WorldWideScience

Sample records for dumosa roots varies

  1. ARBUSCULAR MYCORRHIZAL COLONIZATION OF LARREA TRIDENTATA AND AMBROSIA DUMOSA ROOTS VARIES WITH PRECIPITATION AND SEASON IN THE MOJAVE DESERT

    Energy Technology Data Exchange (ETDEWEB)

    M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO; C. R. COGAR; C. E. WELLS; R. S. NOWAK

    2004-01-01

    The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungi via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.

  2. Economic strategies of plant absorptive roots vary with root diameter

    Science.gov (United States)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis perspective on our understanding of the root economics spectrum.

  3. Mutagénesis y antimutagénesis en extractos acuosos, clorofórmicos y acetónicos de Ilex paraguariensis var. paraguariensis e Ilex dumosa var. dumosa

    OpenAIRE

    2011-01-01

    El presente trabajo tuvo por finalidad investigar los posibles efectos mutagénicos y antimutagénicos de dos variedades de Ilex (Ilex paraguariensis var. paraguariensis e Ilex dumosa var. dumosa) empleadas corrientemente en la elaboración de infusiones utilizando ensayos de mutagenicidad in vitro (Ensayo de Salmonella microsoma) e in vivo (Test de Micronúcleo). Se trabajó con Ilex paraguariensis St Hil. var. paraguariensis e Ilex dumosa Reissek var. dumosa, ejemplares frescos proveni...

  4. Evaluación del germoplasma de Ilex paraguariensis e Ilex dumosa (Aquifoliaceae Ilex paraguariensis and Ilex dumosa (Aquifoliaceae germplasm evaluation

    Directory of Open Access Journals (Sweden)

    Alexandra Marina Gottlieb

    2011-06-01

    Full Text Available Ilex paraguariensis e I. dumosa constituyen dos especies de gran relevancia económica para nuestro país. Estas comparten muchas características de su biología, aunque se diferencian en composición fitoquímica y resistencia a factores bióticos y abióticos. El objetivo del presente trabajo es evaluar la estructura de la diversidad genética de plantas mantenidas en el Banco de Germoplasma de Yerba Mate y Té de la Estación Experimental del INTA en Cerro Azul (Misiones y de materiales comerciales de yerba mate, mediante el re-análisis de datos AFLP, así como caracterizar las secuencias nucleotídicas de bandas potencialmente diagnósticas de especie. En I. dumosa se detectó, respecto de I. paraguariensis, un nivel de variación molecular dos veces mayor, aunque una menor proporción de bandas privadas. Las secuencias caracterizadas con herramientas bioinformáticas resultan ser nuevas regiones genómicas descriptas para Ilex. Los resultados indican que los materiales estudiados de I. dumosa constituyen un reservorio de variabilidad genética apropiado para el fitomejoramiento de materiales de yerba mate potencialmente comerciales. Asimismo, nuestros resultados apoyan la renovación de estrategias de conservación tendientes a ampliar el acervo genético almacenado, particularmente de yerba mate.Ilex paraguariensis and I. dumosa are species with great economic relevance in Argentina. Both species share several features of their biology, though they differ in phytochemical composition and in their resistance to biotic and abiotic factors. The aim of the present work is to evaluate the structure of the genetic diversity of the plants kept at the Germplasm Bank of Yerba Mate (EEINTACA and also of commercial materials of yerba mate, through a re-analysis of AFLP data and a characterization of the nucleotide sequences of selected AFLP bands. For I. dumosa we have detected a molecular variation level two times higher than the value obtained

  5. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency

    Institute of Scientific and Technical Information of China (English)

    Yan-bo JIA; Xiao-e YANG; Ying FENG; Ghulam JILANI

    2008-01-01

    Disparity in the root morphology of six rice (Oryza sativa L.) genotypes varying in potassium (K) efficiency was studied with three K levels: 5 mg/L (low),10 mg/L (moderate) and 40 mg/L (adequate) in hydroponic culture.Morphological parameters included root length,surface area,volume and count of lateral roots,as well as fine (diameter0.2 mm) roots.The results indicate that the root growth of all genotypes was reduced under low K,but moderate K deficiency increased the root length of the efficient genotypes.At deficient and moderate K levels,all the efficient rice genotypes developed more fine roots (diameter<0.2 mm) than the inefficient ones.Both fine root count and root surface area were found to be the best parameters to portray K stress in rice.In accordance with the root morphology,higher K concentrations were noted in shoots of the efficient genotypes when grown at moderate and deficient K levels,indicating that root morphology parameters are involved in root uptake for K and in the translocation of K up to shoots.K deficiency affected not only the root morphology,but also the root ultra-structure.The roots of high-efficient genotypes had stronger tolerance to K deficient stress for root membrane damage,and could maintain the developed root architecture to adapt to the low K growth medium.

  6. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species.

    Science.gov (United States)

    Wang, Yan; Dong, Xueyun; Wang, Hongfeng; Wang, Zhengquan; Gu, Jiacun

    2016-01-01

    Root traits in morphology, chemistry and anatomy are important to root physiological functions, but the differences between shallow and deep roots have rarely been studied in woody plants. Here, we selected three temperate hardwood species, Juglans mandshurica Maxim., Fraxinus mandschurica Rupr. and Phellodendron amurense Rupr., in plantations in northeastern China and measured morphological, anatomical and chemical traits of root tips (i.e., the first-order roots) at surface (0-10 cm) and subsurface (20-30 cm) soil layers. The objectives of this study were to identify how those traits changed with soil depth and to reveal potential functional differences. The results showed that root diameters in deep root tips were greater in J. mandshurica and F. mandschurica, but smaller in P. amurense. However, root stele diameter and the ratio of stele to root diameter in the subsurface layer were consistently greater in all three species, which may enhance their abilities to penetrate into soil. All deep roots exhibited lower tissue nitrogen concentration and respiration rate, which were possibly caused by lower nutrient availability in the subsurface soil layer. Significant differences between shallow and deep roots were observed in xylem structure, with deep roots having thicker stele, wider maximum conduit and greater number of conduits per stele. Compared with shallow roots, the theoretical hydraulic conductivities in deep roots were enhanced by 133% (J. mandshurica), 78% (F. mandschurica) and 217% (P. amurense), respectively, indicating higher efficiency of transportation. Our results suggest that trees' root tip anatomical structure and physiological activity vary substantially with soil environment.

  7. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia

    Science.gov (United States)

    Cormier, Nicole; Twilley, Robert R.; Ewel, Katherine C.; Krauss, Ken W.

    2015-01-01

    Belowground biomass is thought to account for much of the total biomass in mangrove forests and may be related to soil fertility. The Yela River and the Sapwalap River, Federated States of Micronesia, contain a natural soil resource gradient defined by total phosphorus (P) density ranging from 0.05 to 0.42 mg cm−3 in different hydrogeomorphic settings. We used this fertility gradient to test the hypothesis that edaphic conditions constrain mangrove productivity through differential allocation of biomass to belowground roots. We removed sequential cores and implanted root ingrowth bags to measure in situ biomass and productivity, respectively. Belowground root biomass values ranged among sites from 0.448 ± 0.096 to 2.641 ± 0.534 kg m−2. Root productivity (roots ≤20 mm) did not vary significantly along the gradient (P = 0.3355) or with P fertilization after 6 months (P = 0.2968). Fine root productivity (roots ≤2 mm), however, did vary significantly among sites (P = 0.0363) and ranged from 45.88 ± 21.37 to 118.66 ± 38.05 g m−2 year−1. The distribution of total standing root biomass and fine root productivity followed patterns of N:P ratios as hypothesized, with larger root mass generally associated with lower relative P concentrations. Many of the processes of nutrient acquisition reported from nutrient-limited mangrove forests may also occur in forests of greater biomass and productivity when growing along soil nutrient gradients.

  8. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities.

    Science.gov (United States)

    Vaculík, Marek; Konlechner, Cornelia; Langer, Ingrid; Adlassnig, Wolfram; Puschenreiter, Markus; Lux, Alexander; Hauser, Marie-Theres

    2012-04-01

    The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements.

  9. Growth response of cottonwood roots to varied NH4:NO3 ratios in enriched patches

    Science.gov (United States)

    Walter T.M. Woolfolk; Alexander L. Friend

    2003-01-01

    Maximization of short-rotation forest plantation yields requires frequent applications of nutriends, especially nitrogen(N). Whole-plant growth is known to be sensitive to teh proportion of ammonium to nitrate (NH4:NO3). However, the extent to which N form affects root growth, branching and morphology is poorly understood...

  10. Palaeophytochemical Constituents from the Pliocene-fossil Wood of Tsuga dumosa (Pinaceae)%上新世云南铁杉木化石的化学成分

    Institute of Scientific and Technical Information of China (English)

    赵友兴; 李承森; 罗晓东; 周露; 扆铁梅; 周俊

    2007-01-01

    为了研究在褐煤中发现的上新世云南铁杉(Pliocene Tsuga dumosa)木化石的化学成分,采用气相色谱-质谱联用技术和柱层析方法分别检测了22个挥发性成分和分离鉴定了9个化合物(1-9),化学成分类型包括烷烃(C16-C32)、脂肪酸、甾体、三萜、邻苯二甲酸酯及酚性成分.化合物结构采用波谱方法鉴定.%Palaeophytochemical investigation of the Pliocene-fossil wood of Tsuga dumosa found in brown coal led to the detection of 22 volatiles and the isolation of 9 compounds (1-9), including six types of n-alkanes (C16 up to C32), fatty acids, steroids, triterpenoids, phthalates and aromatic compounds. Their structures were elucidated on the basis of spectroscopic evidence.

  11. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  12. Plant root-driven hydraulic redistribution, root nutrient uptake and carbon exudation interact with soil properties to generate rhizosphere resource hotspots that vary in space and time

    Science.gov (United States)

    Espeleta, J. F.; Neumann, R. B.; Cardon, Z. G.; Mayer, K. U.; Rastetter, E. B.

    2014-12-01

    Hydraulic redistribution (HR) of soil water by plants occurs in seasonally dry ecosystems worldwide. During drought, water flows from deep moist soil, through plant roots, into dry (often litter-rich) upper soil layers. Using modeling, we explored how physical transport processes driven by transpiration and hydraulic redistribution interact with root physiology (nutrient uptake and carbon exudation) and soil properties (soil texture and cation exchange) to influence nitrogen and carbon concentrations in the rhizosphere. At the single root scale, we modeled a 10-cm radial soil domain, and simulated solute transport, soil cation exchange, and root exudation and nutrient uptake under two water flow patterns: daytime transpiration without nighttime HR, and daytime transpiration with nighttime HR. During HR, water efflux flushed solutes away from the root, diluting the concentrations of key nutrients like nitrate. The transport of cations by transpiration in the day and their accumulation near the root led to competitive desorption of ammonium from soil further from the root and generation of hotspots of ammonium availability at night. HR influenced the spatial and temporal patterns of these hotspots and their intensity. They were also influenced by soil properties of texture and cation exchange capacity. This dynamic resource landscape caused by diel cycling between transpiration and hydraulic redistribution presents a stage for greater complexity of microbial interactions. We are currently embedding a microbial community and small food web into this rhizosphere model in order to explore how organisms responsible for nutrient and soil carbon cycling respond to these fluctuating resource regimes.

  13. Influence of instrument size and varying electrical resistance of root canal instruments on accuracy of three electronic root canal length measurement devices.

    Science.gov (United States)

    Aggarwal, V; Singla, M; Bhasin, S S

    2017-05-01

    To evaluate the influence of instrument size and the effect of the electrical resistance of endodontic instruments on the accuracy of three electronic root canal length measurement devices (ERCLMDs). Thirty single-rooted extracted human teeth were divided into three groups (n = 10) on the basis of the ERCLMD used: Root ZX II (J. Morita, Kyoto, Japan); ProPex (Dentsply Maillefer, Ballaigues, Switzerland); and iPex II (NSK, Tochigi, Japan). The electronic working length measurements (EWL) were made with K-files in the sequence sizes 08, 10, 15, 20, 25 and 30. The actual working length (AWL) was calculated by fixing a size 30 K-file in the canal and exposing the apical 5 mm of the root. The minor foramen was identified under an optical microscope, and its distance from the file tip was calculated. The accuracy of the ERCLMDs was evaluated in terms of percentages of accurate measurements (0.0 mm tolerance) and measurements with tolerance limits of ±0.5 mm and ±1.0 mm. The findings were analysed with the McNemar test, Pearson's chi-square tests and two-way analysis of variance. The multiple comparison procedures were carried out using Holm-Sidak method. The maximum electrical resistance tolerated by ERCLMDs was evaluated by connecting commercially available resistors between the file clip and the root canal instrument. The resistance was gradually increased until it started to affect the ERCLMD readings. The ERCLMDs were able to actually locate the minor foramen in 7% of samples. File size did not affect the accuracy of ERCLMDs (P > 0.05). Overall, the ERCLMDs gave 65% readings within a tolerance limit of ±0.5 mm and 90% within a tolerance of ±1.0 mm. The electrical resistance of endodontic files was less than the maximum electrical resistance tolerated by ERCLMDs (0.6-1 Ω vs. 2500-4000 Ω). The size of the root canal instrument did not affect the accuracy of ERCLMDs in this laboratory study. © 2016 International Endodontic Journal. Published by John

  14. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  15. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  16. Importance of root development in autotransplantations: a retrospective study of 137 teeth with a follow-up period varying from 1 week to 14 years.

    Science.gov (United States)

    Denys, Delphine; Shahbazian, Maryam; Jacobs, Reinhilde; Laenen, Annouschka; Wyatt, Jan; Vinckier, Frans; Willems, Guy

    2013-10-01

    The aim of the present study was to perform a retrospective study of autotransplanted teeth with a variable but individually maximized follow-up period in order to provide information on the long-term clinical outcome. The sample was obtained from patients who were treated at the University Hospitals KU-Leuven, Belgium, during the period 1996-2010. Of the total of 109 subjects (137 teeth), 98 patients were invited for recall, of whom 68 patients (87 teeth) responded positively. Eleven out of the 109 patients were excluded due to loss of the transplanted tooth. Although 41 patients had no re-examination visit, clinical and radiological data from all 109 subjects were included in the sample. The follow-up period varied from 1 week of 14.8 years, with a mean of 4.9 years. Transplanted teeth receiving orthodontic treatment had a lower risk of ankylosis and were less likely to fail. The risk of root resorption was lower for teeth with stages one-half to three-quarters of root length at the time of transplantation. Molars were more susceptible to ankylosis. Almost all teeth showed partial or full obliteration of the pulp. Absence of further root development was higher in donor teeth with root length stage less than one-half. Trans-alveolar transplantation was less successful. Autotransplantation can be a valid alternative method in young adolescents for replacing missing teeth because of agenesis or trauma. The optimal time to transplant is when the root has reached two-thirds to three-quarters of the final root length.

  17. Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient.

    Science.gov (United States)

    Maciá-Vicente, Jose G; Ferraro, Valeria; Burruano, Santella; Lopez-Llorca, Luis V

    2012-10-01

    Structure of fungal communities is known to be influenced by host plants and environmental conditions. However, in most cases, the dynamics of these variation patterns are poorly understood. In this work, we compared richness, diversity, and composition between assemblages of endophytic and rhizospheric fungi associated to roots of two plants with different lifestyles: the halophyte Inula crithmoides and the non-halophyte I. viscosa (syn. Dittrichia viscosa L.), along a spatially short salinity gradient. Roots and rhizospheric soil from these plants were collected at three points between a salt marsh and a sand dune, and fungi were isolated and characterized by ITS rDNA sequencing. Isolates were classified in a total of 90 operational taxonomic units (OTUs), belonging to 17 fungal orders within Ascomycota and Basidiomycota. Species composition of endophytic and soil communities significantly differed across samples. Endophyte communities of I. crithmoides and I. viscosa were only similar in the intermediate zone between the salt marsh and the dune, and while the latter displayed a single, generalist association of endophytes, I. crithmoides harbored different assemblages along the gradient, adapted to the specific soil conditions. In the lower salt marsh, root assemblages were strongly dominated by a single dark septate sterile fungus, also prevalent in other neighboring salt marshes. Interestingly, although its occurrence was positively correlated to soil salinity, in vitro assays revealed a strong inhibition of its growth by salts. Our results suggest that host lifestyle and soil characteristics have a strong effect on endophytic fungi and that environmental stress may entail tight plant-fungus relationships for adaptation to unfavorable conditions.

  18. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance.

    Science.gov (United States)

    Leucci, Maria Rosaria; Lenucci, Marcello Salvatore; Piro, Gabriella; Dalessandro, Giuseppe

    2008-07-31

    Glycosyl composition and linkage analysis of cell wall polysaccharides were examined in apical root zones excised from water-stressed and unstressed wheat seedlings (Triticum durum Desf.) cv. Capeiti ("drought-tolerant") and cv. Creso ("drought sensitive"). Wall polysaccharides were sequentially solubilized to obtain three fractions: CDTA+Na(2)CO(3) extract, KOH extract and the insoluble residue (alpha-cellulose). A comparison between the two genotypes showed only small variations in the percentages of matrix polysaccharides (CDTA+Na(2)CO(3) plus KOH extract) and of the insoluble residues (alpha-cellulose) in water-stressed and unstressed conditions. Xylosyl, glucosyl and arabinosyl residues represented more than 90 mol% of the matrix polysaccharides. The linkage analysis of matrix polysaccharides showed high levels of xyloglucans (23-39 mol%), and arabinoxylans (38-48 mol%) and a low amount of pectins and (1-->3), (1-->4)-beta-D-glucans. The high level of xyloglucans was supported by the release of the diagnostic disaccharide isoprimeverose after Driselase digestion of KOH-extracted polysaccharides. In the "drought-tolerant" cv. Capeiti the mol% of side chains of rhamnogalacturonan I and II significantly increased in response to water stress, whereas in cv. Creso, this increase did not occur. The results support a role of the pectic side chains during water stress response in a drought-tolerant wheat cultivar.

  19. Rooting depth and water source flexibility of Arundo donax across a wide and topographically varied floodplain inferred from stable isotopes

    Science.gov (United States)

    Moore, G. W.; West, J. B.; Li, F.; Kui, L.

    2011-12-01

    sources relative to groundwater. Rhizome water isotopic composition exhibited marked spatio-temporal variability that showed strong sensitivity to both soil moisture deficits and flooding. Our results demonstrate that Arundo readily switches water source from surface soil to groundwater to maintain relatively uniform transpiration across environmental gradients. Consistent with our observations of rooting depths to at least 5 m, dependence on groundwater increased with decreasing soil moisture in a similar manner across a wide range of groundwater depths (<1 m to 5 m), with no apparent influence of depth on deep water access. These trends illustrate how this now broadly-distributed species benefits from flexible use of hydrologic flowpaths unique to riparian environments. A more in-depth understanding of the ecohydrological interactions between the river, the hyporheic zone, riparian sediments and soils will improve our ability to predict ecosystem responses to changing climate and increasing human demands for water.

  20. The influence of stream channels on distributions of Larrea tridentata and Ambrosia dumosa in the Mojave Desert, CA, USA: Patterns, mechanisms and effects of stream redistribution

    Science.gov (United States)

    Schwinning, S.; Sandquist, D.R.; Miller, D.M.; Bedford, D.R.; Phillips, S.L.; Belnap, J.

    2011-01-01

    Drainage channels are among the most conspicuous surficial features of deserts, but little quantitative analysis of their influence on plant distributions is available. We analysed the effects of desert stream channels ('washes') on Larrea tridentata and Ambrosia dumosa density and cover on an alluvial piedmont in the Mojave Desert, based on a spatial analysis of transect data encompassing a total length of 2775 m surveyed in 5 cm increments. Significant deviations from average transect properties were identified by bootstrapping. Predictably, shrub cover and density were much reduced inside washes, and elevated above average levels adjacent to washes. Average Larrea and Ambrosia cover and density peaked 1??2-1??6 m and 0??5-1??0 m from wash edges, respectively. We compared wash effects in runon-depleted (-R) sections, where washes had been cut off from runon and were presumably inactive, with those in runon-supplemented (+R) sections downslope from railroad culverts to help identify mechanisms responsible for the facilitative effect of washes on adjacent shrubs. Shrub cover and density near washes peaked in both + R and - R sections, suggesting that improved water infiltration and storage alone can cause a facilitative effect on adjacent shrubs. However, washes of < 2 m width in + R sections had larger than average effects on peak cover, suggesting that plants also benefit from occasional resource supplementation. The data suggest that channel networks significantly contribute to structuring plant communities in the Mojave Desert and their disruption has notable effects on geomorphic and ecological processes far beyond the original disturbance sites. ?? 2010 John Wiley & Sons, Ltd.

  1. Effect of varied shoot/root ratio on growth of maize (Zea mays) under nitrogen-limited conditions: growth experiment and model calculations

    NARCIS (Netherlands)

    Findenegg, G.R.

    1990-01-01

    Young maize plants have been grown for two weeks on a perlite/sand mixture under controlled high light conditions at two suboptimal nitrogen levels. The relationships between [1] root dry weight (RDW) and dry weight of the total plants, [2] RDW and total root length (TRL), and [3] TRL and daily N-up

  2. Stress distribution on dentin-cement-post interface varying root canal and glass fiber post diameters. A three-dimensional finite element analysis based on micro-CT data.

    Science.gov (United States)

    Lazari, Priscilla Cardoso; Oliveira, Rodrigo Caldeira Nunes de; Anchieta, Rodolfo Bruniera; Almeida, Erika Oliveira de; Freitas Junior, Amilcar Chagas; Kina, Sidney; Rocha, Eduardo Passos

    2013-01-01

    The aim of the present study was to analyze the influence of root canal and glass fiber post diameters on the biomechanical behavior of the dentin/cement/post interface of a root-filled tooth using 3D finite element analysis. Six models were built using micro-CT imaging data and SolidWorks 2007 software, varying the root canal (C) and the glass fiber post (P) diameters: C1P1-C=1 mm and P=1 mm; C2P1-C=2 mm and P=1 mm; C2P2-C=2 mm and P=2 mm; C3P1-C=3 mm and P=1 mm; C3P2-C=3 mm and P=2 mm; and C3P3-C=3 mm and P=3 mm. The numerical analysis was conducted with ANSYS Workbench 10.0. An oblique force (180 N at 45º) was applied to the palatal surface of the central incisor. The periodontal ligament surface was constrained on the three axes (x=y=z=0). Maximum principal stress (σ(max)) values were evaluated for the root dentin, cement layer, and glass fiber post. The most evident stress was observed in the glass fiber post at C3P1 (323 MPa), and the maximum stress in the cement layer occurred at C1P1 (43.2 MPa). The stress on the root dentin was almost constant in all models with a peak in tension at C2P1 (64.5 MPa). The greatest discrepancy between root canal and post diameters is favorable for stress concentration at the post surface. The dentin remaining after the various root canal preparations did not increase the stress levels on the root.

  3. Comparative effect of partial root-zone drying and deficit irrigation on incidence of blossom-end rot in tomato under varied calcium rates

    DEFF Research Database (Denmark)

    Sun, Yanqi; Feng, Hao; Liu, Fulai

    2013-01-01

    This study investigated the comparative effects of reduced irrigation regimes—partial root-zone drying (PRD) and conventional deficit irrigation (DI)—on the incidence of blossom-end rot (BER) in tomato (Solanum lycopersicum L.) under three Ca-fertilization rates: 0, 100, and 200mg Ca kg–1 soil...... xylem sap abscisic acid concentration, lower stomatal conductance, and higher plant water status in the PRD in relation to the DI plants might have contributed to the increased fruit Ca uptake, and could have reduced BER development in tomato fruits. Therefore, under conditions with limited freshwater...... resources, application of PRD irrigation could be a promising approach for saving water and for preventing BER development in tomatoes....

  4. Antiobesity Effects of the Combined Plant Extracts Varying the Combination Ratio of Phyllostachys pubescens Leaf Extract and Scutellaria baicalensis Root Extract

    Directory of Open Access Journals (Sweden)

    Dong-Seon Kim

    2016-01-01

    Full Text Available The antiobesity effects of several different combinations of extracts (BS prepared from two plants, Phyllostachys pubescens leaf (bamboo leaf: BL and Scutellaria baicalensis root (SB, were investigated using a high fat diet (HFD induced obese mouse model. In order to find the most effective mixture among the mixtures of the two plant extracts, experimental preparations were made by combining BL and SB by different proportions of 3 : 1 (BS31, 2 : 1 (BS21, 1 : 1 (BS11, 1 : 2 (BS12, and 1 : 3 (BS13. Body weight, weight of adipose tissues, size of adipocytes, levels of glucose, leptin and adiponectin, and lipid profile in serum, and fat accumulation in liver were investigated. We have found that BS21 is the most effective in antiobesity among the five mixtures investigated, indicated by reduction in body weight gain, total mass of adipose tissue, and the size of adipocyte. In addition, BS21 has shown to be beneficial in serum lipid profile, levels of glucose, leptin, and adiponectin in serum, and fat accumulation in liver. By chromatographic separation of BS21, the two maker compounds, isoorientin and baicalin, were identified and quantified for the standardization of BS21.

  5. Antiobesity Effects of the Combined Plant Extracts Varying the Combination Ratio of Phyllostachys pubescens Leaf Extract and Scutellaria baicalensis Root Extract

    Science.gov (United States)

    Kim, Seung-Hyung; Cha, Jimin

    2016-01-01

    The antiobesity effects of several different combinations of extracts (BS) prepared from two plants, Phyllostachys pubescens leaf (bamboo leaf: BL) and Scutellaria baicalensis root (SB), were investigated using a high fat diet (HFD) induced obese mouse model. In order to find the most effective mixture among the mixtures of the two plant extracts, experimental preparations were made by combining BL and SB by different proportions of 3 : 1 (BS31), 2 : 1 (BS21), 1 : 1 (BS11), 1 : 2 (BS12), and 1 : 3 (BS13). Body weight, weight of adipose tissues, size of adipocytes, levels of glucose, leptin and adiponectin, and lipid profile in serum, and fat accumulation in liver were investigated. We have found that BS21 is the most effective in antiobesity among the five mixtures investigated, indicated by reduction in body weight gain, total mass of adipose tissue, and the size of adipocyte. In addition, BS21 has shown to be beneficial in serum lipid profile, levels of glucose, leptin, and adiponectin in serum, and fat accumulation in liver. By chromatographic separation of BS21, the two maker compounds, isoorientin and baicalin, were identified and quantified for the standardization of BS21. PMID:27123038

  6. Hierarchical Representation of Time-Varying Volume Data with Fourth-Root-of-Two Subdivision and Quadrilinear B-Spline Wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Linsen, L; Pascucci, V; Duchaineau, M A; Hamann, B; Joy, K I

    2002-11-19

    Multiresolution methods for representing data at multiple levels of detail are widely used for large-scale two- and three-dimensional data sets. We present a four-dimensional multiresolution approach for time-varying volume data. This approach supports a hierarchy with spatial and temporal scalability. The hierarchical data organization is based on 4{radical}2 subdivision. The n{radical}2-subdivision scheme only doubles the overall number of grid points in each subdivision step. This fact leads to fine granularity and high adaptivity, which is especially desirable in the spatial dimensions. For high-quality data approximation on each level of detail, we use quadrilinear B-spline wavelets. We present a linear B-spline wavelet lighting scheme based on n{radical}2 subdivision to obtain narrow masks for the update rules. Narrow masks provide a basis for out-of-core data exploration techniques and view-dependent visualization of sequences of time steps.

  7. Transitory effects of elevated atmospheric CO₂ on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter.

    Science.gov (United States)

    Ferguson, Scot D; Nowak, Robert S

    2011-06-01

    Experimental increases in atmospheric CO₂ often increase root production over time, potentially increasing soil carbon (C) sequestration. Effects of elevated atmospheric CO₂ on fine root dynamics in a Mojave desert ecosystem were examined for the last 4.5 yr of a long-term (10-yr) free air CO₂ enrichment (FACE) study at the Nevada desert FACE facility (NDFF). Sets of minirhizotron tubes were installed at the beginning of the NDFF experiment to characterize rooting dynamics of the dominant shrub Larrea tridentata, the codominant shrub Ambrosia dumosa and the plant community as a whole. Although significant treatment effects occurred sporadically for some fine root measurements, differences were transitory and often in opposite directions during other time-periods. Nonetheless, earlier root growth under elevated CO₂ helped sustain increased assimilation and shoot growth. Overall CO₂ treatment effects on fine root standing crop, production, loss, turnover, persistence and depth distribution were not significant for all sampling locations. These results were similar to those that occurred near the beginning of the NDFF experiment but unlike those in other ecosystems. Thus, increased C input into soils is unlikely to occur from fine root litter under elevated atmospheric CO₂ in this arid ecosystem.

  8. Varying Constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2003-01-01

    We review some string-inspired theoretical models which incorporate a correlated spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring unnatural fine-tunings of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP. Recent claims by Bekenstein that fine-structure-constant variability does not imply detectable violations of the equivalence principle are shown to be untenable.

  9. Root hairs

    NARCIS (Netherlands)

    Grierson, C.; Nielsen, E.; Ketelaar, T.; Schiefelbein, J.

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair

  10. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  11. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  12. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  13. Positive Root Bounds and Root Separation Bounds

    Science.gov (United States)

    Herman, Aaron Paul

    In this thesis, we study two classes of bounds on the roots of a polynomial (or polynomial system). A positive root bound of a polynomial is an upper bound on the largest positive root. A root separation bound of a polynomial is a lower bound on the distance between the roots. Both classes of bounds are fundamental tools in computer algebra and computational real algebraic geometry, with numerous applications. In the first part of the thesis, we study the quality of positive root bounds. Higher quality means that the relative over-estimation (the ratio of the bound and the largest positive root) is smaller. We find that all known positive root bounds can be arbitrarily bad. We then show that a particular positive root bound is tight for certain important classes of polynomials. In the remainder of the thesis, we turn to root separation bounds. We observe that known root separation bounds are usually very pessimistic. To our surprise, we also find that known root separation bounds are not compatible with the geometry of the roots (unlike positive root bounds). This motivates us to derive new root separation bounds. In the second part of this thesis, we derive a new root separation for univariate polynomials by transforming a known bound into a new improved bound. In the third part of this thesis, we use a similar strategy to derive a new improved root separation bound for polynomial systems.

  14. Fluorosis varied treatment options

    OpenAIRE

    Sherwood I

    2010-01-01

    Fluorosis has been reported way back in 1901. The treatment options for fluorosis are varied depending upon individual cases. This article comes from Madurai in India where its surrounding towns are fluorosis-prone zones. The purpose of this article is to report various treatment options available for dental fluorosis; this is the first time that complete full mouth rehabilitation for dental fluorosis is being reported. This article also dwells on the need for the dentists to be aware of thei...

  15. Perennial roots to immortality.

    Science.gov (United States)

    Munné-Bosch, Sergi

    2014-10-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation. © 2014 American Society of Plant Biologists. All Rights Reserved.

  16. Fluorosis varied treatment options

    Directory of Open Access Journals (Sweden)

    Sherwood I

    2010-01-01

    Full Text Available Fluorosis has been reported way back in 1901. The treatment options for fluorosis are varied depending upon individual cases. This article comes from Madurai in India where its surrounding towns are fluorosis-prone zones. The purpose of this article is to report various treatment options available for dental fluorosis; this is the first time that complete full mouth rehabilitation for dental fluorosis is being reported. This article also dwells on the need for the dentists to be aware of their local indigenous pathologies to treat it in a better manner.

  17. Mechanical properties of tree roots for soil reinforcement models

    NARCIS (Netherlands)

    Cofie, P.

    2001-01-01

    Evidence from forestry has shown that part of the forest floor bearing capacity is delivered by tree roots. The beneficial effect however varies and diminishes with increasing number of vehicle passes. Roots potential for reinforcing the soil is known to depend among others on root mechanical proper

  18. Mechanical properties of tree roots for soil reinforcement models

    NARCIS (Netherlands)

    Cofie, P.

    2001-01-01

    Evidence from forestry has shown that part of the forest floor bearing capacity is delivered by tree roots. The beneficial effect however varies and diminishes with increasing number of vehicle passes. Roots potential for reinforcing the soil is known to depend among others on root

  19. Time Varying Feature Data

    Science.gov (United States)

    Echterhoff, J.; Simonis, I.; Atkinson, R.

    2012-04-01

    The infrastructure to gather, store and access information about our environment is improving and growing rapidly. The increasing amount of information allows us to get a better understanding of the current state of our environment, historical processes and to simulate and predict the future state of the environment. Finer grained spatial and temporal data and more reliable communications make it easier to model dynamic states and ephemeral features. The exchange of information within and across geospatial domains is facilitated through the use of harmonized information models. The Observations & Measurements (O&M) developed through OGC and standardised by ISO is an example of such a cross-domain information model. It is used in many domains, including meteorology, hydrology as well as the emergency management. O&M enables harmonized representation of common metadata that belong to the act of determining the state of a feature property, whether by sensors, simulations or humans. In addition to the resulting feature property value, information such as the result quality but especially the time that the result applies to the feature property can be represented. Temporal metadata is critical to modelling past and future states of a feature. The features, and the semantics of each property, are defined in domain specific Application Schema using the General Feature Model (GFM) from ISO 19109 and usually encoded following ISO 19136. However, at the moment these standards provide only limited support for the representation and handling of time varying feature data. Features like rivers, wildfires or gas plumes have a defined state - for example geographic extent - at any given point in time. To keep track of changes, a more complex model for example using time-series coverages is required. Furthermore, the representation and management of feature property value changes via the service interfaces defined by OGC and ISO - namely: WFS and WCS - would be rather complex

  20. Afrokoko Roots

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Give us a little background information about Afrokoko Roots.How long have you been performing together?It's an international Afrobeat outfit that I founded in Beijing three years ago.I founded it in order to show Chinese people that Africa is beyond what they see and hear on TV.For the purpose of cultural exchange,I hope it can help the Chinese learn about African culture,music,fashion,history and much more.Our band features two dancers,two backup singers,two percussionists,four brass players,a keyboard player,a guitar player and a drummer- and me as the lead vocal,drummer and dancer,which makes for live performances that are equally exciting sonically as they are visually.We have been traveling around,and so far,we have toured and performed in many Chinese cities such as Dalian (Liaoning Province),Hohhot (Inner Mongolia Autonomous Region) and Haikou (Hainan Province).

  1. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    Science.gov (United States)

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  2. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  3. ROOT Reference Documentation

    CERN Document Server

    Fuakye, Eric Gyabeng

    2017-01-01

    A ROOT Reference Documentation has been implemented to generate all the lists of libraries needed for each ROOT class. Doxygen has no option to generate or add the lists of libraries for each ROOT class. Therefore shell scripting and a basic C++ program was employed to import the lists of libraries needed by each ROOT class.

  4. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    Science.gov (United States)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  5. Comparing root architectural models

    Science.gov (United States)

    Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan

    2017-04-01

    Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.

  6. The Root Pressure Phenomenon

    Science.gov (United States)

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  7. The Root Canal Biofilm

    NARCIS (Netherlands)

    Sluis, van der L.W.M.; Boutsioukis, C.; Jiang, L.M.; Macedo, R.; Verhaagen, B.; Versluis, M.; Chávez de Paz, E.; Sedgley, C.M.; Kishen, A.

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  8. WHY ROOTING FAILS.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  9. Root canal irrigation

    NARCIS (Netherlands)

    L. van der Sluis; C. Boutsioukis; L.M. Jiang; R. Macedo; B. Verhaagen; M. Versluis

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  10. Bouncing universes with varying constants

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, John D [DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Kimberly, Dagny [Theoretical Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ (United Kingdom); Magueijo, Joao [Theoretical Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ (United Kingdom)

    2004-09-21

    We investigate the behaviour of exact closed bouncing Friedmann universes in theories with varying constants. We show that the simplest BSBM varying alpha theory leads to a bouncing universe. The value of alpha increases monotonically, remaining approximately constant during most of each cycle, but increasing significantly around each bounce. When dissipation is introduced we show that in each new cycle the universe expands for longer and to a larger size. We find a similar effect for closed bouncing universes in Brans-Dicke theory, where G also varies monotonically in time from cycle to cycle. Similar behaviour occurs also in varying speed of light theories.

  11. Bouncing Universes with Varying Constants

    CERN Document Server

    Barrow, J D; Magueijo, J; Barrow, John D.; Kimberly, Dagny; Magueijo, Joao

    2004-01-01

    We investigate the behaviour of exact closed bouncing Friedmann universes in theories with varying constants. We show that the simplest BSBM varying-alpha theory leads to a bouncing universe. The value of alpha increases monotonically, remaining approximately constant during most of each cycle, but increasing significantly around each bounce. When dissipation is introduced we show that in each new cycle the universe expands for longer and to a larger size. We find a similar effect for closed bouncing universes in Brans-Dicke theory, where $G$ also varies monotonically in time from cycle to cycle. Similar behaviour occurs also in varying speed of light theories.

  12. Rooting gene trees without outgroups: EP rooting.

    Science.gov (United States)

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  13. Defining the core Arabidopsis thaliana root microbiome

    Science.gov (United States)

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  14. Root phenology at Harvard Forest and beyond

    Science.gov (United States)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, pGrowth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April 2012 through August 2013 at the Harvard Forest in Petersham, MA, USA. Greenness and stem growth were highest in late May and early June with one clear

  15. Varying c and Particle Horizons

    CERN Document Server

    Chimento, L P; Pavón, D; Chimento, Luis P; Jakubi, Alejandro S; Pavon, Diego

    2001-01-01

    We explore what restrictions may impose the second law of thermodynamics on varying speed of light theories. We find that the attractor scenario solving the flatness problem is consistent with the generalized second law at late time.

  16. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    Science.gov (United States)

    J-C. Domec; F.G. Scholz; S.J. Bucci; F.C. Meinzer; G. Goldstein; R. Villalobos-Vega

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occuring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (ψroot...

  17. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides).

    Science.gov (United States)

    Hajek, Peter; Hertel, Dietrich; Leuschner, Christoph

    2013-01-01

    Leaf and fine root morphology and physiology have been found to vary considerably among tree species, but not much is known about intraspecific variation in root traits and their relatedness to leaf traits. Various aspen progenies (Populus tremula and P. tremuloides) with different growth performance are used in short-rotation forestry. Hence, a better understanding of the link between root trait syndromes and the adaptation of a deme to a particular environment is essential in order to improve the match between planted varieties and their growth conditions. We examined the between-deme (genetic) and within-deme (mostly environmental) variation in important fine root traits [mean root diameter, specific root area (SRA) and specific root length (SRL), root tissue density (RTD), root tip abundance, root N concentration] and their co-variation with leaf traits [specific leaf area (SLA), leaf size, leaf N concentration] in eight genetically distinct P. tremula and P. tremuloides demes. Five of the six root traits varied significantly between the demes with largest genotypic variation in root tip abundance and lowest in mean root diameter and RTD (no significant difference). Within-deme variation in root morphology was as large as between-deme variation suggesting a relatively low genetic control. Significant relationships existed neither between SLA and SRA nor between leaf N and root N concentration in a plant. Contrary to expectation, high aboveground relative growth rates (RGR) were associated with large, and not small, fine root diameters with low SRA and SRL. Compared to leaf traits, the influence of root traits on RGR was generally low. We conclude that aspen exhibits large intraspecific variation in leaf and also in root morphological traits which is only partly explained by genetic distances. A root order-related analysis might give deeper insights into intraspecific root trait variation.

  18. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy.

    Science.gov (United States)

    Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia

    2016-05-01

    Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling.

  19. Root canal irrigants.

    Science.gov (United States)

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-10-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were 'root canal irrigants' and 'endodontic irrigants.' The reference lists of each article were manually checked for additional articles of relevance.

  20. Conjoined lumbosacral nerve roots

    Directory of Open Access Journals (Sweden)

    Atila Yılmaz

    2012-03-01

    Full Text Available Lumbosacral nerve root anomalies are a rare group ofcongenital anatomical anomalies. Various types of anomaliesof the lumbosacral nerve roots have been documentedin the available international literature. Ttheseanomalies may consist of a bifid, conjoined structure, ofa transverse course or of a characteristic anastomizedappearance. Firstly described as an incidental findingduring autopsies or surgical procedures performed forlumbar disk herniations and often asymptomatic, lumbosacralnerve root anomalies have been more frequentlydescribed in the last years due to the advances made inradiological diagnosis.

  1. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    Energy Technology Data Exchange (ETDEWEB)

    Nedelkoska, T.V.; Doran, P.M.

    2000-03-05

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy roots of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.

  2. Vertical root fractures and their management

    Science.gov (United States)

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  3. Time-varying Crash Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...

  4. Mass Varying Neutrinos in Supernovae

    CERN Document Server

    Rossi-Torres, F; de Holanda, P C; Peres, O L G

    2010-01-01

    We study limits for the mass varying neutrino model, using constrains from supernova neutrinos placed by the r-process condition, $Y_e<0.5$. Also, we use this model in a supernova environment to study the regions of survival probability in the oscillation space parameter ($\\tan^2\\theta$ and $\\Delta m^2_0$), considering the channel $\

  5. Time-varying Crash Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly...... on return variance once we include market illiquidity as an economic variable in the model....

  6. Esmaklassiline Karlovy Vary / Jaanus Noormets

    Index Scriptorium Estoniae

    Noormets, Jaanus

    2007-01-01

    Ilmar Raagi mängufilm "Klass" võitis 42. Karlovy Vary rahvusvahelise filmifestivalil kaks auhinda - ametliku kõrvalvõistlusprogrammi "East of the West" eripreemia "Special mention" ja Euroopa väärtfilmikinode keti Europa Cinemas preemia. Ka Asko Kase lühifilmi "Zen läbi prügi linastumisest ning teistest auhinnasaajatest ning osalejatest

  7. Optimistlik Karlovy Vary / Jaan Ruus

    Index Scriptorium Estoniae

    Ruus, Jaan, 1938-2017

    2007-01-01

    42. Karlovy Vary rahvusvahelise filmifestivali auhinnatud filmidest (žürii esimees Peter Bart). Kristallgloobuse sai Islandi-Saksamaa "Katseklaasilinn" (režii Baltasar Kormakur), parimaks režissööriks tunnistati norralane Bard Breien ("Negatiivse mõtlemise kunst"). Austraallase Michael James Rowlandi "Hea õnne teekond" sai žürii eripreemia

  8. Eestlased Karlovy Varys / J. R.

    Index Scriptorium Estoniae

    J. R.

    2007-01-01

    Ilmar Raagi mängufilm "Klass" osaleb 42. Karlovy Vary rahvusvahelise filmifestivali võistlusprogrammis "East of the West" ja Asko Kase lühimängufilm "Zen läbi prügi" on valitud festivali kõrvalprogrammi "Forum of Independents"

  9. Esmaklassiline Karlovy Vary / Jaanus Noormets

    Index Scriptorium Estoniae

    Noormets, Jaanus

    2007-01-01

    Ilmar Raagi mängufilm "Klass" võitis 42. Karlovy Vary rahvusvahelise filmifestivalil kaks auhinda - ametliku kõrvalvõistlusprogrammi "East of the West" eripreemia "Special mention" ja Euroopa väärtfilmikinode keti Europa Cinemas preemia. Ka Asko Kase lühifilmi "Zen läbi prügi linastumisest ning teistest auhinnasaajatest ning osalejatest

  10. Variability in root production, phenology, and turnover rate among 12 temperate tree species.

    Science.gov (United States)

    McCormack, M Luke; Adams, Thomas S; Smithwick, Erica A H; Eissenstat, David M

    2014-08-01

    The timing of fine root production and turnover strongly influences both the seasonal potential for soil resource acquisition among competing root systems and the plant fluxes of root carbon into soil pools. However, basic patterns and variability in the rates and timing or fine root production and turnover are generally unknown among perennial plants species. We address this shortfall using a heuristic model relating root phenology to turnover together with three years of minirhizotron observations of root dynamics in 12 temperate tree species grown in a common garden. We specifically investigated how the amount and the timing of root production differ among species and how they impact estimates of fine root turnover. Across the 12 species, there was wide variation in the timing of root production with some species producing a single root flush in early summer and others producing roots either more uniformly over the growing season or in multiple pulses. Additionally, the pattern and timing of root production appeared to be consistent across years for some species but varied in others. Root turnover rate was related to total root production (P phenology. Overall, we suggest that more detailed observations of root phenology and production will improve fidelity of root turnover estimates. Future efforts should link patterns of root phenology and production with whole-plant life history traits and variation in annual and seasonal climate.

  11. Chromatic roots and hamiltonian paths

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...

  12. Anatomical aspects of angiosperm root evolution

    Science.gov (United States)

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  13. ROOT User Workshop 2013

    CERN Document Server

    2013-01-01

    Since almost two decades, ROOT has established itself as the framework for HENP data processing and analysis. The LHC upgrade program and the new experiments being designed at CERN and elsewhere will pose even more formidable challenges in terms of data complexity and size. The new parallel and heterogeneous computing architectures that are either announced or already available will call for a deep rethinking of the code and the data structures to be exploited efficiently. This workshop, following from a successful series of such events, will allow you to learn in detail about the new ROOT 6 and will help shape the future evolution of ROOT.

  14. Nitrogenase Activity Associated with Halodule wrightii Roots.

    Science.gov (United States)

    Smith, G W; Hayasaka, S S

    1982-06-01

    Nitrogen fixation (acetylene reduction) associated with roots of the seagrass Halodule wrightii was measured offshore near Beaufort and Moorhead City, N.C. Rates of acetylene reduction were higher in aerobic than in anaerobic assays and were linear for up to 5 days. The temperature range for acetylene reduction was 15 to 35 degrees C with a maximum activity at 35 degrees C. Nitrogenase activity was shown to vary seasonally with highest activities occurring during warmer summer months (23 mug of N(2) fixed per m per day). At in situ temperature, nitrogenase activities associated with surface-sterilized and non-surface-sterilized roots were similar. One morphological bacterial type was isolated from surface-sterilized roots and identified as Klebsiella pneumoniae type 4B.

  15. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh R.

    2011-01-01

    Full Text Available Ashwagandha (Withania somnifera is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant and crude fiber content exhibited strong association among them and showed significant positive genotypic correlation with yield. Starch-fiber ratio (SFR, determinant of brittle root texture showed strong negative association with root yield. The total alkaloid content had positive genotypic correlation with root yield. So genetic upgradation should aim at optimum balance between two divergent groups of traits i.e. root yield traits (root morphometric traits and crude fiber content and root textural quality traits (starch content and SFR to develop superior genotypes with better yield and quality.

  16. Root lattices and quasicrystals

    Science.gov (United States)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  17. Harmonic functions with varying coefficients

    Directory of Open Access Journals (Sweden)

    Jacek Dziok

    2016-05-01

    Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.

  18. Linearized Bekenstein Varying Alpha Models

    CERN Document Server

    Pina-Avelino, P; Oliveira, J C

    2004-01-01

    We study the simplest class of Bekenstein-type, varying $\\alpha$ models, in which the two available free functions (potential and gauge kinetic function) are Taylor-expanded up to linear order. Any realistic model of this type reduces to a model in this class for a certain time interval around the present day. Nevertheless, we show that no such model is consistent with all existing observational results. We discuss possible implications of these findings, and in particular clarify the ambiguous statement (often found in the literature) that ``the Webb results are inconsistent with Oklo''.

  19. Linearized Bekenstein varying α models

    Science.gov (United States)

    Avelino, P. P.; Martins, C. J.; Oliveira, J. C.

    2004-10-01

    We study the simplest class of Bekenstein-type, varying α models, in which the two available free functions (potential and gauge kinetic function) are Taylor-expanded up to linear order. Any realistic model of this type reduces to a model in this class for a certain time interval around the present day. Nevertheless, we show that no such model is consistent with all existing observational results. We discuss possible implications of these findings, and, in particular, clarify the ambiguous statement (often found in the literature) that “the Webb results are inconsistent with Oklo.”

  20. Time-varying cosmological term

    Science.gov (United States)

    Socorro, J.; D'oleire, M.; Pimentel, Luis O.

    2015-11-01

    We present the case of time-varying cosmological term using the Lagrangian formalism characterized by a scalar field ϕ with standard kinetic energy and arbitrary potential V(ϕ). This model is applied to Friedmann-Robertson-Walker (FRW)cosmology. Exact solutions of the field equations are obtained by a special ansats to solve the Einstein-Klein-Gordon equation and a particular potential for the scalar field and barotropic perfect fluid. We present the evolution on this cosmological term with different scenarios.

  1. Aflatoxins in ginseng roots.

    Science.gov (United States)

    D'Ovidio, Kathleen; Trucksess, Mary; Weaver, Carol; Horn, Erin; McIntosh, Marla; Bean, George

    2006-02-01

    Ginseng roots can be infected by molds during growth, harvest and storage and result in contamination with mycotoxins. In this study, an analytical method for the determination of aflatoxins B(1), B(2), G(1) and G(2), a group of structurally similar mycotoxins, in ginseng root was developed. Test samples were extracted with methanol-water (8?+?2), diluted and passed through an immunoaffinity column packed with antibodies specific for aflatoxins. The purified extract was then derivatized with a mixture of water, trifluoroacetic acid and acetic acid. Aflatoxins were then separated and quantified by reverse phase liquid chromatography (LC) with fluorescence detection. Recoveries of total aflatoxins at 2, 4, 8 and 16 ng/g added to toxin-free 4 to 5-year old dried sliced Wisconsin ginseng were 92, 77, 91 and 83% respectively; and relative standard deviations were 3.6, 8.0, 6.9 and 2.0% respectively. A total of 11 wild simulated and 12 cultivated ginseng root samples were analysed for aflatoxins. All cultivated roots were found to be free of aflatoxin contamination. Two of the wild simulated roots contained total aflatoxins B(1), B(2), G(1) and G(2) at 15.1 and 15.2 ng/g. One moldy ginseng root purchased from a grocery store was found to be contaminated with aflatoxins at 16 ng/g.

  2. Modeling root reinforcement using root-failure Weibull survival function

    Directory of Open Access Journals (Sweden)

    M. Schwarz

    2013-03-01

    Full Text Available Root networks contribute to slope stability through complicated interactions that include mechanical compression and tension. Due to the spatial heterogeneity of root distribution and the dynamic of root turnover, the quantification of root reinforcement on steep slope is challenging and consequently the calculation of slope stability as well. Although the considerable advances in root reinforcement modeling, some important aspect remain neglected. In this study we address in particular to the role of root strength variability on the mechanical behaviors of a root bundle. Many factors may contribute to the variability of root mechanical properties even considering a single class of diameter. This work presents a new approach for quantifying root reinforcement that considers the variability of mechanical properties of each root diameter class. Using the data of laboratory tensile tests and field pullout tests, we calibrate the parameters of the Weibull survival function to implement the variability of root strength in a numerical model for the calculation of root reinforcement (RBMw. The results show that, for both laboratory and field datasets, the parameters of the Weibull distribution may be considered constant with the exponent equal to 2 and the normalized failure displacement equal to 1. Moreover, the results show that the variability of root strength in each root diameter class has a major influence on the behavior of a root bundle with important implications when considering different approaches in slope stability calculation. Sensitivity analysis shows that the calibration of the tensile force and the elasticity of the roots are the most important equations, as well as the root distribution. The new model allows the characterization of root reinforcement in terms of maximum pullout force, stiffness, and energy. Moreover, it simplifies the implementation of root reinforcement in slope stability models. The realistic quantification of root

  3. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  4. Varying Constants, Gravitation and Cosmology.

    Science.gov (United States)

    Uzan, Jean-Philippe

    2011-01-01

    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  5. Varying Constants, Gravitation and Cosmology

    Science.gov (United States)

    Uzan, Jean-Philippe

    2011-12-01

    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  6. Sap flow measurements of lateral tree roots in agroforestry systems.

    Science.gov (United States)

    Lott, J. E.; Khan, A. A. H.; Ong, C. K.; Black, C. R.

    1996-01-01

    Successful extension of agroforestry to areas of the semi-arid tropics where deep reserves of water exist requires that the tree species be complementary to the associated crops in their use of water within the crop rooting zone. However, it is difficult to identify trees suitable for dryland agroforestry because most existing techniques for determining water uptake by roots cannot distinguish between absorption by tree and crop roots. We describe a method for measuring sap flow through lateral roots using constant temperature heat balance gauges, and the application of this method in a study of complementarity of water use in agroforestry systems containing Grevillea robusta A. Cunn. Sap flow gauges were attached to the trunks and roots of Grevillea with minimum disturbance to the soil. Thermal energy emanating from the soil adversely affected the accuracy of sap flow gauges attached to the roots, with the result that the uncorrected values were up to eightfold greater than the true water uptake determined gravimetrically. This overestimation was eliminated by using a calibration method in which nonconducting excised root segments, with sap flow gauges attached, were placed adjacent to the live roots. The power consumption and temperature differentials of the excised roots were used to correct for external sources and internal losses of heat within the paired live root. The fraction of the total sap flow through individual trees supplied by the lateral roots varied greatly between trees of similar canopy size. Excision of all lateral roots, except for one to which a heat balance gauge was attached, did not significantly increase sap flow through the intact root, suggesting that it was functioning at near maximum capacity.

  7. Local Varying-Alpha Theories

    CERN Document Server

    Barrow, John D

    2014-01-01

    In a recent paper we demonstrated how the simplest model for varying alpha may be interpreted as the effect of a dielectric material, generalized to be consistent with Lorentz invariance. Unlike normal dielectrics, such a medium cannot change the speed of light, and its dynamics obey a Klein-Gordon equation. This work immediately suggests an extension of the standard theory, even if we require compliance with Lorentz invariance. Instead of a wave equation, the dynamics may satisfy a local algebraic relation involving the permittivity and the properties of the electromagnetic field, in analogy with more conventional dielectric (but still preserving Lorentz invariance). We develop the formalism for such theories and investigate some phenomenological implications. The problem of the divergence of the classical self-energy can be solved, or at least softened, in this framework. Some interesting new cosmological solutions for the very early universe are found, including the possibility of a bounce, inflation and e...

  8. Varying constants, Gravitation and Cosmology

    CERN Document Server

    Uzan, Jean-Philippe

    2010-01-01

    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describ...

  9. Exploration of Periodically Varying Graphs

    CERN Document Server

    Flocchini, Paola; Santoro, Nicola

    2009-01-01

    We study the computability and complexity of the exploration problem in a class of highly dynamic graphs: periodically varying (PV) graphs, where the edges exist only at some (unknown) times defined by the periodic movements of carriers. These graphs naturally model highly dynamic infrastructure-less networks such as public transports with fixed timetables, low earth orbiting (LEO) satellite systems, security guards' tours, etc. We establish necessary conditions for the problem to be solved. We also derive lower bounds on the amount of time required in general, as well as for the PV graphs defined by restricted classes of carriers movements: simple routes, and circular routes. We then prove that the limitations on computability and complexity we have established are indeed tight. In fact we prove that all necessary conditions are also sufficient and all lower bounds on costs are tight. We do so constructively presenting two worst case optimal solution algorithms, one for anonymous systems, and one for those w...

  10. Time-Varying Fundamental Constants

    Science.gov (United States)

    Olive, Keith

    2003-04-01

    Recent data from quasar absorption systems can be interpreted as arising from a time variation in the fine-structure constant. However, there are numerous cosmological, astro-physical, and terrestrial bounds on any such variation. These includes bounds from Big Bang Nucleosynthesis (from the ^4He abundance), the Oklo reactor (from the resonant neutron capture cross-section of Sm), and from meteoretic lifetimes of heavy radioactive isotopes. The bounds on the variation of the fine-structure constant are significantly strengthened in models where all gauge and Yukawa couplings vary in a dependent manner, as would be expected in unified theories. Models which are consistent with all data are severly challenged when Equivalence Principle constraints are imposed.

  11. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  12. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    Science.gov (United States)

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. The "Green" Root Beer Laboratory

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  14. The "Green" Root Beer Laboratory

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  15. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  16. Abscisic Acid: Hidden Architect of Root System Structure

    Directory of Open Access Journals (Sweden)

    Jeanne M. Harris

    2015-08-01

    Full Text Available Plants modulate root growth in response to changes in the local environment, guided by intrinsic developmental genetic programs. The hormone Abscisic Acid (ABA mediates responses to different environmental factors, such as the presence of nitrate in the soil, water stress and salt, shaping the structure of the root system by regulating the production of lateral roots as well as controlling root elongation by modulating cell division and elongation. Curiously, ABA controls different aspects of root architecture in different plant species, perhaps providing some insight into the great diversity of root architecture in different plants, both from different taxa and from different environments. ABA is an ancient signaling pathway, acquired well before the diversification of land plants. Nonetheless, how this ancient signaling module is implemented or interacts within a larger signaling network appears to vary in different species. This review will examine the role of ABA in the control of root architecture, focusing on the regulation of lateral root formation in three plant species, Arabidopsis thaliana, Medicago truncatula and Oryza sativa. We will consider how the implementation of the ABA signaling module might be a target of natural selection, to help contribute to the diversity of root architecture in nature.

  17. Influence of Topography on Root Processes in the Shale Hills-Susquehanna Critical Zone Observatory

    Science.gov (United States)

    Eissenstat, D. M.; Orr, A. S.; Adams, T. S.; Chen, W.; Gaines, K.

    2015-12-01

    Topography can strongly influence root and associated mycorrhizal fungal function in the Critical Zone. In the Shale Hills-Susquehanna Critical Zone Observatory (SSCZO), soil depths range from more than 80 cm deep in the valley floor to about 25 cm on the ridge top. Tree height varies from about 28 m tall at the valley floor to about 17 m tall at the ridge top. Yet total absorptive root length to depth of refusal is quite similar across the hillslope. We find root length density to vary as much at locations only 1-2 m apart as at scales of hundreds of meters across the catchment. Tree community composition also varies along the hillslope, including tree species that vary widely in thickness of their absorptive roots and type of mycorrhiza (arbuscular mycorrhizal and ectomycorrhizal). Studies of trees in a common garden of 16 tree species and in forests near SSCZO indicate that both root morphology and mycorrhizal type can strongly influence root foraging. Species that form thick absorptive roots appear more dependent on mycorrhizal fungi and thin-root species forage more by root proliferation. Ectomycorrhizal trees show more variation in foraging precision (proliferation in a nutrient-rich patch relative to that in an unenriched patch) of their mycorrhizal hyphae whereas AM trees show more variation in foraging precision by root proliferation, indicating alternative strategies among trees of different mycorrhizal types. Collectively, the results provide insight into how topography can influence foraging belowground.

  18. Behaviours of Soil—Root Interface and Their Variations with Wheat Varieties

    Institute of Scientific and Technical Information of China (English)

    HUANGMINGBIN; KANGSHAOZHONG; 等

    1997-01-01

    Water movement into and out of roots depends on the water potential difference between the bulk soil and the root xylem and the total hydraulic conductance of the pathway,which can be divided into three parts, i.e.soil conductance,soil-root conductance and root conductance .The values and relative importance vary with soil water content .The general rule is that water uptake by roots is mainly limited by radial hydraulic conductance of root in wet soils, the soil-root interface becomes a major limiting factor water uptake in moderately dry soils,and the water uptake is limited by the rapidly decreasing soil hydraulic conductance in seriously dry soils .Meanwhile these limiting factors vary with crop variety,and these variations can be used to evaluate the drought-resistance and water use efficiency of crops.

  19. Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species.

    Science.gov (United States)

    Senior, John K; Potts, Brad M; Davies, Noel W; Wooliver, Rachel C; Schweitzer, Jennifer A; Bailey, Joseph K; O'Reilly-Wapstra, Julianne M

    2016-10-01

    Plants are dependent on their root systems for survival, and thus are defended from belowground enemies by a range of strategies, including plant secondary metabolites (PSMs). These compounds vary among species, and an understanding of this variation may provide generality in predicting the susceptibility of forest trees to belowground enemies and the quality of their organic matter input to soil. Here, we investigated phylogenetic patterns in the root chemistry of species within the genus Eucalyptus. Given the known diversity of PSMs in eucalypt foliage, we hypothesized that (i) the range and concentrations of PSMs and carbohydrates in roots vary among Eucalyptus species, and (ii) that phylogenetic relationships explain a significant component of this variation. To test for interspecific variation in root chemistry and the influence of tree phylogeny, we grew 24 Eucalyptus species representing two subgenera (Eucalyptus and Symphyomyrtus) in a common garden for two years. Fine root samples were collected from each species and analyzed for total phenolics, condensed tannins, carbohydrates, terpenes, and formylated phloroglucinol compounds. Compounds displaying significant interspecific variation were mapped onto a molecular phylogeny and tested for phylogenetic signal. Although all targeted groups of compounds were present, we found that phenolics dominated root defenses and that all phenolic traits displayed significant interspecific variation. Further, these compounds displayed a significant phylogenetic signal. Overall, our results suggest that within these representatives of genus Eucalyptus, more closely related species have more similar root chemistry, which may influence their susceptibility to belowground enemies and soil organic matter accrual.

  20. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.

  1. The Roots Of Alienation

    Science.gov (United States)

    Bronfenbrenner, Urie

    1973-01-01

    Alienation in our society takes several forms--withdrawal, hostility, or efforts to reform. The author traces the roots of alienation to our neglect of many of the needs of children, particularly their need for interaction with adults. Among his many recommendations are: modified work schedules to permit more time with children and systems for…

  2. Multiple external root resorption.

    Science.gov (United States)

    Yusof, W Z; Ghazali, M N

    1989-04-01

    Presented is an unusual case of multiple external root resorption. Although the cause of this resorption was not determined, several possibilities are presented. Trauma from occlusion, periodontal and pulpal inflammation, and resorption of idiopathic origin are all discussed as possible causes.

  3. Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation

    Institute of Scientific and Technical Information of China (English)

    CHENG Yunhuan; HAN Youzhi; WANG Qingcheng; WANG Zhengquan

    2006-01-01

    Fine root tumover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from Mav to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine

  4. Hairy roots are more sensitive to auxin than normal roots

    OpenAIRE

    Shen, Wen Hui; Petit, Annik; Guern, Jean; Tempé, Jacques

    1988-01-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exo...

  5. Study on the Root Systems for Different Types of Winter Wheat

    Institute of Scientific and Technical Information of China (English)

    YAN Su-hong; YANG Zhao-sheng; WAN Jun-juan; LI Tie-zhuang; WANG Hai-feng

    2002-01-01

    Root growth traits for different wheat types varied during the growth cycle. The root system of 93 Zhong 6, which is a dwarf, big-ear variety, reached its highest density at anthesis, while the root density of Zhoumai 13, a medium-type variety, demonsrated its highest value during the node elongation stage and decreased rapidly at later growth stages, which resulted in lower yield. The root density of Zhongyu 6 and 98Zhong 18, high yield potential, multiple ears varieties, did not show observable variation in their root systems during their growth cycles.

  6. Biocompatibility of Er:YSGG laser radiated root surfaces

    Science.gov (United States)

    Benthin, Hartmut; Ertl, Thomas P.; Schmidt, Dirk; Purucker, Peter; Bernimoulin, J.-P.; Mueller, Gerhard J.

    1996-01-01

    Pulsed Er:YAG and Er:YSGG lasers are well known to be effective instruments for the ablation of dental hard tissues. Developments in the last years made it possible to transmit the laser radiation at these wavelengths with flexible fibers. Therefore the application in the periodontal pocket may be possible. The aim of this study was to evaluate the in-vitro conditions to generate a bioacceptable root surface. Twenty extracted human teeth, stored in an antibiotic solution, were conventionally scaled, root planed and axially separated into two halves. Two main groups were determined. With the first group laser radiation was carried out without and in the second group with spray cooling. The laser beam was scanned about root surface areas. Laser parameters were varied in a selected range. The biocompatibility was measured with the attachment of human gingival fibroblasts and directly compared to conventionally treated areas of the root surfaces. The fibroblasts were qualified and counted in SEM investigations. On conventionally treated areas gingival fibroblasts show the typical uniform cover. In dependance on the root roughness after laser treatment the fibroblasts loose the typical parallel alignment to the root surface. With spray cooling a better in-vitro attachment could be obtained. Without spray cooling the higher increase in temperature conducted to less bioacceptance by the human gingival fibroblasts to the root surface. These results show the possibility of producing bioacceptable root surfaces with pulsed laser radiation in the range of very high water absorption near 3 micrometer.

  7. Variation in root wood anatomy

    NARCIS (Netherlands)

    Cutler, D.F.

    1976-01-01

    Variability in the anatomy of root wood of selected specimens particularly Fraxinus excelsior L. and Acer pseudoplatanus L. in the Kew reference microscope slide collection is discussed in relation to generalised statements in the literature on root wood anatomy.

  8. Variation in root wood anatomy

    NARCIS (Netherlands)

    Cutler, D.F.

    1976-01-01

    Variability in the anatomy of root wood of selected specimens particularly Fraxinus excelsior L. and Acer pseudoplatanus L. in the Kew reference microscope slide collection is discussed in relation to generalised statements in the literature on root wood anatomy.

  9. Review on tropical root and tuber crops. II. Physiological disorders in freshly stored roots and tubers.

    Science.gov (United States)

    Ravi, V; Aked, J

    1996-10-01

    Tropical root and tubers, including cassava, sweet potato, yams and aroids, have been reported to show an increase in respiratory activity after harvest and injury and subsequent storage in association with their deterioration. This leads to loss of water and carbohydrate. Cassava roots often show discoloration of the tissue with development of pigments in the xylem vessels (vascular streaking or primary/physiological deterioration). This has been established to be enzymatic in nature. Pruning the cassava stem, leaving about a 20- to 30-cm stub prior to harvest, could delay the onset of primary deterioration. Sweet potato roots and yam tubers show a peak respiratory activity immediately or 1 d after harvest. The respiratory rate, however, declines during the subsequent storage period. Yam tubers show a further increase in respiratory activity at the breakage of dormancy occurring at the time of sprouting. Dormancy in yam tubers has been studied in some detail. Different species of yams vary in their dormancy period, a major factor that accounts for the variation in their storage life. Little information is available on the dormancy of sweet potato and aroids. Tropical roots and tubers exhibit "chilling injury" when stored at temperatures below a critical level. The critical cold-storage temperatures range between 10 and 15 degrees C for different tropical root and tuber crops.

  10. Influence of varied doping structure on photoemissive property of photocathode

    Institute of Scientific and Technical Information of China (English)

    Niu Jun; Zhang Yi-Jun; Chang Ben-Kang; Xiong Ya-Juan

    2011-01-01

    The built-in electric fields within a varied doping GaAs photocathode may promote the transport of electrons from the bulk to the surface, thus the quantum efficiency of the cathode can be enhanced remarkably. But this enhancement,which might be due to the increase in either the number or the energy of electrons reaching the surface, is not clear at present. In this paper, the energy distributions of electrons in a varied doping photocathode and uniform doping photocathode before and after escaping from the cathode surface are analysed, and the number of electrons escaping from the surface in different cases is calculated for the two kinds of photocathodes. The results indicate that the varied doping structure can not only increase the number of electrons reaching the surface but also cause an offset of the electron energy distribution to high energy. That is the root reason for the enhancement of the quantum efficiency of a varied doping GaAs photocathode.

  11. Function of root apical meristem

    OpenAIRE

    Benešová, Šárka

    2013-01-01

    A root apical meristem is the only source of cells for all tissues in the root. The root growth relies on its function. Regulation of a cell division frequency and cell differentiation affects organization and function of the differentiated tissues and the proper meristem function. If the cell differentiation overbalances the cell proliferation, the meristem exhaustion occurs and the root growth irreversibly terminates. This thesis describes existing knowledge about regulation of the primary ...

  12. Hairy roots are more sensitive to auxin than normal roots

    Science.gov (United States)

    Shen, Wen Hui; Petit, Annik; Guern, Jean; Tempé, Jacques

    1988-01-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  13. Adventitious root formation in Arabidopsis

    NARCIS (Netherlands)

    Massoumi, Mehdi

    2016-01-01

    Adventitious root (AR) formation is indispensable in vegetative propagation and is widely used. A better understanding of the underlying mechanisms is needed to improve rooting treatments. We first established a system to study rooting in Arabidopsis, the model organism in plant biology but only occ

  14. Negative phototropism of rice root

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@It is often believed that the stem of higher plants has characteristics of positive phototropism, and the root shows no phototropism or no sensitivity to light though the root of Arabdopsis was reported possessing characteristics of negative phototropism. In this study, a distinct negative phototropism of the root system of rice seedlings was observed.

  15. Metagenomics at Grass Roots

    Indian Academy of Sciences (India)

    Sudeshna Mazumdar-Leighton; Vivek K Choudhary

    2017-03-01

    Metagenomics is a robust, interdisciplinary approach for studyingmicrobial community composition, function, and dynamics.It typically involves a core of molecular biology, microbiology,ecology, statistics, and computational biology. Excitingoutcomes anticipated from these studies include unravelingof complex interactions that characterize the ecologicalmilieu of microbial communities. Diverse habitats fromwhich metagenomes have been reported include human guts,caterpillar guts, thermal vents in oceans, ore deposits, polarcaps, and even soils that adhere to plant roots. Knowledgegenerated from metagenomic projects has tremendous potentialto benefit human health, agriculture, and ecosystemfunctions. This article provides a brief history of technicaladvances in metagenomics, including DNA sequencing methods,and some case studies. A specific example is providedof microbial metagenomes found at the roots of native grassspecies (family Poaceae) that can grow on degraded lands undergoingrevegetation.

  16. Rooting an Android Device

    Science.gov (United States)

    2015-09-01

    tools that grant root privileges for both Windows and Linux . For the Linux system, open a shell window and use “cd” command to change the directory...defined as a process of gaining administrative commands and functions of an operating system (OS). In order to monitor live network traffic on any... Linux -based or, in this case, Android system, it is necessary to have administrative rights to gain access to any of the hardware devices, such as the

  17. Roots of pioneer trees in the lower sub-tropical area of Dinghushan, Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    HAO Yan-ru; PENG Shao-lin; MO Jiang-ming; LIU Xin-wei; CHEN Zhuo-quan; ZHOU Kai; WU Jin-rong

    2006-01-01

    Representative pioneer tree root systems in the subtropical area of South China were examined with regard to their structure, underground stratification and biomass distribution. Excavation of skeleton roots and observation of fine roots of seven species including the Euphorbiaceae, Theaceae, Melastomataceae, Lauraceae and Fagaceae families was carried out. The results showed that: (1) Pioneer tree roots in the first stage of natural succession were of two types, one characterized by taproot system with bulky plagiotropic branches; the other characterized by flat root system with several tabular roots. The late mesophilous tree roots were characterized by one obvious taproot and tactic braches roots up and down. Shrub species roots were characterized by heart fibrous root type featured both by horizontally and transversally growing branches. Root shapes varied in different dominant species at different stages of succession. (2) Roots of the different species varied in the external features-color, periderm and structure of freshly cut slash. (3) In a set of successional stages the biomass of tree roots increased linearly with the age of growth. During monsoon, the total root biomass amounted to 115.70 t/ha in the evergreen broad-leaved forest; 50.61t/ha in needle and broad-leaved mixed forest dominated by coniferous forest; and 64.20 t/ha in broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes, and are comparable to the underground biomass observed in similar tropical forests. Thisis the first report about roots characteristics of forest in the lower sub-tropical area of Dinghushan, Guangdong, China.

  18. Density of the continental roots: Compositional and thermal contributions

    Science.gov (United States)

    Kaban, M.K.; Schwintzer, P.; Artemieva, I.M.; Mooney, W.D.

    2003-01-01

    The origin and evolution of cratonic roots has been debated for many years. Precambrian cratons are underlain by cold lithospheric roots that are chemically depleted. Thermal and petrologic data indicate that Archean roots are colder and more chemically depleted than Proterozoic roots. This observation has led to the hypothesis that the degree of depletion in a lithospheric root depends mostly on its age. Here we test this hypothesis using gravity, thermal, petrologic, and seismic data to quantify differences in the density of cratonic roots globally. In the first step in our analysis we use a global crustal model to remove the crustal contribution to the observed gravity. The result is the mantle gravity anomaly field, which varies over cratonic areas from -100 to +100 mGal. Positive mantle gravity anomalies are observed for cratons in the northern hemisphere: the Baltic shield, East European Platform, and the Siberian Platform. Negative anomalies are observed over cratons in the southern hemisphere: Western Australia, South America, the Indian shield, and Southern Africa. This indicates that there are significant differences in the density of cratonic roots, even for those of similar age. Root density depends on temperature and chemical depletion. In order to separate these effects we apply a lithospheric temperature correction using thermal estimates from a combination of geothermal modeling and global seismic tomography models. Gravity anomalies induced by temperature variations in the uppermost mantle range from -200 to +300 mGal, with the strongest negative anomalies associated with mid-ocean ridges and the strongest positive anomalies associated with cratons. After correcting for thermal effects, we obtain a map of density variations due to lithospheric compositional variations. These maps indicate that the average density decrease due to the chemical depletion within cratonic roots varies from 1.1% to 1.5%, assuming the chemical boundary layer has the same

  19. Root architecture remodeling induced by phosphate starvation.

    Science.gov (United States)

    Sato, Aiko; Miura, Kenji

    2011-08-01

    Plants have evolved efficient strategies for utilizing nutrients in the soil in order to survive, grow, and reproduce. Inorganic phosphate (Pi) is a major macroelement source for plant growth; however, the availability and distribution of Pi are varying widely across locations. Thus, plants in many areas experience Pi deficiency. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition, limit Pi consumption, and adjust Pi recycling internally under Pi starvation conditions. This review focuses on the molecular regulators that modulate Pi starvation-induced root architectural changes.

  20. Nitrogenase Activity Associated with Halodule wrightii Roots

    OpenAIRE

    Smith, Garriet W.; Hayasaka, Steven S.

    1982-01-01

    Nitrogen fixation (acetylene reduction) associated with roots of the seagrass Halodule wrightii was measured offshore near Beaufort and Moorhead City, N.C. Rates of acetylene reduction were higher in aerobic than in anaerobic assays and were linear for up to 5 days. The temperature range for acetylene reduction was 15 to 35°C with a maximum activity at 35°C. Nitrogenase activity was shown to vary seasonally with highest activities occurring during warmer summer months (23 μg of N2 fixed per m...

  1. An evaluation of root resorption after orthodontic treatment.

    Science.gov (United States)

    Thomas, E; Evans, W G; Becker, P

    2012-08-01

    Root resorption is commonly seen, albeit in varying degrees, in cases that have been treated orthodontically. In this retrospective study the objective was to compare the amount of root resorption observed after active orthodontic treatment had been completed with one of three different appliance systems, namely, Tip Edge, Modified Edgewise and Damon. The sample consisted of pre and post-treatment cephalograms of sixty eight orthodontic cases. Root resorption of the maxillary central incisor was assessed from pre- and post- treatment lateral ce phalograms using two methods. In the first, overall tooth length from the incisal edge to the apex was measured on both pre and post-treatment lateral cephalograms and root resorption was recorded as an actual millimetre loss of tooth length. There was a significant upward linear trend (p = 0.052) for root resorption from the Tip Edge Group to the Damon Group. In the second method root resorption was visually evaluated by using the five grade ordinal scale of Levander and Malmgren (1988). It was found that the majorty of cases in the sample came under Grade 1 and Grade 2 category of root resorption. Statistical evaluation tested the extent of agree ment in this study between visual measurements and actual measurements and demonstrated a significant association (p = 0.018) between the methods.

  2. Linking root traits to potential growth rate in six temperate tree species

    NARCIS (Netherlands)

    Comas, L.H.; Bouma, T.J.; Eissenstat, D.M.

    2002-01-01

    There is an extremely limited understanding of how plants of different potential growth rate vary in root traits, especially in woody species. We contrasted fine root morphology, physiology, and elemental construction between a fast- and a slow-growing species in each of three families: Aceraceae (m

  3. Volatile constituents and biological activities of the leaf and root of Echinacea species from South Africa

    Directory of Open Access Journals (Sweden)

    M. Nyalambisa

    2017-03-01

    It is concluded that root and leaf of this Echinacea species contain volatile oils which varied in their yield and chemical compositions. The essential root oil is non-toxic orally and it demonstrated significant anti-inflammatory and analgesic activities in laboratory animals.

  4. Multiple species-specific controls of root-feeding nematodes in natural soils

    NARCIS (Netherlands)

    Piśkiewicz, A.M.; Duyts, H.; Van der Putten, W.H.

    2008-01-01

    One of the major limitations to enhance sustainability of crop production systems is the inability to control root-feeding nematodes without using chemical biocides. In soils under wild vegetation, however, root-feeding nematodes affect plant performance and plant community composition varying from

  5. Multiple species-specific controls of root-feeding nematodes in natural soils

    NARCIS (Netherlands)

    Piskiewicz, A.M.; Duyts, H.; Putten, van der W.H.

    2008-01-01

    One of the major limitations to enhance sustainability of crop production systems is the inability to control root-feeding nematodes without using chemical biocides. In soils under wild vegetation, however, root-feeding nematodes affect plant performance and plant community composition varying from

  6. Back to the roots!

    DEFF Research Database (Denmark)

    Woermann, Niklas

    2017-01-01

    This article argues that one can revive the critical edge that postmodernist theory has brought to marketing, thinking without subscribing to any particular school of (critical) theory by following the principle of methodological situationalism. The roots of postmodernist critique lie in careful...... of social order into account, hence fail to provide sensible insight. I propose the principle of methodological situationalism as a litmus test to the analytical strength of a theory or piece of research. The principle states that theoretically adequate accounts of social phenomena must be grounded...

  7. The Roots of Beowulf

    Science.gov (United States)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  8. Bioremediation of phenolic compounds from water with plant root surface peroxidases

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.R.; Arora, R.; El Ghaouth, A. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1994-09-01

    Peroxidases have been shown to polymerize phenolic compounds, thereby removing them from solution by precipitation. Others have studied the role of root surface associated peroxidases as a defense against fungal root pathogens; however, their use in detoxification of organic pollutants in vivo at the root surface has not been studied. Two plant species, waterhyacinth [Eichhornia crassipes (C. Mart) Solms-Laub.] and tomato (Lycopersicon esculentum L.), were tested for both in vitro and in vivo peroxidase activity on the root surface. In vitro studies indicated that root surface peroxidase activities were 181 and 78 nmol tetraguaiacol formed min{sup -1} g{sup -1} root fresh wt., for tomato and waterhyacinth, respectively. Light microscope studies revealed that guaiacol was polymerized in vivo at the root surface. Although peroxidase was evenly distributed on tomato roots, it was distributed patchily on waterhyacinth roots. In vitro studies using gas chromatography-mass spectrometry (GC-MS) showed that the efficiency of peroxidase to polymerize phenols vary with phenolic compound. We suggest that plants may be utilized as a source of peroxidases for removal of phenolic compounds that are on the EPA priority pollutant list and that root surface peroxidases may minimize the absorption of phenolic compounds into plants by precipitating them at the root surface. In this study we have identified a new use for root-associated proteins in ecologically engineering plant systems for bioremediation of phenolic compounds in the soil and water environment. 25 refs., 2 figs., 2 tabs.

  9. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  10. Matching roots to their environment.

    Science.gov (United States)

    White, Philip J; George, Timothy S; Gregory, Peter J; Bengough, A Glyn; Hallett, Paul D; McKenzie, Blair M

    2013-07-01

    Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. This article provides the context for a Special Issue of Annals of Botany on 'Matching Roots to Their Environment'. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future.

  11. RootNav: navigating images of complex root architectures.

    Science.gov (United States)

    Pound, Michael P; French, Andrew P; Atkinson, Jonathan A; Wells, Darren M; Bennett, Malcolm J; Pridmore, Tony

    2013-08-01

    We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist's satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav's core representation.

  12. Geophysical Imaging of Root Architecture and Root-soil Interaction

    Science.gov (United States)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  13. [Flexible root posts].

    Science.gov (United States)

    Vadachkoriia, N R; Mandzhavidze, N A; Gumberidze, N Sh

    2009-02-01

    The article discusses the current state of restoration techniques of root canal treatment. Nowadays, technical progress allows manufacturers to develop flexible fiberglass posts, aspiring not only to an excellent aesthetics and mechanical properties (first of all, in comparison with metal and cast posts), but also to maintenance of their radio density and a wide range of forms. Growth of fiberglass posts popularity testifies to their clinical efficiency that also is confirmed by results of long-term researches. Introduction of fiberglass posts in a dental practice has rendered huge influence on restoration techniques of root canal treatment. Convincing factors of fiberglass posts superiority provide restoration the appearance similar with the natural dentition; possess close to dentine elasticity; creation of monolithic structure with hard tooth tissues and composite cement, posts, in case of need, can be easily adjusted on length, adhesive linkage of posts gives them additional stability. Modern researches have confirmed that only elastic, namely carbon fiber and the fiberglass posts made of modern technologies possess similar physical properties, as tooth structure. They can create reliable biomimetic design; solve a complex of aesthetic and functional restoration problems.

  14. Multivariate ultrametric root counting

    CERN Document Server

    Avendano, Martin

    2011-01-01

    Let $K$ be a field, complete with respect to a discrete non-archimedian valuation and let $k$ be the residue field. Consider a system $F$ of $n$ polynomial equations in $K\\vars$. Our first result is a reformulation of the classical Hensel's Lemma in the language of tropical geometry: we show sufficient conditions (semiregularity at $w$) that guarantee that the first digit map $\\delta:(K^\\ast)^n\\to(k^\\ast)^n$ is a one to one correspondence between the solutions of $F$ in $(K^\\ast)^n$ with valuation $w$ and the solutions in $(k^\\ast)^n$ of the initial form system ${\\rm in}_w(F)$. Using this result, we provide an explicit formula for the number of solutions in $(K^\\ast)^n$ of a certain class of systems of polynomial equations (called regular), characterized by having finite tropical prevariety, by having initial forms consisting only of binomials, and by being semiregular at any point in the tropical prevariety. Finally, as a consequence of the root counting formula, we obtain the expected number of roots in $(K...

  15. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    Science.gov (United States)

    York, Larry

    2015-04-01

    whorls in maize is introduced, and field work demonstrated how the variation within the root crown has functional significance for nitrogen acquisition. Nodal root number was decomposed to more elemental phenes including the number of nodes and the occupancies of each node. Simulations demonstrated that root systems forming fewer nodal roots and with delayed emergence perform well in low nitrogen soils. Nitrate uptake kinetics (NUK) also varied within the maize root system, and simulations showing a lack of interaction between NUK and RSA reflects a knowledge gap in the costs of NUK at the molecular level. Finally, maize RSA among hybrids from different era periods over the past 100 years suggests evolution towards more nitrogen efficient root phene states. This work will be discussed within the context of next-generation root phenotyping of cereals, the dilemma between extensive and intensive phenotyping, and the need for linking across scales and methods.

  16. Tensile forces and failure characteristics of individual and bundles of roots embedded in soil - experiments and modeling

    Science.gov (United States)

    Schwarz, Massimiliano; Cohen, Dedis; Or, Dani

    2010-05-01

    The quantification of soil root reinforcement is relevant for many aspects of hillslope stability and forest management. The abundance and distribution of roots in upper soil layers determines slope stability and is considered a mitigating factor reducing shallow landslide hazard. Motivated by advances in modeling approaches that account for soil-root mechanical interactions at single root and bundle of roots of different geometries (the root bundle model - RBM), we set up a series of root pull out experiments in the laboratory and in the field to study the mechanical behavior of pulled roots. We focused on the role of displacement and root failure mechanisms in determining global tensile strength and failure dynamics in a root bundle. Strain controlled pull out tests of up to 13 roots in parallel each with its own force measurements provided insights into the detailed soil-root and bundle interactions . The results enabled systematic evaluation of factors such as root tortuosity and branching patterns for the prediction of single root pull out behavior, and demonstrated the importance of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Analyses of root-soil interface friction shows that force-displacement behavior varies for different combinations of soil types and water content. The maximal pull out interfacial friction ranges between 1 for wet sand (under 2 kPa confining pressure) and 17 kPa for dry sand (under 4.5 kPa confining pressure). These experiments were instrumental for calibration of the RBM which was later validated with six field experiments on natural root bundles of spruce (Picea abies L.). The tests demonstrated the progressive nature of failure of a bundle of roots under strain controlled conditions (such as formation of tension crack on a vegetated hillslope), and provide important insights regarding stress-strain behavior of natural root reinforcement.

  17. ROOT Tutorial for Summer Students

    CERN Document Server

    CERN. Geneva; Piparo, Danilo

    2015-01-01

    ROOT is a "batteries-included" tool kit for data analysis, storage and visualization. It is widely used in High Energy Physics and other disciplines such as Biology, Finance and Astrophysics. This event is an introductory tutorial to ROOT and comprises a front lecture and hands on exercises. IMPORTANT NOTE: The tutorial is based on ROOT 6.04 and NOT on the ROOT5 series.  IMPORTANT NOTE: if you have ROOT 6.04 installed on your laptop, you will not need to install any virtual machine. The instructions showing how to install the virtual machine on which you can find ROOT 6.04 can be found under "Material" on this page.

  18. Auxin control of root development.

    Science.gov (United States)

    Overvoorde, Paul; Fukaki, Hidehiro; Beeckman, Tom

    2010-06-01

    A plant's roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.

  19. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  20. Properties of Estimated Characteristic Roots

    DEFF Research Database (Denmark)

    Nielsen, Bent; Nielsen, Heino Bohn

    Estimated characteristic roots in stationary autoregressions are shown to give rather noisy information about their population equivalents. This is remarkable given the central role of the characteristic roots in the theory of autoregressive processes. In the asymptotic analysis the problems appear...... when multiple roots are present as this imply a non-differentiability so the d-method does not apply, convergence rates are slow, and the asymptotic distribution is non-normal. In finite samples this has a considerable influence on the finite sample distribution unless the roots are far apart....... With increasing order of the autoregressions it becomes increasingly difficult to place the roots far apart giving a very noisy signal from the characteristic roots....

  1. Nitrogen Additions Affect Root Dynamics in a Boreal Forest Ecosystem

    Science.gov (United States)

    Turner, K. M.; Treseder, K. K.

    2004-12-01

    As with many ecosystems, North American boreal forests are increasingly subjected to anthropogenic nitrogen deposition. To examine potential effects on plant growth, we created nitrogen fertilization plots in three sites along an Alaskan fire chronosequence composed of forests aged 5, 17, and 80 years. Each site had been exposed to two years of nitrogen fertilization, with four control plots and four nitrogen plots per site. General observations indicate that aboveground net primary productivity appears to be nitrogen limited in each site. We hypothesized that nitrogen fertilization would positively influence root dynamics as well, with nitrogen additions resulting in an increase in standing root biomass and length. To test our hypothesis, we used a minirhizotron camera to collect sequential images of roots in the top 10 cm of soil in both nitrogen fertilized and control plots in each site. Images were collected monthly during the growing season, with a total of five sampling times between May 2003 and May 2004. We then analyzed the images with WinRhizotron root measurement software. Nitrogen fertilization had varying effects on root biomass among the three sites, with a significant site by N interaction (P = 0.039). A decrease in root biomass was observed in the 5 and 80 year old sites, dropping from 207 g/m2 to 79 g/m2 and from 230 g/m2 to 129 g/m2 for the youngest and oldest sites, respectively. In contrast, root biomass increased from 52 g/m2 to 107 g/m2 in the 17 year old site. (Values are for the top 10 cm of soil only, and likely underestimate total root stocks.) Patterns in standing root lengths diverged from those of root biomass, with a 2.5-fold overall increase under nitrogen fertilization across all sites (P = 0.004). There were no significant differences among sites in nitrogen response. Standing root biomass and length differed from one another in their responses to nitrogen fertilization because nitrogen additions decreased specific root weight (as g

  2. Comparing Leaf and Root Insertion

    Directory of Open Access Journals (Sweden)

    Jaco Geldenhuys

    2010-07-01

    Full Text Available We consider two ways of inserting a key into a binary search tree: leaf insertion which is the standard method, and root insertion which involves additional rotations. Although the respective cost of constructing leaf and root insertion binary search trees trees, in terms of comparisons, are the same in the average case, we show that in the worst case the construction of a root insertion binary search tree needs approximately 50% of the number of comparisons required by leaf insertion.

  3. GPU Generation of Large Varied Animated Crowds

    OpenAIRE

    Isaac Rudomin; Benjamín Hernández; Oriam de Gyves; Leonel Toledo; Ivan Rivalcoba; Sergio Ruiz

    2013-01-01

    ..We discuss several steps in the process of simulating and visualizing large and varied crowds in real time for consumer-level computers and graphic cards (GPUs). Animating varied crowds using a diversity of models and animations (assets) is complex and costly. One has to use models that are expensive if bought, take a long time to model, and consume too much memory and computing resources. We discuss methods for simulating, generating, animating and rendering crowds of varied aspect and a d...

  4. A new varied-time photonic crystals

    OpenAIRE

    Wu, Xiang-Yao; Ma, Ji; Liu, Xiao-Jing; Liang, Yu; Li, Hong; Chen, Wan-Jin; Yuan, Hong-chun; Li, Heng-Mei

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...

  5. Inflationary Phase with Time Varying Fundamental Constants

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2002-01-01

    Following Barrow, and Barrow and collaborators, we find a cosmological JBD model, with varying speed of light and varying fine structure constant, where the deceleration parameter is -1,causing acceleration of the Universe.Indeed, we have an exponential inflationary phase. Plancks time, energy, length,etc.,might have had different numerical values in the past, than those available in the litterature, due to the varying values for speed of light, and gravitational constant.

  6. A new varied-time photonic crystals

    OpenAIRE

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...

  7. Root system and its role in forest dieback

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, H.F.

    1985-07-10

    Mycorrhizas have but a short life-time and have to be renewed time and again. They will form only on young roots which are still growing and may be suppressed by certain soil factors like too high a content of mineral nitrogen. The ''new type of forest damage'' is accompanied by a severe decline or loss of the micro-root system. This may be due to various major causes corresponding to different pollutants varying in area and time, with the other causes accompanying in terms of a base load. Disease-triggering load factors may be: a) air pollutants resulting in a reduction of photosynthesis outputs (root damage would then be the result of damage to broad and needle leaves). b) Pollutant input into the soil which directly affects new formation of roots and mycorrhizas (decreasing photosynthesis would then be the result of root damage). Pollutant input into the soil is of great importance in terms of a factor directly acting on the roots. Too high a content of mineral nitrogen (and sulphate) inhibits the formation of new lateral roots and of mycorrhizas thus bringing about a shift in the scion-to-root ratio favouring the scion. The root surface taking up water must be adjusted to the leaf surface giving off water in dependence of the individual site conditions. This necessary harmony between all plant parts is jeopardized by pollutant inputs into the soil and by air-borne pollutants affecting the leaves. Drought or increased subjection to winds in exposed locations will thus result in a premature death in trees affected in their water supply co-efficient.

  8. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to

  9. Roots of the Chromatic Polynomial

    DEFF Research Database (Denmark)

    Perrett, Thomas

    a tight lower bound on the smallest non-trivial chromatic root of a graph admitting a spanning tree with at most three leaves. Here, non-trivial means different from 0 or 1. This extends a theorem of Thomassen on graphs with Hamiltonian paths. We also prove similar lower bounds on the chromatic roots...... of several graph families. In particular, we show that the chromatic roots of planar graphs are dense in the interval (3; 4), except for a small interval around _ + 2 _ 3:618, where _ denotes the golden ratio. We also investigate the chromatic roots of related minor-closed classes of graphs and bipartite...

  10. The roots of human destructiveness

    National Research Council Canada - National Science Library

    Sabby Sagall

    2014-01-01

    .... I emphasise the contributions of the Frankfurt School, particularly Erich Fromm, and Wilhelm Reich, to our understanding of individual and class consciousness, and of the roots of destructiveness...

  11. Root Scaling Study ; Description of the DNS Root Scaling Model

    NARCIS (Netherlands)

    Gijsen, B.; Jamakovic, A.; Roijers, F.

    2009-01-01

    In opdracht van de Internet Corporation for Assigned Names and Numbers (ICANN), de organisatie verantwoordelijk voor het beheren van de Root zone, heeft TNO onderzoek gedaan naar de schaalbaarheid van de Root zone. Welke impact kunnen de invoering van secure DNS (DNSSEC) en IPv6 en de uitbreiding

  12. The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play?

    Science.gov (United States)

    Gambetta, G A; Manuck, C M; Drucker, S T; Shaghasi, T; Fort, K; Matthews, M A; Walker, M A; McElrone, A J

    2012-11-01

    Vitis vinifera scions are commonly grafted onto rootstocks of other grape species to influence scion vigour and provide resistance to soil-borne pests and abiotic stress; however, the mechanisms by which rootstocks affect scion physiology remain unknown. This study characterized the hydraulic physiology of Vitis rootstocks that vary in vigour classification by investigating aquaporin (VvPIP) gene expression, fine-root hydraulic conductivity (Lp(r)), % aquaporin contribution to Lp(r), scion transpiration, and the size of root systems. Expression of several VvPIP genes was consistently greater in higher-vigour rootstocks under favourable growing conditions in a variety of media and in root tips compared to mature fine roots. Similar to VvPIP expression patterns, fine-root Lp(r) and % aquaporin contribution to Lp(r) determined under both osmotic (Lp(r)(Osm)) and hydrostatic (Lp(r)(Hyd)) pressure gradients were consistently greater in high-vigour rootstocks. Interestingly, the % aquaporin contribution was nearly identical for Lp(r)(Osm) and Lp(r)(Hyd) even though a hydrostatic gradient would induce a predominant flow across the apoplastic pathway. In common scion greenhouse experiments, leaf area-specific transpiration (E) and total leaf area increased with rootstock vigour and were positively correlated with fine-root Lp(r). These results suggest that increased canopy water demands for scion grafted onto high-vigour rootstocks are matched by adjustments in root-system hydraulic conductivity through the combination of fine-root Lp(r) and increased root surface area.

  13. Endodontic management of mandibular second premolar with three roots and three root canals: A case report

    Directory of Open Access Journals (Sweden)

    Nidhi Shrivastava

    2014-01-01

    Full Text Available High level of success in endodontic treatment requires an understanding of root canal anatomy and morphology. The clinician must be prepared to identify those teeth that tend to vary generally from norm. Thorough debridement and obturation of such teeth can be challenging and failing to do so can lead to treatment failure. Mandibular premolars have earned the reputation for having aberrant anatomy. However, the occurrence of three separate canals with three separate foramina in mandibular premolars is very rare. The incidence of three canals is as high as 23% in mandibular first premolars, whereas in second premolars incidence is as low as 0.4%. Three rooted mandibular second premolar is reported to be 0.2%. This case report describes endodontic management of one such tooth with unusual morphological variations in canal anatomy of mandibular second premolar.

  14. Time varying effects in survival analysis

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2002-01-01

    additive risk model; counting process; proportional hazards model; semi-parametric models; survival data; time-varying effects; nonparametric testing......additive risk model; counting process; proportional hazards model; semi-parametric models; survival data; time-varying effects; nonparametric testing...

  15. Fractal analysis of time varying data

    Science.gov (United States)

    Vo-Dinh, Tuan; Sadana, Ajit

    2002-01-01

    Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.

  16. The lateral root initiation index: an integrative measure of primordium formation

    Science.gov (United States)

    Dubrovsky, J. G.; Soukup, A.; Napsucialy-Mendivil, S.; Jeknić, Z.; Ivanchenko, M. G.

    2009-01-01

    Background and Aims Lateral root initiation is an essential and continuous process in the formation of root systems; therefore, its quantitative analysis is indispensable. In this study a new measure of lateral root initiation is proposed and analysed, namely the lateral root initiation index (ILRI), which defines how many lateral roots and/or primordia are formed along a parent-root portion corresponding to 100 cortical cells in a file. Methods For data collection, a commonly used root clearing procedure was employed, and a new simple root clearing procedure is also proposed. The ILRI was determined as 100dl, where d is the density of lateral root initiation events (number mm−1) and l is the average fully elongated cortical cell length (mm). Key Results Analyses of different Arabidopsis thaliana genotypes and of a crop plant, tomato (Solanum lycopersicum), showed that ILRI is a more precise parameter than others commonly used as it normalizes root growth for variations in cell length. Lateral root primordium density varied in the A. thaliana accessions Col, Ler, Ws, and C24; however, in all accessions except Ws, ILRI was similar under the same growth conditions. The nitrogen/carbon ratio in the growth medium did not change the lateral root primordium density but did affect ILRI. The ILRI was also modified in a number of auxin-related mutants, revealing new root branching phenotypes in some of these mutants. The rate of lateral root initiation increased with Arabidopsis seedling age; however, ILRI was not changed in plants between 8 and 14 d post-germination. Conclusions The ILRI allows for a more precise comparison of lateral root initiation under different growth conditions, treatments, genotypes and plant species than other comparable methods. PMID:19151042

  17. Searching for Roots / Pierre Gervasoni

    Index Scriptorium Estoniae

    Gervasoni, Pierre

    1997-01-01

    Uuest heliplaadist "Searching for Roots. Eduard Tubin: Symphonie no 11; Arvo Pärt: Nekrolog-Symphonie no 1; Erkki-Sven Tüür: Searching for Roots - Insula deserta - Zeitraum; Orchestre philharmonique royal de Stockholm, Paavo Järvi (direction)" Virgin Classics 5 45212 2 (distribue par EMI)

  18. Properties of Estimated Characteristic Roots

    DEFF Research Database (Denmark)

    Nielsen, Bent; Nielsen, Heino Bohn

    Estimated characteristic roots in stationary autoregressions are shown to give rather noisy information about their population equivalents. This is remarkable given the central role of the characteristic roots in the theory of autoregressive processes. In the asymptotic analysis the problems appear...

  19. Determinants and Polynomial Root Structure

    Science.gov (United States)

    De Pillis, L. G.

    2005-01-01

    A little known property of determinants is developed in a manner accessible to beginning undergraduates in linear algebra. Using the language of matrix theory, a classical result by Sylvester that describes when two polynomials have a common root is recaptured. Among results concerning the structure of polynomial roots, polynomials with pairs of…

  20. Project Work on Plant Roots.

    Science.gov (United States)

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  1. Using thermodynamics to assess biotic and abiotic impediments to root water uptake

    Science.gov (United States)

    Bechmann, Marcel; Hildebrandt, Anke; Kleidon, Axel

    2016-04-01

    Root water uptake has been the subject of extensive research, dealing with understanding the processes limiting transpiration and understanding strategies of plants to avoid water stress. Many of those studies use models of water flow from the soil through the plant into the atmosphere to learn about biotic and abiotic factors affecting plant water relations. One important question in this context is to identify those processes that are most limiting to water transport, and specifically whether these processes lie within the plant or the soil? Here, we propose to use a thermodynamic formulation of root water uptake to answer this question. The method allows us to separate the energy exported at the root collar into a sum of energy fluxes related to all processes along the flow path, notably including the effect of increasing water retention in drier soils. Evaluation of the several contributions allows us to identify and rank the processes by how much these impede water flow from the soil to the atmosphere. The application of this approach to a complex 3-dimensional root water uptake model reveals insights on the role of root versus soil resistances to limit water flow. We investigate the efficiency of root water uptake in an ensemble of root systems with varying root hydraulic properties. While root morphology is kept the same, root radial and axial resistances are artificially varied. Starting with entirely young systems (uptake roots, high radial, low axial conductance) we increasingly add older roots (transport roots, high axial, low radial conductance) to improve transport within root systems. This yields a range of root hydraulic architectures, where the extremes are limited either by radial uptake capacity or low capacity to transport water along the root system. We model root water uptake in this range of root systems with a 3-dimensional root water uptake model in two different soils, applying constant flux boundary conditions in a dry down experiment and

  2. Effects of Tomato Root Exudates on Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Guodong Yang

    Full Text Available Plant root exudates affect root-knot nematodes egg hatch. Chemicals in root exudates can attract nematodes to the roots or result in repellence, motility inhibition or even death. However, until recently little was known about the relationship between tomato root exudates chemicals and root-knot nematodes. In this study, root exudates were extracted from three tomato rootstocks with varying levels of nematode resistance: Baliya (highly resistant, HR, RS2 (moderately resistant, MR and L-402 (highly susceptible, T. The effects of the root exudates on Meloidogyne incognita (M. incognita egg hatch, survival and chemotaxis of second-stage juveniles (J2 were explored. The composition of the root exudates was analysed by gas chromatography/mass spectrometry (GC/MS prior to and following M. incognita inoculation. Four compounds in root exudates were selected for further analysis and their allopathic effect on M. incognita were investigated. Root exudates from each tomato rootstocks (HR, MR and T strains suppressed M. incognita egg hatch and increased J2 mortality, with the highest rate being observed in the exudates from the HR plants. Exudate from HR variety also repelled M. incognita J2 while that of the susceptible plant, T, was demonstrated to be attractive. The relative amount of esters and phenol compounds in root exudates from HR and MR tomato rootstocks increased notably after inoculation. Four compounds, 2,6-Di-tert-butyl-p-cresol, L-ascorbyl 2,6-dipalmitate, dibutyl phthalate and dimethyl phthalate increased significantly after inoculation. The egg hatch of M. incognita was suppressed by each of the compound. L-ascorbyl 2,6-dipalmitate showed the most notable effect in a concentration-dependent manner. All four compounds were associated with increased J2 mortality. The greatest effect was observed with dimethyl phthalate at 2 mmol·L-1. Dibutyl phthalate was the only compound observed to repel M. incognita J2 with no effect being detected in

  3. Cassava root membrane proteome reveals activities during storage root maturation.

    Science.gov (United States)

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  4. Varying Alpha and the Electroweak Model

    CERN Document Server

    Kimberly, D; Kimberly, Dagny; Magueijo, Joao

    2003-01-01

    Inspired by recent claims for a varying fine structure constant, alpha, we investigate the effect of ``promoting coupling constants to variables'' upon various parameters of the standard model. We first consider a toy model: Proca's theory of the massive photon. We then explore the electroweak theory with one and two dilaton fields. We find that a varying alpha unavoidably implies varying W and Z masses. This follows from gauge invariance, and is to be contrasted with Proca' theory. For the two dilaton theory the Weinberg angle is also variable, but Fermi's constant and the tree level fermion masses remain constant unless the Higgs' potential becomes dynamical. We outline some cosmological implications.

  5. Medico-legal aspects of vertical root fractures in root filled teeth

    DEFF Research Database (Denmark)

    Rosen, E; Tsesis, I; Tamse, A

    2012-01-01

    To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT).......To analyse the medico-legal aspects of vertical root fracture (VRF) following root canal treatment (RCT)....

  6. Variation among Rice Cultivars in Root Acidification and Its Relation to Cadmium Uptake

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-guo; XU Hai; CAI Guo-liang; QIAN Min; WANG De-ke; ZHU Qing-sen

    2006-01-01

    To understand the mechanisms of Cd uptake and accumulation in rice, soil acidification by root activities was investigated in six rice cultivars differing in Cd accumulation. The results showed a significant difference among the cultivars in pH of pot water and root exudate. Soil acidification abilities varied with rice cultivars. Both pH of pot water and root exudate were lower in indica cultivars than in japonica ones. The difference in root acidification was larger in Cd treated cultivars than the control. Under Cd stress, the pH of pot water and root exudate correlated negatively and significantly with Cd concentrations in rice plants. It was suggested that the soil acidification by root exudates, especially in Cd contaminated soils, may be one of the mechanisms responsible for Cd uptake in rice cultivars.

  7. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.

    Science.gov (United States)

    Yi, Gibum; Lim, Sooyeon; Chae, Won Byoung; Park, Jeong Eun; Park, Hye Rang; Lee, Eun Jin; Huh, Jin Hoe

    2016-01-13

    Radish (Raphanus sativus L.), a root vegetable, is rich in glucosinolates (GLs), which are beneficial secondary metabolites for human health. To investigate the genetic variations in GL content in radish roots and the relationship with other root phenotypes, we analyzed 71 accessions from 23 different countries for GLs using HPLC. The most abundant GL in radish roots was glucoraphasatin, a GL with four-carbon aliphatic side chain. The content of glucoraphasatin represented at least 84.5% of the total GL content. Indolyl GL represented only 3.1% of the total GL at its maximum. The principal component analysis of GL profiles with various root phenotypes showed that four different genotypes exist in the 71 accessions. Although no strong correlation with GL content and root phenotype was observed, the varied GL content levels demonstrate the genetic diversity of GL content, and the amount that GLs could be potentially improved by breeding in radishes.

  8. Management of bicuspid aortic valve with or without involvement of ascending aorta and aortic root.

    Science.gov (United States)

    Neragi-Miandoab, S

    2014-06-01

    Patients with a bicuspid aortic valve (BAV) constitute a heterogeneous population with variable clinical presentation and complications. More than 50% of the patients who require aortic valve replacement have a BAV, a condition that may be associated with dilation of ascending aorta and aortic insufficiency caused by cusp disease or aortic root pathology. Of the potential BAV-related complications, dilation of the aortic root and ascending aorta are among the most serious. The dilation of ascending aorta and aortic root have been the subject of controversy. Whereas some surgeons believe that the dilation of the aorta is caused by the hemodynamic properties of the BAV, others believe that the dilation of the aortic root is secondary to genetic defects associated with the BAV. Management of a BAV should be tailored to each patient's clinical condition. The surgical approach varies from aortic valve replacement to combined aortic valve and root replacement to aortic-valve-sparing root replacement.

  9. Rooted in Movement

    DEFF Research Database (Denmark)

    The result of the synergy between four doctoral projects and an advanced MA-level course on Bronze Age Europe, this integrated assemblage of articles represents a variety of different subjects united by a single theme: movement. Ranging from theoretical discussion of the various responses to and ...... period of European prehistory. In so doing, the text not only addresses transmission and reception, but also the conceptualization of mobility within a world which was literally Rooted in Movement.......The result of the synergy between four doctoral projects and an advanced MA-level course on Bronze Age Europe, this integrated assemblage of articles represents a variety of different subjects united by a single theme: movement. Ranging from theoretical discussion of the various responses...... to and reactions from the circulation of people, objects and ideas to the transmission of the spiral and the ‚trade’ in crafting expertise, this volume takes a fresh look at old questions. Each article within this monograph represents a different approach to mobility framed within a highly mobile and dynamic...

  10. Tavatult jahe Karlovy Vary / Jaanus Noormets

    Index Scriptorium Estoniae

    Noormets, Jaanus

    2011-01-01

    1.-10. juulini toimunud Karlovy Vary 46. filmifestivalist (muusikafilmide alajaotuses näidati Marianne Kõrveri dokumentaalfilmi "Erkki-Sven Tüür: 7 etüüdi piltides" (2010) programmis "A Musical Odyssey")

  11. Inhomogeneous Universe Models with Varying Cosmological Term

    CERN Document Server

    Chimento, L P; Chimento, Luis P.; Pavon, Diego

    1998-01-01

    The evolution of a class of inhomogeneous spherically symmetric universe models possessing a varying cosmological term and a material fluid, with an adiabatic index either constant or not, is studied.

  12. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  13. Non-canonical WOX11-mediated root branching contributes to plasticity in arabidopsis root system architecture

    NARCIS (Netherlands)

    Sheng, Lihong; Hu, Xiaomei; Du, Yujuan; Zhang, Guifang; Huang, Hai; Scheres, Ben; Xu, Lin

    2017-01-01

    Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis. However, our knowledge of how formation of the root system is altered in response to diverse

  14. Response of root distribution of Haloxylon ammodendron seedlings to irrigation amounts in the hinterlands of the Taklimakan Desert, China

    Institute of Scientific and Technical Information of China (English)

    Lishan SHAN; Ximing ZHANG; Yonghui HUA; Tingting XIE; Hailong YAN; Hua FAN

    2009-01-01

    We excavated soil to study root distribution in Haloxylon ammodendron seedlings grown with different amounts of irrigation (35, 24.5 and 14 kg water for each plant each time) in the hinterland of the Taklimakan Desert.The results indicated that: 1) With decreasing irrigation amounts, the root biomass tended to be distributed in deeper soil layers. Underground biomass had a signifi-cantly negative logarithmic relationship with soil depth under different irrigation amounts. 2) Maximum horizontal spread of roots was twice that of vertical root spread, and horizontal distribution of root biomass was similar under all irrigation amounts. 3) Vertical distribution of fine roots was nearly consistent with vertical changes in soil moisture, and all had a unimodal curve; but peak values of fine root biomass in different soil layers varied with different irrigation amounts. The smaller the amount of irrigation, the deeper were the fine roots concentrated in soil layers. 4) Root length, root surface area and root volume all exhibited a unimodal curve under different irrigation amounts; the less the irrigation amount, the deeper the peak values appeared in soil layers. 5) Root- shoot ratio and ratio of vertical root depth to plant height both increased as irrigation amounts decreased.

  15. Root Growth Patterns and Morphometric Change Based on the Growth Media

    Science.gov (United States)

    Schultz, Eric R.; Paul, Anna-Lisa; Ferl, Robert J.

    2016-12-01

    Arabidopsis thaliana roots skew with minimal waving in the microgravity environment of the International Space Station. Root skewing and root waving have been studied on the ground as well as in spaceflight, but often using different media types. In this study, Arabidopsis seedlings were grown on nutrient media plates that were comprised of various gelling agents with varied hardness in order to better assess these media for spaceflight research experiments. ImageJ was used to quantify the root morphology of 8-dayold seedlings, while R was used to perform statistical analyses. Root growth was drastically different between Difco agar, agarose, and Phytagel. Additionally, root waving masked skewing in certain media. Regression analysis revealed overall patterns when organized by hardness but also revealed that differences in media type had more of an impact on root growth than hardness itself. Different arrangements of media around the root tip revealed that roots grown on the media surface were longer and had fewer waves per millimeter than roots grown embedded in media. The implications for spaceflight research are discussed.

  16. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis.

    Science.gov (United States)

    Poiré, Richard; Schneider, Heike; Thorpe, Michael R; Kuhn, Arnd J; Schurr, Ulrich; Walter, Achim

    2010-03-01

    In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.

  17. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration.

    Science.gov (United States)

    Grossman, Judah D; Rice, Kevin J

    2012-12-01

    Root plasticity, a trait that can respond to selective pressure, may help plants forage for nutrients in heterogeneous soils. Agricultural breeding programs have artificially selected for increased yield under comparatively homogeneous soil conditions, potentially decreasing the capacity for plasticity in crop plants like barley (Hordeum vulgare). However, the effects of domestication on the evolution of root plasticity are essentially unknown. Using a split container approach, we examined the differences in root plasticity among three domestication levels of barley germplasm (wild, landrace, and cultivar) grown under different concentrations and distribution patterns of soil nutrients. Domestication level, nutrient concentration, and nutrient distribution interactively affected average root diameter; differential root allocation (within-plant plasticity) was greatest in wild barley (Hordeum spontaneum), especially under low nutrient levels. Correlations of within-plant root plasticity and plant size were most pronounced in modern cultivars under low-nutrient conditions. Barley plants invested more resources to root systems when grown in low-nutrient soils and allocated more roots to higher-nutrient locations. Root plasticity in barley is scale dependent and varies with domestication level. Although wild barley harbors a greater capacity for within-plant root plasticity than domesticated barley, cultivars exhibited the greatest capacity to translate within-plant plasticity into increased plant size.

  18. Antimicrobial activity of Bauhinia tomentosa and Bauhinia vahlii roots

    Directory of Open Access Journals (Sweden)

    Swarnalatha Dugasani

    2010-01-01

    Full Text Available The hexane, ethylacetate and methanol extracts from Bauhinia tomentosa and Bauhinia vahlii roots were tested for their antimicrobial activity against Gram-positive bacteria (four strains, Gram-negative bacteria (three strains and three fungi strains using microdilution methods, for the determination of minimal inhibition concentration (MIC and the minimal microbicidal concentration (MMC. The MIC values of hexane extracts of B. tomentosa and B. vahlii roots were more than 250 μg/ml. The MIC values of ethylacetate and methanol extracts of B. tomentosa roots varied from 7.81 to 31.25 μg/ml and 31.25 to 62.50 μg/ml, respectively. The MIC values of ethylacetate and methanol extracts of B. vahlii roots varied from 15.63 to 62.5 μg/ml and 62.5 to 250 μg/ml, respectively. MMC values obtained are two times greater than the corresponding MIC values. The activities of ethylacetate extracts are attributed to the presence of flavonoids and that of methanol extracts are attributed to the presence of tannins.

  19. Developing suitable methods for effective characterization of electrical properties of root segments

    Science.gov (United States)

    Ehosioke, Solomon; Phalempin, Maxime; Garré, Sarah; Kemna, Andreas; Huisman, Sander; Javaux, Mathieu; Nguyen, Frédéric

    2017-04-01

    The root system represents the hidden half of the plant which plays a key role in food production and therefore needs to be well understood. Root system characterization has been a great challenge because the roots are buried in the soil. This coupled with the subsurface heterogeneity and the transient nature of the biogeochemical processes that occur in the root zone makes it difficult to access and monitor the root system over time. The traditional method of point sampling (root excavation, monoliths, minirhizotron etc.) for root investigation does not account for the transient nature and spatial variability of the root zone, and it often disturbs the natural system under investigation. The quest to overcome these challenges has led to an increase in the application of geophysical methods. Recent studies have shown a correlation between bulk electrical resistivity and root mass density, but an understanding of the contribution of the individual segments of the root system to that bulk signal is still missing. This study is an attempt to understand the electrical properties of roots at the segment scale (1-5cm) for more effective characterization of electrical signal of the full root architecture. The target plants were grown in three different media (pot soil, hydroponics and a mixture of sand, perlite and vermiculite). Resistance measurements were carried out on a single segment of each study plant using a voltmeter while the diameter was measured using a digital calliper. The axial resistance was calculated using the measured resistance and the geometric parameters. This procedure was repeated for each plant replica over a period of 75 days which enabled us to study the effects of age, growth media, diameter and length on the electrical response of the root segments of the selected plants. The growth medium was found to have a significant effect on the root electrical response, while the effect of root diameter on their electrical response was found to vary

  20. Digital repetitive control under varying frequency conditions

    CERN Document Server

    Ramos, Germán A; Olm, Josep M

    2013-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area. Repetitive Control has proven to be an efficient way to face this topic. However, in some applications the frequency of the reference/disturbance signal is time-varying or uncertain. This causes an important performance degradation in the standard Repetitive Control scheme. This book presents some solutions to apply Repetitive Control in varying frequency conditions without loosing steady-state performance. It also includes a complete theoretical development and experimental results in two representative systems. The presented solutions are organized in two complementary branches: varying sampling period Repetitive Control and High Order Repetitive Control. The first approach allows dealing with large range frequency variations while the second allows dealing with small range frequency variations. The book also presents applications of the described techniques to a Roto-magnet plant and...

  1. Varying alpha and the electroweak model

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly, Dagny; Magueijo, Joao

    2004-03-25

    Inspired by recent claims for a varying fine structure constant, alpha, we investigate the effect of 'promoting coupling constants to variables' upon various parameters of the standard model. We first consider a toy model: Proca theory of the massive photon. We then explore the electroweak theory with one and two dilaton fields. We find that a varying alpha unavoidably implies varying W and Z masses. This follows from gauge invariance, and is to be contrasted with Proca theory. For the two dilaton theory the Weinberg angle is also variable, but Fermi's constant and the tree level fermion masses remain constant unless the Higgs potential becomes dynamical. We outline some cosmological implications.

  2. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Watt, Michelle; Hugenholtz, Philip; White, Rosemary; Vinall, Kerry

    2006-05-01

    Native bacteria, Pseudomonas and filamentous bacteria were quantified and localized on wheat roots grown in the field using fluorescence in situ hybridization (FISH). Seminal roots were sampled through the season from unploughed soil in a conservation farming system. Such soils are spatially heterogeneous, and many roots grow slowly through hard soil with cracks and pores containing dead roots remnant from previous crops. Root and rhizosphere morphology, and contact with soil particles were preserved, and autofluorescence was avoided by observing sections in the far-red with Cy5 and Cy5.5 fluorochromes. Spatial analyses showed that bacteria were embedded in a stable matrix (biofilm) within 11 microm of the root surface (range 2-30 microm) and were clustered on 40% of roots. Half the clusters co-located with axial grooves between epidermal cells, soil particles, cap cells or root hairs; the other half were not associated with visible features. Across all wheat roots, although variable, bacteria averaged 15.4 x 10(5) cells per mm(3) rhizosphere, and of these, Pseudomonas and filaments comprised 10% and 4%, respectively, with minor effects of sample time, and no effect of plant age. Root caps were most heavily colonized by bacteria along roots, and elongation zones least heavily colonized. Pseudomonas varied little with root development and were 17% of bacteria on the elongation zone. Filamentous bacteria were not found on the elongation zone. The most significant factor to rhizosphere populations along a wheat root, however, was contact with dead root remnants, where Pseudomonas were reduced but filaments increased to 57% of bacteria (P < 0.001). This corresponded with analyses of root remnants showing they were heavily colonized by bacteria, with 48% filaments (P < 0.001) and 1.4%Pseudomonas (P = 0.014). Efforts to manage rhizosphere bacteria for sustainable agricultural systems should continue to focus on root cap and mucilage chemistry, and remnant roots as

  3. Solar mass-varying neutrino oscillations.

    Science.gov (United States)

    Barger, V; Huber, Patrick; Marfatia, Danny

    2005-11-18

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

  4. Externally imposed electric field enhances plant root tip regeneration

    Science.gov (United States)

    Kral, Nicolas; Hanna Ougolnikova, Alexandra

    2016-01-01

    Abstract In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis. Crucially, we explored both spatial and temporal competences of the stump to respond to electrical stimulation, by varying respectively the position of the cut and the time interval between excision and stimulation. Our data indicate that a brief pulse of an electric field parallel to the root is sufficient to increase by up to two‐fold the probability of its regeneration, and to perturb the local distribution of the hormone auxin, as well as cell division regulation. Remarkably, the orientation of the root towards the anode or the cathode is shown to play a role. PMID:27606066

  5. Long-term cytotoxic effects of contemporary root canal sealers

    Directory of Open Access Journals (Sweden)

    Emmanuel Joao Nogueira Leal da SILVA

    2013-03-01

    Full Text Available Objectives The aim of the present study was to investigate the effects of root canal sealers on the cytotoxicity of 3T3 fibroblasts during a period of 5 weeks. Material and Methods Fibroblasts (3T3, 1×105 cells per well were incubated with elutes of fresh specimens from eight root canal sealers (AH Plus, Epiphany, Endomethasone N, EndoREZ, MTA Fillapex, Pulp Canal Sealer EWT, RoekoSeal and Sealapex and with elutes of the same specimens for 5 succeeding weeks after immersing in simulated body fluid. The cytotoxicity of all root canal sealers was determined using the MTT assay. Data were analyzed using ANOVA and Tukey's test. Results RoekoSeal was the only sealer that did not show any cytotoxic effects (p<0.05. All the other tested sealers exhibited severe toxicity initially (week 0. MTA Fillapex remained moderately cytotoxic after the end of experimental period. Toxicity of the other tested sealers decreased gradually over time. The evaluated root canal sealers presented varying degrees of cytotoxicity, mainly in fresh mode. Conclusions RoekoSeal had no cytotoxic effect both freshly mixed and in the other tested time points. MTA Fillapex was associated with significantly less cell viability when compared to the other tested root canal sealers.

  6. Root responses to soil physical conditions; growth dynamics from field to cell.

    Science.gov (United States)

    Bengough, A Glyn; Bransby, M Fraser; Hans, Joachim; McKenna, Stephen J; Roberts, Tim J; Valentine, Tracy A

    2006-01-01

    Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.

  7. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots

    Science.gov (United States)

    Yamaguchi, Yasuka L.; Suzuki, Reira; Cabrera, Javier; Nakagami, Satoru; Sagara, Tomomi; Ejima, Chika; Sano, Ryosuke; Aoki, Yuichi; Olmo, Rocio; Kurata, Tetsuya; Obayashi, Takeshi; Demura, Taku; Ishida, Takashi; Escobar, Carolina; Sawa, Shinichiro

    2017-01-01

    Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita, and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8, TDR and WOX4 were activated not only in M. incognita-induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii-induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host’s developmental regulation of the vascular stem cells during gall formation. PMID:28747918

  8. Review on Mutation in Lateral Root of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xia; ZHANG Da; HAO Zaibin

    2011-01-01

    Rice roots include seminal roots, adventitious roots, lateral roots and root hairs, At present, progresses in the research of rice roots have been achieved in many aspects, such as root morphology, root activity, root reaction to various environmental factors as a contribution of root growth and rice yield, the relationship between root growth and stems/leaves/flowers/rice, genetic laws of root characters, etc. However, there are very few researches on lateral root mutant. This paper reviewed progresses of the lateral root mutant of rice from the perspectives of phytomorphology to plant physiology and biochemistry to the gene mapping, consisting of mechanism of developing lateral root of rice, gene cloning and functional analysis of lateral root development, the relationship between auxin and lateral roots, agronomic traits of lateral roots mutant, structure and morphology of root hairs, gravity anomaly of root, redox metabolism and proteomics researches of the mutation in lateral root of rice.

  9. Root foraging for Patchy Phosphorus of Plant Species with Contrasting Foraging Strategy - Role of Roots and Mycorrhiza

    Science.gov (United States)

    Felderer, B.; Robinson, B. H.; Jansa, J.; Vontobel, P.; Frossard, E.; Schulin, R.

    2009-04-01

    Plant nutrients are distributed heterogeneously in soil. Thus the nutrient distribution together with nutrient availability, temporal and spatial development of roots determine nutrient uptake by the plants. Plants have developed several strategies to cope with the patchy nutrient distribution. Preferential root development within nutrient-enriched patches is a prominent response to heterogeneous nutrient distribution. This capacity to precisely allocate roots is called morphological plasticity and is highly variable between plant species. Another strategy is the increased nutrient uptake per unit of root surface in the nutrient-rich patches as compared to root zones outside such patches, so-called physiological plasticity . Additionally, enhanced nutrient uptake from nutrient-rich patches might be supported by increased production of mycorrhizal extraradical hyphae. We refer to this phenomenon as plastic response of the mycorrhiza-plant association. Relative importance for nutrient acquisition of these responses to heterogeneous nutrient distribution might vary between plant species. However, quantitative data are very rare. We will investigate nutrient acquisition and root development over time in sandy substrate with heterogeneous phosphorus (P) distribution of two model plant species with different nutrient foraging strategies (Lotus corniculatus, Trifolium arvense). These plant species are characterized by high and low morphological plasticity, respectively (according to results of preliminary experiments). We follow three main goals in a single mesocosm experiment, where P is to be homogeneously or patchily distributed in a sandy substrate: 1. - Imaging of root architecture of Lotus corniculatus and Trifolium arvense on a time line. 2. - Assessment of the physiological plasticity of Lotus corniculatus and Trifolium arvense 3. - Determination of the plasticity of mycorrhiza-plant association of Lotus corniculatus and Trifolium arvense associated with either of

  10. Plant root-microbe communication in shaping root microbiomes.

    Science.gov (United States)

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production.

  11. Filmihullu eluvesi voolab Karlovy Varys / Margit Tõnson

    Index Scriptorium Estoniae

    Tõnson, Margit, 1978-

    2010-01-01

    Karlovy Vary rahvusvahelisest filmifestivalist. Filmidest "Mr. Nobody" (rež. Jaco Van Dormaeli), "Kasside ema Teresa" (rež. Pawel Sala) ja "The Arbor" (rež. Clio Barnardi). Nimekiri võitnud töödest ja viimastel aastatel festivalil näidatud Eesti mängufilmidest

  12. Efficient Estimation in Heteroscedastic Varying Coefficient Models

    Directory of Open Access Journals (Sweden)

    Chuanhua Wei

    2015-07-01

    Full Text Available This paper considers statistical inference for the heteroscedastic varying coefficient model. We propose an efficient estimator for coefficient functions that is more efficient than the conventional local-linear estimator. We establish asymptotic normality for the proposed estimator and conduct some simulation to illustrate the performance of the proposed method.

  13. Cosmo MSW effect for mass varying neutrinos

    CERN Document Server

    Hung, P Q; Hung, Pham Quang; P\\"as, Heinrich

    2003-01-01

    We consider neutrinos with varying masses which arise in scenarios relating neutrino masses to the dark energy density in the universe. We point out that the neutrino mass variation can lead to level crossing and thus a cosmo MSW effect, having dramatic consequences for the flavor ratio of astrophysical neutrinos and the composition of the relic neutrino background.

  14. Õunpuu Karlovy Varys edukas

    Index Scriptorium Estoniae

    2010-01-01

    45. Karlovy Vary filmifestivali võistlusprogrammis "East of the West" märgiti ära Veiko Õunpuu film "Püha Tõnu kiusamine". Peaauhind läks rumeenlase Cristi Puiu filmile "Aurora". Grand prix´sai Augustĺ Vila film "La mosquitera". Teisi preemiasaajaid

  15. Filmihullu eluvesi voolab Karlovy Varys / Margit Tõnson

    Index Scriptorium Estoniae

    Tõnson, Margit, 1978-

    2010-01-01

    Karlovy Vary rahvusvahelisest filmifestivalist. Filmidest "Mr. Nobody" (rež. Jaco Van Dormaeli), "Kasside ema Teresa" (rež. Pawel Sala) ja "The Arbor" (rež. Clio Barnardi). Nimekiri võitnud töödest ja viimastel aastatel festivalil näidatud Eesti mängufilmidest

  16. Ellipsometry with randomly varying polarization states

    NARCIS (Netherlands)

    Liu, F.; Lee, C. J.; Chen, J. Q.; E. Louis,; van der Slot, P. J. M.; Boller, K. J.; F. Bijkerk,

    2012-01-01

    We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincar s

  17. Modulation of Root Signals in Relation to Stomatal Sensitivity to Root-sourced Abscisic Acid in Drought-affected Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status. pH itself can be modified by several factors, among which the chemical compositions In the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH,more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastlc pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se.The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots If a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles In the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.

  18. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  19. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  20. [Response of fine roots to soil nutrient spatial heterogeneity].

    Science.gov (United States)

    Wang, Qingcheng; Cheng, Yunhuan

    2004-06-01

    The spatial heterogeneity is the complexity and variation of systems or their attributes, and the heterogeneity of soil nutrients is ubiquitous in all natural ecosystems. The scale of spatial heterogeneity varies considerably among different ecosystems, from tens of centimeters to hundred meters. Some of the scales can be detected by individual plant. Because the growth of individual plants can be strongly influenced by soil heterogeneity, it follows that the inter-specific competition should also be affected. During the long process of evolution, plants developed various plastic responses with their root system, including morphological, physiological and mycorrhizal plasticity, to maximize the nutrient acquisition from heterogeneous soil resources. Morphological plasticity, an adjustment in root system spatial allocation and architecture in response to spatial heterogeneous distribution of available soil resources, has been most intensively studied, and root proliferation in nutrient rich patches has been certified for many species. The species that do respond may have an increased rate of nutrient uptake, leading to a competitive advantage. Scale and precision are two important features employed in describing the size and foraging behavior of root system. It was hypothesized that scale and precision is negatively related, i. e., the species with high scale of root system tend to be a less precise forager. The outcomes of different research work have been diverse, far from reaching a consensus. Species with high scale are not necessarily less precise in fine root allocation, and vice versa. The proliferation of fine root in enriched micro-sites is species dependent, and also affected by other factors, such as patch attributes (size and nutrients concentration), nutrients, and overall soil fertility. Beside root proliferation in nutrient enriched patches, plants can also adapt themselves to the heterogeneous soil environment by altering other root characteristics

  1. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    Science.gov (United States)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle

  2. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots.

    Science.gov (United States)

    Massa, G D; Gilroy, S

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle

  3. Root reinforcement and its contribution to slope stability in the Western Ghats of Kerala, India

    Science.gov (United States)

    Lukose Kuriakose, Sekhar; van Beek, L. P. H.

    2010-05-01

    computed root tensile strength both vertically and spatially. Root cohesion varies significantly with the type of land use and the depth of soil. The computation showed that a maximum root reinforcement of 40 kPa was available in the first 30 cm of soil while exponentially decreased with depth to just about 3 kPa at 3 m depth. Mixed crops land use unit had the maximum root cohesion while fallow land, degraded forest and young rubber plantation had the lowest root reinforcement. These are the upper limits of root reinforcement that the vegetation can provide. When the soil is saturated, the bond between soil and roots reduces and thus the applicable root reinforcement is limited by the root pullout strength. Root reinforcement estimated from pullout strength vs diameter relationships was significantly lower than those estimated from tensile strength vs diameter relationships.

  4. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.

  5. Advances in experimental methods for root system architecture and root development

    Institute of Scientific and Technical Information of China (English)

    Jun-bang Wang; Xiu-juan Zhang; Chu Wu

    2015-01-01

    Plant roots play important roles in acquisition of water and nutrients, storage, anchoring, transport, and symbiosis with soil microorganisms, thus quantitative researches on root developmental processes are essential to understand root functions and root turnover in ecosystems, and at the same time such researches are the most difficult because roots are hidden underground. Therefore, how to investigate efficiently root functions and root dynamics is the core aspect in underground ecology. In this article, we reviewed some experimental methods used in root resear-ches on root development and root system architecture, and summarized the advantages and shortages of these meth-ods. Based on the analyses, we proposed three new ways to more understand root processes: (1) new experimental materials for root development; (2) a new observatory system comprised of multiple components, including many observatory windows installed in field, analysis software, and automatic data transport devices; (3) new techniques used to analyze quantitatively functional roots.

  6. Magnetophoretic Induction of Root Curvature

    Science.gov (United States)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  7. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity

    NARCIS (Netherlands)

    Julkowska, M.M.; Hoefsloot, H.C.J.; Mol, S.; Feron, R.; de Boer, G.J.; Haring, M.A.; Testerink, C.

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles i

  8. Varying-coefficient functional linear regression

    CERN Document Server

    Wu, Yichao; Müller, Hans-Georg; 10.3150/09-BEJ231

    2011-01-01

    Functional linear regression analysis aims to model regression relations which include a functional predictor. The analog of the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If, in addition, one has scalar predictors, as is often the case in applications to longitudinal studies, the question arises how to incorporate these into a functional regression model. We study a varying-coefficient approach where the scalar covariates are modeled as additional arguments of the regression parameter function. This extension of the functional linear regression model is analogous to the extension of conventional linear regression models to varying-coefficient models and shares its advantages, such as increased flexibility; however, the details of this extension are more challenging in the functional case. Our methodology combines smoothing methods with regularization by truncation at a finite numb...

  9. Varying flexibilities in systems of organised decentralisation

    DEFF Research Database (Denmark)

    Ilsøe, Anna; Andersen, Søren Kaj

    information, collective agreements and interviews with representatives from tradeunions and employers' associations in Germany and Denmark. Based on our preliminary findings three explanatory theses for further research are developed in the article: 1) The level of specification, i.e. the level where...... response to this pressure from the company level can be described as a form of organised decentralisation in both countries, the response within the Danish collective bargaining system can be characterised as a proactive organised decentralisation while the response of the German system should rather...... be while the response of the German system should rather be interpreted as a reactive organised decentralisation. 3) The varying regulation of working time flexibility in Germany and Denmark implies varying risks in the regulation. In Germany lacking competencies in small or medium-sized companies lead...

  10. Varying flexibilities in systems of organised decentralisation

    DEFF Research Database (Denmark)

    Ilsøe, Anna; Andersen, Søren Kaj

    information, collective agreements and interviews with representatives from tradeunions and employers' associations in Germany and Denmark. Based on our preliminary findings three explanatory theses for further research are developed in the article: 1) The level of specification, i.e. the level where...... response to this pressure from the company level can be described as a form of organised decentralisation in both countries, the response within the Danish collective bargaining system can be characterised as a proactive organised decentralisation while the response of the German system should rather...... be while the response of the German system should rather be interpreted as a reactive organised decentralisation. 3) The varying regulation of working time flexibility in Germany and Denmark implies varying risks in the regulation. In Germany lacking competencies in small or medium-sized companies lead...

  11. On a time varying fine structure constant

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2001-01-01

    By employing Dirac LNH, and a further generalization by Berman (GLNH), we estimate how should vary the total number of nucleons, the energy density, Newton Gravitational constant, the cosmological constant, the magnetic permeability and electric permitivity, of the Universe,in order to account for the experimentally observed time variation of the fine structure constant. As a bonus,we find an acceptable value for the deceleration parameter of the present Universe, compatible with the Supernovae observations.

  12. Stabilization of Slowly Varying Switched Linear Systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing; LIANG Tong

    2012-01-01

    The stabilization problem of systems that switch among a finite set of slowly varying linear systems with arbitrary switching frequency is discussed.It is shown that if the entries of the pointwise stabilizing feedback gain matrix are continuously differentiable functions of the entries of the system coefficient matrices,then the closed-loop system is uniformly asymptotically stable if the rate of time variation of the system coefficient matrices is sufficiently small.

  13. New varying speed of light theories

    CERN Document Server

    Magueijo, J

    2003-01-01

    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying $c$, dispelling the myth that the constancy of $c$ is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying $c$ induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how ``doubly special'' relativity has emerged as a VSL effective model of quantum space...

  14. Retention of Root Canal Posts

    DEFF Research Database (Denmark)

    Sahafi, A; Benetti, Ana Raquel; Flury, S;

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc......] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half...... received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement...

  15. Adventitious Roots and Secondary Metabolism

    Institute of Scientific and Technical Information of China (English)

    Hosakatte Niranjana Murthy; Eun Joo Hahn; Kee Yoeup Paek

    2008-01-01

    Plants are a rich source of valuable secondary metabolites and in the recent years plant cell, tissue and organ cultures have been developed as an important alternative sources for the production of these compounds. Adventitious roots have been successfully induced in many plant species and cultured for the production of high value secondary metabolites of pharmaceutical, nutraceutical and industrial importance. Adoption of elicitation methods have shown improved synthesis of secondary metabolites in adventitious root cultures. Development of large-scale culture methods using bioreactors has opened up feasibilities of production of secondary metabolites at the industrial levels. In the present review we summarize the progress made in recent past in the area of adventitious root cultures for the production of secondary metabolites.

  16. Potential of Root Exudates from Wetland Plants and Their Potential Role for Denitrification and Allelopathic Interactions

    DEFF Research Database (Denmark)

    Zhai, Xu

    vary among different Phragmites haplotypes and consequently affect their invasion potential. The studies presented in this dissertation aimed at investigating the quantity and composition of the organic carbon released in root exudates from three common wetland species as affected by temperature...... wetlands. Furthermore, environmental factors such as temperature and light-regime affect the photosynthetic carbon fixation, which continuously influence the compositions and quantity of root exudates released into rhizosphere. Conversely, root exudates from invasive species might contain some phytotoxic...... and light-regime and how the root exudates potentially affect the nitrogen removal by denitrification in constructed wetlands. Also, the studies aimed at further elucidating the potential allelopathic interaction between the plants. The findings of the research suggest that the root exudates from wetland...

  17. Root-fed Salicylic Acid in Grape Involves the Response Caused by Aboveground High Temperature

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Liu; Yue-Ping Liu; Wei-Dong Huang

    2008-01-01

    In order to investigate the transportation and distribution of salicylic acid (SA) from root to aboveground tissues in response to high temperature, the roots of grape plant were fed with 14C-SA before high temperature treatment. Radioactivity results showed that progressive increase in SA transportation from root to aboveground as compared with the control varied exactly with the heat treatment time. Radioactivity results of leaves at different stem heights indicated that the increase in SA amount at the top and middle leaves during the early period was most significant in comparison with the bottom leaves. The up-transportation of SA from root to aboveground tissues was dependent on xylem rather than phloem. Auto-radiographs of whole grape plants strongly approved the conclusions drawn above. Root-derived SA was believed to be a fundamental source in response to aboveground high temperature.

  18. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

    Science.gov (United States)

    Yang, C H; Crowley, D E

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.

  19. Grass Roots War on Poverty

    OpenAIRE

    Amsden, Alice H

    2012-01-01

    Sub-Saharan Africa’s failure to slay the dragon of poverty is due to a logical flaw in its policies: the remedies to reduce poverty don’t address the causes. Poverty is caused by unemployment, owing to a scarcity of jobs that pay above bare subsistence, but grass-roots poverty alleviation measures are exclusively designed to make job-seekers more capable although no jobs are available. The ‘appropriate’ technologies of the grass roots movement that dominates anti-poverty policies are ...

  20. Root justifications for ontology repair

    CSIR Research Space (South Africa)

    Moodley, K

    2011-08-01

    Full Text Available stream_source_info Moodley_2011.pdf.txt stream_content_type text/plain stream_size 32328 Content-Encoding ISO-8859-1 stream_name Moodley_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Root Justi cations... the ontology, based on the no- tion of root justi cations [8, 9]. In Section 5, we discuss the implementation of a Prot eg e3 plugin which demonstrates our approach to ontology repair. In this section we also discuss some experimental results comparing...

  1. Transient,spatially-varied recharge for groundwater modeling

    Science.gov (United States)

    Assefa, Kibreab; Woodbury, Allan

    2013-04-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  2. The accuracy of Root ZX electronic apex locator

    Directory of Open Access Journals (Sweden)

    Osama S Alothmani

    2012-01-01

    Full Text Available The aim of this review was to evaluate studies assessing the accuracy of Root ZX when used for working length determination in permanent teeth and to identify factors affecting the device′s precision. An electronic search for articles published in English language since 1994 was conducted on the Medline via Ovid interface. All issues of the International Endodontic Journal, Journal of Endodontics and Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology since 1994 were manually searched. The reference lists of review articles were cross-referenced to identify any potential publications. A total of 76 publications fulfilled the inclusion criteria. The studies varied in their methodologies, and most of them did not adhere to the manufacturer′s recommendations while operating the device. The Root ZX failed to consistently detect the apical constriction or the apical foramen. Nonetheless, it mostly allowed file tip placement in the area bounded by these two landmarks, especially when the 0.5 mark of its digital meter was adopted. Tooth-related factors potentially influencing the precision of Root ZX included pre-operative pulp status, tooth type, position of the apical foramen, canal obliteration, and the size of apical diameter. Operative factors including coronal pre-flaring, presence or absence of irrigants, file size, file alloy, and mode of file operation could also influence the performance of Root ZX. In conclusion, adopting the 0.5 mark of the digital meter of the Root ZX reduces chances of violating the apical foramen. Further, factors influencing the precision of Root ZX must be considered while operating it.

  3. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays.

    Science.gov (United States)

    Visioli, Giovanna; Conti, Federica D; Menta, Cristina; Bandiera, Marianna; Malcevschi, Alessio; Jones, Davey L; Vamerali, Teofilo

    2016-03-01

    Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum Moench. The tested biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch, polycyclic aromatic hydrocarbons (PAHs) being high in conifer and wheat straw, Cd in poplar and Cu in grape marc. We demonstrate that electrical conductivity and Cu negatively affected both germination and root elongation at ≥5% rate biochar, together with Zn at ≥10% and elevated pH at ≥20%. In all species, germination was less sensitive than root elongation, strongly decreasing at very high rates of chars from grape marc (>10%) and wheat straw (>50%), whereas root length was already affected at 0.5% of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5%. As a general interpretation, we propose here logarithmic model for robust root phytotoxicity in sorghum, based on biochar Zn content, which explains 66% of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended in-field amendment rates (<1-2%).

  4. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots.

    Science.gov (United States)

    Nakamura, Motoka; Nakamura, Takatoshi; Tsuchiya, Takayoshi; Noguchi, Ko

    2013-02-01

    We evaluated the specific strategies of hydrophytes for root O(2) consumption in relation to N acquisition and investigated whether the strategies varied depending on the aeration capacity. Aeration capacity of roots is an important factor for determining hypoxia tolerance in plants. However, some hydrophytes possessing quite different aeration capacities often co-occur in wetlands, suggesting that root O(2) consumption also strongly affects hypoxia tolerance. We cultivated Phragmites australis with high aeration capacity and Zizania latifolia with low aeration capacity in hypoxic conditions with NH(4)(+) or NO(3)(-) treatment and compared the growth, N uptake, N assimilation and root respiration between the two species. In Z. latifolia grown with NH(4)(+) treatment, high N uptake activity and restrained root growth led to sufficient N acquisition and decrease in whole-root respiration rate. These characteristics consequently compensated for the low aeration capacity. In contrast, in P. australis, low N uptake activity was compensated by active root growth, but the whole-root respiration rate was high. This high root respiration rate was allowed by the high aeration capacity. The O(2) consumption-related traits of hydrophyte roots were closely correlated with N acquisition strategies, which consequently led to a compensational relationship with the root aeration capacity. It is likely that this functional linkage plays an important role as a core mechanism in the adaptation of plants to hypoxic soils.

  5. Hydraulic conductivity and aquaporin transcription in roots of trembling aspen (Populus tremuloides) seedlings colonized by Laccaria bicolor.

    Science.gov (United States)

    Xu, Hao; Cooke, Janice E K; Kemppainen, Minna; Pardo, Alejandro G; Zwiazek, Janusz J

    2016-07-01

    Ectomycorrhizal fungi have been reported to increase root hydraulic conductivity (L pr) by altering apoplastic and plasma membrane intrinsic protein (PIP)-mediated cell-to-cell water transport pathways in associated roots, or to have little effect on root water transport, depending on the interacting species and imposed stresses. In this study, we investigated the water transport properties and PIP transcription in roots of aspen (Populus tremuloides) seedlings colonized by the wild-type strain of Laccaria bicolor and by strains overexpressing a major fungal water-transporting aquaporin JQ585595. Inoculation of aspen seedlings with L. bicolor resulted in about 30 % colonization rate of root tips, which developed dense mantle and the Hartig net that was restricted in the modified root epidermis. Transcript abundance of the aspen aquaporins PIP1;2, PIP2;1, and PIP2;2 decreased in colonized root tips. Root colonization by JQ585595-overexpressing strains had no significant impact on seedling shoot water potentials, gas exchange, or dry mass; however, it led to further decrease in transcript abundance of PIP1;2 and PIP2;3 and the significantly lower L pr than in non-inoculated roots. These results, taken together with our previous study that showed enhanced root water hydraulics of L. bicolor-colonized white spruce (Picea glauca), suggest that the impact of L. bicolor on root hydraulics varies by the ectomycorrhiza-associated tree species.

  6. New varying speed of light theories

    Energy Technology Data Exchange (ETDEWEB)

    Magueijo, Joao [Blackett Laboratory, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2BZ (United Kingdom)

    2003-11-01

    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying-c, dispelling the myth that the constancy of c is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a colour-dependent speed of light; varying-c induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how 'doubly special' relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra-high energy cosmic rays (UHECRs) and gamma ray bursts. Some recent work on the physics of 'black' holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in c. Finally, we describe the observational status of the theory. The evidence is currently slim-redshift dependence in the atomic fine structure, anomalies with UHECRs, and (to a much lesser extent) the acceleration of the universe and the WMAP data. The constraints (e.g. those arising from nucleosynthesis or geological bounds) are tight but not insurmountable. We conclude with the observational predictions of the theory and the prospects for its refutation or vindication.

  7. New varying speed of light theories

    Science.gov (United States)

    Magueijo, João

    2003-11-01

    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying-c, dispelling the myth that the constancy of c is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a colour-dependent speed of light; varying-c induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how 'doubly special' relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra-high energy cosmic rays (UHECRs) and gamma ray bursts. Some recent work on the physics of 'black' holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in c. Finally, we describe the observational status of the theory. The evidence is currently slim—redshift dependence in the atomic fine structure, anomalies with UHECRs, and (to a much lesser extent) the acceleration of the universe and the WMAP data. The constraints (e.g. those arising from nucleosynthesis or geological bounds) are tight but not insurmountable. We conclude with the observational predictions of the theory and the prospects for its refutation or vindication.

  8. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  9. Tracking time-varying coefficient-functions

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.;

    2000-01-01

    is a combination of recursive least squares with exponential forgetting and local polynomial regression. It is argued, that it is appropriate to let the forgetting factor vary with the value of the external signal which is the argument of the coefficient functions. Some of the key properties of the modified method......, but otherwise unknown, functions of a low-dimensional input process. These coefficient functions are estimated adaptively and recursively without specifying a global parametric, form, i.e. the method allows for online tracking of the coefficient functions. Essentially, in its most simple form, the method...

  10. Tracking Time-Varying Coefficient-Functions

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.;

    1999-01-01

    of recursive least squares with exponential forgetting and local polynomial regression. However, it is argued, that it is appropriate to let the forgetting factor vary with the value of the external signal shich is argument of the coeffieient-functions.The properties of the modified method are sutdied......A conditional parametric ARX-model is an ARX-model in which the parameters re replaced by smooth functions of an, possibly multivariate, externalinput signal. These functions are called coefficient functions is suggested. Essentially, in its most simple form, this method is a combination...

  11. A time-varying magnetic flux concentrator

    Science.gov (United States)

    Kibret, B.; Premaratne, M.; Lewis, P. M.; Thomson, R.; Fitzgerald, P. B.

    2016-08-01

    It is known that diverse technological applications require the use of focused magnetic fields. This has driven the quest for controlling the magnetic field. Recently, the principles in transformation optics and metamaterials have allowed the realization of practical static magnetic flux concentrators. Extending such progress, here, we propose a time-varying magnetic flux concentrator cylindrical shell that uses electric conductors and ferromagnetic materials to guide magnetic flux to its center. Its performance is discussed based on finite-element simulation results. Our proposed design has potential applications in magnetic sensors, medical devices, wireless power transfer, and near-field wireless communications.

  12. Image Based Rendering under Varying Illumination

    Institute of Scientific and Technical Information of China (English)

    Wang Chengfeng (王城峰); Hu Zhanyi

    2003-01-01

    A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.

  13. Four cuspal maxillary second premolar with single root and three root canals: Case report

    Directory of Open Access Journals (Sweden)

    Parul Bansal

    2016-01-01

    Full Text Available Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps.

  14. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    Energy Technology Data Exchange (ETDEWEB)

    Zarebanadkouki, Mohsen

    2013-05-08

    proximal segments than in the distal segments. In lupines most of the water uptake occurred in the lateral roots. The function of the taproot was to collect water from the laterals and transport it to the shoots. This function is ensured by a low radial conductivity and a high axial conductive. We also applied the technique to measure how rhizosphere affects root water uptake. As was recently reported in the literature, in this study was also observed that the soil in the immediate vicinity of the roots, the so called rhizosphere, becomes hydrophobic as the soil dries. For the first time, it was shown that hydrophobicity of the rhizosphere decreased root water uptake after drying and subsequent irrigation. It was concluded that, after drying, the rhizosphere became a significant resistance to the local flow of water into the roots. This may change the pattern of the water uptake zone along the roots. The significance of this study is the development of a new method to locally quantify water flow into roots of living plants. This method makes it possible to quantitatively measure where and how fast roots take up water in soils. This technique will allow understanding the function of roots in different plants, during root maturation and in response to varying external conditions, such as water content, transpiration demand, nutrient supply, and many other factors. The answer to these questions would open wide ranges of agronomy applications aimed at managing irrigation practice.

  15. Disease notes - Bacterial root rot

    Science.gov (United States)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  16. [Lumbosciatica and nerve root anomalies].

    Science.gov (United States)

    Sacchi, A; Rouaud, J P; Caroit, M; George, B; Cophignon, J

    1982-04-01

    The authors report 3 cases of lumbar pain and sciatica where operation revealed the existence of abnormalities in the distribution of L5 and S1 roots. In one case, the L5 root was not recognised within fibrous tissue also surrounding S1 and S2 and histological examination of this "fibrosis" led to the identification of nerve structures. Development of postoperative L5 paralysis showed that the L5 root was contained within the tissue non-individualised, consisting of multiple rootlets. In the other two cases the L5 and S1 roots arose from a common trunk. There was an associated herniated disc in all three cases. A review of the literature revealed the rarity of such abnormalities, as well as the fact that they were not recognised before surgery. They are difficult to recognise, even at the time of operation. The prognosis is less good than in typical lumbar pain and sciatica, essentially because of surgical difficulties of the disc curettage.

  17. Cutting the Roots of Violence.

    Science.gov (United States)

    Koziey, Paul W.

    1996-01-01

    Violence is rooted in obedience to authority and in comparisons--foundations of our institutions of parenting and schooling. Obedience brings reward and punishment, comparison perpetuates a cycle of competition and conflict. Television violence is especially harmful because children easily understand visual images. The Reality Research approach to…

  18. The Roots of School Leadership.

    Science.gov (United States)

    Sergiovanni, Thomas J.

    1994-01-01

    The Pyramid, Railroad, and High Performance theories of leadership are inappropriate for school settings. At root, school leadership is about connecting people morally to each other and to their work. The work of leadership involves developing shared purposes, beliefs, values, and conceptions associated with teaching and learning,…

  19. Rapid shoot‐to‐root signalling regulates root hydraulic conductance via aquaporins

    National Research Council Canada - National Science Library

    VANDELEUR, REBECCA K; SULLIVAN, WENDY; ATHMAN, ASMINI; JORDANS, CHARLOTTE; GILLIHAM, MATTHEW; KAISER, BRENT N; TYERMAN, STEPHEN D

    2014-01-01

    Investigating the relationship between transpiration and root hydraulic conductance Vandeleur et al report that leaf area reduction reduces root hydraulic conductance in grapevine, soybean and maize...

  20. MULTIVARIATE VARYING COEFFICIENT MODEL FOR FUNCTIONAL RESPONSES.

    Science.gov (United States)

    Zhu, Hongtu; Li, Runze; Kong, Linglong

    2012-10-01

    Motivated by recent work studying massive imaging data in the neuroimaging literature, we propose multivariate varying coefficient models (MVCM) for modeling the relation between multiple functional responses and a set of covariates. We develop several statistical inference procedures for MVCM and systematically study their theoretical properties. We first establish the weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic bias and variance, and then we derive asymptotic bias and mean integrated squared error of smoothed individual functions and their uniform convergence rate. We establish the uniform convergence rate of the estimated covariance function of the individual functions and its associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We also propose a simultaneous confidence band for each individual effect curve. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply MVCM to investigate the development of white matter diffusivities along the genu tract of the corpus callosum in a clinical study of neurodevelopment.

  1. Local Rank Inference for Varying Coefficient Models.

    Science.gov (United States)

    Wang, Lan; Kai, Bo; Li, Runze

    2009-12-01

    By allowing the regression coefficients to change with certain covariates, the class of varying coefficient models offers a flexible approach to modeling nonlinearity and interactions between covariates. This paper proposes a novel estimation procedure for the varying coefficient models based on local ranks. The new procedure provides a highly efficient and robust alternative to the local linear least squares method, and can be conveniently implemented using existing R software package. Theoretical analysis and numerical simulations both reveal that the gain of the local rank estimator over the local linear least squares estimator, measured by the asymptotic mean squared error or the asymptotic mean integrated squared error, can be substantial. In the normal error case, the asymptotic relative efficiency for estimating both the coefficient functions and the derivative of the coefficient functions is above 96%; even in the worst case scenarios, the asymptotic relative efficiency has a lower bound 88.96% for estimating the coefficient functions, and a lower bound 89.91% for estimating their derivatives. The new estimator may achieve the nonparametric convergence rate even when the local linear least squares method fails due to infinite random error variance. We establish the large sample theory of the proposed procedure by utilizing results from generalized U-statistics, whose kernel function may depend on the sample size. We also extend a resampling approach, which perturbs the objective function repeatedly, to the generalized U-statistics setting; and demonstrate that it can accurately estimate the asymptotic covariance matrix.

  2. Seasonally Varying Reference Atmospheres for East Asia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Vertical profiles of seasonally varying pressure, temperature, water vapor, and trace gases (O3, N2O, CO,CH4), representing atmospheric conditions up to a height of 100 km over the East Asia region (30°-50°N,110°-150°E) were constructed by using various observation data, model outputs of atmospheric thermodynamic parameters, and gaseous concentrations. Optical characteristics of the obtained East Asia reference atmospheres were compared with those from typical midlatitude summer and winter atmospheres. It was noted that, in the water vapor field, there are major differences between the two model atmospheres during the summer. The resultant impact during the summer of water vapor difference on incoming solar fluxes at the surface and emitted terrestrial fluxes at the top of the atmosphere are 14.3 W m-2 and 6.5 W m-2,respectively. On the other hand, the winter difference between East Asian and midlatitude atmospheres appears to be insignificant. Reference atmospheres for the spring and fall are also available. Utilizing the constructed atmospheric profiles as inputs to the radiative transfer model, it is expected that the constructed seasonally varying reference atmospheres can facilitate better descriptions of optical properties in East Asia.

  3. Varying prior information in Bayesian inversion

    Science.gov (United States)

    Walker, Matthew; Curtis, Andrew

    2014-06-01

    Bayes' rule is used to combine likelihood and prior probability distributions. The former represents knowledge derived from new data, the latter represents pre-existing knowledge; the Bayesian combination is the so-called posterior distribution, representing the resultant new state of knowledge. While varying the likelihood due to differing data observations is common, there are also situations where the prior distribution must be changed or replaced repeatedly. For example, in mixture density neural network (MDN) inversion, using current methods the neural network employed for inversion needs to be retrained every time prior information changes. We develop a method of prior replacement to vary the prior without re-training the network. Thus the efficiency of MDN inversions can be increased, typically by orders of magnitude when applied to geophysical problems. We demonstrate this for the inversion of seismic attributes in a synthetic subsurface geological reservoir model. We also present results which suggest that prior replacement can be used to control the statistical properties (such as variance) of the final estimate of the posterior in more general (e.g., Monte Carlo based) inverse problem solutions.

  4. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  5. Elastic modulus of posts and the risk of root fracture.

    Science.gov (United States)

    Meira, Josete B C; Espósito, Camila O M; Quitero, Mayra F Z; Poiate, Isis A V P; Pfeifer, Carmem Silvia C; Tanaka, Carina B; Ballester, Rafael Y

    2009-08-01

    The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts' elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post's long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.

  6. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth

    Energy Technology Data Exchange (ETDEWEB)

    Lin Daohui [Department of Environmental Science, Zhejiang University, Hangzhou 310028 (China); Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2007-11-15

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC{sub 50}) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. - Engineered nanoparticles can inhibit the seed germination and root growth.

  7. Inventory Replenishment Policy with Time-Varying Demand and Shortages Considering Time-Varying Costs

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, a generalized EOQ model is developed with time-varying demand and shortages considering time-varying costs. The solution procedure is shown for determining the op timal replenishment policy over a finite time horizon during which the replenishment periods are assumed to be constant. The existence and uniqueness of the optimal replenishment policy are pre sented. The procedure is illustrated with two special cases of linear and non-linear demands and costs. Two numerical examples are also given.

  8. Root formation in ethylene-insensitive plants.

    Science.gov (United States)

    Clark, D G; Gubrium, E K; Barrett, J E; Nell, T A; Klee, H J

    1999-09-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia x hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more below-ground root mass but fewer above-ground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated tap-roots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli.

  9. Hairy Root Induction in Linum mucronatum ssp. mucronatum, an Anti-Tumor Lignans Producing Plant

    Directory of Open Access Journals (Sweden)

    Afsaneh SAMADI

    2012-05-01

    Full Text Available Transgenic hairy root system is a promising source of secondary metabolites in medicinal plants with high pharmaceutical value.For the first time, hairy roots were established in different explants of Linum mucronatum, an anti-cancer agent producing plant, via amikimopine type strain of Agrobacterium rhizogenes, ‘A13’. The percentage of hairy root induction varied from 0 to 60% depended onthe explants and hypocotyl (including cotyledonary node explants were found to be highly susceptible to A. rhizogenes infection withthe highest (60% rate of hairy root induction. four different Murashige and Skoog (MS-based liquid culture media were used for wellestablishment of hairy roots. Hairy root growth medium D (HRGM-D containing hormone-free MS basal medium with an extra oneday pre-incubation period at 35°C was found to be more efficient for profuse growth (fresh weight; 8500 mg per 25 ml culture mediumof hairy roots. Hairy root system presented in this study may offer a suitable platform for optimization and production of satisfactorylevel of aryltetralin lignans like podophyllotoxin and its derivatives from L. mucronatum.

  10. Radiographic quality of root canal fillings performed in a postgraduate program in endodontics.

    Science.gov (United States)

    Santos, Suelleng Maria Cunha; Soares, Janir Alves; César, Carlos Augusto Santos; Brito-Júnior, Manoel; Moreira, Allyson Nogueira; Magalhães, Cláudia Silami de

    2010-01-01

    The aim of this study was to evaluate the standard quality of 1,347 root fillings performed by postgraduate students in Endodontics according to 3 radiographic quality parameters. The analyzed quality parameters included apical extension (AE), taper (TA) and homogeneity (HO), which received scores S2 (ideal standard), S1 (slight deviation) or S0 (accentuated deviation). A perfect filling (PF) received S2 for all parameters. In the absence of one or two S2 score, the fillings were deemed as satisfactory (SF) or deficient (DF), respectively. The results showed 51.7%, 41.5% and 6.8% of PF, SF, and DF, respectively. AE, TA, and HO presented equivalent quality parameters in root-filled canals of mandibular incisors and mandibular premolars (p>0.05). Conversely, in maxillary incisors, canines and distal root of mandibular molars, significant differences (p<0.05) were found between 2 parameters. Besides, there were significant differences (p<0.05) among the measured parameters in root-filled canals of maxillary premolars, all root canals of the maxillary molars and mesial root of the mandibular molars. AE showed the lowest frequency of S2 score for all groups. In conclusion the prevalence of perfect, satisfactory and deficient fillings varied significantly according to the root canal group. The quality parameters categorized fillings in 3 complexity degrees. AE was the most critical parameter of quality in root canal fillings.

  11. Inhibition of growth and development of root border cells in wheat by Al.

    Science.gov (United States)

    Zhu, Mu-Yuan; Ahn, Sung-Ju; Matsumoto, Hideaki

    2003-03-01

    The production and development of border cells vary with genotype, and they are released in wheat at an earlier stage of root development than other species studied so far. No significant difference was observed in the maximum number of border cells between Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars in the absence of Al treatment. Al seriously inhibited the production and release of border cells, resulting in clumping of border cells in Scout 66, but less clustering in Atlas 66. The number of border cells released from roots treated with Al is significantly less than that from roots grown without Al treatment. Al treatment induced the death of detached border cells in vitro and they were killed by a 20-h treatment with 25 micro m Al. No significant difference in survival percentage of detached border cells was observed between Atlas 66 and Scout 66, regardless of the presence or absence of Al. The removal of border cells from root tips of both Atlas 66 and Scout 66 enhanced the Al-induced inhibition of root elongation concomitant with increased Al accumulation in the root. These results suggest that border cells adhered to the root tips play a potential role in the protection of root from Al injury in wheat.

  12. Genetic Variation in Deep Root Growth of North-European Winter Wheat

    DEFF Research Database (Denmark)

    Ytting, Nanna Karkov

    traits were found to vary between modern North-European winter wheat cultivars including variation in depth penetration rate and root density in the deepest part of the root system. Wheat was shown to be capable of using deep N resources. After three to six weeks of root proliferation in the N rich...... subsoil, 21 to 39 % of the deep N was utilized for shoot growth. Furthermore, the tested cultivars indicated variation in root response to deep N and in N uptake. Increased root density at depth improved N content in the shoot at moderate to high subsoil N levels (3.2 to 12.5 mg N mg-1 soil). However...... the total N content of the shoots. Overall the results show, that variation exists for deeper root traits in existing elite germplasm adapted to North Europe. This opens the way for wider screening to assess the value in breeding for deeper roots in winter wheat. Deeper rooting, but not necessarily higher...

  13. Characterization of mesenchymal progenitor cells in crown and root pulp from human mesiodentes.

    Science.gov (United States)

    Sato, M; Toriumi, T; Watanabe, N; Watanabe, E; Akita, D; Mashimo, T; Akiyama, Y; Isokawa, K; Shirakawa, T; Honda, M J

    2015-01-01

    Mesiodentes are usually found in the central position of the upper or lower jaw as supernumerary teeth. Here, we obtained 10 mesiodentes and three permanent teeth (PT) and separated the dental pulp (DP) from these into crown and root portions. We then characterized and compared the isolated crown portion-derived cells (crown cells) with root portion-derived cells (root cells) using a range of in vitro assays. Crown cells and root cells were examined for cell surface marker expression, colony-forming unit-fibroblast (CFU-F), cell proliferation, cell cycle characteristics and markers, and osteogenic and adipogenic differentiation. The proportion of CD105-positive cells (CD105(+) cells) in the crown cells vs the root cells varied among the mesiodentes, but not among the PT. When there were more CD105(+) cells in the root cells than in the crown cells, the root cells showed higher CFU-F, proliferation capacity, and osteogenic differentiation capacity. In contrast, when the crown cells contained more CD105(+) cells than the root cells, the crown cells showed the higher CFU-F, proliferation capacity, and osteogenic differentiation capacity. In addition, the sorted CD105(+) cells showed higher CFU-F and proliferation capacity than the sorted CD105(-) cells. These results indicated that proportion of CD105(+) cells is an effective means of characterizing DP-derived cells in mesiodentes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Predicting Cereal Root Disease in Western Australia Using Soil DNA and Environmental Parameters.

    Science.gov (United States)

    Poole, Grant J; Harries, Martin; Hüberli, D; Miyan, S; MacLeod, W J; Lawes, Roger; McKay, A

    2015-08-01

    Root diseases have long been prevalent in Australian grain-growing regions, and most management decisions to reduce the risk of yield loss need to be implemented before the crop is sown. The levels of pathogens that cause the major root diseases can be measured using DNA-based services such as PreDicta B. Although these pathogens are often studied individually, in the field they often occur as mixed populations and their combined effect on crop production is likely to vary across diverse cropping environments. A 3-year survey was conducted covering most cropping regions in Western Australia, utilizing PreDicta B to determine soilborne pathogen levels and visual assessments to score root health and incidence of individual crop root diseases caused by the major root pathogens, including Rhizoctonia solani (anastomosis group [AG]-8), Gaeumannomyces graminis var. tritici (take-all), Fusarium pseudograminearum, and Pratylenchus spp. (root-lesion nematodes) on wheat roots for 115, 50, and 94 fields during 2010, 2011, and 2012, respectively. A predictive model was developed for root health utilizing autumn and summer rainfall and soil temperature parameters. The model showed that pathogen DNA explained 16, 5, and 2% of the variation in root health whereas environmental parameters explained 22, 11, and 1% of the variation in 2010, 2011, and 2012, respectively. Results showed that R. solani AG-8 soil pathogen DNA, environmental soil temperature, and rainfall parameters explained most of the variation in the root health. This research shows that interactions between environment and pathogen levels before seeding can be utilized in predictive models to improve assessment of risk from root diseases to assist growers to plan more profitable cropping programs.

  15. Seasonal capacity of attached and detached vineyard roots to support grape phylloxera (Homoptera: Phylloxeridae).

    Science.gov (United States)

    Granett, J; Omer, A D; Walker, M A

    2001-02-01

    Field experiments were conducted to evaluate population densities and survival, developmental rate, and fecundity of grape phylloxera, Daktulosphaira vitifoliae (Fitch), as influenced by root attachment or detachment from mature, field-grown, Vitis vinifera L. grapevines through the growing season. Experiments were performed using artificial infestations of California biotype A grape phylloxera. Thirty-day bioassays on attached- and detached-roots were repeated monthly from May to September in 1997 (cultivar 'Carignane') and April to September in 1998 (cultivar 'Thompson Seedless'). The bioassays showed that attached roots had lower population densities than detached roots in all months of both years. Densities varied by month, tending to be higher in spring than in summer. Of the population parameters studied, survival was most influenced by attachment condition, being higher on detached than on attached roots by up to 25-fold. These results imply the importance of vine-related mortality factors to grape phylloxera population density. Influence of root attachment condition on developmental rate and fecundity was not uniform across bioassay months for either year; however, in the four out of 21 assays where there was a significant difference it favored detached roots by twofold. Fruit harvest resulted in higher survival in the July assay but not for assays in August and September; however, neither developmental rate nor fecundity was affected by harvest in any ofthe assays. We conclude that mortality rather than nutritional factors are most limiting for field populations on susceptible vines. This work suggests that detachment of roots as occurs with root girdling by root pathogens may increase grape phylloxera populations on infested, susceptible vines. These results imply that excised root bioassays over-estimate grape phylloxera virulence and underestimate rootstock resistance.

  16. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    Science.gov (United States)

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  17. An ETAS model with varying productivity rates

    Science.gov (United States)

    Harte, D. S.

    2014-07-01

    We present an epidemic type aftershock sequenc (ETAS) model where the offspring rates vary both spatially and temporally. This is achieved by distinguishing between those space-time volumes where the interpoint space and time distances are small, and those where they are considerably larger. We also question the nature of the background component in the ETAS model. Is it simply a temporal boundary correction (t = 0) or does it represent an additional tectonic process not described by the aftershock component? The form of these stochastic models should not be considered to be fixed. As we accumulate larger and better earthquake catalogues, GPS data, strain rates, etc., we have the ability to ask more complex questions about the nature of the process. By fitting modified models consistent with such questions, we should gain a better insight into the earthquake process. Hence, we consider a sequence of incrementally modified ETAS type models rather than `the' ETAS model.

  18. Photon Propagation in Slowly Varying Electromagnetic Fields

    Science.gov (United States)

    Karbstein, F.

    2017-03-01

    Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  19. Optical vortex array in spatially varying lattice

    CERN Document Server

    Kapoor, Amit; Senthilkumaran, P; Joseph, Joby

    2015-01-01

    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  20. Time varying arctic climate change amplification

    Energy Technology Data Exchange (ETDEWEB)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  1. Varied Clinical Manifestations of Amebic Colitis.

    Science.gov (United States)

    Cooper, Chad J; Fleming, Rhonda; Boman, Darius A; Zuckerman, Marc J

    2015-11-01

    Invasive amebiasis is common worldwide, but infrequently observed in the United States. It is associated with considerable morbidity in patients residing in or traveling to endemic areas. We review the clinical and endoscopic manifestations of amebic colitis to alert physicians to the varied clinical manifestations of this potentially life-threatening disease. Copyright ©Most patients present with watery or bloody diarrhea. Less common presentations of amebic colitis include abdominal pain, overt gastrointestinal bleeding, exacerbation of inflammatory bowel disease, or the incidental association with colon cancer. Amebic liver abscesses are the most frequent complication. Rectosigmoid involvement may be found on colonoscopy; however, most case series have reported that the cecum is the most commonly involved site, followed by the ascending colon. Endoscopic evaluation should be used to assist in the diagnosis, with attention to the observation of colonic inflammation, ulceration, and amebic trophozoites on histopathological examination.

  2. Photon propagation in slowly varying electromagnetic fields

    CERN Document Server

    Karbstein, Felix

    2016-01-01

    We study the effective theory of soft photons in slowly varying electromagnetic background fields at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counter-propagating pulsed Gaussian laser beams. As we treat the peak field strengths of both laser beams as free parameters this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  3. String theory, cosmology and varying constants

    Science.gov (United States)

    Damour, Thibault

    In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.

  4. String theory, cosmology and varying constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2002-01-01

    In string theory the coupling ``constants'' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universa...

  5. Decaying Lambda cosmology, varying G and holography

    CERN Document Server

    Carneiro, S

    2004-01-01

    We discuss a class of uniform and isotropic, spatially flat, decaying Lambda cosmologies, in the realm of a model where the gravitation constant G is a function of the cosmological time. Besides the usual de Sitter solution, the models at late times are characterized by a constant ratio between the matter and total energy densities. One of them presents a coasting expansion where the matter density parameter is equal to 1/3, and the age of the universe satisfies Ht = 1. From considerations in line with the holographic conjecture, it is argued that, among the non-decelerating solutions, the coasting expansion is the only acceptable from a thermodynamic viewpoint, and that the time varying cosmological term must be proportional to the square of the Hubble parameter, a result earlier obtained using different arguments.

  6. Time-Varying Graphs and Dynamic Networks

    CERN Document Server

    Casteigts, Arnaud; Quattrociocchi, Walter; Santoro, Nicola

    2010-01-01

    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts can be viewed as fragments of a larger formal description of this universe. The main contribution of this paper is to integrate the existing partial models proposed in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. As part of the framework definition, we identify a hierarchy of classes of TVGs, defined with respects to basic properties to which correspond necessary conditions and impossibi...

  7. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa.

    Science.gov (United States)

    Hishi, Takuo; Takeda, Hiroshi

    2005-08-01

    To understand the physiology of fine-root functions in relation to soil organic sources, the heterogeneity of individual root functions within a fine-root system requires investigation. Here the heterogeneous dynamics within fine-root systems are reported. The fine roots of Chamaecyparis obtusa were sampled using a sequential ingrowth core method over 2 yr. After color categorization, roots were classified into protoxylem groups from anatomical observations. The root lengths with diarch and triarch groups fluctuated seasonally, whereas the tetrarch root length increased. The percentage of secondary root mortality to total mortality increased with increasing amounts of protoxylem. The carbon : nitrogen ratio indicated that the decomposability of primary roots might be greater than that of secondary roots. The position of diarch roots was mostly apical, whereas tetrarch roots tended to be distributed in basal positions within the root architecture. We demonstrate the heterogeneous dynamics within a fine-root system of C. obtusa. Fine-root heterogeneity should affect soil C dynamics. This heterogeneity is determined by the branching position within the root architecture.

  8. [Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin].

    Science.gov (United States)

    Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming

    2014-06-01

    To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.

  9. Environmental Control of Root System Biology.

    Science.gov (United States)

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R

    2016-04-29

    The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs.

  10. Meromorphic iterative roots of linear fractional functions

    Institute of Scientific and Technical Information of China (English)

    SHI YongGuo; CHEN Li

    2009-01-01

    Iterative root problem can be regarded as a weak version of the problem of embedding a homeomorphism into a flow. There are many results on iterative roots of monotone functions. However, this problem gets more difficult in non-monotone cases. Therefore, it is interesting to find iterative roots of linear fractional functions (abbreviated as LFFs), a class of non-monotone functions on R. In this paper, iterative roots of LFFs are studied on C. An equivalence between the iterative functional equation for non-constant LFFs and the matrix equation is given. By means of a method of finding matrix roots, general formulae of all meromorphic iterative roots of LFFs are obtained and the precise number of roots is also determined in various cases. As applications, we present all meromorphic iterative roots for functions z and 1/z.

  11. Single-rooted primary first mandibular molar

    OpenAIRE

    Haridoss, SelvaKumar; Swaminathan, Kavitha; Rajendran, Vijayakumar; Rajendran, Bharathan

    2014-01-01

    Morphological variations like single-rooted molar in primary dentition are scarce. Understanding the root canal anatomy and variations is necessary for successful root canal therapy. The purpose of the present article is to report successful endodontic treatment of primary left mandibular first molar with an abnormal morphology of a single root. This case report highlights the importance of knowledge and its applications in the management of anomalous anatomic variants which play a crucial ro...

  12. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    Science.gov (United States)

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  13. Counting Rooted Nearly 2-regular Planar Maps

    Institute of Scientific and Technical Information of China (English)

    郝荣霞; 蔡俊亮

    2004-01-01

    The number of rooted nearly 2-regular maps with the valency of rootvertex, the number of non-rooted vertices and the valency of root-face as three parameters is obtained. Furthermore, the explicit expressions of the special cases including loopless nearly 2-regular maps and simple nearly 2-regular maps in terms of the above three parameters are derived.

  14. Rooting of microcuttings: Theory and practice

    NARCIS (Netherlands)

    Klerk, de G.J.M.

    2002-01-01

    Poor adventitious root formation is a major obstacle in micropropagation and in conventional propagation. This paper reviews recent progress in the understanding of adventitious root formation as a developmental process focusing on the role of plant hormones and on the effect of rooting conditions o

  15. Rooting of microcuttings: Theory and practice

    NARCIS (Netherlands)

    Klerk, de G.J.M.

    2002-01-01

    Poor adventitious root formation is a major obstacle in micropropagation and in conventional propagation. This paper reviews recent progress in the understanding of adventitious root formation as a developmental process focusing on the role of plant hormones and on the effect of rooting conditions o

  16. Doubling bialgebras of rooted trees

    Science.gov (United States)

    Mohamed, Mohamed Belhaj; Manchon, Dominique

    2017-01-01

    The vector space spanned by rooted forests admits two graded bialgebra structures. The first is defined by Connes and Kreimer using admissible cuts, and the second is defined by Calaque, Ebrahimi-Fard and the second author using contraction of trees. In this article, we define the doubling of these two spaces. We construct two bialgebra structures on these spaces which are in interaction, as well as two related associative products obtained by dualization. We also show that these two bialgebras verify a commutative diagram similar to the diagram verified Calaque, Ebrahimi-Fard and the second author in the case of rooted trees Hopf algebra, and by the second author in the case of cycle-free oriented graphs.

  17. The rhizosphere revisited: root microbiomics

    Directory of Open Access Journals (Sweden)

    Peter A.H.M. Bakker

    2013-05-01

    Full Text Available The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge

  18. Automatic Schema Evolution in Root

    Institute of Scientific and Technical Information of China (English)

    ReneBrun; FonsRademakers

    2001-01-01

    ROOT version 3(spring 2001) supports automatic class schema evolution.In addition this version also produces files that are self-describing.This is achieved by storing in each file a record with the description of all the persistent classes in the file.Being self-describing guarantees that a file can always be read later,its structure browsed and objects inspected.also when the library with the compiled code of these classes is missing The schema evolution mechanism supports the frequent case when multiple data sets generated with many different class versions must be analyzed in the same session.ROOT supports the automatic generation of C++ code describing the data objects in a file.

  19. Evaluation of bacterial leakage of four root- end filling materials: Gray Pro Root MTA, White Pro Root MTA, Root MTA and Portland Cement (type I

    Directory of Open Access Journals (Sweden)

    Zarabian M.

    2005-07-01

    Full Text Available Background and Aim: Today several materials have been used for root- end filling in endodontic surgery. Optimal properties of Pro Root MTA in in-vitro and in-vivo studies has been proven. On the other hand, based on some studies, Root MTA (Iranian Pro Root MTA and Portland cement are similar to Pro Root MTA in physical and biologic properties. The aim of this study was to evaluate bacterial leakage (amount and mean leakage time of four root- end filling materials. Materials and Methods: In this experimental in-vitro study, seventy six extracted single- rooted human teeth were randomly divided into six groups for root-end filling with gray Pro Root MTA, white Pro Root MTA, Root MTA (Iranian Pro Root MTA, Portland Cement (type I and positive and negative control groups. Root canals were instrumented using the step- back technique. Root- end filling materials were placed in 3mm ultra sonic retro preparations. Samples and microleakage model system were sterilized in autoclave. The apical 3-4 mm of the roots were immersed in phenol red with 3% lactose broth culture medium. The coronal access of each specimen was inoculated every 24h with a suspension of Streptococcus sanguis (ATCC 10556. Culture media were observed every 24h for colour change indicating bacterial contamination for 60 days. Statistical analysis was performed using log- rank test with P<0.05 as the limit of significance. Results: At the end of study 50%, 56.25%, 56.25% and 50% of specimens filled with Gray Pro Root MTA, White Pro Root MTA. Root MTA and Portland Cement (type I had evidence of leakage respectively. The mean leakage time was 37.19±6.29, 36.44±5.81, 37.69±5.97 and 34.81±6.67 days respectively. Statistical analysis of data showed no significant difference among the leakage (amount and mean leakage time of the four tested root- end filling materials (P=0.9958. Conclusion: Based on the results of this study, there were no significant differences in leakage among the four

  20. Archimedes' calculations of square roots

    CERN Document Server

    Davies, E B

    2011-01-01

    We reconsider Archimedes' evaluations of several square roots in 'Measurement of a Circle'. We show that several methods proposed over the last century or so for his evaluations fail one or more criteria of plausibility. We also provide internal evidence that he probably used an interpolation technique. The conclusions are relevant to the precise calculations by which he obtained upper and lower bounds on pi.

  1. Facilitative root interactions in intercrops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Jensen, E.S.

    2005-01-01

    Facilitation takes place when plants ameliorate the environment of their neighbours, and increase their growth and survival. Facilitation occurs in natural ecosystems as well as in agroecosystems. We discuss examples of facilitative root interactions in intercropped agroecosystems; including...... intensified cropping systems using chemical and mechanical inputs also show that facilitative interactions definitely can be of significance. It is concluded that a better understanding of the mechanisms behind facilitative interactions may allow us to benefit more from these phenomena in agriculture...

  2. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

    Science.gov (United States)

    Miguel, Magalhaes Amade; Postma, Johannes Auke; Lynch, Jonathan Paul

    2015-04-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.

  3. The quality of root fillings remaining in mandibular incisors after root-end cavity preparation

    NARCIS (Netherlands)

    Wu, MK; de Schwartz, FBC; van der Sluis, LWM; Wesselink, PR

    2001-01-01

    Aim The aim of this study was to determine the quality of root fillings remaining in mandibular incisors after root-end resection and root-end cavity preparation. Methodology Roots of 40 mandibular incisors. 12 mm in length. were divided into two groups and instrumented using a balanced force techni

  4. The quality of root fillings remaining in mandibular incisors after root-end cavity preparation

    NARCIS (Netherlands)

    Wu, MK; de Schwartz, FBC; van der Sluis, LWM; Wesselink, PR

    2001-01-01

    Aim The aim of this study was to determine the quality of root fillings remaining in mandibular incisors after root-end resection and root-end cavity preparation. Methodology Roots of 40 mandibular incisors. 12 mm in length. were divided into two groups and instrumented using a balanced force techni

  5. Using coloured roots to study root interaction and competition in intercropped legumes and non-legumes

    DEFF Research Database (Denmark)

    Tosti, Giacomo; Thorup-Kristensen, Kristian

    2010-01-01

    if a species with coloured roots can be used to examine the interaction in a legume-non-legume intercropping system; (ii) to verify the importance of initial root growth on the successive root development of mixture component plants; (iii) to test if the root interaction in the shallow layers has consequences...

  6. OpenSimRoot: widening the scope and application of root architectural models.

    Science.gov (United States)

    Postma, Johannes A; Kuppe, Christian; Owen, Markus R; Mellor, Nathan; Griffiths, Marcus; Bennett, Malcolm J; Lynch, Jonathan P; Watt, Michelle

    2017-08-01

    OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species. The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate the following: resource costs of developmental and anatomical traits; trait synergisms; and (interspecies) root competition. OpenSimRoot can model three-dimensional images from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) of roots in soil. New modules include: soil water-dependent water uptake and xylem flow; tiller formation; evapotranspiration; simultaneous simulation of mobile solutes; mesh refinement; and root growth plasticity. OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and to gain a mechanistic understanding at system scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. ROOT Status and Future Developments

    CERN Document Server

    Brun, R; Canal, P; Rademakers, Fons; Goto, Masaharu; Canal, Philippe; Brun, Rene

    2003-01-01

    In this talk we will review the major additions and improvements made to the ROOT system in the last 18 months and present our plans for future developments. The additons and improvements range from modifications to the I/O sub-system to allow users to save and restore objects of classes that have not been instrumented by special ROOT macros, to the addition of a geometry package designed for building, browsing, tracking and visualizing detector geometries. Other improvements include enhancements to the quick analysis sub-system (TTree::Draw()), the addition of classes that allow inter-file object references (TRef, TRefArray), better support for templated and STL classes, amelioration of the Automatic Script Compiler and the incorporation of new fitting and mathematical tools. Efforts have also been made to increase the modularity of the ROOT system with the introduction of more abstract interfaces and the development of a plug-in manager. In the near future, we intend to continue the development of PROOF and...

  8. Printing Values In Interactive ROOT

    CERN Document Server

    Perovic, Boris

    2015-01-01

    This project report summarizes the work I have been performing during the past twelve weeks as a Summer Student intern working on ROOT project in the SFT group, PH department, under the supervision of Axel Naumann and Danilo Piparo. One of the widely requested features for ROOT was improved interactive shell experience as well as improved printing of object values. Solving this issue was the goal of this project. Primarily, we have enabled printing of the collections. Secondly, we have unified the printing interface, making it much more robust and extendible. Thirdly, we have implemented printing of nested collections in a flexible and user-friendly manner. Finally, we have added an interactive mode, allowing for paginated output. At the beginning of the report, ROOT is presented with examples of where it is used and how important it is. Then, the motivation behind the project is elaborated, by presenting the previous state of the software package and its potential for improvement. Further, the process in wh...

  9. Change of soil organic matter quality and quantity by deep-rooting plants - a molecular approach

    Science.gov (United States)

    Gocke, Martina; Derenne, Sylvie; Anquetil, Christelle; Huguet, Arnaud; Dignac, Marie-France; Rumpel, Cornelia; Wiesenberg, Guido L. B.

    2015-04-01

    Under predicted rising atmospheric CO2 concentration, soils are discussed to potentially act as C sinks. Stability and long-term storage of soil OM are affected by both molecular structure of incorporated organic remains and environmental factors. It is increasingly accepted that roots contribute to significant portions of topsoil OM, whereas their role for C cycling is less known for depths >> 1 m, i.e. the deep subsoil and underlying soil parent material like terrestrial sediments. To trace root-related features and organic remains, transects were sampled from ancient (3-10 ky) and recent calcified roots (rhizoliths) via surrounding sediment towards sediment free of visible root remains, at two sites. At the Nussloch loess-paleosol sequence (SW Germany), transects were collected as intact cores and scanned by X-ray microtomography for visualization of rhizoliths and rhizosphere. Afterwards, cores were cut into concentric slices and, similar to rhizolith and sediment samples from the sandy deep subsoil at Sopron (NW Hungary), analyzed for suberin molecular markers. Suberin biomarkers were found in both recent and ancient root systems, demonstrating their suitability to identify root-derived OM in terrestrial sediments with ages of several tens of ky. Varying relative portions of the respective suberin markers enabled the attribution of Sopron rhizoliths to oak origin, and assessment of the rhizosphere, which extended up to several cm. This confirms recent studies which demonstrated the possible postsedimentary incorporation of considerable amounts of root and rhizomicrobial remains in loess, based on biomarkers deriving either from plants and microorganisms (alkanes, fatty acids) or solely from microorganisms (GDGTs). 3D scanning of Nussloch rhizoliths and surrounding loess showed large channels of former root growth, whereas the root tissue was commonly degraded. Additionally, microtomography enabled assessment of abundant fine calcified roots as well as biopores

  10. Time-varying modeling of cerebral hemodynamics.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa; Rong Zhang

    2014-03-01

    The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.

  11. Microsatellites in varied arenas of research

    Directory of Open Access Journals (Sweden)

    K S Remya

    2010-01-01

    Full Text Available Microsatellites known as simple-sequence repeats (SSRs or short-tandem repeats (STRs, represent specific sequences of DNA consisting of tandemly repeated units of one to six nucleotides. The repetitive nature of microsatellites makes them particularly prone to grow or shrink in length and these changes can have both good and bad consequences for the organisms that possess them. They are responsible for various neurological diseases and hence the same cause is now utilized for the early detection of various diseases, such as, Schizophrenia and Bipolar Disorder, Congenital generalized Hypertrichosis, Asthma, and Bronchial Hyperresponsiveness. These agents are widely used for forensic identification and relatedness testing, and are predominant genetic markers in this area of application. The application of microsatellites is an extending web and covers the varied scenarios of science, such as, conservation biology, plant genetics, and population studies. At present, researches are progressing round the globe to extend the use of these genetic repeaters to unmask the hidden genetic secrets behind the creation of the world.

  12. Comparative Analysis of Frames with Varying Inertia

    Directory of Open Access Journals (Sweden)

    Prerana Nampalli

    2015-01-01

    Full Text Available This paper presents an elastic seismic response of reinforced concrete frames with 3 variations of heights, i.e. (G+2, (G+4, (G+6 storey models are compared for bare frame and frame with brick infill structures which have been analyzed for gravity as well as seismic forces and their response is studied as the geometric parameters varying from view point of predicting behavior of similar structures subjected to similar loads or load combinations. In this study, two different cases are selected i.e. frames with prismatic members and frames with non-prismatic members. The structural response of various members when geometry changes physically, as in case of linear and parabolic haunches provided beyond the face of columns at beam column joints or step variations as in case of stepped haunches was also studied. Frames have been analyzed statically as well as dynamically using ETABS-9.7.4 software referring IS: 456-2000, IS: 1893 (Part-12002 and the results so obtained are grouped into various categories

  13. The Strength of Varying Tie Strength

    CERN Document Server

    Bruggeman, Jeroen

    2012-01-01

    "The Strength of Weak Ties" argument (Granovetter 1973) says that the most valuable information is best collected through bridging ties with other social circles than one's own, and that those ties tend to be weak. Aral and Van Alstyne (2011) added that to access complex information, actors need strong ties ("high bandwidth") instead. These insights I generalize by pointing at actors' interest to avoid spending large resources on low value information. Weak ties are well-suited for relatively simple information at low transmission and tie maintenance costs, whereas for complex information, the best outcomes are expected for those actors who vary their bandwidths along with the value of information accessed. To support my claim I use all patents in the USA (two million) over the period 1975-1999. I also show that in rationalized fields, such as technology, bandwidth correlates highly with the value of information, which provides support for using this proxy if value can't be measured directly. Finally, I show ...

  14. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  15. Dermatophyte susceptibility varies towards antimicrobial textiles.

    Science.gov (United States)

    Hammer, Timo R; Mucha, Helmut; Hoefer, Dirk

    2012-07-01

    Dermatophytoses are a widespread problem worldwide. Textiles in contact with infected skin can serve as a carrier for fungus propagation. Hitherto, it is unknown, whether antifungal textiles could contribute in controlling dermatophytes e.g. by disrupting the chain of infection. Testing of antimicrobial fabrics for their antifungal activities therefore is a fundamental prerequisite to assess the putative clinical relevance of textiles for dermatophyte prevention. Fabrics finished with either didecyldimethylammonium chloride (DDAC), poly-hexamethylenbiguanide, copper and two silver chloride concentrations were tested for their antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes and Candida albicans. To prove dermatophyte susceptibility towards the textiles, swatches were subjected to DIN EN 14199 (Trichophyton sp.) or DIN EN ISO 20743 (C. albicans) respectively. In addition, samples were embedded, and semi-thin sections were analysed microscopically. While all samples showed a clear inhibition of C. albicans, activity against Trichophyton sp. varied significantly: For example, DDAC completely inhibited T. rubrum growth, whereas T. mentagrophytes growth remained unaffected even in direct contact to the fibres. The results favour to add T. mentagrophytes as a test organism in textile dermatophyte efficacy tests. Microscopic analysis of swatches allowed detailed evaluation of additional parameters like mycelium thickness, density and hyphae penetration depth into the fabric.

  16. Varied acceptance of clinical trial results.

    Science.gov (United States)

    Klimt, C R

    1989-12-01

    The subject of varied acceptance of clinical trial results is discussed in the context of review of trials with which I have been involved and my subjective evaluation of their impact on the practice of clinical medicine. My experience goes back to 1949 and a World Health Organization trial of hyperimmune gamma globulin against rabies. This was followed by a large trial of secondary prevention of poliomyelitis. I participated in the planning and initiation of the first chronic disease trial, the University Group Diabetes Program (UGDP). The latter lasted for 15 years and its ramifications continue to this day. My next trial was the Coronary Drug Project (CDP), a complex trial with more than 8,000 patients. The trials of aspirin and aspirin combined with persantine (the CDPA, AMIS, PARIS I, and PARIS II) followed. My last three trials were a trial of photocoagulation in diabetic retinopathy (DRS), a six-country trial of the antiarrhythmic drug mexiletine (IMPACT), and a study involving two diagnostic procedures for pulmonary embolism (PIOPED). When one considers, in retrospect, the plethora of trials one is struck by the uniform absence of a priori considerations of the impact on medical practice, or likely lack thereof, of possible outcomes.

  17. A Generalized Theory of Varying Alpha

    CERN Document Server

    Barrow, John D

    2011-01-01

    In this paper, we formulate a generalization of the simple Bekenstein-Sandvik-Barrow-Magueijo (BSBM) theory of varying alpha by allowing the coupling constant, \\omega, for the corresponding scalar field \\psi\\ to depend on \\psi. We focus on the situation where \\omega\\ is exponential in \\psi\\ and find the late-time behaviours that occur in matter-dominated and dark-energy dominated cosmologies. We also consider the situation when the background expansion scale factor of the universe evolves in proportion to an arbitrary power of the cosmic time. We find the conditions under which the fine structure `constant' increases with time, as in the BSBM theory, and establish a cosmic no-hair behaviour for accelerating universes. We also find the conditions under which the fine structure `constant' can decrease with time and compare the whole family of models with astronomical data from quasar absorption spectra. Finally, we show that spatial variations on sub-horizon scales can dominate over the cosmological time evolut...

  18. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  19. Root Conditioning and Agents Effect in Regeneration of Periodontal Tissue

    Directory of Open Access Journals (Sweden)

    Kadkhoda Z

    1999-12-01

    Full Text Available Periodontitis affected root surfaces are hypermineralized and contaminated with cytotoxic and"nother biologically active substances."nThe instrumented surface will inervitably be coverd by a smear layer following root planing with or without flap."nSmear layer is resistant to saline rinsing, but may be removed with agents such as acids (e.g.citric acid, tetracyclines, EDTA, and laser."nLow pH aqueous solutions such as citric acid have been used in surgical periodontal therapy mainly for two reasons, It dissolves smear layer after a relatively short exposure time and it has been claimed to selectively remove root surface associated mineral exposing collagen to varying degrees. A root surface coated with collagen appears to be a preferred surface for fibroblast attachment, a cellular event fundamental to successful periodontal wound healing."nSeveral studies indicate the potential of tetracycline (TTE-HCL in periodontal regeneration. Its acidic pH suggest that it can be used as a demineralization agent and removing the smear layer and exposing collagen matrix of the dentin."nChalating agent (EDTA working at neutral pH appears preferable with respect to preserving the integrity of exposed collagen fibers, early colonization, and wound healing. In addition, etching at neutral pH has been reported preserve adjacent tissue- vitality, while etching at low pH necrotizes the fiap and adjacent periodontium."nClinical and subclinical studies have demonstrated laser waves can remove calculus and bacterial plaque and pocket epithelium and strile the root surface and can expose the dentin collagen and dentinal tublules, and leads to pronounce reducing of probing depth around teeth diseased with periodontitis.

  20. Subsurface Carbon Cycling Below the Root Zone

    Science.gov (United States)

    Wan, J.; Dong, W.; Kim, Y.; Tokunaga, T. K.; Bill, M.; Conrad, M. E.; Williams, K. H.; Long, P. E.; Hubbard, S. S.

    2014-12-01

    Carbon in the subsurface below the root zone is an important yet poorly understood link in the terrestrial C cycle, interfacing between overlying soil and downstream aquatic systems. Thus, the nature and behavior of C in the vadose zone and groundwater, particularly the dynamics of mobile dissolved and suspended aqueous species, need to be understood for predicting C cycling and responses to climate change. This study is designed to understand the C balance (influxes, effluxes, and sequestration) and mechanisms controlling subsurface organic and inorganic C transport and transformation. Our initial investigations are being conducted at the Rifle Site floodplain along the Colorado River, in Colorado (USA). Within this floodplain, sediment samples were collected and sampling/monitoring instruments were installed down to 7 m depth at three sites. Pore water and gas samplers at 0.5 m depth intervals within the ~3.5 m deep vadose zone, and multilevel aquifer samplers have yielded depth- and time-resolved profiles of dissolved and suspended organic and inorganic C, and CO2 for over 1.5 years. Analyses conducted to determine seasonally and vertically resolved geochemical profiles show that dissolved organic matter (DOM) characteristics vary among three distinct hydrobiogeochemical zones; the vadose zone, capillary fringe, and saturated zone. The concentrations of dissolved organic matter (DOM) are many times higher in the vadose zone and the capillary fringe than in groundwater, and vary seasonally. The DOM speciation, aqueous geochemistry, solid phase analyses, and d13C isotope data show the importance of both biotic and abiotic C transformations during transport through the vertical gradients of moisture and temperature. In addition to DOM, suspended organic C and bacteria have been collected from samplers within the capillary fringe. Based on the field-based findings, long-term laboratory column experiments are being conducted under simulated field moisture

  1. Asteroidal Quadruples in non Rooted Path Graphs

    Directory of Open Access Journals (Sweden)

    Gutierrez Marisa

    2015-11-01

    Full Text Available A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.

  2. Fate of HERS during Tooth Root Development

    OpenAIRE

    HUANG, XIAOFENG; BRINGAS, PABLO; Slavkin, Harold C.; Chai, Yang

    2009-01-01

    Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS c...

  3. Penis-root perception of Koro patients.

    Science.gov (United States)

    Chowdhury, A N

    1991-07-01

    Koro is an acute anxiety reaction in which the perception of decreased penis length because of intra-abdominal traction is the main feature. This study attempts to explore the penis-root perception of the Koro patients by a graphomotor projective test--the Draw-a-penis Test (DAPT). This controlled DAPT investigation shows that Koro patients perceived the penis as a detached organ with root-boundary definiteness as evidenced from their close penis-root perception. They also displayed reduced volumetric perception of penis-root than the normal subjects. These perceptual deviations in penis-root image are discussed in relation to their Koro vulnerability.

  4. Medicolegal aspects of iatrogenic root perforations

    DEFF Research Database (Denmark)

    Tsesis, I; Rosen, E; Bjørndal, L

    2014-01-01

    AIM: To retrospectively analyze the medico-legal aspects of iatrogenic root perforations (IRP) that occurred during endodontic treatments. METHODOLOGY: A comprehensive search in a professional liability insurance database was conducted to retrospectively identify cases of IRP following root canal...... treatment (p root perforation is a complication of root canal treatment and may result in tooth extraction...... and in legal actions against the treating practitioner. Mandibular molars are more prone to medico-legal claims related to root perforations. The patient should be informed of the risks during RCT and should get information on alternative treatments and their risks and prognosis...

  5. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study

    OpenAIRE

    Giuseppe Lo Giudice; Giuseppina Cutroneo; Antonio Centofanti; Alessandro Artemisia; Ennio Bramanti; Angela Militi; Giuseppina Rizzo; Angelo Favaloro; Alessia Irrera; Roberto Lo Giudice; Marco Cicciù

    2015-01-01

    Dentin is a vital, hydrated composite tissue with structural components and properties that vary in the different topographic portions of the teeth. These variations have a significant implication for biomechanical teeth properties and for the adhesive systems utilized in conservative dentistry. The aim of this study is to analyse the root canal dentin going from coronal to apical zone to find the ratio between the intertubular dentin area and the surface occupied by dentin tubules varies. Ob...

  6. Lateral root organogenesis - from cell to organ.

    Science.gov (United States)

    Benková, Eva; Bielach, Agnieszka

    2010-12-01

    Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Correlations of Vegetative and Reproductive Characters with Root ...

    African Journals Online (AJOL)

    jummy

    exception of root branching and grain weight per plant. Heritability estimates were ... Keywords: Root volume, root thickness, root dry weight, drought, grain yield. Correspondence: ..... Whole plant responses, key processes, and adaptation to ...

  8. Induction of ELF transmembrane potentials in relation to power-frequency electric field bioeffects in a plant root model system. Pt. 2. The effect of 60 Hz electric fields on the growth of different regions of the cucurbit root elongation zone

    Energy Technology Data Exchange (ETDEWEB)

    Brayman, A.A.; Miller, M.W.; Brulfert, A.

    1986-08-01

    The region of elongation in Cucumis sativus and Cucurbita maxima roots was marked at increasing distances from the apex to provide an analog of increasing cell size. These roots were exposed/sham-exposed to 60 Hz electric fields and the growth rates of the root segments measured. The growth rate effect magnitude varied with increasing distance from the root tip at constant field strength, and with increasing applied field strength. These results provide strong, qualitative support for the postulate that ELF transmembrane potential induction is involved in the stimulation of ELF electric field effects in the plant root model system.

  9. Optimal root arrangement of cereal crops

    Science.gov (United States)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  10. Functional Piezocrystal Characterisation under Varying Conditions

    Directory of Open Access Journals (Sweden)

    Xiaochun Liao

    2015-12-01

    Full Text Available Piezocrystals, especially the relaxor-based ferroelectric crystals, have been subject to intense investigation and development within the past three decades, motivated by the performance advantages offered by their ultrahigh piezoelectric coefficients and higher electromechanical coupling coefficients than piezoceramics. Structural anisotropy of piezocrystals also provides opportunities for devices to operate in novel vibration modes, such as the d36 face shear mode, with domain engineering and special crystal cuts. These piezocrystal characteristics contribute to their potential usage in a wide range of low- and high-power ultrasound applications. In such applications, conventional piezoelectric materials are presently subject to varying mechanical stress/pressure, temperature and electric field conditions. However, as observed previously, piezocrystal properties are significantly affected by a single such condition or a combination of conditions. Laboratory characterisation of the piezocrystal properties under these conditions is therefore essential to fully understand these materials and to allow electroacoustic transducer design in realistic scenarios. This will help to establish the extent to which these high performance piezocrystals can replace conventional piezoceramics in demanding applications. However, such characterisation requires specific experimental arrangements, examples of which are reported here, along with relevant results. The measurements include high frequency-resolution impedance spectroscopy with the piezocrystal material under mechanical stress 0–60 MPa, temperature 20–200 °C, high electric AC drive and DC bias. A laser Doppler vibrometer and infrared thermal camera are also integrated into the measurement system for vibration mode shape scanning and thermal conditioning with high AC drive. Three generations of piezocrystal have been tested: (I binary, PMN-PT; (II ternary, PIN-PMN-PT; and (III doped ternary, Mn

  11. How specific halide adsorption varies hydrophobic interactions.

    Science.gov (United States)

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  12. Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance.

    Science.gov (United States)

    Black, Marykate Z; Patterson, Kevin J; Minchin, Peter E H; Gould, Kevin S; Clearwater, Michael J

    2011-05-01

    Whole vine (K(plant)) and individual root (K(root)) hydraulic conductances were measured in kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hort16A') vines to observe hydraulic responses following partial root system excision. Heat dissipation and compensation heat pulse techniques were used to measure sap flow in trunks and individual roots, respectively. Sap flux and measurements of xylem pressure potential (Ψ) were used to calculate K(plant) and K(root) in vines with zero and ∼80% of roots severed. Whole vine transpiration (E), Ψ and K(plant) were significantly reduced within 24 h of root pruning, and did not recover within 6 weeks. Sap flux in intact roots increased within 24 h of root pruning, driven by an increase in the pressure gradient between the soil and canopy and without any change in root hydraulic conductance. Photosynthesis (A) and stomatal conductance (g(s)) were reduced, without significant effects on leaf internal CO(2) concentration (c(i)). Shoot growth rates were maintained; fruit growth and dry matter content were increased following pruning. The woody roots of kiwifruit did not demonstrate a rapid dynamic response to root system damage as has been observed previously in monocot seedlings. Increased sap flux in intact roots with no change in K(root) and only a moderate decline in shoot A suggests that under normal growing conditions root hydraulic conductance greatly exceeds requirements for adequate shoot hydration.

  13. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  14. Root cap removal increases root penetration resistance in maize (Zea mays L).

    Science.gov (United States)

    Iijima, Morio; Higuchi, Toshifumi; Barlow, Peter W; Bengough, A Glyn

    2003-09-01

    The root cap assists the passage of the root through soil by means of its slimy mucilage secretion and by the sloughing of its outer cells. The root penetration resistance of decapped primary roots of maize (Zea mays L. cv. Mephisto) was compared with that of intact roots in loose (dry bulk density 1.0 g cm-3; penetration resistance 0.06 MPa) and compact soil (1.4 g cm-3; penetration resistance 1.0 MPa), to evaluate the contribution of the cap to decreasing the impedance to root growth. Root elongation rate and diameter were the same for decapped and intact roots when the plants were grown in loose soil. In compacted soil, however, the elongation rate of decapped roots was only about half that of intact roots, whilst the diameter was 30% larger. Root penetration resistances of intact and decapped seminal axis were 0.31 and 0.52 MPa, respectively, when the roots were grown in compacted soil. These results indicated that the presence of a root cap alleviates much of the mechanical impedance to root penetration, and enables roots to grow faster in compacted soils.

  15. Short-day treatment alters Douglas-fir seedling dehardening and transplant root proliferation at varying rhizosphere temperatures

    Science.gov (United States)

    Douglass F. Jacobs; Anthony S. Davis; BArrett C. Wilson; R. Kasten Dumroese; Rosa C. Goodman; K. Francis Salifu

    2008-01-01

    We tested effects of shortened day length during nursery culture on Douglis-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seedling development at dormancy release. Seedlings from a 42 N source were grown either under ambient photoperiods (long-day (LD)) or with a 28 day period of 9 h light: 15 h dark photoperiods (short...

  16. Influence of microgravity on cellular differentiation in root caps of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  17. Computational issues of solving the 1D steady gradually varied flow equation

    Directory of Open Access Journals (Sweden)

    Artichowicz Wojciech

    2014-09-01

    Full Text Available In this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution. This fact implies that the nonlinear algebraic equation approximating the ordinary differential energy equation, which additionally coincides with the wellknown standard step method usually applied for computing of the flow profile, can have variable number of roots. Consequently, more than one alternative solution corresponding to the same initial condition can be provided. Using this property it is possible to compute the water flow profile passing through the critical stage.

  18. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies.

    Science.gov (United States)

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-08-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology.

  19. Improved inference on cointegrating vectors in the presence of a near unit root using adjusted quantiles

    DEFF Research Database (Denmark)

    Franchi, Massimo; Johansen, Søren

    2017-01-01

    It is well known that inference on the cointegrating relations in a vector autoregression (CVAR) is difficult in the presence of a near unit root. The test for a given cointegration vector can have rejection probabilities under the null, which vary from the nominal size to more than 90%. This paper...

  20. Stress differentially impacts reserve pools and root exudation: implications for ecosystem functioning and carbon balance

    Science.gov (United States)

    Landhäusser, Simon; Karst, Justine; Wiley, Erin; Gaster, Jacob

    2016-04-01

    Environmental stress can influence carbon assimilation and the accumulation and distribution of carbon between growth, reserves, and exudation; however, it is unclear how these processes vary by different stress types. Partitioning of carbon to growth and reserves in plants might also vary between different organs. Roots reserves are of particular interest as they link the plant with the soil carbon cycle through exudation. Simple models of diffusion across concentration gradients predict the more C reserves in roots, the more C should be exuded from roots. However, the mechanisms underlying the accumulation and loss of C from roots may differ depending on the stress experienced by the plants. In a controlled study we tested whether different types of stresses (shade, cold soil, and drought) have differential effects on the distribution, abundance, and form (sugar vs. starch) of carbohydrates in seedlings, and whether these changes alone could explain differences in root exudation between stress types. Non-structural carbohydrate (NSC) concentration and pool sizes varied by stress type and between organs. Mass-specific C exudation increased with fine root sugar concentration; however, stress type affected exudation independently of reserve concentration. Seedlings exposed to cold soils exuded the most C on a per root mass basis followed by shade and drought. Through 13C labeling, we also found that depending on the stress type, aspen seedlings may be less able to control the loss of C to the soil compared with unstressed seedlings, resulting in more C leaked to the rhizosphere. The loss of C beyond that predicted by simple concentration gradients might have important implications for ecosystem functioning and carbon balance. If stressed plants lose proportionally more carbon to the soil, existing interactions between plants and soils may decouple under stress, and may include unexpected C fluxes between trees, soils and the atmosphere with a changing climate.

  1. Application of Electrical Resistivity Tomography for Detecting Root Biomass in Coffee Trees

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Paglis

    2013-01-01

    Full Text Available Roots play an important role in plants and are responsible for several functions; among them are anchorage and nutrient and water absorption. Several methodologies are being tested and used to study plant root systems in order to avoid destructive root sampling. Electrical resistivity tomography is among these methodologies. The aim of this preliminary study was to use electrical resistivity for detecting root biomass in coffee trees. Measurements were performed in a soil transect with an ABM AL 48-b resistivimeter with a pole-dipole configuration. The tomograms indicated variability in soil resistivity values ranging from 120 to 1400 Ω·m−1. At the first 0.30 cm soil layer, these values were between 267 and 952 Ω·m−1. Oriented by this result, root samples were taken at 0.10, 0.20, and 0.30 m depths within 0.50 m intervals along the soil transect to compare soil resistivity with root mass density (RMD. RMD data, up to this depth, varied from 0.000019 to 0.009469 Mg·m−3, showing high spatial variability and significant relationship to the observed values of soil resistivity. These preliminary results showed that the electrical resistivity tomography can contribute to root biomass studies in coffee plants; however, more experiments are necessary to confirm the found results in Brazil coffee plantations.

  2. Response of anatomical structures in tree roots to an erosion event on the southeastern Tibetan Plateau

    Science.gov (United States)

    Sun, Liping; Wang, Xiaodan; Hong, Jiangtao

    2014-01-01

    Exposed roots have been used in dendrogeomorphology to determine erosion rates. However, few studies have focused on the changes in ring width and in the anatomical properties of hardwood roots exposed by soil erosion at a macroscopic and microscopic level. In this study, we identified the ring width and the anatomical response of hardwood root to a denudation event and applied these anatomical findings to the reconstruction and quantification of soil erosion rates. A total of 136 cross sections (54 from buried roots and 79 from exposed roots of 25 trees) were sampled in the study area. Measurements of the widths of the growth rings, the average vessel area in earlywood, the average vessel area per ring, and the vessel number per ring were performed with WinDENDRO and ImageJ. Our results show that the analysis of vessel features is a useful tool to identify soil erosion events recorded during the life of a tree. A sharp decrease of nearly 50% in the vessel area of earlywood was an important signature indicating the exposure of tree roots caused by denudation. Soil erosion rates derived from exposed roots varied between 1.04 and 3.61 mm y- 1 in the southeastern Tibetan Plateau.

  3. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment.

    Science.gov (United States)

    Gondor, Orsolya K; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.

  4. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest.

    Science.gov (United States)

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-09-29

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios.

  5. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment

    Science.gov (United States)

    Gondor, Orsolya K.; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K.; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.

  6. Assessment of the nonoperated root after apical surgery of the other root in mandibular molars

    DEFF Research Database (Denmark)

    Kraus, Riccardo D; von Arx, Thomas; Gfeller, David

    2015-01-01

    INTRODUCTION: If a surgical approach is chosen to treat a multirooted tooth affected by persistent periapical pathosis, usually only the affected roots are operated on. The present study assessed the periapical status of the nonoperated root 5 years after apical surgery of the other root...... and radiographs 5 years after surgery were examined. The following data were collected: tooth, operated root, type and quality of the coronal restoration, marginal bone level, length and homogeneity of the root canal filling, presence of a post/screw, periapical index (PAI) of each root, and radiographic healing...... of the operated root. The presence of apical pathosis of the nonoperated root was analyzed statistically in relation to the recorded variables. RESULTS: Thirty-seven patients fulfilled the inclusion criteria. Signs of periapical pathosis in the nonoperated root 5 years after surgery (PAI ≥ 3) could be observed...

  7. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    Science.gov (United States)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to

  8. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    Science.gov (United States)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  9. Patterns in soil fertility and root herbivory interact to influence fine-root dynamics.

    Science.gov (United States)

    Stevens, Glen N; Jones, Robert H

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8-9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  10. A statistical approach to root system classification.

    Science.gov (United States)

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.

  11. A statistical approach to root system classification.

    Directory of Open Access Journals (Sweden)

    Gernot eBodner

    2013-08-01

    Full Text Available Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. We demonstrate that combining principal component and cluster analysis yields a meaningful classification of rooting types based on morphological traits. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. Biplot inspection is used to determine key traits and to ensure stability in cluster based grouping. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Three rooting types emerged from measured data, distinguished by diameter/weight, density and spatial distribution respectively. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement

  12. Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution

    Directory of Open Access Journals (Sweden)

    M. T. van Wijk

    2001-01-01

    Full Text Available In this modelling study differences in vertical root distributions measured in four contrasting forest locations in the Netherlands were investigated. Root distributions are seen as a reflection of the plant’s optimisation strategy, based on hydrological grounds. The 'optimal' root distribution is defined as the one that maximises the water uptake from the root zone over a period of ten years. The optimal root distributions of four forest locations with completely different soil physical characteristics are calculated using the soil hydrological model SWIF. Two different model configurations for root interactions were tested: the standard model configuration in which one single root profile was used (SWIF-NC, and a model configuration in which two root profiles compete for the same available water (SWIF-C. The root profiles were parameterised with genetic algorithms. The fitness of a certain root profile was defined as the amount of water uptake over a simulation period of ten years. The root profiles of SWIF-C were optimised using an evolutionary game. The results showed clear differences in optimal root distributions between the various sites and also between the two model configurations. Optimisation with SWIF-C resulted in root profiles that were easier to interpret in terms of feasible biological strategies. Preferential water uptake in wetter soil regions was an important factor for interpretation of the simulated root distributions. As the optimised root profiles still showed differences with measured profiles, this analysis is presented, not as the final solution for explaining differences in root profiles of vegetation but as a first step using an optimisation theory to increase understanding of the root profiles of trees. Keywords: forest hydrology, optimisation, roots

  13. Histological assessment of pulp condition after apical vital root transection in one root of multirooted teeth in dogs: a preliminary study.

    Science.gov (United States)

    Yaghmaiee, Massoud; Yavari, Amir Saeed; Mashhadiabbas, Fatemeh; Bahrami, Afshin; Farnia, Pupak; Sharifi, Davoud; Ghanavi, Jalaledin; Eslami, Behnan

    2007-09-01

    One of the most important aspects in surgery is the healing process after the periapical surgery. Past studies have shown occasional encounters with vital root resection and have noted varying degrees of pulpal response after root resection in periodontal disease. The purpose of this investigation was to observe the pulpal and periapical responses to intentional apical vital root transection in one root of multirooted teeth of German-Canadian dogs over a 6-month postoperative period. This is an experimental study performed on left maxillary and mandibular quadrants of four adult German-Canadian dogs after a 3- and 6-month period. Four teeth were assessed in each interval. One of the roots of multirooted teeth in the left quadrant of both maxillary and mandibular jaws was surgically transected. Tissue blocks were prepared by routine histological methods after 12 and 24 weeks after the surgery. The results showed a disruption of the normal pulpal architecture, with initial pulpal degeneration and subsequent early replacement by the periodontal ligament tissue after 24 weeks. Hypercementosis was seen around the apical portion of the root in all specimens. Pulpal regeneration was seen in the both upper and lower molars (p = 0.03). Resorption took place only in two specimens (p = 0.46). The inflammation in the 12th week was more than the 24th week. The pulp of multirooted teeth remains vital after transection of the apical part of the root in dogs. Longer follow-up periods are recommended because root canal therapy or extraction is indicated if resorption, necrosis, or ankylosis is seen.

  14. Root canal treatment of bilateral three-rooted maxillary first premolars

    Directory of Open Access Journals (Sweden)

    Bhavana Gandhi

    2012-01-01

    Full Text Available In endodontics, several anatomic variations occur in teeth, both externally and in the internal root morphology, which play a very significant role in the diagnosis and treatment outcome. A thorough knowledge of the root canal anatomy, careful interpretation of the angled radiographs, proper endodontic access cavity preparation, and exploration of the root canal are the prerequisites for endodontic success. In a maxillary first premolar, it is rare to find extra roots and canals, and the aim of the present article is to report a case about the successful diagnosis and clinical management of bilateral three-rooted maxillary first premolars, with three independent root canals.

  15. Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock.

    Science.gov (United States)

    Mesquita, Geisa L; Zambrosi, Fernando C B; Tanaka, Francisco A O; Boaretto, Rodrigo M; Quaggio, José A; Ribeiro, Rafael V; Mattos, Dirceu

    2016-01-01

    In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.

  16. Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Is Dependent on Rootstock

    Directory of Open Access Journals (Sweden)

    Geisa Lima Mesquita

    2016-03-01

    Full Text Available In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive. Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant, leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.

  17. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations

    Science.gov (United States)

    Edy, Nur; Meyer, Marike; Corre, Marife D.; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems. PMID:26366576

  18. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations.

    Directory of Open Access Journals (Sweden)

    Josephine Sahner

    Full Text Available Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization. Traits were measured as root community-weighed traits (RCWTs in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra. We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems.

  19. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations.

    Science.gov (United States)

    Sahner, Josephine; Budi, Sri Wilarso; Barus, Henry; Edy, Nur; Meyer, Marike; Corre, Marife D; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems.

  20. ROOT YIELD AND QUALITY OF SUGAR BEET INVESTIGATED HYBRIDS

    Directory of Open Access Journals (Sweden)

    Andrija Kristek

    2013-06-01

    Full Text Available The research of the production values of 10 sugar beet hybrids was conducted at the location Dalj from 2009-2012. Hybrids included in the experiment are owned by four selection houses and represented in wide production. Weather conditions in the years of investigation differed greatly. One was an average, one with increased, and two with small amounts of rainfall in relation to long-term average. Monthly air temperatures during the vegetation were increased in all four years. Root yield and quality of sugar beet varied considerably depending on the year and the hybrid. The best hybrid on the average of the investigation, by the highest root, was Severina (86.66 t ha-1. Three more hybrids: Coyote, Boomerang and Predator are in the same range. There are no significant differences in this indicator. Hybrid Colonia KWS (15.40% had the highest content of sugar in the root and Asketa, Gazeta, Severina and Protecta with no significant differences. Hybrid Colonia KWS was known for the low content of AmN and Na. Sugar yield, significantly higher than other hybrids in the study, has been realized with hybrids Severina (11.05 t ha-1 and Colonia KWS (10.78 t ha-1.

  1. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  2. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    Science.gov (United States)

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles.

  3. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  4. Thermotropism by primary roots of maize

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, M.-C.; Poff, K.L. (MSU-DOE Plant Research Laboratory, East Lansing, MI (USA))

    1990-05-01

    Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root is placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.

  5. Winter Wheat Root Growth and Nitrogen Relations

    DEFF Research Database (Denmark)

    Rasmussen, Irene Skovby

    Root growth is an essential parameter regarding nitrogen (N) uptake efficiency, as more and deeper roots may improve the uptake from deeper soil layers and reduce nitrate leaching losses. During this PhD project, it was studied how different agronomic practices influence root growth and N relations...... in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...... fertilization was conducted in Canberra, Australia. Here the root studies were done by means of the core-break method and root washing....

  6. Tree-root control of shallow landslides

    Directory of Open Access Journals (Sweden)

    D. Cohen

    2017-08-01

    Full Text Available Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope

  7. Winter Wheat Root Growth and Nitrogen Relations

    DEFF Research Database (Denmark)

    Rasmussen, Irene Skovby

    Root growth is an essential parameter regarding nitrogen (N) uptake efficiency, as more and deeper roots may improve the uptake from deeper soil layers and reduce nitrate leaching losses. During this PhD project, it was studied how different agronomic practices influence root growth and N relations...... in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...... fertilization was conducted in Canberra, Australia. Here the root studies were done by means of the core-break method and root washing....

  8. Tree-root control of shallow landslides

    Science.gov (United States)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots

  9. INDUSTRIAL ENGINEERING : ROOTING FOR ROOTS, HANKERING FOR HEROES

    Directory of Open Access Journals (Sweden)

    P.S. Kruger

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The “roots” of Industrial Engineering are certainly extensive, diverse and deep. Similarly, there are numerous historical “heroes” that made significant contributions to the development of the Industrial Engineering discipline. For the sake of argument, this article will assume that Industrial Engineering has at least two identifiable main roots, namely Determinism and Stochastism. The article attempts to trace the early history1 of the stochastic root which is very closely linked to the history of probability and statistics and hence games of chance, gambling and divinity. Therefore, the life and times, contributions and personalities of some of the heroes and villains, champions and sad cases of the stochastic world, will be briefly discussed in a somewhat light-hearted, but not necessarily flippant, manner.

    AFRIKAANSE OPSOMMING: Die “wortel en tak” van Bedryfsingenieurswese is sekerlik van groot omvang, van diverse aard en diep gesetel. Verskeie historiese “helde” het betekenisvolle bydraes gemaak tot die ontwikkeling van die Bedryfsingenieurswesevakgebied. Ter wille van betoogvoering sal in hierdie artikel aanvaar word dat Bedryfsingenieurswese uit minstens twee identifiseerbare sub-vakgebiede bestaan naamlik : Die Determinisme en die Stogasme. ’n Poging word aangewend om die vroeë geskiedenis van die stogasme na te speur wat op sy beurt aaneengesnoer is met die geskiedenis van die waarskynlikheidsleer en statistiek en dus toevalspelle, dobbelary en wiggelary. Die lewenswyse, tydsgewrig, bydraes en persoonlikheidseienskappe van ’n aantal helde en skurke, kampioene en prulle van die stogastiese wêreld word kortliks bespreek, op ’n ietwat lighartige maar nie noodwendig ligsinnige wyse.

  10. Rooting of carnation cuttings: The auxin signal

    OpenAIRE

    Acosta, Manuel; Oliveros-Valenzuela, M Rocío; Nicolás, Carlos; Sánchez-Bravo, José

    2009-01-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. Among other signals, auxin polarly transported through the stem plays a key role in the formation and growth of adventitious roots. Unlike in other plant species, auxin from mature leaves plays a decisive role in the rooting of carnation (Dianthus caryophyllus. L) cuttings. The gene DcAUX1, which codifies an auxin influx carrier involved in polar auxin transport, has now been cloned and charac...

  11. Root phenology in a changing climate.

    Science.gov (United States)

    Radville, Laura; McCormack, M Luke; Post, Eric; Eissenstat, David M

    2016-06-01

    Plant phenology is one of the strongest indicators of ecological responses to climate change, and altered phenology can have pronounced effects on net primary production, species composition in local communities, greenhouse gas fluxes, and ecosystem processes. Although many studies have shown that aboveground plant phenology advances with warmer temperatures, demonstration of a comparable association for belowground phenology has been lacking because the factors that influence root phenology are poorly understood. Because roots can constitute a large fraction of plant biomass, and root phenology may not respond to warming in the same way as shoots, this represents an important knowledge gap in our understanding of how climate change will influence phenology and plant performance. We review studies of root phenology and provide suggestions to direct future research. Only 29% of examined studies approached root phenology quantitatively, strongly limiting interpretation of results across studies. Therefore, we suggest that researchers emphasize quantitative analyses in future phenological studies. We suggest that root initiation, peak growth, and root cessation may be under different controls. Root initiation and cessation may be more constrained by soil temperature and the timing of carbon availability, whereas the timing of peak root growth may represent trade-offs among competing plant sinks. Roots probably do not experience winter dormancy in the same way as shoots: 89% of the studies that examined winter phenology found evidence of growth during winter months. More research is needed to observe root phenology, and future studies should be careful to capture winter and early season phenology. This should be done quantitatively, with direct observations of root growth utilizing rhizotrons or minirhizotrons.

  12. Signaling Pathways Critical for Tooth Root Formation.

    Science.gov (United States)

    Wang, J; Feng, J Q

    2017-10-01

    Tooth is made of an enamel-covered crown and a cementum-covered root. Studies on crown dentin formation have been a major focus in tooth development for several decades. Interestingly, the population prevalence for genetic short root anomaly (SRA) with no apparent defects in crown is close to 1.3%. Furthermore, people with SRA itself are predisposed to root resorption during orthodontic treatment. The discovery of the unique role of Nfic (nuclear factor I C; a transcriptional factor) in controlling root but not crown dentin formation points to a new concept: tooth crown and root have different control mechanisms. Further genetic mechanism studies have identified more key molecules (including Osterix, β-catenin, and sonic hedgehog) that play a critical role in root formation. Extensive studies have also revealed the critical role of Hertwig's epithelial root sheath in tooth root formation. In addition, Wnt10a has recently been found to be linked to multirooted tooth furcation formation. These exciting findings not only fill the critical gaps in our understanding about tooth root formation but will aid future research regarding the identifying factors controlling tooth root size and the generation of a whole "bio-tooth" for therapeutic purposes. This review starts with human SRA and mainly focuses on recent progress on the roles of NFIC-dependent and NFIC-independent signaling pathways in tooth root formation. Finally, this review includes a list of the various Cre transgenic mouse lines used to achieve tooth root formation-related gene deletion or overexpression, as well as strengths and limitations of each line.

  13. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  14. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Institute of Scientific and Technical Information of China (English)

    Hongguang; Cai; Wei; Ma; Xiuzhi; Zhang; Jieqing; Ping; Xiaogong; Yan; Jianzhao; Liu; Jingchao; Yuan; Lichun; Wang; Jun; Ren

    2014-01-01

    A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  15. Apical Microleakage of four Materials after Root End Resection (In Vitro Study

    Directory of Open Access Journals (Sweden)

    Radeva E.

    2016-10-01

    Full Text Available Hermetic sealing of the apical area after root end resection is essential to the success of endodontic surgery. To compare microleakage after root end resection of the two bioceramic sealers without retrograde filling - Total Fill BC Sealer and MTA Fillapex, and two materials for retrograde filling-MTA and Biodentine, using the method of penetration of dye - 2% methylene blue. Forty eight extracted single-rooted human teeth were used in this study. The resection was made at 3 mm from the root tip at an angle of 90 degree to the long axis of the tooth. The teeth were divided into 4 groups: 1st group (n = 9 - root canal obturation with Total Fill BC Sealer without retrograde filling; 2nd group (n = 8 - root canal obturation with MTA Fillapex without retrograde filling. 3rd group (n = 10 - retrograde ultrasonic cavity preparation and filling with MTA. 4th group (n = 8 - retrograde ultrasonic cavity preparation and filling with Biodentine. The outer surface of the root was covered with two layers of varnish, with the exception of the apical 3 mm and then immersed in 2% methylene blue for 72 h. The degree of penetration of the dye is measured in millimeters. The data was entered and processed with the statistical package IBM SPSS Statistics 22.0. We reject the null hypothesis when p < 0.05. With significantly higher value is the arithmetic mean of the group with the root canal obturation with Total Fill BC Sealer without retrograde filling - 2,01 mm; versus a retrograde filling with MTA - 0,68 mm and Biodentin - 0,51 mm; and no statistically significant difference with the group root canal obturation with MTA Fillapex - 1,76 mm. In the four material microleakage dye was observed, but to varying degrees.

  16. The Equilibrium and Growth Stability of Winter Wheat Root and Shoot Under Different Soil Water Conditions

    Institute of Scientific and Technical Information of China (English)

    GAO Zhi-hong; CHEN Xiao-yuan; LUO Yuan-pei

    2007-01-01

    The equilibrium between root, shoot and growth stability under different soil water conditions were investigated in a tube experiment of winter wheat. The water supplying treatments included: sufficient irrigation at whole growth phase, moderate deficiency irrigation at whole growth phase, serious deficiency irrigation at whole growth phase, sufficient irrigation at jointing stage, tillering stage, flowering stage, and fillering respectively, after moderate and serious water deficit during their previous growth stage. Root and shoot biomass were measured. On the basis of the cooperative root-shoot interactions model, the equilibrium and growth stability were studied on the strength of the kinetics system theory. There was only one varying equilibrium point between the root and shoot over the life time of the winter wheat plant. Water stress prolonged the duration of stable growth, the more serious the water deficit, the longer the period of stable growth.The duration of stable growth was shortened and that of unstable growth was prolonged after water recovery. The growth behavior of the plants exposed to moderate water deficit shifted from stable to unstable until the end of the growth,after rewatering at flowering. In the life-time of the crop, the root and shoot had been adjusting themselves in structure and function so as to maintain an equilibrium, but could not achieve the equilibrium state for long. They were always in an unbalanced state from the beginning to the end of growth. This was the essence of root-shoot equilibrium. Water stress inhibited the function of root and shoot, reduced root shoot interactions, and as a result, the plant growth gradually tended to stabilize. Rewatering enhanced root shoot interactions, prolonged duration of instable growth. Rewatering at flowering could upset the inherent relativity during the long time of stable growth from flowering to filling stage, thus leading to unstable growth and enhanced dry matter accumulating rate

  17. Structure, variation, and assembly of the root-associated microbiomes of rice

    Science.gov (United States)

    Edwards, Joseph; Johnson, Cameron; Santos-Medellín, Christian; Lurie, Eugene; Podishetty, Natraj Kumar; Bhatnagar, Srijak; Eisen, Jonathan A.; Sundaresan, Venkatesan

    2015-01-01

    Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants. PMID:25605935

  18. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  19. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    shows that division and square root units based on the digit-recurrence algorithm offer the best tradeoff delay-area-power. Moreover, the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square root unit obtained by overlapping two radix-4 stages......Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work...

  20. Comprehensive analysis of Panax ginseng root transcriptomes

    National Research Council Canada - National Science Library

    Jayakodi, Murukarthick; Lee, Sang-Choon; Lee, Yun Sun; Park, Hyun-Seung; Kim, Nam-Hoon; Jang, Woojong; Lee, Hyun Oh; Joh, Ho Jun; Yang, Tae-Jin

    2015-01-01

    Korean ginseng (Panax ginseng C.A. Meyer) is a highly effective medicinal plant containing ginsenosides with various pharmacological activities, whose roots are produced commercially for crude drugs...

  1. Mandibular second premolar with four roots

    Directory of Open Access Journals (Sweden)

    Sefika Nur Akyuz

    2012-01-01

    Full Text Available Detection of normal and abnormal variation in tooth anatomy is essential for clinical success. It is generally well known that the mandibular second premolar teeth have a single root and canal. However, the mandibular second premolar teeth have sometimes more than one root and root canal. The endodontic treatment of a mandibular second premolar with four roots which separated at different levels along the middle third of the root is presented in this case report. Preoperative radiographs appeared radiolucency and different root anatomy in the region of the mandibular second premolar. The root canals were prepared using Mtwo rotary system (VDW, Munich, Germany and obturated laterally condensed gutta percha and AH plus (Dentsply De Trey, Konstanz, Germany. After the completion of root canal treatment, the tooth was restored with a posterior composite filling material. On follow-up, the tooth was clinically and radiographically asymptomatic for two years. Clinicians should be aware of the importance of careful clinical and radiographic examination of mandibular premolars during the endodontic treatment. Radiographs exposed at two different horizontal angles and their careful interpretation facilitates the search of additional root canals.

  2. Designing new interfaces for ROOT data processing

    CERN Document Server

    Vuorinen, Kalle Elmer

    2016-01-01

    ROOT is a C++ framework for data analysis provided with a Python interface (PyRoot). ROOT is used in every Large Hadron Collider experiment. This project presents a way of reading ROOT TTree by using a new class called DataFrame, which allows the usage of cache and functional chains. Reading TTrees in Python has been quite slow compared to the C++ way of doing it and for this reason we also bring the possibility to read them with just-in-time (JIT) compiled C++ code, using another new Python class called TreeReader.

  3. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus.

    Science.gov (United States)

    Schwambach, Joséli; Fadanelli, Cristina; Fett-Neto, Arthur G

    2005-04-01

    We characterized the adventitious rooting response of Eucalyptus globulus Labill. to various concentrations of calcium, nitrogen, phosphorus, iron, manganese, zinc, boron and copper. The parameters analyzed were percent rooting, root number, root length and mean rooting time. Root number and root length were significantly affected by mineral nutrition, whereas mean rooting time and rooting percentage seemed to be closely related to auxin availability. Root number was affected by calcium, nitrogen source and zinc, whereas root length was influenced by concentrations of phosphorus, iron and manganese, and by nitrogen source. Based on these results, we evaluated various combinations of several concentrations of these minerals in each rooting phase. Cuttings that were rooted in an optimized mineral nutrient medium and acclimatized to ex-vitro conditions for two months showed significantly higher survival after transplanting and drought stress than cuttings rooted in basal medium and treated in the same way.

  4. Perennial Roots to Immortality1,2[C

    Science.gov (United States)

    Munné-Bosch, Sergi

    2014-01-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation. PMID:24563283

  5. ROOT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHETIC CAPACITY OF EUCALYPT CLONAL CUTTINGS WITH ROOT MALFORMATION INDUCTIONS

    Directory of Open Access Journals (Sweden)

    Fábio Afonso Mazzei Moura de Assis Figueiredo

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.

  6. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations

    Institute of Scientific and Technical Information of China (English)

    WANG Xiangrong; WANG Zhengquan; HAN Youzhi; GU Jiacun; GUO Dali; MEI Li

    2007-01-01

    Fine root lifespan and turnover play an important role in carbon allocation and nutrient cycling in forest ecosystems.Fine roots are typically defined as less than 1 or 2mm in diameter.However,when categorizing roots by this diameter size,the position of an individual root on the complex lateral branching pattern has often been ignored,and our knowledge about relationships between branching order and root function thus remains limited.More recently,studies on root survivals found that longevity was remarkably different in the same branching level due to diameter variations.The objectives of this study were:(1) To examine variations of fine root diameter from the first-to fifth-orders in Fraxinus mandshurica Rupr and Larix gmelinii Rupr roots;and (2) To reveal how the season,soil nutrient,and water availability affect root diameter in different branch order in two species.This study was conducted at Maoershan Forest Research Station (45°21'-45°25'N,127°30'-127°34'E) owned by Northeast Forestry University in Harbin,northeast China.Both F.mandshurica and L.gmelinii were planted in 1986.In each plantation,fine roots of two species by sampling up to five fine root branch orders three times during the 2003 growing season from two soil depths (i.e.,0-10 and 10-20 cm)were obtained.The results showed that average diameters of fine roots were significantly different among the five branch orders.The first-order had the thinner roots and the fifth order had the thickest roots,the diameter increasing regularly with the ascending branch orders in both species.If the diameter of fine roots was defined as being smaller than 0.5 mm,the first three orders ofF.mandshurica roots and the first two orders of L.gmelinii roots would be included in the fine root population.The diameter ranges of the fine roots from first-order to fifth-order were 0.15-0.58,0.18-0.70,0.26-1.05,0.36-1.43,and 0.71-2.96 mm for F.mandshurica,and 0.17-0.76,0.23-1.02,0.26-1.10,0.38-1.77,and 0.84-2.80 mm for L

  7. Arctic root-associated fungal community composition reflects environmental filtering.

    Science.gov (United States)

    Blaalid, Rakel; Davey, Marie L; Kauserud, Håvard; Carlsen, Tor; Halvorsen, Rune; Høiland, Klaus; Eidesen, Pernille B

    2014-02-01

    There is growing evidence that root-associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per-plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root-associated fungal community composition at both global and local scales is emphasized.

  8. Water percolation through the root-soil interface

    Science.gov (United States)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-09-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm2. The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  9. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Directory of Open Access Journals (Sweden)

    Lorenzo Pedrotti

    Full Text Available Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  10. Anatomical evaluation of the root canal diameter and root thickness on the apical third of mesial roots of molars.

    Science.gov (United States)

    Martos, Josué; Tatsch, Gustavo Henrique; Tatsch, Augusto César; Silveira, Luiz Fernando Machado; Ferrer-Luque, Carmen María

    2011-09-01

    The purpose was to determine the diameter of the main root canal and wall thickness in the apical dentin in mesial roots of maxillary and mandibular molars. Forty mesiobuccal and mesial root specimens were sectioned horizontally at 1, 2 and 3 mm from the apex, and measured at each top surface by using optical microscopy to an accuracy of ×20 magnification. The anatomical parameters were established as the following points of reference: AB, two points connected by a line from the outer edge of the mesial wall to the outer edge of the distal one through the center of the root canal to measure the thickness of the root and mesiodistal diameter of the root canal (CD). A second line (EF) was designed to evaluate the diameter of the root canal in the buccolingual direction. All data were summarized, and values were assessed statistically by ANOVA and Bonferroni multiple comparisons. The buccolingual (BL) root canal diameters at 1, 2 and 3 mm in the mandibular and maxillary molars were greater than in the mesiodistal (MD), showing statistically significant differences (p maxillary molars were statistically significant (p maxillary molars was 1.741 mm. The BL diameters in maxillary and mandibular molars were higher than the MD diameter. The thickness (MD) of maxillary and mandibular molars decreased as a function of apical proximity.

  11. GiA Roots: software for the high throughput analysis of plant root system architecture

    OpenAIRE

    Galkovskyi Taras; Mileyko Yuriy; Bucksch Alexander; Moore Brad; Symonova Olga; Price Charles A; Topp Christopher N; Iyer-Pascuzzi Anjali S; Zurek Paul R; Fang Suqin; Harer John; Benfey Philip N; Weitz Joshua S

    2012-01-01

    Abstract Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically...

  12. Root-soil relationships and terroir

    Science.gov (United States)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  13. Malformations of the tooth root in humans

    Directory of Open Access Journals (Sweden)

    Hans Ulrich eLuder

    2015-10-01

    Full Text Available The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on

  14. Root selection methods in flood analysis

    Directory of Open Access Journals (Sweden)

    B. Parmentier

    2003-01-01

    Full Text Available In the 1970s, de Laine developed a root-matching procedure for estimating unit hydrograph ordinates from estimates of the fast component of the total runoff from multiple storms. Later, Turner produced a root selection method which required only data from one storm event and was based on recognising a pattern typical of unit hydrograph roots. Both methods required direct runoff data, i.e. prior separation of the slow response. This paper introduces a further refinement, called root separation, which allows the estimation of both the unit hydrograph ordinates and the effective precipitation from the full discharge hydrograph. It is based on recognising and separating the quicker component of the response from the much slower components due to interflow and/or baseflow. The method analyses the z-transform roots of carefully selected segments of the full hydrograph. The root patterns of these separate segments tend to be dominated by either the fast response or the slow response. This paper shows how their respective time-scales can be distinguished with an accuracy sufficient for practical purposes. As an illustration, theoretical equations are derived for a conceptual rainfall-runoff system with the input split between fast and slow reservoirs in parallel. These are solved analytically to identify the reservoir constants and the input splitting parameter. The proposed method, called 'root separation', avoids the subjective selection of rainfall roots in the Turner method as well as the subjective matching of roots in the original de Laine method. Keywords: unit hydrograph,identification methods, z-transform, polynomial roots, root separation, fast andslow response, Nash cascade

  15. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  16. TESTS FOR VARIANCE COMPONENTS IN VARYING COEFFICIENT MIXED MODELS

    National Research Council Canada - National Science Library

    Zaixing Li; Yuedong Wang; Ping Wu; Wangli Xu; Lixing Zhu

    2012-01-01

    .... To address the question of whether a varying coefficient mixed model can be reduced to a simpler varying coefficient model, we develop one-sided tests for the null hypothesis that all the variance components are zero...

  17. Changes of Root Length and Root-to-Crown Ratio after Apical Surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Jensen, Simon S; Bornstein, Michael M

    2015-01-01

    the length of apicectomy and calculated the loss of root length and changes of RCR after apical surgery. METHODS: In a prospective clinical study, cone-beam computed tomography scans were taken preoperatively and postoperatively. From these images, the crown and root lengths of 61 roots (54 teeth in 47...

  18. Effect of applied synthetic auxin on root growth in plantlet propagation by cuttage and tissue culture; Sashiki to soshiki baiyo ni okeru gosei auxin rui no shiyo koka

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, K.; Yoshihara, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-12-01

    The effect of synthetic plant hormone 4-C1-IAA and TFIBA on root growth in plantlet propagation was clarified by the cuttage and the issue culture of strawberry seedling production. A periwinkle, vine, and azalea are the effect of 4-C1-IAA on root growth, and a promotion effect was recognized for rooting and root elongation. The concentration of 4-C1-IAA in which the growth promotion effect of a root most appears varies depending on the species of a plant. The concentration of a periwinkle was 20 ppm, and that of an azalea was 2000 ppm. The growth promotion effect of a root in 4-C1-IAA and TFIBA was compared with IBA for an azalea. The result showed that 4-C1-IAA is the same in the effect as IBA and that TFIBA is higher than for IBA. The growth of a vine`s terminal bud was promoted by the effect of TFIBA on root growth, and the callus occurring when IBA was treated was not formed. The rooting of a strawberry was promoted by the effect of TFIBA on root growth. The combined use of TFIBA and BA promotes the growth of a side bud and forms a multi-bud plant. However, rooting was inhibited. The callus caused by the effect of BA on root growth could be suppressed through the combined use with TFIBA. 6 refs., 7 figs., 2 tabs.

  19. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions

    Directory of Open Access Journals (Sweden)

    Alexander Martin Paya

    2015-04-01

    Full Text Available Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen and Picea mariana (black spruce seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for two months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals and paired seedlings (inter- or intra-specific, than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  20. Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments.

    Science.gov (United States)

    Chochois, Vincent; Vogel, John P; Rebetzke, Gregory J; Watt, Michelle

    2015-07-01

    Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.

  1. Discrepancy in fine root turnover estimates between diameter-based and branch-order-based approaches: a case study in two temperate tree species

    Institute of Scientific and Technical Information of China (English)

    SUN Jing-jue; GU Jia-cun; WANG Zheng-quan

    2012-01-01

    Fine root turnover plays a key role in carbon (C) budgets and nutrients cycles in forest ecosystems.However,the difference between branch-order-based and diameter-based approaches in estimating fine root turnover is still unclear.We studied root biomass turnover based on multiplying root standing biomass by turnover rate (inverse of median root longevity) in two Chinese temperate tree species,Fraxinus mandshurica Rupr.and Larix gmelinii Rupr.The minirhizotron (MR) technique was used to estimate longevities for first and second order roots,and total roots (Rtotal) apparent on the MR tube surface.The corresponding biomass for each root group was estimated by soil monolith.The difference in biomass turnover between Rtotal and the sum of the first and second order roots was used to represent the discrepancy between diameter-and order-based approaches.First order roots had shorter life spans and higher biomass turnover rates than the second order roots in both species.Biomass turnover estimated by the order-based method for F.mandshurica and L.gmelinii were 155.4 g·m-2·a-1 and 158.9 g·m-2·a-1,respectively,in comparison with 99.5 g·m-2·a-1 and 117.7 g·m-2·a-1 estimated by the diameter-based method,indicating that the diameter-based approach underestimated biomass turnover.The most probable reason was that the order-based method enhanced separation of the heterogeneous root population into relatively homogenous root groups with varying turnover rates.We conclude that separating fine root pool into different branch orders can improve the accuracy of estimates for fine root turnover,as well as the understanding of the belowground C allocation and nutrient cycling at ecosystem level.

  2. Comparison of Linear Microinstability Calculations of Varying Input Realism

    Energy Technology Data Exchange (ETDEWEB)

    G. Rewoldt

    2003-09-08

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results.

  3. Contribution of root respiration to soil respiration in a C3/C4 mixed grassland

    Indian Academy of Sciences (India)

    Wei Wang; Kenji Ohse; Jianjun Liu; Wenhong Mo; Takehisa Oikawa

    2005-09-01

    The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11.54 mol m–2 s–1 was found in August 2004 and the lowest soil respiration rate of 4.99 mol m–2 s–1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m–2 in August 2004 to 1.02 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 mol m–2 s–1) and lowest in October 2004 (1.7 mol m–2 s–1). Microbial respiration rate was highest in August 2004 (5.8 mol m–2 s–1) and lowest in April 2005 (2.59 mol m–2 s–1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.

  4. Response of larch root development to annual changes of water conditions in eastern Siberia

    Science.gov (United States)

    Takenaka, Chisato; Miyahara, Mie; Ohta, Takeshi; Maximov, Trofim C.

    2016-06-01

    Eastern Siberia is characterized by continuous permafrost, and has recently been exposed to the effects of climate change. Larch, which is the dominant tree species, has been subject to major environmental changes including fluctuations in soil water content. The purpose of this study was to clarify the responses of mature larch tree roots to changes in soil water conditions. We established a treatment plot in a larch forest, and artificially changed the soil water conditions by covering the ground surface with a vinyl sheet, and from 2004 to 2006 monitored root development through root windows. The vinyl sheet maintained high levels of soil water content, even though the ambient conditions varied from dry in 2004 to wet in 2005 and dry in 2006. In the treatment plot the plants adapted to the wet conditions by decreasing vertical root development. In contrast, roots of plants in the control plot developed to the subsurface layer, even in 2005, and did not develop vertically in 2006 despite the drought. We conclude that larch adapted to the annual changes in soil water content by changing the vertical distribution of roots, and that this reflected a memory effect.

  5. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    Science.gov (United States)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  6. Root contact responses and the positive relationship between intraspecific diversity and ecosystem productivity.

    Science.gov (United States)

    Yang, Lixue; Callaway, Ragan M; Atwater, Daniel Z

    2015-05-19

    High species and functional group richness often has positive effects on ecosystem function including increasing productivity. Recently, intraspecific diversity has been found to have similar effects, but because traits vary far less within a species than among species we have a much poorer understanding of the mechanisms by which intraspecific diversity affects ecosystem function. We explored the potential for identity recognition among the roots of different Pseudoroegneria spicata accessions to contribute to previously demonstrated overyielding in plots with high intraspecific richness of this species relative to monocultures. First, we found that when plants from different populations were planted together in pots the total biomass yield was 30 % more than in pots with two plants from the same population. Second, we found that the elongation rates of roots of Pseudoroegneria plants decreased more after contact with roots from another plant from the same population than after contact with roots from a plant from a different population. These results suggest the possibility of some form of detection and avoidance mechanism among more closely related Pseudoroegneria plants. If decreased growth after contact results in reduced root overlap, and reduced root overlap corresponds with reduced growth and productivity, then variation in detection and avoidance among related and unrelated accessions may contribute to how ecotypic diversity in Pseudoroegneria increases productivity.

  7. Root proliferation and seed yield in response to spatial heterogeneity of below-ground competition.

    Science.gov (United States)

    O'Brien, Erin E; Gersani, Mordechai; Brown, Joel S

    2005-11-01

    Here, we tested the predictions of a 'tragedy of the commons' model of below-ground plant competition in annual plants that experience spatial heterogeneity in their competitive environment. Under interplant competition, the model predicts that a plant should over-proliferate roots relative to what would maximize the collective yield of the plants. We predict that a plant will tailor its root proliferation to local patch conditions, restraining root production when alone and over-proliferating in the presence of other plants. A series of experiments were conducted using pairs of pea (Pisum sativum) plants occupying two or three pots in which the presence or absence of interplant root competition was varied while nutrient availability per plant was held constant. In two-pot experiments, competing plants produced more root mass and less pod mass per individual than plants grown in isolation. In three-pot experiments, peas modulated this response to conditions at the scale of individual pots. Root proliferation in the shared pot was higher compared with the exclusively occupied pot. Plants appear to display sophisticated nutrient foraging with outcomes that permit insights into interplant competition.

  8. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  9. Compounds from the roots of Jasminum sambac.

    Science.gov (United States)

    Zeng, Lin-Hong; Hu, Min; Yan, Yong-Ming; Lu, Qing; Cheng, Yong-Xian

    2012-01-01

    Four new compounds (+)-jasminoids A, B, C, and D, together with seven known compounds, were isolated from the roots of Jasminum sambac. Their structures were identified using spectroscopic methods. This study provides a better understanding to the chemical composition of J. sambac roots that have been thought to be one ingredient of an ancient prescription 'Ma-Fei-San'.

  10. Sugarbeet root rot in drought conditions

    Directory of Open Access Journals (Sweden)

    Jasnić Stevan M.

    2005-01-01

    Full Text Available In recent years several types of sugarbeet root rot have occurred in our country causing significant economic damage. The most frequent symptoms are leaf chlorosis and brown-black wet necrosis of the root. The necrosis spread through the entire root and vascular strands. In the course of this study F. oxysporum was the most frequently isolated from infected sugar beet roots. The incidence of other fungi (Fusarium solani, Rhizoctonia solani and Macrophomina phaseolina was much lower and it depended on weather conditions. High temperatures occurring during dry years encourage the development of F. oxysporum, the causer of sugar beet root rot. In 2000, an extremely dry year, plant vitality was satisfactory in the experiment with irrigation and the average root rot incidence was low (2,91%. In the nonirrigated variant the average incidence was high (71,02%. It may be concluded on the basis of the results from five years (2000-2004 that the major causal agents of sugarbeet root rot in our country are species from genus Fusarium, especially F. oxysporum. Fusarium wilt and root rot are due to the increased frequency of dry and warm years.

  11. Cytological and ultrastructural studies on root tissues

    Science.gov (United States)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  12. A histochemical study of root nodule development.

    NARCIS (Netherlands)

    Wiel, van de C.C.M.

    1991-01-01

    In cooperation with soil bacteria of the genera Rhizobium , Bradyrhizobium or Azorhizobium , many members of the legume family are able to form specialized organs on their roots, called root nodules. The bacteria, wrapped up inside a plant membrane, are accomodated in large parenchymatic cells locat

  13. Improving rooting uniformity in rose cuttings

    NARCIS (Netherlands)

    Telgen, van H.J.; Eveleens-Clark, B.A.; Garcia Victoria, N.

    2007-01-01

    Studies to improve rooting uniformity of single node stem cuttings for rose are reported. We found that the variation in shoot growth in a young rose crop depended on the variation in root number of the cuttings, which, in turn, was related to the auxin concentration applied to the cutting before ro

  14. Graphing Powers and Roots of Complex Numbers.

    Science.gov (United States)

    Embse, Charles Vonder

    1993-01-01

    Using De Moivre's theorem and a parametric graphing utility, examines powers and roots of complex numbers and allows students to establish connections between the visual and numerical representations of complex numbers. Provides a program to numerically verify the roots of complex numbers. (MDH)

  15. On König's root finding algorithms

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    2003-01-01

    In this paper, we first recall the definition of a family of root-finding algorithms known as König's algorithms. We establish some local and some global properties of those algorithms. We give a characterization of rational maps which arise as König's methods of polynomials with simple roots. We...

  16. Layers of root nouns in Germanic

    DEFF Research Database (Denmark)

    Hansen, Bjarne Simmelkjær Sandgaard

    2015-01-01

    The root-noun declension became productive in early Germanic, containing (I) inherited root nouns, (IIa) original substrate or loan words, and transitions from other declensions in (IIb) Proto-Germanic and (III) North Germanic. As ablaut was abolished, the inherited type would display ablaut grad...

  17. On the Denesting of Nested Square Roots

    Science.gov (United States)

    Gkioulekas, Eleftherios

    2017-01-01

    We present the basic theory of denesting nested square roots, from an elementary point of view, suitable for lower level coursework. Necessary and sufficient conditions are given for direct denesting, where the nested expression is rewritten as a sum of square roots of rational numbers, and for indirect denesting, where the nested expression is…

  18. On König's root finding algorithms

    DEFF Research Database (Denmark)

    Buff, Xavier; Henriksen, Christian

    2003-01-01

    In this paper, we first recall the definition of a family of root-finding algorithms known as König's algorithms. We establish some local and some global properties of those algorithms. We give a characterization of rational maps which arise as König's methods of polynomials with simple roots. We...

  19. Salt stress signals shape the plant root

    NARCIS (Netherlands)

    C.S. Galvan-Ampudia; C. Testerink

    2011-01-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avo

  20. Tree root mapping with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-09-01

    Full Text Available roots is required a detailed 3D survey approach is recommended. REFERENCES Butnor, J.R., Doolittle, J.A., Johnsen, K.H., Samuelson, L., Stokes, T. and Kress, L., 2003, Utility of Ground-Penetrating Radar as a Root Biomass Survey Tool in Forest...

  1. Rapid phenotyping of alfalfa root system architecture

    Science.gov (United States)

    Root system architecture (RSA) influences the capacity of an alfalfa plant for symbiotic nitrogen fixation, nutrient uptake and water use efficiency, resistance to frost heaving, winterhardiness, and some pest and pathogen resistance. However, we currently lack a basic understanding of root system d...

  2. Clinical management of infected root canal dentin.

    Science.gov (United States)

    Love, R M

    1996-08-01

    Several hundred different species of bacteria are present in the human intraoral environment. Bacterial penetration of root canal dentin occurs when bacteria invade the root canal system. These bacteria may constitute a reservoir from which root canal reinfection may occur during or after endodontic treatment. The learning objective of this article is to review endodontic microbiology, update readers on the role of bacteria in pulp and periapical disease, and discuss the principles of management of infected root canal dentin. Complete debridement, removal of microorganisms and affected dentin, and chemomechanical cleansing of the root canal are suggested as being the cornerstones of successful endodontic therapy, followed by intracanal medication to remove residual bacteria, when required.

  3. Effect of lead on root growth.

    Science.gov (United States)

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development.

  4. Effect of lead on root growth

    Science.gov (United States)

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  5. The Complexity of Rooted Phylogeny Problems

    CERN Document Server

    Bodirsky, Manuel

    2011-01-01

    Several computational problems in phylogenetic reconstruction can be formulated as restrictions of the following general problem: given a formula in conjunctive normal form where the literals are rooted triples, is there a rooted binary tree that satisfies the formula? If the formulas do not contain disjunctions, the problem becomes the famous rooted triple consistency problem, which can be solved in polynomial time by an algorithm of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to disjunctions of negated triples, Ng, Steel, and Wormald showed that the problem remains NP-complete. We systematically study the computational complexity of the problem for all such restrictions of the clauses in the input formula. For certain restricted disjunctions of triples we present an algorithm that has sub-quadratic running time and is asymptotically as fast as the fastest known algorithm for the rooted triple consistency problem. We also show that any restriction of the general rooted ph...

  6. Tissue engineering in endodontics: root canal revascularization.

    Science.gov (United States)

    Palit Madhu Chanda; Hegde, K Sundeep; Bhat, Sham S; Sargod, Sharan S; Mantha, Somasundar; Chattopadhyay, Sayan

    2014-01-01

    Root canal revascularization attempts to make necrotic tooth alive by the use of certain simple clinical protocols. Earlier apexification was the treatment of choice for treating and preserving immature permanent teeth that have lost pulp vitality. This procedure promoted the formation of apical barrier to seal the root canal of immature teeth and nonvital filling materials contained within root canal space. However with the success of root canal revascularization to regenerate the pulp dentin complex of necrotic immature tooth has made us to rethink if apexification is at the beginning of its end. The objective of this review is to discuss the new concepts of tissue engineering in endodontics and the clinical steps of root canal revascularization.

  7. Formation and separation of root border cells.

    Science.gov (United States)

    Driouich, Azeddine; Durand, Caroline; Vicré-Gibouin, Maïté

    2007-01-01

    Plant roots release a large number of border cells into the rhizosphere, which are believed to play a key role in root development and health. The formation and loss of these cells from the root cap region is a developmentally regulated process that is also controlled by phytohormones and environmental factors. The separation of border cells involves the complete dissociation of individual cells from each other and from root tissue. This process requires the activity of cell wall-degrading enzymes that solubilize the cell wall connections between cells. We present and discuss the solubilization process with an emphasis on pectin-degrading enzymes as well as the recently discovered root border-like cells of Arabidopsis thaliana.

  8. Methane and Root Dynamics in Arctic Soil

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica

    on the global climate. We investigated two aspects of arctic ecosystem dynamics which are not well represented in climatic models: i) soil methane (CH4) oxidation in dry heath tundra and barren soils and ii) root dynamics in wetlands. Field measurements were carried out during the growing season in Disko Island......, West Greenland, and CH4 and root dynamics were assessed in response to experimentally increased winter snow precipitation, summer warming and their interaction to better understand their contribution to the C balance of the Arctic. Our results indicate that both the dry heath and barren soils have...... from wetlands in a future warmer climate. At the wet fen increased winter snow precipitation delayed the onset of the growing season of about a week and reduced the relative fine root production. The use of minirhizotrons improved our understanding of root growth and phenology. Total root number...

  9. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  10. Time Frequency Features of Rotor Systems with Slowly Varying Mass

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2011-01-01

    Full Text Available With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed.

  11. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    Directory of Open Access Journals (Sweden)

    Rocío Olmo

    2017-05-01

    Full Text Available Root-knot nematodes (RKNs; Meloidogyne spp. induce feeding cells (giant cells; GCs inside a pseudo-organ (gall from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs, auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those

  12. Assessment of Motor Control during Three-Dimensional Movements Tracking with Position-Varying Gravity Compensation

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2017-05-01

    Full Text Available Active movements are important in the rehabilitation training for patients with neurological motor disorders, while weight of upper limb impedes movements due to muscles weakness. The objective of this study is to develop a position-varying gravity compensation strategy for a cable-based rehabilitation robot. The control strategy can estimate real-time gravity torque according to position feedback. Then, the performance of this control strategy was compared with the other two kinds of gravity compensation strategies (i.e., without compensation and with fixed compensation during movements tracking. Seven healthy subjects were invited to conduct tracking tasks along four different directions (i.e., upward, forward, leftward, and rightward. The performance of movements with different compensation strategies was compared in terms of root mean square error (RMSE between target and actual moving trajectories, normalized jerk score (NJS, mean velocity ratio (MVR of main motion direction, and the activation of six muscles. The results showed that there were significant effects in control strategies in all four directions with the RMSE and NJS values in the following order: without compensation > fixed compensation > position-varying compensation and MVR values in the following order: without compensation < fixed compensation < position-varying compensation (p < 0.05. Comparing with movements without compensation in all four directions, the activation of muscles during movements with position-varying compensation showed significant reductions, except the activations of triceps and in forward and leftward movements, the activations of upper trapezius and middle parts of deltoid in upward movements and the activations of posterior parts of deltoid in all four directions (p < 0.05. Therefore, with position-varying gravity compensation, the upper limb cable-based rehabilitation robotic system might assist subjects to perform movements with higher quality and

  13. Root Canal Morphology of Permanent Maxillary and Mandibular Canines in Indian Population Using Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Nikhita Somalinga Amardeep

    2014-01-01

    Full Text Available Aim. To investigate the root canal anatomy of single-rooted permanent maxillary and mandibular canines in an Indian population using cone beam computed tomography (CBCT. Methodology. A total of 250 permanent maxillary canines and 250 permanent mandibular canines were selected and scanned using CBCT. The root anatomy of each tooth was evaluated for the following parameters: the pattern of the root canals, anatomic length of the crown and the root, the presence of accessory canals, the shape of the access cavity, the position of the apical foramina, root diameter, and dentin thickness of the root. Results. Majority of the teeth had a Type I canal configuration in both maxillary canines (81.6% and mandibular canines (79.6%. In maxillary canine the other canal patterns found were Type III (11.6%, Type II (2.8%, Type V (2%, Type XIX (1.2%, and Type IV (0.8%. In mandibular canines the various other canal patterns found were Type III (13.6%, Type II (3.2%, Type V (2%, and Type XIX (1.6%. Apical foramina were laterally positioned in the majority of the teeth, 70.4% and 65.6% in maxillary and mandibular canines, respectively. 12% of the maxillary canines and 12.8% of the mandibular canines had accessory canals. Conclusion. The root canal anatomy of permanent maxillary and mandibular canines varied widely in an Indian population.

  14. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  15. Electrical capacitance as a predictor of root dry weight in shrub willow (Salix; Salicaceae) parents and progeny1

    Science.gov (United States)

    Carlson, Craig H.; Smart, Lawrence B.

    2016-01-01

    Premise of the study: Root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow (Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). Methods: The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness in allometric models for root and stem dry biomass. Results: Strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Discussion: This work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration. PMID:27610275

  16. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    Directory of Open Access Journals (Sweden)

    Lucas Villaça Zogheib

    2011-12-01

    Full Text Available OBJECTIVE: This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. MATERIAL AND METHODS: Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10, according to the root reconstruction protocol: Group I (control: non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05. RESULTS: Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. CONCLUSION: The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol.

  17. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification

    Directory of Open Access Journals (Sweden)

    Marc eLartaud

    2015-01-01

    Full Text Available We developed the PHIV-RootCell software to quantify anatomical traits of rice roots transverse section images. Combined with an efficient root sample processing method for image acquisition, this program permits supervised measurements of areas (those of whole root section, stele, cortex and central metaxylem vessels, number of cell layers and number of cells per cell layer. The PHIV-RootCell toolset runs under ImageJ, an independent operating system that has a license-free status. To demonstrate the usefulness of PHIV-RootCell, we conducted a genetic diversity study and an analysis of salt-stress responses of root anatomical parameters in rice (Oryza sativa L.. Using 16 cultivars, we showed that we could discriminate between some of the varieties even at the 6 day-old stage, and that tropical japonica varieties had larger root sections due to an increase in cell number. We observed, as described previously, that root sections become enlarged under salt stress. However, our results show an increase in cell number in ground tissues (endodermis and cortex but a decrease in external (peripheral tissues (sclerenchyma, exodermis and epidermis. Thus, the PHIV-RootCell program is a user-friendly tool that will be helpful for future genetic and physiological studies that investigate root anatomical trait variations.

  18. Aerenchyma Formed Under Phosphorus Deficiency Contributes to the Reduced Root Hydraulic Conductivity in Maize Roots

    Institute of Scientific and Technical Information of China (English)

    Mingshou Fan; Ruiqin Bai; Xuefeng Zhao; Jianhua Zhang

    2007-01-01

    Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied in maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots impede the radial transport of water in a root cylinder. Further evidence came from the variation in aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower in P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient piants.

  19. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.

    Science.gov (United States)

    Humphris, Sonia N; Bengough, A Glyn; Griffiths, Bryan S; Kilham, Ken; Rodger, Sheena; Stubbs, Vicky; Valentine, Tracy A; Young, Iain M

    2005-09-01

    We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.

  20. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    Science.gov (United States)

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  1. Holographic cinematography of time-varying reflecting and time-varying phase objects using a Nd:YAG laser

    Science.gov (United States)

    Decker, A. J.

    1982-01-01

    The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.

  2. Characterizing the changes in biopolymer composition in roots of photosynthetically divergent grasses exposed to future climates

    Science.gov (United States)

    Suseela, V.; Tharayil, N.; Pendall, E.

    2014-12-01

    A majority of carbon in soil is derived from plant roots, yet roots remain remarkably less explored. Root tissues are abundant in heteropolymers such as suberin, lignin and tannins which are energetically demanding to depolymerize, thus facilitating the accrual of carbon in soil. Most biopolymers are operationally/functionally defined and their function is regulated by the identity of monomers and the linkages connecting these monomers. The structural chemistry of these biopolymers could vary with the environmental conditions experienced during their formative stage thus altering the potential for soil carbon sequestration. We examined the biopolymer composition in the roots of a C3 (Hesperostipa comata) and a C4 (Bouteloua gracilis) grass species exposed to a factorial combination of warming and elevated CO2 at the Prairie Heating and CO2 Enrichment (PHACE) experiment, Wyoming, USA. The grass roots were subjected to a sequential solvent extraction and base hydrolysis to delineate various operational fractions within the polydisperse matrix. The extracted fractions were analyzed using various chromatography mass spectrometry platforms. Warming and elevated CO2 increased the total suberin content and the amount of ω-hydroxy acids in C4 grass species while in C3 species there was a trend of increasing concentration of α,ω-dioic acids in roots exposed to elevated CO2 compared to ambient CO2 treatment. Our results highlight the effect of warming and elevated CO2 on the chemical composition of heteropolymers in roots that may potentially alter root function and rate of decomposition leading to changes in soil carbon in a future warmer world.

  3. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients.

    Science.gov (United States)

    Isaac, Marney E; Martin, Adam R; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel

    2017-01-01

    Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.

  4. MICROLEAKAGE ASSOCIATED WITH RETROGRADE FILLING AFTER ROOT END RESECTION (in vitro study

    Directory of Open Access Journals (Sweden)

    Elka Radeva

    2014-09-01

    Full Text Available The purpose of the study is to compare microleakage after root end resection of the two materials (MTA and Biodentine for two different apical cavity preparation using the method of penetration of dye - 0, 2 % Rodamine B. Materials and Methods: Forty-eight extracted single-rooted human teeth were used in this study. The resection was made at 3 mm from the root tip with a high speed diamond bur at an angle of 90 degree to the long axis of the tooth. For the retrofilling, ProRoot MTA and Biodentine were used. The teeth were divided into 5 groups: 1st group (10 teeth – the apical cavity was prepared with stainless steel fissure bur #10 at 3 mm depth in the root canal parallel to the long axis of the tooth and is filled retrograde with MTA. 3rd group (10 teeth - retrofilling with Biodentine. 2 nd group (10 teeth - with a round bur apical cavity was prepared with a concave shape and cavity along the root canal with a depth of 3 mm and retrograde obturation with MTA. 4th group (10 teeth - retrofilling with Biodentine. 5th group (8 teeth - control group - with preparation of the cavity after resection without retrofilling. The outer surface of the root is covered with two layers of varnish, with the exception of the apical 3 mm then immersed in 0.2% Rodamine B for 72 h. The degree of penetration of the dye is measured in millimeters. Results: Relative highest median value of penetration of the dye in mm is in the control group. MTA group has a higher value in mm versus the Biodentine. The apical preparation with a concave shape and cavity along the root canal with a depth of 3 mm after apicoectomy is important to reduce apical microleakage. Conclusion: Different apical cavity preparations in both types of material have led to the microleakage dye, but to varying degrees.

  5. Time-varying Performance Prediction and System Identification of Internal Combustion Engines

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-hui; DAI Xu-dong; XIE You-bai

    2009-01-01

    Design for life-time performance and proper maintenance measures are usually needed to prolong the mean-time-between-failures of complex equipments such as internal combustion engines. To reach this, it is important to obtain the information of time-varying system performance in design stage and to identify the structural change at each moment. So a multidisciplinary model based method is studied in this paper to unify the time-varying performance(TVP) prediction and system identification(SI) of equipments. The related multi-disciplinary model in this paper should be not only precise to give simulation results but also sensitive to the variation of system parameters. So the varying history of system performance along with the structural change can be obtained from the model. Then the value of system parameters can be identified by seeking roots with given detected responding data and relationship between system responding data and system parameters. A case study on a low power gasoline engine shows that the method presented in this paper can provide useful information for the development and maintenance of complex equipments.

  6. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order based fine root morphology and biomass?

    Directory of Open Access Journals (Sweden)

    Petra eKubisch

    2015-02-01

    Full Text Available While most temperate broad-leaved tree species form ectomycorrhizal (EM symbioses, a few species have arbuscular mycorrhizas (AM. It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species, indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type.

  7. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Hans; Stadenberg, Ingela (SLU, Dept. of Ecology and Environmental Research, Uppsala (Sweden))

    2007-12-15

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m2, varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees (< 1 mm in diameter) were found in the mineral soil horizon the total profile down to 40 cm of the mineral soil, where 89, 82, 83 and 89% of the total amount in the whole profile were found. The upper 2.5 cm part of the humus layer contained 83, 81, 100 and 100% of all roots of the humus layer on the four different sampling occasions. High amounts of living fine roots were found in the upper 10 cm of the mineral soil horizon viz. 84, 76, 91 and 69% of the total mineral soil layer. Consequently, both the top soil horizons of the humus and the mineral soil layers were heavily penetrated by living fine roots. The highest proportion of living fine roots was found in the top 2.5 cm of the humus layer. Accordingly, the live/dead ratio of fine roots (< 1 mm in diameter) decreased from the top of the humus layer to the lower part of mineral soil horizon from 8.0-0.3, 0.8-0.2, 4.4-0.4 and 3.3-0.7 (g g-1) for the four sampling occasions, respectively. We concluded that the decrease in the live/ dead ratio was related to decreased vitality with depth of the fine roots in the soil profile. The highest live/dead ratio was found in the upper 2.5 cm of the humus layer for both the tree and field-layer species. This distribution pattern was most evident for tree fine roots < 1 mm in diameter. The mean fine-root biomass (live tissue < 1 mm in diameter) of tree species for the total profile varied on the four sampling occasions between 317, 113, 139 and 248 g m-2. The related fine root necromass (dead tissue

  8. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  9. Spiralizations and tropisms in Arabidopsis roots.

    Science.gov (United States)

    Migliaccio, F; Piconese, S

    2001-12-01

    When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.

  10. Is pulp regeneration necessary for root maturation?

    Science.gov (United States)

    Nosrat, Ali; Li, Kevin L; Vir, Kunwar; Hicks, M Lamar; Fouad, Ashraf F

    2013-10-01

    True regeneration of the dental pulp-dentin complex in immature teeth with necrotic pulps has not been shown histologically. It is not known to what extent this true tissue regeneration is necessary to achieve clinically acceptable outcomes. This case report describes the treatment of a patient with an immature maxillary right central incisor with a history of impact trauma and enamel-dentin crown fracture. A diagnosis of pulp necrosis with acute apical abscess was established. A regenerative endodontic protocol that used a paste containing Augmentin for 5 weeks as an intracanal medicament was used. Follow-ups at 9, 12, 17, and 31 months revealed complete osseous healing of the periapical lesion and formation of the root apex, but without increase in root length. Clinically, the tooth was functional, asymptomatic, and nonresponsive to pulp vitality tests. The crown discolored over time. On reentering the root canal, no tissues were observed under magnification inside the root canal space. The root canal treatment was completed with mineral trioxide aggregate obturation. Augmentin might be an acceptable choice for root canal disinfection in regenerative endodontic procedures. The protocol for regenerative endodontic treatment is not predictable for pulp-dentin regeneration. Formation of the root apex is possible without pulp regeneration. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. How to bond to root canal dentin

    Science.gov (United States)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan

    2014-01-01

    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  12. Root distribution of rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Neves Carmen Silvia Vieira Janeiro

    2004-01-01

    Full Text Available Field studies on citrus roots are important for genetic selection of cultivars and for management practices such as localized irrigation and fertilization. To characterize root systems of six rootstocks, taking into consideration chemical and physical characteristics of a clayey Typic Hapludox of the Northern State of Paraná, this study was performed having as scion the 'IAC-5 Tahiti' lime [Citrus latifolia (Yu. Tanaka]. The rootstocks 'Rangpur' lime (C. limonia Osbeck, 'Africa Rough' lemon (C. jambhiri Lush., 'Sunki' mandarin [C. sunki (Hayata hort. ex Tan.], Poncirus trifoliata (L. Raf., 'C13' citrange [C. sinensis (L. Osb. x P. trifoliata (L. Raf] and 'Catânia 2' Volkamer lemon (C. volkameriana Ten. & Pasq. were used applying the trench profile method and the SIARCS® 3.0 software to determine root distribution. 'C-13' citrange had the largest root system. 'Volkamer' lemon and 'Africa Rough' lemon presented the smallest amount of roots. The effective depth for 80 % of roots was 31-53 cm in rows and 67-68 cm in inter-rows. The effective distance of 80 % of roots measured from the tree trunk exceeded the tree canopy for P. trifoliata, 'Sunki' mandarin, and 'Volkamer' and 'Africa Rough' lemons.

  13. A thermodynamic formulation of root water uptake

    Science.gov (United States)

    Hildebrandt, Anke; Kleidon, Axel; Bechmann, Marcel

    2016-08-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

  14. A review on the molecular mechanism of plants rooting modulated ...

    African Journals Online (AJOL)

    A review on the molecular mechanism of plants rooting modulated by auxin. ... rooting modulated by auxin. H Han, S Zhang, X Sun ... Phytohormones, especially auxin, played an essential role in regulating roots developments. This review ...

  15. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H. [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1995-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  16. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    Science.gov (United States)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  17. Negative phototropism of rice root and its influencing factors

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhong(王忠); MO; Yiwei(莫亿伟); QIAN; Shanqin(钱善勤); GU; Yunjie(顾蕴洁)

    2002-01-01

    Some characteristics of the rice (Oryza sativa L.) root were found in the experiment of unilaterally irradiating the roots which were planted in water: (ⅰ) All the seminal roots, adventitious roots and their branched roots bent away from light, and their curvatures ranged from 25° to 60°. The curvature of adventitious root of the higher node was often larger than that of the lower node, and even larger than that of the seminal root. (ⅱ) The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side compared with that of the shaded side. (ⅲ) Root cap was the site of light perception. If root cap was shaded while the root was irradiated the root showed no negative phototropism, and the root lost the characteristic of negative phototropism when root cap was divested. Rice root could resume the characteristic of negative phototropism when the new root cap grew up, if the original cells of root cap were well protected while root cap was divested. (ⅳ) The growth increment and curvature of rice root were both influenced by light intensity. Within the range of 0-100μmol@m-2@s-1, the increasing of light intensity resulted in the decreasing of the growth increment and the increasing of the curvature of rice root. (ⅴ) The growth increment and the curvature reached the maximum at 30℃ with the temperature treatment of 10-40℃. (ⅵ) Blue-violet light could prominently induce the negative phototropism of rice root, while red light had no such effect. (ⅶ) The auxin (IAA) in the solution, as a very prominent influencing factor, inhibited the growth, the negative phototropism and the gravitropism of rice root when the concentration of IAA increased. The response of negative phototropism of rice root disappeared when the concentration of IAA was above 10 mg@L-1.

  18. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  19. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  20. THttpServer class in ROOT

    Science.gov (United States)

    Adamczewski-Musch, Joern; Linev, Sergey

    2015-12-01

    The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT applications. It is based on Civetweb embeddable HTTP server and provides direct access to all objects registered for the server. Objects data could be provided in different formats: binary, XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented with HTML/JavaScript based on JavaScript ROOT development. With any modern web browser one could list, display, and monitor objects available on the server. THttpServer is used in Go4 framework to provide HTTP interface to the online analysis.

  1. ANTIARTHRITIC ACTIVITY OF DESMODIUM GANGETICUM ROOT

    Directory of Open Access Journals (Sweden)

    Vedpal

    2013-09-01

    Full Text Available The present study is aimed to evaluate the in-vitro anti-arthritic activity of aqueous extract of Desmodium gangeticum root using inhibition of protein denaturation model and human red blood cell Membrane stabilization model. Diclofenac sodium was used as a standard drug. Results revealed that the aqueous extract of Desmodium gangeticum root at different concentrations possessed significant anti-arthritic activity as compared to standard drug used as Diclofenac sodium. The results obtained in the present investigation Indicate that aqueous extract of Desmodium gangeticum root showed anti-arthritic activity.

  2. A "square-root rule" for reinsurance

    Directory of Open Access Journals (Sweden)

    Michael R. Powers

    2006-12-01

    Full Text Available In previous work, the authors derived a mathematical expression for the optimal (or "saturation" number of reinsurers for a given number of primary insurers (see Powers and Shubik, 2001. In the current article, we show analytically that, for large numbers of primary insurers, this mathematical expression provides a "square-root rule"; i.e., the optimal number of reinsurers in a market is given asymptotically by the square root of the total number of primary insurers. We note further that an analogous "fourth-root rule" applies to markets for retrocession (the reinsurance of reinsurance.

  3. BOREAS TE-2 Root Respiration Data

    Science.gov (United States)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Clinical technique for invasive cervical root resorption

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Machado Silveira

    2011-01-01

    Full Text Available This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis.

  5. Species and Distribution of Rice Root Nematode in Yunnan Province, China

    Institute of Scientific and Technical Information of China (English)

    HUXian-qi; YUMin; LINLi-fei; WANGYang; YUSheng-fu

    2004-01-01

    Rice root nematodes, Hirschmanniella spp. parasitize in the roots of rice and water plant spread widely. Ten species of the genus Hirschmanniella Luc et Goody, 1964 (Nemata:Pratylenchidae) collected from the root of rice in Yunnan Province are reported. They are H. belli, H. caudacrena, H. diversa, H. gracilis, H. imamuri, H. mexicana, H. microtyla,H. mucronata, H. oryzae and H. spinicaudata, including seven species of important pathogenic nematodes of rice and two dominant species H. oryzae and H. imamari. Generally,the trend of species composition pattern is H. oryzae and H. imamari, which is a common composition pattern in the world, but the species composition mode varies with the difference of altitude and latitude. Their distribution relates to altitude and latitude closely, and also to the type of rice, such as indica or japonica rice.

  6. Species and Distribution of Rice Root Nematode in Yunnan Province,China

    Institute of Scientific and Technical Information of China (English)

    HU Xian-qi; YU Min; LIN Li-fei; WANG Yang; YU Sheng-fu

    2004-01-01

    Rice root nematodes, Hirschmanniella spp. parasitize in the roots of rice and water plant spread widely. Ten species of the genus Hirschmanniella Luc et Goody, 1964 (Nemata:Pratylenchidae) collected from the root of rice in Yunnan Province are reported. They are H. belli, H. caudacrena, H. diversa, H. gracilis, H. imamuri, H. mexicana, H. microtyla,H. mucronata, H. oryzae and H. spinicaudata, including seven species of important pathogenic nematodes of rice and two dominant species H. oryzae and H. imamari. Generally,the trend of species composition pattern is H. oryzae and H. imamari, which is a common composition pattern in the world, but the species composition mode varies with the difference of altitude and latitude. Their distribution relates to altitude and latitude closely, and also to the type of rice, such as indica or japonica rice.

  7. An efficient FPGA architecture for integer ƞth root computation

    Science.gov (United States)

    Rangel-Valdez, Nelson; Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar; Torres-Jimenez, Jose

    2015-10-01

    In embedded computing, it is common to find applications such as signal processing, image processing, computer graphics or data compression that might benefit from hardware implementation for the computation of integer roots of order ?. However, the scientific literature lacks architectural designs that implement such operations for different values of N, using a low amount of resources. This article presents a parameterisable field programmable gate array (FPGA) architecture for an efficient Nth root calculator that uses only adders/subtractors and ? location memory elements. The architecture was tested for different values of ?, using 64-bit number representation. The results show a consumption up to 10% of the logical resources of a Xilinx XC6SLX45-CSG324C device, depending on the value of N. The hardware implementation improved the performance of its corresponding software implementations in one order of magnitude. The architecture performance varies from several thousands to seven millions of root operations per second.

  8. Community Structures of Arbuscular Mycorrhizal Fungi in Soils and Plant Roots Inhabiting Abandoned Mines of Korea

    Science.gov (United States)

    Park, Hyeok; Lee, Eun-Hwa; Ka, Kang-Hyeon

    2016-01-01

    In this study, we collected rhizosphere soils and root samples from a post-mining area and a natural forest area in Jecheon, Korea. We extracted spores of arbuscular mycorrhizal fungi (AMF) from rhizospheres, and then examined the sequences of 18S rDNA genes of the AMF from the collected roots of plants. We compared the AMF communities in the post-mining area and the natural forest area by sequence analysis of the AMF spores from soils and of the AMF clones from roots. Consequently, we confirmed that the structure of AMF communities varied between the post-mining area and the natural forest area and showed significant relationship with heavy metal contents in soils. These results suggest that heavy metal contamination by mining activity significantly affects the AMF community structure. PMID:28154485

  9. Varying electric charge in multi-scale spacetimes

    CERN Document Server

    Calcagni, Gianluca; Fernández, David Rodríguez

    2014-01-01

    We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multi-scale spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is compared with other varying-coupling models, such as those with a varying electric charge or varying speed of light. The theory is also confronted with cosmological observations, which can place constraints on the characteristic scales in the multi-fractional measure. We note that the model considered here is fundamentally different from those previously proposed in the literature, either of the varying-e or varying-c persuasion.

  10. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height.

    Science.gov (United States)

    Li, Zhaoxia; Zhang, Xinrui; Zhao, Yajie; Li, Yujie; Zhang, Guangfeng; Peng, Zhenghua; Zhang, Juren

    2017-05-12

    Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. The Root Cap Determines Ethylene-Dependent Growth and Development in Maize Roots

    Institute of Scientific and Technical Information of China (English)

    Achim Hahn; Roman Zimmermann; Dierk Wanke; Klaus Harter; Hans G.Edelmann

    2008-01-01

    Besides providing protection against mechanical damage to the root tip,the root cap is involved in the perception and processing of diverse external and internal stimuli resulting in altered growth and development.The transduction of these stimuli includes hormonal signaling pathways such as those of auxin,ethylene and cytokinin.Here,we show that the root cap is essential for the ethylene-induced regulation of elongation growth and root hair formation in maize.Exogenously applied ethylene is no longer able to inhibit elongation growth when the root cap has been surgically removed prior to hormone treatment.Reconstitution of the cap positively correlates with the developing capacity of the roots to respond to ethylene again.In contrast,the removal of the root cap does not per se affect growth inhibition controlled by auxin and cytokinin.Furthermore,our semi-quantitative RT-PCR results support earlier findings that the maize root cap is a site of high gene expression activity with respect to sensing and responding to hormones such as ethylene.From these data,we propose a novel function of the root cap which is the establishment of competence to respond to ethylene in the distal zones of the root.

  12. Phosphate Availability Alters Lateral Root Anatomy and Root Architecture of Fraxinus mandshurica Rupr. Seedlings

    Institute of Scientific and Technical Information of China (English)

    Chu WU; Xing WEI; Hai-Long SUN; Zheng-Quan WANG

    2005-01-01

    Plants have evolved some mechanisms to maximize the efficiency of phosphorus acquisition.Changes in root architecture are one such mechanism. When Fraxinus mandshurica Rupr. seedlings were grown under conditions of low phosphorus availability, the length of cells in the meristem zone of the lateral roots was longer, but the length of cells in the elongation and mature zones of the lateral roots was shorter,compared with seedlings grown under conditions of high phosphorus availability. The elongation rates of primary roots increased as phosphorus availability increased, but the elongation rates of the branched zones of the primary roots decreased. The number of lateral root primordia and the length of the lateral roots decreased as phosphorus availability increased. The topological index (altitude slope) decreased as phosphorus availability increased, suggesting that root architecture tended to be herringbone-like when seedlings were grown under conditions of low phosphate availability. Herringbone-like root systems exploit nutrients more efficiently, but they have higher construction costs than root systems with a branching pattern.

  13. Carbon Budgets for Caribbean Mangrove Forests of Varying Structure and with Phosphorus Enrichment

    Directory of Open Access Journals (Sweden)

    Catherine E. Lovelock

    2015-10-01

    Full Text Available There are few detailed carbon (C budgets of mangrove forests, yet these are important for understanding C sequestration in mangrove forests, how they support the productivity of the coast and their vulnerability to environmental change. Here, we develop C budgets for mangroves on the islands of Twin Cays, Belize. We consider seaward fringing forests and interior scrub forests that have been fertilized with phosphorus (P, which severely limits growth of trees in the scrub forests. We found that respiration of the aboveground biomass accounted for 60%–80% of the fixed C and that respiration of the canopy and aboveground roots were important components of respiration. Soil respiration accounted for only 7%–11% of total gross primary production (GPP while burial of C in soils was ~4% of GPP. Respiration by roots can account for the majority of soil respiration in fringing forests, while microbial processes may account 80% of respiration in scrub forests. Fertilization of scrub forests with P enhanced GPP but the proportion of C buried declined to ~2% of GPP. Net ecosystem production was 17%–27% of GPP similar to that reported for other mangrove forests. Carbon isotope signatures of adjacent seagrass suggest that dissolved C from mangroves is exported into the adjacent ecosystems. Our data indicate that C budgets can vary among mangrove forest types and with nutrient enrichment and that low productivity mangroves provide a disproportionate share of exported C.

  14. A Time-Varying Parameter Vector Autoregression Model for Forecasting Emerging Market Exchange Rates

    Directory of Open Access Journals (Sweden)

    Manish Kumar

    2010-12-01

    Full Text Available In this study, a vector autoregression (VAR model with time-varying parameters (TVP to predict the daily Indian rupee (INR/US dollar (USD exchange rates for the Indian economy is developed. The method is based on characterization of the TVP as an optimal control problem. The methodology is a blend of the flexible least squares and Kalman filter techniques. The out-of-sample forecasting performance of the TVP-VAR model is evaluated against the simple VAR and ARIMA models, by employing a cross-validation process and metrics such as mean absolute error, root mean square error, and directional accuracy. Outof-sample results in terms of conventional forecast evaluation statistics and directional accuracy show TVP-VAR model consistently outperforms the simple VAR and ARIMA models.

  15. Time-varying networks approach to social dynamics: From individual to collective behavior

    CERN Document Server

    Starnini, Michele

    2016-01-01

    In this thesis we contribute to the understanding of the pivotal role of the temporal dimension in networked social systems, previously neglected and now uncovered by the data revolution recently blossomed in this field. To this aim, we first introduce the time-varying networks formalism and analyze some empirical data of social dynamics, extensively used in the rest of the thesis. We discuss the structural and temporal properties of human contact networks, such as heterogeneity and burstiness of social interactions, and we present a simple model, rooted on social attractiveness, able to reproduce them. We then explore the behavior of dynamical processes running on top of temporal networks, constituted by empirical face-to-face interactions, addressing in detail the fundamental cases of random walks and epidemic spreading. We also develop an analytic approach able to compute the structural and percolation properties of the activity driven model, aimed to describe a wide class of social interactions, driven by...

  16. Regenerative Endodontic Procedures for Traumatized Teeth after Horizontal Root Fracture, Avulsion, and Perforating Root Resorption.

    Science.gov (United States)

    Saoud, Tarek Mohamed A; Mistry, Sonali; Kahler, Bill; Sigurdsson, Asgeir; Lin, Louis M

    2016-10-01

    Traumatic injury to the teeth can cause horizontal root fractures and inflammatory root resorptions (external and internal). Traditionally, traumatized teeth with horizontal root fractures resulting in pulp necrosis and inflammatory root resorptions are treated with conventional root canal therapy. A 15-year-old boy had a history of traumatic injury to mature tooth #8 resulting in horizontal root fracture and pulp necrosis of the coronal fragment. A 7-year-old girl suffered an avulsion injury to immature tooth #9, which developed inflammatory replacement resorption and subsequently root fractured 15 months later. Another 16-year-old boy also suffered a history of traumatic injury to mature tooth #8, resulting in perforating root resorption. All teeth were treated with regenerative endodontic procedures using chemomechanical debridement, calcium hydroxide/triple antibiotic paste dressing, EDTA rinse, induction of periapical bleeding into the canal space, and a coronal mineral trioxide aggregate plug. In the tooth presenting with horizontal root fracture, only the coronal fragment was treated to preserve pulp vitality in the apical fragment for possible pulp tissue regeneration. After regenerative endodontic procedures, clinical signs/symptoms subsided, and inflammatory osteolytic lesions resolved in all traumatized teeth. Two teeth were followed for 19 months and 1 tooth for 5 years. At the last review of the teeth with horizontal root fractures, the first case showed healing by calcified tissue and the second case showed healing by fibrous connective and hard tissue. Tooth with perforating root resorption demonstrated a decrease in size of the resorptive defect. Based on these case reports, regenerative endodontic procedures have the potential to be used to treat traumatized teeth with horizontal root fracture and inflammatory root resorption. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  18. Biomass, root structure and morphological characteristics of the medicinal Sarcocephalus latifolius (Sm E.A. Bruce shrub across different ecologies in Benin

    Directory of Open Access Journals (Sweden)

    Cedric A. Goussanou

    2013-04-01

    Full Text Available Medicinal plants play an important role in human livelihoods. However, the harvest of different organs may be destructive. Sarcocephalus latifolius is a species whose roots are harvested for medicinal purposes. This study was carried out to assess the root characteristics, biomass yield and morphological variations within different habitats of southern Benin. Forty-eight S. latifolius individual plants were randomly selected in three localities, representing four habitats for the species. Information collected was related to height, basal diameter, diameter at breast height, number, depth of insertion and the length and the diameter of the roots. Observations were also made on organ characteristics to identify morphologic variation. The study showed that the optimum development of the root system is established in fallow ground and savannas. The species presents two morphotypes at the stem and root levels. Root biomass varied according to the developmental stage and habitat. A model of root biomass estimation was established and can be used to determine the root biomass within habitats. Across habitat, the number of roots is the major determinant for root biomass yield. Therefore, harvest should take into consideration habitat and the developmental stage according to the use type.

  19. Delay-independent stabilization for teleoperation with time varying delay

    OpenAIRE

    Fujita, Hiroyuki; Namerikawa, Toru

    2009-01-01

    This paper deals with the stability for nonlinear teleoperation with time varying communication delays. The proposed method is passivity-based controllers with time varying gains which depend on the rate of change of time varying delay. In our proposed method, stability condition is independent of the magnitude of the communication delay and the damping of the system. The delay-independent stability is shown via Lyapunov stability methods. Several experimental results show the effectiveness o...

  20. Rhizosphere interactions: root exudates, microbes and microbial communities

    National Research Council Canada - National Science Library

    Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Zhang, Ruifu; Shen, Qirong; Vivanco, Jorge M

    2014-01-01

    .... In this review, we summarize recent progress made in unraveling the interactions between plants and rhizosphere microbes through plant root exudates, focusing on how root exudate compounds mediate...

  1. Audio Effects Based on Biorthogonal Time-Varying Frequency Warping

    Directory of Open Access Journals (Sweden)

    Cavaliere Sergio

    2001-01-01

    Full Text Available We illustrate the mathematical background and musical use of a class of audio effects based on frequency warping. These effects alter the frequency content of a signal via spectral mapping. They can be implemented in dispersive tapped delay lines based on a chain of all-pass filters. In a homogeneous line with first-order all-pass sections, the signal formed by the output samples at a given time is related to the input via the Laguerre transform. However, most musical signals require a time-varying frequency modification in order to be properly processed. Vibrato in musical instruments or voice intonation in the case of vocal sounds may be modeled as small and slow pitch variations. Simulation of these effects requires techniques for time-varying pitch and/or brightness modification that are very useful for sound processing. The basis for time-varying frequency warping is a time-varying version of the Laguerre transformation. The corresponding implementation structure is obtained as a dispersive tapped delay line, where each of the frequency dependent delay element has its own phase response. Thus, time-varying warping results in a space-varying, inhomogeneous, propagation structure. We show that time-varying frequency warping is associated to an expansion over biorthogonal sets generalizing the discrete Laguerre basis. Slow time-varying characteristics lead to slowly varying parameter sequences. The corresponding sound transformation does not suffer from discontinuities typical of delay lines based on unit delays.

  2. Survival or productivity? Global synthesis of root and tuber production during drought

    Science.gov (United States)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2016-12-01

    According to FAO, there are six major root and tuber crops: potato, cassava, sweet potato, yam, taro, and yautia. Some root and tuber crops (e.g., sweet potato and cassava) are considered to be `drought-resistant', although quantitative evidence that support the premise was still lacking. Greater uncertainties exist on how drought effects co-vary with: 1) soil texture, 2) agro-ecological region, and 3) drought timing. To address these uncertainties, we collected literature data between 1980 and 2015 that reported monoculture root and tuber yield responses to drought under field conditions, and analyzed this large data set using meta-analysis techniques. Our results showed that the amount of water reduction was positively related with yield reduction, but the extent of the impact varied with root or tuber species and the phenological phase during which drought occurred. In contrast to common assumptions regarding drought resistance of certain root and tuber crops, we found that yield reduction was similar between potato and species thought to be `drought-resistant' such as cassava and sweet potato. Here we suggest that drought-resistance in cassava and sweet potato could be more related to survival rather than yield. All roots or tubers crops, however, experienced greater yield reduction when drought occurred during the tuberization period compared to during their vegetative phase. The effect of soil texture as well as region (and related climatic factors) on yield reduction and crop sensitivity were less obvious. Our study provides useful information that could inform agricultural planning, and influence the direction of research for improving the productivity and the resilience of these under-utilized crops in the drought-prone regions of the world.

  3. Interspecific coordination and intraspecific plasticity of fine root traits in North American temperate tree species

    Directory of Open Access Journals (Sweden)

    Cornelia Marie Tobner

    2013-07-01

    Full Text Available Fine roots play an important role in nutrient and water absorption and hence overall tree performance. However, current understanding of the ecological role of belowground traits lags considerably behind those of aboveground traits. In this study, we used data on specific root length (SRL, fine root diameter (D and branching intensity (BI of two datasets to examine interspecific trait coordination as well as intraspecific trait variation across ontogenetic stage and soil conditions (i.e. plasticity. The first dataset included saplings of twelve North American temperate tree species grown in monocultures in a common garden experiment to examine interspecific trait coordination. The second dataset included adult and juvenile individuals of four species (present in both datasets co-occurring in natural forests on contrasting soils (i.e. humid organic, mesic and xeric podzolic. The three fine root traits investigated were strongly coordinated, with high SRL being related to low D and high BI. Fine root traits and aboveground life-strategies (i.e. relative growth rate were weakly coordinated and never significant. Intraspecific responses to changes in ontogenetic stage or soil conditions were trait dependent. SRL was significantly higher in juveniles compared to adults for A. balsamea and A. rubrum, but did not vary with soil condition. BI did not vary significantly with either ontogeny or soil conditions, while D was generally significantly lower in juveniles and higher in humid organic soils. D also had the least total (natural variation most of which was due to changes in the environment (plasticity. This study brings support for the emerging evidence for interspecific root trait coordination in trees. It also indicates that intraspecific responses to both ontogeny and soil conditions are trait dependent and less concerted. D appears to be a better indicator of environmental change than SRL and BI.

  4. Morphology of bacterial flora in root canals associated with apical abscesses

    Institute of Scientific and Technical Information of China (English)

    Guo Huijie; Gao Chengzhi; Zhang Chengfei; Zheng Shuying; Yue Lin

    2014-01-01

    Background Apical abscess is an inflammatory process in the peri-radicular tissues caused by biofllms in the necrotic root canal systems.Therefore,a comprehensive analysis of the bacterial colonization is required for a better understanding of the pathogenesis.This study aimed to investigate the patterns of bacterial infection of root canals of teeth with apical abscesses and to determine whether histological and microbiological findings correlated with clinical conditions.Methods Eighteen samples from 18 teeth with apical pathological lesions were analyzed.Nine patients with acute apical abscesses experienced severe pain,and nine patients were asymptomatic with a sinus tract.After extraction,each affected root was divided into two halves.One half was processed for histobacteriologic analysis and examined using light microscopy,and the other half was analyzed using scanning electron microscopy (SEM) to determine the patterns of microbial colonization of the root canals.Results The appearance of each sample subjected to SEM was consistent with the histobacteriologic findings despite the presence or absence of clinical symptoms.Intraradicular biofilms comprising cocci,rods,and/or filaments of amorphous materials were observed in the apical third of the main root canals in all samples.The bacterial biofilms covering the main root canal walls also penetrated the dentinal tubules to varying depths.The morphologies of biofilms varied,and a unique pattern of intraradicular infection was not identified.Conclusion Intraradicular infections formed complex and variable multispecies biofilms and their presence did not correlate with clinical symptoms.

  5. Effect of two contemporary root canal sealers on root canal dentin microhardness

    Science.gov (United States)

    2017-01-01

    Background Successful root canal treatment depends on proper cleaning, disinfecting and shaping of the root canal space. Pulpless teeth have lower dentin microhardness value compared to that of vital teeth. A material which can cause change in dentin composition may affect the microhardness. Thus the aim of this study was to evaluate and compare the effect of two root canal sealers on dentin microhardness. Material and Methods Forty two single rooted teeth were selected and divided into 3 equal groups; Apexit, iRootSP and control groups (n=14) Each group was then divided into 2 subgroups according to the post evaluation period; 1 week and 2 months (n=7). Root canal procedure was done in the experimental groups and obturation was made using either; Apexit, iRootSP or left unprepared and unobturated in the control group. Roots were sectioned transversely into cervical, middle and apical segments. The three sections of each root were mounted in a plastic chuck with acrylic resin. The coronal dentin surfaces of the root segments werepolished. Microhardness of each section was measured at 500 µm and 1000 µm from the canal lumen. Results Four way-ANOVA revealed that different tested sealer materials, canal third, measuring distance from the pulp and time as independent variables had statistically non significant effect on mean microhardness values (VHN) at p≤0.001. Among iRootSP groups there was a statistically significant difference between iRoot SP at coronal root portion (87.79±17.83) and iRoot SP at apical root portion (76.26±9.33) groups where (p=0.01). IRoot SP at coronal canal third had higher statistically significant mean microhardness value (87.79±17.83) compared to Apexit at coronal third (73.61±13.47) where (p=0.01). Conclusions Root canal sealers do not affect dentin microhardness. Key words:Root canal, dentin, sealers, microhardness, bioceramic. PMID:28149466

  6. Elements with Square Roots in Finite Groups

    Institute of Scientific and Technical Information of China (English)

    M.S. Lucido; M.R. Pournaki

    2005-01-01

    In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.

  7. Dechlorodauricumine from cultured roots of Menispermum dauricum.

    Science.gov (United States)

    Sugimoto, Yukihiro; Matsui, Miharu; Takikawa, Hirosato; Sasaki, Mitsuru; Kato, Masako

    2005-11-01

    Dechlorodauricumine, a possible organic substrate for biochlorination, was isolated from cultured roots of Menispermum dauricum, a rich source of chlorinated alkaloids. Its structure was established by spectroscopic and chemical methods.

  8. Naine objektistab meest / Fideelia-Signe Roots

    Index Scriptorium Estoniae

    Roots, Fideelia-Signe, 1976-

    2009-01-01

    Fideelia-Signe Roots Eesti Kunstiakadeemias 2009. a. kevadsemestril enda poolt läbi viidud valikainekursusest "Kunstiteose anatoomiast mehe anatoomiani", mis lõppes näitusega "Tõuseb / ei tõuse" Eesti Tervishoiumuuseumis, avatud 31. maini

  9. Naine objektistab meest / Fideelia-Signe Roots

    Index Scriptorium Estoniae

    Roots, Fideelia-Signe, 1976-

    2009-01-01

    Fideelia-Signe Roots Eesti Kunstiakadeemias 2009. a. kevadsemestril enda poolt läbi viidud valikainekursusest "Kunstiteose anatoomiast mehe anatoomiani", mis lõppes näitusega "Tõuseb / ei tõuse" Eesti Tervishoiumuuseumis, avatud 31. maini

  10. BGP reflection functors in root categories

    Institute of Scientific and Technical Information of China (English)

    XIAO Jie; ZHANG Guanglian; ZHU Bin

    2005-01-01

    We define the BGP-reflection functors in the derived categories and the root categories. By Ringel's Hall algebra approach, the BGP-reflection functor is applicable to obtain the classical Weyl group action on the Lie algebra.

  11. EFFECT OF CALITROPIS PROCERA AQUEOUS ROOT EXTRACT ...

    African Journals Online (AJOL)

    ABUBAKAR

    The hepatocurative effect of aqueous root extract of Calitropis Procera on CCl4 induced hepatotoxicity in rabbits was studied in groups of rabbit and the levels of liver enzymes; aspartate .... and inhibitors and presence of pyridoxine (vitamin.

  12. Cryptographic Protocols Based on Root Extracting

    DEFF Research Database (Denmark)

    Koprowski, Maciej

    In this thesis we design new cryptographic protocols, whose security is based on the hardness of root extracting or more speci cally the RSA problem. First we study the problem of root extraction in nite Abelian groups, where the group order is unknown. This is a natural generalization of the...... complexity of root extraction, even if the algorithm can choose the "public exponent'' itself. In other words, both the standard and the strong RSA assumption are provably true w.r.t. generic algorithms. The results hold for arbitrary groups, so security w.r.t. generic attacks follows for any cryptographic...... construction based on root extracting. As an example of this, we modify Cramer-Shoup signature scheme such that it becomes a genericm algorithm. We discuss then implementing it in RSA groups without the original restriction that the modulus must be a product of safe primes. It can also be implemented in class...

  13. Tree root systems and nutrient mobilization

    DEFF Research Database (Denmark)

    Boyle, Jim; Rob, Harrison; Raulund-Rasmussen, Karsten

    Roots mobilize nutrients via deep penetration and rhizosphere processes inducing weathering of primary minerals. These contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long-term supplies...... some of the world’s most productive intensively managed forests, including Brazil and the Southeast and Pacifi c Northwest regions of the United States, have shown that root systems are often several meters in depth, and often extend deeper than soil is sampled. Large amounts of carbon are also...... sometimes stored at depth. Other recent studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Release profi les clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Review of evaluations...

  14. Transgenic root cultures of Gentiana punctata L.

    Directory of Open Access Journals (Sweden)

    Branka Vinterhalter

    2014-01-01

    Full Text Available Shoot cultures of Gentiana punctata L. were inoculated with suspension of Agrobacterium rhizogenes strain A4 M70GUS. Hairy roots which appeared 2-3 weeks later were cultured on hormone-free, liquid, WPM (Lloyd and McCown 1980 basal medium for more than 5 years (60 subcultures. Growth rate of transformed roots was higher than the growth rate of nontransformed roots. Spontaneous shoot regeneration occured only in three culture vessels in subcultures No. 40 and 42. Plants had phenotype characteristics typical for A. rhizogenes transformed plants including: wrincled leaves, short internodes, plagiotropic roots and in general their growth rate was reduced. These plants also manifested precocious formation of flower buds without vernalization and flowering under in vitro conditions. Flowers were pale yellow, the same as in the standard phenotype.

  15. Tooth mobility changes subsequent to root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth mobility changes in root-fractured permanent teeth and relate this to type of interfragment healing (hard tissue healing (HT), interfragment healing with periodontal ligament (PDL) and nonhealing with interposition of granulation tissue (GT) because...... of pulp necrosis in the coronal fragment. Furthermore, the effect of age, location of the fracture on the root, and observation period on mobility values was analyzed. Mobility values were measured for 44 of 95 previous reported root-fractured permanent incisors. Mobility changes were measured...... after 3 months and 1 year, and a normalization of mobility value was usually found after 5 and 10 years. In 17 cases of PDL healing, generally a higher mobility was found in comparison with root fractures healing with hard tissue, and a consistent decrease in mobility value was found in the course...

  16. New Heuristics for Rooted Triplet Consistency

    Directory of Open Access Journals (Sweden)

    Soheil Jahangiri

    2013-07-01

    Full Text Available Rooted triplets are becoming one of the most important types of input for reconstructing rooted phylogenies. A rooted triplet is a phylogenetic tree on three leaves and shows the evolutionary relationship of the corresponding three species. In this paper, we investigate the problem of inferring the maximum consensus evolutionary tree from a set of rooted triplets. This problem is known to be APX-hard. We present two new heuristic algorithms. For a given set of m triplets on n species, the FastTree algorithm runs in O(m + α(nn2 time, where α(n is the functional inverse of Ackermann’s function. This is faster than any other previously known algorithms, although the outcome is less satisfactory. The Best Pair Merge with Total Reconstruction (BPMTR algorithm runs in O(mn3 time and, on average, performs better than any other previously known algorithms for this problem.

  17. DMA thermal analysis of yacon tuberous roots

    Science.gov (United States)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  18. The inflow of Cs-137 in soil with root litter and root exudates of Scots pine

    Science.gov (United States)

    Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia

    2017-04-01

    In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and 99.9% was due to root exudates

  19. ROOT I/O in Javascript - Reading ROOT files in a browser

    CERN Document Server

    CERN. Geneva

    2012-01-01

    A JavaScript version of the ROOT I/O subsystem is being developed, in order to be able to browse (inspect) ROOT files in a platform independent way. This allows the content of ROOT files to be displayed in most web browsers, without having to install ROOT or any other software on the server or on the client. This gives a direct access to ROOT files from new (e.g. portable) devices in a light way. It will be possible to display simple graphical objects such as histograms and graphs (TH1, TH2, TH3, TProfile, TGraph, ...). The rendering will first be done with an external JavaScript graphic library, before investigating a way to produce graphics closer to what ROOT supports on other platforms (X11, Windows).

  20. Operating protocols of external root cervical resorption

    OpenAIRE

    Luca Venuti

    2015-01-01

    Aim: Theme of this report is the external cervical root resorption and the sequence of clinical procedures to be implemented during the phases of treatment. The external cervical root resorption (ICR) presents particular pathological conditions such as to classify between resorption of inflammatory origin.1–3 It is generally presented as a complex clinical situation both in the diagnosis in a predictable prognosis.3–6 It's often associated with loss of calcified tissue: dentin, cementum, a...

  1. Sparse DOA estimation with polynomial rooting

    OpenAIRE

    Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren

    2015-01-01

    Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root...

  2. Rational Convolution Roots of Isobaric Polynomials

    OpenAIRE

    Conci, Aura; Li, Huilan; MacHenry, Trueman

    2014-01-01

    In this paper, we exhibit two matrix representations of the rational roots of generalized Fibonacci polynomials (GFPs) under convolution product, in terms of determinants and permanents, respectively. The underlying root formulas for GFPs and for weighted isobaric polynomials (WIPs), which appeared in an earlier paper by MacHenry and Tudose, make use of two types of operators. These operators are derived from the generating functions for Stirling numbers of the first kind and second kind. Hen...

  3. Development of Machine Learning Tools in ROOT

    Science.gov (United States)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  4. Operating protocols of external root cervical resorption

    OpenAIRE

    Venuti, Luca

    2015-01-01

    Aim: Theme of this report is the external cervical root resorption and the sequence of clinical procedures to be implemented during the phases of treatment. The external cervical root resorption (ICR) presents particular pathological conditions such as to classify between resorption of inflammatory origin.1–3 It is generally presented as a complex clinical situation both in the diagnosis in a predictable prognosis.3–6 It's often associated with loss of calcified tissue: dentin, cementum, a...

  5. Two root canals in maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Fábio de Almeida Gomes

    2011-07-01

    Full Text Available Introduction and objective: The success of endodontic treatment requires the knowledge of tooth morphology and its variations. Case report: This clinical article reports an unusual root canal configuration that was detected in a maxillary central incisor with two root canals, demonstrated by radiographic and computerized tomography exams. Conclusion: Knowledge of endodontic anatomy as well as the obtainment of both preoperative radiographs and tomography is important to detect abnormal tooth morphology.

  6. Development of TRatioPlot in ROOT

    CERN Document Server

    Gessinger-Befurt, Paul

    2016-01-01

    The ROOT data analysis and visualization framework is a software package which is widely used in physics, especially in high energy physics. A common visualization which has so far been lacking a direct implementation is the ratio plot, as well as a few similar types of plots. The scope and goal of the summer student project at CERN was to implement a class in ROOT itself, that can take care of the most common types of calculations, and produces high quality visuals.

  7. q--Magnetism at roots of unity

    CERN Document Server

    Berkovich, A; Gómez, C

    1993-01-01

    We study the thermodynamic properties of a family of integrable 1D spin chain hamiltonians associated with quantum groups at roots of unity. These hamiltonians depend for each primitive root of unit on a parameter $s$ which plays the role of a continuous spin. The model exhibits ferrimagnetism even though the interaction involved is between nearest neighbors. The latter phenomenon is interpreted as a genuine quantum group effect with no ``classical" analog. The discussion of conformal properties is given.

  8. Immunology of root resorption: A literature review

    Directory of Open Access Journals (Sweden)

    Silva Luciano

    2008-01-01

    Full Text Available Root resorption seems to be related to a complex combination of mechanical factors and biological activity, which comprehends the role of immunologic structures including specialized cells. The aim of this research was to explain the development of the process - from mineralization to the destruction of hard tissues - and the possible relationship between root resorption and immunology, along with discussing current concepts described in the literature.

  9. Selenium-dependent antitumor immunomodulating activity of polysaccharides from roots of A. membranaceus.

    Science.gov (United States)

    Li, Shuang; Bian, Fuling; Yue, Ling; Jin, Hua; Hong, Zongguo; Shu, Guangwen

    2014-08-01

    Roots of Astragalus membranaceus (Fish.) Bge. var. mongholicus (Bge.) Hsiao (A. membranaceus) have been long used as an auxiliary reagent supporting cancer treatment. Here, we compared the chemical composition and antitumor immunomodulating activity of polysaccharides from roots of A. membranaceus (PAMs) from five major habitats in Inner Mongolia, PR China. We revealed that compositions of monosaccharides and amino acids were comparable among PAMs from different habitats. However, amounts of selenium varied widely in roots of A. membranaceus and PAMs. PAMs selenium-dependently repressed the in vivo proliferation of transplanted H22 ascitic hepatoma and S180 sarcoma cells with low toxic impacts on tumor-bearing mice. Selenium-containing PAMs ameliorated host CD4+ T cell apoptosis and serum cytokine dysregulation induced by tumor transplantation, leading to the enhancement of cytotoxic activities of natural killer and CD8+ T cells. Moreover, PAMs also selenium-dependently improved the phagocytotic function of intra-abdominal macrophages and suppressed M2-like polarization of tumor-associated macrophages. These data suggested that the selenium content varies in the roots of A. membranaceus and PAMs from different geographical origins dramatically and selenium is an important contributor to the antitumor immunomodulation activities of PAMs.

  10. Plant uptake, translocation, and return of polycyclic aromatic hydrocarbons via fine root branch orders in a subtropical forest ecosystem.

    Science.gov (United States)

    Chen, Zheng-Xia; Ni, Hong-Gang; Jing, Xin; Chang, Wen-Jing; Sun, Jian-Lin; Zeng, Hui

    2015-07-01

    Fine roots of woody plants are a heterogeneous system differing markedly in structure and function. Nevertheless, knowledge about the plant uptake of organic pollutants via fine roots is scarce to date. In the present study, plant uptake, translocation, and return of polycyclic aromatic hydrocarbons (PAHs) via fine roots in a subtropical forest ecosystem were investigated. Levels of Σ15PAHs in different fine root branch orders of Michelia macclurei, Cryptocarya concinna, Cryptocarya chinensis, and Canthium dicoccums varied from 5072±1419 ng g(-1) to 6080±1656 ng g(-1), 4037±410 ng g(-1) to 6101±972 ng g(-1), 3308±1191 ng g(-1) to 4283±237 ng g(-1), and 3737±800 ng g(-1) to 4895±1216 ng g(-1), respectively. Overall, concentrations of low-molecular-weight PAHs with 2-3 aromatic rings were higher than high-molecular-weight PAHs with 4-6 aromatic rings in all fine root branch orders. There were obvious translocations of PAHs between adjacent branch orders and a net accumulation of PAHs may occur in the fourth- and fifth-order roots. The storage of PAHs in the fine root system showed an obvious increasing trend along the branch orders ascending for all tree species. The return flux of PAHs via fine roots mortality showed an obvious decreasing trend with the branch orders ascending across the four tree species. Lower order roots contributed greatly to the total PAHs return flux. Our results indicated that fine roots turnover is an effective pathway for perennial tree species to remove environmental toxicants absorbed into them.

  11. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  12. Extracellular DNA: the tip of root defenses?

    Science.gov (United States)

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  13. Roots of Dehn twists about separating curves

    CERN Document Server

    Rajeevsarathy, Kashyap

    2011-01-01

    Let $C$ be a curve in a closed orientable surface $F$ of genus $g \\geq 2$ that separates $F$ into subsurfaces $\\widetilde {F_i}$ of genera $g_i$, for $i = 1,2$. We study the set of roots in $\\Mod(F)$ of the Dehn twist $t_C$ about $C$. All roots arise from pairs of $C_{n_i}$-actions on the $\\widetilde{F_i}$, where $n=\\lcm(n_1,n_2)$ is the degree of the root, that satisfy a certain compatibility condition. The $C_{n_i}$ actions are of a kind that we call nestled actions, and we classify them using tuples that we call data sets. The compatibility condition can be expressed by a simple formula, allowing a classification of all roots of $t_C$ by compatible pairs of data sets. We use these data set pairs to classify all roots for $g = 2$ and $g = 3$. We show that there is always a root of degree at least $2g^2+2g$, while $n \\leq 4g^2+2g$. We also give some additional applications.

  14. Acid protease production in fungal root endophytes.

    Science.gov (United States)

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates.

  15. Tomato Root Response to Subsurface Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yu-Ping; ZHANG Xu-Dong; ZHANG Yu-Long; LI Jun; YANG Li-Juan; HUANG Yi; LIU Ming-Da

    2004-01-01

    Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.

  16. Distribution of root exudates and mucilage in the rhizosphere: combining 14C imaging with neutron radiography

    Science.gov (United States)

    Holz, Maire; Carminati, Andrea; Kuzyakov, Yakov

    2015-04-01

    exudates. We found that mucilage and 14C concentrations were higher around the young root segments. Mucilage concentration was particularly high in the most apical 3-5 cm of the roots. Drought stress increased 14C exudation relative to C fixation and led to higher mucilage concentrations around roots. However, it remains unclear, whether the lower mucilage concentration around roots grown at higher soil moisture was caused by the faster diffusion of mucilage in wet soils. Therefore, a second experiment was focused on diffusion of mucilage in soil at varying water contents. The diffusion of mucilage in soil was not very sensitive to soil water content. We conclude that mucilage release was higher for plants exposed to drought stress. In summary, the combination of neutron radiography and 14C imaging can successfully be used to visualize and to quantify the distribution of mucilage and root exudates in the rhizosphere of plants grown in soil. References Kroener, E., Zarebanadkouki, M., Kaestner, A., & Carmintati, A. (2014). Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils. Water Resources Research, 37. Pausch, J., & Kuzyakov, Y. (2011). Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging. Journal of Plant Nutrition and Soil Science, 174(1), 12-19.

  17. Expected optimal feedback with Time-Varying Parameters

    NARCIS (Netherlands)

    Tucci, M.P.; Kendrick, D.A.; Amman, H.M.

    2011-01-01

    In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (1981,2002, Chapter 6) where parameters are assumed to vary randomly around a known

  18. Prices of Generic Heart Failure Drugs Vary Widely

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162035.html Prices of Generic Heart Failure Drugs Vary Widely Patients can spend from $12 to $ ... Nov. 15, 2016 (HealthDay News) -- Cash prices of generic medicines to treat heart failure vary so widely that ...

  19. Analysis of time-varying psoriasis lesion image patterns

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Nielsen, Allan Aasbjerg

    2004-01-01

    The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed.......The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed....

  20. Linear Parameter Varying Control of Doubly Fed Induction Machines

    NARCIS (Netherlands)

    Tien, H. Nguyen; Scherer, Carsten W.; Scherpen, Jacquelien M.A.; Müller, Volkmar

    2016-01-01

    This paper is concerned with the design of a self-scheduled current controller for doubly fed induction machines. The design is based on the framework of linear parameter-varying systems where the mechanical angular speed is considered to be a measurable time-varying parameter. The objective is to o