and capable of being suitably positioned in relation to the cutting system: the cutting system is integral with a rotor, itself driven by a low-speed high-torque motor; the rotor is isolated from the motor by means of gaskets and gas flow; the cutting system consists of a series of tube-cutting teeth placed in stages so that the bundle is attacked symmetrically at its outer edges [fr

  1. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hirukawa, Koji; Sakurada, Koichi.

    1994-01-01

    A bundle of fuel rods is divided into four fuel rod group regions of small fuel rod bundles by a cross-shaped partitioning structure consisting of paired plate-like structures which connect two opposing surfaces of a channel box. A water removing material with less neutron absorption (for example, Zr or a Zr alloy) or a solid moderator is inserted and secured to a portion of a non-boiling water region interposed between the paired plate-like structure. It has a structure that light water flows to the region in the plate-like structure. The volume, density or composition of the water removing material is controlled depending on the composition of the fuels, to change the moderating characteristics of neutrons in the non-boiling water region. This can easily moderate the difference of nuclear characteristics between each of fuel assemblies using fuel materials of different fuel compositions. Further, the reactivity control effect of the burnable poisons can be enhanced without worsening fuel economy or linear power density. (I.N.)

  2. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  3. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1977--May 31, 1977

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1977-01-01

    Progress is summarized in the following tasks: (1) bundle flow studies (wrapped and bare rods); (2) subchannel flow studies (bare rods); (3) LMFBR outlet plenum flow mixing; and (4) theoretical determination of local temperature fields in LMFBR fuel rod bundles

  4. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  5. Impact of the 37M fuel design on reactor physics characteristics

    International Nuclear Information System (INIS)

    Perez, R.; Ta, P.

    2013-01-01

    For CANDU nuclear reactors, aging of the Heat Transport System (HTS) leads to, among other effects, a reduction on the Critical Heat Flux (CHF) and dryout margin. In an effort to mitigate the impact of aging of the HTS on safety margins, Bruce Power is introducing a design change to the standard 37-element fuel bundle known as the modified 37-element fuel bundle, or 37M for short. As part of the overall design change process it was necessary to assess the impact of the modified fuel bundle design on key reactor physics parameters. Quantification of this impact on lattice cell properties, core reactivity properties, etc., was reached through a series of calculations using state-of-the-art lattice and core physics models, and comparisons against results for the standard fuel bundle. (author)

  6. Design of a Multi-Spectrum CANDU-based Reactor, MSCR, with 37-element fuel bundles using SERPENT code

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.; Chan, P.

    2015-01-01

    The burning of highly-enriched uranium and plutonium from dismantled nuclear warhead material in the new design nuclear power plants represents an important step towards nonproliferation. The blending of these highly enriched uranium and plutonium with with uranium dioxide from the spent fuel of CANDU reactors, or mixing it with depleted uranium would need a very long time to dispose of this material. Consequently, considering that more efficient transmutation of actinides occurs in fast neutron reactors, a novel Multi-Spectrum CANDU Reactor, has been designed on the basis of the CANDU6 reactor with two concentric regions. The simulations of the MSCR were carried out using the SERPENT code. The inner or fast neutron spectrum core is fuelled by different levels of enriched uranium oxides. The helium is used as a coolant in the fast neutron core. The outer or the thermal neutron spectrum core is fuelled with natural uranium with heavy water as both moderator and coolant. Both cores use 37- element fuel bundles. The size of the two cores and the percentage level of enrichment of the fresh fuel in the fast core were optimized according to the criticality safety of the whole reactor. The excess reactivity, the regeneration factor, radial and axial flux shapes of the MSCR reactor were calculated at different of the concentration of fissile isotope 235 U of uranium fuel at the fast neutron spectrum core. The effect of variation of the concentration of the fissile isotope on the fluxes in both cores at each energy bin has been studied. (author)

  7. Design of a Multi-Spectrum CANDU-based Reactor, MSCR, with 37-element fuel bundles using SERPENT code

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.; Chan, P., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca, E-mail: Paul.Chan@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada)

    2015-07-01

    The burning of highly-enriched uranium and plutonium from dismantled nuclear warhead material in the new design nuclear power plants represents an important step towards nonproliferation. The blending of these highly enriched uranium and plutonium with with uranium dioxide from the spent fuel of CANDU reactors, or mixing it with depleted uranium would need a very long time to dispose of this material. Consequently, considering that more efficient transmutation of actinides occurs in fast neutron reactors, a novel Multi-Spectrum CANDU Reactor, has been designed on the basis of the CANDU6 reactor with two concentric regions. The simulations of the MSCR were carried out using the SERPENT code. The inner or fast neutron spectrum core is fuelled by different levels of enriched uranium oxides. The helium is used as a coolant in the fast neutron core. The outer or the thermal neutron spectrum core is fuelled with natural uranium with heavy water as both moderator and coolant. Both cores use 37- element fuel bundles. The size of the two cores and the percentage level of enrichment of the fresh fuel in the fast core were optimized according to the criticality safety of the whole reactor. The excess reactivity, the regeneration factor, radial and axial flux shapes of the MSCR reactor were calculated at different of the concentration of fissile isotope {sup 235}U of uranium fuel at the fast neutron spectrum core. The effect of variation of the concentration of the fissile isotope on the fluxes in both cores at each energy bin has been studied. (author)

  8. The Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the two-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These two programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  9. CANFLEX-RU fuel development programs as one option of advanced fuel cycles in Korea

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Sim, Ki-Seob; Chung, Jang Hwan

    1999-01-01

    As one of the possible fuel cycles in Korea, RU (Recycled Uranium) fuel offers a very attractive alternative to the use of NU (Natural Uranium) and SEU in the CANDU reactors, because Korea is a unique country having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimise overall waste production, and maximise energy derived from the fuel, by burning the spent fuel from its PWR reactors in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, no enrichment tails, direct conversion to UO 2 lower sensitivity to 234 U and 236 U absorption in the CANDU reactor, expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU-6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. A KAERI's feasibility shows that the use of the CANFLEX bundle as the carrier for RU will be compatible with the reactor design, current safety and operational requirements, and there will be no significant fuel performance difference from the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in fuel requirements and spent fuel arisings and the potential lower cost for RU material. There is the potential for annual fuel cost savings to be in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D effort on the use of RU fuel for advanced fuel cycles in the CANDU reactors of Korea. The RU fuel

  10. Generator module architecture for a large solid oxide fuel cell power plant

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  11. A study on the environmental friendliness of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Lee, B. H.; Lee, S. Y.; Lim, C. Y.; Choi, Y. S.; Lee, Y. E.; Hong, D. S.; Cheong, J. H; Park, J. B.; Kim, K. K.; Cheong, H. Y; Song, M. C; Lee, H. J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1998-01-01

    The purpose of this study is to develop methodologies for quantifying environmental and socio-political factors involved with nuclear fuel cycle and finally to evaluate nuclear fuel cycle options with special emphasis given to the factors. Moreover, methodologies for developing practical radiological health risk assessment code system will be developed by which the assessment could be achieved for the recycling and reuse of scrap materials containing residual radioactive contamination. Selected scenarios are direct disposal, DUPIC(Direct use of PWR spent fuel in CANDU), and MOX recycle, land use, radiological effect, and non-radiological effect were chosen for environmental criteria and public acceptance and non-proliferation of nuclear material for socio-political ones. As a result of this study, potential scenarios to be chosen in Korea were selected and methodologies were developed to quantify the environmental and socio-political criteria. 24 refs., 27 tabs., 29 figs. (author)

  12. Verification of Compliance of Channel and Bundle Power Limits Considering Ageing

    International Nuclear Information System (INIS)

    Kim, In Young; Choi, Yong Won; Lee, Un Chul

    2010-01-01

    In the process of resolving GAI 95G03(Compliance with Bundle and Channel Power Limits) and 01G01(Fuel Management and Surveillance Software Upgrade), Canadian nuclear industry and its regulators upgrade their software like reactor physics code to a level of at least similar to the Industry Standard Toolset (IST). As results, power coefficients of reactivity have large uncertainty had become obvious. If large allowances for uncertainties were needed, analysis must be carried out to ensure reactor safety. To analyze this large uncertainty in power coefficient, uncertainty factors of power coefficient should be identified. Thus in this paper, sensitivity analysis on aging elements is performed by ascertaining envelope of channel power and bundle power. And Compliance with bundle power and channel power limits (GAI 95G03) considering aging effect is verified

  13. AgInCd control rod failure in the QUENCH-13 bundle test

    International Nuclear Information System (INIS)

    Sepold, L.; Lind, T.; Csordas, A. Pinter; Stegmaier, U.; Steinbrueck, M.; Stuckert, J.

    2009-01-01

    The QUENCH off-pile experiments performed at the Karlsruhe Research Center are to investigate the high-temperature behavior of Light Water Reactor (LWR) core materials under transient conditions and in particular the hydrogen source term resulting from the water injection into an uncovered LWR core. The typical LWR-type QUENCH test bundle, which is electrically heated, consists of 21 fuel rod simulators with a total length of approximately 2.5 m. The Zircaloy-4 rod claddings and the grid spacers are identical to those used in Pressurized Water Reactors (PWR) whereas the fuel is represented by ZrO 2 pellets. In the QUENCH-13 experiment the single unheated fuel rod simulator in the center of the test bundle was replaced by a PWR-type control rod. The QUENCH-13 experiment consisting of pre-oxidation, transient, and quench water injection at the bottom of the test section investigated the effect of an AgInCd/stainless steel/Zircaloy-4 control rod assembly on early-phase bundle degradation and on reflood behavior. Furthermore, in the frame of the EU 6th Framework Network of Excellence SARNET, release and transport of aerosols of a failed absorber rod were to be studied in QUENCH-13, which was accomplished with help of aerosol measurements performed by PSI-Switzerland and AEKI-Hungary. Control rod failure was initiated by eutectic interaction of steel cladding and Zircaloy-4 guide tube and was indicated at about 1415 K by axial peak absorber and bundle temperature responses and additionally by the on-line aerosol monitoring system. Significant releases of aerosols and melt relocation from the control rod were observed at an axial peak bundle temperature of 1650 K. At a maximum bundle temperature of 1820 K reflood from the bottom was initiated with cold water at a flooding rate of 52 g/s. There was no noticeable temperature escalation during quenching. This corresponds to the small amount of about 1 g in hydrogen production during the quench phase (compared to 42 g of H 2

  14. Experience in the manufacture and performance of CANDU fuel for KANUPP

    International Nuclear Information System (INIS)

    Salim, M.; Ahmed, I.; Butt, P.

    1995-01-01

    Karachi Nuclear Power Plant (KANUPP) a 137 MWe CANDU unit is In operation since 1971. Initially, it was fueled with Canadian fuel bundles. In July 1980 Pakistani manufactured fuel was introduced in the reactor core, irradiated to a burnup of about 7500 MWd-teU -1 and successfully discharged in May 1984. The core was progressively fuelled with Pakistani fuel and in August 1990 the reactor core contained all Pakistani made fuel. As of the present, 3 core equivalent Pakistani fuel bundles have been successfully discharged at an average bumup of 6500 MWd-teU -1 . with a maximum burnup of ∼ 10,200 MWd-teU -1 . No fuel failure of Pakistani bundles has been observed so far. This paper presents the indigenous efforts towards manufacture and operational aspects of KANUPP fuel and compares its behaviour with that of Canadian supplied fuel. The Pakistani fuel has performed well and is as good as the Canadian fuel. (author)

  15. The Atiyah bundle and connections on a principal bundle

    Indian Academy of Sciences (India)

    be the fiber bundle constructed as in (1.1) for the universal principal G-bundle. In a work in progress, we hope to show that the universal G-connection can be realized as a fiber bundle over C(EG). Turning this ... a G-invariant vector field on EG|U . In other words, we get a bijective linear map between. A(EG)(U) (the space of ...

  16. The manufacture, quality control and performance of KANUPP fuel

    International Nuclear Information System (INIS)

    Butt, M.I.; Salim, M.; Ahmad, I.

    1989-01-01

    KANUPP is a 137 MWe CANDU reactor. The fuel material is high-density sintered pellets (95-97% T.D.) of natural UO 2 in Zircaloy 4 sheaths. Reactor-grade UO 2 powder is precompacted, granulated, blended with 0.2% zinc stearate, and compacted into green pellets. The pellets are sintered in a reducing atmosphere, then finished by grinding, culled, and loaded into Zr-4 tubes. The welded elements are assembled into a fuel bundle. Quality control and quality assurance procedures are followed during all stages of manufacturing. The entire core of KANUPP now consists of locally manufactured fuel. Several bundles have already achieved the design burnup (8650 MWD/TU). There have never been any failures of these fuel bundles. (6 refs., 5 figs., 8 tabs.)

  17. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched 235U fuel pins

    International Nuclear Information System (INIS)

    Caprioli, Sara

    2004-04-01

    significant and are of the order of 0.5 -1.5 %. The differences between the multiplication factor of the standard assemblies and the multiplication factor of the new bundles are of the order of tens of pcm. Generally, the bundles in which the enrichment levels are distributed on a wider range are the most deviated with respect to the standard assemblies. At a core level, focus has been given on the evaluation of the impact that those assemblies that improve the power density properties of the reference assemblies give to the core when replaced to the standard assemblies. In fact, simulations performed on cycle 17 and cycle 18 revealed that the use of assemblies with a higher internal peaking factor than in the reference bundle leads to an increase in the core peaking factors. In particular, the enthalpy raise hot channel factor is above the design limit value. Therefore, the core loading patterns that result from the use of these particular bundles are not acceptable. The two major optimization goals have been: a) lower peaking factors and b) longer cycle lengths. Generally, the use of the new assembly types decreases the core peaking factors more or less significantly in all the cycles, while a very relevant extension of the cycle length can be seen only for the last cycle. In the transition cycles, cycle 18 and 19, in particular, the use of the new fuel assemblies leads to a major loss in the cycle length (of the order of 12 %). In cycle 21, finally the cycle length obtained through the core simulations represents a great gain with respect to the reference cycle, extending the cycle lifetime up to more than 20 %. Cycle 21 represents a more equilibrated cycle in the sense that its core composition is more homogeneous than in the other cycles with respect to the new assembly types. In fact, in cycle 21 more than 99 % of the assemblies present in the core are of the new type. The extension in the cycle length detected in cycle 21 is partially due to the fuel bundles which are

  18. Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code

    International Nuclear Information System (INIS)

    Dominguez, A.N.; Rao, Y.

    2012-01-01

    The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)

  19. Romanian nuclear fuel fabrication and in-reactor fuel operational experience

    International Nuclear Information System (INIS)

    Budan, O.

    2003-01-01

    A review of the Romanian nuclear program since mid 60's is made. After 1990, the new Romanian nuclear power authority, RENEL-GEN, elaborated a realistic Nuclear Fuel Program. This program went through the Romanian nuclear fuel plant qualification with the Canadian (AECL and ZPI) support, restarting in January 1995 of the industrial nuclear fuel production, quality evaluation of the fuel produced before 1990 and the recovery of this fuel. This new policy produced good results. FCN is since 1995 the only CANDU fuel supplier from outside Canada recognised by AECL as an authorised CANDU fuel manufacturer. The in-reactor performances and behaviour of the fuel manufactured by FCN after its qualification have been excellent. Very low - more then five times lesser than the design value - fuel defect rate has been recorded up to now and the average discharge of this fuel was with about 9% greater than the design value. Since mid 1998 when SNN took charge of the production of nuclear generated electricity, FCN made significant progresses in development and procurement of new and more efficient equipment and is now very close to double its fuel production capacity. After the completion of the recovery of the fuel produced before June 1990, FCN is already prepared to shift its fuel production to the so-called 'heavy' bundle containing about 19.3 kg of Uranium per bundle

  20. Experimental studies of flow induced vibrations of the fuel assembly for the PEC reactor

    International Nuclear Information System (INIS)

    Pitimada, D.; Presaghi, M.; Tampone, O.; Cesari, F.

    1977-01-01

    The vibration behaviour of an assembly of seven mock-up fuel bundles of PEC reactor has been investigated. The assembly was excited by a parallel flow of water simulating sodium. The motion of the group (or of a single bundle in the group) has been measured in transverse sections detecting two orthogonal components of displacement. During the experiences the following parameters were varied: bundle foot and pads restraints, flow rate condition, coolant flow outlet conditions at the head of fuel bundles. Experimental data were processed in order to obtain: trajectories of three points of fuel bundle axis, power density spectra of measured vibration amplitudes, correlations between coolant flow rate and vibration amplitude R.M.S. (author)

  1. Adjustment of pipe flow explicit friction factor equations for application to tube bundles

    International Nuclear Information System (INIS)

    Wiltz, Christopher L.; Bowen, Mike D.; Von Olnhausen, Wayne A.

    2005-01-01

    Full text of publication follows: The accurate determination of single phase friction losses or friction pressure drop in tube bundles is essential in the thermal-hydraulic analyses of components such as nuclear fuel assemblies, heat exchangers and steam generators. Such friction losses are normally calculated using a friction factor, f, along with the experimental observation that the friction pressure drop in a pipe is proportional to the dynamic pressure (1/2 ρV 2 ) of the flow: ΔP = 1/2 ρV 2 (fL/D). In this equation L is the pipe or tube bundle length and D is the hydraulic diameter of the pipe or tube bundle. The friction factor is normally calculated using one of a number of explicit friction factor equations. A significant amount of work has been accomplished in developing explicit friction factor equations. These explicit equations range from approximations, which were developed for ease of numerical evaluation, to those which are mathematically complex but yield very good fits to the test data. These explicit friction factor equations are based on a large experimental data base, nearly all of which comes from pipe flow geometry information, and have been historically applied to tube bundles. This paper presents an adjustment method which may be applied to various explicit friction factor equations developed for pipe flow to accurately predict the friction factor for tube bundles. The characteristic of the adjustment is based on experimental friction pressure loss data obtained by Framatome ANP through flow testing of a nuclear fuel assembly (tube bundle) at its Richland Test Facility (RTF). Through adjustment of previously developed explicit friction factor equations for pipe flow, the vast amount of historical development and experimentation in the area of single phase pipe flow friction loss may be incorporated into the evaluation of single phase friction losses within tube bundles. Comparisons of the application of one or more of the previously

  2. LOFT fuel modules design, characterization, and fabrication program

    International Nuclear Information System (INIS)

    Russell, M.L.

    1977-06-01

    The loss-of-fluid test [LOFT) fuel modules have evolved from a comprehensive five-year design, characterization, and fabrication program which has resulted in the accomplishment of many technical activities of interest in pressurized water reactor fuel design development and safety research. Information is presented concerning: determination of fundamental high-temperature reactor material properties; design invention related to in-core instrumentation attachment; implementation of advanced and/or unique fuel bundle characterization techniques; implementation of improved fuel bundle fabrication techniques; and planning and execution of a multimillion dollar design, characterization, and fabrication program for pressurized water reactor fuel

  3. Performance assessment of the RANS turbulence models in nuclear fuel rod bundles

    International Nuclear Information System (INIS)

    In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok; Shin, Chang Hwan

    2005-02-01

    The three experiments for turbulent flow in a rod bundle geometry were simulated in this CFD analysis using various RANS models. The CFD predictions were compared with the experimental and DNS results. The RANS models used here are the nonlinear quadratic/cubic κ-ε models and the second-order closure models (SSG, LRR, RSM-ω). The anisotropic models predicted the secondary flow and showed a significantly improved agreement with the measurements from the standard κ-ε model. In particular, the SSG model resulted in the best performance showing the closest agreement with the experimental results. However, the RANS models could not predict the very high anisotropy observed in a rod bundle with a small pitch-to-diameter ratio

  4. Status of research reactor fuel development in KAERI

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Ryu, Woo-Seok; Park, Jong-Man; Lee, Don-Bae; Kim, Ki-Hwan; Kuk, Il-Hyun

    1996-01-01

    The development of uranium silicide dispersion fuel fabrication technology has been carried out in KAERI. LEU fuel bundle was prepared for irradiation test. In order to compare the performance of atomized and comminuted U 3 Si dispersed fuels, the bundle of two kinds of fuel elements were prepared. Irradiation test will be performed in the OR-hole of HANARO in the near future. U 3 Si 2 atomization technology has been improved by using ceramic crucible and nozzle. Irradiation test for atomized U 3 Si 2 plate type fuel will be carried out in cooperation with ANL by using HANARO in connection with RERTR advanced fuel development. (author)

  5. Moving towards sustainable thorium fuel cycles

    International Nuclear Information System (INIS)

    Hyland, B.; Hamilton, H.

    2011-01-01

    The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO 2 ) based fuel offers both fuel performance and safety advantages over urania (UO 2 ) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO 2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)

  6. Fuel handling grapple for nuclear reactor plants

    International Nuclear Information System (INIS)

    Rousar, D.L.

    1992-01-01

    This patent describes a fuel handling system for nuclear reactor plants. It comprises: a reactor vessel having an openable top and removable cover and containing therein, submerged in water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units, the fuel handling system consisting essentially of the combination of: a fuel bundle handling platform movable over the open top of the reactor vessel; a fuel bundle handling mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grapple means comprising complementary hooks which pivot inward toward each other to securely grasp a bail handle of a nuclear reactor fuel bundle and pivot backward away from each other to release a bail handle; the grapple means having a hollow cylindrical support shaft fixed within the grapple head with hollow cylindrical sleeves rotatably mounted and fixed in longitudinal axial position on the support shaft and each sleeve having complementary hooks secured thereto whereby each hook pivots with the rotation of the sleeve secured thereto; and the hollow cylindrical support shaft being provided with complementary orifices on opposite sides of its hollow cylindrical and intermediate to the sleeves mounted thereon whereby the orifices on both sides of the hollow cylindrical support shaft are vertically aligned providing a direct in-line optical viewing path downward there-through and a remote operator positioned above the grapple means can observe from overhead the area immediately below the grapple hooks

  7. Polyelectrolyte bundles

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, H J; Sayar, M; Holm, C [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany)

    2004-06-09

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited.

  8. Polyelectrolyte bundles

    International Nuclear Information System (INIS)

    Limbach, H J; Sayar, M; Holm, C

    2004-01-01

    Using extensive molecular dynamics simulations we study the behaviour of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction and the bundle size. We show that for the parameter range relevant for sulfonated poly(para-phenylenes) (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting at the possibility that the size of DNA aggregates is, under certain circumstances, thermodynamically limited

  9. Polyelectrolyte bundles

    Science.gov (United States)

    Limbach, H. J.; Sayar, M.; Holm, C.

    2004-06-01

    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.

  10. Self reliance in equipment building for PHWR fuel fabrication

    International Nuclear Information System (INIS)

    Sastry, V.S.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2009-01-01

    Full text: Keeping in tune with the policy of self-reliance and indigenisation adopted from the very inception of nuclear power programme in India during the mid 1960, Nuclear Fuel Complex, established in the year 1971, developed its own processes, equipment and technologies based on both in-house experience and the expertise available in the indigenous industry. Starting from the basic raw materials, Nuclear Fuel Complex (NFC) manufactures and supplies finished fuel assemblies, apart from zircaloy core components, to all the nuclear power stations in India. Out of several products manufactured by NFC, 19 and 37 element fuel bundles for Pressurised Heavy Water Reactors (PHWRs) is vital for operation of several PHWRs being operated by Nuclear Power Corporation of India Limited (NPCIL). Starting from the manufacturing of half-charge for RAPS-1, more than 3.8 lakh fuel bundles were made till now. Several process improvements were taken up over the years for improving the quality of the fuel. PHWR fuel bundles manufactured by NFC has adopted an unique feature of joining appendages on zirconium alloy tubes by resistance welding before loading natural uranium dioxide pellets. Graphite coating on the inner surface of the zirconium alloy tube and vacuum baking, use of profiled end caps, use of bio-degradable cleaning agents are some of the processes adopted in the manufacturing of PHWR fuel bundles. With the recent opening up of international nuclear trade for India and the enhanced growth of nuclear power, exciting opportunities and challenges confront NFC. This paper presents salient features of some important special purpose equipment developed in-house at NFC for production of PHWR fuel bundles. It looks ahead to develop many more such special purpose equipment towards meeting the diverse demands now showing up to meet the indigenous as well as international requirements

  11. Equilibrium fuel-management simulations for 1.2% SEU in a CANDU 6

    International Nuclear Information System (INIS)

    Younis, M.H.; Boczar, P.G.

    1989-06-01

    Fuel-management simulations have been performed for 1.2% SEU in a CANDU 6 reactor at equilibrium, for three fuel-management options: axial shuffling; a regular 2-bundling shift with the adjuster rods removed from the core; and a regular 2-bundle shift with the adjuster rods present. Both time-average and time-dependent simulations were performed, from which the physics characteristics of the cores at equilibrium were estimated. Power and power-boost envelopes were derived for both 37-element fuel, and the advanced CANFLEX bundle

  12. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels

    International Nuclear Information System (INIS)

    Wolf, S. F.

    1999-01-01

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns

  13. Assessment of causes for degrading fuel performance at Darlington NGS

    International Nuclear Information System (INIS)

    Judah, J.; Goodchild, S.

    2013-01-01

    Fuel performance at the Darlington nuclear generating station has historically been excellent. Until recently, the majority of these few fuel defects have been attributed to fretting by heat transport system debris. The minority have been linked to manufacturing issues. Recently, Darlington has experienced an increase in the number of fuel defects. Although the defect rate remains low with respect to industry standards, this defect experience is considered to be unacceptable given current industry expectations and the OPG zero defect policy. Nine fuel defects have been discharged since 2007 from the four Darlington reactors. This represents a fuel defect rate of just 0.35 defects per year per reactor. At the time of this writing three additional defects are suspected to be in core. Although a definitive defect cause has yet to be identified, these fuel performance issues appear to be due to the coincidental degradation of manufacturing and operational factors, thereby decreasing the margins to fuel failure due to fuelling power ramps. All of the confirmed defected bundles have been long bundles and all experienced a relatively high power ramp when shifted from Position 2 to Position 6. High bundle uranium masses and low internal clearances are thought to be significant contributing factors. Bundle burnups at the time of the power ramps were low and these bundles were not identified by existing power ramp defect predictive tools. Our assessment has resulted in a number of recommendations which are designed to mitigate these adverse conditions by restoring the margins to power ramp failures. These recommendations impact broadly across a number of organizations including reactor physics, fuel design, fuel manufacturing, reactor design, inspections and PIE. (author)

  14. Canadian fuel development program and recent operational experience

    International Nuclear Information System (INIS)

    Cox, D.S.; Kohn, E.; Lau, J.H.K.; Dicke, G.J.; Macici, N.N.; Sancton, R.W.

    1995-01-01

    This paper provides an overview of the current Canadian CANDU fuel R and D programs and operational experience. The details of operational experience for fuel in Canadian reactors are summarized for the period 1991-1994; excellent fuel performance has been sustained, with steady-state bundle defect rates currently as low as 0.02%. The status of introducing long 37-element bundles, and bundles with rounded bearing pads is reviewed. These minor changes in fuel design have been selectively introduced in response to operational constraints (end-plate cracking and pressure-tube fretting) at Ontario Hydro's Bruce-B and Darlington stations. The R and D programs are generating a more complete understanding of CANDU fuel behaviour, while the CANDU Owners Group (COG) Fuel Technology Program is being re-aligned to a more exclusive focus on the needs of operating stations. Technical highlights and realized benefits from the COG program are summarized. Re-organization of AECL to provide a one-company focus, with an outward looking view to new CANDU markets, has strengthened R and D in advanced fuel cycles. Progress in AECL's key fuel cycle programs is also summarized. (author)

  15. Strategic Aspects of Bundling

    International Nuclear Information System (INIS)

    Podesta, Marion

    2008-01-01

    The increase of bundle supply has become widespread in several sectors (for instance in telecommunications and energy fields). This paper review relates strategic aspects of bundling. The main purpose of this paper is to analyze profitability of bundling strategies according to the degree of competition and the characteristics of goods. Moreover, bundling can be used as price discrimination tool, screening device or entry barriers. In monopoly case bundling strategy is efficient to sort consumers in different categories in order to capture a maximum of surplus. However, when competition increases, the profitability on bundling strategies depends on correlation of consumers' reservations values. (author)

  16. Preliminary Investigation on Turbulent Flow in Tight-lattice Rod Bundle with Twist-mixing Vane Spacer Grid

    International Nuclear Information System (INIS)

    Lee, Chiyoung; Kwack, Youngkyun; Park, Juyong; Shin, Changhwan; In, Wangkee

    2013-01-01

    Our research group has investigated the effect of P/D difference on the behavior of turbulent rod bundle flow without the mixing vane spacer grid, using PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques for tight lattice fuel rod bundle application. In this work, using the tight-lattice rod bundle with a twist-mixing vane spacer grid, the turbulent rod bundle flow is preliminarily examined to validate the PIV measurement and CFD (Computational Fluid Dynamics) simulation. The turbulent flow in the tight-lattice rod bundle with a twist-mixing vane spacer grid was preliminarily examined to validate the PIV measurement and CFD simulation. Both were in agreement with each other within a reasonable degree of accuracy. Using PIV measurement and CFD simulation tested in this work, the detailed investigations on the behavior of turbulent rod bundle flow with the twist-mixing vane spacer grid will be performed at various conditions, and reported in the near future

  17. International Standard problem ISP 14: behaviour of a fuel bundle simulator during a specified heatup and flooding period (Rebeka experiment): results of post-test analyses: final comparison report

    International Nuclear Information System (INIS)

    Karwat, H.

    1985-02-01

    The test consisted in investigating the non-steady material behaviour of a bundle of electrically heated fuel rod simulators with respect to local fuel temperatures, cladding strain, time to burst and local strain at location of burst, together with the thermal hydraulic boundary conditions. The original aim has not been fully achievable. The applied codes for mechanical fuel behaviour largely demonstrated their capabilities for pretest predictions when certain local fluid dynamic parameters are well known to the code users. The difficulties expected with proper analysis of thermal hydraulics of the test were confirmed, caused by the coupling between pin cooling conditions, rod upper plenum calculations and the feedback to clad deformation and burst simulation

  18. Nonabelian bundle 2-gerbes

    OpenAIRE

    Jurco, Branislav

    2009-01-01

    We define 2-crossed module bundle 2-gerbes related to general Lie 2-crossed modules and discuss their properties. A 2-crossed module bundle 2-gerbe over a manifold is defined in terms of a so called 2-crossed module bundle gerbe, which is a crossed module bundle gerbe equipped with an extra sructure. It is shown that string structures can be described and classified using 2-crossed module bundle 2-gerbes.

  19. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched {sup 235}U fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Sara

    2004-04-01

    rather significant and are of the order of 0.5 -1.5 %. The differences between the multiplication factor of the standard assemblies and the multiplication factor of the new bundles are of the order of tens of pcm. Generally, the bundles in which the enrichment levels are distributed on a wider range are the most deviated with respect to the standard assemblies. At a core level, focus has been given on the evaluation of the impact that those assemblies that improve the power density properties of the reference assemblies give to the core when replaced to the standard assemblies. In fact, simulations performed on cycle 17 and cycle 18 revealed that the use of assemblies with a higher internal peaking factor than in the reference bundle leads to an increase in the core peaking factors. In particular, the enthalpy raise hot channel factor is above the design limit value. Therefore, the core loading patterns that result from the use of these particular bundles are not acceptable. The two major optimization goals have been: a) lower peaking factors and b) longer cycle lengths. Generally, the use of the new assembly types decreases the core peaking factors more or less significantly in all the cycles, while a very relevant extension of the cycle length can be seen only for the last cycle. In the transition cycles, cycle 18 and 19, in particular, the use of the new fuel assemblies leads to a major loss in the cycle length (of the order of 12 %). In cycle 21, finally the cycle length obtained through the core simulations represents a great gain with respect to the reference cycle, extending the cycle lifetime up to more than 20 %. Cycle 21 represents a more equilibrated cycle in the sense that its core composition is more homogeneous than in the other cycles with respect to the new assembly types. In fact, in cycle 21 more than 99 % of the assemblies present in the core are of the new type. The extension in the cycle length detected in cycle 21 is partially due to the fuel

  20. Polycation induced actin bundles.

    Science.gov (United States)

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.