WorldWideScience

Sample records for dukovany-4 reactor

  1. Technical innovations at NPP Dukovany - for safe and efficient operation

    International Nuclear Information System (INIS)

    Sabata, M.; Vasa, I.

    2000-01-01

    Inherent features of the NPP Dukovany design provide a significant confidence in its nuclear safety assurance; among these features should be emphasised the reactor core stability and its control and protection system capability to hold the reactor in safe state following scram or accident conditions. Nevertheless, NPP Dukovany was designed in the early seventies, and current requirements for nuclear safety assurance are more strict and/or specific as a result of the technical development and lessons learned from nuclear accidents. The paper compares the safety design base established at the time of NPP Dukovany project implementation and the current reference design base. The paper also presents procedures applied to implement technical and operational measures which are introduced to fulfil the current basic safety criteria. The scope of such measures applied at NPP Dukovany is compared with that of EU countries introduced for the same reason - to meet the updated safety related requirements. Examples of some innovations already implemented or under implementation give an idea how NPP Dukovany proceeds in reaching the goal of harmonising its safety with the requirements to be met before the Czech Republic becomes a member country of the European Union. (author)

  2. Some results of periodical analysis of the behavior of unit 4 at the Dukovany NPP - II

    International Nuclear Information System (INIS)

    Jirsa, P.

    1993-01-01

    The results of a detailed spectral analysis of noise signals recorded at the unit 4 reactor of the Dukovany NPP during and after the start-up stage are presented. The changes in the noise source signal spectra during the start-up and in normal operation were evaluated by multidimensional autoregression analysis. The temperature dependence of the signal spectra peaks from individual detectors is described. The sources of the peaks at 27.9 and 37 Hz during normal operation were identified as standing pressure waves in the primary circuit of the reactor. 3 tabs., 23 figs., 6 refs

  3. Analysis of core damage frequency: Nuclear power plant Dukovany, VVER/440 V-213 Unit 1, internal events. Volume 1: Main report

    International Nuclear Information System (INIS)

    Pugila, W.J.

    1994-01-01

    This report presents the final results from the Level 1 probabilistic safety assessment (PSA) for the Dukovany VVER/440 V-213 nuclear power plant, Unit 1. Section 1.1 describes the objectives of this study. Section 1.2 discusses the approach that was used for completing the Dukovany PSA. Section 1.3 summarizes the results of the PSA. Section 1.4 provides a comparison of the results of the Dukovany PSA with the results of other PSAs for different types of reactors worldwide. Section 1.5 summarizes the conclusions of the Dukovany PSA

  4. Modernization programme at Dukovany NPP

    International Nuclear Information System (INIS)

    Trnka, M.

    2000-01-01

    The main goal of each NPP is to produce electricity safely, economically and without influence to environment. For Dukovany NPP it means to upgrade all documentation and perform the Equipment Upgrading Programme. All these activities are time and money consuming and therefore the determination of priority of all items was necessary. In the presentation there are mentioned some important changes in documentation, results of PSA studies and reason for Equipment Upgrading Programme performance. It was selected the most important item from the list of Equipment Upgrading Programme the I and C upgrading. Management has decided that Dukovany NPP will become among the best NPPs with WWER type of reactor. It seems this decision is the best way how to extend lifetime of the NPP. (author)

  5. Development of Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Kouklik, I.

    2000-01-01

    The presentation evaluates the present situation of the Dukovany nuclear power plant operation. It analyses the present at the plant, and also in both the near and distant localities. Based on these analyses the conclusions and targets that are necessary for keeping the plant's safe operation are made. From the current situation the report about the results of the year 1999 in the operation and financial field, stress on the safety index, is presented. Further, there is a list of finished and semi-finished activities that are taking place within the harmonization of the Dukovany NPP. At the same time the report presents the terms of licensing and the going of implementation of the 'KAPA' project - the complex application of the Atomic Energy Act. In the part, comparison to the environment, there is an example of a comparison with the results of a plant in the EU. Further the report compares the advantages and disadvantages of the WWER reactors with other light water reactors. In the last part of the presentation there is a brief opinion of the author on the steps that are awaiting us in the future. First, the 'Harmonization program' of Dukovany NPP is explained, its philosophy and principles. The basic idea is to take the right steps and strategic decisions, with the vision for the operation till the year 2025 at least. There is also a list of the most important events that are planned to increase the safety. Further the report goes briefly over the current situation in the filed of nuclear energy in the period of joining the European Union and also mentions the risks that result from this process. It concludes with the prognosis for the further position of the Dukovany nuclear power plant. (author)

  6. A new reactor core monitoring system. First experience gained at the Dukovany NPP

    International Nuclear Information System (INIS)

    Pecka, M.; Svarny, J.; Kment, J.

    2001-01-01

    The article deals with methods of interpretation of in-core measurements that are based on the determination of the three-dimensional (3D) power distribution within the reactor core, discusses on-line mode calculations, and describes the results obtained during the trial operation of the new SCORPIO-VVER reactor core monitoring system. The principles of the method of determination of the fuel assembly subchannel parameters are outlined. Alternative methods of self-powered detector signal conversion to local power are given, and some results of their testing are presented. Emphasis is put on self-powered detectors supplied by the US firm IST, which were first deployed at the Dukovany NPP in 1998. The predictive function of the SCORPIO-VVER system, whose implementation was inspired by favourable experience gained on some PWR reactors (such as the products of the Halden reactor project at Ringhals and Sizewell B) were adapted to the specific needs of WWER-440 reactors. The main results of validation of the functions are described and presented in detail. (author)

  7. Czech Republic. Dukovany repository

    International Nuclear Information System (INIS)

    2001-01-01

    Full text: The repository at the Dukovany site is a structure located above the land surface. It consists of two double-rows of reinforced concrete vaults. Each double-row has dimensions 38x160x6 meters and contains 2x28 vaults. The internal dimensions of each vault are 18x6x5.4 meters. The repository serves for reactor wastes from the Dukovany and Temelin nuclear power plants (NPPs). Its capacity is 55,000 m 3 or 130,000 drums. The repository is a fully engineered facility with multiple barriers. The first engineered barrier is the waste form (in the case of waste from the Dukovany NPP, the waste form is mainly bitumen, but concrete and glass are also considered as suitable solidification products). The second barrier is the container (a 200 litre steel drum or a HIC container), whereas the third consists of cut-off reinforced concrete walls with asphalt-based hydro-insulation. The fourth barrier is a cap which should protect the vaults against infiltration of rainwater and should serve also as an intrusion and erosion barrier. The fifth barrier is a drainage system around the repository which is composed of layers of gravel and sand. The void space in drums around the waste is filled with specially composed grout. Such waste packages are emplaced into the disposal vault, which is covered by pre-fabricated panels. Thereafter, joints between the panels are sealed and a provisional coverage added; the final cover, however, will be constructed only over the whole row of 28 vaults, until all vaults are filled with waste. The final cover will encompass the following components: reinforced concrete pre-fabricated panels (500 mm); cement overcoat (30 mm); insulation foil; concrete layer for cap levelling (5-150 mm); layer of asphalto-propylene concrete (150 mm); soil (450 mm); geotextile foil with topsoil (top surface vegetation). (author)

  8. Initial operational experience with Gd-2M+ fuel at Dukovany NPP

    International Nuclear Information System (INIS)

    Borovička, M.; Zýbal, J.

    2015-01-01

    Trend of continuous development of nuclear fuel and fuel cycle can be observed from the very beginning of Dukovany NPP operation. The results of this development are documented on the one hand by extending the length of the cycle and on the other by significant reduction in the number of fresh FA’s which are loaded into reactor cores. As a continuation of this trend introduces Dukovany NPP evolutional change of nuclear fuel from the fuel Gd-2M to the Gd-2M + . (authors) Keywords: Gd-2M + , fuel assembly, operational experience

  9. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    Vesely, P.; Borovicka, M.

    2001-01-01

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  10. Dukovany NPP - Safely 16 TERA

    International Nuclear Information System (INIS)

    Vlcek, J.

    2008-01-01

    In this presentation increasing of power output of the Dukovany NPP is reviewed. To operate all Dukovany Units safely with the perspective of long-term operation (LTO) of 50 - 60 years it is proposed.

  11. Results of noise analysis in the WWER 440 - type nuclear power plant Dukovany

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Hrosso, P.; Figedy, S.; Sadilek, J.; Hulin, J.

    1996-01-01

    Results of a common work in the frame of scientific and technological cooperation between the Slovak Republic and Germany in the field of development of diagnostic methods to improve the safety and availability of WWER-type reactors are presented. Signals of the standard diagnostic instrumentation of the WWER-type reactors of units 1,2 and 4 at the nuclear power plant Dukovany (EDU) in Czech Republic were analyzed. Mechanical vibrations like pendular and vertical movements of the reactor pressure vessel and its internals as well as thermohydraulic fluctuations like fluid resonances or standing pressure waves could be identified in all the three units. Incipient changes of the mechanical and/or thermohydraulic conditions of the core can be detected by periodical analysis of the signals of the standard reactor instrumentation of WWER-types reactors. (authors)

  12. 20 Years of Dukovany NPP Operation and Plans for Future

    International Nuclear Information System (INIS)

    Vlcek, J.

    2006-01-01

    NPP Dukovany (4x440MW), the first Czech nuclear power plant and a keystone of Czech Electricity Grid, in 2005 celebrated 20 years of successful operation. In my presentation I am going to speak about next areas. I will start about construction and commissioning history of Dukovany NPP, then I'll put forward what milestones of Dukovany NPP operation were accomplished, I'll say examples about our modernisation and investment activities (including replacement of IandC equipment, modifications for increasing of power and support grid services) and in the end our plans for future. (author)

  13. Analysis of the current status of measuring chains of the in-service diagnosis system at the Dukovany NPP

    International Nuclear Information System (INIS)

    Stulik, P.; Sipek, B.

    2006-02-01

    The following systems were analyzed for the Dukovany NPP: Monitoring of primary circuit and reactor vibrations; Detection of loose parts; Main coolant pump diagnosis; Reactor internals diagnosis; and Turbogenerator status monitoring. Recommendations were derived from the findings. (P.A.)

  14. Power plant Dukovany

    Energy Technology Data Exchange (ETDEWEB)

    Kouklik, I [Dukovany Nuclear Power Plant, Nuclear Safety Dept. (Czech Republic)

    1997-10-01

    The presentation reviews the following issues: Electricity generation in Czech Republic; Structure of electricity generation by CEZ; electricity production; internal operation feedback system; number of events classified on INES scale; Dukovany NPP ASSET.

  15. Power plant Dukovany

    International Nuclear Information System (INIS)

    Kouklik, I.

    1997-01-01

    The presentation reviews the following issues: Electricity generation in Czech Republic; Structure of electricity generation by CEZ; electricity production; internal operation feedback system; number of events classified on INES scale; Dukovany NPP ASSET

  16. Outlet temperature measurement correction of Gd fuel assemblies at Dukovany NPP

    International Nuclear Information System (INIS)

    Jurickova, M.

    2008-01-01

    In year 2006 we started data processing from the Dukovany NPP operating history database that contained data from the old measurement system VK3 and the new Scorpio-VVER. The work has been done in cooperation with the reactor physicists at Dukovany NPP. Obtained data from database were compared with calculated parameters from 3D diffusion macrocode Mobydick. During the data processing it was found that the Gd fuel assemblies have different time plot of measured assembly outlet temperature compared to the non-Gd fuel assemblies. Experimental studies in RRC KI found that there is insufficient coolant mixing in the region from the fuel bundle to the fuel assembly thermocouple. Due to this fact the thermocouple measure temperature is systematically higher than real temperature. There are two methods to solve this problem. The first method analyses the flow and heat transfer in the region from the fuel bundle to the fuel assembly thermocouple - this method is developed in Skoda JS. The second method statistically studies differences between the measured and calculated temperature by the Mobydick code using the operational history database. Our study is focused on the second method. Several calculation methods for the correction of measured assembly outlet temperature were developed. All correction methods were applied to the measured temperatures from the Dukovany NPP operating history database and the methods were mutually compared. In near future it is planned to compare results of our chosen correction method with modeling method, which is developing in Skoda JS and it is planned to validate both of them. Consequently, the one of these correction methods will be implemented in the modernized Scorpio-VVER for Dukovany NPP. (author)

  17. Spent fuel pool risk analysis for the Dukovany NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hust' ak, S.; Jaros, M.; Kubicek, J. [UJV Rez, a.s., Husinec-Rez (Czech Republic)

    2013-07-01

    UJV Rez, a.s. maintains a Living Probabilistic Safety Assessment (Living PSA) program for Dukovany Nuclear Power Plant (NPP) in the Czech Republic. This project has been established as a framework for activities related to risk assessment and to support for risk-informed decision making at this plant. The most extensively used PSA application at Dukovany NPP is risk monitoring of instantaneous (point-in-time) risk during plant operation, especially for the purpose of configuration risk management during plant scheduled outages to avoid risk significant configurations. The scope of PSA for Dukovany NPP includes also determination of a risk contribution from spent fuel pool (SFP) operation to provide recommendations for the prevention and mitigation of SFP accidents and to be applicable for configuration risk management. This paper describes the analysis of internal initiating events (IEs) in PSA for Dukovany NPP, which can contribute to the risk from SFP operation. The analysis of those IEs was done more thoroughly in the PSA for Dukovany NPP in order to be used in instantaneous risk monitoring. (orig.)

  18. Calculation of fluences of fast neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor. Part I. Theory, calculations, comparison with the experiment

    International Nuclear Information System (INIS)

    Rataj, J.

    1993-10-01

    The method of calculating neutron spectra and integral flux densities of neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor is outlined. The one-dimensional and two-dimensional calculations were performed by means of the DORT code in R, R-Z, and R-Θ geometries using the cross sections from the ELXSIR library. In the R-Θ geometry, the coupled neutron flux densities were determined. The calculated values of the maximum activation of detectors differ less than 15% from the values measured in surveillance specimens, which is within the limit of uncertainty associated with the position of the detector in the casing. The differences between the calculated and observed data behind the pressure vessel were below 4%. 10 tabs., 3 figs., 41 refs

  19. Dukovany ASSET mission preparation

    International Nuclear Information System (INIS)

    Kouklik, I.

    1996-01-01

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future

  20. Dukovany ASSET mission preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kouklik, I [NPP Dukovany (Czech Republic)

    1997-12-31

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future.

  1. Dukovany nuclear power plant in 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Data on the power generation, nuclear safety, and gaseous and liquid releases into the environment were extracted from the 1993 annual report of the Dukovany nuclear power plant. Operation of the plant was safe and reliable in 1993. Three events were classed as INES category 1. The plant's Failure Commission dealt with 100 events which brought about a total electricity generation loss of 217,624 MWh, corresponding to about 22 reactor-days. Out of this, 26.8 % was due to human error. Three fires occurred at the power plant site. Releases of radioactive aerosols, tritium, noble gases and radioiodine into air and of tritium, corrosion products, and fission products into the aquatic environment were below annual limits. The collective dose equivalent was 1.78 manSv in 1993. (Z.S.). 2 tabs., 11 figs

  2. Development of the relations between the Dukovany NPPs and the local community at present time

    International Nuclear Information System (INIS)

    Mozor, B.

    2000-01-01

    Dukovany NPP is the only one operating in Czech Republic, with 4 PWR units, producing about a quarter of the total electricity supplied by the biggest electric power company in the country. On the same site there is a spent fuel storage with a capacity of 600 tones, and a new spent fuel storage planned. This will have sufficient capacity for storing spent fuel for 40 years of Dukovany NPP operation. The communication of the NPP with the public is based on the following rules: open information, open dialog with target groups, mutual exchange of impartial information on operation, serious and tolerant attitude of the Dukovany NPP bilateral dialog with the surroundings. This resulted in the fact that in Czech republic 50% of of the population is in favour of NPPs, and this percent is even higher in the Dukovany region (80%)

  3. Refurbishment of the NPP Dukovany I and C System

    International Nuclear Information System (INIS)

    Karpeta, C.; Rosol, J.

    2004-01-01

    An overview of the NPP Dukovany Instrumentation and Control (I and C) refurbishment project is presented in this paper from the standpoint of both its management and technical aspects. Reasons for taking the decision to replace the original plant I and C system are outlined and the objectives set for the refurbishment project are stated. The paper is focusing on describing more in detail the first part of the refurbishment, i.e. replacement of the I and C portions of the plant systems important to nuclear safety and the process information system. This includes the reactor trip system, engineered safety features actuation system, reactor power limitation system, reactor power control system, post-accident monitoring system, reactor core monitoring system and unit data acquisition and processing system. Information is given on the main processes of the project, i.e. the bidding, design, manufacturing, installation and commissioning. Specific licensing process applied to this refurbishment project is also outlined. An account of the current status of the project implementation is given. (author)

  4. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  5. Dukovany NPP maintenance management

    International Nuclear Information System (INIS)

    Siegel, F.

    2005-01-01

    Maintenance planning and management for the technological equipment of the Dukovany NPP are described. A Maintenance Control and Evaluation System has been developed and is in use to help manage the complex maintenance issue. Practical examples of outputs of the System, with a comprehensive use of the cost, reliability and safety related data, are presented. (author)

  6. Computer programme for operator support in primary frequency control of NPP Dukovany

    International Nuclear Information System (INIS)

    Kurka, J.; Petruzela, I.; Piroutek, Z.

    1996-01-01

    The computer programme for the control room operator support in the primary frequency control operation of the NPP Dukovany power unit is described. This operational mode has recently been implemented. Until now, the plant has been exclusively operated in the based-load mode at nominal power. The stability of the main unit parameters, unit power output and main steam header pressure, is the characteristic feature for this mode of operation of units with WWER 440 type of reactors. This does no more hold in the new mode in which these both principal parameters vary in dependency on the power network frequency changes. This fact, however, has an important impact on the activities of the control room operators. Therefore, to help them to adapt themselves easily and without unnecessary stresses to new conditions the regulatory body when licensing the new mode finally approved its implementation only if computerized operator support system would be installed in the control room. Such a computer program for the operator support has been recently developed in EGU Prague and has already been implemented into the unit information system on all four Dukovany units. (author). 3 refs, 7 figs

  7. IAEA-led Operational Safety Team Reviews Dukovany Nuclear Power Plant, Czech Republic

    International Nuclear Information System (INIS)

    2011-01-01

    indicator for the Collective Effective Dose of Dukovany NPP has shown exceptionally good results in comparison with other Pressurized Water Reactors (PWRs) and Water-Water Energetic Reactors (VVERs). During the past three years, the value was less than 0.15 manSv per Unit; and A comprehensive station blackout simulator scenario has been developed and implemented for several years at the plant. The scenario involves multiple off-site agencies and has a high degree of realism. It is used to practise and improve response times for power restoration activities and familiarize off-site personnel with nuclear safety principles. The team has also made recommendations and suggestions related to areas where the operational safety of the Dukovany NPP could be improved. Examples include: Improving the effectiveness of using its root cause analysis method to prevent the repetition of events; Clarifying and reinforcing expectations regarding the use of error prevention tools and enhancing their application; and Ensuring adequate protection of emergency workers and evacuees following a possible radioactive release. The plant's management expressed a determination to address all the areas identified for improvement and requested that the IAEA schedule a follow-up mission in approximately 18 months. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at the IAEA headquarters, including any comments from Dukovany NPP and the Czech regulatory body, the State Office for Nuclear Safety (SUJB). The final report will be submitted to the Government of the Czech Republic within three months. This was the 162nd mission of the OSART programme, which began in 1982. Video and photos are available from the OSART Mission. General information about OSART missions can be found on the IAEA Website. (IAEA)

  8. Practical experience with the fuel monitoring at Dukovany NPP

    International Nuclear Information System (INIS)

    Kment, J.; Svoboda, R.; Valach, M.

    1994-01-01

    A brief description of the following activities of Dukovany NPP is given: fuel state monitoring during cycles; fuel state inspection during outages; fuel damage predictions and reality; prevention against fuel damage caused by PCI. The fuel state monitoring during cycles is conducted by on-line gamma spectrometer located under the by-pass pipelines of the water cleaning system. The system enables to carry out determination of the equilibrium activities of practically all significant gaseous fission products for energies from 80 KeV to 2 MeV. On-line activity measurements give reliable indication of a defect origin with the 133 Xe activity level of the order of tens k Bk/l. The gamma spectroscopy data are processed by KGO and PEPA software packages installed into the chemistry information system. KGO estimates the number of the damaged fuel elements and the extent of their damage. The activities of 133 Xe, 135 Xe, 137 Xe, 138 Xe, 87 Kr, 88 Kr and 89 Kr are used for evaluation of the number of 'leakers'. PEPA code predicts radiation set-up development, i.e. the activity levels of cca 20 radiologically significant nuclides in the primary coolant for the assumed reactor power mode. The fuel damage predictions during cycles are illustrated on two examples from the operational history of the Dukovany NPP. The utilization of the KGO-PEPA software contributes to a more high exploitation culture of the core from the point of view of fuel integrity maintenance. 3 refs

  9. Performance testing of self-powered detector signal converters at Dukovany nuclear power plant - stage 1

    International Nuclear Information System (INIS)

    Erben, O.; Hajek, P.; Zerola, L.; Karsulin, M.

    1990-11-01

    The converters were manufactured at the Institute of Nuclear Research, Rez. Dynamic functions of the converters were tested during the start-up of reactor unit 4, Dukovany nuclear power plant, and their stability during its normal operation. The results and evaluation of the measurements show a good performance of converters. They have a low offset, good stability and the values of current are in a good agreement with the values obtained using other methods. The values of insulation resistance are in a good agreement with the values obtained manually using the method of additional resistance. These converters are planned to be used in the upgraded in-service inspection system in WWER-440 nuclear power plants. (Z.S.) 9 tabs., 22 figs., 1 ref

  10. A way of Dukovany NPP to privatization and liberalized market

    International Nuclear Information System (INIS)

    Kouklik, I.

    2001-01-01

    This presentation describes the current situation in the Dukovany NPP with two main upcoming future phenomena - privatization of CEZ company and preparation for liberalized electricity market. Considerations about level of safety, investment costs and competitiveness of Dukovany Nuclear Power Plant in liberalization process is described together with a comparison of some safety features of the world's NPPs. Results of this comparison are used for consideration and evaluation of some require modifications effectiveness. (author)

  11. Dukovany NPP operation

    International Nuclear Information System (INIS)

    Vlcek, Jaroslav

    2010-01-01

    The topics discussed include: Dukovany NPP among CEZ Group power plants; International missions at the plant; Plant operation results; and Strategic goals and challenges. Historical data are presented in the graphical form, such as the unit capacity factor, unplanned capability loss factor, unplanned automatic scrams, fuel reliability, industrial safety accident rate, collective radiation exposure, WANO index, power generation data, and maximum achievable power by the end of year. Also discussed were the company culture and human resources, maintenance, power uprate, and related phenomena. (P.A.)

  12. Water management of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Rabusic, P.

    1990-01-01

    Industrial water for the Dukovany nuclear power plant is taken from a reservoir built on the Jihlava river. The volume of the reservoir is 17.1 million m 3 . The water taken serves mainly as the make-up water for the cooling circuit and is treated by clearing; it is also used for the preparation of demineralized water for making up the condensate circuit and for the preparation of soft water for making up the heat piping. The consumption of industrial water is 1 to 2 m 3 /s. Waste waters are released into rainwater drainage, sewage drainage and industrial water drainage. Waste waters are segregated according to the place of their origin and are purified, mainly on ion exchangers and on an evaporator. In normal conditions, they are returned to the operation. Concentrated liquid residues and solid wastes will be stored by using the multiple containment system. The most important radioisotopes that may be present in nuclear power plant waste waters, the water and radionuclide balance of the Dukovany nuclear power plant, and chemical and radiological data on the Dukovany waste waters (1989) are tabulated. (P.A.). 6 refs

  13. From the chronicle of training of Dukovany NPP staff

    International Nuclear Information System (INIS)

    2005-01-01

    The long way the Dukovany NPP had to go before the plant staff was fully qualified and skilled is described. First the training concept was prepared, then the necessary training facilities were set up, lecturers and instructors were hired and trained, training programmes and training materials were developed, and ultimately the first training course was launched in 1979. A training NPP was constructed and a full-scope simulator of the Dukovany NPP was set up. The current status of organization of NPP staff training by the CEZ utility is highlighted. (author)

  14. Practical experience with the fuel monitoring at Dukovany NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kment, J [Jaderna Elektrarna, Dukovany (Czech Republic); Svoboda, R; Valach, M [Ustav Jaderneho Vyzkumu a.s., Rez (Czech Republic)

    1994-12-31

    A brief description of the following activities of Dukovany NPP is given: fuel state monitoring during cycles; fuel state inspection during outages; fuel damage predictions and reality; prevention against fuel damage caused by PCI. The fuel state monitoring during cycles is conducted by on-line gamma spectrometer located under the by-pass pipelines of the water cleaning system. The system enables to carry out determination of the equilibrium activities of practically all significant gaseous fission products for energies from 80 KeV to 2 MeV. On-line activity measurements give reliable indication of a defect origin with the {sup 133}Xe activity level of the order of tens k Bk/l. The gamma spectroscopy data are processed by KGO and PEPA software packages installed into the chemistry information system. KGO estimates the number of the damaged fuel elements and the extent of their damage. The activities of {sup 133}Xe, {sup 135}Xe, {sup 137}Xe, {sup 138}Xe, {sup 87}Kr, {sup 88}Kr and {sup 89}Kr are used for evaluation of the number of `leakers`. PEPA code predicts radiation set-up development, i.e. the activity levels of cca 20 radiologically significant nuclides in the primary coolant for the assumed reactor power mode. The fuel damage predictions during cycles are illustrated on two examples from the operational history of the Dukovany NPP. The utilization of the KGO-PEPA software contributes to a more high exploitation culture of the core from the point of view of fuel integrity maintenance. 3 refs.

  15. NPP Dukovany modernisation programme for long-term safe and efficient operation

    International Nuclear Information System (INIS)

    Krizek, K.; Sabata, M.; Vasa, I.

    2004-01-01

    The strategy, main items and issues, responsibilities and linkages of the modernisation programme are outlined. The long-term operation (LTO) concept has been approved by the power plant board of directors, including the scope of activities and schedule, related processes have been defined, a working group of 40 specialists has been set up to manage the LTO process. The technical and economic optimum for the Dukovany LTO will be determined by the end of 2006, and a Technical LTO Programme for the Dukovany (Temelin) NPP will be completed by 2008 (2016). (P.A.)

  16. Complex monitoring of the surroundings of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Tylova, E.

    1993-01-01

    Based on a Resolution of the Government of the Czech Republic, the Ministry of the Environment and the Ministry of Health of the Czech Republic shall develop a project of complex environmental pollution and contamination monitoring in the surroundings of the Dukovany nuclear power plant and shall discuss this project with municipalities there till the end of 1993. The objective of the project is to assess in a complex manner the situation in the Dukovany area with respect to all risks and their simultaneous effects, so as to ensure that the population in the area concerned is not burdened to an intolerable extent. (Z.S.)

  17. The evolution of the fuel cycle in the Dukovany NPP

    Energy Technology Data Exchange (ETDEWEB)

    Bajgl, J [Jaderna Elektrarna, Dukovany (Czech Republic)

    1994-12-31

    The ten-year operational experience of four WWER-440 units in Dukovany NPP with a total number of 35 cycles is outlined. The strategy of fuel reloading has been changed from out-in schemes to low-leakage patterns. The linear pin power limitation will be introduced. The main physical limits and conditions for the NPP operation are listed. The main goal is to go to a full 4-year fuel cycle in which the burnup will be about 40 Mwd/kg U. 6 tabs.

  18. Human factor in the operation of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Kostiha, Frantisek; Pleskac, Frantisek

    2009-01-01

    The human factor, i.e. the action of man within complex technical systems, has been in the focus of the Dukovany NPP management constantly. The paper gives an overview of the plant strategy regarding human factor issues, such as training, human factor prevention methods and practices to improve the resistance of the system to human error, the use of information systems, and operational feedback from the role of the human factor and influence of the operators on the initiation, development and resulting level of severity of operational events. The method of monitoring and assessment of the quality of human performance at the Dukovany plant on an ongoing basis aimed at a constant improvement is highlighted. (orig.)

  19. Upgrade the startup test instrumentation (ANMS) with innovated I and C system at the Dukovany WWER 440/213 units

    International Nuclear Information System (INIS)

    Kocek, V.

    2005-01-01

    The paper focuses on the innovation procedures of physics startup tests instrumentation used in Dukovany NPP (ANMS) connected with I and C system refurbishment of the Dukovany WWER 440/213 units. The following matters are further discussed in this paper: a) changes in ANMS design, whose has been carried out due to reflect the situation connected with I and C innovation; b) process of consistency checking during implementation stage; c) results of the physics startup tests with upgraded ANMS in 2005 (introduction of Gd2 fuel on Dukovany NPP) (Authors)

  20. Methods and tools for the validation of neutron instrumentation; methods for the detection of loose VVER-1000 reactor internals. Technical report

    International Nuclear Information System (INIS)

    Stulik, P.; Sipek, B.; Pecinka, L.

    2004-12-01

    The following topics are addressed: (1) Development, tuning and laboratory testing of the proposed DMTS distributed system; (2) Testing of selected technological equipment and software within the technology of the Temelin NPP; (3) Proposal for basic performance testing of the temperature measurement dynamics on Temelin primary circuit loops; (4) Data for the design and manufacture of 2 measuring chains for the processing of operating signals from internal reactor detectors at the Dukovany-4 reactor unit using a modified experimental AMV set and the DMTS system being developed; (5) Trial measurement with the DMTS system; (6) Evaluation of the usability of signals from the ionization chambers of the innovated instrumentation and control system within the in-service diagnosis system of the Dukovany NPP using the DMTS system being developed; and (7) Calculation of acoustic frequencies of the Temelin primary circuit by means of electromechanical analogy for loop configurations including the effects of the pressurizer and idle coolant loops. (P.A.)

  1. NPP I and C system modernizations in the Czech Republic. The NPP Dukovany example

    International Nuclear Information System (INIS)

    Krs, P.

    1998-01-01

    There are four units of WWER 440/213 type reactors under operation at Nuclear Power Plant Dukovany site in the Czech Republic. The EEZ utility has decided to include upgrade of existing Instrumentation and Control (I and C) systems as one of the most significant parts of a larger scale modernization project. The original I and C systems designed in the late 70's and early 80's with analogue equipment and relays will be subjected to an integrated modernization programme developed to replace obsolete equipment, to balance operational and maintenance costs, to improve performance and to enhance plant safety. To achieve this objective within next decade, the utility has already started preparatory phase of the overall modernization project, including analytical and planning activities related to the I and C part. (author)

  2. Programs of plant life management at NPP Dukovany

    International Nuclear Information System (INIS)

    Pochman, K.; Ruscak, M.; Brumovsky, M.

    2000-01-01

    The program of lifetime management at NPP Dukovany is oriented towards an effective usage of facilities while keeping their safety parameters, mainly concerning nuclear safety. The goal is to achieve maximum usage of the design lifetime under the condition of fulfilling above mentioned requirements. Evaluation procedures have been prepared for selected components. These are subsequently discussed and approved by the State Office of Nuclear Safety. The databases of original data are built up regarding the evaluated components. The input data are completed as well according to the approved procedures. Generally valid approaches based on the evaluation of all possible degradation mechanisms are modified regarding the original status of particular component. The procedures are oriented towards a quantification of residual lifetime. They employ knowledge of initiation and kinetics of degradation mechanisms. They also define mechanisms, which should be quantified. For irreplaceable components or components whose replacement is difficult, the program is focused to the control of operation conditions and inspection of facilities. However, they are again based on the knowledge of degradation kinetics. If at least some parts of the facility could be replaced, better material selection regarding the operation conditions is an option. Systems included into the ageing management system will be specified in the paper. Also, the measures will be identified which serve as a check of implementation of all possible stressors and degradation mechanisms into the first screening. The examples of lifetime evaluation of some systems and components will be given in the paper: reactor pressure vessel, reactor internals, steam generator tubes and feedwater piping. Specific approaches will be shown fro different original status of components and different operation conditions. (author)

  3. Modifications of Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany based upon new version of Emergency Operating Procedures

    International Nuclear Information System (INIS)

    Aldorf, R.

    1997-01-01

    In the frame of 'living Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany Project' being performed by Nuclear Research Institute Rez during 1997 is planned to reflect on Probabilistic Safety Assessment-1 basis on impact of Emergency Response Guidelines (as one particular event from the list of other modifications) on Plant Safety. Following highlights help to orient the reader in main general aspects, findings and issues of the work that currently continues on. Older results of Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany have revealed that human behaviour during accident progression scenarios represent one of the most important aspects in plant safety. Current effort of Nuclear Power Plants Dukovany (Czech Republic) and Bohunice (Slovak Republic) is focussed on development of qualitatively new symptom-based Emergency Operating Procedures called Emergency Response Guidelines Supplier - Westinghouse Energy Systems Europe, Brussels works in cooperation with teams of specialist from both Nuclear Power Plants. In the frame of 'living Probabilistic Safety Assessment-1 Nuclear Power Plant Dukovany Project' being performed by Nuclear Research Institute Rez during 1997 is planned to prove on Probabilistic Safety Assessment -1 basis an expected - positive impact of Emergency Response Guidelines on Plant Safety, Since this contract is currently still in progress, it is possible to release only preliminary conclusions and observations. Emergency Response Guidelines compare to original Emergency Operating Procedures substantially reduce uncertainty of general human behaviour during plant response to an accident process. It is possible to conclude that from the current scope Probabilistic Safety Assessment Dukovany point of view (until core damage), Emergency Response Guidelines represent adequately wide basis for mitigating any initiating event

  4. Upgrading the standard makeup node at the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Charvat, L.; Dvorak, J.

    1999-01-01

    Modifications made on the normal makeup and boron control system of the Dukovany nuclear power plant in 1997 and 1998 are described. The reasons for and objectives of the upgrading are highlighted in relation to the reliability of the facility and maintenance cost of the system. (author)

  5. Preparation of NPP Dukovany periodic safety review

    International Nuclear Information System (INIS)

    Dubsky, L.; Vymazal, P.

    2004-01-01

    Dukovany NPP in Czech Republic performs a periodic safety review for the second time after approximately 20 years of operation. The history of the Safety Report and its transformation into an internationally accepted form complying with IAEA standards is described. The deterministic and probabilistic assessment of the plant's safety-related design and state is applied to determine whether and to what extend the relevant protective goals are fulfilled by the existing plant design. A description of the step-by-step process is presented together with the creation of methods and criteria for PSR evaluation prepared by Nuclear Research Institute Rez

  6. Durability of Dukovany shallow land repository engineered barriers. Appendix 7: Czech Republic

    International Nuclear Information System (INIS)

    Vokal, A.; Nachmilner, L.; Wasserbauer, R.; Dohnalek, J.

    2001-01-01

    The main aim of this project was to explore the durability of engineering barriers used at Dukovany shallow land repository as a support of safety assessments. This appendix summarises the principal results focused on durability of asphaltopropyleneconcrete (APC) hydroisolation and steel reinforced concrete construction

  7. Analysis of the ASME methodology for evaluation of erosion-corrosion defects with respect to the differences in the calculation and in materials used at the Dukovany NPP

    International Nuclear Information System (INIS)

    Kadecka, P.

    1995-01-01

    The problem of evaluation of tolerable defects and thinning of pipe walls was analyzed. In fact, a procedure for evaluation of tolerable defects is described in ASME Code Case N 480 based on the ASME ''Rules for Construction of Nuclear Power Plant Components''. The pipe systems of the Dukovany NPP, however, were constructed to different (East European) standards, and therefore caution should be exercised when applying US standards to this plant. The report demonstrates major differences between the ASME Standard and the proposed Czech standard ''A.S.I. Standards Documentation for Strength Calculations of Equipment and Piping of WWER Type Nuclear Power Plants'' developed by the Czech Association of Mechanical Engineers (A.S.I), evaluates the applicability of Code Case N 480 to the Dukovany plant, and proposes a Czech procedure for the evaluation. The basic characteristics of materials cited by ASME II and carbon steels used in the secondary circuit of the Dukovany NPP are also compared. (P.A.). 78 tabs., 2 figs., 4 refs

  8. Activities of the diagnostic department at the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Polak, L.; Sadilek, J.; Spidla, M.; Zhanalova, J.

    2001-01-01

    Activities of the diagnosis department at the Dukovany nuclear power plant are described. The department staff monitors vibrations of rotary machines and vibrations and loose parts in the primary circuit, and inspects the condition of the electrical equipment by means the thermography technique. Examples of successful measurements and analyses of the condition of various machines are given. (author)

  9. Analysis of external events - Nuclear Power Plant Dukovany

    International Nuclear Information System (INIS)

    Hladky, Milan

    2000-01-01

    PSA of external events at level 1 covers internal events, floods, fires, other external events are not included yet. Shutdown PSA takes into account internal events, floods, fires, heavy load drop, other external events are not included yet. Final safety analysis report was conducted after 10 years of operation for all Dukovany operational units. Probabilistic approach was used for analysis of aircraft drop and external man-induced events. The risk caused by man-induced events was found to be negligible and was accepted by State Office for Nuclear Safety (SONS)

  10. Analysis of the effect of implemented low temperature overpressure regimes on the reactor pressure vessel resistance to damage

    International Nuclear Information System (INIS)

    Pistora, V.

    1995-12-01

    The temperature and stress fields of the Dukovany WWER-440 reactor pressure vessel (RPV) were calculated based on a two-dimensional model using the finite element method. Two pressurized thermal shock events occurred at Dukovany in 1992: the temperature in 3 loops dropped rapidly while the primary circuit was fully pressurized. The calculation revealed that the first event was intolerable with respect to the RPV resistance to brittle fracture; had the two events occurred towards the end of the RPV lifetime, both would have been intolerable. (M.D.). 6 tabs., 15 figs., 6 refs

  11. Care of personnel on the building site of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Kurial, P.

    1984-01-01

    The accommodation is described of workers on the building site of the Dukovany nuclear power plant. The quality is appraised of accommodation, catering and refreshments. There is a health care unit on site and 15 beds are reserved at the Trebic hospital for emergency cases. Trade union and youth organizations look after sports and cultural activities. (E.S.)

  12. Use of TL dosemeters for measuring doses of external gamma radiation in the vicinity of the Dukovany NPP

    International Nuclear Information System (INIS)

    Ohera, M.; Fiala, E.; Valasek, J.

    1992-01-01

    The results of measurement of the photon dose equivalent from external gamma radiation in the surroundings of the Dukovany nuclear power plant are given for 20 sites in southern Moravia over the 1984-1990 period, i.e., one year before starting up the plant and 6 years of its operation. CaSO 4 :Dy TL dosemeters were used, applying filtration with 0.5 mm Pb and 0.2 mm Pb + 0.6 mm Sn. Since 1989, the towns along the borders with Austria (Znojmo, Vranov, Mikulov) have been included, along with the Brno, Trebic, Zakrany, Ivancice and Jaromerice sites, into the national monitoring TL dosimetric network. The elevated doses at some sites come from the bedrock and are not caused by the operation of the plant. The effect of the Chernobyl accident on the dosemeter response is also evaluated. Comparison of the data prior to the Dukovany plant start-up (1984) and during the operation (1985-1990) give evidence that the operation of the power plant did not bring about any increase in the values monitored. (Z.S.). 3 tabs., 8 figs., 9 refs

  13. The development of public relations at the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Rerucha, F.; Urbasek, R.

    2000-01-01

    The article describes the development of mutual relations between the Dukovany NPP and the public and institutions within the region and presents evaluation of the current status and topical tasks for the benefit of a further progress in such relations. The importance is stressed of the role of the communication process, preparation and purposefulness of the forms and methods in implementing the communication policy by the NPP's Public Relations department towards individual target groups of the public. (author)

  14. Diagnostic system for process control at NPP Dukovany load follow

    International Nuclear Information System (INIS)

    Rubek, J.; Petruzela, I.

    1998-01-01

    The NPP Dukovany is being operated in the frequency control since 1996. In last year a project for the plant load follow has been developed. One part of the project is to install a diagnostic system for process control. At present the main control loops of the plant control system are regular tested after unit refuelling only. The functionality and control system parameter adjusting is tested by certificated procedures. This state is unsuitable in view of the plan load follow operation. The relevant operational modes are based on minimisation of influence on plant component life time and on achievement of planned unit parameters. Therefore it is necessary to provide testing of main control system parts in shorter time period. Mainly at time when the unit is really in load follow operation. The paper describes the diagnostic system for process control which will be at NPP Dukovany implemented. The principal of the system will be evaluation of real and expected changes of technological variables. The system utilises thermohydraulic relation among main technological variables and relation among controlled and manipulated variables. Outputs of the system will be used to operational staff support at the plant operation. It enables: determination of control system state, estimation and check of future control system state, early indication of the deviation of process from normal conditions, check of efficiency of operational staff intervention into plant control. The system gives the plant operator new information for the plant process control. Simultaneously the coupling of new system outputs on existing signalisation is solved. (author)

  15. Quality assurance and control in constructing the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Lujka, T.

    1986-01-01

    A quality control and assurance department was established on the Dukovany nuclear power plant site as a unit independent of the production divisions of the plant. Its responsibility consists in testing activities including the development of testing techniques and cooperation in the compilation of specifications and binding technological regulations. The department consists of five sections. The concrete laying laboratory has a staff of 7 and concentrates on testing the quality of concrete mixes and their components in the central concrete production plant. The materials testing centre with a staff of 5 provides testing of steel and special structures and oversees the laying of heavy and very heavy concretes. A separate unit for the testing of surface finish of building structures is staffed with 4 people. The section of technological checks of building and assembly work with a staff of 4 is responsible for the quality of work in the main production unit zone but also of the other buildings on the site. Two people staff the unit for checking and filing the quality control documents for selected components. (Z.M.)

  16. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  17. The common project for completion of Bubbler Condenser Qualification (Bohunice, Mochovce, Dukovany and Paks NPPs)

    International Nuclear Information System (INIS)

    Jaroslav, H.; Pavol, B.

    2003-01-01

    Described is the common project for completion of bubbler condenser qualification for nuclear power plants in Bohunice, Mochovice, Dukovany and Paks. Functionality of the bubbler condenser was elaborated during the simulation of the main steam line brake, medium break and small break LOCA. On this basis the appropriate operation of bubbler condenser containment under accident conditions can be positively confirmed

  18. Rolls-Royce successful modernization of safety-critical Instrumentation and Control (I and C) equipment at the Dukovany VVER 440/213 Nuclear Power Plant, based on SPINLINE 3 platform

    International Nuclear Information System (INIS)

    Rebreyend, P.; Burel, J.P.; Spoc, J.; Karasek, A.

    2010-01-01

    Rolls-Royce has provided on-time delivery of a substantial safety-critical I and C overhaul for four Nuclear reactors operated by Czech Republic utility, CEZ a.s. This nine-year project is considered to be one of the largest I and C modernization projects in the world. The Dukovany VVER 440 I and C modernization project and its key success factors are profiled in this paper. The project is in the final stages with the last unit to be completed in 2009. Beginning in September 2000, the project is in compliance with the initial schedule. Rolls-Royce has been designing and manufacturing I and C solutions dedicated to the implementation of safety and safety-related functions in nuclear power plants (NPPs) for more than 30 years. Though the early solutions were non-software-based, since 1984 software-based solutions for safety I and C functions have been deployed in operating NPPs across France and 15 other countries. The Rolls-Royce platform is suitable for implementation of safety I and C functions in new NPPs, as well as in the modernization of safety equipment in existing plants. CEZ a.s. is a major electricity supplier for the national grid. At Dukovany, CEZ a.s. operates four units of VVER-440/213-type reactors producing one quarter of CEZ a.s. electricity production. The first of these units was connected to the grid in 1985. Since the year 2000, the nine-year modernization program has been underway at Dukovany, at a cost of more than 200 million Euros. The equipment replacement was implemented during regular, planned outages of the original equipment and systems. After an international bidding phase, CEZ a.s. awarded a contract to Skoda JS for general engineering and project management. Individual subcontracts were then signed between Skoda JS and a consortium between Rolls-Royce and Areva for modernization of the safety systems, including the Reactor Protection System (RPS), the Reactor Control System (RCS), and the Post-Accident Monitoring System (PAMS). Two

  19. The effect of nuclear facilities operation on fish populations and the Dukovany-Dalesice power complex under construction

    International Nuclear Information System (INIS)

    Penaz, M.

    1979-01-01

    The scope and the main results are described of the hydrobiological and ichthyological research into the Jihlava river in the neighbourhood of the Dukovany - Dalesice power plant complex. The effect of the power plant complex on the ecosystem of the affected river stretch is predicted, mainly on the fish community. (author)

  20. Assessment of the integrity of WWER type reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1995-01-01

    Procedures are given for the assessment of the residual lifetime of reactor pressure vessels with respect to a sudden failure, the lifetime of vessels with defects disclosed during in-service inspections, and the fatigue or corrosion-mechanical lifetime. Also outlined are the ways of assessing the effects of major degradation mechanisms, i.e. radiation embrittlement, thermal aging, and fatigue damage, including the use of calculated values and experimental examination, by means of surveillance specimens in particular. All results of assessment performed so far indicate that the life of reactor pressure vessels at the Dukovany, Jaslovske Bohunice, and Temelin nuclear power plants is well secured. 7 figs., 3 refs

  1. Preparation of Long Term Operation in Dukovany NPP, Czech Republic

    International Nuclear Information System (INIS)

    Krivanek, R.; Sabata, M.

    2012-01-01

    Dukovany NPP in the south-east of the Czech Republic operates four VVER 440/213 type units. The first unit was commissioned in 1985 and the last one in 1987. The operational results of the whole NPP have been excellent and NPP permanently belongs between the first quartile of the best operated NPPs in the world in accordance with WANO factors. Large safety improvement programme have been implemented in last 15 years. The original design lifetime of main components is 30 years which means till 2015 and it is understandable that NPP is preparing for long-term operation (LTO). The paper is describing activities carried out and planned for safe and successful LTO. (author)

  2. Construction, start-up and operation of Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Hornicek, Z.

    1989-01-01

    The Labor Safety Inspectorate have been supervising the construction of the Dukovany nuclear power plant since the construction start in 1977. It was found that in concreting the reactor building walls with concrete mixes, the regulations were not observed on the highest level for the concrete mix drop, and on the gap processing and concrete treatment when concreting was interrupted. Thus, concreting was halted until the conditions for concreting were met. Attention was focused on the protection of the hermetic casing from damage, which had very often happened. A number of shortcomings were detected in storing technology parts. The cleanliness was inspected of the facilities being assembled. The inspections also revealed shortcomings in sealed space tightness. The inspections of assembly and testing of facilities showed failures of the facilities themselves (control valves, electric motors, filter and pump sealing) and of the assembly process. Faults were also detected in electrical equipment. Only a very small part of the installation showed lifetime as specified by Decree 105/1982 Coll. laws on safety assurance in the nuclear power industry. Missing data in documentation led to delays in the start-up stages. The State Surveillance Body also inspected the results of equipment testing. Prior to physical start-up, all production facilities and buildings were inspected, labor safety was inspected for all personnel in communicating corridors, staircases, manholes and onservice and handling posts. Shortcomings were removed. The organization of assembly work was a considerable problem if staff from more organizations had to work together in the same workplace. A list of tasks is presented of State Surveillance Body in operation, maintenance, outages, repairs, and troubleshooting in a nuclear power plant. (J.B.)

  3. Quality control and assurance in building the Dukovany nuclear power plant - check on and filing of quality certificates

    International Nuclear Information System (INIS)

    Sokola, J.

    1986-01-01

    The following documents were used for determining the range of documentation required for the construction of the Dukovany nuclear power plant: the decree valid in Czechoslovakia for all industrial structures, the respective Czechoslovak State and branch standards and several special Soviet regulations. For the central recording of all documents on the quality of deliveries and assemblies a special quality assurance unit was set up on the site of the nuclear power plant. In the system of the flow of documents on the quality of the structure of the Dukovany nuclear power plant there are 16 addressees, from outside subcontractors to on-site managerial staff, work safety inspectors, etc., to the enterprise archives and the department of scientific and technical information. A brief description is presented of the different types of documents on the quality of deliveries and assemblies, and the method of inspection of their content and completeness is described. (Z.M.)

  4. Determination of reactor thermal power using a more accurate method

    International Nuclear Information System (INIS)

    Papuga, J.; Madron, F.; Pliska, J.

    2005-01-01

    Reactor thermal power is an important operational parameter in many respects such as nuclear safety, reactor physics or evaluation of turbine thermal performance. Thermal power of a pressurized water reactor is determined on the basis of the steam generator thermal balance. The balance can be made in several variants differing from one another by the selection of different measuring circuits whose data are used in the balancing. In principle, no one such variant gives the true value of the thermal power. Among the variant values, the one nearest to the unknown true value of reactor thermal power is probably the value calculated with the lowest uncertainty. The determination of such uncertainty is not easy and its value can make even several percent, which has significant economic consequences. This paper presents the method of data reconciliation and its application to the data of the third of Dukovany NPP. The data reconciliation method allows to exploit all the information which process data contain. It is based on the statistical adjustment of the redundant data in such a way that the adjusted data obey generally valid laws of nature (e.g. conservation laws). Mass and energy balances based on the data not yet reconciled do not obey those laws because of measurement errors. For data reconciliation in Dukovany, a detailed model of mass and energy flows describing the 3rd unit from steam generators to alternator and condenser was set up. Laws of mass and energy conservation and phase equilibrium in water-steam systems are thus fulfilled. Moreover, the user can model momentum balances in pipelines and create other equations, which are respected during calculation. The data reconciliation is done regularly for hourly averages (Authors)

  5. Analyses in support of installation of steam-dump-to-atmosphere valves at steam lines of the Dukovany NPP

    International Nuclear Information System (INIS)

    Kral, P.

    1998-01-01

    Four conservative analyses were carried out with a view to examining the cooldown capacity of the super-emergency feedwater pump (SEFWP) → steam generator (SG) → steam dump to atmosphere/main steam line (SDA/MSL) chain. This emergency cooldown capacity was investigated for a postulated accident associated with a main steam header break + main feedwater header break + closing of all main steam lines, and for an artificial accident with SCRAM + isolation of all MSLs + loss of feedwater. The RELAP5/MOD3.1 code and a detailed 3-loop input model of the Dukovany plant were employed. Conservative assumptions with respect to the initial reactor power, decay heat evolution, and other input parameters were applied. The results gave evidence that the capacity of both the 2SEFWP → 2SG → 2SDA/SG and 1SEFWP → 1SG → 1SDA/SG chains is sufficient for the decay heat to be removed from the reactor; however, a considerably long time allowing for a sufficient drop of the decay heat is necessary for a deep cooldown of the primary circuit. For the event encompassing main steam header break + main feedwater header break with isolation of all MSLs and with cooling by 2SEFWPs, a time-consuming calculation gave evidence of the feasibility of passing to the water-water regime and primary system cooldown to below 93 deg C in the hot legs

  6. Quality assurance of the modernized Dukovany I and C safety system software

    International Nuclear Information System (INIS)

    Karpeta, C.

    2005-01-01

    The approach to quality assurance of the software that implements the instrumentation and control functions for safety category A as per IEC 61226, which has been adopted within the 'NPP Dukovany I and C Refurbishment' project, is described. A survey of the requirements for software quality assurance of the systems that initiate protection interventions in the event of anticipated operational occurrences or accident conditions is given. The software development process applied by the system designers and manufacturers, from the software requirements specification phase to the software testing phase, is outlined. Basic information on technical audits of the software development process is also provided. (orig.)

  7. Influence of FGR complexity modelling on the practical results in gas pressure calculation of selected fuel elements from Dukovany NPP

    International Nuclear Information System (INIS)

    Lahodova, M.

    2001-01-01

    A modernization fuel system and advanced fuel for operation up to the high burnup are used in present time in Dukovany NPP. Reloading of the cores are evaluated using computer codes for thermomechanical behavior of the most loaded fuel rods. The paper presents results of parametric calculations performed by the NRI Rez integral code PIN, version 2000 (PIN2k) to assess influence of fission gas release modelling complexity on achieved results. The representative Dukovany NPP fuel rod irradiation history data are used and two cases of fuel parameter variables (soft and hard) are chosen for the comparison. Involved FGR models where the GASREL diffusion model developed in the NRI Rez plc and standard Weisman model that is recommended in the previous version of the PIN integral code. FGR calculation by PIN2k with GASREL model represents more realistic results than standard Weisman's model. Results for linear power, fuel centre temperature, FGR and gas pressure versus burnup are given for two fuel rods

  8. Charting a nuclear future for the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2015-08-15

    After the tender process for new reactors at Temelin was cancelled last year, Czech utility and nuclear operator CEZ is starting ''a broad discussion'' with the government on when and where to build new units. NucNet interviewed Petr Zavodsky, director of nuclear power plant construction at CEZ. He joined CEZ in 1994 as an independent verification and validation specialist for safety systems software at the Temelin nuclear power station. In June 2015, the Czech Cabinet approved a national action plan for the long-term future of nuclear energy, including plans to build new nuclear units at the existing Temelin and Dukovany sites. The plan is for at least one new reactor at Dukovany and Temelin, with a probable total of four new reactors in the long term at the two locations. Priority for construction of the first reactor will be given to the Dukovany site, where the first of four reactors currently operating will probably be shut down in 2035.

  9. New code for VVER-440 loading pattern design

    International Nuclear Information System (INIS)

    Bajgl, J.; Lehmann, M.

    1999-01-01

    This paper describes the main attributes of a new computer program OPTIMAL used for loading pattern design in Dukovany NPP (4 reactors VVER-440). We have been developed this program in Nuclear Research Institute Rez since 1994 on the base of special contract between Dukovany NPP and Nuclear Research Institute Rez. General information about the optimisation methodology is given in the first part. The organisation of the optimisation process is described in part 2. Construction of the optimisation functional is shown in part 3. Procedures used during one-cycle optimisation are described in part 4. (Authors)

  10. Fuel recycling and 4. generation reactors

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.; Gauche, F.; Mathonniere, G.

    2012-01-01

    The 4. generation reactors meet the demand for sustainability of nuclear power through the saving of the natural resources, the minimization of the volume of wastes, a high safety standard and a high reliability. In the framework of the GIF (Generation 4. International Forum) France has decided to study the sodium-cooled fast reactor. Fast reactors have the capacity to recycle plutonium efficiently and to burn actinides. The long history of reprocessing-recycling of spent fuels in France is an asset. A prototype reactor named ASTRID could be entered into operation in 2020. This article presents the research program on the sodium-cooled fast reactor, gives the status of the ASTRID project and present the scenario of the progressive implementation of 4. generation reactors in the French reactor fleet. (A.C.)

  11. Fish cultures in the area of the nuclear power station Dukovany and their prospects

    International Nuclear Information System (INIS)

    Penaz, M.

    1980-01-01

    The results of investigating the fishery production and measurements of radiation background in the ecosystem of the Jihlava river, in the area of a nuclear power station being built near Dukovany are evaluated with regard to the prospects of fish cultures when the power station operates in full extent. Basic data were provided for calculating the burden of significant groups of the population, resulting from the ingestion of fish of local provenance. All available information shows that under normal operating conditions, the power station should not exert a negative influence on the quality of fish food and that in the area under study it would be possible to manage intensive fish cultures. (author)

  12. Solution of the new Dukovany benchmark using the new version of the KARATE-440 code

    International Nuclear Information System (INIS)

    Hegyi, G.; Kereszturi, A.; Maraczy, C.

    2008-01-01

    A new -so called second generation - fuel type developed by Russian vendor (TVEL) for WWER-440 has been introduced. Even the outer parameters of the assembly remain unchanged, the length of the pins was increased and 6 of the 126 pins have been doped by gadolinium. The above mentioned modifications requiring more accurate calculations have necessitated the further development and validation of our KARATE code system. The paper summarizes the capabilities of the new version of the KARATE program concerning the properties of currently used and newly developed fuel types. On the basis of an international benchmark published from Dukovany NPP validation procedure has been started. (Authors)

  13. A successful approach for the implementation of symptom-based emergency operating procedures for VVER reactors

    International Nuclear Information System (INIS)

    Lhoest, V.; Prior, R.; Pascal, G.

    2000-01-01

    The paper provides an overview of the organization, the progress and the results of the various Emergence Operating Procedure (EOP) development programs for VVER type reactors conducted by Westinghouse so far. The detailed working process is presented through the solutions to some major plant issues. The EOPs have been developed for the Temelin, Dukovany, Bohunice, Mochovce and Paks VVER nuclear power plants. The procedures are developed in working teams of experts from the utility and Westinghouse. The completion of the programs constitute an indication of the overall success of this approach. This is further reinforced by the general acceptance of the new procedures by the plant personnel, together with the good results obtained so far from procedure testing. This is also confirmed by a new PSA-level 1 analysis for Dukovany plant, which shows a significant improvement in the overall plant safety. This means a 20% reduction in the Core Damage Frequency due to the introduction of the new EOPs. The fact that some modifications have been implemented to the plants to solve design weaknesses identified in the course of this programs also constitute a positive result

  14. Two significant events in the NPP Dukovany in 1995

    International Nuclear Information System (INIS)

    Dusek, J.

    1996-01-01

    On 13 October 1995, startup tests following refueling outage were in progress at Unit 4 of the plant. As a part of the tests, with reactor at 23% power, the neutron flux monitoring system was being checked on its output signal to the reactor power control system. When output signals from the neutron flux monitoring system to reactor protection train 2 were being tested, an operations staff member assisting with the tests inadvertently returned the reactor protection system train 2 from a ''Test'' mode into an ''Operation'' mode. As an overpower signal had been simulated into the tested train before, the reactor scram signal was formed. Due to subsequent power reduction, however, the overpower signal ceased and since the I and C technical immediately managed to recover power supply to control rod drives, the fall of control rods into the core stopped. Several seconds later, an emergency reactor period signal caused the reactor scram signal to actuate again. In the same way like previously, the control rod drive power supply was recovered and the control rods were halted second time, before they reached their lower end stops

  15. Operational safety performance indicator system at the Dukovany Nuclear Power Plant - Experience with indicator aggregation

    International Nuclear Information System (INIS)

    Mandula, J.

    2001-01-01

    The operational safety performance indicators serve as an important tool of performance monitoring and management at the Dukovany NPP. A software-supported system has been developed, which has included: data collection, central data storage, graphic output production and periodical report generation. Analyses of performance indicator trends together with evaluation in respect of annually updated target values and acceptance criteria are used for operational safety reviews forming an integral part of continual self-assessment process. This contribution has been focused on experience obtained during development of the operational safety assessment model using indicator aggregation. It summarises problems that had to be paid specific attention in the development process. Thanks to their solution, the model has become a synoptic monitor and a useful tool for operational safety assessment. (author)

  16. Determination of chemical forms of 14C in liquid discharges from nuclear power plants.

    Science.gov (United States)

    Svetlik, I; Fejgl, M; Povinec, P P; Kořínková, T; Tomášková, L; Pospíchal, J; Kurfiřt, M; Striegler, R; Kaufmanová, M

    2017-10-01

    Developments of radioanalytical methods for determination of radiocarbon in wastewaters from nuclear power plants (NPP) with pressurized light water reactors, which would distinguish between the dissolved organic and inorganic forms have been carried out. After preliminary tests, the method was used to process pilot samples from wastewater outlets from the Temelín and Dukovany NPPs (Czech Republic). The results of analysis of pilot water samples collected in 2015 indicate that the instantaneous 14 C releases into the water streams would be about 7.10 -5 (Temelín) and 4.10 -6 (Dukovany) of the total quantity of the 14 C liberated into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  18. QA/QC - Practices and procedures in WWER fuel management

    International Nuclear Information System (INIS)

    Keselica, M.

    1999-01-01

    Construction time schedule and commissioning (unit by unit) of the NPP Dukovany as well as structure of electricity generation in the CEZ in 1998 are reviewed. History of QA/QC system establishment and rules (system standards) as well as organization chart of the NPP Dukovany and quality manual of reactor physics department are presented. Standards of worker's qualification and nuclear fuel inspections are discussed. Fuel reliability indicators are presented

  19. A methodology of selection of exercises for operator training on a control room simulator and its application to the data bank of exercises at the Dukovany NPP

    International Nuclear Information System (INIS)

    Holy, J.

    2005-07-01

    The report describes the preparation of methodology for the selection of scenarios to be used during operator training on a full-scope simulator. The scenarios are selected from a data bank of scenarios, which is under preparation based on feedback from the operational history and theoretical analyses. The new methodology takes into account 3 basic attributes defining the priority for use within the training programme: frequency of occurrence, safety-related significance, and difficulty. The attributes are scored and based on a joint score, the importance of inclusion of the scenario in the training programme is also scored. The methodology was applied to the data bank of scenarios for simulation of abnormal states and incidents trained on the up-to-date simulator of the Dukovany NPP, and the results of this pilot application were made available to Dukovany operator training staff as a tool for the preparation of training plans for the years to come. The results of a PSA study are used for a non-trivial selection of the scenarios

  20. Factors contribution to the reduction of occupational exposures at Dukovany NPP

    International Nuclear Information System (INIS)

    Petrova, K.; Urbancik, L.; Fuchsova, D.; Kulich, V.

    2008-01-01

    This paper describes the causes of achieving such low collective doses and the ways used for a further optimization process reducing occupational exposure at the Dukovany NPP from the beginning of operation up to now. The objective of this contribution is to explain the approaches leading to reduced occupational radiation exposure, measures which have been implemented and what is needed for the maintenance of excellent results in the future. It is possible to identify three main areas and eight main sources affecting collective dose values. There are one objective and two specific causes for low exposures: 1. Objective cause: - General arrangement; - Structural materials; - Fuel integrity. 2. Specific cause influenced by the state regulation: - Legislative support; - Operational safety culture; - Well-though tout system of radiological monitoring; - Effective radiological event feedback; - Effective education and training. 3. Specific cause uninfluenced by the state regulation: - Modified water chemistry of the primary circuit adopted by the licensee; - Licensee's system of radiation work debriefing. All the items specified above contribute to a unique concurrence of circumstances leading to the constantly low occupational exposures at the Czech nuclear power plants. The paper discusses all factors involved in these good results. (authors)

  1. G4-STORK: A Geant4-based Monte Carlo reactor kinetics simulation code

    International Nuclear Information System (INIS)

    Russell, Liam; Buijs, Adriaan; Jonkmans, Guy

    2014-01-01

    Highlights: • G4-STORK is a new, time-dependent, Monte Carlo code for reactor physics applications. • G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. • G4-STORK was designed to simulate short-term fluctuations in reactor cores. • G4-STORK is well suited for simulating sub- and supercritical assemblies. • G4-STORK was verified through comparisons with DRAGON and MCNP. - Abstract: In this paper we introduce G4-STORK (Geant4 STOchastic Reactor Kinetics), a new, time-dependent, Monte Carlo particle tracking code for reactor physics applications. G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. The toolkit provides the fundamental physics models and particle tracking algorithms that track each particle in space and time. It is a framework for further development (e.g. for projects such as G4-STORK). G4-STORK derives reactor physics parameters (e.g. k eff ) from the continuous evolution of a population of neutrons in space and time in the given simulation geometry. In this paper we detail the major additions to the Geant4 toolkit that were necessary to create G4-STORK. These include a renormalization process that maintains a manageable number of neutrons in the simulation even in very sub- or supercritical systems, scoring processes (e.g. recording fission locations, total neutrons produced and lost, etc.) that allow G4-STORK to calculate the reactor physics parameters, and dynamic simulation geometries that can change over the course of simulation to illicit reactor kinetics responses (e.g. fuel temperature reactivity feedback). The additions are verified through simple simulations and code-to-code comparisons with established reactor physics codes such as DRAGON and MCNP. Additionally, G4-STORK was developed to run a single simulation in parallel over many processors using MPI (Message Passing Interface) pipes

  2. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  3. Tests of cooling water pumps at Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Travnicek, J.

    1986-01-01

    Tests were performed to examine the operating conditions of the 1600 BQDV cooling pumps of the main coolant circuit of unit 1 of the Dukovany nuclear power plant. For the pumps, the performance was tested in the permissible operating range, points were measured below this range and the guaranteed operating point was verified. Pump efficiency was calculated from the measured values. The discussion of the measurement of parameters has not yet been finished because the obtained values of the amount delivered and thus of the pump efficiency were not up to expectation in all detail. It was also found that for obtaining the guaranteed flow the pump impeller had to be opened to 5deg -5.5deg instead of the declared 3deg. Also tested were pump transients, including the start of the pump, its stop, the operation and failure of one of the two pumps. In these tests, pressures were also measured at the inlet and the outlet of the inner part of the TG 11 turbine condenser. It was shown that the time course and the pressure course of the processes were acceptable. In addition to these tests, pressure losses in the condenser and the cooling water flow through the feed pump electromotor cooler wre tested for the case of a failure of one of the two pumps. (E.S.)

  4. Status of the PSA use in the Czech regulatory process

    International Nuclear Information System (INIS)

    Dusek, J.

    1994-01-01

    A review of previous probabilistic safety assessment (PSA) activities initiated by regulatory body and preparation of the preliminary PSA study and final PSA study (released in January 1994) for the nuclear power plant Dukovany with WWER-440 type 213 reactor is described. A brief information about the NPP Temelin (with WWER-1000) PSA Study, shutdown and PSA risk monitor current activities for the NPP Dukovany, next PSA activities in 1994 and about planned PSA activities in future is attached. (author). 21 refs

  5. National report on 'stress tests', NPP Dukovany and NPP Temelin, Czech Republic. Evaluation of safety and safety margins in the light of the accident of the NPP Fukushima. Rev. 1

    International Nuclear Information System (INIS)

    2012-03-01

    The stress tests were performed based on European Commission requirement as a response to the Fukushima-Daiichi accident. The stress tests encompassed the Dukovany and Temelin nuclear power plants and concentrated on the potential impacts of earthquakes, flooding, extreme weather conditions, loss of electrical power and loss of ultimate heat sink, and severe accident management. (P.A.)

  6. Monitoring of operational reliability of safety-related I and C subsystems at the Dukovany NPP

    International Nuclear Information System (INIS)

    Fuchs, P.; Sagl, P.; Zlamal, P.

    2007-01-01

    First, the situation existing in the data base in 1999, i.e. before the monitoring and the operational reliability monitoring concept were introduced, is highlighted. The technique of data processing is described with focus on the assessment of the relevancy of the records, component failure rate monitoring, estimation of basic statistical parameters, evaluation of the feasibility of component failure (or failure latency) detection, assessment of the mean time to repair, FMEA of the basic components (relays end measuring chains) to establish spurious signals and dangerous failure ratio. The reliability assessment of the system functions is based on structural reliability calculations (common cause failures not included). The outcomes from the operational reliability monitoring are presented in the form of a representative set of data, graphic charts and results of system function reliability assessment. Prospects for upgrading the I and C operational reliability monitoring system to the benefit of NPP Dukovany operating economy (life cycle costs evaluation, spare parts planning, RCM application) are outlined. (author)

  7. JENDL-4.0 benchmarking for fission reactor applications

    International Nuclear Information System (INIS)

    Chiba, Go; Okumura, Keisuke; Sugino, Kazuteru; Nagaya, Yasunobu; Yokoyama, Kenji; Kugo, Teruhiko; Ishikawa, Makoto; Okajima, Shigeaki

    2011-01-01

    Benchmark testing for the newly developed Japanese evaluated nuclear data library JENDL-4.0 is carried out by using a huge amount of integral data. Benchmark calculations are performed with a continuous-energy Monte Carlo code and with the deterministic procedure, which has been developed for fast reactor analyses in Japan. Through the present benchmark testing using a wide range of benchmark data, significant improvement in the performance of JENDL-4.0 for fission reactor applications is clearly demonstrated in comparison with the former library JENDL-3.3. Much more accurate and reliable prediction for neutronic parameters for both thermal and fast reactors becomes possible by using the library JENDL-4.0. (author)

  8. Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Cecen, Y.

    2001-01-01

    In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)

  9. Testing the algorithms for automatic identification of errors on the measured quantities of the nuclear power plant. Verification tests

    International Nuclear Information System (INIS)

    Svatek, J.

    1999-12-01

    During the development and implementation of supporting software for the control room and emergency control centre at the Dukovany nuclear power plant it appeared necessary to validate the input quantities in order to assure operating reliability of the software tools. Therefore, the development of software for validation of the measured quantities of the plant data sources was initiated, and the software had to be debugged and verified. The report contains the proposal for and description of the verification tests for testing the algorithms of automatic identification of errors on the observed quantities of the NPP by means of homemade validation software. In particular, the algorithms treated serve the validation of the hot leg temperature at primary circuit loop no. 2 or 4 at the Dukovany-2 reactor unit using data from the URAN and VK3 information systems, recorded during 3 different days. (author)

  10. Chernobyl: recovery operations and the entombment of Reactor 4

    International Nuclear Information System (INIS)

    Dalziel, S.P.C.

    1988-01-01

    The immediate actions taken following the accident at the Chernobyl-number 4 reactor in April 1986 are described. These included actions to put out the fires, initial medical aid and the dropping of sand, lead, dolomite and boron onto the reactor from helicopters. Following this the chamber below the damaged reactor core was filled with concrete to prevent any further explosions or meltdown. The reactor was subsequently entombed in steel and concrete. The evacuation of the surrounding area is also mentioned. (U.K.)

  11. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  12. An integral metallic-fueled and lead-cooled reactor concept for the 4th generation reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Nascimento, Jamil Alves do

    2002-01-01

    An Integral Lead Reactor (ILR) concept is proposed for the 4th generation reactor to be used in the future. The ILR is loaded with metallic fuel and cooled by lead. It was evaluated in the 300-1500 MWe power range with the Japanese Fast Set 2 cross sections library. This set was tested against several fast benchmarks and the criticality uncertainty was found to be 0.51 %Δk. The reactor is started with U-Zr and changes to the U-TRU-Zr-RE fuel in a stepwise way. In the equilibrium cycle, the burnup reactivity is less than β eff for a core of the order of 300 MWe, pin diameter of 10.4 mm and a pin-pinch to diameter ratio of 1.308. The lead void reactivity is negative for reactor power less than 750 MWe. There is a need to improve the nuclear data for the major actinides. (author)

  13. An integral metallic-fueled and lead-cooled reactor concept for the 4th generation reactor

    International Nuclear Information System (INIS)

    Santos, A. dos; Nascimento, J.A. do

    2002-01-01

    An Integral Lead Reactor (ILR) concept is proposed for the 4th generation reactor to be used in the future. The ILR is loaded with metallic fuel and cooled by lead. It was evaluated in the 300-1500 MWe power range with the Japanese Fast Set 2 cross sections library. This set was tested against several fast benchmarks and the criticality uncertainty was found to be 0.51 % Δk. The reactor is started with U-Zr and changes to the U-TRU-Zr-RE fuel in a stepwise way. In the equilibrium cycle, the burnup reactivity is less than β eff for a core of the order of 300 MWe, pin diameter of 10.4 mm and a pin-pitch to diameter ratio of 1.308. The lead void reactivity is negative for reactor power less than 750 MWe. There is a need to improve the nuclear data for the major actinides. (author)

  14. Nuclear energy. The innovations of the N4 reactor

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The coupling to the electric network of the two first units of N4 type reactors, on the site of Chooz in the Ardennes, marks the third great step of the French nuclear programme of PWR type reactors, after the realization of 34 units of 900 MWe and 20 units of 1300 M We. The nuclear boiler N4, realizes a new evolution in power, in performances and in reliability. (N.C.)

  15. Depleted Reactor Analysis With MCNP-4B

    International Nuclear Information System (INIS)

    Caner, M.; Silverman, L.; Bettan, M.

    2004-01-01

    Monte Carlo neutronics calculations are mostly done for fresh reactor cores. There is today an ongoing activity in the development of Monte Carlo plus burnup code systems made possible by the fast gains in computer processor speeds. In this work we investigate the use of MCNP-4B for the calculation of a depleted core of the Soreq reactor (IRR-1). The number densities as function of burnup were taken from the WIMS-D/4 cell code calculations. This particular code coupling has been implemented before. The Monte Carlo code MCNP-4B calculates the coupled transport of neutrons and photons for complicated geometries. We have done neutronics calculations of the IRR-1 core with the WIMS and CITATION codes in the past Also, we have developed an MCNP model of the IRR-1 standard fuel for a criticality safety calculation of a spent fuel storage pool

  16. Validation of SCALE4.4a for Calculation of Xe-Sm Transients After a Scram of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2007-01-01

    The aim of this report is to validate the computational modules system SCALE4.4a for evaluation of reactivity changes, macroscopic absorption cross sections and calculations of the positions of the Control Rods during their motion in Xe-Sm transient after a scram of the BR-2 reactor. The rapid shutting down of the reactor by inserting of negative reactivity by the Control Rods is known as a reactor scram. Following reactor scram, a large xenon and samarium buildup occur in the reactor, which may appreciably affect the multiplication factor of the core due to enormous neutron absorption. The validation of the calculations of Xe-Sm transients by SCALE4.4a has been performed on the measurements of the positions of the Control Rods during their motion in Xe-Sm transients of the BR-2 reactor and on comparison with the calculations by the standard procedure XESM, developed at the BR-2 reactor. A final conclusion is made that the SCALE4.4a modules system can be used for evaluation of Xe-Sm transients of the BR-2 reactor. The utilization of the code is simple, the computational time takes from few seconds.

  17. A basic design of SR4 instrumentation and control system for research reactor

    International Nuclear Information System (INIS)

    Syahrudin Yusuf; M Subhan; Ikhsan Shobari; Sutomo Budihardjo

    2010-01-01

    An SR4 instrumentation and control systems of research reactor is the equipment of nuclear research reactors as power protection devices and control systems. The equipment is to monitor safety parameters and process parameters in the state of reactor shut down, start-up, and in operation at fixed power. In the engineering of Instrumentation and control systems SR4 research reactor, its basic design consists of technical specifications of the reactor protection system devices, technical specifications of the reactor power control system devices, technical specifications information system devices, and systems process termination cabling as a support system. This basic design is used as the basis for the preparation of detailed design and subsequent engineering development of instrumentation systems and control system integrated. (author)

  18. Reactor power cutback system test experience at YGN 4

    International Nuclear Information System (INIS)

    Chi, Sung Goo; Kim, Se Chang; Seo, Jong Tae; Eom, Young Meen; Wook, Jeong Dae; Choi, Young Boo

    1995-01-01

    YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor POwer Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/ Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems

  19. The experience from operation of electronic personal dosimetry system at Dukovany, Temelin and Mochovce NPPs after repair of Siemens dosemeters eliminating false doses

    International Nuclear Information System (INIS)

    Malysak, J.; Kocvara, S.; Jurochova, B.; Zelenka, Z.; Schacherl, M.; Zrubec, M.; Kaiser, H.

    2003-01-01

    This presentation summarizes the operational experience of the Electronic Personal Dosimetry Systems installed at Dukovany, Temelin and Mochovce NPPs. The system consists of three basic parts: Electronic personal dosemeters (EPD); Physical layer (HW); Logical layer (SW). Number of false doses before and after correction is presented. This presentation has demonstrated the possibilities of SEOD system and the possibility of easy dose comparison between the individual NPPs after introducing this electronic dosimetry system. Basically, the results of film and electronic dosimetry systems are according to our findings nearly identical. Electronic dosemeter sensitivity to interfering electromagnetic fields is a problem which is easily re-movable. In addition, if we know this problem, these false doses in the SEOD system can be easily revealed (e.g. by investigation of histograms) and repaired

  20. Some causes of vibrations recorded by in-service diagnostic systems in steam generators of units 1 and 2 of Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Sadilek, J.; Matal, O.

    1989-01-01

    A brief description is presented of the design of the steam generators of the first and second units of the Dukovany nuclear power plant. Attention is also given to the feed water systems and the diagnostic systems. The causes are analyzed of the irregularly occurring vibrations in the steam generators in service. It is demonstrated that the source of the vibrations transmitted to the steam generators are the valves in the feeding tract. The vibrations are induced by dynamic forces from the feed water. Reducing the water pressure at the delivery of the electric feed pumps by reducing the size of the rotor, etc., does not remove all vibrations. It is therefore recommended that valves be ins+alled with better regulating characteristics. (Z.M.). 6 figs., 1 tab., 3 refs

  1. Early detection of power system disturbances as a condition for safe operation of the Dukovany NPP in the 'Island operation mode'

    International Nuclear Information System (INIS)

    Petruzela, I.

    1997-01-01

    The ''Frequency Plan'' worked out for the Czech Power System specifies a set of preventive measures along with the set of the frequency ranges. This problem was solved in details for the Dukovany nuclear power plant. The design changes under preparation support a reliable as well as safe operation in the island-operation mode until a full restoration of the whole power system. The design modifications are based on the following three main innovations: An incorporation of the FREA 16 frequency relay into the protection circuits; large modifications in turbine control loops; installation of software routine for the operator to support the island operation mode. The capability of the island operation has been demanded by relevant regulations both for the operating units and for that under construction. The capability can be tested under the transition to houseloads, as well as through the direct simulation of abnormal grid conditions. 1 fig

  2. Thermal and fast reactor benchmark testing of ENDF/B-6.4

    International Nuclear Information System (INIS)

    Liu Guisheng

    1999-01-01

    The benchmark testing for B-6.4 was done with the same benchmark experiments and calculating method as for B-6.2. The effective multiplication factors k eff , central reaction rate ratios of fast assemblies and lattice cell reaction rate ratios of thermal lattice cell assemblies were calculated and compared with testing results of B-6.2 and CENDL-2. It is obvious that 238 U data files are most important for the calculations of large fast reactors and lattice thermal reactors. However, 238 U data in the new version of ENDF/B-6 have not been renewed. Only data of 235 U, 27 Al, 14 N and 2 D have been renewed in ENDF/B-6.4. Therefor, it will be shown that the thermal reactor benchmark testing results are remarkably improved and the fast reactor benchmark testing results are not improved

  3. Dynamical model of computation of the rhodium self-powered neutron detector current

    International Nuclear Information System (INIS)

    Erben, O.; Slovacek, M.; Zerola, L.

    1992-01-01

    A model is presented for the calculation of the rhodium self-powered neutron detector current in dependence on the neutron flux density during reactor core transients. The total signal consists of a beta emission, prompt, and gamma component and a background signal. The model has been verified by means of experimental data obtained during measurements on the LVR-15 research reactor and at the Dukovany nuclear power plant. (author) 9 figs., 21 refs

  4. Application of WIMSD-4 for ''MARIA'' reactor lattice calculations

    International Nuclear Information System (INIS)

    Andrzejewski, K.; Kulikowska, T.

    1993-12-01

    A general description of the WIMSD-4 lattice code is given with the emphasis on available geometrical models. The difficulties encountered while modelling reactor lattices with the tubular type fuel elements are explained. Then the analysis of code options allowing to overcome these difficulties is carried out. Eventually, recommendations of options and input parameters for calculations of MARIA reactor lattice with satisfactory accuracy are given. During the work a set of modifications had to be introduced leading to a new code version called WIMS-S. Another version, under the name WIMS-T has been developed to allow for burnup calculations of the MARIA reactor lattice with improved resonance approach. (author). 14 refs, 6 figs, 10 tabs

  5. SCORPIO-VVER core monitoring and surveillance system with advanced capabilities

    International Nuclear Information System (INIS)

    Molnar, J.; Vocka, R.

    2010-01-01

    In this work authors present 12 years of operation experience of core monitoring and surveillance system with advanced capabilities on nuclear power plants on 6 unit of VVER-440 type of reactors at two different NPPs. The original version of the SCORPIO (Surveillance of reactor CORe by PIcture On-line display) system was developed for the western type of PWR reactors. The first version of the SCORPIO-VVER Core Monitoring System for Dukovany NPP (VVER-440 type of reactor, Czech Republic) was developed in 1998. For SCORPIO-VVER implementation at Bohunice NPP in Slovakia (2001) the system was enhanced with startup module KRITEX.

  6. Total β-activity and the content of most important artificial radionuclides in tissues of fishes from the Jihlava river basin

    International Nuclear Information System (INIS)

    Wohlgemuth, E.; Penaz, M.

    1987-01-01

    The radioactivity of body tissues of fishes that inhabit some typical waterbodies situated in the vicinity of the Dukovany nuclear power plant, namely the Jihlava river, Dalesice water reservoir and Olesna creek, was investigated during 1982-1983. The total β-activity and the content of 90 Sr and 137 Cs isotopes were studied. The values found were very low and comparable to those existing in most non-contaminated waters. The results obtained characterize the period prior to the start of operation of the first reactor of the Dukovany nuclear power plant and thus concern the initial state of the radioactive background of those aquatic ecosystems that may be influenced by the nuclear power plant operation and liquid wastes in the near future. (author). 2 tabs., 45 refs

  7. On disruption of reactor core of the Chernobylsk-4 reactor (retrospective analysis of experiments and facts)

    International Nuclear Information System (INIS)

    Platonov, P.A.

    2007-01-01

    Fragments of graphite blocks from the damaged Chernobyl NPP, unit 4 are studied, the results are analyzed. The temperature of the graphite blocks at the moment of accident release from the reactor is evaluated. Results of studying the fragments of fuel channel and fuel dispersion are considered. The fuel heat content at the moment of the explosion is evaluated and some conclusions are made about the character of the reactor core destruction [ru

  8. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    Science.gov (United States)

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  9. Experiment operations plan for the MT-4 experiment in the NRU reactor

    International Nuclear Information System (INIS)

    Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

    1983-06-01

    A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700 0 F)

  10. Fast breeder reactors--lecture 4

    International Nuclear Information System (INIS)

    Marshall, W.; Davies, L.M.

    1986-01-01

    This paper discusses the economics of fast breeder reactors. An algebraic background is presented which represents the various views expressed by different nations regarding the cost of fast breeder reactors and their associated fuel cycle services, the timescale by which they might be available, and the simultaneous variations in the price of uranium. Actual presentations made by individual countries in recent discussions serve to verify the general nature of this present discussion. It is assumed that if nuclear power is to make a long term contribution to the needs of the world, the introduction of fast breeder reactors is both essential and necessary

  11. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  12. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    International Nuclear Information System (INIS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ℃). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  13. Operating reactors licensing actions summary. Vol.4, No. 4

    International Nuclear Information System (INIS)

    1984-06-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  14. The 4th surveillance testing for Kori unit 3 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-10-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 3 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 4.983E+18, 1.641E+19, 3.158E+19, and 4.469E+19n/cm{sup 2}, respectively. The bias factor, the ratio of calculation/measurement, was 0.840 for the 1st through 4th testing and the calculational uncertainty, 12% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.362E+19n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.481E+19, 4.209E+19, 5.144E+19 and 5.974E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 3 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 41 tabs. (Author)

  15. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  16. Questions about the reactor accident with Chernobyl-4

    International Nuclear Information System (INIS)

    Heijboer, R.J.

    1986-01-01

    The author presents an inventory of existing information about the Chernobyl-4 accident. Several possible scenarios are described and a comparison is drawn with the Three Mile Island-2 accident. The author concludes that the event is connected to an inherent instability of the RBMK-1000 reactor type. (G.J.P.)

  17. Application of the neutron noise technique for measurement of reactivity for subcritical reactor RA-4

    International Nuclear Information System (INIS)

    Orso, J; Marenzana, A

    2012-01-01

    Reactor core RA-4 is divided into two parts that come together to start reactor. The reactor with core separate has the largest subcritical condition, this condition is more secure and therefore the reactor shutdown. In this paper measurements are made of the decay constant of the neutron prompt ' P ', using the α-Rossi and α-Feynman methods to calculate the reactivity of the reactor core for different positions. Both techniques are compared and reactivity is obtained for several position of the reactor core using the α-Rossi technical which is obtained a function that gives the reactivity depending on the separation of the core length. Both techniques are verified using a no multiplicative system. Reactivity values for different position of the core obtained by α-Rossi technique are: $[0 cm] = (-11+/-1) dollar, $[3 cm] = (-7+/-1) dollar, $[3.5 cm] (-5.5+/-0.8) dollar, $[4.2 cm] = (-3.8+/-0.3) dollar y $[4.5] = (-3.0+/-0.1) dollar (author)

  18. Czech safety concept: 2013 state of the art

    International Nuclear Information System (INIS)

    Vokal, Antonin; Slovak, Jiri

    2014-01-01

    The Czech Republic operates four WWER 440 reactors (Dukovany) and two WWER 1000 reactors (Temelin). The four 440 MW Dukovany units were installed and began operation during the period 1985-1988. The two WWER 1000 reactors at Temelin started operation in 2002 and 2003. Currently, more than 8000 SF assemblies from WWER 440 reactors and 900 spent assemblies from WWER 1000 reactors spent fuel assemblies are stored in dry storage facilities located in the area of both NPP in approved casks or in pools at reactor sites. More than 4 000 assemblies are expected to be spent by 2025 at Dukovany reactors and 4 600 assemblies by 2042 at Temelin reactors. The multi-billion Euro contract to build two new nuclear reactors at the current site of Temelin with the option for an additional one in Dukovany has recently been launched in the Czech Republic. It is expected that more than 8 000 fuel assemblies would be spent in the three new nuclear reactors in the Czech Republic during their 60 years of electricity production. The basic reference plan is to directly dispose of all of the spent fuel assemblies in a deep geological repository (DGR), starting operation not earlier than in 2065. The DGR is planned to be located in granite host rock, because no other type of host rock in sufficient volume is available in the Czech Republic. Currently seven candidate sites for DGR suitable for geological disposal of SF assemblies have been selected, but due to negative community attitudes at the notion of have a repository in their backyard, they are still awaiting a detailed geological survey. According to proposed reference designs, SF assemblies should be in steel-based canisters emplaced in vertical or horizontal boreholes in granite host rock at approximately 500 m under the surface and surrounded by compacted bentonite. The Czech safety concept is based on the KBS-3 concept developed in Sweden. The Swedish concept is primarily based on almost thermodynamic stability of copper overpack in

  19. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    International Nuclear Information System (INIS)

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility

  20. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  1. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2000-01-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k eff values within about 1% Δk/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models

  2. Summary of the 4th workshop on the reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  3. Plant life time management for safe long term operation

    International Nuclear Information System (INIS)

    Burket, Danes

    2010-01-01

    The topics discussed include LTO (long-term operation) and licensing procedure in general and specifically for the Dukovany NPP, components of an LTO programme, the PLIM (plant life management) concept for Dukovany and Temelin, the LTO implementation project for Dukovany, LTO strategy, LTO risk study, international verification. The Conclusions include the following items: (i) Technical-economic study of Dukovany NPP LTO demonstrates technical feasibility and economic profitability of Dukovany NPP LTO with perspective for up to 60 years of operation. (ii) Safety part of Program for assurance of Dukovany NPP LTO complies with IAEA SALTO recommendations. (iii) Dukovany NPP LTO programme incorporated IAEA SALTO Peer Review Mission recommendations. (iv) LTO Implementation Project for 2009-2015 was approved with major targets to renew operational permission and prepare NPP for operation up to 60 years. (v) Preparation of Temelin NPP LTO programme has been started. (P.A.)

  4. Summary of the 4th workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  5. CFD for Nuclear Reactor Safety Applications (CFD4NRS-4) - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    Following the CFD4NRS workshops held in Garching, Germany (Sept. 2006), Grenoble, France (Sep. 2008) and Washington D.C., USA (Sept. 2010), this Workshop is intended to extend the forum created for numerical analysts and experimentalists to exchange information in the application of CFD and CMFD to NRS issues and in guiding nuclear reactor design thinking. The workshop includes single-phase and multi-phase CFD applications, and offers the opportunity to present new experimental data for CFD validation. More emphasis has been given to the experiments, especially on two-phase flow, for advanced CMFD modelling for which sophisticated measurement techniques are required. Understanding of the physics has been depen before starting numerical analysis. Single-phase and multi-phase CFD simulations with a focus on validation were performed in areas such as: single-phase heat transfer, boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These relate to NRS-relevant issues, such as pressurised thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution in containments, thermal striping, etc. The use of systematic error quantification and the application of BPGs were strongly encouraged. Experiments providing data suitable for CFD or CMFD validation were also presented. These included local measurements using multi-sensor probes, laser-based techniques (LDV, PIV or LIF), hot-film/wire anemometry, imaging, or other advanced measuring techniques. There were over 150 registered participants at the CFD4NRS-4 workshop. The programme consisted of 48 technical papers. Of these, 44 were presented orally and 4 as posters. An additional 8 posters related to the OECD/NEA-KAERI sponsored CFD benchmark exercise on turbulent mixing in a rod bundle with spacers (MATiS-H) were presented and a special session was allocated for 6 video presentations. In addition, five keynote lectures were given by distinguished experts. The

  6. 9 CFR 75.4 - Interstate movement of equine infectious anemia reactors and approval of laboratories, diagnostic...

    Science.gov (United States)

    2010-01-01

    ... infectious anemia reactors and approval of laboratories, diagnostic facilities, and research facilities. 75.4... IN HORSES, ASSES, PONIES, MULES, AND ZEBRAS Equine Infectious Anemia (swamp Fever) § 75.4 Interstate movement of equine infectious anemia reactors and approval of laboratories, diagnostic facilities, and...

  7. Distance matters. Assessing socioeconomic impacts of the Dukovany nuclear power plant in the Czech Republic: Local perceptions and statistical evidence

    Directory of Open Access Journals (Sweden)

    Frantál Bohumil

    2016-03-01

    Full Text Available The effect of geographical distance on the extent of socioeconomic impacts of the Dukovany nuclear power plant in the Czech Republic is assessed by combining two different research approaches. First, we survey how people living in municipalities in the vicinity of the power plant perceive impacts on their personal quality of life. Second, we explore the effects of the power plant on regional development by analysing long-term statistical data about the unemployment rate, the share of workers in the energy sector and overall job opportunities in the respective municipalities. The results indicate that the power plant has had significant positive impacts on surrounding communities both as perceived by residents and as evidenced by the statistical data. The level of impacts is, however, significantly influenced by the spatial and social distances of communities and individuals from the power plant. The perception of positive impacts correlates with geographical proximity to the power plant, while the hypothetical distance where positive effects on the quality of life are no longer perceived was estimated at about 15 km. Positive effects are also more likely to be reported by highly educated, young and middle-aged and economically active persons, whose work is connected to the power plant.

  8. Present status of fusion reactor materials, 4

    International Nuclear Information System (INIS)

    Nagasaki, Ryukichi; Shiraishi, Kensuke; Watanabe, Hitoshi; Murakami, Yoshio; Takamura, Saburo

    1982-01-01

    Recently, the design of fusion reactors such as Intor has been carried out, and various properties that fusion reactor materials should have been clarified. In the Japan Atomic Energy Research Institute, the research and development of materials aiming at a tokamak type experimental fusion reactor are in progress. In this paper, the problems, the present status of research and development and the future plan about the surface materials and structural materials for the first wall, blanket materials and magnet materials are explained. The construction of the critical plasma testing facility JT-60 developed by JAERI has progressed smoothly, and the operation is expected in 1985. The research changes from that of plasma physics to that of reactor technology. In tokamak type fusion reactors, high temperature D-T plasma is contained with strong magnetic field in vacuum vessels, and the neutrons produced by nuclear reaction, charged particles diffusing from plasma and neutral particles by charge exchange strike the first wall. The PCA by improving 316 stainless steel is used as the structural material, and TiC coating techniques are developed. As the blanket material, Li 2 O is studied, and superconducting magnets are developed. (Koko, I.)

  9. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    Science.gov (United States)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  10. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo codes for transient reactor analysis

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2013-01-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branch-less collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires the coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3*3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3*3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail. (authors)

  11. Thermal-hydraulic modelling of the SAFARI-1 research reactor using RELAP/SCDAPSIM/MOD3.4

    International Nuclear Information System (INIS)

    Sekhri, Abdelkrim; Graham, Andy; D'Arcy, Alan; Oliver, Melissa

    2008-01-01

    The SAFARI-1 reactor is a tank-in-pool MTR type research reactor operated at a nominal core power of 20 MW. It operates exclusively in the single phase liquid water regime with nominal water and fuel temperatures not exceeding 100 deg. C. RELAP/SCDAPSIM/MOD3.4 is a Best Estimate Code for light water reactors as well as for low pressure transients, as part of the code validation was done against low pressure facilities and research reactor experimental data. The code was used to simulate SAFARI-1 in normal and abnormal operation and validated against the experimental data in the plant and was used extensively in the upgrading of the Safety Analysis Report (SAR) of the reactor. The focus of the following study is the safety analysis of the SAFARI-1 research reactor and describes the thermal hydraulic modelling and analysis approach. Particular emphasis is placed on the modelling detail, the application of the no-boiling rule and predicting the Onset of Nucleate Boiling and Departure from Nucleate Boiling under Loss of Flow conditions. Such an event leads the reactor to switch to a natural convection regime which is an adequate mode to maintain the clad and fuel temperature within the safety margin. It is shown that the RELAP/SCDAPSIM/MOD3.4 model can provide accurate predictions as long as the clad temperature remains below the onset of nucleate boiling temperature and the DNB ratio is greater than 2. The results are very encouraging and the model is shown to be appropriate for the analysis of SAFARI-1 research reactor. (authors)

  12. Calculations of fuel burn-up and radionuclide inventory in the syrian miniature neutron source reactor using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-01-01

    Calculations of the fuel burn up and radionuclide inventory in the Miniature Neutron Source Reactor after 10 years (the reactor core expected life) of the reactor operating time are presented in this paper. The WIMSD4 code is used to generate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnt up and plutonium produced in the reactor core, the concentrations and radioactivities of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core are calculated using the WIMSD4 code as well

  13. Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4

    International Nuclear Information System (INIS)

    Jung, Hyeon-Seong; Oh, Sung-June; Jeong, Jae-Jin; Na, Il-Chai; Chu, Cheun-Ho; Park, Kwon-Pil; Chu, Cheun-Ho

    2015-01-01

    Aluminum alloy was examined as a material of low weight reactor for hydrolysis of NaBH 4 . Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in NaBH 4 solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of NaBH 4 during storage of NaBH 4 solution. Therefore stability of NaBH 4 and corrosion of aluminum should be considered in determining the optimum NaOH concentration. NaBH 4 stability and corrosion rate of aluminum were measured by hydrogen evolution rate. NaBH 4 stability was tested at 20-50 .deg. C and aluminum corrosion was measured at 60-90 .deg. C. The optimum concentration of NaOH was 0.3 wt%, considering both NaBH 4 stability and aluminun corrosion. NaBH 4 hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at 80-90 .deg. C.

  14. Removal of FePO4 and Fe3(PO4)2 crystals on the surface of passive fillers in Fe0/GAC reactor using the acclimated bacteria

    International Nuclear Information System (INIS)

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Wang, Juling; Yang, Jinghui; Li, Huiqiang

    2012-01-01

    Highlights: ► Fe 3 (PO 4 ) 2 and FePO 4 crystals would weaken treatment efficiency of Fe 0 /GAC reactor. ► Fe 3 (PO 4 ) 2 and FePO 4 crystals could be removed by the acclimated bacteria. ► FeS and sulfur in the passive film would be removed by the sulfur-oxidizing bacteria. ► Develop a cost-effective bio-regeneration technology for the passive fillers. - Abstract: As past studies presented, there is obvious defect that the fillers in the Fe 0 /GAC reactor begin to be passive after about 60 d continuous running, although the complicated, toxic and refractory ABS resin wastewater can be pretreated efficiently by the Fe 0 /GAC reactor. During the process, the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film are formed by the reaction between PO 4 3− and Fe 2+ /Fe 3+ . Meanwhile, they obstruct the formation of macroscopic galvanic cells between Fe 0 and GAC, which will lower the wastewater treatment efficiency of Fe 0 /GAC reactor. In this study, in order to remove the Fe 3 (PO 4 ) 2 and FePO 4 crystals on the surface of the passive fillers, the bacteria were acclimated in the passive Fe 0 /GAC reactor. According to the results, it can be concluded that the Fe 3 (PO 4 ) 2 and FePO 4 crystals with high density in the passive film could be decomposed or removed by the joint action between the typical propionic acid type fermentation bacteria and sulfate reducing bacteria (SRB), whereas the PO 4 3− ions from the decomposition of the Fe 3 (PO 4 ) 2 and FePO 4 crystals were released into aqueous solution which would be discharged from the passive Fe 0 /GAC reactor. Furthermore, the remained FeS and sulfur (S) in the passive film also can be decomposed or removed easily by the oxidation of the sulfur-oxidizing bacteria. This study provides some theoretical references for the further study of a cost-effective bio-regeneration technology to solve the passive problems of the fillers in the zero-valent iron (ZVI) or Fe 0 /GAC reactor.

  15. Flux distribution by neutrons semi-conductors detectors during the startup of the EL4 reactor

    International Nuclear Information System (INIS)

    Fuster, S.; Tarabella, A.

    1967-01-01

    The Cea developed neutron semi-conductors detectors which allows a quasi-instantaneous monitoring of neutrons flux distribution, when placed in a reactor during the tests. These detectors have been experimented in the EL4 reactor. The experiment and the results are presented and compared with reference mappings. (A.L.B.)

  16. The different generation of nuclear reactors from Generation-1 to Generation-4

    International Nuclear Information System (INIS)

    Cognet, G.

    2010-01-01

    In this work author deals with the history of the development of nuclear reactors from Generation-1 to Generation-4. The fuel cycle and radioactive waste management as well as major accidents are presented, too.

  17. Temperature and velocity field of coolant at inlet to WWER-440 core - evaluation of experimental data

    International Nuclear Information System (INIS)

    Jirous, F.; Klik, F.; Janeba, B.; Daliba, J.; Delis, J.

    1989-01-01

    Experimentally determined were coolant temperature and velocity fields at the inlet of the WWER-440 reactor core. The accuracy estimate is presented of temperature measurements and the relation is given for determining the resulting measurement error. An estimate is also made of the accuracy of solution of the system of equations for determining coefficients B kn using the method of the least square fit. Coefficients B kn represent the relative contribution of the mass flow of the k-th fuel assembly from the n-th loop and allow the calculation of coolant temperatures at the inlet of the k-th fuel assembly, when coolant temperatures in loops at reactor inlet are known. A comparison is made of the results of measurements on a hydrodynamic model of a WWER-440 reactor with results of measurements made at unit 4 of the Dukovany nuclear power plant. Full agreement was found for 32 model measurements and 6 reactor measurements. It may be assumed that the results of other model measurements obtained for other operating variants will also apply for an actual reactor. Their applicability may, however, only be confirmed by repeating the experiment on other WWER-440 reactors. (Z.M.). 5 figs., 7 refs

  18. Report on the Survey of the Design Review of New Reactor Applications. Volume 4: Reactor Coolant and Associated Systems

    International Nuclear Information System (INIS)

    Downey, Steven; Monninger, John; Nevalainen, Janne; Joyer, Philippe; Koley, Jaharlal; Kawamura, Tomonori; Chung, Yeon-Ki; Haluska, Ladislav; Persic, Andreja; Reierson, Craig; Monninger, John; Choi, Young-Joon; )

    2017-01-01

    At the tenth meeting of the Committee on Nuclear Regulatory Activities (CNRA) Working Group on the Regulation of New Reactors (WGRNR) in March 2013, the Working Group agreed to present the responses to the Second Phase, or Design Phase, of the licensing process survey as a multi-volume text. As such, each report will focus on one of the eleven general technical categories covered in the survey. The general technical categories were selected to conform to the topics covered in the International Atomic Energy Agency (IAEA) Safety Guide GS-G-4.1. This report provides a discussion of the survey responses related to the Reactor Coolant and Associated Systems category. The Reactor Coolant and Associated Systems category includes the following technical topics: overpressure protection, reactor coolant pressure boundary, reactor vessel, and design of the reactor coolant system. For each technical topic, the member countries described the information provided by the applicant, the scope and level of detail of the technical review, the technical basis for granting regulatory authorisation, the skill sets required and the level of effort needed to perform the review. Based on a comparison of the information provided by the member countries in response to the survey, the following observations were made: - Although the description of the information provided by the applicant differs in scope and level of detail among the member countries that provided responses, there are similarities in the information that is required. - All of the technical topics covered in the survey are reviewed in some manner by all of the regulatory authorities that provided responses. - It is common to consider operating experience and lessons learnt from the current fleet during the review process. - The most commonly and consistently identified technical expertise needed to perform design reviews related to this category are mechanical engineering and materials engineering. The complete survey

  19. Nuclear safety evaluation of the VVER 440, Type 213

    International Nuclear Information System (INIS)

    Urbancik, L.

    1997-01-01

    The supervisory activities of the State Office for Nuclear Safety at the Dukovany nuclear power plant are described. No event resulting in an inpermissible radioactivity leak into the environment occurred at the plant in 1996. From among the 76 failures and events having occurred, only 4 were classified as level 1 on the International Nuclear Event Scale. Changes in the technology of radioactive waste bituminization were proposed. The Interim Spent Fuel Storage Facility at the Dukovany site was in test operation in 1996. Selected physical parameters of this facility were monitored. Seven international transports of spent fuel were accomplished in 1996. The dose rates in the surroundings of the Dukovany plant are monitored constantly by a teledosimetric system operated by the nuclear power plant. Periodical sampling and radionuclide activity measurements in the environment are also performed. (M.D.)

  20. Operation and maintenance of nuclear power plant

    International Nuclear Information System (INIS)

    1990-04-01

    The proceedings contain 34 papers, almost all discussing specific problems or the Dukovany nuclear power plant. The major part is devoted to the matters of maintenance, regular and unplanned repairs, decontamination of the steam generator for inspection and repair purposes, various methods of in-service diagnostics. Some papers discuss reactor start-up, safety assurance, unit control and economic aspects. Environmental impacts of the power plant are also tackled. Some special contributions concern corrosion, chemical analysis of the coolant and the diagnostics of electrical equipment. The possibility is discussed of switching WWER reactors to improved fuel cycles with increased fuel burnup. (M.D.). 37 figs., 23 tabs., 47 refs

  1. The effect of microorganisms on asphaltopropylene concrete in a radioactive waste repository. Part 2

    International Nuclear Information System (INIS)

    Hlavackova, I.; Hlavacek, I.; Mara, M.; Wasserbauer, R.

    1993-11-01

    The permeability of asphaltopropylene concrete (APC) was examined after the action of aerobic bacteria and molds, and the changes in its volume, weight and swelling capacity were recorded. APC has been used as a sealing material in low level radioactive waste pits at the Dukovany NPP repository. Results of check-up sampling of microorganisms in the repository are evaluated. Sulphate reducing bacteria, which have been detected in soil near the reactor site, were isolated and their action upon asphaltopropylene (AP) was investigated. The resistance of bitumen layers containing model waste, against the action of aerobic bacteria and molds and against water was also examined. Bitumen samples containing model waste were found to absorb water at low temperatures considerably faster than unfilled bitumen. At elevated temperatures the absorption of water is appreciable, causing high weight losses of the bituminized waste layer due to degradation. The time dependences of the bitumen sample weight at 20 degC and 60 degC in distilled and cement water are given in the Appendix. The results included in the final reports ''Investigation of the effect of microorganisms on asphaltopropylene-based insulating materials employed as sealing in the secondary radioactive waste repository at the Dukovany NPP in relation to the microbial flora present. Bacteria'' and ''Investigation of the impact of biodegradation effects of aerobic and anaerobic microorganisms including molds on asphalt and asphaltopropylene in conditions of the ground repository at the Dukovany NPP'' are also given. (J.B.). 8 tabs., 33 figs

  2. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2008

    International Nuclear Information System (INIS)

    2014-02-01

    JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment and practice in the nuclear reactor training, Irradiation for activation analyses, RI productions, fission tracks etc. In the fiscal year 2008, the research reactor JRR-3 was operated for 7 cycles (cycle operation : 26days/cycle) for utilization sharing of facility. The research reactor JRR-4 was not operated in 2008. Because a crack was found on the weld of the aluminum cladding of a graphite reflector element. JRR-4 has remained shutdown until the reflector elements were replaced. The volume contains 250activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, neutron activation analyses, and others submitted by the users in JAEA and other Organizations. (author)

  3. Safety of research reactors. Topical issues paper no. 4

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.; Ferraz-Bastos, J.L.; Kim, S.C.; Voth, M.; Boeck, H.; Dimeglio, F.; Litai, D.

    2001-01-01

    Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety review of the research reactor facility and to verify compliance with the IAEA Safety Standards. The methods used during an INSARR mission have been collected and analysed. Some of the important issues identified are the following: general ageing of the facility; uncertain status of many research reactors (in extended shutdown); indefinite deferral of return to operation or decommissioning; inadequate regulatory supervision; insufficient systematic (periodic) reassessment of safety; lack of quality assurance (QA) programmes; lack of an international safety convention or arrangement; lack of financial support for safety measures (e.g. safety reassessment, safety upgrading, decommissioning) and utilization; lack of clear utilization programmes; inadequate emergency preparedness; inadequate safety documentation (e.g. safety analysis report, operating rules and procedures, emergency plan); inadequate funding of shutdown reactors; weak safety culture; loss of expertise and corporate memory; loss of information concerning radioactive materials contained in retired experimental devices stored in the facility indefinitely; obsolescence of equipment and lack of spare parts; inadequate training and qualifications of regulators and operators; safety implications of new fuel types. These issues have been addressed by the IAEA Secretariat and the chairman of the International Nuclear Safety Advisory Group (INSAG). INSAG has identified three major safety issues that are: the increasing age of research reactors, the number of research reactors that are not operating anymore but have not been decommissioned, and the number of research reactors in countries that do not have appropriate regulatory authorities. This issue paper discusses the concerns generated by an analysis of the results of INSARR missions and those expressed by INSAG. The

  4. Study of cold neutron sources: Implementation and validation of a complete computation scheme for research reactor using Monte Carlo codes TRIPOLI-4.4 and McStas

    International Nuclear Information System (INIS)

    Campioni, Guillaume; Mounier, Claude

    2006-01-01

    The main goal of the thesis about studies of cold neutrons sources (CNS) in research reactors was to create a complete set of tools to design efficiently CNS. The work raises the problem to run accurate simulations of experimental devices inside reactor reflector valid for parametric studies. On one hand, deterministic codes have reasonable computation times but introduce problems for geometrical description. On the other hand, Monte Carlo codes give the possibility to compute on precise geometry, but need computation times so important that parametric studies are impossible. To decrease this computation time, several developments were made in the Monte Carlo code TRIPOLI-4.4. An uncoupling technique is used to isolate a study zone in the complete reactor geometry. By recording boundary conditions (incoming flux), further simulations can be launched for parametric studies with a computation time reduced by a factor 60 (case of the cold neutron source of the Orphee reactor). The short response time allows to lead parametric studies using Monte Carlo code. Moreover, using biasing methods, the flux can be recorded on the surface of neutrons guides entries (low solid angle) with a further gain of running time. Finally, the implementation of a coupling module between TRIPOLI- 4.4 and the Monte Carlo code McStas for research in condensed matter field gives the possibility to obtain fluxes after transmission through neutrons guides, thus to have the neutron flux received by samples studied by scientists of condensed matter. This set of developments, involving TRIPOLI-4.4 and McStas, represent a complete computation scheme for research reactors: from nuclear core, where neutrons are created, to the exit of neutrons guides, on samples of matter. This complete calculation scheme is tested against ILL4 measurements of flux in cold neutron guides. (authors)

  5. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2009

    International Nuclear Information System (INIS)

    2014-02-01

    JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment in the nuclear reactor training, Practice of Reactor operation, Irradiation for activation analyses, RI productions, fission tracks, etc. In the fiscal year 2009, The research reactor JRR-3 was operated 7 cycles (cycle operation : 26days/cycle) for utilization sharing of the facility. And JRR-4 was operated 6 cycles (daily operation : 24 days). The volume contains 138 activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, prompt gamma-ray analyses, neutron activation analyses, RI productions, and others submitted by the users in JAEA and from other organizations. (author)

  6. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2005

    International Nuclear Information System (INIS)

    2007-03-01

    In the fiscal year 2005, The research reactor JRR-3 was operated 7 cycles (cycle operation : 26days/cycle) for utilization sharing of the facility. And JRR-4 was operated 37 cycles (daily operation : 137 days). JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography. Irradiation for activation analyses, radioisotope (RI) productions, fission tracks. Irradiation test of reactor materials etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT). Prompt gamma-ray analyses. Sensitivity measurement of radiation detectors. Experiment in the nuclear reactor training. Practice of Reactor operation. Irradiation for activation analyses, RI productions, fission tracks etc. The volume contains 100 activity reports, which are categorized into the fields of neutron scattering (9 subcategories), neutron radiography, neutron activation analyses, RI productions, prompt gamma-ray analyses, and others submitted by the users in JAEA and from other organizations. (author)

  7. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2006

    International Nuclear Information System (INIS)

    2009-01-01

    In the fiscal year 2006, the research reactor JRR-3 was operated 7 cycles (cycle operation: 26 days/cycle) for utilization sharing of the facility. And JRR-4 was operated 37 cycles (daily operation: 151 days). JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment in the nuclear reactor training, Practice of Reactor operation, Irradiation for activation analyses, RI productions, fission tracks, etc. The volume contains 294 activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, neutron activation analyses, RI productions, prompt gamma-ray analyses, and others submitted by the users in JAEA and from other organizations. (author)

  8. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-15

    JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment in the nuclear reactor training, Practice of Reactor operation, Irradiation for activation analyses, RI productions, fission tracks, etc. In the fiscal year 2009, The research reactor JRR-3 was operated 7 cycles (cycle operation : 26days/cycle) for utilization sharing of the facility. And JRR-4 was operated 6 cycles (daily operation : 24 days). The volume contains 138 activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, prompt gamma-ray analyses, neutron activation analyses, RI productions, and others submitted by the users in JAEA and from other organizations. (author)

  9. Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyeon-Seong; Oh, Sung-June; Jeong, Jae-Jin; Na, Il-Chai; Chu, Cheun-Ho; Park, Kwon-Pil [Sunchon National University, Suncheon (Korea, Republic of); Chu, Cheun-Ho [ETIS Co, Gimpo (Korea, Republic of)

    2015-12-15

    Aluminum alloy was examined as a material of low weight reactor for hydrolysis of NaBH{sub 4}. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in NaBH{sub 4} solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of NaBH{sub 4} during storage of NaBH{sub 4} solution. Therefore stability of NaBH{sub 4} and corrosion of aluminum should be considered in determining the optimum NaOH concentration. NaBH{sub 4} stability and corrosion rate of aluminum were measured by hydrogen evolution rate. NaBH{sub 4} stability was tested at 20-50 .deg. C and aluminum corrosion was measured at 60-90 .deg. C. The optimum concentration of NaOH was 0.3 wt%, considering both NaBH{sub 4} stability and aluminun corrosion. NaBH{sub 4} hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at 80-90 .deg. C.

  10. Interactions of RuO4(g) with different surfaces in nuclear reactor containments

    International Nuclear Information System (INIS)

    Holm, J.; Glaenneskog, H.; Ekberg, C.

    2008-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium in the form of RuO4 can be released from the nuclear fuel. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. This work has investigated the distribution of RuO4 between an aqueous and gaseous phase in the temperature interval of 20-50 deg. C by on-line measurements with an experimental set-up made of glass. The experiments showed that RuO4 is almost immediately distributed in the aqueous phase after its introduction in the set-up in the entire temperature interval. However, the deposition of ruthenium on the glass surfaces in the system was significant. The speciation of the ruthenium on the glass surfaces was studied by SEM-EDX and ESCA and was determined to be the expected RuO2. Experiments of interactions between gaseous ruthenium tetroxide and the metals aluminium, copper and zinc have been investigated. The metals were treated by RuO4 (g) at room temperature and analyzed with ESCA, SEM and XRD. The analyses show that the black ruthenium deposits on the metal surfaces were RuO2, i.e. the RuO4 (g) has been transformed on the metal surfaces to RuO2(s). The analyses showed also that there was a significant deposition of ruthenium tetroxide especially on the copper and zinc samples. Aluminium has a lower ability to deposit gaseous ruthenium tetroxide than the other metals. The conclusion that can be made from the results is that surfaces in nuclear reactor containments will likely reduce the source term in the case of a severe accident in a nuclear power plant. (au)

  11. Evaluation of Tehran research reactor (TRR) control rod worth using MCNP4C computer code

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser; Hosseini, Seyed Abolfazl

    2010-01-01

    The main objective of reactor control system is to provide a safe reactor starting up, operation and shutting down. Calculation or measurement of precise values of control rod worth is of great importance in Tehran Research Reactor (TRR), considering the fact that they are the only controlling tools in the reactor. In present paper, simulation of TRR in First Operation Cycle (FOC) and in cold and clean core for the calculation of total and integral worth of control nods is reported. MCNP4C computer code has been used for all simulation process. Two method have been used for control rods worth calculation in this paper, namely the direct approach and perturbation method. It is shown that while the direct approach is appropriate for worth calculation of both the shim and the regulating control rods, the perturbation method is just suitable for tiny reactivity changes, i.e. for small initial part of regulating rods. Results of simulation are compared with the reported data in Safety Analysis Report (SAR) of Tehran research reactor and showed satisfactory agreement. (author)

  12. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. FMDP reactor alternative summary report: Volume 4, Evolutionary LWR alternative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] have become surplus to national defense needs both in the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. The purpose of this report is to provide schedule, cost, and technical information that will be used to support the Record of Process (ROD). Following the screening process, DOE/MD via its national laboratories initiated a more detailed analysis activity to further evaluate each of the ten plutonium disposition alternatives that survived the screening process. Three ``Alternative Teams,`` chartered by DOE and comprised of technical experts from across the DOE national laboratory complex, conducted these analyses. One team was chartered for each of the major disposition classes (borehole, immobilization, and reactors). During the last year and a half, the Fissile Materials Disposition Program (FMDP) Reactor Alternative Team (RxAT) has conducted extensive analyses of the cost, schedule, technical maturity, S&S, and other characteristics of reactor-based plutonium disposition. The results of the RxAT`s analyses of the existing LWR, CANDU, and partially complete LWR alternatives are documented in Volumes 1-3 of this report. This document (Volume 4) summarizes the results of these analyses for the ELWR-based plutonium disposition option.

  14. Research reactor utilization. Summary reports of three study group meetings: Irradiation techniques at research reactors, held in Istanbul 15-19 November 1965; Research reactor operation and maintenance problems, held in Caracas 6-10 December 1965; and Research reactor utilization in the Far East, held in Lucas Heights 28 February - 4 March 1966

    International Nuclear Information System (INIS)

    1967-01-01

    The three sections of this book, which are summary reports of three Study Group meetings of the IAEA: Irradiation techniques at research reactors, Istanbul, 15-19 November 1965; Research reactor operation and maintenance problems, Caracas, 6-10 December 1965; and Research reactor utilization in the Far East, Lucas Heights, Australia, 28 February - 4 March 1966. These meetings were the latest in a series designed to promote efficient utilization of research reactors, to disseminate information on advances in techniques, to discuss common problems in reactor operations, and to outline some advanced areas of reactor-based research. (author)

  15. The concept of the sodium cooled small fast reactor 4S and the analyses of the loss of flow events

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Ueda, Nobuyuki; Koga, Tomonari; Matsumiya, Hisato

    2007-01-01

    CRIEPI has been developing the 4S reactor (Super Safe, Small and Simple reactor) for application in dispersed energy supply and multipurpose use, in conjunction with Toshiba Corporation. The 4S is sodium cooled fast reactor and their electrical output has two options of 10MWe and 50MWe. In this paper, 10MWe 4S (4S-10M) was proposed. 4S-10M has some unique features. It employs a burn-up control system with annular reflector in place of the control rod that requires the frequent maintenance service. The core life time of the 4S-10M is 30 years and the fuel transport is not required during core life time. All temperature feedback coefficients are negative during core life time. In the latest design for 4S-10M, a pool and tall type reactor design was selected to reduce the construction cost. Two types of decay heat removal system (Reactor Vessel Auxiliary Cooling System; RVACS, Intermediate Reactor Auxiliary Cooling System; IRACS) using natural convection power were adopted. It is necessary to confirm that these two heat removal system can operate appropriately. The transition analyses were executed by the CERES code to evaluate the design feasibility and the thermal hydraulic characteristics of the 4S-10M. CERES is a multi-dimensional plant dynamics simulation code for liquid metal reactors developed by the CRIEPI. CERES can perform simulations ranging from forced circulation (full/partial power operation) to natural circulation. Components (pumps, IHXs, SGs, pipings, etc.) of the reactor are modeled as one-dimensional. Multi-dimensional plena are connected to such components. Two loss-of-flow accident sequences are considered. In the first case, it is assumed that the primary and the secondary pump were stopped by the total station black out. The reactor shut down system was assumed to be success. This sequence is referred to as the protected loss-of-flow accident (PLOF). In the second case, it is assumed that the reactor shut down systems fail to operate and the

  16. FMDP reactor alternative summary report: Volume 4, Evolutionary LWR alternative

    International Nuclear Information System (INIS)

    1996-09-01

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] have become surplus to national defense needs both in the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES ampersand H) consequences if surplus fissile materials are not properly managed. The purpose of this report is to provide schedule, cost, and technical information that will be used to support the Record of Process (ROD). Following the screening process, DOE/MD via its national laboratories initiated a more detailed analysis activity to further evaluate each of the ten plutonium disposition alternatives that survived the screening process. Three ''Alternative Teams,'' chartered by DOE and comprised of technical experts from across the DOE national laboratory complex, conducted these analyses. One team was chartered for each of the major disposition classes (borehole, immobilization, and reactors). During the last year and a half, the Fissile Materials Disposition Program (FMDP) Reactor Alternative Team (RxAT) has conducted extensive analyses of the cost, schedule, technical maturity, S ampersand S, and other characteristics of reactor-based plutonium disposition. The results of the RxAT's analyses of the existing LWR, CANDU, and partially complete LWR alternatives are documented in Volumes 1-3 of this report. This document (Volume 4) summarizes the results of these analyses for the ELWR-based plutonium disposition option

  17. The EL-4 reactor. Changing of a pressure tube on a test loop

    International Nuclear Information System (INIS)

    Foulquier, H.; Clara, P.

    1964-01-01

    Right from the beginning of the EL-4 project, the research convected with the overall design of the reactor was guided by the various technical specifications resulting from a justifiable concern about the reliability. The external and internal tubes of each layer situated in the reactor block had in particular to be interchangeable. The research alone into the dismantling of the external tube, i.e in fact the pressure tube, justified a certain number of full-scale tests on a model. The tests carried out under relevant conditions on a non-irradiated structure made it possible to define a complete ranger of of positioning and un-positioning sequences at a distance for such a pressure tube. (authors) [fr

  18. Construction of Research Reactors for Gen 3 and Gen 4 Reactors Development

    International Nuclear Information System (INIS)

    Behar, Christophe

    2014-01-01

    Christophe Behar, Director of the Nuclear Energy Division at CEA, detailed the different kind of research reactors and the issues in term of investment, use, side application such as the medical isotopes production

  19. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2007

    International Nuclear Information System (INIS)

    2012-03-01

    In the fiscal year 2007, the research reactor JRR-3 was operated for 7 cycles (cycle operation : 26days/cycle) and the JRR-4 was operated for 92 days. JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment and practice in the nuclear reactor training, Irradiation for activation analyses, RI productions, fission tracks, etc. The volume contains 262 activity reports, which are categorized into the fields of neutron scattering (10 subcategories), neutron radiography, neutron activation analyses, prompt gamma-ray analyses, and others submitted by the users in JAEA and other Organizations. (author)

  20. Canadian supercritical water reactor modeling using G4STORK

    International Nuclear Information System (INIS)

    Ford, W.; Buijs, A.

    2015-01-01

    The Canadian Supercritical Water Reactor design was simulated using G4STORK. The results showed the expected trends but the determined Keff of 1.253±0.001 with a Coolant Void Reactivity (CVR) of -25mk differed greatly from the results achieved using MCNP of Keff=1.2914 and a CVR of -14mk. This discrepancy is partly due to the different data libraries used and the mixing of different temperature libraries in MCNP, but is also likely due to a difference in the physics methodology. Work is ongoing to further clarify reasons for discrepancies and improve the efficiency of the simulation. (author)

  1. Canadian supercritical water reactor modeling using G4STORK

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.; Buijs, A. [McMaster University, Hamilton, ON (Canada)

    2015-07-01

    The Canadian Supercritical Water Reactor design was simulated using G4STORK. The results showed the expected trends but the determined Keff of 1.253±0.001 with a Coolant Void Reactivity (CVR) of -25mk differed greatly from the results achieved using MCNP of Keff=1.2914 and a CVR of -14mk. This discrepancy is partly due to the different data libraries used and the mixing of different temperature libraries in MCNP, but is also likely due to a difference in the physics methodology. Work is ongoing to further clarify reasons for discrepancies and improve the efficiency of the simulation. (author)

  2. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2008-01-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (∼300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F n ) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process

  3. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2012-01-01

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  4. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  5. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  6. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  7. Operating reactors licensing actions summary. Volume 4, No. 9

    International Nuclear Information System (INIS)

    1984-11-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the division of licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  8. Operating reactors licensing actions summary. Vol. 4, No. 2

    International Nuclear Information System (INIS)

    1984-04-01

    This summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  9. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  10. The Chernobyl-4 Reactor and the possible causes of the accident

    International Nuclear Information System (INIS)

    Motte, F.

    1986-01-01

    A description and information about the Chernobyl nuclear reactor is given. Some comparison elements between the RBMK reactor type and GCR, CANDU, SGHWR and Hanford N reactor types are presented. A scenario of the possible causes of the accident is discussed. (A.F.)

  11. Present status of decommissioning in the Musashi Reactor Facility (4)

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Tanzawa, Tomio; Mitsuhashi, Ishi; Morishima, Kayoko; Matsumoto, Tetsuo

    2012-01-01

    The decommissioning of the Musashi reactor was decided in 2003. Permanent shutdown of the reactor and stopping the operational functions were conducted in 2004. Transportation of the spent fuels was finished in 2006. After 2007, the system and equipment stopping the functions were stored as installed in the reactor facility as radioactive wastes. After separating nonradioactive wastes such as concretes from radioactive wastes with a contamination test, stopping the functions of liquid waste management facility was performed with newly installed drainage facility for radioisotope use in 2010. Solid waste management facility was also dismantled and removed in the same way as liquid waste management facility in 2011. Radioactive wastes packed in containers were moved and stored in the reactor facility. (T. Tanaka)

  12. Calculations of fuel burn up and radionuclide inventories in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION codes

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-01-01

    The WIMSD4 code is used to generate the fuel group constants and the infinite multiplication factor as a function of the reactor operating time for 10, 20, and 30 k W operating power levels. The uranium burn up rate and burn up percentage, the amounts of the plutonium isotopes, the concentrations and radioactivities of the fission products and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core are calculated using the WIMSD4 code as well. The CITATION code is used to calculate the changes in the effective multiplication factor of the reactor.(author)

  13. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  14. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  15. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  17. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  18. Nuclear reactor technology progress report, vol. 4

    International Nuclear Information System (INIS)

    1981-01-01

    The works of the Engineering Section, Fast Experimental Reactor Division, are roughly classified into the technologies concerning the reactor core, abnormality monitoring, the plant, purity control and operation planning. In this paper, the activities of the Engineering Section, the operational results of Joyo and the foreign informations on FBRs in this quarter are reported. The second regular inspection carried out successively from the previous quarter was completed, and the fourth cycle operation of Joyo at 75 MW was started. The measurement of CP around the primary system pipings and equipments, the preliminary test of a core flow meter for Monju, and the various characteristic tests were carried out during this period. 2 N reports, 1 SA report and 63 memos were drawn up in this quarter. The test plan to be carried out during the period of the fourth to sixth cycle operations in this last year using the MK-1 core was formed and decided. Various meetings within and outside the division are reported. The data obtained in the operational characteristic test and special test are shown. As the results concerning the reactor technologies, the development of dosimetry techniques, the measurement and analysis of the core characteristics, the measurement of the temperature and flow velocity of coolant at the fuel assembly exit, the system pressure loss in the primary cooling system and others are reported. (Kako, I.)

  19. Proceedings of the 4. CSNI workshop on the chemistry of iodine in reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Guentay, S [ed.; Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    The 4. OECD workshop on the chemistry of iodine in reactor safety was held in Wuerenlingen, Switzerland from June 10th to 12th, 1996. It was organised in collaboration with the Laboratory for Safety and Accident Research of the Paul Scherrer Institute. About seventy experts from fourteen OECD member countries attended the meeting, as well as experts from Latvia and the Commission of the European Communities. Thirty-four papers were presented in five sessions on various aspects of national and international programmes, integral and intermediate-scale experiments, experimental homogeneous phase chemistry, surface processes, thermodynamic and kinetic studies and safety applications. Throughout the meeting, emphasis was placed on detailed and open discussions. The purpose of the workshop was to exchange information on the iodine chemistry and other important fission products relevant to reactor safety, to discuss the status of the open issues identified during the previous workshop held in 1991, to define reactor safety issues and to discuss developments and future plans. (author) figs., tabs., refs.

  20. Proceedings of the 4. CSNI workshop on the chemistry of iodine in reactor safety

    International Nuclear Information System (INIS)

    Guentay, S.

    1996-12-01

    The 4. OECD workshop on the chemistry of iodine in reactor safety was held in Wuerenlingen, Switzerland from June 10th to 12th, 1996. It was organised in collaboration with the Laboratory for Safety and Accident Research of the Paul Scherrer Institute. About seventy experts from fourteen OECD member countries attended the meeting, as well as experts from Latvia and the Commission of the European Communities. Thirty-four papers were presented in five sessions on various aspects of national and international programmes, integral and intermediate-scale experiments, experimental homogeneous phase chemistry, surface processes, thermodynamic and kinetic studies and safety applications. Throughout the meeting, emphasis was placed on detailed and open discussions. The purpose of the workshop was to exchange information on the iodine chemistry and other important fission products relevant to reactor safety, to discuss the status of the open issues identified during the previous workshop held in 1991, to define reactor safety issues and to discuss developments and future plans. (author) figs., tabs., refs

  1. The accident of Chernobylsk-4 reactor and its consequences

    International Nuclear Information System (INIS)

    1986-01-01

    This report deals with the particulars of the accident as communicated by the Soviet delegation at an IAEA meeting by the and of August 1986. It was stated that the consequences emanated from the inherent instability of the design of the reactor, the deviation from the safety rules by the operators and the lack of a sight reactor containment. (G.B.)

  2. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    Science.gov (United States)

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  3. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2007. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Miyazaki, Osamu; Awa, Yasuaki; Isaka, Koji; Kutsukake, Kenichi; Komeda, Masao; Shibata, Ko; Hiyama, Kazuhisa; Suzuki, Mayu; Sone, Takuya; Ohuchi, Tomoaki; Terakado, Yuichi; Sataka, Masao

    2009-06-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor-3), JRR-4(Japan Research Reactor-4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2007 and March 31, 2008. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator. (2) Utilization of research reactors and tandem accelerator. (3) Upgrading of utilization techniques of research reactors and tandem accelerator. (4) Safety administration for research reactors and tandem accelerator. (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, plans and outcomes in service and technical developments and so on. (author)

  4. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2010. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Yamada, Yusuke; Kawashima, Kazuhiro; Asozu, Takuhiro; Nakamura, Takemi; Arai, Masaji; Yoshinari, Shuji; Sataka, Masao

    2012-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2010 and March 31, 2011. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for research reactors and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, outcomes in service and technical developments and so on. (author)

  5. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  6. Comparison of p53 levels in lymphocytes and in blood plasma of nuclear power plant workers

    International Nuclear Information System (INIS)

    Roessner, Pavel; Chvatalova, Irena; Schmuczerova, Jana; Milcova, Alena; Roessner, Pavel; Sram, Radim J.

    2004-01-01

    p53 levels were assessed in lymphocytes and in blood plasma of workers from two Czech nuclear power plants (NPP): 114 subjects working in Temelin and 108 subjects working in Dukovany. Ionizing radiation (IR) exposure data were available for 64 and 59 subjects working in the monitored zones from the NPP in Temelin and Dukovany, respectively. The short-term doses of IR for these subjects were 0.01 and 0.12 mSv, and the long-term doses were 0.46 and 5.68 mSv, in the Temelin and Dukovany NPP, respectively. As a control group, 46 subjects living in Ceske Budejovice, a city nearby the Temelin NPP, were analyzed. The concentration of p53 in lymphocytes was significantly higher in workers from the monitored zone in the Dukovany NPP (median value 6.4 pg/μg protein, P < 0.001) than in workers from the Temelin NPP (3.2 pg/μg) as well as in the control group (3.5 pg/μg). In contrast, plasma levels of p53 were comparable in the control group (median value 116 pg/ml plasma) and workers from the monitored zone of Dukovany NPP (102 pg/ml), but lower in workers from Temelin NPP (5 pg/ml). Other factors affecting p53 levels were studied. Smoking resulted in increased p53 lymphocyte levels. The effect of polymorphisms in metabolic and DNA repair genes on p53 levels was analyzed. The correlation was found between p53 levels in lymphocytes and p53 codon 72 polymorphism in subjects working in NPPs, but not in the control group. The results of measurement p53 levels in lymphocytes suggest that this biomarker could reflect the short-term as well as long-term effects of low doses IR. Its impact on human health should be further explored

  7. Collective occupational dose for nuclear reactors of the 2., 3. and 4. generation

    International Nuclear Information System (INIS)

    Guidez, J.; Saturnin, A.

    2016-01-01

    In France during reactor operation the individual occupational doses are collected and recorded according to the law. When you sum up all the individual doses you get the yearly collective dose expressed in Man.Sv/year. This piece of information can be used to make comparisons between various types of reactors and between reactors of the same type. The results show a steady decrease of the collective dose for all types of reactors over the time except for CANDU reactors for which a slight increase of the dose has appeared since the years 1996-1998. The decrease is due to the continuous improvement of reactor operating and to changes in the reactor design. There is also a constant gap over time between the collective dose for a BWR reactor (1.12 Man.Sv/y) and a PWR reactor 0.60 Man.Sv/y), this gap is certainly due to N 16 nuclide that is created in the primary circuit and transported to turbines in the case of a BWR reactor. For sodium-cooled fast reactors (RNR-Na) the collective dose is below 0.40 Man.Sv/y except for the BN-600 reactor. (A.C.)

  8. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  9. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  10. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  11. Increasing of leak-tightness of hermetic zone and other important components in NPPs

    International Nuclear Information System (INIS)

    Murani, J.

    2001-01-01

    The performed by VUEZ resealing works in the hermetic compartments/containment of WWER 440 and WWER 1000 NPPs in Slovakia (Jaslovske Bohunice V-1 NPP, Jaslovske Bohunice V-2 NPP, Mochovce NPP), the Czech Republic (Dukovany NPP, Temelin NPP) and Hungary (Pask NPP) are presented. The leakage rate from hermetic compartments at individual NPP reactor units are shown.The VUEZ activities in field of resealing of weld joints in pools and tanks in the Jaslovske Bohunice V-1 NPP and innovation of the seal of reactor pit protective hood (kolpak) are described. The principle of operation and practical experience of the SMU-V system implemented in the Jaslovske Bohunice V-1 NPP (WWER 440 - V 230) for NPP primary circuit leakage monitoring are also given

  12. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2011. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Kabumoto, Hiroshi; Nakamura, Takemi; Tamura, Itaru; Kawasaki, Sayuri; Sataka, Masao

    2013-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2011 and March 31, 2012. The activities were categorized into six service/development fields: (1) Recovery from the Great East Japan Earthquake, (2) Operation and maintenance of research reactors and tandem accelerator, (3) Utilization of research reactors and tandem accelerator, (4) Upgrading of utilization techniques of research reactors and tandem accelerator, (5) Safety administration for research reactors and tandem accelerator, (6) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, commendation, outcomes in service and technical developments and so on. (author)

  13. An initial assessment of the Chernobyl-4 reactor accident release source

    International Nuclear Information System (INIS)

    Macdonald, H.F.; ApSimon, H.M.; Wilson, J.J.N.

    1986-07-01

    The long-range atmospheric dispersion model MESOS has been used to provide a preliminary evaluation of the effects over Western Europe of radioactivity released during the accident which occurred at the Chernobyl-4 reactor in the USSR in April 1986. The results of this analysis have been compared with observations during the first week or so following the accident of airborne contamination levels at a range of locations across Europe in order to obtain an estimate of accident release source. The work presented here was performed during the 6-8 weeks following the accident and the results obtained will be subject to refinement as more detailed data become available. However, at this early stage they indicate a release source for the Chernobyl accident, expressed as a fraction of the estimated reactor core inventory, of approx. 15-20% of the iodine and caesium isotopes, approx. 1% of the ruthenium and lesser amounts of the other fission products and actinides, together with an implied major fraction of the krypton and xenon noble gases. (author)

  14. Examination policy concerning the additional installation of No. 3 and No. 4 reactors in Takahama Nuclear Power Station and No. 3 and No. 4 reactors in Fukushima No. 2 Nuclear Power Station

    International Nuclear Information System (INIS)

    1980-01-01

    The Nuclear Safety Commission decided the annual examination policy on the modification of reactor installation in Takahama Nuclear Power Station to construct No. 3 and No. 4 reactors inquired under date of November 26, 1979, by the Minister of International Trade and Industry, so that the examination results of the accident in Three Mile Island nuclear power station are reflected to the examination for the purpose of improving reactor safety. The examination results of the accident in Three Mile Island power station are being investigated by the Committee on Examination of Reactor Safety, based on the policy shown in ''On the second report of the special committee examining the accident in a nuclear power station in the U.S.'' determined by the Nuclear Safety Commission under date of September 13, 1979. Though the Committee will further clarify the past guideline about the items concerning the criteria, design and operation management, the Committee decided the tentative policy to reflect it to safety examination. Further, a table is attached, in which 52 items to be reflected to the security measures are classified from the viewpoint of necessity to reflect them to the final examination. This table includes 13 items of criteria and examination, 7 items related to design, 10 items related to operation management, 10 antidisaster items, and 12 items related to safety research. (Wakatsuki, Y.)

  15. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  16. Four energy group neutron flux distribution in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION code

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2009-01-01

    A 3-D (R, θ , Z) neutronic model for the Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis. The group constants for all the reactor components were generated using the WIMSD4 code. The reactor excess reactivity and the four group neutron flux distributions were calculated using the CITATION code. This model is used in this paper to calculate the point wise four energy group neutron flux distributions in the MNSR versus the radius, angle and reactor axial directions. Good agreement is noticed between the measured and the calculated thermal neutron flux in the inner and the outer irradiation site with relative difference less than 7% and 5% respectively. (author)

  17. Computation code TEP 1 for automated evaluation of technical and economic parameters of operation of WWER-440 nuclear power plant units

    International Nuclear Information System (INIS)

    Zadrazil, J.; Cvan, M.; Strimelsky, V.

    1987-01-01

    The TEP 1 program is used for automated evaluation of the technical and economic parameters of nuclear power plant units with WWER-440 reactors. This is an application program developed by the Research Institute for Nuclear Power Plants in Jaslovske Bohunice for the KOMPLEX-URAN 2M information system, delivered by the USSR to the V-2 nuclear power plants in Jaslovske Bohunice and in Dukovany. The TEP 1 program is written in FORTRAN IV and its operation has two parts. First the evaluation of technical and economic parameters of operation for a calculation interval of 10 mins and second, the control of the calculation procedure, follow-up on input data, determination of technical and economic parameters for a lengthy time interval, and data printout and storage. The TEP 1 program was tested at the first unit of the V-2 power plant and no serious faults appeared in the process of the evaluation of technical and economic parameters. A modification of the TEP 1 programme for the Dukovany nuclear power plant is now being tested on the first unit of the plant. (Z.M.)

  18. Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Subagjo

    2014-07-01

    Full Text Available In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.

  19. Evaluation of the OSCAR-4/MCNP calculation methodology for radioisotope production in the SAFARI-1 reactor

    International Nuclear Information System (INIS)

    Karriem, Z.; Zamonsky, O.M.

    2014-01-01

    The South African Nuclear Energy Corporation SOC Ltd (Necsa) is a state owned nuclear facility which owns and operates SAFARI-1, a 20 MW material testing reactor. SAFARI-1 is a multi-purpose reactor and is used for the production of radioisotopes through in-core sample irradiation. The Radiation and Reactor Theory (RRT) Section of Necsa supports SAFARI-1 operations with nuclear engineering analyses which include core-reload design, core-follow and radiation transport analyses. The primary computer codes that are used for the analyses are the OSCAR-4 nodal diffusion core simulator and the Monte Carlo transport code MCNP. RRT has developed a calculation methodology based on OSCAR-4 and MCNP to simulate the diverse in-core irradiation conditions in SAFARI-1, for the purpose of radioisotope production. In this paper we present the OSCAR-4/MCNP calculation methodology and the software tools that were developed for rapid and reliable construction of MCNP analysis models. The paper will present the application and accuracy of the methodology for the production of yttrium-90 ( 90 Y) and will include comparisons between calculation results and experimental measurements. The paper will also present sensitivity analyses that were performed to determine the effects of control rod bank position, representation of core depletion state and sample loading configuration, on the calculated 90 Y sample activity. (author)

  20. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  1. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    El-Messeiry, A M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs.

  2. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    International Nuclear Information System (INIS)

    El-Messeiry, A.M.

    1996-01-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs

  3. Calculation of the effective delayed neutron fraction by TRIPOLI-4 code for IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Lee, Y.K.; Hugot, F.X.

    2011-01-01

    The effective delayed neutron fraction βeff is an important reactor physics parameter. Its calculation within the multi-group deterministic transport code can be performed with the aid of adjoint flux weighted integrations. However, in continuous energy Monte Carlo transport code, the adjoint weighted βeff calculation becomes complicated due to the backward treatment of the anisotropy scattering. In TRIPOLI-4 continuous energy Monte Carlo code, the βeff calculation was performed by a two-run method, one run with delayed neutrons and second with only the contribution from prompt fission neutrons. To improve the uncertainty of the βeff two-run calculation for the experimental reactors, two simple and fast one-run methods to estimate the βeff in the continuous energy simulation have been implemented into the TRIPOLI-4 code. First approach is an improved one of the Bretscher's prompt method and second one based on the proposal of Nauchi and Kameyama. In these one-run methods, the prompt and the delayed neutrons are first tagged. Their tracking and statistics are separated performed. The new βeff calculations have been optimized in the power iteration cycles so as to estimate the production of prompt and delayed neutrons from the prompt and delayed neutrons of previous generation. To validate the new βeff calculation by TRIPOLI-4, several benchmarks including fast and thermal systems have been considered. In this paper the recent measurements of βeff in the research reactor IPEN/MB-01 have been benchmarked. The basic components of the βeff and the Keff have been also calculated so as to understand the influences of the cross sections and the delayed neutron yields on the reactor reactivity calculations. Three nuclear data libraries, ENDF/BVI.r4, ENDF/B-VII.0, and JEFF-3.1 were taken into account in this study. (author)

  4. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    Dupraz, B.; Bertel, E.

    2003-01-01

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  5. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  6. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2011-01-01

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  7. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    Energy Technology Data Exchange (ETDEWEB)

    Kuscu, Ozlem Selcuk, E-mail: oselcuk@mmf.sdu.edu.tr [Department of Environmental Engineering, Engineering and Architecture Faculty, Sueleyman Demirel University, Cuenuer Campus, 32260 Isparta (Turkey); Sponza, Delia Teresa [Dokuz Eyluel University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar campus, Izmir (Turkey)

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  8. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Technology assessment HTR. Part 4. Power upscaling of High Temperature Reactors

    International Nuclear Information System (INIS)

    Van Heek, A.I.

    1996-06-01

    Designs of nuclear reactors can be classified in evolutionary, revolutionary and innovative designs. An innovative design is the High Temperature Reactor (HTR). Introduction of innovative reactors has not been successful until now. Globally, three requirements for this reactors for successful market introduction can be identified: (1) Societal support for nuclear energy, or if separable, for this reactor type, should be repaired; (2) After market introduction the innovative plant must be able to operate economically competitive; and (3) The costs of market introduction of an innovative reactor design must be limited. Until now all reactor designs classified as innovative have not yet been realized. High temperature reactors exist in many different designs. Common features are: helium coolant, graphite moderator and coated particle fuel. The combination of these creates the potential to fulfill the first requirement (public support), and similarly a hurdle to the second requirement (economical operation). All three problems existing in the eyes of the public are addressed, while a high degree of transparency is reached, making the design understandable also by others than nuclear experts. A consequence of designing according to the social support requirement is a limitation of the unit power level. The usual method to make nuclear power plants economically competitive, i.e. just raising the power level (economy of scale) could not be applied anymore. Therefore other means of cost decreasing had to be used: modularization and simplification. These ideas are explained. Since all existing HTRs are currently out of operation, additional experience from two small HTRs under construction at this moment in the Far East will be essential. In the history of HTR designs, an evolutionary path can be identified. The early designs had a philosophy of safety and economics very similar to those of LWR. Modularization was introduced to attain economic viability and the design was

  10. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  11. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  12. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  13. Problems of creating fuel elements for fast gas-cooled reactors working on N2O4-dissociating coolant

    International Nuclear Information System (INIS)

    Nesterenko, V.B.; Zelensky, V.F.; Kolykhan, L.I.; Karpenko, G.V.; Krasnorutsky, V.S.; Isakov, V.P.; Ashikhmin, V.P.; Permyakov, L.N.

    1985-01-01

    A variant of fast gas-cooled reactors is one using dissociating N 2 O 4 nitrogen tetroxide as a coolant. This type of reactors is promising because of great thermal effects of dissociation reactions while heating and recombination while cooling; small latent heat of evaporation; high heat transfer coefficient owing to additional heat transfer in a chemical reaction; high N 2 O 4 density in a gas state at operation parameters. The mentioned advantages give possibility to create a small turbine, heat exchange apparatus and to get high heat production in the active zone. All this opens new ways to increase power plants effectiveness

  14. Medical aspects of the nuclear accident in the Chernobylsk-4 reactor

    International Nuclear Information System (INIS)

    Arndt, D.; Schmidt, W.

    1989-01-01

    The Kiev conference on the Chernobylsk reactor accident was concerned with the following items: (1) Medical consequences and organization of medical assistance as well as aftercare of radiation-exposed persons. (2) Analysis of the postirradiation situation and judgement of the consequences of the accident as to the USSR population. (3) Peculiarities of external and internal radiation exposure of the population in the area controlled. (4) Organization and efficiency of the epidemiological register of the USSR. (5) Organization and judgement of educational work and public relations concerning the sanitary conditions in populations exposed to an increased contamination

  15. Actions needed for RA reactor exploitation - I-IV, Part II, Design project VI-SA 1, Experimental loop for testing the EL-4 reactor fuel elements in the central vertical experimental channel of the RA reactor in Vinca

    International Nuclear Information System (INIS)

    Novakovic, M.

    1961-12-01

    The objective of installing the VISA-1 loop was testing the fuel elements of the EL-4 reactor. The fuel elements planned for testing are natural UO 2 with beryllium cladding, cooled by CO 2 under nominal pressure of 60 at and temperature 600 deg C. central vertical experimental channel of the RA reactor was chosen for installing a test loop cooled by CO 2 . This report contains the detailed design project of the testing loop with the control system and safety analysis of the planned experiment

  16. Containment leak-tightness enhancement at VVER 440 NPPs

    International Nuclear Information System (INIS)

    Prandorfy, M.

    2001-01-01

    The hermetic compartments of VVER 440 NPPs fulfil the function of the containment used at NPPs all over the word. The purpose of the containment is to protect the NPP personal against radioactive impact as well as to prevent radioactive leakage to the environment during a lost of coolant accident. Leak-tightness enhancement in NPPs with VVER 440/213 and VVER 440/230 reactors is an important safety issue. New procedures, measures and methods were adopted at NPPs in Mochovce, J. Bohunice, Dukovany and Paks for leak identification and sealing works performed by VUEZ Levice. (authors)

  17. Containment leak-tightness enhancement at VVER 440 NPPs

    International Nuclear Information System (INIS)

    Prandorfy, M.

    2000-01-01

    The hermetic compartments of WWER 440 NPPs fulfil the function of the containment used at NPPs all over the world. The purpose of the containment is to protect the NPP personnel against radioactive impact as well as to prevent radioactive leakage to the. environ ent during a lost of coolant accident. Leak-tightness enhancement in NPPs with WWER 440/213 and WWER 440/230 reactors is an important safety issue. New procedures, measures and methods were adopted at NPPs in Mochovce, Jaslovske Bohunice, Dukovany and PAKS for leak identification and sealing works performed by VUEZ Levice. (authors)

  18. Effect of Utilization of Silicide Fuel with the Density 4.8 gU/cc on the Kinetic Parameters of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Setiyanto; Sembiring, Tagor M.; Pinem, Surian

    2007-01-01

    Presently, the RSG-GAS reactor using silicide fuel element of 2.96 gU/cc. For increasing reactor operation time, its planning to change to higher density fuel. The kinetic calculation of silicide core with density 4.8 gU/cc has been carried out, since it has an influence on the reactor operation safety. The calculated kinetic parameters are the effective delayed neutron fraction, the delayed neutron decay constant, prompt neutron lifetime and feedback reactivity coefficient very important for reactor operation safety. the calculation is performed in 2-dimensional neutron diffusion-perturbation method using modified Batan-2DIFF code. The calculation showed that the effective delayed neutron fraction is 7. 03256x10 -03 , total delay neutron time constant is 7.85820x10 -02 s -1 and the prompt neutron lifetime is 55.4900 μs. The result of prompt neutron lifetime smaller 10 % compare with silicide fuel of 4.8 gU/cc. The calculated results showed that all of the feedback reactivity coefficient silicide core 4.8 gU/cc is negative. Totally, the feedback reactivity coefficient of silicide fuel of 4.8 gU/cc is 10% less than that of silicide fuel of 2.96 gU/cc. The results shown that kinetic parameters result decrease compared with the silicide core with density 2.96 gU/cc, but no significant influence in the RSG-GAS reactor operation. (author)

  19. Elements on reactor control

    International Nuclear Information System (INIS)

    Bruna, G.B.

    1998-01-01

    In order to achieve the two-fold goal of maximizing the energy obtained from reactor fuel and ensuring the large flexibility of plant operation in respect to safety regulations and keeping the reactor integrity the control of PWRs is generally based on real time monitoring and analysing of independent neutronic parameters: thermal power release, axial power distribution in the core and temperatures of the primary loop. Two control chains more or less coupled according to the control chosen mode are in charge of the control of these parameters. With the brief history of control in French power reactors the advanced X control mode adopted by Framatome for N4 plants is described in detail. A summary of N4 reactor control and protection system is included

  20. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  1. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  2. 4. generation sodium-cooled fast reactors. The ASTRID technological demonstrator

    International Nuclear Information System (INIS)

    2012-12-01

    The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected by the Generation IV International Forum (GIF). SFRs have favourable technical characteristics and they are the sole type of reactor for which significant industrial experience feedback is available. After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  3. The development of octagon Zr-4 alloy tube for heating reactors

    International Nuclear Information System (INIS)

    Yang Fanglin; Yang Yingli; Wang Guangshen

    1989-10-01

    The asymmetrical octagon Zr-4 alloy tubes which are used for fuel assembly in the heating reactor have been developed. The thickness of tube wall is 1.5 mm and the length is 1725 mm. The long side of the octagon is 138.7 0.3 +0.2 mm, the short side is 93.1 ± 0.1 mm. To manufacture these tubes a stretch draw forming processing method is adopted. The process is divided into two phases. In the first phase, a short draw mould is used to stretch the Zr-4 alloy tube. In the second phase, a long draw mould, its length is equal to the end-produt length, is used to complete the final processing. The size accuracy and repeatability of this method are excellent and can fully meet the design requirements

  4. Annex VII - Diagrams: 1. Reactor operation (1960-1977); 2. Mean daily reactor power density in 1977; 3. Monthly reactor power for 1977; 4. percent of utilization of experimental space in 1977; Prilog VII - Dijagrami: 1. Rad reaktora (MWh) po godinama (1960-1977); 2. Srednja dnevna snaga reaktora u 1977. godini; 3. Rad reaktora (MWh) po mesecima za 1977. godinu i 4. Procenat iskoriscenja eksperimentalnog prostora u 1977. godini

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-15

    This Annex includes the following diagrams: 1. Annual Reactor RA power production (MWh) for the period from 1960-1977; 2. Mean daily reactor power density MW in 1977; 3. Monthly reactor power production (MWh) for 1977; 4. percent of utilization of experimental space in 1977. [Serbo-Croat] Ovaj prilog sadrzi dijagrame: 1. Rad reaktora (MWh) po godinama (1960-1977); 2. Srednja dnevna snaga reaktora u 1977. godini; 3. Rad reaktora (MWh) po mesecima za 1977. godinu i 4. Procenat iskoriscenja eksperimentalnog prostora u 1977. godini.

  5. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2012. Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Murayama, Yoji; Ishii, Tetsuro; Nakamura, Kiyoshi; Uno, Yuki; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Odauchi, Shouji; Maruo, Takeshi

    2014-03-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2012 and March 31, 2013. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for department of research reactor and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, outcomes in service and technical developments and so on. (author)

  6. The molten salt reactor adventure

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1985-01-01

    A personal history of the development of molten salt reactors in the United States is presented. The initial goal was an aircraft propulsion reactor, and a molten fluoride-fueled Aircraft Reactor Experiment was operated at Oak Ridge National Laboratory in 1954. In 1956, the objective shifted to civilian nuclear power, and reactor concepts were developed using a circulating UF 4 -ThF 4 fuel, graphite moderator, and Hastelloy N pressure boundary. The program culminated in the successful operation of the Molten Salt Reactor Experiment in 1965 to 1969. By then the Atomic Energy Commission's goals had shifted to breeder development; the molten salt program supported on-site reprocessing development and study of various reactor arrangements that had potential to breed. Some commercial and foreign interest contributed to the program which, however, was terminated by the government in 1976. The current status of the technology and prospects for revived interest are summarized

  7. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  8. Impact of proposed research reactor standards on reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, J C; Johnson, A G; Anderson, T V [Oregon State University (United States)

    1974-07-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  9. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    Ringle, J.C.; Johnson, A.G.; Anderson, T.V.

    1974-01-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  10. The 4th surveillance test and evaluation of the reactor pressure vessel material (capsule W) of Younggwang nuclear power plant unit1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-08-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Yonggwang site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Yonggwang unit 1 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 5.555E+18, 1.662E+19, 3.358E+19, and 4.521E+19 n/cm{sup 2}, respectively. The bias factor, the ratio of measurement versus calculation, was 0.859 for the 1st through 4th testing and the calculational uncertainty, 11.80% satisfied the requirement of USNRC Reg.Guide 1.190, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.551E+19 n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.929E+19, 4.880E+19, 5.831E+19 and 6.782E+19 n/cm{sup 2} based on the current calculation. The result through this analysis for Yonggwang unit 1 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 4 refs., 41 figs., 35 tabs. (Author)

  11. Management of spent fuel from research reactors - Brazilian progress report (within the framework of Regional Project IAEA-RLA-4/018)

    International Nuclear Information System (INIS)

    Soares, A.J.; Silva, J.E.R.

    2005-01-01

    There are four research reactors in Brazil. For three of them, because of the low reactor power and low burn-up of the fuel, except for the concern about ageing, spent fuel storage is not a problem. However for one of the reactors, more specifically IEA-R1 research reactor, the storage of spent fuel is a major concern, because, according to the proposed operation schedule for the reactor, unless an action is taken, by the year 2009 there will be no more racks available to store its spent fuel. This paper gives a brief description of the type and amount of fuel elements utilized in each one of the Brazilian research reactors, with a short discussion about the storage capacity at each installation. It also gives a description of the activities developed by Brazilian engineers and researchers during the period between 2001 and 2004, within the framework of regional project 'RLA-4/018-Management of Spent Fuel from Research Reactors'. As a conclusion, we can say that the advances of the project, and the integration promoted among the engineers and researchers of the participant countries were of fundamental importance for Brazilian researchers and engineers to understand the problems related to the storage of spent fuel, and to make a clear definition about the most suitable alternatives for interim storage of the spent fuel from IEAR1 research reactor. (author)

  12. What occurred in the reactors

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko

    2013-01-01

    Described is what occurred in the reactors of Fukushima Daiichi Nuclear Power Plant at the Tohoku earthquake and tsunami (Mar. 11, 2011) from the aspect of engineering science. The tsunami attacked the Plant 1 hr after the quake. The Plant had reactors in buildings no.1-4 at 10 m height from the normal sea level which was flooded by 1.5-5.5 m high wave. All reactors in no.1-6 in the Plant were the boiling water type, and their core nuclear reactions were stopped within 3 sec due to the first quake by control rods inserted automatically. Reactors in no.1-5 lost their external AC power sources by the breakdown and subsequent submergence (no.1-4) of various equipments and in no.1, 2 and 4, the secondary DC power was then lost by the battery death. Although the isolation condenser started to cool the reactor in no.1 after DC cut, its valve was then kept closed to heat up the reactor, leading to the reaction of heated Zr in the fuel tube and water to yield H 2 which was accumulated in the building: the cause of hydrogen explosion on 12th. The reactor in no.2 had the reactor core isolation cooling system (RCIC) which operated normally for few hrs, then probably stopped to heat up the reactor, resulting in meltdown of the core but no explosion occurred because of the opened door of the blowout panel on the wall by the blast of no.1 explosion. The reactor in no.3 had RCIC and high pressure coolant injection system, but their works stopped to result in the core damage and H 2 accumulation leading to the explosion on 14th. The reactor in no.4 had not been operated because of its periodical annual examination, but was explored on 15th, of which cause was thought to be due to backward flow of H 2 from no.3. Finally, the author discusses about this accident from the industrial aspect of the design of safety level (defense in depth) on international views, and problems and tasks given. (T.T.)

  13. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R 0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R 0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  14. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    International Nuclear Information System (INIS)

    Bowman, S.M.; Suto, T.

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k eff of 1. 0040±0.0005

  15. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  16. Comparative economic analysis of the Integral Molten Salt Reactor and an advanced PWR using the G4-ECONS methodology

    International Nuclear Information System (INIS)

    Samalova, Ludmila; Chvala, Ondrej; Maldonado, G. Ivan

    2017-01-01

    The assessment of economic viability of a new reactor concept is crucial particularly during the early stages of its concept development. The G4-ECONS methodology provides a standardized top-down estimate of electricity cost and parametric sensitivities, not specifically targeted toward an accurate prediction of the final cost when deployed, but rather seeking an approximation of cost variations relative to other systems. This study presents an analysis of the Integral Molten Salt Reactor (IMSR) concept in comparison with a consistent analysis of an advanced PWR reactor (represented by AP1000). Estimation of levelized unit electricity costs, as well as sensitivity analyses to the discount rate and uranium or SWU prices, are presented using this methodology.

  17. Necessity of research reactors

    International Nuclear Information System (INIS)

    Ito, Tetsuo

    2016-01-01

    Currently, only three educational research reactors at two universities exist in Japan: KUR, KUCA of Kyoto University and UTR-KINKI of Kinki University. UTR-KINKI is a light-water moderated, graphite reflected, heterogeneous enriched uranium thermal reactor, which began operation as a private university No. 1 reactor in 1961. It is a low power nuclear reactor for education and research with a maximum heat output of 1 W. Using this nuclear reactor, researches, practical training, experiments for training nuclear human resources, and nuclear knowledge dissemination activities are carried out. As of October 2016, research and practical training accompanied by operation are not carried out because it is stopped. The following five items can be cited as challenges faced by research reactors: (1) response to new regulatory standards and stagnation of research and education, (2) strengthening of nuclear material protection and nuclear fuel concentration reduction, (3) countermeasures against aging and next research reactor, (4) outflow and shortage of nuclear human resources, and (5) expansion of research reactor maintenance cost. This paper would like to make the following recommendations so that we can make contribution to the world in the field of nuclear power. (1) Communication between regulatory authorities and business operators regarding new regulatory standards compliance. (2) Response to various problems including spent fuel measures for long-term stable utilization of research reactors. (3) Personal exchanges among nuclear experts. (4) Expansion of nuclear related departments at universities to train nuclear human resources. (5) Training of world-class nuclear human resources, and succession and development of research and technologies. (A.O.)

  18. RA-0 reactor. New neutronic calculations; Reactor RA-0. Nuevos calculos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Rumis, D; Leszczynski, F

    1991-12-31

    An updating of the neutronic calculations performed at the RA-0 reactor, located at the Natural, Physical and Exact Sciences Faculty of Cordoba National University, are herein described. The techniques used for the calculation of a reactor like the RA-0 allows prediction in detail of the flux behaviour in the core`s interior and in the reflector, which will be helpful for experiments design. In particular, the use of WIMSD4 code to make calculations on the reactor implies a novelty in the possible applications of this code to solve the problems that arise in practice. (Author). [Espanol] En este trabajo se actualizan los calculos neutronicos realizados para el reactor RA-0, instalado en la Facultad de Ciencias Exactas, Fisicas y Naturales de la Universidad Nacional de Cordoba. Se describen los calculos realizados hasta la fecha y los resultados obtenidos. Las tecnicas incorporadas al calculo de un reactor como el RA-0 permiten predecir en detalle el comportamiento del flujo en el interior del nucleo y en el reflector, lo que sera una importante ayuda en el diseno de experimentos. En particular, el empleo del codigo WIMSD4 para calculos del reactor completo constituye una novedad en las posibles aplicaciones de ese codigo para resolver problemas que se presentan en la practica. (Autor).

  19. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  20. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  1. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  2. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  3. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1976-09-01

    Studies were conducted to determine the generation and evolution of tritium and helium in lithium aluminate (LiAlO 2 ) and lithium silicate (Li 2 SiO 3 ) by the reaction: Li 6 + n → 4 He + T. Targets were irradiated 4.4 days in the K-West Reactor snout facility. (Silicate GVR* approximately 2.0 cc/cc; aluminate GVR approximately 1.4 cc/cc.) Gas release in-reactor was determined by post-irradiation drilling experiments on aluminum ampoules containing silicate and aluminate targets. In-reactor tritium release (at approximately 100 0 C) was found to decrease linearly with increasing target density. Tritium released in-reactor was primarily in the noncondensible form (HT and T 2 ), while in laboratory extractions (300-1300 0 C), the tritium appeared primarily in the condensible form (HTO and T 2 O). Concentrations of HT (and presumably HTO) were relatively high, indicating moisture pickup in canning operations or by inleakage of moisture after the capsule was welded. Impurities in extracted gases included H 2 O, CO 2 , CO, O 2 , H 2 , NO, SO 2 , SiF 4 and traces of hydrocarbons

  4. Studies of conceptual spheromak fusion reactors

    International Nuclear Information System (INIS)

    Katsurai, M.; Yamada, M.

    1982-01-01

    Preliminary design studies are carried out for a spheromak fusion reactor. Simplified circuit theory is applied to obtain the characteristic relations among various parameters of the spheromak configuration for an aspect ratio of A >or approx. 1.6. These relations are used to calculate the parameters for the conceptual designs of three types of fusion reactor: (1) the DT reactor with two-component-type operation, (2) the ignited DT reactor, and (3) the ignited catalysed-type DD reactor. With a total wall loading of approx. 4 MW.m -2 , it is found that edge magnetic fields of only approx. 4 T (DT) and approx. 9 T (Cat. DD) are required for ignited reactors of 1 m plasma (minor) radius with output powers in the gigawatt range. An assessment of various schemes of generation, compression and translation of spheromak plasmas is presented. (author)

  5. The 4th surveillance test and evaluation of the reactor pressure vessel material (capsule W) of Yonggwang nuclear power plant unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-02-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Yonggwang unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 5.762E+18, 1.5391E+19, 3.5119E+19, and 4.2610E+19 n/cm{sup 2}, respectively. The bias factor, the ratio of measurement versus calculation, was 0.899 for the 1st through 4th testing and the calculational uncertainty, 12.3% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.357E+19 n/cm{sup 2} based on the end of 11th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.525E+19, 4.337E+19, 5.148E+19 and 5.960E+19 n/cm{sup 2} based on the current calculation. The result through this analysis for Yonggwang unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 42 tabs. (Author)

  6. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  7. The physical protection systems at the Czech nuclear installations and the Y2K issue

    International Nuclear Information System (INIS)

    Malach, J.; Seifert, Z.; Sedlacek, J.; Bartak, L.; Polanka, J.

    1999-01-01

    The paper describes the joint effort of the State Office for Nuclear Safety, EZ, a.s., Nuclear Power Plant Dukovany and EBIS Ltd., as a subcontractor, to solve the problem of the Y2K particularly in connection with real time operation of the integrated physical protection system at Nuclear Power Plant Dukovany. (author)

  8. Hythane (H2 and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed; Elreedy, Ahmed; Pascal, Peu; Sophie, Le Roux; Tawfik, Ahmed

    2017-01-01

    Highlights: • Bio-hythane production from polyester wastewater via UASG reactor was assessed. • Impacts of influent contamination by 1,4-dioxane and heavy metals were discussed. • Maximum volumetric H 2 and CH 4 productions of 0.12 and 1.06 L/L/d were achieved. • Significant drop in CH 4 production was resulted at OLR up to 1.07 ± 0.06 gCOD/L/d. • Bioenergy recovery through UASG economically achieved a net profit of 10,231 $/y. - Abstract: A long-term evaluation of hythane generation from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals was investigated in a continuous up-flow anaerobic self- separation gases (UASG) reactor inoculated with mixed culture. The reactor was operated at constant hydraulic retention time (HRT) of 96 h and different organic loading rates (OLRs) of 0.31 ± 0.04, 0.71 ± 0.08 and 1.07 ± 0.06 gCOD/L/d. Available data showed that volumetric hythane production rate was substantially increased from 0.093 ± 0.021 to 0.245 ± 0.016 L/L/d at increasing OLR from 0.31 ± 0.04 to 0.71 ± 0.08 gCOD/L/d. However, at OLR exceeding 1.07 ± 0.06 gCOD/L/d, it was dropped to 0.114 ± 0.016 L/L/d. The reactor achieved 1,4-dioxane removal efficiencies of 51.8 ± 2.8, 35.9 ± 1.6 and 26.3 ± 1.6% at initial 1,4-dioxane concentrations of 1.14 ± 0.28, 1.97 ± 0.41 and 4.21 ± 0.30 mg/L, respectively. Moreover, the effect and potential removal of the contaminated by heavy metals (i.e., Cu 2+ , Mn 2+ , Cr 3+ , Fe 3+ and Ni 2+ ) were highlighted. Kinetic modelling and microbial community dynamics were studied, according to each OLR, to carefully describe the UASG performance. The economic analysis showed a stable operation for the anaerobic digestion of unsaturated polyester resin wastewater using UASG, and the maximum net profit was achieved at OLR of 0.71 ± 0.08 gCOD/L/d.

  9. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  10. Status and prospects of the core surveillance system SCORPIO-VVER in Czech Republic and Slovakia

    International Nuclear Information System (INIS)

    Molnar, J.; Vocka, R.

    2011-01-01

    The SCORPIO-VVER core monitoring system has proved since the first installation at Dukovany NPP in 1999 to be a valuable tool for the reactor operators and reactor physicists. It is now installed on four units of Dukovany NPP (Czech Republic) and two units of Bohunice NPP (Slovak Republic) replacing the original Russian VK3 system. By both Czech and Slovak nuclear regulatory bodies it was licensed as a Technical Specification Surveillance tool. Since it's first installation, the development of SCORPIO-VVER system continues along with the changes in WWER reactors operation. The system is being adapted according the utility needs and several notable improvements in physical modules of the system were introduced. The latest most significant changes were done in connection with implementation of a new digital I and C system, loading of the optimized gadolinium bearing Gd2 fuel assemblies, improvements in the area of core design (neutron physics, core thermal hydraulics and fuel thermal mechanics), adaptation of the system to up-rated unit conditions, in design and methodology of the limit and technical specifications checking (implementation of the on-line shutdown margin calculation to the system) and improvements in the predictive part of the system (Strategy Generator). After the currently finished upgrades (Upgrade 2 at EBO Slovakia in 2009, Upgrade 5 at EDU Czech Republic in 2010) the SCORPIO-VVER is still in focus of Central European nuclear power plants with the road map of modification and implementation up to 2015. In April 2011 the Upgrade 3 at EBO Slovakia has been contracted to support the changed reactor technical specification and for support of the new type of fuel planned to load in 2012. During the summer of 2011 the discussions started with EDU NPP in Czech Republic regarding to the future development of the SCORPIO-VVER system up to 2015. Parallel with the support of current installations at NPPs the project of new installations is ongoing. During

  11. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10{sup -3}) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the

  12. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    International Nuclear Information System (INIS)

    2013-01-01

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10 -3 ) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the Proceedings of

  13. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  14. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  15. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs

  16. Factors affecting biological reduction of CO{sub 2} into CH{sub 4} using a hydrogenotrophic methanogen in a fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyung; Pak, Daewon [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Chang, Won Seok [Korea District Heating Corp, Seongnam (Korea, Republic of)

    2015-10-15

    Biological conversion of CO{sub 2} was examined in a fixed bed reactor inoculated with anaerobic mixed culture to investigate influencing factors, the type of packing material and the composition of the feeding gas mixture. During the operation of the fixed bed reactor by feeding the gas mixture (80% H{sub 2} and 20% CO{sub 2} based on volume basis), the volumetric CO{sub 2} conversion rate was higher in the fixed bed reactor packed with sponge due to its large surface area and high mass transfer from gas to liquid phase compared with PS ball. Carbon dioxide loaded into the fixed bed reactor was not completely converted because some of H{sub 2} was used for biomass growth. When a mole ratio of H{sub 2} to CO{sub 2} in the feeding gas mixture increased from 4 to 5, CO{sub 2} was completely converted into CH{sub 4}. The packing material with large surface area is effective in treating gaseous substrate such as CO{sub 2} and H{sub 2}. H{sub 2}, electron donor, should be providing more than required according to stoichiometry because some of it is used for biomass growth.

  17. Tritium release from lithium silicate and lithium aluminate, in-reactor and out-of-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.

    1976-09-01

    Studies were conducted to determine the generation and evolution of tritium and helium in lithium aluminate (LiAlO/sub 2/) and lithium silicate (Li/sub 2/SiO/sub 3/) by the reaction: Li/sup 6/ + n ..-->.. /sup 4/He + T. Targets were irradiated 4.4 days in the K-West Reactor snout facility. (Silicate GVR* approximately 2.0 cc/cc; aluminate GVR approximately 1.4 cc/cc.) Gas release in-reactor was determined by post-irradiation drilling experiments on aluminum ampoules containing silicate and aluminate targets. In-reactor tritium release (at approximately 100/sup 0/C) was found to decrease linearly with increasing target density. Tritium released in-reactor was primarily in the noncondensible form (HT and T/sub 2/), while in laboratory extractions (300-1300/sup 0/C), the tritium appeared primarily in the condensible form (HTO and T/sub 2/O). Concentrations of HT (and presumably HTO) were relatively high, indicating moisture pickup in canning operations or by inleakage of moisture after the capsule was welded. Impurities in extracted gases included H/sub 2/O, CO/sub 2/, CO, O/sub 2/, H/sub 2/, NO, SO/sub 2/, SiF/sub 4/ and traces of hydrocarbons.

  18. Uncertainty analysis of the 35% reactor inlet header break in a CANDU 6 reactor using RELAP/SCDAPSIM/MOD4.0 with integrated uncertainty analysis option

    International Nuclear Information System (INIS)

    Dupleac, D.; Perez, M.; Reventos, F.; Allison, C.

    2011-01-01

    The RELAP/SCDAPSIM/MOD4.0 code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology Software Development and Training Program (SDTP). RELAP/SCDAPSIM/MOD4.0, which is the first version of RELAP5 completely rewritten to FORTRAN 90/95/2000 standards, uses the publicly available RELAP5 and SCDAP models in combination with (a) advanced programming and numerical techniques, (b) advanced SDTP-member-developed models for LWR, HWR, and research reactor analysis, and (c) a variety of other member-developed computational packages. One such computational package is an integrated uncertainty analysis (IUA) package being developed jointly by the Technical University of Catalonia (UPC) and Innovative Systems Software (ISS). RELAP/SCDAPSIM/MOD4.0(IUA) follows the input-propagation approach using probability distribution functions to define the uncertainty of the input parameters. The main steps for this type of methodologies, often referred as to statistical approaches or Wilks’ methods, are the ones that follow: 1. Selection of the plant; 2. Selection of the scenario; 3. Selection of the safety criteria; 4. Identification and ranking of the relevant phenomena based on the safety criteria; 5. Selection of the appropriate code parameters to represent those phenomena; 6. Association of uncertainty by means of Probability Distribution Functions (PDFs) for each selected parameter; 7. Random sampling of the selected parameters according to its PDF and performing multiple computer runs to obtain uncertainty bands with a certain percentile and confidence level; 8. Processing the results of the multiple computer runs to estimate the uncertainty bands for the computed quantities associated with the selected safety criteria. RELAP/SCDAPSIM/MOD4.0(IUA) calculates the number of required code runs given the desired percentile and confidence level, performs the sampling process for the

  19. Uncertainty analysis of the 35% reactor inlet header break in a CANDU 6 reactor using RELAP/SCDAPSIM/MOD4.0 with integrated uncertainty analysis option

    Energy Technology Data Exchange (ETDEWEB)

    Dupleac, D., E-mail: danieldu@cne.pub.ro [Politehnica Univ. of Bucharest (Romania); Perez, M.; Reventos, F., E-mail: marina.perez@upc.edu, E-mail: francesc.reventos@upc.edu [Technical Univ. of Catalonia (Spain); Allison, C., E-mail: iss@cableone.net [Innovative Systems Software (United States)

    2011-07-01

    The RELAP/SCDAPSIM/MOD4.0 code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology Software Development and Training Program (SDTP). RELAP/SCDAPSIM/MOD4.0, which is the first version of RELAP5 completely rewritten to FORTRAN 90/95/2000 standards, uses the publicly available RELAP5 and SCDAP models in combination with (a) advanced programming and numerical techniques, (b) advanced SDTP-member-developed models for LWR, HWR, and research reactor analysis, and (c) a variety of other member-developed computational packages. One such computational package is an integrated uncertainty analysis (IUA) package being developed jointly by the Technical University of Catalonia (UPC) and Innovative Systems Software (ISS). RELAP/SCDAPSIM/MOD4.0(IUA) follows the input-propagation approach using probability distribution functions to define the uncertainty of the input parameters. The main steps for this type of methodologies, often referred as to statistical approaches or Wilks’ methods, are the ones that follow: 1. Selection of the plant; 2. Selection of the scenario; 3. Selection of the safety criteria; 4. Identification and ranking of the relevant phenomena based on the safety criteria; 5. Selection of the appropriate code parameters to represent those phenomena; 6. Association of uncertainty by means of Probability Distribution Functions (PDFs) for each selected parameter; 7. Random sampling of the selected parameters according to its PDF and performing multiple computer runs to obtain uncertainty bands with a certain percentile and confidence level; 8. Processing the results of the multiple computer runs to estimate the uncertainty bands for the computed quantities associated with the selected safety criteria. RELAP/SCDAPSIM/MOD4.0(IUA) calculates the number of required code runs given the desired percentile and confidence level, performs the sampling process for the

  20. PERFORMA NEUTRONIK BAHAN BAKAR LiF-BeF2-ThF4-UF4 PADA SMALL MOBILE-MOLTEN SALT REACTOR

    Directory of Open Access Journals (Sweden)

    S. N. Rokhman

    2015-04-01

    Full Text Available Telah dilakukan analisis terhadap performa neutronik bahan bakar garam lebur LiF-BeF2-ThF4-UF4 pada Small Mobile-Molten Salt Reactor (SM-MSR. Penyesuaian konfigurasi teras dan temperatur operasi harus dilakukan untuk penggunaan bahan bakar baru tersebut agar mencapai keff > 1 dan CR (conversion ratio > 1 pada fraksi 0,5% 233U, 20% 232Th, 28% Li, 51,5% Be. Setelah didapat nilai keff ≈ 1 dan CR ≈ 1, dilakukan analisis pengaruh perubahan Th terhadap Be dan Be terhadap Li yang terlihat dalam perubahan parameter keff dan CR. Setelah itu fraksi 233U divariasi antara 0,5–0,46% untuk memperoleh keff > 1 dan CR > 1. Dalam perhitungan koefisien reaktifitas temperatur (αT, temperatur teras dinaikkan sebesar +25K dan +50K., dan untuk koefisien reaktifitas void (αV, densitas bahan bakar dikurangi hingga 90%. Hasil perhitungan menunjukkan bahwa pengurangan Th terhadap Be menyebabkan penurunan nilai CR dan naiknya keff akibat berkurangnya material fertil. Sebaliknya penambahan Be terhadap Li mengakibatkan terjadi kenaikan nilai keff dan menurunkan CR, akibat laju serapan Li lebih besar dari Be. Pada 5 (lima fraksi 233U dalam rentang 0,5–0,49%, hasil perhitungan keff dan CR masing-masing bervariasi dalam rentang 1,00001 - 1,00327 dan 1,00016 - 1,00731. Untuk faktor puncak daya (PPF, hasil perhitungan memberikan nilai dalam rentang 2,4311 -2,4714. Sedangkan untuk parameter keselamatan, koefisien reaktivitas temperatur (αT dan reaktivitas void (αV masingmasing bernilai negatif dalam rentang 4,972×10-5 - 5,909×10-5 dan 2,596×10-2- 2,8287×10-2 ∆k/k/K. Dapat disimpulkan bahwa teras SM-MSR memberikan nilai negatif di kedua koefisien reaktivitas tersebut untuk setiap fraksi,, sehingga memenuhi kriteria keselamatan dan keselamatan melekat. Kata kunci: SM-MSR (small mobile-molten salt reactor, bahan bakar LiF-BeF2-ThF4-UF4, keselamatan melekat, koefisien reaktivitas temperatur, koefisien reaktivitas void   The analysis of neutronic performance has

  1. Spatial kinetics in nuclear reactor systems. Chapter 4

    International Nuclear Information System (INIS)

    Owens, D.H.

    1980-01-01

    The problem of constructing a low-order linear lumped-parameter model of xenon-induced spatial power oscillations in a large, cylindrical nuclear power reactor to replace an (assumed known) nonlinear distributed parameter model is examined. Model expansion and finite difference methods are used together to provide a successful solution to the problem. (U.K.)

  2. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach.

    Science.gov (United States)

    Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng

    2013-06-14

    LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).

  3. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  4. Linking of FRAP-T, FRAPCON and RELAP-4 codes for transient analysis and accidents of light water reactors fuel rods

    International Nuclear Information System (INIS)

    Marra Neto, A.; Silva, A.T. e; Sabundjian, G.; Freitas, R.L.; Neves Conti, T. das.

    1991-09-01

    The computer codes FRAP-T, FRAPCON and RELAP-4 have been linked for the fuel rod behavior analysis under transients and hypothetical accidents in light water reactors. The results calculated by thermal hydraulic code RELAP-4 give input in file format into the transient fuel analysis code FRAP-T. If the effect of fuel burnup is taken into account, the fuel performance code FRAPCON should provide the initial steady state data for thhe transient analysis. With the thermal hydraulic boundary conditions provided by RELAP-4 (MOD3), FRAP-T6 is used to analyse pressurized water reactor fuel rod behavior during the blowdown phase under large break loss of coolant accident conditions. Two cases have been analysed: without and with initialization from FRAPCON-2 steady state data. (author)

  5. Proceedings of the 4th international symposium on material testing reactors

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Suzuki, Masahide

    2012-03-01

    This report is the Proceedings of the fourth International Symposium on Material Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The first symposium was held on 2008, at the Oarai Research and Development Center of JAEA, the second, 2009, Idaho National Laboratory (INL) of United States and the third 2010, Nuclear Research Institute (NRI) in Czech Republic to exchange information for deep mutual understanding of material testing reactors. The fourth symposium was originally scheduled to be held INVAP in Argentina. However, the aftermath of volcanic explosion at Chili forced the symposium to change place. Total 111 participants attended from Argentina, Belgium, France, Germany, Indonesia, Malasia, Korea, South Africa, Switzerland, the United State and Japan. This symposium addressed the general topics of 'status and future plan of material testing reactors', 'advancement of irradiation technology', 'expansion of industry use(RI)', 'facility, upgrade, aging management', 'new generation MTR', 'advancement of PIE technology', 'development of advanced driver fuel', and 'nuclear human resource development(HRD) for next generation', and 39 presentations were made. Furthermore, three topics, 'Necessity of cooperation for Mo-99 production by (n,gamma) reaction', 'Necessity of standardization of irradiation technology' and 'Conceptual design of next generation materials testing reactor by collaboration', were selected and discussed. (author)

  6. Proceedings of the 4th international symposium on material testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Masahiro; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    This report is the Proceedings of the fourth International Symposium on Material Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The first symposium was held on 2008, at the Oarai Research and Development Center of JAEA, the second, 2009, Idaho National Laboratory (INL) of United States and the third 2010, Nuclear Research Institute (NRI) in Czech Republic to exchange information for deep mutual understanding of material testing reactors. The fourth symposium was originally scheduled to be held INVAP in Argentina. However, the aftermath of volcanic explosion at Chili forced the symposium to change place. Total 111 participants attended from Argentina, Belgium, France, Germany, Indonesia, Malasia, Korea, South Africa, Switzerland, the United State and Japan. This symposium addressed the general topics of 'status and future plan of material testing reactors', 'advancement of irradiation technology', 'expansion of industry use(RI)', 'facility, upgrade, aging management', 'new generation MTR', 'advancement of PIE technology', 'development of advanced driver fuel', and 'nuclear human resource development(HRD) for next generation', and 39 presentations were made. Furthermore, three topics, 'Necessity of cooperation for Mo-99 production by (n,gamma) reaction', 'Necessity of standardization of irradiation technology' and 'Conceptual design of next generation materials testing reactor by collaboration', were selected and discussed. (author)

  7. Analysis of gamma dose for 4,8 gU/cm3 density silicide core at the RSG-GAS reactor using MCNP code

    International Nuclear Information System (INIS)

    Ardani

    2011-01-01

    Radiation safety analysis should be done following of substitution of fuel density of 2.96 gU/cc to density of 4,8 gU/cc silicide fuels for the RSG-GAS reactor. MCNP-5 code has been used to perform gamma dose calculation of the RSG-GAS reactor. Gamma radiation source at reactor consists of capture gamma rays, prompt fission gamma rays, and gamma rays of decay of fission and activation products. The strength of the prompt fission gamma rays is obtained by gamma releases of fission process of U-235 and reactor power of 30 MWt., during 46,6 days operation. Radiation dose is calculated at the experimental hall by detection point at the surface of outer of biological shielding and the operation hall by detection point at the top of the pool. The calculation is conducted at reactor on the normal operation and on the worst postulated accident causing the water level at the pool decreases. Calculation result shows that the biggest source strength of gamma rays come from the decay process. The highest calculated dose at the experiment hall is 4,07x10 -3 μSv/h, far from the maximum external dose permitted 25 μSv/h. The highest calculated dose at the operation hall is 19.98 μSv/h. Even though the calculated dose is still acceptable but this is close to the maximum permitted dose for worker. It concluded that loading of 4,8 gU/cc silicide fuel for the RSG-GAS still safe. (author)

  8. Pebble bed reactors simulation using MCNP: The Chinese HTR-10 reactor

    Directory of Open Access Journals (Sweden)

    SA Hosseini

    2013-09-01

    Full Text Available   Given the role of Gas-Graphite reactors as the fourth generation reactors and their recently renewed importance, in 2002 the IAEA proposed a set of Benchmarking problems. In this work, we propose a model both efficient in time and resources and exact to simulate the HTR-10 reactor using MCNP-4C code. During the present work, all of the pressing factors in PBM reactor design such as the inter-pebble leakage, fuel particle distribution and fuel pebble packing fraction effects have been taken into account to obtain an exact and easy to run model. Finally, the comparison between the results of the present work and other calculations made at INEEL proves the exactness of the proposed model.

  9. Concept and experiences with LLW and MLW handling in Czech and Slovak Republic

    International Nuclear Information System (INIS)

    Neumann, L.; Holan, K.; Tomik, L.; Kulovany, J.; Seifert, P.

    1993-01-01

    Czechoslovak policy of safe management of low and intermediate level radioactive waste from nuclear power plants has been formed gradually and was approved by the decision of Czechoslovak Government in 1977. It consists of a comprehensive treatment from the volume reduction through solidification to the disposal. Characteristics of the main types of solid, liquid and gaseous waste produced in Czechoslovak nuclear power plants with VVER type reactors are given. Systems for the collection and treatment of radioactive waste operated in Bohunice and Dukovany nuclear power plants as well as the system developed for the nuclear power plant under construction in Temelin are briefly described

  10. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De Jesus, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juarez-Ramirez, C.; Ruiz-Ordaz, N. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico); Galindez-Mayer, J. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico)], E-mail: cmayer@encb.ipn.mx

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A{sub D}/A{sub R} ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values {epsilon}{sub G}, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ({approx}95%), and by the stoichiometric release of chloride ions from the halogenated compound ({approx}80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  11. Radiation protection at the RA Reactor in 1993, RA research reactor, Part

    International Nuclear Information System (INIS)

    Ninkovic, M.; Pavlovic, R.; Mandic, M.; Sipka, V.; Grsic, Z.

    1993-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry and radiation protection at the RA reactor; (2) decontamination, collecting and treatment of fluid effluents and solid wastes; (3) Radioactivity control in the vicinity of the reactor and (4)meteorology measurements; (3). Each of the category is described as a separate annex of this report [sr

  12. Final Report for the 1st Surveillance Test of the Reactor Pressure Vessel Material (Capsule 2) of Ulchin Nuclear Power Plant Unit 4

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai (and others)

    2007-04-15

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 1st surveillance testing was performed completely by Korea Atomic Energy Research Institute at Daejon after the capsule was transported from Ulchin site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Ulchin Unit 4 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsule 2 is 4.306E+18n/cm{sup 2}. The bias factor, the ratio of calculation/measurement, was 0.918 for the 1st testing and the calculational uncertainty,7.0% satisfied the requirement of USNRC Reg.Guide 1.190, 20%. The best estimated neutron fluence for reactor vessel inside surface was 3.615E+18n/cm{sup 2} based on the end of 6th fuel cycle and it was predicted that the fluences of vessel inside surface at 16 and 32EFPY would reach 8.478E+18 and 1.673E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Ulchin Unit 4 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life.

  13. Heavy water moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Bailly du Bois, B.; Bernard, J.L.; Naudet, R.; Roche, R.

    1964-01-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [fr

  14. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  15. Nuclear reactors to come

    International Nuclear Information System (INIS)

    Lung, M.

    2002-01-01

    The demand for nuclear energy will continue to grow at least till 2050 because of mainly 6 reasons: 1) the steady increase of the world population, 2) China, India and Indonesia will reach higher social standard and their energy consumption will consequently grow, 3) fossil energy resources are dwindling, 4) coal will be little by little banned because of its major contribution to the emission of green house effect gas, 5) renewable energies need important technological jumps to be really efficient and to take the lead, and 6) fusion energy is not yet ready to take over. All these reasons draw a promising future for nuclear energy. Today 450 nuclear reactors are operating throughout the world producing 17% of the total electrical power demand. In order to benefit fully of this future, nuclear industry has to improve some characteristics of reactors: 1) a more efficient use of uranium (it means higher burnups), 2) a simplification and automation of reprocessing-recycling chain of processes, 3) efficient measures against proliferation and against any misuse for terrorist purposes, and 4) an enhancement of safety for the next generation of reactors. The characteristics of fast reactors and of high-temperature reactors will likely make these kinds of reactors the best tools for energy production in the second half of this century. (A.C.)

  16. Experimental neutronic science and instrumentation: from hybrid reactors to fourth generation reactors

    International Nuclear Information System (INIS)

    Jammes, Ch.

    2010-07-01

    After an overview of his academic career and scientific and research activities, the author proposes a rather detailed synthesis and overview of his scientific activities in the fields of cross sections and Doppler effect (development and validation of a code), on the MUSE-4 hybrid reactor (experiments, static and dynamic measurements), on the TRADE hybrid reactor (experimental means, sub-critical reactivity measurement), on the RACE hybrid reactor (experimental results, modelling and interpretation), and on neutron detection (design and modelling of fission chamber, on-line measurement of the fast flow). The next part gives an overview of some research programs (neutron monitoring in sodium-cool fast reactors, research and development on fission chambers, improvement of effective delayed neutron measurements)

  17. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  18. Reactor safety in Eastern Europe. Proceedings

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. (HP) [de

  19. Status of French reactors

    International Nuclear Information System (INIS)

    Ballagny, A.

    1997-01-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm 3 . The OSIRIS reactor has already been converted to LEU. It will use U 3 Si 2 as soon as its present stock of UO 2 fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU

  20. Fusion reactor materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The following topics are briefly discussed: (1) surface blistering studies on fusion reactor materials, (2) TFTR design support activities, (3) analysis of samples bombarded in-situ in PLT, (4) chemical sputtering effects, (5) modeling of surface behavior, (6) ion migration in glow discharge tube cathodes, (7) alloy development for irradiation performance, (8) dosimetry and damage analysis, and (9) development of tritium migration in fusion devices and reactors

  1. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  2. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  3. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute,”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I. [National Research Centre “Kurchatov Institute,” (Russian Federation); Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K. [State Scientific Centre Research Institute of Atomic Reactors (Russian Federation); and others

    2015-10-15

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6–11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  4. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Martinc, R.; Cupac, S.; Stanic, A.

    1990-01-01

    RA reactor was not operated during the past five years due to the renewal and reconstruction of the reactor systems, which in underway. In the period from 1986-1990, reactor was operated only 144 MWh in 1986, for the need of testing the reactor systems and possibility of irradiating 125 I. Reactor will not be operated in 1991 because of the exchange of complete instrumentation which is planned to be finished by the end of 1991. It is expected to start operation in May 1992. That is why this annex includes the plan of reactor operation for period of nine months starting from from the moment of start-up. It is planned to operate the reactor at 0.02 MW power first three months, to increase the power gradually and reach 3.5 MW after 8 months of operation. It is foreseen to operate the reactor at 4.7 MW from the tenth month on [sr

  5. Reactor core structure

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Sato, Kanemitsu.

    1992-01-01

    Taking notice on the fact that Fe based alloys and Ni based alloys are corrosion resistant in a special atmosphere of a nuclear reactor, Fe or Ni based alloys are applied to reactor core structural components such as fuel cladding tubes, fuel channels, spacers, etc. On the other hand, the neutron absorption cross section of zirconium is 0.18 barn while that of iron is 2.52 barn and that of nickel is 4.6 barn, which amounts to 14 to 25 times compared with that of zirconium. Accordingly, if the reactor core structural components are constituted by the Fe or Ni based alloys, neutron economy is lowered. Since it is desirable that neutrons contribute to uranium fission with least absorption to the reactor core structural components, the reactor core structural components are constituted with the Fe or Ni based alloys of good corrosion resistance only at a portion in contact with reactor water, that is, at a surface portion, while the main body is constituted with zircalloy in the present invention. Accordingly, corrosion resistnace can be kept while keeping small neutron absorption cross section. (T.M.)

  6. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  7. Possibilities of TWR and long life reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Shimazu, Yoichiro; Handa, Norihiko

    2010-01-01

    Bill Gates identified the need to switch to zero-emission energy and clarified investing in Terra Power developing the TWR (Traveling Wave Reactor) in February 2010. He also visited Toshiba developing small reactor 4S (Super Safe Small and Simple). In Japan design studies of the TWR have been conducted on the CANDLE reactor without refueling and the 4S long life reactor with maintenance free. In this feature article, the state of R and D on the TWR in Japan and IAEA's activities on small reactors without online refueling were reviewed in addition to articles on impacts of Bill Gates' investment in the TWR and state of the TWR development from an interview with John Gilleland of Terra Power. (T. Tanaka)

  8. Public information circular for shipments of irradiated reactor fuel. Revision 4

    International Nuclear Information System (INIS)

    1984-06-01

    This publication is the fifth in a series of annual publications issued by the Nuclear Regulatory Commission in response to public information requests regarding the Commission's regulation of shipments of irradiated reactor fuel. This publication contains basically three kinds of information: (1) routes recently approved (18 months) by the Commission for the shipment of irradiated reactor fuel; (2) information regarding any safeguards-significant incidents that may be (to date none have) reported during shipments along such routes; and (3) cumulative amounts of material shipped

  9. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  10. RA Research reactor Annual report 1982 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.; Miokovic, J.

    1982-12-01

    Reactor test operation started in September 1981 at 2 MW power with 80% enriched fuel continued during 1982 according to the previous plan. The initial reactor core was made of 44 fuel channel each containing 10 fuel slugs. The first half of 1982 was used for the needed measurements and analysis of operating parameters and functioning of reactor systems and equipment under operating conditions. Program concerned with the testing operation at higher power levels was started in the second half of this year. It was found that the inherent excess reactivity and control rod worths ensure safe operation according to the IAEA safety standards. Excess reactivity is high enough to enable higher power level of 4.7 MW during 4 monthly cycles each lasting 15-20 days. Favourable conditions for cooling exist for the initial core configuration. Effects of poisoning at startup on the reactivity and power density distribution were measured as well as initial spatial distribution of the neutron flux which was 3,9 10 13 cm -2 s -1 at 2 MW power. Modification of the calibration coefficient in the system for automated power level control was determined. All the results show that all the safety criteria and limitations concerned with fuel utilization are fulfilled if reactor power would be 4.7 MW. Additional testing operation at 3, 4, and 4.7 MW power levels will be needed after obtaining the licence for operating at nominal power. Transition from the initial core with 44 fuel channels to the equilibrium lattice configuration with 72 fuel channels each containing 10 fuel slugs, would be done gradually. Reactor was not operated in September because of the secondary coolant pipes were exchanged between Danube and the horizontal sedimentary. Control and maintenance of the reactor equipment was done regularly and efficiently dependent on the availability of the spare parts. Difficulties in maintenance of the reactor instrumentation were caused by unavailability of the outdated spare parts

  11. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2014. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Osa, Akihiko; Imahashi, Masaki; Hirane, Nobuhiko; Motome, Yuiko; Tayama, Hidekazu; Tamura, Itaru; Harada, Yuko; Sakata, Mami; Kadokura, Masakazu; Takita, Chiharu

    2017-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2014. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration, and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  12. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2013. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Kashima, Yoichi; Murayama, Yoji; Nakamura, Kiyoshi; Uno, Yuki; Hirane, Nobuhiko; Ohuchi, Hitoshi; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Harada, Yuko; Kadokura, Masakazu; Machi, Sumire; Takita, Chiharu

    2015-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2013. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  13. CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy

    NARCIS (Netherlands)

    Wang, Zhen-Yi; Chou, Hung-Chi; Wu, Jeffrey C.S.; Tsai, Din Ping; Mul, Guido

    2010-01-01

    The photocatalytic reduction of CO2 into fuels provides a direct route to produce renewable energy from sunlight. NiO loaded InTaO4 photocatalyst was prepared by a sol–gel method. Aqueous-phase CO2 photoreduction was performed in a quartz reactor to search for the highest photoactivity in a series

  14. Kinetic analysis of sub-prompt-critical reactor assemblies

    International Nuclear Information System (INIS)

    Das, S.

    1992-01-01

    Neutronic analysis of safety-related kinetics problems in experimental neutron multiplying assemblies has been carried out using a sub-prompt-critical reactor model. The model is based on the concept of a sub-prompt-critical nuclear reactor and the concept of instantaneous neutron multiplication in a reactor system. Computations of reactor power, period and reactivity using the model show excellent agreement with results obtained from exact kinetics method. Analytic expressions for the energy released in a controlled nuclear power excursion are derived. Application of the model to a Pulsed Fast Reactor gives its sensitivity between 4 and 5. (author). 6 refs., 4 figs., 1 tab

  15. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  16. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  17. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  18. Turning points in reactor design

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1995-01-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems

  19. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  20. Aqueous homogeneous suspension reactor project. Report over the 4th quarter and the year 1974

    Energy Technology Data Exchange (ETDEWEB)

    1975-07-01

    The power of the KSTR reactor has been increased up to 200 kW in the fourth quarter of 1974. A description is given of the behaviour of the reactor at increased power level, safety aspects concerned with this new level, the operation of the reactor, instrumental behavior and mechanical behavior. Irradiation investigation of two types of fuels are reported and results are presented. Progress made on the conceptual design of a 250 MWe suspension reactor is described.

  1. Introduction of advanced pressurized water reactors in France

    International Nuclear Information System (INIS)

    Millot, J.P.; Nigon, M.; Vitton, M.

    1988-01-01

    Designed >30 yr ago, pressurized water reactors (PWRs) have evolved well to match the current safety, operating, and economic requirements. The first advanced PWR generation, the N4 reactor, is under construction with 1992 as a target date for commercial operation. The N4 may be considered to be a technological outcome of PWR evolution, providing advances in the fields of safety, man/machine interfaces, and load flexibility. As a step beyond N4, a second advanced PWR generation is presently under definition with, as a main objective, a greater ability to cope with the possible deterioration of the natural uranium market. In 1986, Electricite de France (EdF) launched investigations into the possible characteristics of this advanced PWR, called REP-2000 (PWR-2000: the reactor for the next century). Framatome joined EdF in 1987 but had been working on a new tight-lattice reactor. Main options are due by 1988; preliminary studies will begin and, by 1990, detailed design will proceed with the intent of firm commitments for the first unit by 1995. Commissioning is planned in the early years of the next century. This reactor type should be either an improved version of the N4 reactor or a spectral shift convertible reactor (RCVS). Through research and development efforts, Framatome, Commissariat a l'Energie Atomique (CEA), and EdF are investigating the physics of fuel rod tight lattices including neutronics, thermohydraulics, fuel behavior, and reactor mechanics

  2. Radiation protection at the RA Reactor in 1998, RA reactor annual report, Part -2

    International Nuclear Information System (INIS)

    Ninkovic, M.; Pavlovic, R.; Mandic, M.; Pavlovic, S.; Grsic, Z.

    1998-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Collecting and treatment of fluid effluents; and (4) radioactive wastes, decontamination and actions. Each of the category is described as a separate annex of this report [sr

  3. The database 'EDUD Base' for validation of neutron-physics codes used to analyze the WWER-440 cores

    International Nuclear Information System (INIS)

    Rocek, J.; Belac, J.; Miasnikov, A.

    2003-01-01

    The program and data system EDUDBase for validation of reactor computing codes was developed at NRI. It is designed for validation and evaluation of the precision of different computer codes used for WWER core analyses. The main goal of this database is to provide data for comparison with calculation results of tested codes and tools for statistical analysis or differences between the calculation results and the test data. The benchmark data sets are based on in-core measurements performed on WWER-440 reactors of Dukovany NPP. The initial data from NPP are verified, errors and inaccuracies are eliminated and data are transferred to a form, which is suitable for comparison with results of calculations. A special reduced operating history data set is created for each operating cycle ('Benchmark Operation History') to be used as an input data for calculation. It contains values of some integral quantities for each time point: effective time, integral thermal power, boron concentration, position of working group control assemblies (group 6) and inlet coolant temperature. At present, sets are available for all completed cycles up to: (unit/cycle) 1/17, 2/16, 3/15, 4/15. Power distribution is described for approx. 40 time steps during each operating cycle. 2D-power distributions are transferred into 60-degree core symmetry sector of reactor core. At present, such data sets are available only for later cycles starting with: (unit/cycle) 1/7, 2/6, 3/5, 4/5 (in other words last II cycles for each unit) (Authors)

  4. Fast reactor irradiation effects on fracture toughness of Si_3N_4 in comparison with MgAl_2O_4 and yttria stabilized ZrO_2

    International Nuclear Information System (INIS)

    Tada, K.; Watanabe, M.; Tachi, Y.; Kurishita, H.; Nagata, S.; Shikama, T.

    2016-01-01

    Fracture toughness of silicon nitride (Si_3N_4), magnesia-alumina spinel (MgAl_2O_4) and yttria stabilized zirconia (8 mol%Y_2O_3–ZrO_2) was evaluated by the Vickers-indentation technique after the fast reactor irradiation up to 55 dpa (displacement per atom) at about 700 °C in the Joyo. The change of the fracture toughness by the irradiation was correlated with nanostructural evolution by the irradiation, which was examined by transmission electron microscopy. The observed degradation of fracture toughness in Si_3N_4 is thought to be due to the relatively high density of small-sized of the irradiation induced defects, which should be resulted from a large amount of transmutation gases of hydrogen and helium. Observed improvement of fracture toughness in MgAl_2O_4 was due to the blocking of crack propagation by the antiphase boundaries. The radiation effects affected the fracture toughness of yttria stabilized zirconia at 55 dpa, suggesting that the generated high density voids would affect the propagation of cracks. - Highlights: • Si_3N_4, MgAl_2O_4 and YSZ were neutron irradiated up to 55dpa around 700 °C in the Joyo. • They are candidate ceramics for the inert matrices of nuclear fuels in the fast reactors. • The irradiation enhanced the fracture toughness of MgAl_2O_4 and YSZ, while degraded that of Si_3N_4. • The toughness changes were correlated with radiation induced defects and transmutation gases.

  5. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  6. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Carlos Ruben Calabrese

    1999-01-01

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  7. Reactor Physics Behind the Chernobyl Accident

    International Nuclear Information System (INIS)

    Reisch, F.

    1999-01-01

    There are some fourteen Chernobyl type of power reactors (1000 MWe) in operation at five different sites in Eastern Europe. In Russia; in St. Petersburg (4). in Smolensk (3). and in Kursk (4) in the Ukraine in Chernobyl (l) and in Lithuania in Ignalina (2). The oldest one is west of St. Petersburg and the most powerful one is in Ignalina. The reactors at St. Petersburg and in Lithuania are near to the Baltic sea. An intricate reactor construction was the most important cause of the accident. There were other reasons too: human error. politics and economics

  8. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  9. Office of Nuclear Regulatory Research summary of advanced reactors activities, June 4, 2001

    International Nuclear Information System (INIS)

    2001-01-01

    Pre-application interactions with potential licensee applicants will help NRC prepare for future submittals, through the development of the infrastructure necessary for licensing application reviews. RES has the lead for non-LWR advanced reactor pre-application initiatives and longer-range new technology initiatives. An advanced reactor group has been formed in REAHFB, and is currently performing a pre-application review of Exelon's Pebble Bed Modular Reactor. Recent industry requests for future pre application interaction include General Atomics' Gas Turbine-Modular Helium Reactor (GT-MHR) and Westinghouse International Reactor Innovative and Secure (IRIS) design. RES advanced reactors activities also include participation as an observer in DOE's Generation IV initiative. Pre-Application review objectives include the development of regulatory guidance, licensing approach, and technology-basis expectations for licensing advanced designs, including identifying significant technology, design, safety, licensing and policy issues that would need to be addressed in the licensing process. The presentation described the pre-application process for the Exelon PBMR. NRC first identifies additional information following topical meetings with Exelon, and Exelon formally documents and submits required topical Information. The staff then develops a preliminary assessment and drafts a response which is followed by stakeholder input and comments at a public workshop. Preliminary assessments are discussed with ACRS and ACNW, and Commission papers are written which provide staff positions and recommendations on proposed policy decisions. Some of the significant areas for the PBMR include: Process Issues, Legal and Financial Issues; Regulatory Framework; Fuel Performance and Qualification; Traditional Engineering Design (e.g, Nuclear, Thermal-Fluid, Materials); Fuel Cycle Safety Areas; PRA, SSC Safety Classification; PBMR Prototype Testing

  10. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  11. Preliminary assessment of Geant4 HP models and cross section libraries by reactor criticality benchmark calculations

    DEFF Research Database (Denmark)

    Cai, Xiao-Xiao; Llamas-Jansa, Isabel; Mullet, Steven

    2013-01-01

    Geant4 is an open source general purpose simulation toolkit for particle transportation in matter. Since the extension of the thermal scattering model in Geant4.9.5 and the availability of the IAEA HP model cross section libraries, it is now possible to extend the application area of Geant4......, U and O in uranium dioxide, Al metal, Be metal, and Fe metal. The native HP cross section library G4NDL does not include data for elements with atomic number larger than 92. Therefore, transuranic elements, which have impacts for a realistic reactor, can not be simulated by the combination of the HP...... models and the G4NDL library. However, cross sections of those missing isotopes were made available recently through the IAEA project “new evaluated neutron cross section libraries for Geant4”....

  12. The LA-10 Project for complex testing of nuclear incineration systems

    International Nuclear Information System (INIS)

    Hron, M.; Chochlovsky, I.; Lelek, V.; Peka, I.; Valenta, V.

    1997-01-01

    The current proposals for high-active long-lived (more then 10''4 years) waste from spent nuclear fuel disposal call forth an increasing mistrust of society towards nuclear power at all. These problems are highly topical even in the Czech Republic. In 1993, the Czech Republic and the Slovak Republic were constituted instead of the former Czechoslovakia. The first of two operated Czechoslovakian NNPs, the NNP Bohunice together with the only one in that time intermediate storage of spent fuel, remains on the territory of Slovakia and the NPP Dukovany as well as the NPP Temelian (designed with totally 4 x VVER-1000, 2 x VVER-1000 of which are ready for start up in the next few years) are located in the Czech Republic. As a consequence of this political step, the decision was accepted to build up an intermediate storage in the Czech Republic (to put it into operation in 2005) and to store all Dukovany's fuel in transport casks (84 complete fuel assemblies per one cask) on the Dukovany's site territory up to the 600 tons of heavy metal and the move it into the new intermediate storage, which should be designed for the lifetime of about 50-60 years. At about 2030 as a main variant, the final disposal of all spent fuel should be prepared. There is an opinion of a rational part of the Czech nuclear community that the final disposal of spent fuel is only something like fairy-tale for public and that a real technical solution should be found definitely. (Author) 13 refs

  13. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  14. International Working Group on Fast Reactors Sixth Annual Meeting. Summary Report

    International Nuclear Information System (INIS)

    1973-01-01

    The Agenda of the Meeting was as follows: 1. Review of IWGFR Activities - 1a. Approval of the minutes of the Fifth IWGFR Meeting. 1b. Report by Scientific Secretary regarding the activities of the Group. 2. Comments on National Programmes on Fast Breeder Reactors. 3. International Coordination of the Schedule for Major Fast Reactor Meetings and other major international meetings having a predominant fast reactor interest. 4. Consideration of Conferences on Fast Reactors. 4a. IAEA Symposium on Fuel and Fuel Elements for Fast Reactors, Brussels, Belgium 2-6 July 1973. 4b. International Symposium on Physics of Fast Reactors, Tokyo, Japan, 16 to 23 October 1973. 4c. International Conference on Fast Reactor Power Stations, London, UK, 11 to 14 March 1974 . 4d. Suggestions of the IWGFR members on other conferences. 5. Consideration of a Schedule for Specialists' Meetings in 1973-74. 6. Other Business - 6a. First-aid in Sodium Burns. 6b. Principles of Good Practice for Safe Operation of Sodium Circuits. 6c. Bibliography on Fast Reactors. 7. The Date and Place of the Seventh Annual Meeting of the IWGFR

  15. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  16. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  17. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  18. Improvement of research reactor sustainability

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Paunoiu, C.; Toma, C.; Preda, M.; Ionila, M.

    2010-01-01

    The Research Reactors as is well known have numerous applications in a wide range of science technology, nuclear power development, medicine, to enumerate only the most important. The requirements of clients and stack-holders are fluctuating for the reasons out of control of Research Reactor Operating Organization, which may ensure with priority the safety of facility and nuclear installation. Sustainability of Research Reactor encompasses several aspects which finally are concentrated on safety of Research Reactor and economical aspects concerning operational expenses and income from external resources. Ensuring sustainability is a continuous, permanent activity and also it requests a strategic approach. The TRIGA - 14 MW Research Reactor detains a 30 years experience of safe utilization with good performance indicators. In the last 4 years the reactor benefited of a large investment project for modernization, thus ensuring the previous performances and opening new perspectives for power increase and for new applications. The previous core conversion from LEU to HEU fuel accomplished in 2006 ensures the utilization of reactor based on new qualified European supplier of TRIGA LEU fuel. Due to reduction of number of performed research reactors, the 14 MW TRIGA modernized reactor will play a significant role for the following two decades. (author)

  19. Fukushima - calculation of the reactor core inventory and storage pools Dai-ichi 1 to Dai-ichi 4, an estimation of a source term

    International Nuclear Information System (INIS)

    Krpelanova, M.; Carny, P.

    2011-01-01

    Inventory of the reactor core and spent fuel storage pool of the reactors at Dai-ichi 1 to Dai-ichi 4 was determined to need a realistic estimate of the source (released into the atmosphere environment) and modelling of radiological impact of the events in Fukushima NPP. Calculations of inventories were carried out by the methodology that is used in systems to support emergency response and crisis management anymore. Calculations were made based on a model that respects knowledge of real fuels and fuel cycles for individual reactors Dai-ichi. Necessary input data for training the model and calculate inventories are obtained from the IAEA PRIS database.

  20. Safety philosophy and safety technology of the Soviet RBMK reactors

    International Nuclear Information System (INIS)

    Zuend, H.; Jarvis, A.S.; Haennis, H.P.; Tikal, J.

    1986-01-01

    Safety requirements and control in USSR are outlined. Safety criteria and practical application in the case of the RBMK type reactor Chernobyl-4 are discussed. An overview of the Chernobyl-4 reactor accident including its causes is given. Measures to improve the safety of RBMK reactors are described

  1. Calculation of photon dose for Dalat research reactor in case of loss of reactor tank water

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2007-01-01

    Photon sources of actinides and fission products were estimated by ORIGEN2 code with the modified cross-section library for Dalat research reactor (DRR) using new cross-section generated by WIMS-ANL code. Photon sources of reactor tank water calculated from the experimental data. MCNP4C2 with available non-analog Monte Carlo model and ANSI/ANL-6.1.1-1977 flux-to-dose factors were used for dose estimation. The agreement between calculation results and those of measurements showed that the methods and models used to get photon sources and dose were acceptable. In case the reactor water totally leaks out from the reactor tank, the calculated dose is very high at the top of reactor tank while still low in control room. In the reactor hall, the operation staffs can access for emergency works but with time limits. (author)

  2. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  3. BOLD/VENTURE-4, Reactor Analysis System with Sensitivity and Burnup

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of program or function: The system of codes can be used to solve nuclear reactor core static neutronics and reactor history exposure problems. BOLD/VENTURE-4: First order perturbation and time-dependent sensitivity theories can be applied. Control rod positioning may be modeled explicitly and refueling treated with repositioning and recycle. Special capability is coded to model the continuously fueled core and to solve the importance and dominant harmonics problems. The modules of the code system are: VENTNEUT: VENTURE neutronics module; DRIVER and CONTRL: Control module; BURNER: Exposure calculation for reactor core analysis; FILEDTOR: File editor; INPROSER: Input processor; EXPOSURE: BURNER code module; REACRATE: Reaction rate calculation; CNTRODPO: Control rod positioning; FUELMANG: Fuel management positioning and accounting; PERTUBAT: Perturbation reactivity importance analyses; sensitivity analysis; DEPTHMOD: Static and time-dependent perturbation sensitivity analysis. The special processors are: DVENTR: Handles the input to the VENTURE module; DCMACR: Converts CITATION macroscopic cross sections to microscopic cross sections; DCRSPR: Produces input for the CROSPROS module; DUTLIN: Adds or replaces problem input data without exiting the program; DENMAN: Repositions fuel; DMISLY: Miscellaneous tasks. Standard interface files between modules are binary sequential files that follow a standardized format. VENTURE-PC: The microcomputer version is a subset of the mainframe version. The modules and special processors which are not part of VENTURE-PC are: REACRATE, CNTRODPO, PERTUBAT, FUELMANG, DEPTHMOD, DMISLY. 2 - method of solution: BOLD-VENTURE-4: The neutronics problems are solved by applying the multigroup diffusion theory representation of neutron transport applying an over-relaxation inner iteration, outer iteration scheme. Special modeling is used or source correction is done during iteration to solve importance and harmonics problems. No

  4. International topical meeting. Research Reactor Fuel Management (RRFM) and meeting of the International Group on Reactor Research (IGORR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear research and test reactors have been in operation for over 60 years, over 270 research reactors are currently operating in more than 50 countries. This meeting is dedicated to different aspects of research reactor fuels: new fuels for new reactors, the conversion to low enriched uranium fuels, spent fuel management and computational tools for core simulation. About 80 contributions are reported in this document, they are organized into 7 sessions: 1) international topics and overview on new projects and fuel, 2) new projects and upgrades, 3) fuel development, 4) optimisation and research reactor utilisation, 5) innovative methods in research reactors physics, 6) safety, operation and research reactor conversion, 7) fuel back-end management, and a poster session. Experience from Australian, Romanian, Libyan, Syrian, Vietnamese, South-African and Ghana research reactors are reported among other things. The Russian program for research reactor spent fuel management is described and the status of the American-driven program for the conversion to low enriched uranium fuels is presented. (A.C.)

  5. Radiological protection in nucleus reactor; Perlindungan radiologi di reaktor nukleus

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: radiological protection problems of reactor 1. in operation 2. types of reactor i.e. power reactors, research reactors, etc. 3. during maintenance and installation of fuels. 4. nuclear fuels.

  6. Development of a helical-coil double wall tube steam generator for 4S reactor

    International Nuclear Information System (INIS)

    Kitajima, Yuko; Maruyama, Shigeki; Jimbo, Noboru; Hino, Takehisa; Sato, Katsuhiko

    2011-01-01

    The 4S, Super-Safe Small and Simple, is a small-sized sodium-cooled fast reactor. A fast reactor usually uses sodium as a coolant to transfer heat from core to turbine/generator system. The heat of the intermediate heat transport system and that of the water stream systems are exchanged by the steam generator (SG) tubes. If the tube failure occurs, a sodium/water reaction could be occurred. To prevent the reaction and enhance safety, a helical-coil-type double wall tube with wire mesh interlayer and continuous monitoring systems of tube failure are applied to the SG of the 4S. The development and general features of this type double wall tube were described in Ref. 1) and Ref. 2). Those paper summarized following results; The tubes studied in these references were straight type. To establish this SG, development of manufacturing method of helical-coil-type double wall tube and validation of the tube failure monitoring system are needed. In this study, three demonstration tests have been performed; welding test of the double wall tube to manufacture the tubes with 70-80m length, assembling test of the helical-coil tube, and confirmation test of the tube processing system using the fabricated helical-coil tubes. As a result, following technologies have been successfully established. (1) Development of the welding techniques for manufacturing of the helical-coil-type double wall tube with wire mesh interlayer. (2) The confirmation test for manufacturing the helical coil tube of the SG. (author)

  7. Contribution to the improvement of the evaluation methods of nuclear heating in reactors by using the Monte Carlo code TRIPOLI-4

    International Nuclear Information System (INIS)

    Peron, Arthur

    2014-01-01

    Technological irradiation programs carried out in experimental reactors are crucial for the support of the current nuclear fleet in terms of study and anticipation of the behavior under irradiation of fuels and structural materials. These programs make it possible to improve the safety of the current reactors and also to study materials for the new concepts of reactors. Irradiation conditions of materials in experimental reactors must be representative of those of nuclear power plants (NPPs). One of the main advantages of material testing reactors (MTRs) is to be able to carry out instrumented irradiations by adjusting experimental parameters, in particular the neutron flux and the temperature. The control of the parameter temperature of a device irradiated in an experimental reactor requires the knowledge of the nuclear heating (source term) due to the deposition of energy of the photons and the neutrons interacting in the device. A relevant evaluation of this heating is a key data for the thermal studies of design and safety of devices. The objective of this thesis is to improve the methods of the evaluation of nuclear heating in reactors. This work consists of the development of an innovating and complete coupled neutron-photon calculation scheme (allowing to obtain the contribution of neutrons, prompt gamma and decay gamma), mainly based on the 3D, continuous energy TRIPOLI-4 Monte Carlo transport code. An experimental validation of the calculation scheme has been performed, based on calorimetry measurements carried out in the OSIRIS reactor at CEA Saclay. Sensitivity studies have been undertaken to establish the impact of various parameters on nuclear heating calculations (in particular nuclear data) and to fix the final calculation scheme to be closer to the technological irradiation aspects. The thesis work leads to an operational and predictive tool for the nuclear heating estimation, meeting the experimentation needs of research reactors and can be

  8. Corrosion of reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-01-15

    Much operational experience and many experimental results have accumulated in recent years regarding corrosion of reactor materials, particularly since the 1958 Geneva Conference on the Peaceful Uses of Atomic Energy, where these problems were also discussed. It was, felt that a survey and critical appraisal of the results obtained during this period had become necessary and, in response to this need, IAEA organized a Conference on the Corrosion of Reactor Materials at Salzburg, Austria (4-9 June 1962). It covered many of the theoretical, experimental and engineering problems relating to the corrosion phenomena which occur in nuclear reactors as well as in the adjacent circuits

  9. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  10. Magnetite nanoparticles enhance the performance of a combined bioelectrode-UASB reactor for reductive transformation of 2,4-dichloronitrobenzene.

    Science.gov (United States)

    Wang, Caiqin; Ye, Lu; Jin, Jie; Chen, Hui; Xu, Xiangyang; Zhu, Liang

    2017-09-04

    Direct interspecies electron transfer (DIET) among the cometabolism microbes plays a key role in the anaerobic degradation of persistent organic pollutants and stability of anaerobic bioreactor. In this study, the COD removal efficiency increased to 99.0% during the start-up stage in the combined bioelectrode-UASB system (R1) with magnetite nanoparticles addition, which was higher than those in the coupled bioelectrode-UASB (R2; 83.2%) and regular UASB (R3; 71.0%). During the stable stage, the increase of 2,4-dichloronitrobenzene (2,4-DClNB) concentration from 25 mg L -1 to 200 mg L -1 did not affect the COD removal efficiencies in R1 and R2, whereas the performance of R3 was deteriorated obviously. Further intermediates analysis indicated that magnetite nanoparticles enhanced the reductive dechlorination of 2,4-DClNB. High-throughput sequencing results showed that the functional microbes like Syntrophobacter and Syntrophomonas which have been reported to favor the DIET, were predominant on the cathode surface of R1 reactor. It is speculated that the addition of magnetite nanoparticles favors the cooperative metabolism of dechlorinating microbes and electricigens during 2,4-DClNB degradation process in the combined bioelectrode-UASB reactor. This study may provide a new strategy to improve the performance of microbial electrolysis cells and enhance the pollutant removal efficiency.

  11. Development of an innovative reflector drive mechanism using magnetic repulsion force for 4S reactor

    International Nuclear Information System (INIS)

    Tsuji, K.; Watanabe, M.; Inagaki, H.; Nishikawa, A.; Takahashi, H.; Wakamatsu, M.; Matsumiya, H.; Nishiguchi, Y.

    2001-01-01

    A small sized fast reactor 4S: (Super Safe Small and Simple) which has a core of 10 - 30 years life time is controlled by reflectors. The reflector is required to be risen at very low speed to make up for the reactivity swing during operation. This report shows the development of an innovative reflector drive mechanism using magnetic repulsion force that can move at a several micrometer per one step. This drive mechanism has a passive shut down capability, and can eliminate reflector drive line. (author)

  12. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  13. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  14. Evaluation of tritium production rate in a gas-cooled reactor with continuous tritium recovery system for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Hideaki, E-mail: mat@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Nakaya, Hiroyuki; Nakao, Yasuyuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Shimakawa, Satoshi; Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki 311-1393 (Japan); Nishikawa, Masabumi [Graduate School of Engineering Science, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2013-10-15

    Highlights: • The performance of a gas-cooled reactor as a tritium production system was studied. • A continuous tritium recovery using helium gas was considered. • Gas-cooled reactors with 3 GW output in all can produce ∼6 kg of tritium in a year • Performance of the system was examined for Li{sub 4}SiO{sub 4}, Li{sub 2}TiO{sub 3} and LiAlO{sub 2} compounds. -- Abstract: The performance of a high-temperature gas-cooled reactor as a tritium production with continuous tritium recovery system is examined. A gas turbine high-temperature reactor of 300-MWe (600 MW) nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations for the three-dimensional entire-core region of the GTHTR300 were performed. A Li loading pattern for the continuous tritium recovery system in the gas-cooled reactor is presented. It is shown that module gas-cooled reactors with a total thermal output power of 3 GW in all can produce ∼6 kg of tritium maximum in a year.

  15. Effect of increased fuel exploitation on the main characteristics of spent WWER 440 fuel

    International Nuclear Information System (INIS)

    Zib, A.

    2001-01-01

    The article deals with the effect of a higher fuel exploitation on the main characteristics (particularly radioactivity and decay heat power) of spent WWER 440 fuel. The main characteristics were calculated by using the Origen code. The study was implemented as a three-stage process. In the first stage, the radioactivity and residual thermal power time evolution values were calculated for the 'typical fuel', i. e. fuel assembly with initial enrichment of 3.6% U-235, 3 years in reactor, and burnup of 30 MWd/kg U. In the second stage, ceteris paribus radioactivity and thermal power analyses of sensitivity to changes in the fuel burnup, initial fuel enrichment, and time in reactor were carried out for the typical fuel assembly. In the third stage, the effect of changes in all three variables was investigated for fuel assemblies possessing parameters that approach those applied at the Dukovany NPP. The effect of a higher fuel exploitation on the interim fuel storage is also mentioned. (author)

  16. SCORPIO - VVER core surveillance system

    International Nuclear Information System (INIS)

    Zalesky, K.; Svarny, J.; Novak, L.; Rosol, J.; Horanes, A.

    1997-01-01

    The Halden Project has developed the core surveillance system SCORPIO which has two parallel modes of operation: the Core Follow Mode and the Predictive Mode. The main motivation behind the development of SCORPIO is to make a practical tool for reactor operators which can increase the quality and quantity of information presented on core status and dynamic behavior. This can first of all improve plant safety as undesired core conditions are detected and prevented. Secondly, more flexible and efficient plant operation is made possible. So far the system has only been implemented on western PWRs but the basic concept is applicable to a wide range of reactor including WWERs. The main differences between WWERs and typical western PWRs with respect to core surveillance requirements are outlined. The development of a WWER version of SCORPIO was initiated in cooperation with the Nuclear Research Institute at Rez and industry partners in the Czech Republic. The first system will be installed at the Dukovany NPP. (author)

  17. PSA analysis focused on Mochovce NPP safety measures evaluation from operational safety point of view

    International Nuclear Information System (INIS)

    Cillik, I.; Vrtik, L.

    2001-01-01

    Mochovce NPP consists of four reactor units of WWER 440/V213 type and it is located in the south-middle part of Slovakia. At present first unit operated and the second one under the construction finishing. As these units represent second generation of WWER reactor design, the additional safety measures (SM) were implemented to enhance operational and nuclear safety according to the recommendations of performed international audits and operational experience based on exploitation of other similar units (as Dukovany and J. Bohunice NPPs). These requirements result into a number of SMs grouped according to their purpose to reach recent international requirements on nuclear and operational safety. The paper presents the bases used for safety measures establishing including their grouping into the comprehensive tasks covering different areas of safety goals as well as structural organization of a project management of including participating companies and work performance. More, results are given regarding contribution of selected SMs to the total core damage frequency decreasing.(author)

  18. Mochovce NPP safety measures evaluation from point of view of operational safety enhancement

    International Nuclear Information System (INIS)

    Cillik, I.; Vrtik, L.

    2000-01-01

    Mochovce NPP consists of four reactor units of WWER 440/V213 type and it is located in the south-middle part of Slovakia. At present first unit operated and the second one under the construction finishing. As these units represent second generation of WWER reactor design, the additional safety measures (SM) were implemented to enhance operational and nuclear safety according to the recommendations of performed international audits and operational experience based on exploitation of other similar units (as Dukovany and J. Bohunice NPPs). These requirements result into a number of SMs grouped according to their purpose to reach recent international requirements on nuclear and operational safety. The paper presents the bases used for safety measures establishing including their grouping into the comprehensive tasks covering different areas of safety goals as well as structural organization of a project management of including participating companies and work performance. More, results are given regarding contribution of selected SMs to the total core damage frequency decreasing. (author)

  19. Reactor-vessel-sectioning demonstration

    International Nuclear Information System (INIS)

    Lundgren, R.A.

    1981-07-01

    A successful technical demonstration of simulated reactor vessel sectioning was completed using the combined techniques of air arc gouging and flame cutting. A 4-ft x 3-ft x 9-in. thick sample was fabricated of A36 carbon steel to simulate a reactor vessel wall. A 1/4-in layer of stainless steel (SS) was tungsten inert gas (TIG)-welded to the carbon steel. Several techniques were considered to section the simulated reactor vessel: an air arc gouger was chosen to penetrate the stainless steel, and flame cutting was selected to sever the carbon steel. After the simulated vessel was successfully cut from the SS side, another cut was made, starting from the carbon steel side. This cut was also successful. Cutting from the carbon steel side has the advantages of cost reduction since the air arc gouging step is eliminated and contamination controlled because the molten metal is blown inward

  20. Reactor-vessel-sectioning demonstration

    International Nuclear Information System (INIS)

    Lundgren, R.A.

    1981-09-01

    A technical demonstration was successfully completed of simulated reactor vessel sectioning using the combined techniques of air arc gouging and flame cutting. A 4-ft x 3-ft x 9-in. thick sample was fabricated of A36 carbon steel to simulate a reactor vessel wall. A 1/4-in. layer of stainless steel (SS) was tungsten inert gas (TIG)-welded to the carbon steel. Several techniques were considered to section the simulated reactor vessel; air arc gouging was selected to penetrate the stainless steel, and flame cutting was selected to sever the carbon steel. Three sectioning operations were demonstrated. For all three, the operating parameters were the same; but the position of the sample was varied. For the first cut, the sample was placed in a horizontal position, and it was successfully severed from the SS side. For the second cut, the sample was turned over and cut from the carbon steel side. Cutting from the carbon steel side has the advantages of cost reduction

  1. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  2. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Science.gov (United States)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  3. PRELIMINARY RESULTS OF THE AGC-4 IRRADIATION IN THE ADVANCED TEST REACTOR AND DESIGN OF AGC-5 (HTR16-18469)

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gas Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation results

  4. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  5. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  6. How many reactor accidents will there be

    International Nuclear Information System (INIS)

    Islam, S.; Lindgren, K.

    1986-01-01

    A method for calculation of the probability of nuclear accidents is described. The method is based on the use of data from reactor operating experience, i.e. there have been two major accidents [Three Mile Island and Chernobyl] during 4,000 reactor-years (cumulative operating experience). The authors argue that this method is better than the present ''technical risk assessment'' method based on the likelihood of failure of a reactor component or safety system, used by designers of nuclear reactor. (U.K.)

  7. Temelin 3,4 Siting

    International Nuclear Information System (INIS)

    Kubanova, Iva; Fuzer, Jiri

    2011-01-01

    In the future the Czech Republic will need new energetic resources in spite of current decrease of electricity consumption due to economical crisis. Nuclear power generation is considered as important part of energetic mix of the Czech Republic and this opinion is newly reflected in new government official statement issued in August 2010. CEZ, a. s. prepares new nuclear power plants projects accordingly governmental expectations. Currently 3 projects are in preparation. Temelin 3, 4 project is in the most advanced status, tender is in progress. Potential construction of Dukovany unit 5 and new Jaslovske Bohunice units are analyzed in feasibility studies. Temelin 3, 4 project activities were started 4 years ago. Preparatory analyses, market investigation, feasibility study including many particular studies were elaborated in years 2006-2008. Later on decision to work on bid invitation specification was done and followed. EIA process was started in July 2008 by Intention Announcement and continues. Public tender for EPC contract was announced in August 2009 and it is in progress accordingly schedule. Siting process is in the initial stage. EIA process started in July 2008 through Intention Announcement in spite of anti - nuclear political climate in the Czech Republic. EIA process is interstate process, Austria and Germany participate. Investigation Process Protocol was issued by Ministry of Environment in February 2009 with 34 main conditions and 165 additional comments, requirements, statements. CEZ, a. s. adopted the positive approach with philosophy to deal with all conditions and requirements properly. Elaboration of EIA documentation took 18 months. In May 2010 CEZ, a. s. handed over the EIA documentation to the Ministry of Environment and consequently all legal steps followed including hand-over of EIA documentation to Austria and Germany. In next weeks and months all comments will be gathered by Ministry of Environment and relevant decisions and legal steps

  8. Effect of Co3O4 and CeO2 Infiltration on the Activity of a LSM15/GDC10 Highly Porous Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    The reduction of air pollution has become an international concern over the last ten years because of increases in emissions from mobile and stationary sources. Among these sources, volatile organic compounds (VOC) represent a serious environmental problem, together with NOx, SOx and particulate...... VOC component of Diesel engine exhausts, over a wide range of temperatures. The entire reactor was thought as a highly porous catalytic filter for a possible application in a Diesel exhausts purification system. The porous reactor was used as a backbone for the infiltration of Co3O4 and Co3O4/CeO2...

  9. OPAL- the in-core fuel management code system for WWER reactors

    International Nuclear Information System (INIS)

    Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.; Vlachovsky, K.

    2002-01-01

    Fuel management optimization is a complex problem namely for WWER reactors, which at present are utilizing burnable poisons (BP) to great extent. In this paper, first the concept and methodologies of a fuel management system for WWER 440 (NPP Dukovany) and NPP WWER 1000 (NPP Temelin) under development in Skoda JS a.s. are described and followed by some practical applications. The objective of this advanced system is to minimize fuel cost by preserving all safety constraints and margins. Future enhancements of the system will allow is it to perform fuel management optimization in the multi-cycle mode. The general objective functions of the system are the maximization of EOC reactivity, the maximization of discharge burnup, the minimization of fresh fuel inventory / or the minimization of feed enrichment, the minimization of the BP inventory. There are also safety related constraints, in which the minimization of power peaking plays a dominant role. The core part of the system requires meeting the major objective: maximizing the EOC Keff for a given fuel cycle length and consists of four coupled calculation steps. The first is the calculation of a Loading Priority Scheme (LPS). which is used to rank the core positions in terms of assembly Kinf values. In the second step the Haling power distribution is calculated and by using fuel shuffle and/or enrichment splitting algorithms and heuristic rules the core pattern is modified to meet core constraints. In this second step a directive/evolutionary algorithm with expert rules based optimization code is used. The optimal BP assignment is alternatively considered to be a separate third step of the procedure. In the fourth step the core is depleted in normal up to 3D pin wise level using the BP distribution developed in step three and meeting all constraints is checked. One of the options of this optimization system is expert friendly interactive mode (Authors)

  10. Research and development of a super fast reactor (12). Considerations for the reactor characteristics

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishiwatari, Yuki; Oka, Yoshiaki

    2008-01-01

    A research program aimed at developing the Super Fast Reactor (Super FR) has been entrusted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan since December 2005. It includes the following three projects. (A) Development of the Super Fast Reactor concept. (B)Thermal-hydraulic experiments. (C) Materials development. Tokyo Electric Power Company (TEPCO) has joined this program and works on part (A) together with the University of Tokyo. From the utility's viewpoint, it is important to consider the most desirable characteristics for Super FR to have. Four issues were identified in project (A), (1) Fuel design, (2) Reactor core design, (3) Safety, and (4) Plant characteristics of Super FR. This report describes the desired characteristics of Super FR with respect to item (1) fuel design and item (2) Reactor core design, as compared with a boiling water reactor (BWR) plant. The other two issues will be discussed in this project, and will also be considered in the design process of Super FR. (author)

  11. Deposition of RuO 4 on various surfaces in a nuclear reactor containment

    Science.gov (United States)

    Holm, Joachim; Glänneskog, Henrik; Ekberg, Christian

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  12. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  13. Final report for the 1st ex-vessel neutron dosimetry installation and evaluations for Kori unit 4 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 4 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 16 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 4 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 16.

  14. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  15. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Directory of Open Access Journals (Sweden)

    Guidez Joel

    2017-01-01

    In the case of sodium-cooled fast reactors (SFRs, the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction. From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  16. Inter renewal travelling wave reactor with rotary fuel columns

    International Nuclear Information System (INIS)

    Terai, Yuzo

    2016-01-01

    To realize the COP21 decision, this paper proposes Inter Renewal Travelling Wave Reactor that bear high burn-up rate 50% and product TRU fuel efficiently. The reactor is based on 4S Fast Reactor and has Reactor Fuel Columns as fuel assemblies that equalize temperature in the fuel assembly so that fewer structure is need to restrain thermal transformation. To equalize burn-up rate of all fuel assemblies in the reactor, each rotary fuel column has each motor-lifter. The rotary fuel column has two types (Cylinder type and Heat Pipe type using natrium at 15 kPa which supply high temperature energy for Ultra Super Critical power plant). At 4 years cycle all rotary fuel columns of the reactor are renewed by the metallurgy method (vacuum re-smelting) and TRU fuel is gotten from the water fuel. (author)

  17. BWR [boiling-water reactor] and PWR [pressurized-water reactor] off-normal event descriptions

    International Nuclear Information System (INIS)

    1987-11-01

    This document chronicles a total of 87 reactor event descriptions for use by operator licensing examiners in the construction of simulator scenarios. Events are organized into four categories: (1) boiling-water reactor abnormal events; (2) boiling-water reactor emergency events; (3) pressurized-water reactor abnormal events; and (4) pressurized-water reactor emergency events. Each event described includes a cover sheet and a progression of operator actions flow chart. The cover sheet contains the following general information: initial plant state, sequence initiator, important plant parameters, major plant systems affected, tolerance ranges, final plant state, and competencies tested. The progression of operator actions flow chart depicts, in a flow chart manner, the representative sequence(s) of expected immediate and subsequent candidate actions, including communications, that can be observed during the event. These descriptions are intended to provide examiners with a reliable, performance-based source of information from which to design simulator scenarios that will provide a valid test of the candidates' ability to safely and competently perform all licensed duties and responsibilities

  18. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  19. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  20. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  1. The corrosion of Zircaloy-4 fuel cladding in pressurized water reactors

    International Nuclear Information System (INIS)

    Van Swam, L.F.P.; Shann, S.H.

    1991-01-01

    This paper reports on the effects of thermo-mechanical processing of cladding on the corrosion of Zircaloy-4 in commercial PWRs that have been investigated. Visual observations and nondestructive measurements at poolside, augmented by observations in the hot cell, indicate that the initial black oxide transforms into a grey or tan later white oxide layer at a thickness of 10 to 15 μm independent of the thermal processing history of the tubing. At an oxide layer thickness of 60 to 80 μm, the oxide may spall depending somewhat on the particular oxide morphology formed and possibly on the frequency of power and temperature changes of the fuel rods. Because spalling of oxide lowers the metal-to-oxide interface temperature of fuel rods, it reduces the corrosion rate and is beneficial from that point of view. To determine the effect of thermo-mechanical processing on in-reactor corrosion of Zircaloy-4, oxide thickness measurements at poolside and in the hot cell have been analyzed with the MATPRO corrosion model. A calibrated corrosion parameter in this model provides a measure of the corrosion susceptibility of the Zircaloy-4 cladding. It was found necessary to modify the MATPRO equations with a burnup dependent term to obtain a near constant value of the corrosion parameter over a burnup range of approximately 10 to 45 MWd/kgU. Different calculational tests were performed to confirm that the modified model accurately predicts the corrosion behavior of fuel rods

  2. Isothermal calorimeter for reactor radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Radak, B; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Odeljenje za radijacionu hemiju, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    An isothermal calorimeter with thermistors for measuring absorbed dose rates from 10{sup 4}-5-6.10{sup 5} rad/h in reactor experimental holes has been designed. A kinetics method for determining the equilibrium temperature difference has been developed, and its application in isothermal calorimetry proved. The expected accuracy in measurements within {+-} 2-5% has been proved by measurements carried out in the reactor. Some data obtained by measurements in the reactor RA are presented (author)

  3. Advanced designs of VVER reactor plant

    International Nuclear Information System (INIS)

    Mokhov, V.A.

    2010-01-01

    The history of VVER reactors, current challenges and approaches to the challenges are highlighted. The VVER-1200 reactor of 3+ generation for AES-2006 units are under construction at the Leningrad 2 nuclear power plant (LNPP-2). The main parameters are listed and details are presented of the vessel, steam generator, and improved fuel. The issue of the NPP safety is discussed. Additional topics include the MIR-1200 reactor unit, VVER-600, and VVER-SCP (Generation 4). (P.A.)

  4. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  5. Proceedings of the advisory committee on reactor safeguards workshop on future reactors

    International Nuclear Information System (INIS)

    2001-12-01

    This report contains the information presented at the Advisory Committee on Reactor Safeguards Workshop on Future Reactors held at the Nuclear Regulatory Commission headquarters in Rockville, Maryland, on June 4-5, 2001. Included are the subject matter summaries, followed by the presentation material and selected participants discussions. The primary purpose of the workshop was to identify the regulatory challenges associated with future reactor designs. A list of such challenges was developed from the workshop notes, the various presentations, the panel discussions and the question and answer sessions. This list is included in the Introduction section of this document. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final workshop agenda

  6. Proceedings of the advisory committee on reactor safeguards workshop on future reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    This report contains the information presented at the Advisory Committee on Reactor Safeguards Workshop on Future Reactors held at the Nuclear Regulatory Commission headquarters in Rockville, Maryland, on June 4-5, 2001. Included are the subject matter summaries, followed by the presentation material and selected participants discussions. The primary purpose of the workshop was to identify the regulatory challenges associated with future reactor designs. A list of such challenges was developed from the workshop notes, the various presentations, the panel discussions and the question and answer sessions. This list is included in the Introduction section of this document. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final workshop agenda.

  7. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor.

    Science.gov (United States)

    Dong, Bin; Huang, Xiani; Yang, Xiaogang; Li, Guang; Xia, Lan; Chen, George

    2017-11-01

    A joint chemical reactor system referred to as an ultrasonic-intensified micro-impinging jetting reactor (UIJR), which possesses the feature of fast micro-mixing, was proposed and has been employed for rapid preparation of FePO 4 particles that are amalgamated by nanoscale primary crystals. As one of the important precursors for the fabrication of lithium iron phosphate cathode, the properties of FePO 4 nano particles significantly affect the performance of the lithium iron phosphate cathode. Thus, the effects of joint use of impinging stream and ultrasonic irradiation on the formation of mesoporous structure of FePO 4 nano precursor particles and the electrochemical properties of amalgamated LiFePO 4 /C have been investigated. Additionally, the effects of the reactant concentration (C=0.5, 1.0 and 1.5molL -1 ), and volumetric flow rate (V=17.15, 51.44, and 85.74mLmin -1 ) on synthesis of FePO 4 ·2H 2 O nucleus have been studied when the impinging jetting reactor (IJR) and UIJR are to operate in nonsubmerged mode. It was affirmed from the experiments that the FePO 4 nano precursor particles prepared using UIJR have well-formed mesoporous structures with the primary crystal size of 44.6nm, an average pore size of 15.2nm, and a specific surface area of 134.54m 2 g -1 when the reactant concentration and volumetric flow rate are 1.0molL -1 and 85.74mLmin -1 respectively. The amalgamated LiFePO 4 /C composites can deliver good electrochemical performance with discharge capacities of 156.7mAhg -1 at 0.1C, and exhibit 138.0mAhg -1 after 100 cycles at 0.5C, which is 95.3% of the initial discharge capacity. Copyright © 2017. Published by Elsevier B.V.

  8. A global model for gas cooled reactors for the Generation-4: application to the Very High Temperature Reactor (VHTR)

    International Nuclear Information System (INIS)

    Limaiem, I.

    2006-12-01

    Gas cooled high temperature reactor (HTR) belongs to the new generation of nuclear power plants called Generation IV. The Generation IV gathers the entire future nuclear reactors concept with an effective deployment by 2050. The technological choices relating to the nature of the fuel, the moderator and the coolant as well as the annular geometry of the core lead to some physical characteristics. The most important of these characteristics is the very strong thermal feedback in both active zone and the reflectors. Consequently, HTR physics study requires taking into account the strong coupling between neutronic and thermal hydraulics. The work achieved in this Phd consists in modeling, programming and studying of the neutronic and thermal hydraulics coupling system for block type gas cooled HTR. The coupling system uses a separate resolution of the neutronic and thermal hydraulics problems. The neutronic scheme is a double level Transport (APOLLO2) /Diffusion (CRONOS2) scheme respectively on the scale of the fuel assembly and a reactor core scale. The thermal hydraulics model uses simplified Navier Stokes equations solved in homogeneous porous media in code CAST3M CFD code. A generic homogenization model is used to calculate the thermal hydraulics parameters of the porous media. A de-homogenization model ensures the link between the porous media temperatures of the temperature defined in the neutronic model. The coupling system is made by external procedures communicating between the thermal hydraulics and neutronic computer codes. This Phd thesis contributed to the Very High Temperature Reactor (VHTR) physics studies. In this field, we studied the VHTR core in normal operating mode. The studies concern the VHTR core equilibrium cycle with the control rods and using the neutronic and thermal hydraulics coupling system. These studies allowed the study of the equilibrium between the power, the temperature and Xenon. These studies open new perspective for core

  9. Managing severe reactor accidents. A review and evaluation of our knowledge on reactor accidents and accident management

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    2002-11-01

    The report gives a review of the results from the last years research on severe reactor accidents, and an opinion on the possibilities to refine the present strategies for accident management in Swedish and Finnish BWRs. The following aspect of reactor accidents are the major themes of the study: 1. Early pressure relief from hydrogen production; 2. Recriticality in re-flooded, degraded core; 3. Melt-through; 4. Steam explosion after melt-through; 5. Coolability of the melt after after melt-through; 6. Hydrogen fire in the reactor containment; 7. Leaking containment; 8. Hydrogen fire in the reactor building; 9. Long-time developments after a severe accident; 10. Accidents during shutdown for overhaul; 11. Information need for remedial actions. Possibilities for improving the strategies in each of these areas are discussed. The review shows that our knowledge is sufficient in the areas 1, 2, 4, 6, 8. For the other areas, more research is needed

  10. Calculation of the power distribution in the fuel rods of the low power research reactor using the MCNP4C code

    International Nuclear Information System (INIS)

    Dawahra, S.; Khattab, K.

    2011-01-01

    Highlights: → The MCNP4C code was used to calculate the power distribution in 3-D geometry in the MNSR reactor. → The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. → The minimum power was found in the fuel ring number 9 and was 79.9 W. → The total power in the total fuel rods was 30.9 kW. - Abstract: The Monte Carlo method, using the MCNP4C code, was used in this paper to calculate the power distribution in 3-D geometry in the fuel rods of the Syrian Miniature Neutron Source Reactor (MNSR). To normalize the MCNP4C result to the steady state nominal thermal power, the appropriate scaling factor was defined to calculate the power distribution precisely. The maximum power of the individual rod was found in the fuel ring number 2 and was found to be 105 W. The minimum power was found in the fuel ring number 9 and was 79.9 W. The total power in the total fuel rods was 30.9 kW. This result agrees very well with nominal power reported in the reactor safety analysis report which equals 30 kW. Finally, the peak power factors, which are defined as the ratios between the maximum to the average and the maximum to the minimum powers were calculated to be 1.18 and 1.31 respectively.

  11. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor.

    Science.gov (United States)

    Cabrera-Díaz, A; Pereda-Reyes, I; Oliva-Merencio, D; Lebrero, R; Zaiat, M

    2017-12-01

    The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m -3 day -1 with averages of 0.289 m 3 CH 4  kg COD r -1 for the UASB reactor and 4.4 kg COD m -3 day -1 with 0.207 m 3 CH 4  kg COD r -1 for APBR. The OLR played a major role in the emission of H 2 S conducting to relatively stable quality of biogas emitted from the APBR, with H 2 S concentrations <10 mg L -1 . The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH 4 and a lower H 2 S content in biogas.

  12. A new safety approach in the design of fast reactors

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  13. Generation IV reactors: international projects

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Kupitz, J.; Depisch, F.; Hittner, D.

    2003-01-01

    Generation IV international forum (GIF) was initiated in 2000 by DOE (American department of energy) in order to promote nuclear energy in a long term view (2030). GIF has selected 6 concepts of reactors: 1) VHTR (very high temperature reactor system, 2) GHR (gas-cooled fast reactor system), 3) SFR (sodium-cooled fast reactor system, 4) SCWR (super-critical water-cooled reactor system), 5) LFR (lead-cooled fast reactor system), and 6) MFR (molten-salt reactor system). All these 6 reactor systems have been selected on criteria based on: - a better contribution to sustainable development (through their aptitude to produce hydrogen or other clean fuels, or to have a high energy conversion ratio...) - economic profitability, - safety and reliability, and - proliferation resistance. The 6 concepts of reactors are examined in the first article, the second article presents an overview of the results of the international project on innovative nuclear reactors and fuel cycles (INPRO) within IAEA. The project finished its first phase, called phase-IA. It has produced an outlook into the future role of nuclear energy and defined the need for innovation. The third article is dedicated to 2 international cooperations: MICANET and HTR-TN. The purpose of MICANET is to propose to the European Commission a research and development strategy in order to develop the assets of nuclear energy for the future. Future reactors are expected to be more multiple-purposes, more adaptable, safer than today, all these developments require funded and coordinated research programs. The aim of HTR-TN cooperation is to promote high temperature reactor systems, to develop them in a long term perspective and to define their limits in terms of burn-up and operating temperature. (A.C.)

  14. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II [Experimental Breeder Reactor

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs

  15. On alteration of reactor installation (additional installation of No.3 and No.4 plants in the Genkai Nuclear Power Station, Kyushu Electric Power Co., Inc.)

    International Nuclear Information System (INIS)

    1985-01-01

    The Nuclear Safty Commission sent the reply to the Minister of International Trade and Industry on October 4, 1984, on this matter after having received the report from the Committee on Examination of Nuclear Reactor Safety and carried out the deliberation. It was judged that the applicant has the technical capability required for installing and operating these reactor facilities. Also it was judged that on the safety after these reactor plants are installed, there is no obstacle in the prevention of disaster due to contaminated substances and reactors. The policy of the investigation and deliberation is reported. The contents of the investigation and deliberation are the condition of location such as site, geological features and ground, earthquake, weather, hydraulic problem and social environments, the safety design of reactor facilities, the evaluation of radiation exposure dose in normal operation, the analysis of abnormal transient change in operation, accident analysis and the evaluation of location. (Kako, I.)

  16. Practical course on reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-06-01

    This course is based on the description of the instrumentation of the TRIGA-reactor Vienna, which is used for training research and isotope production. It comprises the following chapters: 1. instrumentation, 2. calibration of the nuclear channels, 3. rod drop time of the control rods, 4. neutron flux density measurements using compensated ionization, 5. neutron flux density measurement with fission chambers (FC), 6. neutron flux density measurement with self-powered neutron detectors (SPND), 7. pressurized water reactor simulator, 8. verification of the radiation level during reactor operation. There is one appendix about neutron-sensitive thermocouples. (nevyjel)

  17. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  18. The Simulator Development for RDE Reactor

    Science.gov (United States)

    Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.

  19. Repairing liner of the reactor

    International Nuclear Information System (INIS)

    Aguilar H, F.

    2001-07-01

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.; Struensee, S.

    1976-01-01

    The invention concerns the use of burnable poisons in a nuclear reactor, especially in PWRs, in order to improve the controllability of the reactor. An unsymmetrical arrangement in the lattice is provided, if necessary also by insertion of special rods for these additions. It is proposed to arrange the burnable poisons in fuel elements taken over from a previous burn-up cycle and to distribute them, going out from the side facing the control rods, over not more than 20% of the lenth of the fuel elements. It seems sufficient, for the burnable poisons to bind an initial reactivity of only 0.1% and to become ineffective after normal operation of 3 to 4 months. (ORU) [de

  1. Present status and future perspective of research and test reactors in JAERI

    International Nuclear Information System (INIS)

    Baba, Osamu; Kaieda, Keisuke

    1999-01-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  2. Present status and future perspective of research and test reactors in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Osamu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kaieda, Keisuke

    1999-08-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  3. Three-phase packed bed reactor with an evaporating solvent—I. Experimental: the hydrogenation of 2,4,6-trinitrotoluene in methanol

    NARCIS (Netherlands)

    van Gelder, K.B.; Damhof, J.K.; Kroijenga, P.J.; Westerterp, K.R.

    1990-01-01

    In this paper we present experimental data on the three-phase hydrogenation of 2,4,6-trinitrotoluene (TNT) to triaminotoluene. The experiments are performed in a cocurrent upflow packed bed reactor. Methanol is used as an evaporating solvent. The influence of the main operating parameters, the

  4. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  5. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  6. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  7. Permeated defect detecting test method and device in reactor

    International Nuclear Information System (INIS)

    Sakurai, Yoshishige.

    1996-01-01

    The present invention provides a method of and a device capable of performing a test for entire inner surfaces of the reactor upon periodical inspection of a BWR type reactor while sufficiently taking countermeasures for radiation rays into consideration. Namely, the present invention comprises following steps. (1) A provisional step for taking a shroud head of a reactor core shroud and incore structural components above and below the shroud out of the reactor, discharging reactor water and water tightly closing openings such as reactor wall perforation holes, (2) a pretreatment step for washing exposed inner surfaces of the reactor and peeling deteriorated materials, (3) a first drying step for drying portions washed and peeled in the step (2), (4) a permeation step for applying a permeation liquid of a defect detecting medium on the exposed inner surfaces of the reactor, (5) a permeation liquid removing step for removing the an excess permeation liquid in the step (4), (6) a second drying step for drying corresponding portions after performing the step (5), and (7) a flaw detecting step for optically observing the corresponding portions after performing the step (6) and detecting flaws. (I.S.)

  8. MLR reactor

    International Nuclear Information System (INIS)

    Ryazantsev, E.P.; Egorenkov, P.M.; Nasonov, V.A.; Smimov, A.M.; Taliev, A.V.; Gromov, B.F.; Kousin, V.V.; Lantsov, M.N.; Radchenko, V.P.; Sharapov, V.N.

    1998-01-01

    The Material Testing Loop Reactor (MLR) development was commenced in 1991 with the aim of updating and widening Russia's experimental base to validate the selected directions of further progress of the nuclear power industry in Russia and to enhance its reliability and safety. The MLR reactor is the pool-type one. As coolant it applies light water and as side reflector beryllium. The direction of water circulation in the core is upward. The core comprises 30 FA arranged as hexagonal lattice with the 90-95 mm pitch. The central materials channel and six loop channels are sited in the core. The reflector includes up to 11 loop channels. The reactor power is 100 MW. The average power density of the core is 0.4 MW/I (maximal value 1.0 MW/l). The maximum neutron flux density is 7.10 14 n/cm 2 s in the core (E>0.1 MeV), and 5.10 14 n/cm 2 s in the reflector (E<0.625 eV). In 1995 due to the lack of funding the MLR designing was suspended. (author)

  9. Introduction to reactor internal materials for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,.

  10. Introduction to reactor internal materials for pressurized water reactor

    International Nuclear Information System (INIS)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,

  11. Status of the spent fuel in the reactor buildings of Fukushima Daiichi 1–4

    Energy Technology Data Exchange (ETDEWEB)

    Jäckel, Bernd S., E-mail: bernd.jaeckel@psi.ch

    2015-03-15

    The ratios of the radionuclides Cs-134g and Cs-137 deduced from measurements of liquid samples from the spent fuel pools in Fukushima Daiichi 1–4 are used to interpret the status of the spent fuel assemblies in the pools of the damaged reactor buildings. The different natures of the production of Cs-134g (neutron capture product of Cs-133) and Cs-137 (cumulative fission product from mass chain 137) and the different half-lives (2.06 years and 30.17 years respectively) require a complicated calculation of the mass and activity of the two nuclides. These masses are depending on the local burn up of the fuel, the burn up history and the radioactive decay. Calculation of the neutron capture product Cs-134g is particularly complicated, because the production of Cs-133 (stable cumulative fission product from mass chain 133) has to be taken into account. The neutron capture cross section for Cs-133 for thermal neutrons is well known, but the energy spectrum of the neutrons in a reactor includes higher energies according to the degree of moderation. Therefore the cross section was fitted from a gamma scan of spent fuel rods in a hot cell. The method of the calculation of the nuclide activities and the interpretation of the gamma measurements of the spent fuel pool samples from Fukushima Daiichi 1–4 are described in detail. It could be shown that at most only very minor mechanical damage of some spent fuel elements occurred during the accident and the later phase of the clearing work.

  12. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  13. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  14. Influence of Modelling Options in RELAP5/SCDAPSIM and MAAP4 Computer Codes on Core Melt Progression and Reactor Pressure Vessel Integrity

    Directory of Open Access Journals (Sweden)

    Siniša Šadek

    2010-01-01

    Full Text Available RELAP5/SCDAPSIM and MAAP4 are two widely used severe accident computer codes for the integral analysis of the core and the reactor pressure vessel behaviour following the core degradation. The objective of the paper is the comparison of code results obtained by application of different modelling options and the evaluation of influence of thermal hydraulic behaviour of the plant on core damage progression. The analysed transient was postulated station blackout in NPP Krško with a leakage from reactor coolant pump seals. Two groups of calculations were performed where each group had a different break area and, thus, a different leakage rate. Analyses have shown that MAAP4 results were more sensitive to varying thermal hydraulic conditions in the primary system. User-defined parameters had to be carefully selected when the MAAP4 model was developed, in contrast to the RELAP5/SCDAPSIM model where those parameters did not have any significant impact on final results.

  15. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  16. Progress of the decommissioning process of Musashi Institute of Technology reactor (4)

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Tanzawa, Tomio; Mitsuhashi, Ishi; Morishima, Kayoko; Matsumoto, Tetsuo

    2012-01-01

    The research reactor of Tokyo City University Atomic Energy Research Laboratory (Musashi Institute of Technology reactor) is zirconium-moderated water-cooled solid homogeneous type (TRIGA-II type), and its maximum heat output is 100 kW. It got into the first critical state in January 1963, and since then, it has mainly contributed to education and training for upgrading nuclear engineers, radioactivation analysis and reactor physics, and medical researches, as the joint usage research facilities across Japan. Then, after a long-term suspension, the university submitted the file in 2004 to the Ministry of Education, Culture, Sports, Science and Technology on the dismantling for the purpose of facility abolishment. Through the procedure of submitting a decommissioning plan, it was approved. Furthermore, in order to perform the function stop of the disposal facilities of liquid waste, application for change authorization for the decommissioning plan was submitted and approved. Regarding the progress of the decommissioning plan, the dismantling and removal of waste facilities for liquid waste and solid waste was carried out in FY2011 without any trouble. This paper explains this progress and future work plans. (A.O.)

  17. A friendly Maple module for one and two group reactor model

    International Nuclear Information System (INIS)

    Baptista, Camila O.; Pavan, Guilherme A.; Braga, Kelmo L.; Silva, Marcelo V.; Pereira, P.G.S.; Werner, Rodrigo; Antunes, Valdir; Vellozo, Sergio O.

    2015-01-01

    The well known two energy groups core reactor design model is revisited. A simple and friendly Maple module was built to cover the steps calculations of a plate reactor in five situations: 1. one group bare reactor, 2. two groups bare reactor, 3. one group reflected reactor, 4. 1-1/2 groups reflected reactor and 5. two groups reflected reactor. The results show the convergent path of critical size, as it should be. (author)

  18. A friendly Maple module for one and two group reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Camila O.; Pavan, Guilherme A.; Braga, Kelmo L.; Silva, Marcelo V.; Pereira, P.G.S.; Werner, Rodrigo; Antunes, Valdir; Vellozo, Sergio O., E-mail: camila.oliv.baptista@gmail.com, E-mail: pavanguilherme@gmail.com, E-mail: kelmo.lins@gmail.com, E-mail: marcelovilelasilva@gmail.com, E-mail: rodrigowerner@hotmail.com, E-mail: neutron201566@yahoo.com, E-mail: vellozo@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The well known two energy groups core reactor design model is revisited. A simple and friendly Maple module was built to cover the steps calculations of a plate reactor in five situations: 1. one group bare reactor, 2. two groups bare reactor, 3. one group reflected reactor, 4. 1-1/2 groups reflected reactor and 5. two groups reflected reactor. The results show the convergent path of critical size, as it should be. (author)

  19. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...... into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...... content was only 51.7% without desorption of CO2, while it increased when the liquid of UASB was recycled through the DU. The CH4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63L/h, respectively. The loss of methane due to dissolution...

  20. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  1. Gamma Radiation Assessment In Kartini Reactor And Its Vicinity

    International Nuclear Information System (INIS)

    Yazid, M.; Supriyatni, E.; Maryono; Bastianudin, Aris

    2000-01-01

    Measurement to calculate dose assesment for gamma radiation in Kartini Reactor and its vicinity has been done whether on operated or un operated condition. Measurement was performed using height pressured ionization chamber, Reuther Stokes RS-112 production. Measurement location was determined based on distance variation inwardly and outwardly of reactor building and its vicinity. The result showed that the average dose rate in the reactor building when un operated is in the range of 11.4-38.6 mu rad/hour and when the reactor operated is 166.4-1910.9 mu rad/hour. While the vicinity of the reactor on operated condition the average dose rate is 34.4-38.6 mu rad/hour in un operated condition is 6.9-7.0 mu rad/hour. This result showed that the reactor operated did not rise the radiation exposure level in its vicinity. From the personnel assesment dose rate of gamma radiation is 28.54 mrem/week on operated condition, 0.90 mrem.week on un operated condition. While dose rate outside the reactor is 0.44 and 0.27 mrem/week for operated and un operated condition consecutively. This dose rate is still below maximum permissible dose than recommended by the national regulation of radiation protection from BAPETEN No. 01/Ka.BAPETEN/V-99

  2. Assessment of torsatrons as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Painter, S.L.

    1992-12-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R 0 = 6.6-8.8 m, on-axis magnetic field B 0 = 4.8-7.5 T, B max (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions

  3. BN-1200 Reactor Power Unit Design Development

    International Nuclear Information System (INIS)

    Vasilyev, B.A.; Shepelev, S.F.; Ashirmetov, M.R.; Poplavsky, V.M.

    2013-01-01

    Main goals of BN-1200 design: • Develop a reliable new generation reactor plant for the commercial power unit with fast reactor to implement the first-priority objectives in changing over to closed nuclear fuel cycle; • Improve technical and economic indices of BN reactor power unit to the level of those of Russian VVER of equal power; • Enhance the safety up to the level of the requirements for the 4th generation RP

  4. Neutron dosimetry in EDF experimental surveillance programme for VVER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Brumovsky, M.; Erben, O.; Novosad, P.; Zerola, L.; Hogel, J.; Trollat, C.

    2001-01-01

    Fourteen chains containing experimental surveillance material specimens of the VVER 440/213 nuclear power reactor pressure vessels were irradiated in the surveillance channels of the Nuclear Power Plant Dukovany in the Czech Republic. The irradiation periods were one, two or three cycles. The chains contained different number and types of containers, the omitted ones were replaced by chain elements. All of the containers were instrumented with wire neutron fluence detectors, some of the containers in the chain had spectrometric sets of neutron fluence monitors. For the absolute fluence values evaluation it was taken into account time history of the reactor power and local changes of the neutron flux along the reactor core height, correction factors due to the orientation of monitors with respect to the reactor core centre. Unfolding programs SAND-II or BASA-CF were used. The relative axial fluence distribution was obtained from the O-wire measurements. Neutron fluence values above 0.5 MeV energy and above 1.0 MeV energy in the container axis on the axial positions of the sample centres and fluence values in the geometric centre of the samples was calculated making use the exponential attenuation model of the incident neutron beam. Received fast neutron fluence values can be used as reference values to all VVER-440 type 213 nuclear power plant reactors. (author)

  5. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  6. Comparison of MCNPX-C90 and TRIPOLI-4-D for fuel depletion calculations of a Gas-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Reyes-Ramirez, Ricardo; Martin-del-Campo, Cecilia; Francois, Juan-Luis; Brun, Emeric; Dumonteil, Eric; Malvagi, Fausto

    2010-01-01

    The Gas-cooled Fast Reactor is one of the reactor concepts selected by the Generation IV International Forum for the next generation of innovative nuclear energy systems. Several fuel design concepts are being investigated. Burnup depletion of mixed fuel of uranium and plutonium, cooled with gas in a fast neutron energy spectrum must be simulated. Various codes are being developed and/or adapted to improve the quality of the results, and also to reduce the computing time required for the simulations. The main objective of this work is to compare the fuel depletion results obtained with MCNPX-CINDER90 code and the new TRIPOLI-4-Depletion code (developed by the Commissariat a l'Energie Atomique) of a fuel design concept for the Gas-cooled Fast Reactor. Calculations were made for an equivalent homogeneous model of fuel rods in a hexagonal mesh assembly. Total reflection conditions were applied on the six lateral faces and the two axial faces of the assembly. The materials used in the fuel assembly are: carbide of uranium and plutonium as fuel, silicon carbide as cladding, and helium gas as coolant. JEFF libraries of effective cross sections were used in both codes. Two methods of burnup step calculations were performed with TRIPOLI-4-D, the Euler and the CSADA, and their results were compared with the MCNPX-CINDER90 CSADA method. A period of 300 days of irradiation time was considered, which was divided into 12 steps. Results of the infinite multiplication factor as function of the irradiation time, and the evolution of the isotope concentrations for a selected group of nuclides were compared. The main conclusion is that very similar results were obtained for the three types of depletion calculations which were compared: (1) MCNPX-C90 CSADA; (2) TRIPOLI-4-D CSADA, and (3) TRIPOLI-4-D EULER. The best calculation time was obtained with the TRIPOLI-4-D EULER method, which needed approximately half the time than the other two. In summary, it is sufficiently good to use

  7. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    International Nuclear Information System (INIS)

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  8. Application of JAERI research reactors to education

    International Nuclear Information System (INIS)

    Ogawa, Shigeru; Morozumi, Minoru

    1987-01-01

    At the dawning of the atomic age in Japan, training on reactor operation and reactor engineering experiments has been started in 1958 using JRR-1 (a 50 kW water boiler type reactor with liquid fuel), which was the first research reactor in Japan. The role of the training has been transferred to JRR-4 (a 3500 kW swimming pool type reactor with ETR type fuel) since 1969 due to the decommission of JRR-1. The training courses which have been held are: JRR-1 Short-Term Course for Operation (1958 ∼ 1963) General Course (1961 ∼ ) Reactor Engineering Course (1976 ∼ ) Training Course in Nuclear Technology (International course)(1986 ∼ ). And individual training concerning research reactors for the participants of scientist exchange program sponsored by Science and Technology Agency and of bilateral agreement have been initiated in 1985. The graduates of these courses work as staff members in various fields in nuclear industry. (author)

  9. Application of advanced validation concepts to oxide fuel performance codes: LIFE-4 fast-reactor and FRAPCON thermal-reactor fuel performance codes

    Energy Technology Data Exchange (ETDEWEB)

    Unal, C., E-mail: cu@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Williams, B.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Yacout, A. [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Higdon, D.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-10-15

    Highlights: ► The application of advanced validation techniques (sensitivity, calibration and prediction) to nuclear performance codes FRAPCON and LIFE-4 is the focus of the paper. ► A sensitivity ranking methodology narrows down the number of selected modeling parameters from 61 to 24 for FRAPCON and from 69 to 35 for LIFE-4. ► Fuel creep, fuel thermal conductivity, fission gas transport/release, crack/boundary, and fuel gap conductivity models of LIFE-4 are identified for improvements. ► FRAPCON sensitivity results indicated the importance of the fuel thermal conduction and the fission gas release models. -- Abstract: Evolving nuclear energy programs expect to use enhanced modeling and simulation (M and S) capabilities, using multiscale, multiphysics modeling approaches, to reduce both cost and time from the design through the licensing phases. Interest in the development of the multiscale, multiphysics approach has increased in the last decade because of the need for predictive tools for complex interacting processes as a means of eliminating the limited use of empirically based model development. Complex interacting processes cannot be predicted by analyzing each individual component in isolation. In most cases, the mathematical models of complex processes and their boundary conditions are nonlinear. As a result, the solutions of these mathematical models often require high-performance computing capabilities and resources. The use of multiscale, multiphysics (MS/MP) models in conjunction with high-performance computational software and hardware introduces challenges in validating these predictive tools—traditional methodologies will have to be modified to address these challenges. The advanced MS/MP codes for nuclear fuels and reactors are being developed within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the US Department of Energy (DOE) – Nuclear Energy (NE). This paper does not directly address challenges in calibration

  10. Handbook of nuclear engineering: vol 1: nuclear engineering fundamentals; vol 2: reactor design; vol 3: reactor analysis; vol 4: reactors of waste disposal and safeguards

    CERN Document Server

    2013-01-01

    The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.

  11. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-01-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  12. Reactor shutdown: nuclear power plant performance

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The article essentially looks at the performance of nine of Sweden's nuclear reactors. A table lists the percentage of time for the first three quarters of 1981 that the reactors were operating, and the number of hours out of service for planned or other reasons. In particular, one station - Ringhals 3 - was out of action because of a damaged tube in the associated steam generator. The same fault occurred with another reactor - Ringhals 4 - before this was brought into service. The reasons for the failure and its importance are briefly discussed. (G.P.)

  13. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  14. The CAREM reactor and present currents in reactor design

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1990-01-01

    INVAP has been working on the CAREM project since 1983. It concerns a very low power reactor for electrical energy generation. The design of the reactor and the basic criteria used were described in 1984. Since then, a series of designs have been presented for reactors which are similar to CAREM regarding the solutions presented to reduce the chance of major nuclear accidents. These designs have been grouped under different names: Advanced Reactors, Second Generation Reactors, Inherently Safe Reactors, or even, Revolutionary Reactors. Every reactor fabrication firm has, at least, one project which can be placed in this category. Presently, there are two main currents of Reactor Design; Evolutionary and Revolutionary. The present work discusses characteristics of these two types of reactors, some revolutionary designs and common criteria to both types. After, these criteria are compared with CAREM reactor design. (Author) [es

  15. Status of research reactor spent fuel world-wide: Database summary

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    1996-01-01

    Results complied in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author). 4 refs, 17 figs, 4 tabs

  16. RELAP4/MOD5: a computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems. User's manual. Volume I. RELAP4/MOD5 description. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    RELAP4 is a computer program written in FORTRAN IV for the digital computer analysis of nuclear reactors and related systems. It is primarily applied in the study of system transient response to postulated perturbations such as coolant loop rupture, circulation pump failure, power excursions, etc. The program was written to be used for water-cooled (PWR and BWR) reactors and can be used for scale models such as LOFT and SEMISCALE. Additional versatility extends its usefulness to related applications, such as ice condenser and containment subcompartment analysis. Specific options are available for reflood (FLOOD) analysis and for the NRC Evaluation Model.

  17. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    International Nuclear Information System (INIS)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    Highlights: • A new UASB configuration was developed by coupling with degassing membrane. • In-situ biogas upgrading was achieved with high methane content (>90%). • Decrease of dissolved methane in the anaerobic effluent was achieved. - Abstract: A new technology for in-situ biogas upgrading and recovery of CH 4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO 2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO 2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH 4 content was only 51.7% without desorption of CO 2 , while it increased when the liquid of UASB was recycled through the DU. The CH 4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63 L/h, respectively. The loss of methane due to dissolution in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH 4 concentration in the effluent decreased from higher than 0.94 mM to around 0.13 mM, and thus efficient recovery of CH 4 from the anaerobic effluent was achieved. In the whole operational period, the COD removal efficiency and CH 4 yield were not obviously affected by the gas desorption

  18. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  19. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    Haskin, F.E.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  20. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  1. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  2. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  3. Plasma core reactor applications

    International Nuclear Information System (INIS)

    Latham, T.S.; Rodgers, R.J.

    1976-01-01

    Analytical and experimental investigations are being conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride (UF 6 ) fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Power, in the form of thermal radiation emitted from the high-temperature nuclear fuel, is transmitted through fused-silica transparent walls to working fluids which flow in axial channels embedded in segments of the cavity walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration; each cavity is approximately 1 m in diameter by 4.35 m in length. Axial working fluid channels are located along a fraction of each cavity peripheral wall

  4. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  5. Rapid restoration of methanogenesis in an acidified UASB reactor treating 2,4,6-trichlorophenol (TCP).

    Science.gov (United States)

    Díaz-Báez, María Consuelo; Valderrama-Rincon, Juan Daniel

    2017-02-15

    Anaerobic bioreactors are often used for removal of xenobiotic and highly toxic pollutants from wastewater. Most of the time, the pollutant is so toxic that the stability of the reactor becomes compromised. It is well known that methanogens are one of the most sensitive organisms in the anaerobic consortia and hence the stability of the reactors is highly dependant on methanogenesis. Unfortunately few studies have focused on recovering the methanogenic activity once it has been inhibited by highly toxic pollutants. Here we establish a quick recovery strategy for neutralization of an acidified UASB reactor after failure by intoxication with an excess of TCP in the influent. Once the reactor returned to pH values compatible with methanogenesis, biogas production was re-started after one day and the system was re-acclimated to TCP. Successful removal of TCP from synthetic wastewater was shown for concentrations up to 70mg/L after restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Deposition of RuO{sub 4} on various surfaces in a nuclear reactor containment

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Joachim, E-mail: joachim.holm@chalmers.s [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden); Glaenneskog, Henrik [Ringhals AB, SE-430 22, Vaeroebacka (Sweden); Ekberg, Christian [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden)

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  7. Mirror reactor blankets

    International Nuclear Information System (INIS)

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  8. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  9. Event tree analysis for the system of hybrid reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; Qiu Lijian

    1993-01-01

    The application of probabilistic risk assessment for fusion-fission hybrid reactor is introduced. A hybrid reactor system has been analysed using event trees. According to the character of the conceptual design of Hefei Fusion-fission Experimental Hybrid Breeding Reactor, the probabilities of the event tree series induced by 4 typical initiating events were calculated. The results showed that the conceptual design is safe and reasonable. through this paper, the safety character of hybrid reactor system has been understood more deeply. Some suggestions valuable to safety design for hybrid reactor have been proposed

  10. Evaluation of WIMS-D/4 nuclear data library used on TRIGA reactor calculation

    International Nuclear Information System (INIS)

    Chen Wei; Xie Zhongsheng; Jiang Xinbiao; Chen Da

    1997-01-01

    The 69 groups constants of H in ZrH, 166 Er and 167 Er generated by NJOY and GASKET codes are inserted into WIMS nuclear data library WIMS-CNDC and WIMS-NINT libraries used on RTIGA reactor calculation are obtained. In order to check WIMS-CNDC and WIMS-NINT libraries, the scattering cross-section is compared with that in WIMS-IJS library. The group constant, K ∞ and temperature coefficient are calculated by using WIMS-CNDC, WIMS-NINT and WIMS-IJS. The results show the both libraries are suitable for calculation of TRIGA reactor

  11. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  12. Present status and future perspectives of research and test reactor in Japan

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Kaieda, Keisuke

    2000-01-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  13. Present status and future perspectives of research and test reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yoshihiko [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan); Kaieda, Keisuke [Department of Research Reactor, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-10-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  14. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  15. Burnup influence on the VVER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of the Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of VVER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in 1/4 depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (authors)

  16. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  17. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  18. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  19. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  20. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  1. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  2. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  3. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  4. Benchmarking the new JENDL-4.0 library on criticality experiments of a research reactor with oxide LEU (20 w/o) fuel, light water moderator and beryllium reflectors

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Sembiring, Tagor Malem

    2012-01-01

    Highlights: ► Benchmark calculations of the new JENDL-4.0 library. ► Thermal research reactor with oxide LEU fuel, H 2 O moderator and Be reflector. ► JENDL-4.0 library shows better C/E values for criticality evaluations. - Abstract: Benchmark calculations of the new JENDL-4.0 library on the criticality experiments of a thermal research reactor with oxide low enriched uranium (LEU, 20 w/o) fuel, light water moderator and beryllium reflector (RSG GAS) have been conducted using a continuous energy Monte Carlo code, MVP-II. The JENDL-4.0 library shows better C/E values compared to the former library JENDL-3.3 and other world-widely used latest libraries (ENDF/B-VII.0 and JEFF-3.1).

  5. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  6. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  7. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  8. Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeyeong, E-mail: d486916@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Choi, Sungyeol [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Sungjune [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Hwang, Il Soon [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-08-15

    Highlights: • Computational simulation on electrorefining of irradiated Zircaloy-4 cladding. • Composition of irradiated Zircaloy-4 cladding of pressurized water reactor. • Redox behavior of elements in irradiated Zircaloy cladding during electrorefining. • Effect of electrorefining operating conditions on decontamination factor. - Abstract: To reduce the final waste volume from used nuclear fuel assembly, it is significant to decontaminate irradiated cladding. Electrorefining in high temperature molten salt could be one of volume decontamination processes for the cladding. This study examines the effect of operating conditions on decontamination factor in electrorefining of irradiated Zircaloy-4 cladding of pressurized water reactor. One-dimensional time-dependent electrochemical reaction code, REFIN, was utilized for simulating irradiated cladding electrorefining. Composition of irradiated Zircaloy was estimated based on ORIGEN-2 and other literatures. Co and U were considered in electrorefining simulation with major elements of Zircaloy-4 to represent activation products and actinides penetrating into the cladding respectively. Total 240 cases of electrorefining are simulated including 8 diffusion boundary layer thicknesses, 10 concentrations of contaminated molten salt and 3 termination conditions. Decontamination factors for each case were evaluated and it is revealed that the radioactivity of Co-60 in recovered zirconium on cathode could decrease below the clearance level when initial concentration of chlorides except ZrCl{sub 4} is lower than 1 × 10{sup −11} weight fraction if electrorefining is finished before anode potential reaches −1.8 V (vs. Cl{sub 2}/Cl{sup −})

  9. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  10. RA-0 reactor. New neutronic calculations

    International Nuclear Information System (INIS)

    Rumis, D.; Leszczynski, F.

    1990-01-01

    An updating of the neutronic calculations performed at the RA-0 reactor, located at the Natural, Physical and Exact Sciences Faculty of Cordoba National University, are herein described. The techniques used for the calculation of a reactor like the RA-0 allows prediction in detail of the flux behaviour in the core's interior and in the reflector, which will be helpful for experiments design. In particular, the use of WIMSD4 code to make calculations on the reactor implies a novelty in the possible applications of this code to solve the problems that arise in practice. (Author) [es

  11. Annual report of Department of Research Reactors and Tandem Accelerator, JFY2006. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    2007-12-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor-3), JRR-4 (Japan Research Reactor-4) and NSRR (Nuclear Safety Research Reactor) and Tandem Accelerator. The following services and technical developments were achieved in Japanese Fiscal Year 2006: 1) JRR-3 was operated for 181 days in 7 cycles and JRR-4 for 149 days in 37 cycles to provide neutrons for research and development of in-house and outside users. 2) JRR-3 and JRR-4 were utilized through deliberate coordination as follows, a) Neutron irradiations of 628 materials, for neutron transmutation doping of silicon etc. b) Capsule irradiations of 3,067 samples, for neutron activation analyses etc. c) Neutron beam experiments of 6,338 cases x days. 3) Concerning to the 10 times increasing plan of cold neutron beams from JRR-3, a pressure resistant test model of the high-performance neutron moderator vessel which had been designed to increase cold neutrons twice as much as the present one was fabricated. Various developments for upgrading cold neutron guide tubes with super mirrors were in progress. 4) Boron neutron capture therapy was carried out 34 times using JRR-4. Improved neutron collimators were built to fit well to any irregular outline for cancer around the neck. 5) NSRR carried out 4 times of pulse irradiations of high burn-up MOX fuels and 9 times of un-irradiated fuels to contribute to fuel safety researches. 6) The Tandem Accelerator was operated for 201 days to contribute to the researches of nuclear physics and solid state physics with high energy heavy ions. The new utilization program of sharing beam times with outside users was performed by carrying out 45 days. The beam intensity increasing program with a high performance ion source, in place of the compact one which has been working in the high voltage terminal, has made great progress. (author)

  12. The decommissioning of a small nuclear reactor

    International Nuclear Information System (INIS)

    Neset, K.; Christensen, G.C.; Lundby, J.E.; Roenneberg, G.A.

    1990-02-01

    The JEEP II reactor at Kjeller, Norway has been used as a model for a study of the decommissioning of a small research reactor. A radiological survey is given and a plan for volume reducing, packaging, certifying, classifying and shipping of the radioactive waste is described. 23 refs., 4 figs

  13. Decommissioning of Swedish nuclear power reactors. Technology and costs

    International Nuclear Information System (INIS)

    1994-06-01

    The main topics discussed are planning, technology and costs of decommissioning nuclear power reactors. Oskarshamn-3 (BWR) and Ringhals-4 (PWR) have been used as reference reactors. 29 refs, figs, tabs

  14. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Mirvakili, S.M.

    2009-01-01

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity (ρ ex ), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10 3 Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  15. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2009-06-15

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity ({rho}{sub ex}), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10{sup 3}Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  16. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  17. Today's attitudes and future prospects of fast reactors in Italy

    International Nuclear Information System (INIS)

    Barabaschi, S.; Cicognani, G.; Pierantoni, F.

    1982-01-01

    The Italian fast reactor programme is reviewed. The 15 year collaboration with France has resulted in the construction of the PEC reactor, development of the Superphenix-1 and a common R and D programme for future large fast reactors. The CNEN 4th five year (1980-84) plan is outlined. The budget breakdown for different areas shows the importance attached to the fast reactor. (U.K.)

  18. Inherent safety characteristics of innovative reactors

    International Nuclear Information System (INIS)

    Heil, J.A.

    1995-11-01

    of the considered innovative designs with passive safety features and increased simplicity, the modular gas-cooled reactors offer the best option for support. 5 figs., 4 tabs., 11 refs., 7 appendices

  19. Computational Fluid Dynamics (CFD) in Nuclear Reactor Safety (NRS) - Proceedings of the workshop on Experiments and CFD Code Application to Nuclear Reactor Safety (XCFD4NRS)

    International Nuclear Information System (INIS)

    2008-01-01

    Computational Fluid Dynamics (CFD) is to an increasing extent being adopted in nuclear reactor safety analyses as a tool that enables specific safety relevant phenomena occurring in the reactor coolant system to be better described. The Committee on the Safety of Nuclear Installations (CSNI), which is responsible for the activities of the OECD Nuclear Energy Agency that support advancing the technical base of the safety of nuclear installations, has in recent years conducted an important activity in the CFD area. This activity has been carried out within the scope of the CSNI working group on the analysis and management of accidents (GAMA), and has mainly focused on the formulation of user guidelines and on the assessment and verification of CFD codes. It is in this GAMA framework that a first workshop CFD4NRS was organized and held in Garching, Germany in 2006. Following the CFD4NRS workshop, this XCFD4NRS Workshop was intended to extend the forum created for numerical analysts and experimentalists to exchange information in the field of Nuclear Reactor Safety (NRS) related activities relevant to Computational Fluid Dynamics (CFD) validation, but this time with more emphasis placed on new experimental techniques and two-phase CFD applications. The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to GAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. The scope of XCFD4NRS includes: - Single-phase and two-phase CFD simulations with an emphasis on validation in areas such as: boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These applications should relate to NRS-relevant issues such as: pressurized thermal shocks, critical heat flux, pool heat exchangers, boron dilution, hydrogen

  20. Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel upflow microaerobic biofilm reactor.

    Science.gov (United States)

    Meng, Jia; Li, Jiuling; Li, Jianzheng; Antwi, Philip; Deng, Kaiwen; Nan, Jun; Xu, Pianpian

    2018-02-01

    To enhance nutrient removal more cost-efficiently in microaerobic process treating piggery wastewater characterized by high ammonium (NH 4 + -N) and low chemical oxygen demand (COD) to total nitrogen (TN) ratio, a novel upflow microaerobic biofilm reactor (UMBR) was constructed and the efficiency in nutrient removal was evaluated with various influent COD/TN ratios and reflux ratios. The results showed that the biofilm on the carriers had increased the biomass in the UMBR and enhanced the enrichment of slow-growth-rate bacteria such as nitrifiers, denitrifiers and anammox bacteria. The packed bed allowed the microaerobic biofilm process perform well at a low reflux ratio of 35 with a NH 4 + -N and TN removal as high as 93.1% and 89.9%, respectively. Compared with the previously developed upflow microaerobic sludge reactor, the UMBR had not changed the dominant anammox approach to nitrogen removal, but was more cost-efficiently in treating organic wastewater with high NH 4 + -N and low COD/TN ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  2. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  3. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  4. Performance of a multipurpose research electrochemical reactor

    International Nuclear Information System (INIS)

    Henquin, E.R.; Bisang, J.M.

    2011-01-01

    Highlights: → For this reactor configuration the current distribution is uniform. → For this reactor configuration with bipolar connection the leakage current is small. → The mass-transfer conditions are closely uniform along the electrode. → The fluidodynamic behaviour can be represented by the dispersion model. → This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of ±10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  5. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  6. Strategies of development of reactor types

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    The development of nuclear energy in the coming decades will depend on the goals followed, on the available technologies and on the strategies implemented in the world in agreement with public acceptation. This article is limited to the technical aspects of the strategies of development of reactor types: 1 - objectives; 2 - common constraints to all reactor types: safety and terrorism risks, wastes, non-proliferation, economics; 3 - different reactor types: general considerations, proven technologies (PWR, BWR, Candu), non-proven technologies but having an important experience, technologies at the design stage; 4 - energy systems and 'Generation IV forum': systems based on thermal neutron reactors and low enrichment, systems for the valorization of 238 U, systems for Pu burning, systems allowing the destruction of minor actinides, thorium-based systems, the Gen IV international forum; 5 - conclusion. (J.S.)

  7. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  8. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  9. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  10. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  11. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  12. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  13. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  14. Burnup influence on the WWER-1000 reactor vessel neutron fluence evaluation

    International Nuclear Information System (INIS)

    Panayotov, I.; Mihaylov, N.; Ilieva, K.; Kirilova, D.; Manolova, M.

    2009-01-01

    The neutron fluence of the vessels of the reactors is determined regularly accordingly the RPV Surveillance Program of Kozloduy NPP Unit 5 and 6 in order to assess the state of the metal vessel and their radiation damaging. The calculations are carried out by the method of discrete ordinates used in the TORT program for operated reactor cycles. An average reactor spectrum corresponding to fresh U-235 fuel is used as an input neutron source. The impact of the burn up of the fuel on the neutron fluence of WWER-1000 reactor vessel is evaluated. The calculations of isotopic concentrations of U-235 and Pu-239 corresponding to 4 years burn up were performed by the module SAS2H of the code system SCALE 4.4. Since fresh fuel or 4 years burn up fuel assembly are placed in periphery of reactor core the contribution of Pu-239 of first year burn up and of 4 years burn up is taken in consideration. Calculations of neutron fluence were performed with neutron spectrum for fresh fuel, for 1 year and for 4 years burn up fuel. Correction factors for neutron fluence at the inner surface of the reactor vessel, in ? depth of the vessel and in the air behind the vessel were obtained. The correction coefficient could be used when the neutron fluence is assessed so in verification when the measured activity of ex-vessel detectors is compared with calculated ones. (Authors)

  15. Pellet bed reactor for nuclear thermal propelled vehicles

    International Nuclear Information System (INIS)

    El-Genk, M.; Morley, N.J.; Haloulakos, V.E.

    1991-01-01

    The Pellet Bed Reactor (PeBR) concept is capable of operating at a high power density of up to 3.0 kWt/cu cm and an exit hydrogen gas temperature of 3000 K. The nominal reactor thermal power is 1500 MW and the reactor core is 0.80 m in diameter and 1.3 m high. The nominal PeBR engine generates a thrust of approximately 315 kN at a specific impulse of 1000 s for a mission duration to Mars of 250 days requiring a total firing time of 170 minutes. Because of its low diameter-to-height ratio, PeBR has enough surface area for passive removal of the decay heat from the reactor core. The reactor is equipped with two independent shutdown mechanisms; 8-B4C safety rods and 26 BeO/B4C control drums; each system is capable of operating and scraming the reactor safely. Due to the absence of core internal support structures, the PeBR can be fueled and refueled in orbit using the vacuum of space. These unique features of the PeBR provide for safety during launch, simplicity of handling, deployment, and end-of-life disposal, and vehicle extended lifetime. 11 refs

  16. Biological perchlorate reduction in packed bed reactors using elemental sulfur.

    Science.gov (United States)

    Sahu, Ashish K; Conneely, Teresa; Nüsslein, Klaus R; Ergas, Sarina J

    2009-06-15

    Sulfur-utilizing perchlorate (ClO4-)-reducing bacteria were enriched from a denitrifying wastewater seed with elemental sulfur (S0) as an electron donor. The enrichment was composed of a diverse microbial community, with the majority identified as members of the phylum Proteobacteria. Cultures were inoculated into bench-scale packed bed reactors (PBR) with S0 and crushed oyster shell packing media. High ClO4-concentrations (5-8 mg/L) were reduced to PBR performance decreased when effluent recirculation was applied or when smaller S0 particle sizes were used, indicating that mass transfer of ClO4- to the attached biofilm was not the limiting mechanism in this process, and that biofilm acclimation and growth were key factors in overall reactor performance. The presence of nitrate (6.5 mg N/L) inhibited ClO4- reduction. The microbial community composition was found to change with ClO4- availability from a majority of Beta-Proteobacteria near the influent end of the reactor to primarily sulfur-oxidizing bacteria near the effluent end of the reactor.

  17. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  18. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  19. Preliminary Options Assessment of Versatile Irradiation Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The objective of this report is to summarize the work undertaken at INL from April 2016 to January 2017 and aimed at analyzing some options for designing and building a versatile test reactor; the scope of work was agreed upon with DOE-NE. Section 2 presents some results related to KNK II and PRISM Mod A. Section 3 presents some alternatives to the VCTR presented in [ ] as well as a neutronic parametric study to assess the minimum power requirement needed for a 235U metal fueled fast test reactor capable to generate a fast (>100 keV) flux of 4.0 x 1015 n /cm2-s at the test location. Section 4 presents some results regarding a fundamental characteristic of test reactors, namely displacement per atom (dpa) in test samples. Section 5 presents the INL assessment of the ANL fast test reactor design FASTER. Section 6 presents a summary.

  20. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  1. Application of non-destructive testing and in-service inspections to research reactors and preparation of ISI programme and manual for WWR-C research reactors

    International Nuclear Information System (INIS)

    Khattab, M.

    1996-01-01

    The present report gives a review on the results of application of non-destructive testing and in-service inspections to WWR-C reactors in different countries. The major problems related to reactor safety and the procedure of inspection techniques are investigated to collect the experience gained from this type of reactors. Exchangeable experience in solving common problems in similar reactors play an important role in the effectiveness of their rehabilitation programmes. 9 figs., 4 tabs

  2. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  3. Modeling the effect in of criticality from changes in key parameters for small High Temperature Nuclear Reactor (U-BatteryTM) using MCNP4C

    International Nuclear Information System (INIS)

    Pauzi, A M

    2013-01-01

    The neutron transport code, Monte Carlo N-Particle (MCNP) which was wellkown as the gold standard in predicting nuclear reaction was used to model the small nuclear reactor core called U -battery TM, which was develop by the University of Manchester and Delft Institute of Technology. The paper introduces on the concept of modeling the small reactor core, a high temperature reactor (HTR) type with small coated TRISO fuel particle in graphite matrix using the MCNPv4C software. The criticality of the core were calculated using the software and analysed by changing key parameters such coolant type, fuel type and enrichment levels, cladding materials, and control rod type. The criticality results from the simulation were validated using the SCALE 5.1 software by [1] M Ding and J L Kloosterman, 2010. The data produced from these analyses would be used as part of the process of proposing initial core layout and a provisional list of materials for newly design reactor core. In the future, the criticality study would be continued with different core configurations and geometries.

  4. Research nuclear reactor RA - Annual report 1992

    International Nuclear Information System (INIS)

    Sotic, O.

    1992-12-01

    Research reactor RA Annual report for year 1992 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. Second annex B is a paper by Z. Vukadin 'Recurrence formulas for evaluating expansion series of depletion functions' published in 'Kerntechnik' 56, (1991) No.6 (INIS record no. 23024136. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data [sr

  5. Reactors set for mini market

    International Nuclear Information System (INIS)

    Knox, Richard.

    1988-01-01

    Commercial nuclear power generation on a large-scale has an uncertain future. However, it is hoped that a small nuclear reactor could form the basis for providing heating, cooling or electricity in large buildings. Based on the Slowpoke research reactor, the Slowpoke energy system concept is simple. The concept and the way in which the small-scale reactor would work are discussed. The system consists of a stainless steel tank surrounded by reinforced concrete and let into the ground. The tank is full of light water which is heated to about 90 deg C by a central core of 2.4 percent enriched uranium fuel. The resulting natural circulation causes the water to pass through a heat exchanger. The water from the heat exchanger can be used for building or district heating, to operate air-conditioners or to generate small quantities of electricity. It is hoped to automate the operation of the reactor so that continuous supervision by a team of engineers would be unnecessary. A single operator on call in the building would be able to take control actions if the reactor's safety system failed. (UK)

  6. Introduction to nuclear power reactors and their health physics systems

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1982-01-01

    This paper provides an introduction to: (1) the major systems of Boiling Water Reactors (BWR's) and Pressurized Water Reactors (PWR's), (2) the production and distribution of radiation sources in BWR's and PWR's, (3) the regulatory and functional requirements for nuclear power reactor design from a health physics standpoint, (4) the health physics systems provided to meet such requirements, and (5) a bibliography of documents germane to power reactor health physics design

  7. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  8. The 1975 DAtF-KTG reactor conference in Nuernberg

    International Nuclear Information System (INIS)

    Henssen, H.; Rossbach, W.

    1975-01-01

    A comprehensive review on the meeting is given which reports on the most important of the 204 papers read in the four session groups: 1) reactor design and experiments, 2) fuel elements, fuel cycle, and isotope technique, 3) planning, construction and operation of nuclear reactor facilities and their components, and 4) reactor types and problems of cost-efficiency. (UA/AK) [de

  9. Anaerobic biogranulation in a hybrid reactor treating phenolic waste

    International Nuclear Information System (INIS)

    Ramakrishnan, Anushyaa; Gupta, S.K.

    2006-01-01

    Granulation was examined in four similar anaerobic hybrid reactors 15.5 L volume (with an effective volume of 13.5 L) during the treatment of synthetic coal wastewater at the mesophilic temperature of 27 ± 5 deg. C. The hybrid reactors are a combination of UASB unit at the lower part and an anaerobic filter at the upper end. Synthetic wastewater with an average chemical oxygen demand (COD) of 2240 mg/L, phenolics concentration of 752 mg/L and a mixture of volatile fatty acids was fed to three hybrid reactors. The fourth reactor, control system, was fed with a wastewater containing sodium acetate and mineral nutrients. Coal waste water contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. A mixture of anaerobic digester sludge and partially granulated sludge (3:1) were used as seed materials for the start up of the reactors. Granules were observed after 45 days of operation of the systems. The granules ranged from 0.4 to 1.2 mm in diameter with good settling characteristics with an SVI of 12 mL/g SS. After granulation, the hybrid reactor performed steadily with phenolics and COD removal efficiencies of 93% and 88%, respectively at volumetric loading rate of 2.24 g COD/L d and hydraulic retention time of 24 h. The removal efficiencies for phenol and m/p-cresols reached 92% and 93% (corresponding to 450.8 and 153 mg/L), while o-cresol was degraded to 88% (corresponding to 51.04 mg/L). Dimethyl phenols could be removed completely at all the organic loadings and did not contribute much to the residual organics. Biodegradation of o-cresol was obtained in the hybrid-UASB reactors

  10. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  11. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  12. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  13. Mo-99 production on a LEU solution reactor

    International Nuclear Information System (INIS)

    Brown, R.W.; Thome, L.A.; Khvostionov, V.Y.

    2005-01-01

    A pilot homogenous reactor utilizing LEU has been developed by the Kurchatov Institute in Moscow along with their commercial partner TCI Medical. This solution reactor operates at levels up to 50 kilowatts and has successfully produced high quality Mo-99 and Sr-89. Radiochemical extraction of medical radionuclides from the reactor solution is performed by passing the solution across a series of inorganic sorbents. This reactor has commercial potential for medical radionuclide production using LEU UO 2 SO 4 fuel. Additional development work is needed to optimize multiple 50 kilowatt cores while at the same time, optimizing production efficiency and capital expenditure. (author)

  14. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    reactors of the future, the body of research aimed at developing liquid metal cooled fast reactors, national plans for work in 1976 on developing fast reactors - these were some of the topics discussed in connection with the national programmes. The development of power reactors involves a wide range of problems in the fields of nuclear and reactor physics, the thermophysics, chemistry, physics and technology of the cooling system, structural materials and nuclear fuel, the fabrication of reliable fuel elements and operating equipment, reactor monitoring and control, spent fuel reprocessing, the economics of constructing fast power reactors, nuclear safety, etc. The IWGFR, as at previous meetings, therefore paid great attention to the matter of holding international specialists' meetings. The working group recommended that the IAEA should organize the following IWGFR meetings in 1976: (1) In-Service Inspection and Monitoring (Bensberg, FRG, March 1976). (2) Cavitation in Sodium and Studies of Analogy with Water as Compared to Sodium (Cadarache, France, April 1976). (3) High Temperature Structural Design Technology (United States, May 1976) (4) Aerosol Formation, Vapour Deposits and Sodium Vapour Trapping (France, September-December 1976). The Group welcomed the IAEA's proposal to hold specialists' meetings on 'Fast Reactor Instrumentation' and 'Fuel Reprocessing and Recycling Techniques' within the framework of the Agency's programme of working groups in 1976. After discussing questions of co-ordinating and organizing international conferences on fast reactors, the IWGFR agreed to send representatives to the joint meeting of the American Nuclear Society and the American Institute of Metallurgical Engineers on 'Liquid Metal Technology', to be held at Champion, Pennsylvania, U.S.A. from 3-6 May 1976, and recommended that the IAEA should organize an international symposium on the 'Design, Construction and Operating Experience of Demonstration Fast Power Reactors' at Bologna

  15. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  16. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  17. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  18. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  19. Nuclear reactors built, being built, or planned, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  20. Nuclear reactors built, being built, or planned, 1991

    International Nuclear Information System (INIS)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)